Western University Scholarship@Western

Electronic Thesis and Dissertation Repository

8-17-2012 12:00 AM

The genetic basis of cuticular hydrocarbon production in Drosophila melanogaster and D. simulans

Jessica A. Pardy, The University of Western Ontario

Supervisor: Dr. Amanda Moehring, *The University of Western Ontario* A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Biology © Jessica A. Pardy 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Biology Commons

Recommended Citation

Pardy, Jessica A., "The genetic basis of cuticular hydrocarbon production in Drosophila melanogaster and D. simulans" (2012). *Electronic Thesis and Dissertation Repository*. 832. https://ir.lib.uwo.ca/etd/832

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

THE GENETIC BASIS OF CUTICULAR HYDROCARBON PRODUCTION IN DROSOPHILA MELANOGASTER AND D. SIMULANS

(The genetics of cuticular hydrocarbon production in Drosophila)

(Thesis format: Monograph)

by

Jessica A. Pardy

Graduate Program in Biology

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada

© Jessica A. Pardy 2012

THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Examiners

Dr. Amanda Moehring

Supervisory Committee

Dr. Gregory Kelly

Dr. Brian Branfireun

Dr. Jeremy McNeil

Dr. Susanne Kohalmi

Dr. Graham Thompson

The thesis by

Jessica Ann Pardy

entitled:

The genetic basis of cuticular hydrocarbon production in *Drosophila* melanogaster and D. simulans

is accepted in partial fulfillment of the requirements for the degree of Master of Science

Date

Chair of the Thesis Examination Board

Abstract

Individuals within many species have evolved complex reproductive strategies to ensure they identify appropriate mates so as to increase their fitness. Chemical signals, which are often species- and sex-specific, are one means by which many insect species communicate. Differences in cuticular hydrocarbons (CHCs) profiles can influence reproductive isolation in *Drosophila*. A previous study identified large genomic regions that contain genes responsible for the different CHC profiles observed in *D. melanogaster* and *D. simulans* females. I refined these earlier results by utilizing fine-scale mapping, focusing on the entire CHC profiles of this species pair. Five genomic regions along Chromosome *3* were identified as well as a candidate gene, *Dhc93AB*. Determining the molecular mechanisms governing the differential CHC profiles in these two species could provide insight into the genes responsible for CHC formation as well as reproductive isolation.

Keywords

Cuticular hydrocarbons, *Drosophila*, deficiency mapping, pheromones, reproductive isolation

Dedication

This work is dedicated to my family, whose unending support has motivated me to see this project through to completion. I am forever in their debt.

Acknowledgments

Firstly, I would like to thank Dr. Amanda Moehring, whose guidance and support over the years have not only shaped me as a scientist, but as a person as well. I will forever admire her creativity, attention to detail and enthusiasm. I appreciate the countless number of hours she has spent fielding my questions, editing drafts and giving me pep-talks. She is the master-juggler of all things in life and I wish her much success, she certainly deserves it.

I also want to thank Dr. Jeremy McNeil for his incredible amount of help with this project. I am grateful that he was designated my "surrogate supervisor" for this past term. I always enjoy hearing him talk about the various ways in which insects interact with one another, I always leave his office feeling inspired. The written portion of this thesis would have been a complete disaster if not for his guidance and insight.

Many thanks to Dr. Howard Rundle, as he helped with the development of this project, and he also ran my samples on his GC.

I need to thank Dr. Mark Bernards who gave up a substantial number of hours to assist me in running samples on his GC. I appreciate his time and patience.

I would like to thank Dr. Graham Thompson, an advisory committee member, for his help regarding the development of this project.

Lastly, I have to thank all of my labmates, particularly Rachelle Kanipayoor, Ryan Calhoun, Meghan Laturney and Hélène LeVasseur-Viens. Thanks to lab technician/graduate student extraordinaire, Rachelle, who was never too tired or busy to make time for Tim Hortons runs, venting sessions or resolving lab catastrophes. Thanks to Ryan, DJ of the flycave, who always provided amazing tunes to make the cave a better place. This project would not have been possible without the help of Meghan Laturney, I appreciate her patience and understanding, as well as the endless number of hours she spent in the flycave. I am also very thankful to Meghan for her willingness to help me with the written portion of this thesis, even though she is halfway around the world. Finally, I want to thank Hélène LeVasseur-Viens, I admire her intelligence, sense of humour and strength. Without her help with various parts of the project this work would have been impossible.

CERTIFICATE OF EXAMINATION	ii
Abstract	iii
Dedication	iv
Acknowledgments	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix
List of Appendices	x
List of Abbreviations	xi
Chapter 1: General Introduction	1
1.1 Reproductive Strategies	1
1.2 Chemical systems in arthropods	2
1.3 Social systems, status and deception	4
1.4 Biosynthesis of CHCs	7
1.5 Perception of CHCs	7
1.6 Drosophila as a model system	
1.7 <i>Drosophila</i> courtship	8
1.8 Species isolation in <i>Drosophila</i>	9
1.9 CHC biosynthesis in <i>Drosophila</i>	10
1.10 CHC perception in Drosophila	13
1.11Deficiency mapping	13
Chapter 2: Methods	15
2.1 Drosophila stocks	15
2.2 Drosophila crosses	15

Table of Contents

2.3 Deficiency mapping
2.4 Gene disruption lines
2.5 CHC extractions and gas chromatography
2.6 Data analysis
Chapter 3: Results
3.1 Deficiency mapping of chromosome 3L
3.2 Deficiency mapping of chromosome 3R
Chapter 4: Discussion
4.1 Genomic regions contributing to CHC production
4.2 Conclusions and future work
References
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Curriculum Vitae

List of Tables

Table 2.1.	Deficiency lines used to map Chromosome 3 for genes contributing to CHC	
production		18

List of Figures

Figure 1.1.	Cuticular hydrocarbon biosynthesis pathway for <i>Drosophila melanogaster</i> 12
Figure 2.1.	Crossing scheme for the creation of <i>melanogaster/simulans</i> F ₁ hybrids16
Figure 2.2.	Drosophila melanogaster CHC profile
Figure 2.3.	A comparison of <i>D. melanogaster</i> , <i>D. simulans</i> and F ₁ hybrid CHC profiles 26
Figure 3.1.	Deficiency mapping of chromosome 3L
Figure 3.2.	Chromatograms for the significant region on chromosome 3L
Figure 3.3.	Deficiency mapping of chromosome 3R
Figure 3.4.	Chromatograms for the significant regions on chromosome 3R
Figure 3.5.	<i>Dhc93AB</i> influences the production of 7,11-heptacosadiene

List of Appendices

Appendix A: Candidate genes within region 67E2-68A7	53
Appendix B: Candidate genes within region 87B6-88A1	64
Appendix C: Candidate genes within region 93A1-93D5	91
Appendix D: Candidate genes within region 96A20-96C3	103
Appendix E: Candidate genes within region 98E5-99A5	118

List of Abbreviations

Bal	balancer chromosome
СНС	cuticular hydrocarbon
cVA	cis-vaccenyl acetate
Df	deficiency chromosome
Dhc93AB	Dynein heavy chain at 93AB
DVM	dominant visible marker
GC	gas chromatography
GC-MS	gas chromatography-mass spectrometry
mel	Drosophila melanogaster
sim	Drosophila simulans
3L	left arm of Chromosome 3
3R	right arm of Chromosome 3
2-MH	2-methyl hexacosane
5,9-HD	5,9-heptacosadiene
7-P	7-pentacosene
7-T	7-tricosene
7,11-HD	7,11-heptacosadiene
7,11-ND	7,11-nonacosadiene

1 General Introduction

1.1 Reproductive strategies

Individuals from many species have evolved pre- and postzygotic reproductive isolating mechanisms (Dobzhansky, 1937), which ensure they find an appropriate mate and reject those that are not, thus increasing their reproductive fitness. Postzygotic isolating mechanisms occur after the formation of the zygote and include hybrid inviability and hybrid sterility, while prezygotic isolating mechanisms include ecological, temporal, mechanical and/or behavioural isolation (Dobzhansky, 1937). Prezygotic barriers are thought to have a greater impact on reproductive isolating mechanism between species (Coyne and Orr, 1989; 1997). One form of prezygotic isolation is the behavioural differences between species that decrease the likelihood of interspecies mating (Dobzhansky, 1937).

Courtship behaviours involve auditory, visual, tactile and chemical signals that may act individually or in combination, serving both as species-specific cues to avoid heterospecific matings, as well as sex-specific cues to select the most appropriate conspecific mate. For example, in Amazonian frogs, males produce species-specific auditory calls (Boul *et al.*, 2007) which allow females to avoid males of other species. Furthermore, the call may differ considerably between conspecific males, allowing the female to gauge the attractiveness of her potential mates (Boul *et al.*, 2007). Males of many bird species use visual cues, using elaborate plumage to attract potential mates, with female bias generally favouring the longer, more elaborate tail feathers for males (Andersson, 1982; Pryke and Andersson, 2002). Courtship behaviours of aphid

parasitoids, such as Aphidius ervi and A. nigripes, involve several chemical cues. Virgin females emit a pheromone that acts long-distance to attract potential mates, while other chemical and auditory signals serve once the sexes are in close proximity. Once the male has mounted the female (but before copulation), he will stroke her antennae with his, resulting in an exchange of tactile and possibly chemical signals between the pair (McNeil and Brodeur, 1995; McClure et al., 2007). The courtship rituals of Australian redback spiders (Latrodectus hasselti) have been well-characterized and include all of the above signals (Forster, 1992; Stoltz and Andrade, 2010). Latrodectus hasselti females release a sex pheromone (chemical cue) which induces males to exhibit courtship behaviours (Jerhot *et al.*, 2010). In the first stage of courtship, males will perform a stereotypical courtship dance, which involves plucking the web (sound cue), throwing silk, waving their legs (visual cue) and grooming. The second stage involves physical contact (tactile cue) with the female in the form of tapping and probing. The final courtship stage involves continued contact with the female, particularly around her genital region. The order and timing of each courtship event is species-specific and if any step is deemed unacceptable or unattractive by the female, she will become aggressive toward the male and mating will not occur.

1.2 Chemical systems in arthropods

Arthropods have evolved complex chemical signalling systems, not only for reproductive cues, but to fulfill a number of roles. Chemical signals (infochemicals) can be separated into two main categories: pheromones, which are used for intraspecific communication or allelochemicals, used for interspecific communication (Lewis, 1984). Within species, pheromones influence many behaviours, such as aggregation, signalling danger,

establishing social castes and mate recognition (Howard and Blomquist, 2005). Between species, chemical cues can act in the avoidance of interspecific mating, location of food and defence (Howard and Blomquist, 2005). The active space over which these cues are detected will vary depending on their chemical composition, some being effective over kilometer distances, others over centimeters, while others only when there is direct contact with the source (Lewis, 1984).

Many insects produce cuticular hydrocarbons (CHCs) which are important in providing desiccation resistance by changing the permeability of the cuticle. Edney (1967) found that beetles inhabiting the desert had an impermeable cuticle whereas cockroaches living under the desert sand had a very permeable cuticle and both species had adapted to their own environments by producing more or less of these hydrocarbon compounds. CHC production has also been correlated with geographical location for *Drosophila melanogaster*. Rouault *et al.* (2001) collected 85 strains of *D. melanogaster* from various geographical locations and observed a pattern of increasing CHC chain length with increasing temperature and humidity. The results of this study lent support for work done by Gibbs *et al.* (1997), in which they concluded that longer chain lengths better protect against desiccation as they have higher melting points.

This principle of desiccation resistance has been thoroughly studied, with the common consensus being that the more abundant CHCs are on an individual, the better able that individual is at maintaining overall body water in very dry environments (Gibbs *et al.*, 1997; Gibbs *et al.*, 1998; Kwan and Rundle 2010; Savarit and Ferveur, 2002).

However, it is now well established that, in addition to desiccation resistance, CHCs also provide important chemical cues in a variety of species in several insect Orders. Individuals of a given species produce a particular number and amount of compounds known as the CHC profile, which may be important in both species- and sex-specific interactions (Pechine *et al.*, 1985). Differences in CHC profiles influence the way in which individuals interact with one another and their environments, and serve a variety of functions, including establishment of social systems, determination of an individual's social status, deception of others as well as reinforcement of reproductive isolation (Cremer *et al.*, 2002; Greene and Gordon, 2003; Stökl *et al.* 2011; Thomas and Simmons, 2011; Wagner *et al.*, 2001). The CHC profile will change with different developmental stages during the life cycle and in a number of different species in different Orders, when adults reach reproductive maturity, they produce the species- and sex- specific profiles that are important for mate recognition (Blomquist and Bagnères, 2010).

1.3 Role of CHCs in social systems, status and deception

Eusocial insect species are successful, in part, because of their high level of organization and CHCs play a significant role in the establishment and maintenance of social structure. For example, a colony of harvester ants (*Pogonomyrmex barbatus*), will contain different worker castes, including foragers, patrollers and individuals who maintain the nest, with each caste fulfilling a particular need for the colony as a whole (Gordon, 1996). Different castes have different CHC profiles, which will signal their role to other colony members (Greene and Gordon, 2003). For example, the outside workers of *P. barbatus* have a greater abundance of CHCs than those staying inside the nest, probably because they are exposed to higher temperatures and thus, are in greater need of protection against desiccation (Wagner *et al.*, 1998). *Pogonomyrmex barbatus* workers also use CHC profiles to differentiate nest mates from individuals of other colonies (Wagner *et al.*, 2001).

Chemical signals may also serve to indicate social status within a population, which may be of considerable importance for mating success. For example, in the field cricket, *Teleogryllus oceanicus*, dominant or subordinate males, defined by male-to-male fighting ability, have different CHC profiles (Shackleton et al., 2005). Teleogryllus oceanicus subordinate males produce a greater amount of their species-specific sex pheromone (Thomas and Simmons, 2010). Dominant males use sound signals to attract females, but this signal is also used by subordinate males, who will remain close by and try to intercept an approaching female. The higher level of sex pheromone in the subordinate individuals increases the probability that they successfully mate. However, if a female mates with a dominant and subordinate male, the dominant male will father the majority of the resulting progeny, as there is a positive relationship between dominance and the number of viable sperm produced (Thomas and Simmons, 2009). Thomas and Simmons (2011), described how *T. oceanicus* male CHC profiles changed when their social status changed (dominant male becomes subordinate or vice versa, through wins/losses in fighting matches).

Chemical deception, based on CHCs, has been demonstrated in a variety of processes such as parasitism, intraspecific reproductive strategies and even plant-insect interactions (Bagnères *et al.*, 1996; Blomquist and Bagnères, 2010; Cremer *et al.*, 2002; Stökl *et al.*, 2010). A well-documented example of chemical deception using CHCs has been described in the wasps (*Polistes biglumis bimaculatus*) and their obligate parasite (*P. atrimandibularis*) (Bagnères *et al.*, 1996). A fertilized queen parasite will invade a nest and change her CHC profile to match that of the host individuals. Subsequently, she will lay eggs and her larvae are then raised by the host workers, so by using chemical deception the parasite gains reproductive fitness.

Many species will use particular CHCs as sex pheromones and these influence sexual behaviour, which plays an important evolutionary role in reproductive isolation between certain species pairs (Coyne *et al.*, 1994; Spikes *et al.*, 2010; Thomas and Simmons, 2010). Cuticular hydrocarbons are often a necessary component to identify or attract potential mates. In some species, competition for mates is so intense that they have developed reproductive strategies involving intraspecific chemical deception. In the ant *Cardiocondyla obscurior* there are wingless and winged males that compete for virgin queens. The winged males mimic the CHC profile of the virgin queens and so gain more access to the queens because the wingless males lose time courting the winged males (Cremer *et al.*, 2002).

Stökl *et al.* (2011) reported a case of plants utilizing this mimicry principle to gain access to pollinators. Terrestrial orchids (*Epipactis veratrifoloa*) produce beta farnasene, which is also the alarm pheromone that aphids emit when they are attacked by their natural enemies. However, certain natural enemies use the alarm pheromone as a kairomone (chemical signal released for benefit of the receiver; Lewis, 1984), allowing them to locate aphid colonies. Thus, natural enemies of the aphids are deceptively attracted to the orchid and when searching for potential prey they pollinate the orchid. While beta farnasene is not a CHC, there are examples in which orchids mimic particular CHCs to gain access to pollinators (Schiestl *et al.*, 2000). The complexity of these strategies in both plants and animals are extremely impressive, creating a need for

intensive research in this area so as to better understand the full implications chemical signals have in communication.

1.4 Biosynthesis of CHCs

Given the importance of CHCs for many intra- and interspecific interactions in insects, there is a significant body of research on the biosynthesis of these compounds (see Blomquist and Bagnères, 2010, and references therein). Biosynthetic pathways have been proposed for a number of species including house flies (*Musca domestica*), cockroaches (*Periplaneta americana* and *Blattella germanica*), and termites (*Zootermopsis angusticollis*). Enzymes such as desaturases, elongases and decarboxylases act on metabolites to form these CHC compounds (Blomquist and Bagnères, 2010). Cuticular hydrocarbons are produced in the oenocytes and throughout the fat body, and transported, through an unknown mechanism, to the cuticle (Howard and Blomquist, 2005).

1.5 Perception of CHCs

It is evident that if the remarkable diversity of infochemicals produced are to be effective as chemical signals, then there must be the appropriate sensory networks to perceive and interpret these chemicals to elicit appropriate behavioural/physiological responses. Insects have a large number of receptors, which can recognize and appropriately identify chemical signals, located on different parts of the body (Lewis, 1984). The location, type and density of sensilla will vary, not only between species, but also on the chemicals that make up a given cue and its biological function(s). Receptors may be found on sites as varied as the antennae, the tarsae, various mouth parts and the ovipositor (Blomquist and Bagnères, 2010). Insect antennae are an important site for the reception of volatile cues, and there are many specific receptors that respond to the different components of a chemical message (Lewis, 1984). They may also detect less volatile cues through contact during antennation. Säid *et al.* (2005) demonstrated that receptors on the antennae of *Periplaneta americana* responded to the three main CHC compounds in their species-specific profile. Similarly, Ozaki *et al.* (2005) reported that contact chemical signals detected by sensillae on the antenna (or mouth parts) allowed workers of the ant *Camponotus japonicas* to discriminate between nest mates and non-nestmates.

1.6 *Drosophila* as a model system

Drosophila melanogaster has long been used as a model system in the study of reproductive isolation for a number of reasons. Firstly, because of their small size, vinegar flies are relatively easy to maintain. Secondly, *Drosophila melanogaster* has many closely related sister species, from which there is only partial reproductive isolation as interspecific crosses can be achieved in the lab for some species pairs (Coyne, 1992). Thirdly, there are a wide variety of molecular tools available for several *Drosophila* species, which include complete genome sequences and mutant stocks which can be ordered from a stock center (Matthews *et al.*, 2005). Finally, mating behavior has been well-characterized for many *Drosophila* species.

1.7 Drosophila Courtship

Male courtship behaviour in *Drosophila* has been well-characterized and follows a series of steps: he (i) orients himself toward the female; (ii) taps the female's abdomen with his front leg; (iii) vibrates a wing, producing a species-specific courtship song; (iv) licks the female's genitalia; then finally, (v) curls his abdomen and attempts copulation with the female (Hall, 1994; Greenspan, 1995; Greenspan and Ferveur 2000). Female behaviours

during courtship have not been as well-characterized. It is known that when the female does not want to mate with a courting male, she will fully extrude her ovipositor, however, partial extrusion of the ovipositor serves as a stimulant for males (Griffith and Ejima, 2009). This partial extrusion releases a liquid droplet, thought to contain additional chemical signals that the male receives (Lasbleiz *et al.*, 2006; Ferveur, 2010). At any point during this courtship, it is the female's choice in whether she mates or not. The detection of low volatile chemical signals within the CHC profile, that influence mating, is thought to occur in the "tapping" and "licking" stages in courtship.

1.8 Species isolation in *Drosophila*

Different chemical cues have been shown to influence reproductive isolation in many *Drosophila* species (Billeter *et al.*, 2009; Carracedo *et al.*, 2003; Civetta and Cantor, 2003; Cobb and Jallon, 1990; Coyne *et al.*, 1994; Coyne and Charlesworth, 1997; de la Paz Fernandez *et al.*, 2010; Rundle *et al.*, 2005; Savarit *et al.*, 1999). Within the *Drosophila melanogaster* subgroup the sibling species pair *D. melanogaster* and *D. simulans* are almost entirely homosequential and can only be distinguished from one another morphologically by the shape of the male genital arch (Coyne and Orr, 1989). Both species are generally cosmopolitan and while they are sympatric, they remain reproductively isolated (Carracedo *et al.*, 2000; Moulin *et al.*, 2004). 7-tricosene (7-T) is the most abundant CHC in both sexes of *D. simulans* and also in *D. melanogaster* males, while in *D. melanogaster* females, 7,11-heptacosadiene (7,11-HD) is the most abundant CHC (Pechine, *et al.*, 1985). *Drosophila melanogaster* females also produce 7,11-nonacosadiene (7,11-ND), which is a moderate attractant for *D. melanogaster* males (Jallon, 1984). *Cis*-vaccenyl acetate (cVA), which is not a CHC, is also important for

mating in *D. melanogaster*. This compound is found in the male ejaculatory bulb and is transferred to the female during mating, making her unattractive to other potential mates (Jallon, 1984). In addition, exposure to cVA can induce male-to-male aggression (Wang and Anderson, 2010).

This species pair demonstrates asymmetrical sexual isolation. *Drosophila melanogaster* males will court and mate with *D. simulans* females but the reciprocal cross rarely occurs (Cobb and Jallon, 1990), in part, due to the different CHC profile of *D. melanogaster* females (Coyne, 1996; Jallon, 1984; Jallon and David, 1987; Savarit *et al.*, 1999). Support for this hypothesis was obtained in hydrocarbon transfer assays (Coyne *et al.*, 1994). When *D. simulans* females were treated with *D. melanogaster* CHCs, they were seldom courted by conspecific males, and *D. simulans* males would court *D. melanogaster* females treated with *D. simulans* female CHCs.

1.9 CHC Biosynthesis in *Drosophila*

Several enzymes, such as desaturases and elongases, are involved in CHC biosynthesis in *D. melanogaster* (Figure 1.1). The desaturase *desat1* is expressed in the oenocytes and the fat body, acting to transform palmitic and stearic acids to palmitoleic and oleic acids, respectively, by adding a double bond at the carbon 7 position (Dallerac *et al.*, 2000; Labeur *et al.*, 2002; Marcillac *et al.*, 2005). This ω 7 desaturation, when followed by elongation and decarboxylation, creates the *D. melanogaster* male pheromone 7-T. The biosynthesis pathway proposed suggests that elongation, a second desaturation followed by decarboxylation, results in the production of the *D. melanogaster* female pheromone 7,11-HD (Gleason *et al.*, 2009). When *desat1* is downregulated, there is an increase in

the number of saturated CHCs and an accompanying decrease in the number of desaturated CHCs (Labeur *et al.*, 2002; Ueyama *et al.* 2005).

Another desaturase, d*esat2*, which is only expressed by females of the African (zstrain) of *D. melanogaster* (Takahashi *et al.*, 2001), adds a double bond to the carbon 5 position of myristic acid, resulting in myristoleic acid. A series of steps including elongation, decarboxylation, and another desaturation results in the z-strain *D*. *melanogaster* female pheromone 5,9-heptacosadiene (5,9-HD), which is not produced in cosmopolitan *D. melanogaster* females (Coyne *et al.*, 1999). Interestingly, z-strain *D. melanogaster* females produce very low amounts of 7,11-HD (Grillet *et al.*, 2012).

The desaturase *desatF* (also known as *Fad2*) gene is present in all of the species within the *melanogaster* subgroup, but expressed only in *D. melanogaster* females (Chertemps *et al.*, 2006). It is responsible for adding a second double bond at the carbon 11 position to the ω 7 precursors (and after decarboxylation), results in a diene, 7,11-HD (Legendre *et al.*, 2008). When *desatF* is downregulated, the production of dienes in *D. melanogaster* females is drastically reduced (Wicker-Thomas *et al.*, 2009).

An elongase, *eloF*, is also involved in the *D. melanogaster* CHC biosynthesis pathway (Chertemps *et al.*, 2007). This elongase acts to extend the carbon chains of ω 7 and ω 11 precursors (Chertemps *et al.*, 2007).

Figure 1.1. Proposed biosynthesis pathway for the production of 7-tricosene, 7pentacosene, 7,11-heptacosadiene and 5,9-heptacosadiene in *D. melanogaster*. Steps above the dashed line are common to both males and females. Desaturation of C14 (*desat2* activity) only occurs in African *D. melanogaster* flies. Figure adapted from Legendre *et al.*, 2008.

1.10 Perception of CHCs in Drosophila

The advent of new molecular tools has allowed researchers to also examine how chemical signals are detected by *Drosophila* species (Bousquet *et al.*, 2012; Houot *et al.*, 2010; Wang and Anderson, 2009). Wang and Anderson (2009) described the role of the receptor, Or67d, in the perception of the compound cVA in *D. melanogaster*, showing that when this receptor was activated by direct exposure to cVA or through genetic manipulation, males exhibited aggressive behaviour.

While *desat1* is involved in CHC production by *D. melanogaster*, its role in the perception of CHCs, first suggested by Houot *et al.* (2010), had not been confirmed. Bousquet *et al.* (2012) demonstrated how both the production and perception of CHCs in *D. melanogaster* are controlled, at least in part, by a single gene. The expression patterns of five *desat1* transcripts showed that, depending on the regulatory region employed, *desat1* products can be seen in the fat body and oenocytes (for CHC biosynthesis) or in the receptors involved in the detection of CHCs.

1.11 Deficiency mapping

Deficiency mapping has been used to identify genes which contribute to quantitative traits, including mating behaviour (Moehring and Makay, 2004) and longevity (Pasyukova *et al.*, 2000). This technique employs a series of stocks, each of which contain individuals that are entirely diploid except for a deleted region on one of the homologous chromosomes (an individual is hemizygous at this region). Each stock has a different hemizygous region and there are hundreds of stocks available which span almost all of the *D. melanogaster* genome. Coyne (1996) used deficiency mapping and reported that large candidate regions on Chromosome *3* contributed to CHC production in

melanogaster/simulans hybrids, an observation confirmed in subsequent studies (Civetta and Cantor, 2003; Coyne and Charlesworth, 1997; Ferveur and Jallon, 1996; Gleason *et al.*, 2009).

While the search for genes contributing to CHC production in *D. melanogaster* has been fairly successful, this is applicable to only a few compounds within a single species. Earlier studies focused exclusively on the prominent CHC compounds in *Drosophila* (Coyne, 1996; Coyne and Elwyn, 2006; Labeur *et al.*, 2002), but the blends and ratios of CHCs are also very important factors in mate recognition and mating behaviour (Everaerts *et al.*, 2010; Savarit *et al.*, 1999). As CHCs influence reproductive isolation between *D. melanogaster* and *D. simulans*, it is desirable to know which genes are responsible for all of the differences in the CHC profiles. Therefore, in my research, I used deficiency mapping in an attempt to identify genes which contribute to the differential CHC profiles observed in *D. melanogaster* CHC biosynthesis pathway are located on Chromosome *3*, my research focuses solely on the 3rd chromosome. I hypothesize that there are genes located on Chromosome *3* that contribute to the different CHC profiles between *D. melanogaster* and *D. simulans*.

2 Methods

2.1 *Drosophila* Stocks

Pure *D. melanogaster* isofemale (BJS1, London, Ontario) and *D. simulans* (Florida City, USA) lines, together with each deficiency line ordered from the Bloomington *Drosophila* Stock Center (Bloomington, IN, USA), were maintained in 30 ml plastic food vials containing standard yeast-agar medium (Bloomington recipe) and housed in incubators with a 14:10 light:dark cycle, at 24°C and 80% relative humidity.

2.2 Drosophila Crosses

Newly emerged (0-8 h) virgin males and females from each stock were collected under light CO₂ anaesthesia, stored separately until after they reached sexual maturity (7 d for males, 14 d for females) and then used in crosses. Females from each deficiency line were crossed to either *D. melanogaster* males (intraspecific) or *D. simulans* males (interspecific: Figure 2.1). For the intraspecific crosses, five females were paired with five males. An average of three intraspecific crosses was set up for each deficiency line. The interspecific crosses contained approximately 10 females and 25 males: the interspecific crosses required a greater number of individuals because of a lower incidence of mating. An average of 30 interspecific crosses was set up for each deficiency line. Virgin F_1 hybrid females were collected using light CO₂ anaesthesia 0-8 h post-emersion and separated into the four possible genotypes used to assess CHC production (see below).

	Panel A: Intraspecific Cross		Panel B: Interspecific Cross	
Parental Cross	DVM		X	
F1 Hybrid Genotyp es	mel/Bal	mel/Df	si m' Bal	sim/Df

Figure 2.1. Creation of *melanogaster/simulans* F_1 hybrid females used for deficiency mapping of Chromosome *3* to locate genes potentially contributing to cuticular hydrocarbon production. The vertical hatched bars represent homologous *D*. *melanogaster* 3rd chromosomes; the vertical dotted bars represent *D*. *simulans* homologous 3rd chromosomes. The deficiency stocks, shown in top left in panels A and B, are entirely *D*. *melanogaster*. Each line harbours a dominant visible marker (DVM) as well as a deleted region (represented by a gap in the chromosome). Intra- and interspecific crosses with these deficiency lines will result in four F_1 genotypes: *mel/Bal*, *mel/Df*, *sim/Bal* and *sim/Df*.

2.3 Deficiency Mapping

For this study, 74 deficiency lines were tested (Table 2.1). Each deficiency line utilized in this study has a different deletion on Chromosome 3. These deleted regions overlap in such a way that enables one to "walk" down the chromosome in an attempt to identify regions containing genes contributing to CHC production. An individual of any given deficiency line will possess a complete D. melanogaster genome, with the exception of the deleted region, where the individual is hemizygous. For the 3rd chromosome, the homolog with the deletion is named deficiency (Df), while the other homolog harbours inversions to prevent recombination, and is named balancer (Bal). This balancer chromosome has a dominant visible marker (DVM) which allows one to track which offspring of a cross received the balancer and which received the deficiency. Coyne (1996) confirmed that *D. melanogaster* genes for CHC production act in a dominant fashion in *melanogaster/simulans* F_1 hybrid females. This pattern of *D. melanogaster* dominance holds true for most of the CHC compounds identified in this study (Figure 2.2). Therefore, I expected that *mel/Bal*, *mel/Df* and *sim/Bal* would have the same CHC profile as they all contain a complete homolog set of the *D. melanogaster* genome. The *sim/Df* flies lack the dominant *D. melanogaster* genome in the small region that is deficient, and therefore the *D. melanogaster* genes are not present to mask the effects of the recessive D. simulans genes. If a deficiency region spans a gene in the D. simulans genome that is important in the production of its CHC profile, a more *D. simulans*-like profile would be observed in the *sim/Df* flies.

Table 2.1. Deficiency lines spanning Chromosome 3, used for mapping for genescontributing to the differential CHC profiles observed in *D. melanogaster* and *D. simulans*.

Line Number	Deficiency	Cytological Location
2400	Df(3L)R-G7	62B7;62E5-6
3650	Df(3L)M21	62F;63D, 62A;64C
5877	Df(3L)ZP1	66A17-20;66C1-5
6460	Df(3L)BSC13	66B12-C1;66D2-4
24413	Df(3L)BSC389	66C12;66D8
3024	Df(3L)h-i22	66D10-11;66E1-2
4500	Df(3L)Scf-R6	66E1-6;66F1-6
9355	Df(3L)ED4457	67E2;68A7
26828	Df(3L)BSC730	68F7;69E6
8072	Df(3L)ED4486	69C4;69F6
6457	Df(3L)BSC12	69F6-70A1;70A1-2
3124	Df(3L)fz-GF3b	70C1-2;70D4-5, 66E
3126	Df(3L)fz-M21	70D2-3;71E4-5
2993	Df(3L)st-f13	72C1-D1;73A3-4
2608	Df(3L)W10	75A6-7;75C1-2
8082	Df(3L)ED4782	75F2;76A1
6754	$Df(3L)fz^2$	75F10-11;76A1-5
5126	Df(3L)XS533	76B4;77B
3127	Df(3L)ri-79c	77B-C;77F-78A

Line Number	Deficiency	Cytological Location
5878	Df(3L)ri-XT1	77E2-4;78A2-4
4429	Df(3L)ME107	77F3;78C8-9
9700	Df(3L)BSC223	79A3;79B3
23149	Df(3L)BSC249	79B2;79D1
24955	Df(3L)BSC451	79B2;79F5
8089	Df(3L)ED230	79C2;80A4
25669	Df(3L)BSC554	80A1;80C1
8102	Df(3L)ED5017	80A4;80C2
1518	Df(3R)ME15	81F3-6;82F5-7
4787	Df(3R)3-4	82F3-4;82F10-11
8965	Df(3R)ED5156	82F8;83A4
7623	Df(3R)Exel6144	83A6;83B6
8103	Df(3R)ED5177	83B4;83B6
8685	Df(3R)ED7665	84B4;84E11
1968	Df(3R)p712	84D4-6;85B6, 25D;85B6
9077	Df(3R)ED5330	85A5;85D1
6756	Df(3R)BSC24	85B7;85D15
7080	Df(3R)BSC38	85F1-2;86C7-8
3128	Df(3R)M-Kx1	86C1;87B1-5
3003	Df(3R)T-32	86D9;87C3-4
3358	Df(3R)ry85	87B15-C1;87F15-88A1, 87C2-
		3;88C2-3;21-40

Line Number	Deficiency	Cytological Location
24137	Df(3R)ED5664	88D1;88E3
24975	Df(3R)BSC471	88E3;88E5
756	Df(3R)sbd105	88F9-89A1;89B9-10
1467	Df(3R)P115	89B7-8;89E7;20
4431	Df(3R)DG2	89E1-F4;91B1-B2
5127	Df(3R)RD31	89E2;90D
8104	Df(3R)ED5780	89E11;90C1
3011	Df(3R)Cha7	90F1-F4;91F5
3012	Df(3R)Dl-BX12	91F1-2;92D3-6
4962	Df(3R)H-B79	92B3;92F13
7413	Df(3R)BSC43	92F7-93A1;93B3-6
3340	Df(3R)e-R1	93B6-7;93D2
5798	Df(3R)e-GC3	93C6;94A1-4
8684	Df(3R)ED6096	94B5;94E7
8583	Df(3R)BSC56	94E1-2;94F1-2
7990	Df(3R)Exel9012	94E9;94E13
9497	Df(3R)BSC137	94F1;95A4
7675	Df(3R)Exel6196	95C12;95D8
4432	Df(3R)crb-F89-4	95D7-D11;95F15
2363	Df(3R)crb87-5	95F6-8;96A18-20
9211	Df(3R)ED6220	96A7;96C3
7682	Df(3R)Exel6203	96E2;96E6

Line Number	Deficiency	Cytological Location
24909	Df(3R)BSC321	96E6;96E9
5601	Df(3R)Espl3	96F1;97B1
25001	Df(3R)BSC497	97E6;98B5
25390	Df(3R)BSC567	98B6;98E5
430	Df(3R)3450	98E3;99A6-8
8925	Df(3R)ED6316	99A5;99C1
3547	Df(3R)L127	99B5-6;99E4-F1, 98F;100F
3546	Df(3R)B81	99C8;100F5, 99D;100F
2599	Df(3R)tll-g	99F1-2;100B4-5
7696	Df(3R)Exel 6218	100B5;100C1
24516	Df(3R)ED50003	100E1;100F5
Gene	Disruption	Cytological Location
Disruption Line		
25298	Mi{ET1}Dhc93AB[MB05444]	93B7
35872	<i>Mi</i> { <i>y</i> [+ <i>mDint2</i>]= <i>MIC</i> } <i>CG</i> 17278	93B4
	[MI02608]	

The line numbers (Bloomington *Drosophila* Stock Center) are shown along with their cytological location in *D. melanogaster*. Chromosome *3* is cytologically numbered from 61 at the left telomere to 100 at the right telomere, each number is subdivided into A-F, then further subdivided by a variable number. The two gene disruption lines used for testing *Dhc93AB* are also listed.

Figure 2.2. A GC trace of a *Drosophila melanogaster* female CHC profile. The x-axis represents retention time in minutes and the y-axis represents signal intensity. Compounds analyzed in this study are numbered 1-28.

2.4 Gene Disruption Lines

Two overlapping deficiency lines (Df(3R)BSC43 and Df(3R)e-R1) yielded significant results (see Chapter 3) and within the overlapping region was a single gene: Dhc93AB. This candidate gene was tested for its role in the differential CHC profiles in D. *melanogaster* and D. *simulans*. Two gene disruption lines, obtained from the Bloomington Drosophila Stock Center, were used to test this candidate gene. Both lines were created through the use of p-element insertions which were made homozygous. For these lines, I had to introduce a dominant visible marker (DVM), by crossing females of the gene disruption lines to males harbouring a DVM on their 3rd chromosome. Female offspring with the DVM were collected and then used in the interspecific or intraspecific crosses as described above.

2.5 CHC Extractions and Gas Chromatography

The CHC profiles were collected from mature F_1 hybrid females 8 d after eclosion, by washing individual flies in 100 µl hexane for approximately 3 min then vortexing for 1 min. Flies were then removed and discarded. Octadecane (C_{18}) and n-hexacosane (C_{26}) were added to the extract as internal standards (10 ng/µl) for subsequent gas chromatographic analysis. For each line, 20 individuals were analyzed, five for each genotype. The sample size of five individuals per genotype was chosen because there was very little variance among samples within a group and due to the amount of work required to obtain individuals from the interspecific crosses.

Compounds in the hydrocarbon extract were separated on an Agilent Technologies 6890N chromatograph (GC) fitted with an HP5 column 30.0 m x 250.00 μ m internal diameter, pulsed splitless inlets and a flame ionization detector. The temperature program was as follows: 60°C for 0.5 min, increasing to 190°C at 120°C/min then increasing to 260°C at 7°C/min then finally to 310°C at a rate of 120°C/min, where it was maintained for 3.5 min.

2.6 Data Analysis

Data was analyzed in a similar manner as reported previously (Blows and Allan, 1998; Coyne, 1996; Kwan and Rundle, 2010). Agilent Chemstation software was used to analyze the chromatograms, as well as to determine the relative abundances of the CHCs within the samples (Figure 2.3). For each sample, 28 compounds were analyzed (Figure 2.2) as this was the number of compounds consistently identified through this particular GC method. The relative abundance of each compound was calculated by dividing the area of a particular peak in the chromatogram by the total peak area of all compounds analyzed in the chromatogram. This method of calculating the relative abundances of compounds allowed for samples of different overall concentration to be compared. This also controlled for the nonbiological variation in the extraction of CHCs and for the quantity of extract injected into the GC. For cases in which a compound was absent or undetectable, a value of 0.5 (half the lowest detection limit of 1.0) was recorded in the data file. The internal standards were used as reference points when comparing the chromatograms for each genotype. The data were analyzed using a one-way analysis of variance (ANOVA) to compare the mean relative abundance of CHCs among all four genotypes. Under the null hypothesis, the mean relative abundance of CHCs would be equal among the 4 genotypes, while the alternate hypothesis states the mean relative abundance of CHCs differs in at least 1 genotype; a *post hoc* assessment was performed to ensure that significant results were due to differences in the *sim/Df* genotype. To
account for multiple tests on the same data (28 ANOVAs per line) the *p*-value was set to 0.001 as per the Bonferroni adjustment (Samuels and Witmer, 2003). Also, all data points were arcsine transformed prior to analysis to ensure a normal distribution (Zar, 2010).

Figure 2.3. Chromatograms of female cuticular hydrocarbon profiles of *D*. *melanogaster*, *D. simulans* and their F_1 hybrid. For each chromatogram, the x-axis represents retention time in minutes and the y-axis represents signal intensity. The internal standard n-hexacosane is labeled as IS and appears just after 7.5 minutes; the internal standard octadecane elutes at approximately 3 minutes and is not shown. The species-specific sex pheromones 7-tricosene (7-T) and 7,11-heptacosadiene (7,11-HD) are labeled as well. *Drosophila melanogaster* genes are mostly dominant with respect to CHC production as the F_1 hybrid profile looks much more *melanogaster*-like than *simulans*-like.

3 Results

3.1 Deficiency mapping of chromosome 3L

One of the 28 deficiency lines used to map the left arm of Chromosome *3* yielded significant results and genes located within this region (cytological location 67E2-68A7) are listed in Appendix A. For this deficiency (Df(3L)ED4457), the *sim/Df* individuals had a significant increase in 7-pentacosene (7-P) and a significant decrease in 7,11-HD (Figures 3.1 and 3.2). There are 80 genes within this region.

Figure 3.1. Deficiency mapping of chromosome 3L for genes contributing to CHC production in *D. melanogaster* and *D. simulans*. The grey bar represents the left arm of Chromosome *3*; the cytological locations are numbered on top, from 61 at the telomere to 80 at the centromere. The red box within the chromosome represents the approximate location of a significant region, while the white boxes represent regions of the chromosome that were not mapped. The bars underneath the chromosome represent the approximate locations of the deleted regions used for deficiency mapping; the black bars are not significant, the red bar is significant. The significant region is highlighted with a purple box and is labeled A. A detailed illustration of the significant region is found below the chromosome and follows the same colour scheme as above. The way in which particular CHCs are affected by the deletion of this region is listed, along with a statistical description of the results and the number of genes within the significant region.

Figure 3.2. Deficiency mapping uncovers a region on chromosome 3L containing a gene(s) which contributes to the differential CHC profiles for *D. melanogaster* and *D. simulans*. GC chromatogram traces of 8-day-old females after hexane extraction. The three control genotypes (*mel/Bal, mel/Df* and *sim/Bal*) are presented on the left. The chromatogram for a *sim/Df* individual from the line spanning the significant region, cytological location 67E2-68A7, is presented on the right, labeled (A). The deletion of region (A) results in an increase of 7-P, highlighted in yellow, and a decrease in 7,11-HD, highlighted in purple, in *sim/Df* flies.

3.2 Deficiency mapping of chromosome 3R

Six of the 46 overlapping deficiency lines that were used to map the right arm of Chromosome *3* yielded significant results, uncovering four genomic regions of interest (Figure 3.3). For each of six lines, the *sim/Df* individuals had a compound, or compounds, within their CHC profile that differed significantly from the other three genotypes (Figure 3.4).

Within the first significant region (cytological location 87B6-88A1) (Figure 3.3 A), there is a gene (or genes) contributing to the production of 7,11-HD, as the deletion of this region resulted in a significant decrease in 7,11-HD. There are 230 genes (Appendix B) within the entire region exposed by the two deficiency lines (Df(3R)T-32 and Df(3R)ry85) Within the region of overlap for Df(3R)T-32 and Df(3R)ry85 (cytological location 87B15-87C4) there are 15 genes (marked with asterisks in Appendix B).

The second significant region (cytological region 93A1-93D5) (Figure 3.3 B) contains genes associated with the production of 7,11-HD as well as 2-methyl hexacosane (2-MH). There are 84 genes (Appendix C) within the entire region exposed by the two significant lines (Df(3R)BSC43 and Df(3R)e-R1). Interestingly, the overlapping region of deficiency lines Df(3R)BSC43 and Df(3R)e-R1 both affect 7,11-HD production in the *sim/Df* individuals, while only Df(3R)e-R1 affects the amount of 2-MH. Thus, the region of overlap of these two deficiency lines likely contains a gene(s) that affects the production of 2-MH. The region exposed by Df(3R)e-R1 but not Df(3R)BSC43 (cytological region 93B7-93C6) contains 30 genes (marked with asterisks in Appendix C). Within the overlap of deficiency lines Df(3R)BSC43 and Df(3R)e-R1,

there is a single gene, *Dhc93AB*. A significant decrease in the amount of 7,11-HD in the *sim/Df* individuals was observed for both of these lines (Figure 3.3 B). Two *Dhc93AB* gene disruption lines (*Mi{ET1}Dhc93AB[MB05444]* and

Mi{*y*[+*mDint2*]=*MIC*}*CG17278*[*MI02608*]) that were tested had the same significant reduction in 7,11-HD as found for the overlapping deficiency region (Figure 3.5).

When the third significant region (cytological location 96A20-96C3) (Figure 3.3 C) is deleted from the *melanogaster/simulans* F_1 hybrid genome, there is an increase in the amount of 7-T, the *D. simulans* female sex pheromone. There are 86 genes (Appendix D) within this significant region.

The deletion of the fourth significant region along chromosome 3R (cytological location 98E5-99A5; Figure 3.3 D) resulted in a decrease in the amount of 7,11-ND in *sim/Df* individuals. There are 63 genes (Appendix E) within this significant region.

Figure 3.3. Deficiency mapping of chromosome 3R for genes contributing to CHC production in *D. melanogaster* and *D. simulans*. The grey bar represents the right arm of Chromosome *3*; the cytological locations are numbered on top, from 81 at the centromere to 100 at the telomere. The red boxes within the chromosome represent approximate locations of significant regions, while the white boxes represent regions of the

chromosome that were not mapped. The bars underneath the chromosome represent the approximate locations of the deleted regions used for deficiency mapping; the black bars are not significant, the red bars are significant. The significant regions are highlighted with a purple box and are labeled A to D. A detailed illustration of the significant regions is found below the chromosome and follows the same colour scheme as above. The way in which particular CHCs are affected by the deletion of these regions are listed, along with a statistical description of the results and the number of genes within each significant region.

Figure 3.4. Deficiency mapping uncovers regions on chromosome 3R containing genes that contribute to the differential CHC profiles for *D. melanogaster* and *D. simulans*. GC traces of 8-day-old females after hexane extraction. The three control genotypes (*mel/Bal, mel/Df* and *sim/Bal*) are presented on the left. The chromatograms for the *sim/Df* individuals from the lines spanning the significant regions are presented on the right and labeled A to D (corresponding to the same designations as Figure 3.1). The deletion of region (A), cytological location 87B6-88A1, results in a decrease in 7,11-HD, highlighted in purple, in *sim/Df* flies. (B) represents cytological location 93A1-93D5, this deletion also reduces the amount of 7,11-HD in *sim/Df* individuals. * Denotes 2-methyl hexacosane (2-MH), which was significantly reduced in the deficiency line, Df(3R)e-RI; this compound elutes directly after 7,11-HD so is grouped into the same highlighted region. The deletion of region (C), cytological location 96A20-96C3, results in an increase in the amount of 7-T, highlighted in green, in *sim/Df* flies. (D) represents cytological location 98E5-99A5, this deletion results in a decrease in 7,11-ND, highlighted in blue, in *sim/Df* flies.

Figure 3.5. Relative abundance of 7,11-HD in females from four genotypes, testing candidate gene *Dhc93AB*. Bars represent the mean (±SEM) relative abundance of 7,11-HD in four genotypes created through both intra- and interspecific crosses with *D. melanogaster* gene disruption lines for *Dhc93AB*. *mel/Bal* individuals have two *D. melanogaster* copies of *Dhc93AB*; *sim/Bal* has one *D. melanogaster* copy and one *D. simulans* copy of *Dhc93AB*; *mel/Df* has one *D. melanogaster* copy and *sim/Df* has one *D. simulans* copy. Cuticular hydrocarbons (CHCs) were extracted eight days post-emergence. The mean relative abundance of 7,11-HD in *sim/Df* individuals (*) was significantly lower than the other three genotypes (P < 0.001, ANOVA). n=5 for each of the genotypes.

4 Discussion

4.1 The genetic basis of CHC production

Through the use of deficiency mapping, I identified several genomic regions that contain genes contributing to the differential CHC profiles between *D. melanogaster* and *D. simulans* (Appendix A-E). I was able to uncover regions in the genome that contained genes already known to influence CHC production in *D. melanogaster: desat1, desat2,* and *desatF*. Unfortunately, the cytological region where *eloF* is located was not mapped. In addition, I tested a candidate gene, *Dynein heavy chain at 93AB* (*Dhc93AB*). The results suggest *Dhc93AB* is implicated in the production of CHCs in *D. simulans* (Figure 3.5): *sim/Df* females, who possess one *D. simulans* copy of *Dhc93AB* and no *D. melanogaster* copy, have decreased amounts of 7,11-HD, which is characteristic of *D. simulans* females.

The *D. melanogaster Dhc93AB* gene has a homolog in *D. simulans*, *Dsim\GD20019*. When examining the sequences of both of these genes, the most striking difference is the length of the gene: *Dhc93AB* is 13461nt while *Dsim\GD20019* is 9585nt. The resulting proteins from the transcription and translation of these genes in *D. melanogaster* and *D. simulans* are very different in both length (*Dhc93AB* codes for 4486 amino acids, *Dsim\GD20019* codes for 3194 amino acids) and also in amino acid content as the sequences themselves differ between the two species. Also, there are numerous differences within the promoter regions of these two genes which could affect the timing or quantity of expression. Drosophila sechellia is another species in the melanogaster subgroup that, like D. melanogaster females, have a high abundance of 7,11-HD in their CHC profile (Pechine et al., 1985). Comparison of the sequences for Dhc93AB, Dsim\GD20019 and the D. sechellia homolog, Dsec\GM15114, revealed that the length of the protein resulting from Dsec\GM15114 transcription and translation is more similar to D. melanogaster than D. simulans, as the D. sechellia copy of this gene is 13482nt long and codes for 4493 amino acids. Relative to D. melanogaster and D. sechellia, the D. simulans copy of Dhc93AB is missing nucleotides #2411-3715 (which are present in both D. melanogaster and D. sechellia). This missing portion of the protein contains several very important things: (i) Two P-loops, which are important for ATP binding; (ii) the MT domain, essential for microtubule binding. Due to the absence of these domains, Dhc93AB may not function properly in D. simulans. This gene could therefore be important for the production of 7,11-HD for many species, not just D. melanogaster and D. simulans females.

The gene product(s) of *Dhc93AB* has a predicted function, based on sequence similarity, as an ATPase involved in microtubule based movement (Rasmusson *et al.*, 1994). The *Dhc93AB* gene sequence is present in both *D. melanogaster* and *D. simulans* although it is expressed at very low levels in the former species (Rasmusson *et al.*, 1994). Additional work needs to be done to determine whether it is differentially expressed, for example through differing quantity or timing of expression, or if the protein products vary between the two species. While I am unable to make concrete conclusions as to how *Dhc93AB* is involved in 7,11-HD synthesis, I suggest two possibilities.

Firstly, it is possible that *Dhc93AB* is directly involved in the production of 7,11-HD, however, as the deletion of this gene has no effect on 7-T, which is a part of the proposed biosynthesis pathway (Figure 1.1), this seems unlikely. It is however possible that the products of this gene could act on the precursors of 7,11-HD, in the latter part of the pathway through elongation, desaturation, or decarboxylation.

Another possibility is that the product(s) of *Dhc93AB* are involved in the transport of CHCs from their site of synthesis to the cuticle. It has been shown that plants use ATP pumps to move compounds from the site of synthesis (epidermal cells) to the exo-cuticle (Pighin *et al.*, 2004). Due to genetic differences in *Dhc93AB*, the two species examined here could have variation in how much 7,11-HD is exported to the cuticle. As noted previously, how insects transfer CHCs from the sites of production to the cuticle is currently unknown, so examining the possibility that *Drosophila* use ATP pumps, such as those coded for by *Dhc93AB*, to transport 7,11-HD is a very exciting prospect.

The significant region (67E2 to 68A7) contains *desatF*, a gene coding for an desaturase which acts to add a second double bond to the carbon 11 position of precursors to 7,11-HD (Chertemps *et al.*, 2006). *DesatF* contributes to the *D. melanogaster* CHC biosynthesis pathway (Chertemps *et al.*, 2006). The deletion of this region results in a decrease in two compounds: 7,11-HD and 7-P, and there might be a gene within the 67E2-68A7 region that directly determines the *D. simulans*-specific amount of 7,11-HD. However, it is more likely that the decrease observed is due to the *sim/Df* individuals lacking a *D. melanogaster* copy of *desatF* for although the gene is present in *D. simulans* females, it is not expressed. *DesatF* has not been linked to the production of monoenes (compounds with one double bond), but rather with later parts of the biosynthesis pathway, the observed decrease in 7-P was unexpected and suggests that there are other genes within the 67E2-68A7 region that influence the formation of 7-P (Appendix A), 7-

P is a prominent compound in the male *D. melanogaster* CHC profile and acts as an antiaphrodisiac (Scott and Richmond, 1988), however, the role of 7-P in females is not known.

Within the significant region 67E2-68A7 there are several genes that could be considered candidates for CHC biosynthesis. *Ir67b* is located cytologically at 67E3 and is thought to be involved in the detection of chemical stimulus. As mentioned earlier, *desat1* acts in a pleiotropic manner in the production and detection of CHCs in *D. melanogaster* so it can be proposed that other genes (such as *Ir67b*) may act in this same way. Another excellent candidate gene for CHC biosynthesis present in this significant region is *Elo68alpha*. This gene codes for an elongase which acts to extend the carbon chain of fatty acid precursors and is thought to be involved in pheromone biosynthesis processes.

The *desat1* gene is located within candidate region 87B5 to 88A1 (overlapping deficiency lines Df(3R)T-32 and Df(3R)ry85: Figure 3.3 A). While the role of *desat1* in CHC biosynthesis has been well documented in *D. melanogaster*, this is the first time it has been implicated in the observed interspecific differences in 7,11-HD. The product of *desat1* acts to add a double bond at the carbon 7 position to precursors of both 7-T and 7,11-HD (*D. simulans* and *D. melanogaster* female sex pheromones, respectively), so it is possible that this gene is differentially regulated in *D. melanogaster* and *D. simulans*. However, as both of Df(3R)T-32 and Df(3R)ry85 affected 7,11-HD in the same way, it is more likely that a gene located within the region of overlap of these two deficiency lines is responsible for the reduction of this compound. Of the 15 genes within overlapping region 87B15-87C4, there are genes that stand out as good candidates. Genes involved in

metabolic processes are excellent candidates to consider regarding CHC biosynthesis as enzymes involved in the formation of CHCs act on metabolites (Blomquist and Bagnères, 2010). Two such genes within 87B15-87C6 are *CG6753* and *CG11600*, both of which have proposed functions as being involved in lipid metabolic processes.

The deletion of two overlapping deficiency lines [(Df(3R)BSC43 and Df(3R)e-R1), cytological location 93A1 to 93D5)] had the same effect on 7,11-HD, however, only Df(3R)e-R1 impacted the production of 2-MH. It is possible that the non-overlapping portion of Df(3R)e-R1 contains a gene important for the formation of 2-MH (Appendix C). There are 30 genes within the non-overlapping region (Appendix C), one of which is an odorant-binding protein, Obp93a, believed to be involved in the perception of chemical stimulus (Hekmat-Scafe *et al.*, 2002). Much like *desat1*, mentioned above, it is possible Obp93a is also involved in the formation of 2-MH.

While fine-mapping needs to be done for the significant region 96A20-96C3, genes involved in olfaction (*PQBP1*) and metabolic processes (*CG10899*) stand out as great candidates for reasons mentioned above. Likewise, for significant region 98E5-99A5, there are a few good candidate genes within that region, also associated with olfaction and metabolic processes (*beta4GalNAcTB*, *CG14512* and *CG14515*). Using smaller deficiencies to fine-map these large significant regions will provide insight into which genes are influencing CHC production.

In this study, I identified candidate regions contributing to five of the 28 detectable hydrocarbon compounds present on the cuticle. These five compounds differ between the two species in a manner that would, theoretically, allow for genes

contributing to these differences to be identified using deficiency mapping methodology. For those compounds for which I was unable to uncover genes contributing to their formation, it is possible my methodology was not sufficient to identify these genes for a number of reasons. It is likely that genes contributing to the production of some compounds within the CHC profile are simply located on a different chromosome than Chromosome 3. Previous work examining the genetic basis of the differences in CHC profiles between D. melanogaster and D. simulans reported that only regions on the 3rd chromosome were involved (Coyne, 1996). However, this work only focused on the most abundant CHCs rather than all of the compounds in the profile, as I did in this study. Therefore, it is possible that genes on other chromosomes contribute to CHC production. Or perhaps regions on the 3rd chromosome contain genes which have little effect alone, but may interact epistatically with others to influence CHC production; deficiency mapping does not detect such epistatic interactions. In addition, D. melanogaster genes are dominant over D. simulans genes with respect to CHC profiles, for some but not all compounds. Consequently, any D. simulans-specific compounds that are unaffected by *D. melanogaster* genes would not be detected by deficiency mapping.

One last caveat that must be mentioned with respect to my results is that of chromosome coverage. Survival was very low in some deficiency lines before and/or after they were crossed, eliminating my ability to assay those regions. If genes important in determining the differential CHC profiles of *D. melanogaster* and *D. simulans* were in those regions, they would not be detected in this study. Perhaps by using more deficiency lines with smaller deletions, it will be possible to map these regions.

While I was able to identify and test a candidate gene, *Dhc93AB*, further work is required to determine how it influences CHC production. It would be advantageous to establish expression patterns of *Dhc93AB* in both *D. melanogaster* and *D. simulans* using q-PCR as well as *in situ* hybridization to identify in what tissue(s) this gene is expressed (Shirangi *et al.*, 2009). Subsequently, to confirm the role of *Dhc93AB* in CHC production, an isolated *D. simulans* copy of this gene could be introduced into *D. melanogaster* that have a mutation at this particular locus. A mutation is necessary as *D. melanogaster* genes have dominant function at this locus. If *Dhc93AB* does influence CHC production, I would expect to see a "*D. simulans*-like" CHC profile produced by the transgenic flies and the presence of 7,11-HD confirmed by GC coupled with mass spectrometry (GC-MS).

4.2 Conclusions and future work

Individuals from *D. melanogaster* and *D. simulans* use chemical cues to attract and identify appropriate mates and discriminate against those who are inappropriate. Females from these two species have different CHC profiles and this difference contributes to the reproductive isolation in this species pair. For this reason, finding genes contributing to the production and detection of CHC profiles is of great interest as this could provide insight into the genetic basis of reproductive isolation.

The deficiency map created here is an excellent starting point for many future endeavors as there are several large genomic regions that could be refined. For these regions, fine-mapping with additional smaller deficiencies and subsequent testing of candidate genes needs to be done. Also, testing whether *Dhc93AB* is involved in the transport of 7,11-HD is extremely important. Lastly, behaviour assays could be done to

determine whether the differences in female CHC profiles for *D. melanogaster* and *D. simulans* are influencing their mating behaviour.

The research presented here identified five genomic regions that contain genes contributing to the different CHC profiles observed in *D. melanogaster* and *D. simulans*. With the molecular tools available in *Drosophila*, it was possible to refine the deficiency map of Chromosome *3* down to an individual candidate gene, *Dhc93AB*. This gene is proposed to be involved in the biosynthesis of 7,11-HD, was tested and putatively shown to affect the CHC profile.

References

- Andersson, M. (1982). Female choice selects for extreme tail length in a widowbird. *Nature*, 299, 818-820.
- Bagnères, A.G., Lorenzi, M.C., Dusticier, G., Turillazzi, S., and Clement, J.L. (1996). Chemical usurpation of a nest by paper wasp parasites. *Science*, 272, 889-892.
- Billeter, J.C., Atallah, J., Krupp, J.J., Millar, J.G., and Levine, J.D. (2009). Specialized cells tag sexual and species identity in *Drosophila melanogaster*. *Nature*, 461, 987-991.
- Blomquist, G.J., and Bagnères, A.-G. (2010). Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, New York.
- Boul, K.E, Funk, W.C., Darst, C.R., Cannatella, D.C., and Ryan, M.J. (2007). Sexual selection drives speciation in an Amazonian frog. *Proc Biol Sci*, 274, 399-406.
- Bousquet, F., Nojima, T., Houot, B., Chauvel, I., Chaudy, S., Dupas, S., Yamamoto, D., and Ferveur, J.F. (2012). Expression of a desaturase gene, *desat1*, in neural and nonneural tissues separately affects perception and emission of sex pheromones in *Drosophila*. *Proc Natl Acad Sci USA*, 109, 249-254.
- Carracedo, M.C., Suarez, C., and Casares, P. (2000). Sexual isolation between *Drosophila melanogaster, D. simulans* and *D. mauritiana*: sex and species specific discrimination. *Genetica, 108,* 155-162.
- Carracedo, M.C., Asenjo, A., and Casares, P. (2003). Genetics of *Drosophila simulans* male mating discrimination in crosses with *D. melanogaster*. *Heredity*, *91*, 202-207.
- Chertemps, T., Duportets, L., Labeur, C., Ueyama, M., and Wicker-Thomas, C. (2006). A female-specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in *Drosophila melanogaster*. *Insect Mol Biol*, 15, 465-473.
- Chertemps, T., Duportets, L., Labeur, C., Ueda, R., Takahashi, K., Saigo, K., Wicker-Thomas, C. (2007). A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behaviour in *Drosophila melanogaster*. *Proc Natl Acad Sci USA*, 104, 4273-4278.
- Civetta, A., and Cantor, E.J. (2003). The genetics of mating recognition between *Drosophila simulans* and *D. sechellia. Genet Res*, 82, 117-126.

- Cobb, M., and Jallon, J.-M. (1990). Pheromones, mate recognition and courtship stimulation in the *Drosophila melanogaster* species sub-group. *Animal Behaviour, 39*, 1058-1067.
- Coyne, J.A., and Orr, H.A. (1989). Patterns of speciation in *Drosophila*. *Evolution 43*, 362-381.
- Coyne, J.A. (1992). Genetics of sexual isolation in females of the *Drosophila simulans* species complex. *Genet Res*, 60, 25-31.
- Coyne, J. A., and H. A. Orr. (1997). Patterns of speciation in *Drosophila* revisited. *Evolution*, 51, 295-303.
- Coyne, J.A., Crittenden, A.P., and Mah, K. (1994). Genetics of a pheromonal difference contributing to reproductive isolation in *Drosophila*. *Science*, *265*, 1461-1464.
- Coyne, J.A. (1996). Genetics of differences in pheromonal hydrocarbons between Drosophila melanogaster and D. simulans. Genetics, 143, 353-364.
- Coyne, J.A., and Charlesworth, B. (1997). Genetics of a pheromonal difference affecting sexual isolation between *Drosophila mauritiana* and *D. sechellia*. *Genetics*, 145, 1015-1030.
- Coyne, J. A., Wicker-Thomas, C., and Jallon, J.M. (1999). A gene responsible for a cuticular hydrocarbon polymorphism in *Drosophila melanogaster*. *Genet Res* 73, 189-203.
- Coyne, J. A., and Elwyn, S. (2006). *Desaturase-2*, environmental adaptation, and sexual isolation in *Drosophila melanogaster*. *Evolution*, 60, 626-627.
- Cremer, S., Sledge, M.F., and Heinze, J. (2002). Male ants disguised by the queen's bouquet. *Nature, 419*, 897.
- Dallerac, R., Labeur, C., Jallon, J.M., Knipple, D.C., Roelofs, W.L., and Wicker-Thomas, C. (2000). A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in *Drosophila melanogaster*. *Proc Natl Acad Sci USA*, 97, 9449-9454.
- Dobzhansky, T. (1937). Genetics and the Origin of Species. New York: Columbia Univ. Press.
- Edney, E.B. (1967). Water Balance in desert arthropods. Despite their small size, arthropods may be highly adapted for life in xeric conditions. *Science*, *156*, 1059-1066.

- Everaerts, C., Farine, J.-P., Cobb, M., and Ferveur, J.-F. (2010). *Drosophila* cuticular hydrocarbons revisited: Mating status alters cuticular profiles. *PLoS ONE*, *5*, e9607.doi:10.1371/journal.pone.0009607.
- Ferveur, J.-F., and Jallon, J.M. (1996). Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genet Res, 67, 211-218.
- Ferveur, J.-F. (2010). *Drosophila* female courtship and mating behaviours: sensory signals, genes, neural structures and evolution. *Curr Opn Neuro*, 20, 764-769.
- Forster, L.M. (1992). The stereotyped behaviour of sexual cannibalism in *Latrodectus hasselti* Thorell (Araneae: Theridiidae), the Australian redback spider. *Aust J Zool, 40,* 1-11.
- Gibbs, A.G., Chippindale, A.K., and Rose, M.R. (1997). Physiological mechanisms of evolved desiccation resistance in *Drosophila melanogaster*. *J Exp Biol*, 200, 1821-1832.
- Gibbs, A.G., Louie, A.K., and Ayala, J.A. (1998). Effects of temperature on cuticular lipids and water balance in a desert *Drosophila*: Is thermal acclimation beneficial? *J Exp Biol*, 201, 71-80.
- Gleason, J.M., James, R.A., Wicker-Thomas, C., and Ritchie, M.G. (2009). Identification of quantitative trait loci function through analysis of cuticular hydrocarbons differing between *Drosophila simulans* and *Drosophila sechellia* females. *Heredity*, 103, 416-424.
- Greene, M.J., and Gordon, D.M. (2003). Cuticular hydrocarbons inform task decisions. *Nature*, 423, 32.
- Gordon, D.M. (1996). The organization of work in social insect colonies. *Nature*, *380*, 121-124.
- Greenspan, R. J. (1995). Understanding the genetic construction of behavior. *Sci Am*,271, 74-79.
- Greenspan, R. J., and Ferveur, J. M. (2000). Courtship in *Drosophila*. Annu Rev Genet 34, 205-232.
- Griffith, L.C., and Ejima, A. (2009). Multimodal sensory integration of courtship stimulating cues in *Drosophila melanogaster*. *Ann NY Acad Sci*, *1170*, 394-398.
- Grillet, M., Everaerts, C., Houot, B., Ritchie, M.G., Cobb, M., and Ferveur, J.-F. (2012). Incipient speciation in *Drosophila melanogaster* involves chemical signals. *Sci Rep*, 2, 224.

Hall, J. C. (1994). The mating of a fly. Science, 264, 1702-1714.

- Hekmat-Scafe, D.S., Scafe, C.R., McKinney, A.J., and Tanouye, M.A. (2002). Genome-wide analysis of the odorant-binding gene family in *Drosophila melanogaster*. *Genome Res*, *12*, 1357-1369.
- Houot, B., Bousquet, F., and Ferveur, J.F. (2010). The consequences of regulation of desat1 expression for pheromone emission and detection in *Drosophila melanogaster*. *Genetics*, 185, 1297-1309.
- Howard, R.W., and Blomquist, G.J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. *Annu Rev Entomol*, 50, 371-393.
- Jallon, J.-M. (1984). A few chemical words exchanged by *Drosophila* during courtship and mating. *Behavior Genet*, 14, 441-478.
- Jallon, J.-M., and David, J.R. (1987). Variations in cuticular hydrocarbons among the eight species of the *Drosophila melanogaster* subgroup. *Evolution*, *41*, 294-302.
- Jerhot, E., Stoltz, J.A., Andrade, M.C.B., and Schulz, S. (2010). Acylated serine derivatives: A unique class of arthropod pheromones of the Australian redback spider, *Latrodectus hasselti*. *Angew Chem Int Ed*, *49*, 2037-2040.
- Kwan, L., and Rundle, H.D. (2010). Adaptation to desiccation fails to generate pre- and postmating isolation in replicate *Drosophila melanogaster* laboratory populations. *Evolution*, *64*, 710-723.
- Lewis, T. (1984). Insect Communication. Academic Press Inc. London.
- Labeur, C., Dallerac, R., and Wicker-Thomas, C. (2002). Involvement of the *desat1* gene in the control of *Drosophila melanogaster* pheromone biosynthesis. *Genetica*, *114*, 269-274.
- Lasbleiz, C., Ferveur, J.-F., and Everaerts, C. (2006). Courtship behavior of *Drosophila melanogaster* revisited. *Anim Behav*, 72, 1001-1012.
- Legendre, A., Miao, X.-X., Da Lage, J.-L., and Wicker-Thomas, C. (2008). Evolution of a desaturase involved in female pheromonal cuticular hydrocarbon biosynthesis and courtship behavior in *Drosophila*. *Insect Biochem Mol Biol*, *38*, 244-255.
- Marcillac, F., Grosjean, Y., and Ferveur, J.-F. (2005). A single mutation alters production and discrimination of *Drosophila* sex pheromones. *Proc R Soc B*, 272, 303-309.

- Matthews, K. A., Kaufman, T. C., and Gelbart, W. M. (2005). Research resources for *Drosophila*: the expanding universe. *Nat Rev Genet*, *6*, 179-193.
- McClure, M., Wisthlecraft, J., and McNeil, J.N. (2007). Courtship behaviour in relation to the female sex pheromone in the parasitoid, *Aphidius ervi* (Hymenoptera: Braconidae). *J Chem Ecol*, *33*, 1946-1959.
- McNeil, J., and Brodeur, J. (1995). Pheromone-mediated mating in the aphid parasitoid, *Aphidius nigripes* (Hymenoptera: Aphididae). *J Chem Ecol*, 21, 959-972.
- Moehring, A. J., and Mackay, T. F. (2004). The quantitative genetic basis of male mating behavior in *Drosophila melanogaster*. *Genetics*, 167,1249-1263.
- Moulin, B., Aubin, T., and Jallon, J.M. (2004). Why there is a one-way crossability between *D. melanogaster* and *D. simulans*? An ontogenic explanation. *Genetica* 120, 285-292.
- Ozaki, M., Wada-Katsumata, A., Fujikawa, K., iwasaki, M., Yokohari., F., Satoji, Y., Nisimura, T., and Yamaoka, R. (2005). Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. *Science*, *309*, 311-314.
- Pasyukova, E.G., Vieira, C., and Mackay, T.F.C. (2000). Deficiency mapping of quantitative trait loci affecting longevity in *Drosophila melanogaster*. *Genetics*, 156, 1129-1146.
- de la Paz Fernandez, M., Chan, Y.-B., Yew, J.Y., Billeter, J.-C., Dreisewerd, K., Levine, J.D., and Kravitz, E.A. (2010). Pheromonal and behavioral cues trigger male-tofemale aggression in *Drosophila*. *PLOS Biol*, 8, e1000541.
- Pechine, J.M., Perez, F., Antony, C., and Jallon, J.M. (1985). A further characterization of *Drosophila* cutucular monoenes using a mass spectrometry method to localize double bonds in complex mixtures. *Anal Biochem*, 145, 177-182.
- Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., and Samuels, A.L. (2004). Plant cuticular lipid export requires an ABC transporter. Science, 306, 702-704.
- Pryke, S. R., and Andersson, S. (2002). A generalized female bias for long tails in a short-tailed widowbird. *Proc R Soc B*, 269, 2141-2146.
- Rasmusson, K., Serr, M., Gepner, J., Gibbons, I., and Hays, T.S. (1994). A family of dynein genes in *Drosophila melanogaster*. *Mol Biol Cell*, *5*, 45-55.
- Rouault, J., Capy, P., and Jallon, J.-M. (2001). Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptive mechanism in *Drosophila melanogaster*? *Genetica*, 110, 117-130.

- Rundle, H.D., Chenoweth, S.F., Doughty, P., and Blows, M.W. (2005). Divergent selection and the evolution of signal traits and mating preferences. *PLoS Biol, 3*, e368.
- Saïd, I., Gaertner, C., Renou, M., and Rivault, C. (2005). Perception of cuticular hydrocarbons by the olfactory organs in *Periplaneta americana* (L.) (Insecta: Dictyoptera). *J Ins Phys*, 51, 1384-1389.
- Samuels, M.L. and Witmer, J.A. (2003). Statistics for the Life Sciences. Pearson Education Inc. New Jersey.
- Savarit, F., Sureau, G., Cobb, M., and Ferveur, J.-F. (1999). Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in *Drosophila*. *Proc Natl Acad Sci USA*, *96*, 9015–9020.
- Savarit, F., and Ferveur, J.F. (2002). Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in *Drosophila melanogaster*. *J Exp Biol*, 205, 3241-3249.
- Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F., and Francke, W. (2000). Sex pheromone mimicry in the early spider orchids (*Ophrys sphegodes*): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol A, 186, 567-574.
- Scott, D., and Richmond, R.C. (1988). A genetic analysis of male-predominant pheromones in *Drosophila melanogaster*. *Genetics*, *119*, 639-646.
- Shackleton, M.A., Jennions, M.D., and Hunt, J. (2005). Fighting success and attractiveness as predictors of male mating success in the black field cricket, Teleogryllus commodus: the effectiveness of no-choice tests. *Behav Ecol Sociobiol*, 58, 1-8.
- Shirangi, T.R., Dufour, H.D., Williams, T.M., and Carroll, S.B. (2009). Rapid evolution of sex pheromone-producing enzyme expression in *Drosophila*. *PLoS Biol* 7, e1000168.
- Spikes, A.E., Paschen, M.A., Millar, J.G., Moreira, J.A., Hamel, P.B., Schiff, N.M., and Ginzel, M.D. (2010). First contact pheromone identified for a longhorned beetle (Coleoptra: Cerambycidae) in the subfamily Prioninae. *J Chem Ecol*, 36, 943-954.
- Stökl, J., Brodmann, J., Dafni, A., Ayasse, M., and Hansson, B.S. (2011). Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. *Proc Biol Sci*, 278, 1216-1222.

- Stoltz, J.A., and Andrade, M.C.B. (2010). Female's courtship threshold allows intruding males to mate with reduced effort. *Proc R Soc B*, 277, 585-592.
- Takahashi, A., Tsaur, S.C., Coyne, J.A., and Wu, C.I. (2001). The nucleotide changes governing cuticular hydrocarbon variation and their evolution in *Drosophila*. *Proc Natl Acad Sci USA*, 98, 3920-3925.
- Thomas, M.L., and Simmons, L.W. (2009). Male dominance influences pheromone expression, ejaculate quality, and fertilization success in the Australian field cricket, *Teleogryllus oceanicus*. *Behav Ecol*, 20, 1118-1124.
- Thomas, M.L., and Simmons, L.W. (2010). Cuticular hydrocarbons influence female attractiveness to males in the Australian field cricket, *Teleogryllus oceanicus*. J Evol Biol, 23, 707-714.
- Thomas, M.L., and Simmons, L.W. (2011). Short-term phenotypic plasticity in longchain cuticular hydrocarbons. *Proc Biol Sci*, 278, 3123-3128.
- Ueyama, M., Chertemps, T., Labeur, C., and Wicker-Thomas, C. (2005). Mutations in the *desat1* gene reduces the production of courtship stimulatory pheromones through a marked effect on fatty acids in *Drosophila melanogaster*. *Insect Biochem Mol Biol, 35*, 911-920.
- Wagner, D., Brown, M. J. F., Broun, P., Cuevas, W., Moses, L. E., Chao, D. L., and Gordon, D. M. (1998). Task-related differences in the cuticular hydrocarbon composition of harvester ants, *Pogonomyrmex barbatus*. J Chem Ecol, 24, 2021-2037
- Wagner, D., Tissot, M., and Gordon, D. (2001). Task-related environment alters the cuticular hydrocarbon composition of harvester ants. *J Chem Ecol*, 27, 1805-1819.
- Wang, L., and Anderson, D.J. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in *Drosophila*. *Nature*, 463, 227-231.
- Wicker-Thomas, C., Guenachi, I., and Keita, Y.F. (2009). Contribution of oenocytes and pheromones to courtship behaviour in *Drosophila*. *BMC Biochem*, 10, doi:10.1186/1471-2091-10-21.
- Zar, J.H. (2010). Biostatistical Analysis, 5th Ed. Pearson Prentice Hall. New Jersey.

Gene Name	Cytological Location	Base Position	Molecular Function	Biological Process
mir-276a	67E2-67E2	3L:1035832810358425	Unknown	Unknown
CR43990	67E2-67E2	3L:1040500710405477	Unknown	Unknown
CG12362	67E2-67E3	3L:1040591810407874	zinc ion binding	Unknown
Ir67b	67E3-67E3	3L:1042278910425083	ligand-gated ion channel activity	detection of chemical stimulus
Ir67c	67E3-67E3	3L:1042548410427205	ligand-gated ion channel activity	detection of chemical stimulus
Gem3	67E3-67E3	3L:1045218110456201	ATP-dependent RNA helicase activity; RNA helicase activity	ribonucleoprotein complex assembly; neuromuscular junction development
CG32061	67E3-67E3	3L:1045691610457735	Unknown	Unknown
S-Lap3	67E3-67E4	3L:1045828710462074	aminopeptidase activity	Proteolysis

Appendix A: Candidate genes within region 67E2-68A7

A2bp1	67E4-67E5	3L:1047451210587112	transcription factor binding; transcription regulatory region DNA binding	nervous system development; imaginal disc-derived wing vein specification; oogenesis; positive regulation of transcription, DNA-dependent
S-Lap4	67E4-67E4	3L:1048396110486034	aminopeptidase activity	Proteolysis
CG6527	67E4-67E4	3L:1055126510552182	structural molecule activity	Unknown
CG42521	67E5-67E5	3L:1061616610616676	Unknown	Unknown
CG43127	67E5-67E5	3L:1061782810618699	Unknown	Unknown
CG34238	67E5-67E5	3L:1061959910620539	Unknown	Unknown
CG14151	67E5-67E5	3L:1062078010621584	Unknown	Unknown
CG42536	67E5-67E5	3L:1062218310623169	Unknown	Unknown
CG42535	67E5-67E5	3L:1062313410624035	Unknown	Unknown

CG34001	67E5-67E5	3L:1062417910627712	Unknown	Unknown
hay	67E5-67E5	3L:1062417910627069	helicase activity; ATP- dependent 3'-5' DNA helicase activity	adult locomotory behavior; transcription from RNA polymerase II promoter; regulation of alternative nuclear mRNA splicing, via spliceosome; response to UV
E(z)	67E5-67E5	3L:1062767510631230	histone methyltransferase activity (H3-K27 specific); protein binding; histone methyltransferase activity (H3- K9 specific); histone methyltransferase activity	histone methylation; axon guidance; histone H3-K27 methylation; cuticle hydrocarbon biosynthetic process; dendrite morphogenesis; histone H3-K9 methylation; muscle organ development; syncytial blastoderm mitotic cell cycle; neurogenesis

CG8009	67E5-67E5	3L:1063124610632778	Unknown	Unknown
CG18628	67E5-67E5	3L:1063284010633236	Unknown	multicellular organism reproduction
CG32066	67E5-67E6	3L:1063338610654113	Unknown	Unknown
CG14154	67E5-67E5	3L:1063498910636109	Unknown	Unknown
CG14153	67E5-67E5	3L:1063662810637715	Unknown	Unknown
CG8003	67E6-67E6	3L:1065457510656257	zinc ion binding	Unknown
CG32068	67E6-67E6	3L:1065647610657535	acireductone dioxygenase [iron(II)-requiring] activity	oxidation-reduction process
simj	67E6-67E6	3L:1065783910683834	protein binding	negative regulation of transcription from RNA polymerase II promoter
CG11811	67E6-67E7	3L:1068412410685698	guanylate kinase activity	purine nucleotide metabolic process

CG33493	67E7-67E7	3L:1068563010686267	Unknown	Unknown
CG6463	67E7-67E7	3L:1068628410687208	NADH dehydrogenase activity; NADH dehydrogenase (ubiquinone) activity	mitochondrial electron transport, NADH to ubiquinone
NijA	67E7-67E7	3L:1068745710689977	Unknown	cell adhesion
CG43245	67F1-67F1	3L:1076509210766499	Unknown	Unknown
CG12523	67F1-67F1	3L:1079429010795201	Unknown	Unknown
CG42831	67F1-67F1	3L:1080791910809184	Unknown	Unknown
tna	67F1-67F1	3L:1085098910869596	zinc ion binding	chromatin-mediated maintenance of transcription
CG6418	67F1-67F1	3L:1086941510872137	helicase activity; ATP- dependent RNA helicase activity	Unknown
blos4	67F1-67F1	3L:1087218510873288	protein binding	Unknown

CG6409	67F1-67F1	3L:1087379910875154	Unknown	GPI anchor biosynthetic process
CG7949	67F1-67F1	3L:1087599010876673	Unknown	Unknown
CG6404	67F1-67F1	3L:1087736110879571	protein transporter activity	respiratory chain complex IV assembly
Cpr67Fa1	67F1-67F1	3L:1088309010883800	structural constituent of chitin- based cuticle; structural constituent of chitin-based larval cuticle	Unknown
Cpr67Fa2	67F1-67F1	3L:1088481410885616	structural constituent of chitin- based cuticle	Unknown
Cpr67Fb	67F1-67F1	3L:1088727310887793	structural constituent of chitin- based cuticle	multicellular organism reproduction
Aps	67F1-67F1	3L:1088787610892223	diphosphoinositol- polyphosphate diphosphatase activity	inositol phosphate metabolic process; nucleotide metabolic process
CG34050	67F1-67F1	3L:1093755610938200	Unknown	Unknown

CG14147	68A1-68A1	3L:1096574810966576	Unknown	Unknown
klu	68A1-68A1	3L:1097427111001933	nucleic acid binding	larval feeding behavior; tricarboxylic acid cycle; positive regulation of compound eye retinal cell programmed cell death
snoRNA:Me18S- G962	68A1-68A1	3L:1099450910994589	Unknown	Unknown
Fad2	68A1-68A1	3L:1101663511017946	stearoyl-CoA 9-desaturase activity	pheromone metabolic process; courtship behavior; cytokinesis; phagocytosis, engulfment
CG32079	68A1-68A1	3L:1101866111020432	amino acid transmembrane transporter activity	amino acid transmembrane transport
CG32081	68A1-68A2	3L:1102067911022545	amino acid transmembrane transporter activity	Transport
CG43693	68A2-68A3	3L:1102945811044471	Unknown	Unknown

CG7888	68A3-68A3	3L:1104713511052759	amino acid transmembrane transporter activity	amino acid transmembrane transport
CG6321	68A3-68A3	3L:1105253711054324	pyridoxal phosphate binding; transferase activity	biosynthetic process
blos2	68A3-68A3	3L:1105467111055315	protein binding	Unknown
CG32069	68A3-68A3	3L:1105523111055714	Unknown	Neurogenesis
CG32075	68A3-68A4	3L:1105582611058041	Unknown	Neurogenesis
SuUR	68A4-68A4	3L:1105809111062125	chromatin binding	chromatin assembly or disassembly; heterochromatin assembly; chromosome organization; DNA replication; DNA endoreduplication; positive regulation of DNA endoreduplication
CG6310	68A4-68A4	3L:1106214311062964	Unknown	Unknown
Mocs1	68A4-68A4	3L:1106362611066448	4 iron, 4 sulfur cluster binding; metal ion binding; catalytic activity	Mo-molybdopterin cofactor biosynthetic process
------------	-----------	---------------------	---	--
l(3)01239	68A4-68A4	3L:1106639211067488	chaperone binding	oogenesis; phagocytosis, engulfment
CG7839	68A4-68A5	3L:1106786911071836	sequence-specific DNA binding transcription factor activity	Neurogenesis
JIL-1	68A5-68A6	3L:1107185211086293	histone kinase activity (H3-S10 specific); protein kinase activity	female meiosis chromosome segregation; negative regulation of chromatin silencing; chromatin organization; chromosome organization; oogenesis
CG6279	68A6-68A6	3L:1108647111089287	oxidoreductase activity	Unknown
pncr011:3L	68A6-68A6	3L:1108975711091660	Unknown	Unknown
CG6272	68A6-68A6	3L:1109054611091286	protein heterodimerization activity	Neurogenesis

APP-BP1	68A6-68A6	3L:1109151211093678	protein binding; NEDD8 activating enzyme activity	protein neddylation
Elo68beta	68A6-68A6	3L:1109377511094798	Unknown	Unknown
Elo68alpha	68A6-68A6	3L:1109497511096130	fatty acid elongase activity	fatty acid elongation, unsaturated fatty acid; pheromone biosynthetic process
CG32071	68A6-68A6	3L:1109652111096973	Unknown	Unknown
CG32073	68A7-68A7	3L:1110010811100476	Unknown	Unknown
CG12522	68A7-68A7	3L:1110133511101832	Unknown	Unknown
CG34012	68A7-68A7	3L:1110192011102605	Unknown	Unknown
CG7638	68A7-68A7	3L:1110279011105217	Unknown	Unknown
Sod	68A7-68A7	3L:1110538111106840	antioxidant activity; superoxide dismutase activity	determination of adult lifespan; response to oxidative stress

fd68A	68A7-68A7	3L:1110726911113875	sequence-specific DNA binding transcription factor activity	regulation of transcription, DNA-dependent
mRpL2	68A7-68A7	3L:1111394711115141	structural constituent of ribosome	Translation
Ufd1-like	68A7-68A7	3L:1111506611116316	Unknown	positive regulation of proteasomal ubiquitin- dependent protein catabolic process; proteolysis; ubiquitin- dependent protein catabolic process
CG42575	68A7-68A8	3L:1111644811127763	sodium-dependent phosphate transmembrane transporter activity	sodium-dependent phosphate transport

Gene Name	Cytological Location	Base Position	Molecular Function	Biological Process
CG4066	87B6-87B6	3R:81370758138841	Unknown	chorion-containing eggshell formation
tRNA:CR31432	87B6-87B6	3R:81482858148356	ACA codon-amino acid adaptor activity	Translation
CG10013	87B6-87B7	3R:81492458150936	Unknown	Unknown
CG10038	87B7-87B7	3R:81747098176367	Unknown	Unknown
CG10041	87B7-87B7	3R:81765378177801	serine-type endopeptidase activity	multicellular organism reproduction
MBD-R2	87B7-87B8	3R:81778658182024	DNA binding; zinc ion binding	mitotic cell cycle G2/M transition DNA damage checkpoint; neurogenesis
CG4115	87B8-87B8	3R:81857338188975	binding; carbohydrate binding	Unknown
snmRNA:419	87B8-87B8	3R:81886388188711	Unknown	Unknown
Tim17a1	87B8-87B8	3R:81893898190402	P-P-bond-hydrolysis-driven protein transmembrane transporter activity; protein transporter activity	protein import into mitochondrial inner membrane; protein targeting to mitochondrion

Appendix B: Candidate genes within region 87B6-88A1

GstD10	87B8-87B8	3R:81904968191440	glutathione transferase activity	Unknown
GstD9	87B8-87B8	3R:81919028193286	glutathione transferase activity	Unknown
GstD1	87B8-87B8	3R:81932698194987	DDT-dehydrochlorinase activity; glutathione transferase activity	Unknown
GstD2	87B8-87B8	3R:81976938198426	glutathione transferase activity	Unknown
GstD3	87B8-87B8	3R:81987908199535	glutathione transferase activity	Unknown
GstD4	87B8-87B8	3R:81998248200546	glutathione transferase activity	Unknown
GstD5	87B8-87B8	3R:82014868202136	glutathione transferase activity	Unknown
GstD6	87B8-87B8	3R:82028948203629	glutathione transferase activity	Unknown
GstD7	87B8-87B8	3R:82042618204977	glutathione transferase activity	Unknown
GstD8	87B8-87B8	3R:82057458206537	glutathione transferase activity	Unknown
CG10035	87B9-87B9	3R:82073738208412	Unknown	Unknown
CG17639	87B9-87B9	3R:82090588211346	glutathione transferase activity	Unknown
CG34402	87B9-87B9	3R:82119718228627	Unknown	Unknown

CG33098	87B9-87B9	3R:82129108214517	calcium ion binding	Unknown
CG10097	87B9-87B9	3R:82164058221702	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor; nucleotide binding	oxidation-reduction process
CG10096	87B9-87B9	3R:82164058221702	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor; nucleotide binding	oxidation-reduction process
Cyp9f3Psi	87B9-87B9	3R:82217298224651	monooxygenase activity; oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen; heme binding; electron carrier activity	oxidation-reduction process
lig3	87B9-87B9	3R:82247338227561	DNA ligase (ATP) activity	DNA ligation involved in DNA repair; DNA recombination; DNA replication
Cyp9f2	87B9-87B9	3R:82290628231750	electron carrier activity	wing disc development
CG5167	87B9-87B9	3R:82322548233824	nucleotide binding; oxidoreductase activity	oxidation-reduction process

CG5196	87B9-87B9	3R:82340448237380	protein-cysteine S- palmitoleyltransferase activity	Golgi organization
Dip-C	87B9-87B9	3R:82375318239460	dipeptidyl-peptidase activity	Proteolysis
snmRNA:649	87B9-87B9	3R:82391108239168	Unknown	Unknown
pps	87B9-87B9	3R:82395508246973	protein binding	RNA splicing
Scgbeta	87B9-87B9	3R:82469588248151	structural constituent of muscle	cytoskeleton organization
CG17202	87B9-87B9	3R:82484908249328	cAMP-dependent protein kinase regulator activity	signal transduction
<i>Pp1-87B</i>	87B9- 87B10	3R:82493438251639	myosin phosphatase activity; protein serine/threonine phosphatase activity	terms, many of which group under: cellular component organization or biogenesis; cell cycle; cell cycle process; associative learning; anatomical structure development; localization;
				learning; organelle organization; multicellular organismal process; cellular macromolecule metabolic process

CG5641	87B10- 87B10	3R:82535158255002	DNA binding; double-stranded RNA binding	positive regulation of transcription, DNA-dependent
CG5245	87B10- 87B10	3R:82553078256960	zinc ion binding; nucleic acid binding	Unknown
Pros25	87B10- 87B10	3R:82570478258279	endopeptidase activity	mitotic spindle elongation; cell proliferation; cellular process; mitotic spindle organization
Aos1	87B10- 87B10	3R:82582558259626	protein binding	positive regulation of NF- kappaB transcription factor activity; neurogenesis
CG5844	87B10- 87B10	3R:82598248261365	dodecenoyl-CoA delta- isomerase activity	cellular response to hypoxia; phagocytosis, engulfment
desat2	87B10- 87B10	3R:82619708263582	stearoyl-CoA 9-desaturase activity	fatty acid biosynthetic process; cuticle hydrocarbon biosynthetic process
CG17207	87B10- 87B10	3R:82635368264861	Unknown	Unknown
desat1	87B10- 87B11	3R:82653228273338	stearoyl-CoA 9-desaturase activity	cuticle hydrocarbon biosynthetic process; regulation of lipid metabolic process; pheromone biosynthetic process; male mating behavior; mating behavior, sex discrimination;

CG5538	87B11- 87B11	3R:82733758274768	Unknown	Unknown
CG18549	87B11- 87B11	3R:82750188282084	Unknown	Unknown
CG5509	87B11- 87B11	3R:82781868278918	Unknown	Unknown
trus	87B11- 87B11	3R:82822568284166	Unknown	Unknown
CG5961	87B11- 87B11	3R:82841438286016	Unknown	Unknown
CG12267	87B11- 87B11	3R:82861368288140	DNA-directed RNA polymerase activity	transcription from RNA polymerase III promoter
CG5608	87B11- 87B12	3R:82882848291020	binding	lateral inhibition
Hsp70Ba	87B12- 87B12	3R:82910268293500	ATP binding	response to hypoxia; heat shock-mediated polytene chromosome puffing; response to heat
alphagamma- element:CR32865	87B13- 87B13	3R:83010588303989	Unknown	Unknown

Hsp70Bbb	87B14- 87B14	3R:83282328330822	ATP binding	response to hypoxia; heat shock-mediated polytene chromosome puffing; response to heat
Hsp70Bb	87B14- 87B14	3R:83315158334105	ATP binding	response to hypoxia; heat shock-mediated polytene chromosome puffing; response to heat
Hsp70Bc	87B14- 87B15	3R:83347988337183	ATP binding	response to hypoxia; heat shock-mediated polytene chromosome puffing; response to methotrexate; response to heat
* Octbeta3R	87B15- 87C1	3R:83372928373951	octopamine receptor activity	G-protein coupled receptor signaling pathway
*hug	87B15- 87B15	3R:83519108354798	myostimulatory hormone activity	larval feeding behavior; ecdysis, chitin-based cuticle
*mir-284	87C1-87C1	3R:83772378377336	Unknown	Unknown
*Octbeta2R	87C1-87C2	3R:83782118421447	octopamine receptor activity	positive regulation of synaptic growth at neuromuscular junction
*Vha55	87C2-87C3	3R:84494848453551	proton-transporting ATPase activity, rotational mechanism	ATP hydrolysis coupled proton transport; vacuolar

acidification

*Snx3	87C3-87C3	3R:84537638455783	phosphatidylinositol binding	Wnt protein secretion; wing disc development; positive regulation of canonical Wnt receptor signaling pathway; protein stabilization; canonical Wnt receptor signaling pathway; regulation of Wnt receptor signaling pathway by Wnt protein secretion; positive regulation of Wnt protein secretion; phagocytosis, engulfment
*CG18616	87C3-87C3	3R:84563648458747	sequence-specific DNA binding transcription factor activity; sequence-specific DNA binding; zinc ion binding	regulation of transcription, DNA-dependent
*CG18530	87C3-87C3	3R:84590818460374	triglyceride lipase activity	lipid metabolic process
*CG11598	87C3-87C3	3R:84606398462005	lipase activity; triglyceride lipase activity	multicellular organism reproduction
*CG11600	87C3-87C3	3R:84622758463602	triglyceride lipase activity	lipid metabolic process
*CG11608	87C3-87C3	3R:84642038465669	triglyceride lipase activity	multicellular organism reproduction

*CG6753	87C3-87C3	3R:84658858468295	triglyceride lipase activity	lipid metabolic process
*CG6234	87C3-87C3	3R:84737828478635	Unknown	Gastrulation
*CG6225	87C3-87C3	3R:84802998486588	aminopeptidase activity	Neurogenesis
*CG14395	87C4-87C5	3R:84885538499681	Unknown	Unknown
CG6188	87C5-87C5	3R:85003328501806	glycine N-methyltransferase activity	methionine metabolic process
CG43630	87C5-87C5	3R:85017328501982	Unknown	Unknown
mbo	87C5-87C5	3R:85022098504766	protein binding	negative regulation of protein export from nucleus; antimicrobial humoral response; protein import into nucleus; neurogenesis
Сур313а4	87C5-87C5	3R:85050018507097	electron carrier activity	oxidation-reduction process
kar	87C5-87C5	3R:85079088515089	monocarboxylic acid transmembrane transporter activity	ommochrome biosynthetic process
Su(fu)	87C5-87C5	3R:85155958517434	transcription factor binding	negative regulation of sequence-specific DNA binding transcription factor activity; cytoplasmic

sequestering of transcription factor; negative regulation of smoothened signaling pathway

CG31347	87C5-87C5	3R:85174558518319	Unknown	Unknown
Arp87C	87C5-87C5	3R:85174588519954	structural constituent of cytoskeleton; actin binding	axon transport of mitochondrion; retrograde axon cargo transport; mitosis; anterograde axon cargo transport
CG14391	87C5-87C5	3R:85199508520564	Unknown	Unknown
CG14394	87C5-87C6	3R:85208688523265	Unknown	tissue regeneration; cell adhesion
Past1	87C6-87C6	3R:85230448530597	calcium ion binding	endocytosis; imaginal disc- derived wing margin morphogenesis; sperm individualization; imaginal disc-derived wing vein specification; oogenesis
CG12279	87C6-87C6	3R:85308168531540	unfolded protein binding	protein folding
mus308	87C6-87C6	3R:85312458538021	DNA-directed DNA polymerase activity; helicase activity	double-strand break repair via nonhomologous end joining; nucleotide-excision repair

Men	87C6-87C7	3R:85388258548267	malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) activity	regulation of cell death
CG5724	87C8-87C8	3R:85653848567139	glucuronosyltransferase activity	metabolic process
CG5999	87C8-87C8	3R:85676808569402	glucuronosyltransferase activity	metabolic process
beat-Vc	87C8-87D1	3R:85717588603874	Unknown	Unknown
CG31345	87D1-87D1	3R:86368678642751	calcium ion binding	phagocytosis, engulfment
beat-Va	87D2-87D2	3R:86670408674141	Unknown	Unknown
CG10126	87D2-87D2	3R:86812608684939	calcium ion binding	Neurogenesis
d-cup	87D3-87D3	3R:87177178718880	calcium ion binding	Unknown
CR33929	87D3-87D3	3R:87196948720251	Unknown	Unknown
CG10909	87D4-87D4	3R:87358428737014	RNA binding; methyltransferase activity	rRNA processing
beat-Vb	87D4-87D4	3R:87418448760535	Unknown	Unknown
grsm	87D5-87D5	3R:87757648793434	aminopeptidase activity	Proteolysis

Spc25	87D5-87D5	3R:87874748788975	Unknown	mitotic metaphase plate congression; chromosome segregation; mitotic spindle organization
Cyp304a1	87D5-87D5	3R:87895198791652	electron carrier activity	insecticide metabolic process
CG14384	87D5-87D5	3R:87916608792442	Unknown	Unknown
CG7381	87D5-87D6	3R:87934978803193	Unknown	Unknown
CG7091	87D6-87D6	3R:88037228806257	high affinity inorganic phosphate:sodium symporter activity	transmembrane transport
Paip2	87D6-87D7	3R:88067688811210	protein binding	regulation of cell growth; negative regulation of translation
CG31342	87D7-87D7	3R:88117638817265	Unknown	Unknown
CG14383	87D7-87D7	3R:88130988814233	Unknown	Unknown
yellow-f	87D7-87D7	3R:88171718818923	dopachrome isomerase activity	indole-containing compound biosynthetic process
yellow-f2	87D7-87D7	3R:88191178820869	dopachrome isomerase activity	indole-containing compound biosynthetic process

CG7488	87D7-87D7	3R:88213428822647	GTP binding	Unknown
CG17327	87D7-87D7	3R:88225908823404	aminoacyl-tRNA hydrolase activity	Unknown
CG7518	87D7-87D8	3R:88238118834126	DNA binding	Unknown
CG8031	87D8-87D8	3R:88341068837010	Unknown	Unknown
CG11656	87D8-87D8	3R:88356178836808	Unknown	Unknown
CtBP	87D8-87D9	3R:88373888851905	protein binding; transcription factor binding; protein homodimerization activity; repressing transcription factor binding; transcription corepressor activity; transcription coactivator activity	chaeta development; wing disc development; regulation of Wnt receptor signaling pathway; regulation of transcription, DNA-dependent; embryonic development via the syncytial blastoderm; regulation of transcription from RNA polymerase II promoter; Wnt receptor signaling pathway; positive regulation of JAK-STAT cascade
CG12360	87D9-87D9	3R:88527478856372	Unknown	Unknown
l(3)87Df	87D9-87D9	3R:88566648857317	Unknown	Unknown

ry	87D9-87D9	3R:88582598863748	pyrimidine base metabolic process; determination of adult lifespan; arginine metabolic process; tryptophan metabolic process; glycerophospholipid metabolic process; purine base metabolic process	
CG11668	87D9-87D9	3R:88641358865906	serine-type endopeptidase activity	Proteolysis
snk	87D9-87D9	3R:88658878868492	serine-type endopeptidase activity	Toll signaling pathway; protein processing
CG11670	87D9- 87D10	3R:88677908870123	serine-type endopeptidase activity	Proteolysis
Hsc70-2	87D10- 87D10	3R:88704818873112	unfolded protein binding	protein folding
CG31157	87D10- 87D10	3R:88732348875018	Unknown	Unknown
CG7966	87D10- 87D10	3R:88751208877172	selenium binding	Unknown
pic	87D11- 87D11	3R:88779788882454	protein binding	mitotic cell cycle G2/M transition DNA damage checkpoint; eggshell chorion gene amplification

sim	87D11- 87D11	3R:88834818903950	RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity; sequence-specific DNA binding transcription factor activity; RNA polymerase II core promoter proximal region sequence-specific DNA binding; sequence-specific DNA binding; RNA polymerase II core promoter proximal region sequence- specific DNA binding transcription factor activity involved in positive regulation of transcription; protein heterodimerization activity	adult walking behavior; positive regulation of transcription from RNA polymerase II promoter; axon guidance; determination of genital disc primordium; ventral midline development; brain development; axonogenesis; ventral cord development
CG43063	87D12- 87D12	3R:89119468912483	Unknown	Unknown
timeout	87D12- 87D14	3R:89143738989598	Unknown	entrainment of circadian clock; DNA damage checkpoint
CG34308	87D12- 87D12	3R:89150218915805	zinc ion binding	Unknown
2mit	87D13- 87D14	3R:89476738981386	Unknown	Unknown

CG8138	87E1-87E1	3R:90070269007876	Unknown	Unknown
CG8508	87E1-87E1	3R:90112489012232	Unknown	Unknown
CG14380	87E1-87E1	3R:90142879015290	Unknown	Unknown
CG8141	87E1-87E1	3R:90174239018231	zinc ion binding	Unknown
CG8483	87E2-87E2	3R:90344709040187	Unknown	Unknown
CG8476	87E2-87E2	3R:90453629046300	heat shock protein binding; unfolded protein binding	protein folding
Ace	87E2-87E3	3R:90539649085240	cholinesterase activity; protein homodimerization activity; acetylcholinesterase activity	phototaxis; synaptic transmission; choline catabolic process; acetylcholine catabolic process
CG11686	87E3-87E3	3R:90860799087949	Unknown	Unknown
Ravus	87E3-87E3	3R:90884549089755	DNA binding	Unknown
Su(var)3-7	87E3-87E3	3R:90900779095760	protein binding; chromatin binding	dosage compensation by inactivation of X chromosome; positive regulation of chromatin silencing at

centromere

CG8449	87E3-87E3	3R:90948599097748	Rab GTPase activator activity	regulation of Rab GTPase activity
CG8630	87E3-87E4	3R:91054459110316	stearoyl-CoA 9-desaturase activity	oxidation-reduction process; lipid metabolic process
CG15888	87E4-87E4	3R:91106719112251	Unknown	Unknown
CG15887	87E4-87E4	3R:91133719114532	Unknown	Unknown
Osi22	87E4-87E4	3R:91164389117568	Unknown	Unknown
wntD	87E4-87E4	3R:91177749118920	frizzled binding	ventral furrow formation; defense response to Gram- positive bacterium; pole cell migration; regulation of embryonic development
CG8773	87E4-87E4	3R:91204729124010	aminopeptidase activity	dsRNA transport
CG8774	87E4-87E5	3R:91245699128056	aminopeptidase activity	Proteolysis
CG32473	87E5-87E5	3R:91283759138507	aminopeptidase activity	Proteolysis
CG43208	87E5-87E5	3R:91291489129578	Unknown	Unknown
CG8795	87E6-87E6	3R:91547879159885	peptide receptor activity; G- protein coupled receptor	G-protein coupled receptor signaling pathway

			activity; neuropeptide receptor activity	
CG8784	87E6-87E6	3R:91656859170828	G-protein coupled receptor activity; neuropeptide receptor activity	G-protein coupled receptor signaling pathway
mthl12	87E7-87E7	3R:91793959181135	G-protein coupled receptor activity	G-protein coupled receptor signaling pathway; determination of adult lifespan; response to stress
poly	87E7-87E8	3R:91875389192629	Unknown	oocyte microtubule cytoskeleton polarization; melanotic encapsulation of foreign target
Dic1	87E8-87E8	3R:91906619194813	inorganic phosphate transmembrane transporter activity; sulfate transmembrane transporter activity; malate transmembrane transporter activity; thiosulfate transmembrane transporter activity; oxaloacetate transmembrane transporter activity; succinate transmembrane transporter activity; succinate	oxaloacetate transport; thiosulfate transport; malate transmembrane transport; sulfate transport; succinate transmembrane transport; phosphate ion transmembrane transport
CheA87a	87E8-87E8	3R:91953919196068	Unknown	sensory perception of chemical

stimulus

Lip3	87E8-87E8	3R:91959629197626	triglyceride lipase activity	lipid metabolic process
CG34309	87E8-87E8	3R:91983529199048	Unknown	Unknown
CG9813	87E8-87E8	3R:91988219205494	ATP binding	Unknown
CG8870	87E8-87E8	3R:92058629207065	serine-type endopeptidase activity	Proteolysis
mRpS21	87E8-87E8	3R:92070519207514	structural constituent of ribosome	Translation
Droj2	87E8-87E8	3R:92077999211013	heat shock protein binding; unfolded protein binding; ATP binding	Neurogenesis
CG9799	87E8-87E8	3R:92113709214436	Unknown	rRNA processing
CCHa2	87E8-87E8	3R:92147819220912	neuropeptide hormone activity	neuropeptide signaling pathway
CG14374	87E9-87E9	3R:92224169222855	Unknown	Unknown
CG14377	87E9-87E9	3R:92235579224305	Unknown	Unknown
CG9796	87E9-87E9	3R:92242489227580	Unknown	Unknown

CG33977	87E9-87E10	3R:92282819228771	Unknown	Unknown
yellow-e3	87E10- 87E10	3R:92291459230590	Unknown	Unknown
yellow-e2	87E10- 87E10	3R:92308319232689	Unknown	Unknown
yellow-e	87E10- 87E10	3R:92352649241006	Unknown	Unknown
Ir87a	87E10- 87E11	3R:92459959248862	ligand-gated ion channel activity	detection of chemical stimulus
Act87E	87E11- 87E11	3R:92517079253811	structural constituent of cytoskeleton	cytoskeleton organization
yrt	87E11- 87E11	3R:92545899260704	cytoskeletal protein binding	dorsal closure; amnioserosa maintenance; establishment or maintenance of apical/basal cell polarity; germ-band shortening; eye photoreceptor cell development; head involution
CR42756	87E11- 87E11	3R:92643099264931	Unknown	Unknown
CG14372	87E12- 87E12	3R:92763129289906	Unknown	Unknown

CR17025	87E12- 87E12	3R:92812339291828	Unknown	Unknown
mir-252	87E12- 87E12	3R:92899419290033	Unknown	Unknown
CG12538	87F1-87F1	3R:93486739349257	acid phosphatase activity	Unknown
CG42778	87F2-87F2	3R:93543199355078	Unknown	Unknown
CG31337	87F2-87F2	3R:93696889371106	Unknown	Unknown
CR43848	87F3-87F3	3R:94005479401201	Unknown	Unknown
CG14370	87F3-87F3	3R:94137199414447	Unknown	Unknown
CG14369	87F3-87F3	3R:94179989418336	Unknown	Unknown
CG42760	87F4-87F4	3R:94333049433543	Unknown	Unknown
CG42761	87F4-87F4	3R:94337719434112	Unknown	Unknown
CG9759	87F4-87F4	3R:94344759434968	Unknown	Unknown
CG9757	87F4-87F4	3R:94375889438151	Unknown	Unknown
CG9269	87F5-87F5	3R:94417269442166	Unknown	Unknown

CG10841	87F5-87F5	3R:94576649460583	calcium ion binding	Unknown
sqd	87F5-87F6	3R:94606799472026	mRNA binding	terms, many of which group under: localization; cellular component organization or biogenesis; multicellular organism reproduction; anterior/posterior axis specification; biological regulation; regulation of RNA splicing; ovarian follicle cell development; regulation of RNA metabolic process; establishment or maintenance of polarity of follicular epithelium; oocyte anterior/posterior axis specification
rin	87F6-87F7	3R:94727269480285	mRNA binding; SH3 domain binding	Ras protein signal transduction; compound eye photoreceptor fate commitment; ommatidial rotation
Rbp4	87F7-87F7	3R:94802789482116	single-stranded RNA binding	mRNA processing
Hrb87F	87F7-87F7	3R:94825689486241	sequence-specific DNA binding	mitosis; regulation of alternative nuclear mRNA splicing, via spliceosome;

neurogenesis

<i>B52</i>	87F7-87F7	3R:94870229492613	protein binding	nuclear mRNA splicing, via spliceosome; regulation of nuclear mRNA splicing, via spliceosome; mitosis; regulation of alternative nuclear mRNA splicing, via spliceosome
Task6	87F7-87F7	3R:94943139497823	potassium channel activity	potassium ion transmembrane transport
CG9588	87F7-87F7	3R:95008149502398	Unknown	response to DNA damage stimulus
<i>lkb1</i>	87F7-87F9	3R:95022719505152	protein kinase activity	border follicle cell delamination; dorsal closure; regulation of JNK cascade; oocyte microtubule cytoskeleton organization; determination of adult lifespan; pole plasm oskar mRNA localization; mitotic spindle organization; asymmetric neuroblast division; positive regulation of apoptotic process
omd	87F9-87F11	3R:95051519512932	Unknown	snRNA 3'-end processing;

neurogenesis

flfl	87F10- 87F11	3R:95096809519629	protein binding	Rac protein signal transduction; dorsal closure; neuroblast proliferation; asymmetric neuroblast division; asymmetric protein localization; phagocytosis, engulfment
CG14367	87F11- 87F11	3R:95197759521484	Unknown	cilium assembly
f-cup	87F11- 87F11	3R:95209799526560	Unknown	Ras protein signal transduction
ninaB	87F11- 87F11	3R:95263089528844	retinal isomerase activity; beta- carotene 15,15'- monooxygenase activity; carotenoid dioxygenase activity	retinal metabolic process; carotene metabolic process; rhodopsin biosynthetic process; phototransduction, UV; vitamin biosynthetic process; phototransduction, visible light; vitamin A biosynthetic process
Adgf-D	87F11- 87F11	3R:95288069531180	growth factor activity; adenosine deaminase activity	cell proliferation
Adgf-C	87F12- 87F12	3R:95324799534851	growth factor activity	purine ribonucleoside monophosphate biosynthetic

process

CG31469	87F12- 87F12	3R:95348819535661	protein tyrosine phosphatase activity	protein dephosphorylation
primo-2	87F12- 87F12	3R:95357489537557	protein tyrosine phosphatase activity; acid phosphatase activity	protein dephosphorylation
primo-1	87F12- 87F12	3R:95357489537557	protein tyrosine phosphatase activity; acid phosphatase activity	protein dephosphorylation
CR34044	87F12- 87F12	3R:95387779539926	Unknown	Unknown
CG34383	87F12- 87F13	3R:95409319590389	phospholipid binding	Unknown
CG9602	87F12- 87F12	3R:95431769543898	ubiquitin-protein ligase activity	Unknown
CG9312	87F13- 87F13	3R:95914979592829	Unknown	Unknown
Cht5	87F13- 87F13	3R:95932719596454	chitin binding; chitinase activity	chitin catabolic process
CG9297	87F13- 87F13	3R:95972179605039	calcium ion binding	calcium ion transport

CG9288	87F13- 87F13	3R:96053469606517	Unknown	glycine catabolic process
CG42375	87F13- 87F13	3R:96053469606517	Unknown	Unknown
CG9286	87F13- 87F13	3R:96066869607804	Unknown	Unknown
Dip-B	87F13- 87F13	3R:96080129611401	tripeptidyl-peptidase activity; dipeptidyl-peptidase activity	Proteolysis
tRNA:CR31588	87F14- 87F14	3R:96236759623747	UUC codon-amino acid adaptor activity	Translation
tRNA:CR31331	87F14- 87F14	3R:96239209623992	UUC codon-amino acid adaptor activity	Translation
tal-AA	87F14- 87F14	3R:96388319640370	Unknown	morphogenesis of an epithelium; actin filament organization
tal-3A	87F14- 87F14	3R:96388319640370	Unknown	morphogenesis of an epithelium; actin filament organization
tal-2A	87F14- 87F14	3R:96388319640370	Unknown	morphogenesis of an epithelium; actin filament organization
tal-1A	87F14-	3R:96388319640370	Unknown	morphogenesis of an

	87F14			epithelium; imaginal disc- derived wing morphogenesis; actin filament organization
CR43641	87F14- 87F14	3R:96410019641500	Unknown	Unknown
CR43642	87F14- 87F14	3R:96419539642849	Unknown	Unknown
Mst87F	87F14- 87F14	3R:96528739653432	structural molecule activity	Spermatogenesis
CR43300	87F14- 87F14	3R:96536909654149	Unknown	Unknown
Nsf2	87F15- 87F15	3R:96601959663708	nucleoside-triphosphatase activity; ATP binding	neuromuscular synaptic transmission; regulation of synaptic growth at neuromuscular junction
CG31495	87F15- 87F15	3R:96639609665652	ATP binding	Unknown
CG14362	88A1-88A1	3R:96803219681176	calcium ion binding	Unknown
<i>E5</i>	88A1-88A1	3R:96930679700638	sequence-specific DNA binding transcription factor activity	regulation of transcription, DNA-dependent

Gene Name	Cytological Location	Base Position	Molecular Function	Biological Process
Fancd2	93A1-93A1	3R:1663652516641923	protein kinase activity; ATP binding	DNA repair; intra-S DNA damage checkpoint
CG17270	93A1-93A1	3R:1664216716644646	Unknown	Unknown
CG17271	93A1-93A1	3R:1664484916647587	Calcium ion binding	Unknown
RpS20	93A1-93A1	3R:1664790116649078	structural constituent of ribosome	Translation
snoRNA:Psi18S- 1295	93A1-93A1	3R:1664833216648471	Unknown	Unknown
snoRNA:Psi28S- 2562	93A1-93A1	3R:1664864816648782	Unknown	Unknown
CG17272	93A1-93A1	3R:1664903516649951	Calcium ion binding	Unknown
CG17273	93A1-93A1	3R:1665038916656337	adenylosuccinate synthase	Neurogenesis

Appendix C: Candidate genes within region 93A1-93D5

activity

CG31223	93A1-93A1	3R:1665691416658177	Unknown	Neurogenesis
Synd	93A1-93A2	3R:1665850716665840	Unknown	neurotransmitter secretion; synaptic vesicle endocytosis
CG15695	93A2-93A2	3R:1666786416670709	catalytic activity	metabolic process
CG15696	93A2-93A2	3R:1667283316673372	sequence-specific DNA binding transcription factor activity	regulation of transcription, DNA-dependent
<i>RpS30</i>	93A2-93A2	3R:1667627116677156	structural constituent of ribosome	mitotic spindle elongation; mitotic spindle organization
Ir93a	93A2-93A2	3R:1667742816685667	extracellular-glutamate-gated ion channel activity; ligand- gated ion channel activity	detection of chemical stimulus involved in sensory perception
mir-1011	93A2-93A2	3R:1667902716679080	Unknown	Unknown
CG3822	93A2-93A2	3R:1668590416691951	kainate selective glutamate receptor activity	ion transport

TotA	93A2-93A2	3R:1669675816697427	Unknown	response to bacterium;
				response to water deprivation;
				cellular response to heat;
				cellular response to UV;
				cellular response to oxidative
				stress; response to
				methylmercury; cellular
				response to mechanical
				stimulus
TotC	02 4 2 02 4 2	2D.16602710 16600210	Unknown	regnance to besterium, collular
Toic	93A2-93A2	SK:10098/1010099510	UIIKIIOWII	response to bacterium; cenular
				response to heat; cellular
				response to UV
TotB	93A2-93A2	3R:1669967216700259	Unknown	response to bacterium; cellular
				response to heat; cellular
				response to UV
TotZ	93A2-93A2	3R:1670345816704164	Unknown	response to bacterium; cellular
				response to heat; cellular
				response to UV; cellular

tRNA:CR31480	93A2-93A2	3R:1671642016716491	ACG codon-amino acid adaptor activity	Translation
tRNA:CR31334	93A2-93A2	3R:1671684416716915	ACG codon-amino acid adaptor activity	Translation
tRNA:CR31333	93A2-93A2	3R:1671738016717451	ACG codon-amino acid adaptor activity	Translation
CG10830	93A2-93A2	3R:1672017416723042	Unknown	protein homooligomerization
CG5621	93A2-93A3	3R:1672771616733987	kainate selective glutamate receptor activity	ion transport
TotX	93A3-93A3	3R:1673063816731240	Unknown	response to bacterium; cellular response to heat; cellular response to oxidative stress
CG31191	93A3-93A4	3R:1673493516771252	Unknown	signal transduction
snoRNA:CG31191-a	93A3-93A3	3R:1673845516738601	Unknown	Unknown

CG5630	93A3-93A4	3R:1674002316754935	Unknown	Unknown
Atpalpha	93A4-93A4	3R:1677443616801961	sodium:potassium-exchanging ATPase activity; cation transmembrane transporter activity	biological regulation; anatomical structure development; locomotory behavior; cellular component organization or biogenesis; response to stimulus; multicellular organismal process; determination of adult lifespan; synaptic transmission; response to mechanical stimulus; behavior; localization; neuromuscular process; response to temperature stimulus; regulation of anatomical structure size
Calx	93A4-93B3	3R:1680390716841335	calcium ion binding; calcium:sodium antiporter	Phototransduction

activity

CG43446	93B3-93B3	3R:1681222616813658	Unknown	Unknown
CG10827	93B3-93B3	3R:1683088216832709	alkaline phosphatase activity	metabolic process
CG5697	93B4-93B4	3R:1684167116842842	Unknown	Unknown
Rlip	93B4-93B4	3R:1684342316846475	protein binding; Ral GTPase binding	receptor-mediated endocytosis
CG17278	93B4-93B4	3R:1684675616849885	Unknown	negative regulation of Wnt receptor signaling pathway
Dhc93AB	93B5-93B7	3R:1685074116868141	ATPase activity, coupled; motor activity	microtubule-based movement
*CG12278	93B7-93B7	3R:1686981516870627	Unknown	Unknown
*CG31189	93B7-93B7	3R:1687062016871533	Unknown	Unknown
*CG31207	93B7-93B7	3R:1687175416872749	Unknown	Unknown
*CG7079	93B7-93B7	3R:1687348716874543	Unknown	Unknown
*CG17279	93B7-93B7	3R:1687573616876637	Unknown	Unknown
------------	-----------	---------------------	---	---
*Mvl	93B7-93B8	3R:1687710516886517	manganese ion transmembrane transporter activity; iron ion transmembrane transporter activity; copper ion transmembrane transporter activity; symporter activity	 iron assimilation; multicellular organismal iron ion homeostasis; copper ion transport; divalent metal ion transport; copper ion import; sensory perception of sweet taste; viral entry into host cell; transition metal ion transport; copper ion homeostasis; transition metal ion
*Cortactin	93B8-93B9	3R:1688740216890193	proline-rich region binding	regulation of cell shape; positive regulation of receptor- mediated endocytosis; border follicle cell migration; female germline ring canal formation
*AnnIX	93B9-	3R:1689096316896639	calcium ion binding; calcium-	wing disc dorsal/ventral pattern

	93B10		dependent phospholipid binding; actin binding	formation
* r-l	93B10- 93B10	3R:1689627916899041	orotidine-5'-phosphate decarboxylase activity; orotate phosphoribosyltransferase activity	'de novo' pyrimidine base biosynthetic process
*dmrt93B	93B10- 93B10	3R:1689972916902520	sequence-specific DNA binding transcription factor activity	sex differentiation; regulation of transcription, DNA- dependent
*CG7056	93B10- 93B10	3R:1690263516906405	sequence-specific DNA binding transcription factor activity	dendrite morphogenesis; neurogenesis
*RhoGAP93B	93B10- 93B11	3R:1690875816923527	Unknown	axon guidance
*CG7044	93B11- 93B12	3R:1692395116927440	Binding	Unknown
*CG5745	93B12-	3R:1692792116930835	GTPase activator activity	phagocytosis, engulfment

	93B12			
* sec15	93B12- 93B12	3R:1693076816933694	Unknown	chaeta development; phototaxis; border follicle cell migration; axon guidance; endocytic recycling
*Rtet	93B12- 93B12	3R:1693416816936556	sugar transmembrane transporter activity	Oogenesis
*Rab11	93B12- 93B13	3R:1693713016941868	GTPase activity	cellular component organization or biogenesis; sensory organ development;

cellular component organization or biogenesis; sensory organ development; multicellular organism reproduction; biological regulation; localization; gamete generation; organelle organization; cell cycle; regulation of developmental process; cell cycle process; fusome organization

*Ppan	93B13-	3R:1694197616943621	Unknown	imaginal disc development;
	93B13			larval development; oogenesis;
				neurogenesis
*CG17282	93B13-	3R:1694357916944578	Binding	Unknown
	93B13			
*Slmb	93B13-	3R:1694497416953207	phosphoprotein binding	biological regulation;
	93C1			multicellular organism
				reproduction; ovarian follicle
				cell development; gamete
				generation; cellular component
				organization or biogenesis;
				localization; learning or
				memory; rhythmic process;
				regulation of cellular
				component organization;
				regulation of Wnt receptor
				signaling pathway
*CG5793	93C1-93C1	3R:1695329516955323	catalytic activity	metabolic process

*Obp93a	93C1-93C1	3R:1695467216955439	odorant binding	sensory perception of chemical stimulus
*Ice2	93C1-93C1	3R:1695594116958442	Unknown	Unknown
*CG7009	93C1-93C1	3R:1695845616959599	rRNA (uridine-2'-O-)- methyltransferase activity	rRNA modification
*Ubpy	93C1-93C1	3R:1695998416963936	ubiquitin thiolesterase activity	positive regulation of canonical Wnt receptor signaling pathway; imaginal disc-derived wing margin morphogenesis
*CG5802	93C1-93C1	3R:1696399216966087	UDP-galactose transmembrane transporter activity	transmembrane transport
*SNF4Agamma	93C1-93C5	3R:1696646117039991	AMP-activated protein kinase activity	lipid metabolic process; positive regulation of cell cycle; behavioral response to starvation; sequestering of triglyceride; cellular response

to starvation; autophagy;

cholesterol homeostasis

*CG10824	93C2-93C2	3R:1698496016986814	Unknown	Unknown
*CG5810	93C2-93C2	3R:1698950016990883	Unknown	Unknown
*Snmp1	93C2-93C2	3R:1699088916993927	scavenger receptor activity	response to pheromone; cell surface receptor signaling
				pathway

Gene Name	Cytological Location	Base Position	Molecular Function	Biological Process
CG42331	96A20-96A22	3R:2059790320610284	peroxidase activity	oxidation-reduction process; response to oxidative stress
CG5805	96A22- 96A22	3R:2061045920613152	transmembrane transporter activity	transmembrane transport
CG13634	96A22- 96A22	3R:2061407220615858	Unknown	Unknown
Ets96B	96A22- 96A22	3R:2061746520623678	sequence-specific DNA binding transcription factor activity; DNA binding	regulation of transcription, DNA-dependent
Ude	96A22- 96A22	3R:2062331720625390	RNA binding; DNA binding	pupation; DNA catabolic process
Polybromo	96A22- 96A23	3R:2062568920630981	DNA binding; zinc ion binding	eggshell chorion assembly; negative regulation of

Appendix D: Candidate genes within region 96A20-96C3

				chromatin silencing; vitelline
				membrane formation involved
				in chorion-containing
				eggshell formation; imaginal
				disc-derived leg
				morphogenesis
CG5807	96A23-	3R:2063116720639734	Unknown	Unknown
	96A23			
CG6980	96A23-	3R:2063334320634399	binding	Unknown
	96A23			
CG34150	96A23-	3R:2063998420640652	Unknown	Unknown
	96A23			
CG5808	96A23-	3R:2064062520642729	mRNA binding	Neurogenesis
	96A23			
Saf-B	96A23-	3R:2064318620648072	mRNA binding	regulation of alternative
	96A23			nuclear mRNA splicing, via
				spliceosome

Niki	96A23- 96A24	3R:2064812320651105	receptor signaling protein serine/threonine kinase activity	protein phosphorylation
CG43166	96A24- 96A24	3R:2065151320652193	Unknown	Unknown
RabX4	96A24- 96A24	3R:2065238720653691	GTPase activity	protein transport; small GTPase mediated signal transduction
CG31357	96A24- 96A24	3R:2065400120655645	Unknown	Unknown
CG43273	96A24- 96A24	3R:2065602320656695	Unknown	Unknown
CG13636	96A24- 96A25	3R:2065967620666217	Unknown	Unknown
CG33658	96A25-96B1	3R:2066623120666885	Unknown	Unknown
Esp	96B1-96B1	3R:2066776520676134	secondary active sulfate	sulfate transport

			transmembrane transporter activity	
CG7006	96B1-96B1	3R:2067634120677107	RNA binding	ribosome assembly
Nct	96B1-96B1	3R:2067729420680730	Unknown	Notch receptor processing; regulation of compound eye photoreceptor development; lateral inhibition; membrane protein ectodomain proteolysis; Notch signaling pathway; R8 cell development; photoreceptor cell morphogenesis; cytoskeleton organization
HdacX	96B1-96B1	3R:2068021820681965	histone deacetylase activity	histone deacetylation
CG10899	96B1-96B1	3R:2068210520683281	carbonate dehydratase activity	one-carbon metabolic process

CG31105	96B1-96B1	3R:2068334420685475	sodium channel activity	sodium ion transport
CG13639	96B1-96B1	3R:2068562220686088	Unknown	Unknown
CG13640	96B1-96B1	3R:2068738120687884	Unknown	Unknown
CG7016	96B1-96B1	3R:2068865420689938	Unknown	Unknown
CG13641	96B1-96B1	3R:2068981620690502	Unknown	Unknown
Ela	96B1-96B1	3R:2069107320692425	Unknown	response to nicotine
CycB3	96B1-96B2	3R:2069407520696617	protein binding	cytokinesis after mitosis; regulation of chromatin binding; mitosis; mitotic spindle organization;

				syncytial blastoderm mitotic cell cycle
CG3744	96B2-96B2	3R:2069750320702366	dipeptidyl-peptidase activity	Proteolysis
CG11089	96B2-96B2	3R:2070279020707202	phosphoribosylaminoimidazole carboxamide formyltransferase activity; IMP cyclohydrolase activity	wound healing
CG31381	96B2-96B2	3R:2070279020707202	zinc ion binding; ATP binding	tRNA modification
CG31121	96B2-96B4	3R:2070718020720327	ATPase activity, coupled to transmembrane movement of substances; transporter activity	Transport
CG11069	96B4-96B4	3R:2072046620723335	ATPase activity, coupled to transmembrane movement of substances; transporter activity	Unknown
CG13643	96B4-96B5	3R:2072340720731723	chitin binding	chitin metabolic process

CG10845	96B4-96B5	3R:2072683820728770	motor activity	microtubule-based movement
CG31120	96B6-96B6	3R:2073893820743582	iron ion binding; L-ascorbic acid binding; oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors	oxidation-reduction process
tRNA:CR31382	96B6-96B6	3R:2074055620740627	AAC codon-amino acid adaptor activity	Translation
tRNA:CR31416	96B6-96B6	3R:2074078220740853	AAC codon-amino acid adaptor activity	Translation
CG11168	96B6-96B8	3R:2074386820748111	Unknown	Unknown

CG11120	96B8-96B9	3R:2074816820750882	Unknown	Unknown
Trf4-2	96B9-96B9	3R:2075093820752576	DNA-directed DNA polymerase activity	sister chromatid cohesion
CG11771	96B10-96B10	3R:2075773920760637	metalloendopeptidase activity	Proteolysis
Osbp	96B10-96B10	3R:2076059120763959	oxysterol binding	Golgi organization; sperm individualization; intracellular protein transport
Ssh	96B10-96B11	3R:2076472520770678	protein tyrosine/serine/threonine phosphatase activity	mitotic cell cycle; regulation of axonogenesis; regulation of lamellipodium assembly; compound eye development; mushroom body development; regulation of
				actin polymerization or

depolymerisation

Nmnat	96B11-96B11	3R:2077095920773122	nicotinamide-nucleotide adenylyltransferase activity	dendritic spine maintenance; photoreceptor cell maintenance
CG13646	96B11-96B11	3R:2077335420775261	amino acid transmembrane transporter activity	amino acid transmembrane transport
Tnc	96B13-96B15	3R:2081010620848589	integrin binding	wing disc morphogenesis; imaginal disc-derived male genitalia morphogenesis; imaginal disc-derived wing morphogenesis
beta4GalT7	96B16-96B16	3R:2084899520850205	xylosylprotein 4-beta- galactosyltransferase activity; galactosyltransferase activity	proteoglycan biosynthetic process
CG11781	96B16-96B16	3R:2085019320850727	Unknown	Unknown
Hr96	96B16-96B17	3R:2085096120855075	RNA polymerase II regulatory	response to starvation;

			region sequence-specific DNA	triglyceride homeostasis;
			binding	regulation of glycogen
				metabolic process; cholesterol
				homeostasis
Smg6	96B17-96B17	3R:2085514520859177	ribonuclease activity	neuromuscular synaptic
				transmission; nuclear-
				transcribed mRNA catabolic
				process, nonsense-mediated
				decay; synapse organization
CG6422	96B17-96B17	3R:2085986620864801	Unknown	Unknown
CG31115	96B17-96B17	3R:2086266620863708	S-methyl-5-thioadenosine	nucleoside metabolic process
			phosphorylase activity	
Bai	96B17-96B17	3R:2086509720866172	Unknown	maternal specification of
				dorsal/ventral axis, oocyte,
				germ-line encoded
5PtaseI	96B17-96B18	3R:2086614920870857	inositol-polyphosphate 5-	inositol phosphate

			phosphatase activity	dephosphorylation
CG11786	96B18-96B18	3R:2087204720873131	Unknown	Unknown
CG11790	96B18-96B19	3R:2087342220875177	Unknown	cell redox homeostasis
CG11791	96B19-96B19	3R:2087551420878799	Unknown	Unknown
CG31109	96B19-96B19	3R:2087919920880356	zinc ion binding	Unknown
CG31111	96B19-96B19	3R:2088079820881899	Unknown	Neurogenesis
CG34349	96B19-96B19	3R:2088281220890070	Unknown	Unknown
Veli	96B19-96B19	3R:2089014020891317	Unknown	regulation of synaptic growth at neuromuscular junction
PQBP1	96B19-96B19	3R:2089152720892440	Unknown	olfactory learning

OstStt3	96B19-96B20	3R:2089243420895372	oligosaccharyl transferase activity	protein glycosylation
CG11839	96B20-96B20	3R:2089564920896636	Unknown	Unknown
CG11836	96B20-96B20	3R:2089685320898434	serine-type endopeptidase activity	Proteolysis
CG9996	96B20-96B20	3R:2089845120900329	transferase activity, transferring glycosyl groups	Unknown
CG11920	96B20-96B20	3R:2090060420902104	Unknown	Unknown
fd96Ca	96B20-96B20	3R:2090927420910392	sequence-specific DNA binding transcription factor activity	embryo development
fd96Cb	96B20-96B21	3R:2092083120921655	sequence-specific DNA binding transcription factor	embryo development

activity

CG33096	96B21-96B21	3R:2092336420925507	hydrolase activity	Unknown
CG33095	96B21-96C1	3R:2092461020927868	Unknown	Unknown
CG34027	96C1-96C1	3R:2092939220934754	Unknown	Unknown
CG13650	96C1-96C1	3R:2093494820938238	metalloendopeptidase activity	Proteolysis
CG31108	96C1-96C1	3R:2093858720948631	tubulin-tyrosine ligase activity	cellular protein modification process
CG31510	96C1-96C1	3R:2094314720948631	zinc ion binding	Unknown
vig2	96C1-96C1	3R:2094909520951341	Unknown	heterochromatin organization; histone H3-K9 methylation; regulation of chromatin

silencing

CG42503	96C1-96C1	3R:2095135420953081	Unknown	Mo-molybdopterin cofactor biosynthetic process
Mocs2	96C1-96C1	3R:2095135420953081	Unknown	Mo-molybdopterin cofactor biosynthetic process
Clbn	96C1-96C1	3R:2095322420956877	Unknown	protein export from nucleus
Bili	96C1-96C1	3R:2095701220962431	Unknown	negative regulation of Wnt receptor signaling pathway
Danr	96C2-96C2	3R:2096379920965625	sequence-specific DNA binding transcription factor activity; protein binding	segment specification; regulation of transcription, DNA-dependent; compound eye development
Lobo	96C2-96C4	3R:2099528621019498	Unknown	sperm motility; sperm storage
Dan	96C3-96C4	3R:2101010521018528	sequence-specific DNA	segment specification;

binding transcription factorregulation of tactivity; protein bindingDNA-depender

regulation of transcription, DNA-dependent; compound eye development

Gene Name	Cytological Location	Base Position	Molecular Function	Biological Process
Apc	Location 98E5-98E6	3R:2465802224670372	beta-catenin binding	system development; biological regulation; multicellular organismal development; cellular process; cellular component organization or biogenesis; localization; regulation of Wnt receptor signaling pathway; cell proliferation; larval chitin-based cuticle development; regionalization; embryonic development via
				the syncytial blastoderm; regulation of signal transduction
Spg	98E6-98F1	3R:2467099224695340	GTP binding; GTPase binding;	central nervous system

Appendix E: Candidate genes within region 98E5-99A5

			guanyl-nucleotide exchange factor activity	development
inx3	98E6-98F1	3R:2467932824684915	gap junction channel activity	intercellular transport
CG33203	98F1-98F1	3R:2469632824714723	Unknown	Lateral inhibition
CG14529	98F1-98F1	3R:2469862724700753	metalloendopeptidase activity	Proteolysis
CG14528	98F1-98F1	3R:2470134524703529	metalloendopeptidase activity	Proteolysis
CG14523	98F1-98F1	3R:2470374624705963	metalloendopeptidase activity	Proteolysis
CG14527	98F1-98F1	3R:2470652524708627	metalloendopeptidase activity	Proteolysis
CG14526	98F1-98F1	3R:2470941524711737	metalloendopeptidase activity	Proteolysis

Doa	98F1-98F2	3R:2471379924748494	protein serine/threonine kinase	biological regulation:
200	, or 1 , or 2		activity: protein kinase activity	programmed cell death:
			activity, protein kinase activity	
				sensory organ development;
				system development;
				response to stimulus;
				multicellular organism
				reproduction; macromolecule
				modification; cellular
				component organization or
				biogenesis; sex
				differentiation; localization;
				neuromuscular process;
				embryonic pattern
				specification; gland
				morphogenesis; locomotory
				behavior; compound eye
				photoreceptor development
CG11828	98F2-98F2	3R:2474876624750808	procollagen-proline 4-	peptidyl-proline
			dioxygenase activity	hydroxylation to 4-hydroxy-

				L-proline
CG14521	98F2-98F4	3R:2475071724796076	Unknown	Unknown
CG1443	98F5-98F5	3R:2481869924846128	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor; nucleotide binding	oxidation-reduction process
mir-4947	98F5-98F5	3R:2483447524834574	Unknown	Unknown
CG14518	98F5-98F5	3R:2485069324851881	Unknown	Unknown
eIF4E-6	98F5-98F5	3R:2485216124852896	RNA 7-methylguanosine cap binding	negative regulation of translation
CG1951	98F5-98F5	3R:2485296924856660	protein kinase activity	protein phosphorylation
Ssl2	98F5-98F5	3R:2485658024858255	strictosidine synthase activity	biosynthetic process

beta4GalNAcTB	98F5-98F5	3R:2485838224859730	N-acetyl-beta-glucosaminyl-	N-acetylglucosamine
			glycoprotein 4-beta-N-	metabolic process; glycolipid
			acetylgalactosaminyltransferase	biosynthetic process
			activity;	
			acetylgalactosaminyltransferase	
			activity	
Cpsf100	98F5-98F5	3R:2486032524862784	mRNA 3'-UTR binding	mRNA polyadenylation;
			-	histone mRNA 3'-end
				processing; neurogenesis
Slu7	98F5-98F6	3R:2486278024864788	zinc ion binding; nucleic acid	mitotic spindle organization
			binding	
Pkc98E	98F6-98F6	3R:2486489624872756	protein kinase C activity;	Golgi organization; response
			diacylglycerol binding	to ethanol; negative regulation
				of cell proliferation; lipid
				particle organization
CG11837	98F6-98F6	3R:2487521724876443	rRNA (adenine-N6,N6-)-	Neurogenesis

dimethyltransferase activity

CG11841	98F6-98F6	3R:2487677824877989	serine-type endopeptidase activity	Proteolysis
CG11842	98F6-98F6	3R:2487840224879635	serine-type endopeptidase activity	Proteolysis
CG11843	98F6-98F6	3R:2488024424881559	serine-type endopeptidase activity	Proteolysis
Sirt7	98F6-98F6	3R:2488165424884926	zinc ion binding; NAD+ binding	protein deacetylation
Cul-5	98F6-98F6	3R:2488499224888881	ubiquitin protein ligase binding	sensory organ precursor cell fate determination; growth of a germarium-derived egg chamber; neuromuscular junction development; negative regulation of cell proliferation; germarium- derived egg chamber

formation; regulation of synaptic growth at neuromuscular junction

CG11873	98F6-98F10	3R:2488876224934670	Unknown	Unknown
CG11874	98F10- 98F10	3R:2493477524938542	mannosyl-oligosaccharide 1,2- alpha-mannosidase activity	Unknown
CG11876	98F10- 98F10	3R:2493879324941919	pyruvate dehydrogenase (acetyl- transferring) activity	cytoplasmic microtubule organization
CG11877	98F10- 98F10	3R:2494211324944112	Unknown	positive regulation of autophagy
yemalpha	98F10- 98F10	3R:2494405224948601	DNA binding	female meiosis
CG11880	98F10- 98F12	3R:2494910424953972	Unknown	Unknown
dgt6	98F12-	3R:2495430624956651	Unknown	regulation of mitosis; mitotic

	98F12			spindle organization
Vha100-1	98F12- 98F12	3R:2495677224963702	calmodulin binding	intracellular pH reduction
CG14512	98F12- 98F12	3R:2496369224964295	carbohydrate binding; transferase activity, transferring hexosyl groups	lipid glycosylation
CG14516	98F12- 98F12	3R:2496438824971515	aminopeptidase activity	Proteolysis
CG14511	98F12- 98F12	3R:2497140024972615	UDP-N-acetylglucosamine transmembrane transporter activity	transmembrane transport
CG11882	98F12- 98F12	3R:2497273824973894	Unknown	Unknown
Pglym78	98F12- 98F13	3R:2497397024975623	phosphoglycerate mutase activity	Glycolysis
ligatin	98F13-	3R:2497561824977512	translation initiation factor	translational initiation

	98F13		activity	
Slbp	98F13- 98F13	3R:2497779324978969	mRNA binding; RNA stem-loop binding	histone mRNA metabolic process; histone mRNA 3'- end processing; cell cycle
Rpn2	98F13- 98F13	3R:2497918524982981	endopeptidase activity	response to DNA damage stimulus; proteolysis
CG11897	98F13- 98F13	3R:2498384724990694	xenobiotic-transporting ATPase activity; drug transmembrane transporter activity	transmembrane transport
CG11898	98F13- 98F13	3R:2499151524996871	xenobiotic-transporting ATPase activity; drug transmembrane transporter activity	transmembrane transport
CG14509	98F13- 99A1	3R:2499898625020716	Unknown	olfactory behavior
CG14515	99A1-99A1	3R:2502330525024933	Unknown	Unknown

CG11899	99A1-99A1	3R:2502617425027492	O-phospho-L-serine:2-	pyridoxine biosynthetic
			oxoglutarate aminotransferase	process; L-serine biosynthetic
			activity	process
Mesh1	99A1-99A1	3R:2502747825028247	guanosine-3',5'-bis(diphosphate)	response to starvation;
			3'-diphosphatase activity	guanosine tetraphosphate
				catabolic process
CG14508	99A1-99A1	3R:2502838725029855	electron transporter, transferring	mitochondrial electron
			electrons within CoQH2-	transport, ubiquinol to
			cytochrome c reductase complex	cytochrome c; oxidative
			activity	phosphorylation
CR31044	99A1-99A1	3R:2504028425045389	Unknown	Unknown
mir-279	99A1-99A1	3R:2504130725041406	Unknown	startle response; brain
				morphogenesis; wing disc
				dorsal/ventral pattern
				formation; locomotion
				involved in locomotory

				behavior
mir-996	99A1-99A1	3R:2504290625043002	Unknown	Unknown
Ef1gamma	99A1-99A1	3R:2504588825047831	translation elongation factor activity	autophagic cell death; salivary gland cell autophagic cell death
CG1458	99A1-99A1	3R:2504793925049149	2 iron, 2 sulfur cluster binding	Unknown
Brd8	99A1-99A1	3R:2504921325051998	Unknown	negative regulation of gene expression
CG14507	99A1-99A1	3R:2505192625053447	phospholipase A2 activity	lipid catabolic process; phospholipid metabolic process
CG15817	99A1-99A1	3R:2505488325061024	ubiquitin thiolesterase activity	ubiquitin-dependent protein catabolic process
CG11951	99A1-99A1	3R:2506103925064426	aminopeptidase activity	proteolysis

CG31427	99A1-99A1	3R:2506455225066085	metallopeptidase activity; zinc ion binding	proteolysis
CG31445	99A1-99A4	3R:2506630225070549	aminopeptidase activity	proteolysis
SP1029	99A4-99A5	3R:2507068025076167	aminopeptidase activity	lateral inhibition

Curriculum Vitae

Name:	Jessica Pardy
Post-secondary Education and Degrees:	The University of Western Ontario London, Ontario, Canada 2010-Present M.Sc.
	The University of Western Ontario London, Ontario, Canada 2006-2010 B.Sc.
Honours and Awards:	TA Award Nomination 2011
	Dean's Honor List 2010
	Western Award of Distinction 2006
Related Work Experience:	Teaching Assistant The University of Western Ontario 2010-2012
Presentations:	Evolution 2012, 1 st Joint Congress on Evolutionary Biology Ottawa, ON 2012
	Biology Graduate Research Forum The University of Western Ontario 2011
	Western Biology Day The University of Western Ontario 2010
	Ontario Biology Day York University 2010