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Integrins and their associated proteins
are essential components of the cel-

lular machinery that modulates adhesion
and migration. In particular, integrin-
linked kinase (ILK), which binds to
the cytoplasmic tail of β1 integrins, is
required for migration in a variety of
cell types. We previously identified
engulfment and motility 2 (ELMO2) as
an ILK-binding protein in epidermal
keratinocytes. Recently, we investigated
the biological role of the ILK/ELMO2
complexes, and found that they exist in
the cytoplasm. ILK/ELMO2 species are
recruited by active RhoG to the plasma
membrane, where they induce Rac1
activation and formation of lamellipodia
at the leading edge of migrating cells. A
large number of growth factors and
cytokines induce keratinocyte migration.
However, we found that formation of
RhoG/ELMO2/ILK complexes occurs
selectively upon stimulation by epidermal
growth factor, but not by transforming
growth factor-β1 or keratinocyte growth
factor. Herein we discuss the relevance of
these complexes to our understanding of
the molecular mechanisms involved in
cell migration, as well as their potential
functions in morphogenesis and tissue
regeneration following injury.

Introduction

Cell migration is a key element in nearly
every biological process (for a review, see
ref. 1). Unicellular organisms use it to find
optimal growth and/or survival environ-
ments. In multicellular organisms, cell

migration is necessary from the earliest
embryonic stages and throughout organo-
genesis, as cell progenitors must move to
appropriate regions to give rise to all
tissues in the body. During postnatal life,
cell migration becomes very important
in homeostatic processes, such as tissue
repair and inflammation. Migration
mechanisms can also be co-opted and
abnormally regulated during the develop-
ment of multiple and widely diverse
pathological conditions, including chronic
autoinflammatory disorders, such as
asthma and psoriasis, atherosclerosis and
vascular disease, as well as carcinoma
invasion and metastasis.

Forward cell movement occurs as a
series of distinct and coordinated stages.2

First, the cell establishes front-rear pola-
rity based on directional cues from its
surrounding environment. Polarization
involves remodeling of the cytoskeleton
and formation of focal adhesions to
generate a leading edge. The cell protru-
sions at the leading edge form as a result
of local actin polymerization. Associated
with cell extensions, focal adhesions
assemble to mediate membrane attach-
ment to the extracellular substratum, pro-
viding traction. Finally, adhesions are
disassembled at the rear of the cell, which
retracts allowing translocation of the cell
body. Myriad proteins modulate direc-
tional migration, and central among them
are chemotactic growth factors, integrins
and their associated signaling factors, as
well as the Rho family of GTPases.3-5 How
all these factors work coordinately to
regulate cell motion and adhesion remains
a fundamental question in cell biology.
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ILK/EGF Crosstalk in Acquisition
of Cell Polarity and Migration

Persistent cell migration requires recruit-
ment and activation of Rho GTPases
to regions adjacent to the plasma mem-
brane, to induce formation of stable
lamellipodia and to maintain the orienta-
tion of the leading edge.2 Recently, a
signaling module linking epidermal
growth factor receptor (EGFR) stimu-
lation with translocation and activation
of RhoG to lamellipodia was identified in
migrating keratinocytes.6,7 In response
to a migratory stimulus, active RhoG in
turn recruits cytoplasmic species contain-
ing engulfment and cell motility-2
(ELMO2) and integrin-linked kinase
(ILK; Fig. 1). In this novel complex,
ELMO2 serves as a bridge that links active
RhoG with ILK, and the latter is essential
for activation of Rac1 upon epidermal
growth factor (EGF) stimulation. Further,
the RhoG/ELMO2/ILK complex is
involved in Rac1-dependent lamellipodia
formation in response to EGF, and
consequent development of front-rear
polarity and cell migration. It is signifi-
cant that ILK itself does not show
polarized cellular distribution, as it can
be found both at the front and at the
rear of migrating cells. However, the
plasma membrane regions that show co-
localization of ILK and ELMO2 concen-
trate at the lamellipodia on the leading
edge (Figs. 1 and 2), emphasizing the
concept that polarized distribution of
heteromeric complexes, and not neces-
sarily of single proteins, is important for
forward cell movement.

Coordinated responses to growth
factors and the extracellular matrix
(ECM), mediated by receptors and
integrins, respectively, are essential for
cell proliferation and migration.8 Not
surprisingly, EGF-induced keratinocyte
polarization and directional migration
also require expression of β1 integrins.7

It will be important to determine the
contribution of β1 integrins to optimal
EGFR clustering for signaling and
activation of Rho GTPases, relative
to their role in the formation of focal
contacts to generate traction forces
necessary for lamellipodia formation and
migration.

Growth factor stimulation in mesenchy-
mal and epithelial cells also induces
formation of dorsal ruffles.9 These actin-
based transient structures can form at the
leading edge of a cell, and facilitate the
generation of lamellipodia in preparation
for forward movement. Significantly, treat-
ment of kidney fibroblast cell lines with
EGF induces formation of dorsal ruffles
through mechanisms that involve stimu-
lation of a5β1 integrin and require
expression of ILK.10 ILK does not localize
to dorsal ruffles. Rather, it is involved in
recruitment to and activation of the Src
tyrosine kinase at focal adhesions, which
occurs upon joint stimulation of EGFR
and a5β1 integrins. This signaling path-
way regulated by ILK contrasts with its
modulation of EGF-induced lamellipodia
formation in keratinocytes, as the ILK/
ELMO2 species involved in the latter
appear to be excluded from paxillin-
containing focal adhesions (Fig. 2).

Role of EGF Signaling
through Eph Receptors, RhoG
and ELMO2 in Cell Migration

Ephrins are membrane-bound proteins
that elicit biological responses in a para-
crine manner, by activating cognate
receptors on adjacent cells.11 There are
two subfamilies of Eph receptor tyrosine
kinases, which can be distinguished by
their relative ability to preferentially bind
ephrin-A or -B. Ephrin/Eph receptor
pathways play important roles in develop-
ment, cell survival and migration. In
particular, the Eph receptor EphA2 can
function as a downstream effector of
EGF receptor stimulation independently
of ephrin ligands. In this context, EGF
induces binding of EphA2 to Ephexin 4,
which then recruits and activates RhoG
at the cell membrane.12 Active RhoG then
binds to ELMO2 and Dock 4, which
locally activate Rac1 to promote formation
of lamellipodia and subsequent migration
and invasion in mammary epithelial
carcinoma cells. Similarly, EphA2 can also
bind to Ephexin 4 to activate RhoG in
HeLa cells.13 It will be important to
determine whether Ephexin 4 is also an
upstream activator of the RhoG/ELMO2/
ILK complex formed in response to EGF
in epidermal keratinocytes.

Rho GTPases and ILK
in the Modulation

of Adhesion Turnover

Continuous cycles of formation and
disassembly of cell-ECM contacts allow
forward cell movement. Central to the
regulation of adhesion assembly are Rho
GTPases, which themselves are modulated
through signals generated at adhesion
sites. The networks involved in these
processes couple responses to integrin
stimulation with those due to activation
of receptor tyrosine kinases. Several focal
adhesion proteins function upstream of
Rho GTPases to regulate adhesion turn-
over. For example, ILK, as well as focal
adhesion kinase working in conjunction
with Src, are necessary to limit RhoA
and promote Rac1 activities. This results
in reduced Rho-mediated stabilization
of adhesions, while increasing Rac1-
dependent adhesion turnover and cell
motility.14-16 To what extent these two
pathways are redundant or complementary
remains to be established. However, the
fact that, at least in some circumstances,
ILK modulates Src activation at focal
adhesion sites, in addition to the other
mechanisms whereby it activates Rac1,
places ILK as a key hub for Rho GTPase
regulation.

Adhesion turnover, regulation of Rho
GTPases and persistent cell migration
are also influenced by endocytic-exocytic
transport of integrins, and RhoG appears
to play important roles in both Rac1
activation and integrin trafficking (for
a review, see ref. 17). Specifically, RhoG
has been associated with activation of
Rac1 via association with ELMO/Dock
or ELMO2/ILK species, regulating cell
polarity and motility.6,7,18 RhoG was also
recently found to form complexes with
and promote endocytosis of β1 integrins
upon cell stimulation by ECM sub-
strates.19 Significantly, RhoG-null fibro-
blasts and keratinocytes exhibit impaired
migration. Given that ILK also binds to β1
integrins,20 the investigation of potential
additional links between RhoG, ELMO2
and ILK in integrin endocytosis will
help resolve the key question of how
interdependence of integrin stimulation,
GTPase activation and receptor trafficking
regulates cell adhesion and migration.
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ILK Regulation of Keratinocyte
Motility In Vivo

The mechanisms of RhoG- and ILK-
dependent cell motion described thus far
are directly relevant to directional move-
ment in two dimensions, as the latter is
generally characterized by lamellipodial
protrusion coupled with myosin-driven
retraction at the rear of the cell, and
assembly/disassembly of cell adhesions.

However, when cells move through 3D
matrices in vivo, they face a substantially
distinct environment, and therefore behave
differently. For example, instead of using
lamellipodia, they form larger, rounder
pseudopods and blebs to squeeze through
extracellular matrix fibers (for a review,
see ref. 21). Significantly, ILK can also
modulate 3D cell adhesion and movements
within various tissues, as illustrated below
for the epidermis and epidermal appendages.

During embryogenesis, ectodermal cells
mature to give rise to the stratified
epidermis, and to epidermal appendages,
such as the hair follicles.22,23 Hair follicles
begin to form as epithelial cell placodes,
which then grow and invaginate into
the dermis. Inactivation of ILK in the
embryonic epidermis does not impair
placode formation. However, it results in
substantial alterations in the capacity of
keratinocytes in the developing follicle

Figure 1. Recruitment of RhoG, ELMO2 and ILK to leading edges of migrating cells in response to EGF. Cultured epidermal keratinocytes were transiently
transfected with a vector encoding GFP-tagged ELMO2, and treated with EGF. The migrating cell shown was visualized by time-lapse videomicroscopy,
and exhibits localization of ELMO2 to the lamellipodium that defines the leading edge. In addition to ELMO2, RhoG and ILK interact and localize to
the cell front in response to EGF, as depicted in the cartoon. This complex is necessary for normal Rac1 activation and forward movement. Whether Rac1
is directly activated by Dock proteins, or by other guanine exchange factors in association with the RhoG-ELMO2-ILK complex remains to be determined.
Bar, 20 mm.
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to invaginate and move into the under-
lying mesenchyme.24,25 As a result,
ILK-deficient epidermis exhibits severely
impaired hair follicle morphogenesis.

After birth, hair follicles undergo con-
tinuous cycles consisting on sequential
regression, resting and growth phases. In
the growth phase, the hair follicle regener-
ates and extends into the dermis, in a
process similar, but not identical, to that
observed in the embryo. This process
requires that hair follicle stem cells,
localized to a permanent part of this
appendage termed the bulge, migrate out
and produce progeny that invaginates into
the dermis. Notably, and in stark contrast
with its role during embryonic hair follicle
morphogenesis, ILK is not required for
migration of postnatal hair follicle stem

cells out of their niche, or for invagination
of their progeny,26 suggesting that distinct
and/or redundant mechanisms for kerati-
nocyte movement into the dermis may be
in place after birth.

A different scenario is observed during
wound healing. Following epidermal
injury, keratinocytes in the epidermis and
hair follicles adjacent to the wound edges
are activated to divide and migrate to cover
the denuded area.27 These cells acquire an
elongated morphology and form protru-
sions. When ILK-deficient hair follicle
stem cells are activated following cuta-
neous injury, their descendants are able to
leave the bulge and move up the hair
follicle toward the epidermis, but very
few continue and migrate over the
denuded area. The lower contribution of

hair follicle stem cell descendants to the
newly formed epithelium is associated with
significantly impaired wound repair.26

Notably, EGF receptors are upregulated
in keratinocytes at the leading edge of
the healing wound border, and their
stimulation promotes cell migration dur-
ing re-epithelialization.28 Further, RhoG-
null epidermis exhibits important delays
in wound repair, associated with reduced
migratory capacity of keratinocytes.19

Given the coupling of EGFR stimulation
with RhoG activation and recruitment of
ILK/ELMO2 species to induce migration,
it is likely that these same complexes play
key roles in keratinocyte forward move-
ments during epidermal regeneration
after injury.

Conclusion and Perspectives

A large number of proteins that interact
with ILK have been identified, increasing
the realization that ILK serves as a scaffold
that mediates multiple, diverse cell func-
tions. In particular, through its association
with ELMO2, ILK plays key roles in the
regulation of Rho GTPases and cross-talk
pathways between adhesion and growth
factor receptors. In the context of tissue
repair, EGF plays important roles for
re-epithelialization.29 Thus, regulation of
the EGF/RhoG/ELMO2/ILK module
may find important applications in
therapies aimed at improving impaired
wound healing.
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