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“'of the N- level quantum system pbus éxternal rield(s) o
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X The time= dependent Schro%dinger : equation 'describiné the -
‘interaction of &an .N-level atomic.or molecular quantum system with a.
classical oscl!lating field of arbitrary amplitude, fre uency and
pHase,, is solved exactly within the di{pole approximation. ',he forma1°
method of solution exploits fully the time periodicity of ! he ‘total
Hamiltonian and although tW:;m thod is developed withL~?e osﬁilli' "
rield probleu;in mind the f al rasults are equally appl“ le to
. any general periodic Hamiltonian - A matrix’ ‘prcjec.ion technique‘

‘allous the general solution " matrix: to be constructed ' without - :.ﬁ
.specification of any initial conditions thd solution fqr avspecified | '
set of initial conditions being géﬁeratbd fromtthis by a. simple~matrix

multiplication. : Finally,‘ . the general solution matrix can. be
transYormed to Floquet 4. form by “‘,x‘ stnaightforuard "matrix .
dlagonalization and tho solution in Floquet representation allows

for the . accurate evaluation of phase and/or time aueraged ppoperties .

The method of solution is Illustrated by ewalu:ting induced .
transition probabilities and their phage and/or time averages for a ‘
twd level system and a number of model multilevel sysuems In these o L8
calcuiations the importance of the phase 5 of the applied sinueeidal' v
'_field at strong couplings 1is readil¥ apparent . & direct eoindidence "
between the characteristic exponents of the Floquet solution and the
'energies derived ‘from a afully quantized treatment is explicitly
demonstrated for a‘ two level system and the usefulness of the-
characteristic exponents, in general for mapping out - complicated
‘spectra and evahqpting resonance Jrequency shifts is also' _.';
" demonstrated. . Static Stark and- Zeeman fields which can both mix and R
tune the levels have also beon Pncluded in this study. and require no
modification of the: formalism
’ pose no particular problem ‘and the- effects of nonresonant interactions_
| with neighbouring states on the esor

eganeraeiea.aithin multilevel Systems

e frequency shifts have been 3 ‘
formalism aiso leads to a |
clarification pf some apparent iscrepancies tween ,resulta in the -
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_présented .and represent an . improvement on
" approximate rotating field'resufts,‘
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_'Finally, ‘exact’rotating field solutions for threé -level quantum
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CHAPTER 1

INTRODUCTION

' The purpose of. this work 1is to derive an exact reaZonably
economic soiution ‘for . the time dependent Schroediuger wave equation

that is capable of describing, within a well, defined mu}tipolar

- approximation, &#he behaviour of an N-level atomic or molecul system

interacting with an- ‘arbitrarily strong. sinusoidal time ependent

field. Recent advances 'in laser technology have provided widely

‘tunable intense monochromatic radiation sources [1,2,3], now available

over a wide range of frequencies,,whieh are capable of being used to

elucidate fully the level structures of complex atomic or molecular

systems.  Such radiation sources have been - available in the

radiofrequency and microwave regions for many years [%,5,6,7,8] and
have proyided accurate measﬁrements of the important constants in
hyperfine and fine Structure level configurationss  Radiofrequency
sources, in particular, have been used .extensively to study the many
noilineér interabtions occurring in hyperfine configurations [4,5,6,7]
and such interactions are becoming inereasingly important in microwave
and optical spectroscopy [8 9,10, 11] where they can provide accurate
measurements ' of transition dipole -oments, level separations,

resonance frequency shifts and resonance widths at "half maximum"

Nonlinear interactions become increasingly important when the
energy provided by the sinusoidal applied field becomes comparable to,
or greater thap, the energy difference between the pair of states

involved in a particular transition. The developement of a
satisfactory theoretical analysis of the linear and nonfinea}

interaetions occurring 1in this energy regime, particularly when more
~ than two levels are involved, remains an important problém [11,12,13].



Strong interactions in 5 two level system have been discussed

. extensively, particularly in recent years, qj“ ‘many- authors
[13,14,15,16,17,18]. The most elegant original treatment of these
interactions hés been given by Autler .and Townes [14] and Shirley
[13],- who' also . discuss the limitations of their solutions to the
problem when the interactions become Ve;y étrong. fhe theory of
linear differential equations with periodic coefficients has been used
by these authors to express the solution of the time dependent
Schroedinger equation, for a two 1level system interacting with an
applied sinusoidal field, in Floquet form [19]. .This form of the
solution, wherr fully exploited, allows for an efficient computation of
the induced absorption spectrum for this system, see Chapters 4 and 5,

and involves the c¢haracteristic exponents which chﬁETHe precisely
with fhe energies of the atom-nadiation field, see Chapter &,

Shirley, in particular, has shown how plots ‘of these characteristic
exponents can be used tp'predict resonance peak positions and widths
- at "half maximum®" for: the ﬁﬁo level Zeeman' tuning experiment. To date
discussions of the usefulness of the characteristic exponents has been
essentially limited to Zeeyan tun;pé of two levels where the frequency
of the applied field is held fixed. Autler and Townes [[4] have
discussed the frequency dependencé of these two level characteristic
exponents, but their final results are complicated and not in a form
particulérly- suited to the analysiévof resonance frequency shifts and
widths. The only diécussion of the behavigyr of the . characteristic
exponents for an N-level nondegenerate system appears to be that of
- Besset, Horowitz, Messiah' and Winter [20], . who work within the
.rotating field approximation. One of the majop concerns of this
thésis will be to examine the detailed benaviour of the characteristic
exponents for arbitrarily strong couplings between a sinusoidal
.applied field and a N-level system of arbitr;ry level ’configura%ion.
The usefulness of plots of the chéracteristic exponents for mapping
out complicated spectra’willlbe demonstrated explicitly for a ‘?ariety
of two .and three level systems. Some confusion which has arisen in
the literature recently regarding such plots will be cleared up {21].
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The present work fully exploits the known f3rm of the total wave

time dependent field of ar-bitra?"; amplitude§ . frequeney N and phas

b , with 'a N-level system of arbitrary level’ configuration. A
systematic means of constructing qy(fﬁg , to any degree of accuracy,
which 1is valid over arbitrarily 1long times, will be explicitly
developed in what tSllows. A form of \/(r,t) , more suitable to the
evaluathdn of the time and/or phase~avéragé properties of the systenm,
can be as¥ertained from the Floque&'theory [22] and these imp£::ant
a;erage k sical properties can be extracted in a straightforward
manner. The importi2£ need for averaging these properties over the
phase of the applied sinusoidal field, which has not rece%ved due

consideration by many authors Yecently [16,18,21,23;2Hj, will also be

explicitly -demonstrated. Fipally, in order to illustrate the general
applicability of the %ormal method of solution, induced " transition
probabilities and their varijous averages over phase and time will be
- calculated explicitly for various two 1e§el and a number of multilevel

systems interacting with a single applied sinusoidal fielh.

. The general time dependent Schroedinger equation, and some of the
conventional methods developed tb.solve it approximately, are brieffy
reviewed in Chapter 2. The problem is reformulate& as an infinite set
of coupled differential_ equations for the complex amplitudés of the
individual stationary. states within the N-level system by employihg
the Dirac expansion of the total wavefunctioen [25,26], seeVSections
~ 2.1-2.2, and finally in Sections 2.3 and 2.4 the two most commonly
employed approximate methods of solving these differential equationsa
are briefly reviewed. In Section 2.3 time dependent perturbation
theory. and the many problems encountered in its applicati®n to
problems involving relatively strong oscillating field amplitudes or
reasonably large times are briefly outlined. The fobating field
approximation, which is eséentialiy a resonance approximation, is
discussed in ‘éection Z.M. The formulae derived within these
approximations are very useful both as an interpretive guide ahd in
providing conceptual insight 1into the pature of the exact solutions
for broblems Wwhere such'approximations fail.

“

function q/u‘,t) ’ which describes - the interaction of a sinusoida%(j
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An eiact methodl'of ‘soluﬁion' for the coupled differential

equations describing the intebactiqn of a general N-level system with

a sinuseidal’ f‘i;d of arbitrary amplitude , frequency and phase,. is

developed - formad@ly in Chapter 3; The generél”prdblem formulated in

matrix notation for complete generality in_, Section 3.1, leads

-

naturally tc a representation of the final physical properties of the

) N- level system in terms of the density matrix. An a@ccurate matching

power series. method [27,28] of solution for the coupled. differential
equations, a‘s{ a function of time for fixed b , £ and ~ is presented
in Section 3.2 and the time periodicity of the coefficients in these

differential equations, coupled w1th a stralghtforward matrix- -

projection 'technique, leads to a hlghly accurate and efficient
iterative method {28] of solution valid for erbitrarily'long time, see
Sections 3.3 and 3.4. For complete generality, the iterative solution
is transformed -to Floquet form in Section 3.5 .which allows for the
straightforward evaluation of. the ,phase and time averaged properties
of the general N-level system, see Section 3.6. Finally, in Section

3.7, specific formulae are presented for both the phase and phase/time

averaged induced transition probabilities for the ‘interacplon 6f a”

sinusoidal field with a general N-level syste. Chapters 4 and 5 are

Adireetly concerned with the specific aqg}ications- of the general

formalism, presented in Chapter 3, to the evaluation of the induced

transition probabilities for a variety of, level eonfiguraiions ;

1nteracting strongly with a sinusoiqel field. ., .

‘Chapter~ 4 1is concerned specifically with ~ the important™

{13,14,15,16,17,18] two le#el system. The exact method of solution
for this system, within the context of the formal methods of = Sections
3.1=3.4, 1is briefly revieqed in Section u.1. The induced transition

probabilities anq their various time and phase averages are digcusged

——————— e ——— ---4-;-- -

- -
b -~

- In this work dipole (electriel and ,ﬁagnetic) interactions are

‘coni}dered specifically, although'higher multipole interactions could

be inqluded without a drastic modification of -the geneqal formalism.
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in Section y.2. * The power of the iterative - solution developed in

Sections %.3 aﬁéfé.u is illustrated, using the two level systém_as’a
model, in Section 4.2.1 where the phase dependent induced transition
probability is computed accurately over large times [#8). The various
nonlinear induced tran51tions ar131ng from the strong coupling of a
two level™ degenerate or nondegenerate system to the osc111ating field
are discussed in the context of "the induced phase “and phase/time
averaged transition probabilities [22] both as a function of the
frequency ) of the applied- field, . see Section- 4y,2.2, and as a
function of static Sterk (or magnetig) fields which.can both mik.and
tune the levels, see Sections 4.2.3 and 4.3. The <'détailed behaviour
of the characteristic exponents ‘derived from the Floquet solution
discussed in Section 3.5, whigh provides a "quantitative measure of

both resonange frequency shifts and widths at half-maximum, is
© - J ’

The strong interaction between a sinu301da1 field and a numbef ‘of

discussed in Section N.R.

multilevel systems " treated in Chapter 5. Transitions in a three

level system from a nondegenerate grauhd state to an excited

degenerate pair of states, of mutually opposite panities, is discussed

in Se&tionislﬁ in the context of the phase and phase/time averaged
transition prob bilities." Explicit results for these transition

prpbabilities a 'function of frequency and field strength are

presented in Seetion 5.1.1 while the effect of mixing and splitting of

thefexc1ted de eneraté pdir of states by a- static Stark field is
consldered -in \Section 5.1.2. The effect of a similar static Stark
ﬁ?ield on the frequency spectrum of a three level system contaihing an
exclted nondegenerate state lying close to another é;cited state of

opposite ‘parity is discussed in Section 5 2 The three level

- nondegenerate ' configuration recently analysed by Vasilenko, Chebotaev

and Shishaev [29], wusing second order perturbation theory, and
'suggested by these authors as a model for Doppler free two photon

optical spectrosoopy with low intensity lasers, is analysed in Section.r'

5. 3 for strong#applied fiedd strengths This level configuration is

such ‘that strong overlap can occur between neighbouring single photon

_and two photon resonance profiles for large field intensities and- the

»
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imbortance of such interference effeéts 1s specifically studied in
this~ section. The power of the'characteristiqﬂexponent plots for
mapping out cémplicated spectra 1is explicitly +wdisplayed for; these
levelfconfigurations . Finally, the importance\gf neighbouring states
on thé: frequency shifts .of' a two photon resonance profile is
quantitatively investigated; or two multilevel configurations in

Section 5.4. g .

Appendix A q:iefly summaﬁizes the various numerical methods
employed in the main text andtgonta;ns a diséussion of their accuracy.
. Iﬁ Section A.1 the accuracy and convergence of the matéhing power
series method for the solution of the time dependent Schrdedinger
equation  is briefly discdgsed while Section A.2 explicitly
demonstrates a symmetry relation which is employed in expediting the
ma£chipg power series solution; Section A.3 summarizes the numerical
quadratures employed to evaluate the inte;réls which proviae both the
“phasetgnd time averages of the induced transition probabilities. This
section also contains a brief discussion of the use of the fourth
order Runge Kutta [30) method employed to numerically integrate the
time dependent Schroedinger equation and hence provide a numerical

eheck oﬁ both ‘the matching power series .and' the 1terative rmethods

 discussed in Chapter 3. A recent erroneous calculation (31] of .

induced transition probabilities in a three 1level system with two

appliea .fields 1is contrasted with.,én exacpk'evaluation of these

quantities by using the Runge. Kutta method to integrate the time -

dependent Schroedinger equation.

The rotating fielg approximation,qdiscussed explicitly in Chapter
2 for a tgg level'gystem, is extended in Appendix B to thé study of
some three lewel systems ;nberacting resonantly with two oscillating
fields by using a Laplace transform ;ecnﬁique‘discusséd by Freed [32]%0

Exact expr%ﬁsions, within this approxipaﬁion, for transition rates and

absorbed and emitted power are- derived for specific'.level
'configurations and represent an improvement on pre#iously derived

approximate exprggs;dnsl[33,3$] which are valid as long as one of the :

applied fields is very weak.‘ In particular, these exact expressions

-1
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can be useq to study both the time evolution of' frequency spectra and
[ ] _ the behaviour of suth spectra when both fields are comparable in

magniﬁude;

>

Atomic units will be used throughout this - thesi‘ [354 and the

relevant units and their appropriate <¢onversion factors are listed

below. - : - °
- : Atomic Unit : Value in S.I. units

Mass i ¢ e * mg 9.1095 x 10~ %! kg
Charge ‘ e . 1.6022 x 107}'° ¢
Angular Momeritum ' - A 1.0546 x 1073* J see

) Length ao(hzmgle'2) 5.2918 x 10-!! m
Time h’laéme(h(hartree)‘l) 2.4189 x 1071!7 sec
Energy -, ' ;bzagzmgl(hartree) 4.3598 x 10-*8 g
H~$Bohr Magneton) " ., eh/2m, 9.2740 x 10-2% g 77} - >
M (Electric Dipole Moment) ' ea, 8.u784 x 1073 C'm

l 8 (Magnetic Induction) . pe—la=? 2.3505 x 10° T

g . o

€ (Electric Field Amplitude) ea;2 5.1L23 x 10'! v n~!

. . Frequency mee“h'3((hartree)/h) L.1341 x 10-1% gec~! .

) . . . . . “ ; o

* 1 tesla (T) = 10" gauss. £oe

« .
- N N - ’

Note: The Vvariable I occurring throughout this thesis can refer to

-
one or more spatial co-ordinates.

o

- ° % - .
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CHAPTER 2

GENERAL REVIEW OF THE TH}EORY'

2.1_ TIME DEPENDENT SCHROEDINGER, EQUATION

-

. The effects of the interactions, \/u‘\:\ -between any atomic or
molecular system and an external perturbation, are described by the
time dependent Schroedinger equation[26,36].

Hire) Wirny = 1% Wi,y ' .

. 2.1
where the total Hamiltonian W(fr) is composed of two parts .

»

M) =Vemy + Virgy | . 2141
and P(e,x) is the exact time Wﬂt wavefunction for the problem

.def‘ined\ by H(r,ty In the absence of the time dependent perturbation

I

V(f.l’.) the partlal differential equatlon 2. 1 13 under the action of
the st.at.lonar'y Hamiltonian Ho(r) y is separ'able and ylelds the “more,
familiar time independent Schroedinger quuatlon T

Heor i) = E oy - | 213
where Qu-\ ’ the stationar-y state solution and E its eigenenergy are
obtained by solving the tlme independent wave equation 2.1.3. In what
follows the soluuon to the stationary stat%e problem, described by
equation 2.1. 3, is assumed to be known and the¢ problem at hand will be
to solve the more general partial differential equation . &iven by
equations 2.1.1 and 2.1.2% In parjticdlar'., the system deeeribed by

I
‘equation 2.1.3 will have a complete spectrum of solutions with each

state of the system satisfying

'y o, )

.H.m¢>m E b e e A

. where the wavef‘unctions 4)\(') describe a complete set. of orthonormal

basis functions with E their corresponding energy eigenvalues. The
general solution to the unperturbed problem defined by

3

. .
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can be written as an exbansion‘ in terms of 'this complete set of
unperturbed eigenfunctions qi(ﬁ) and their corresponding eigenvalues .
E: as follows -

. . | :
Wiy -;f_ by ngm expl-tEnt] o 2\0b

where the constants bk are 1ndependent of tlme and of the spatial
. ]
¢o~-ordinates ¢ : The subserlpts 'h" contain the complete set of

quantum numbers necessary to describe a partibular stétioqg(y state -

‘tkér) H for éxample, in an atomic system-'k" might ﬁepresent a fine

structure or hyperfine component of that system whereas in a molecular

sysnem it mlght represent an electronic-vibrational or an

‘electron1c-v1brational-rotatlonal state.

. o . - .
2.2 DIRAC VARIATION OF CONSTANTS METHOD FOR THE SOLUTION OF THE TIME ¢

Y

DEPENDENT SCHROEDINGER EQUATION.

14

Historically, the first method developed to‘éolye equgtion 2.1.1
was introduced by Dirac_ _[25,26]} and s based on the "Variation of
Constantpﬁ method used in the theory of differéntial equations. Dirac
proposed that the more general'problem described by equations 2.1.1
and 2.1.2 be sol?ed "by adopting .the following expansion®* of the

wavéf_‘unction \Y(c,n, which is a generalization of equation 2.1.6,

# This expansion of Y&krﬁﬁis,in the interaction representation
[26,37] and will be employedrthroughout this chapter. For the exact
solution to be derived in Chapter 3, the Schroedinger representation
will prove more convenient with the state amplitudes Q.‘tt) in this
representation related to 'the iﬁteraction representation . state

ampiitudes bau-.) as follows Q.A(t\\ ‘(t) EX?[—1E‘3t]
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where now the coefficients Bnuﬂ are explicit functioqs of time but
still ' constant Qith' respect to spatial ¢o-ordinates. Ihe-expahSidn
given by equation 2.2. 1-is formally exact as the eigenfunctions Qﬁ
span the comblete Hilbert space ,of the problem and the coefficients
b._(t\ can be associated with the f‘luctuations in. time of the,
amplitudes of the 1ndividua1 stationary states Q‘yn under the ac;ion
of the. time dependent perturbation \(ex) . The = following

normalization condition is imposed on the total wavefunction

AW\ o) = 1\5\&\\ e W |

which, in turn, guarantees unltarlty of the solution for all tlme.

Substitution of the expan31on given by equation 2.2.1 inpo the
R time dependent Schroedlnger equatlon given by equations 2.1.1 and
2.1.2, followed by some elementary manipulations, yields £he following
infinite set of linear first order coupled differential equelions for

the statd amplitudes b(t\ l
L b/b &\ Z k(t) bhtt) BI?‘_"(E Ek)t] ‘
Ry S

where , C L
. : ‘ "
\/é“»t) = ( &30-) \Vlr,t)‘ ¢‘U’)7 7;5@3&) V(t;t) &éﬂd‘\’ 11

Equation 2.2.3 is normally solved subject to the condition that the
system is in some pure state Q&(r) at the 1nstant the perturbation
given by Vu' ;%) is switehed on, that is .
oy(o) = By, - - 2.2.5
. where ﬁ: ‘.denotes the Kronecker delta symbol. As the. absolute value
squared of the state amplitude b‘(ﬂ , that i; \b‘(t)\?' y, is a’
measure of the population ofAthat state at ﬂime‘t subject to the
imposed initial ‘conditions given by equatioh 2.2.5, we define ‘the
induced transition probability Phk(t) as follows

Penttd = Lo ™ . : ) a .2.b
and equation 2.2.2 ensure3, that 'the total transition probability
(P'g Y— P‘\(t) = y 1s conserved. For the.problems wonsidered in

this thesis, it will be assumed that fhe domindnt interaction of the
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externa:l perturbation VU',!.) " withd the. atomic or molecular system
occurs only through a finite number of states so that the infinite sum

occur'r'mg in eqtiation' 2.2.3 can be truncated to relatively few té:ms.

While the purpose of t.hls work is to derive exact solutions to the

differential equations, givep by equation 2.2.3, for situations whex:'e
the interactions of the . perturbation Vu“,\:) with the original
unpérturbed system ( descrlbed by the Hamiltonian Welv)) are strong
and hence 1lie outside the regign ¥of ‘validity o{‘ “’conventlonal

approximation tebhniques, such approximation methods will prove useful

in interpreting the behaviour of these exact solutions. Before

proceeding to discuss such approximation methods however, the precise

form of the perturbation term V(f,t\ must be specif’igd

' For most of the work that follows the pertur'bation ’“t.erm \/u- t]
will reppesent a qlassical moinochromatic radiation _field interacting
with a quantized atomic or molecular system ( specified by the
Hamiltonian Hoe(r) ).. Interactions with more thén one field will be
considered briefly at a later stage of’ this thesis, but the
generalization of the perturbation term V(%) to include this
s‘itga?ion is trivial and its inclusion at this stage would serve. no

useful purpose. - It will also be assumed that the coupling of the

quantized system with the external field occurs through an electric

dipole interaction % Thus the time dependent perturbation Vu‘,t} can

now be written explicitly as

- - - - - ———— - — - ———— - - - - — " - -

.

# Magnetic q1i5‘61é and var'iou_.s‘ higher wmultipole interactions
(eléctric quadrupole, ,etc.)v may be inclq'ded in the analysis without
affecting the formal deveiopem‘ents that f‘olldm " In: fact, magnetic
dipole int'eract’:'ions will be explicitly considered in Chapter 4 where
the magnetic dipole interaction ‘term is Vet = -”’:‘_H'B Cosot+dy
where r_A_“'-U; and g is'thevmagnetzic field. str'engt.h.

11



Vien = -pet Cos (vtad) | R

where'a is the electric dipole moment operator for the systemn, §; is -

the electric field amplitude, © its frequency and 5 an arbitrary

phase factor. The use of this semiclassical approach to study the

interaction of radiation with matter is Jjustified because most
laboratory fields correspond to high photon occupétion numbers N in
the quantized field [38,39] and ‘exhipit classical (behaviour in

agreement with the Correspondenc® Principle. A direct cobrespondence

between the results of the semiclassical and R ly quantized ’

approaéhes will be demonstrated explicitly in Chapter 4.

. & . .
The.only drawback of the semiclasgical approach is that the

spohtaneous decay of excited states, a purely quantum phenomenon, is

not accounted for by usihg a claséical field. [38,"0,&1].' These_

. spontaneous. decay terms can be phenomenologically included in thé
semiclassical treatment Dy assuming the exponential decay iaw, derived
quantum _mechanically by Weisskopf and wigner. ‘This amounts to
replacing the real staﬁionary state eigenvalue E& by the complex
number (€ "§;l1 } to y1e1d the following generalization ‘of the time

dependent wavefunction for the stationary state é ,

Wnn = qeoexel-ilgl-ignly a8

The real part x;l?- of the exponential is generally ’much smaller in
magnitude than the imaginary part_E&. and it i3 a measure of the

‘radiative wildth of the state blﬂ. Comparison of equation 2.2.8 with.

equations 2.1.6 and 2.2.1 s ows ‘that the state amplitude kutt) in the
absence of the external field Yecays as

. bt = @I(’&'X )t N y Vino =' ’ a2.2.9

* .Thus, the transition probability P‘ﬁ¢§ decays as

?‘a(t\ = \b (t)\ = ex?‘_'* t] V(f,t)_ o | - a 1 1. ‘o

which is the familiar exponential decay lau' in tne absence of an

applied.figld.' The system of coupled differential equations, given.by

equation‘2.2.3, can now be modified to include ghese radiative widths
33 as follows




"2.3.1 PERTURBATION RESULTS FOR ARBITRARY V(rt) -

v /"O\'.'b.a(ﬂ.j + i“;h) bstt)'-:. %\/“\lﬂ 'b\Lt) exe {.\-LEa'E\\t‘_\ P B SR\

- This equation, as required, yiélds equation 2.2.9 when the perturbing

field is absent, that is WV¢¢,x) = . An undesirable feature of
equation 2.2.11 is that the solution q/(r,ﬂ is no longer unitary and
hence the normalizatlon condition given by equation 2. 2 2 noe longer
holds ,see equation 2. 2.10. As equation 2.2. 2 provides a useful check
on the accuracy of the exact solution for b\k)we will retain equation
2.2. 3 as our fundamental system of differential equations and damplng
effects, see Section 2.4, when needed will be introduced by adopting a
more general approach whieh in certain cases will "reduce™ to the

result obtained by using equation 2.2.11 ,see Chapter 3, Section 3.7.
<
2.3 TIME,DEPENDENT PERTURBATiON THEORY. ”
. . L ]

Approximate solutions to the time dependen{  Schroedinger

equation, given by equation 2.1.1, valid when the perturbation term

‘ \ﬂnﬁ3and time are sufficiently smali, ‘will be reviewed in this

section. . While wour interest 1lies. specifically -1n solutions to
equat;en 2.1.1 wheﬂ’ the perturbation term V6,0 is “large, the

perturbation results derived herein, although. invalid for this

s
*
situation®*, will prove extremely useful in predicting and interpreting

the various results derived through the exact treatment. In the
following analysis we will deal specifically with nondegenerate
systems as degeneracies can lead to singular perturbation expansions

'and require special consideration )y8ee Bohm [{36] and Chapters 4 and 5.

On the other hand, such degeneracies require no special consideration
in the ‘exact solution of Chapq\f .

—-—

.
' Equation 2.1.2 for the complete HamiLtonian H(nt) can bev
wriiten as follcows * ‘ .
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Hiney = W + A AVITXN . - 2.3.1

where N is a dimensionless parameter which'provides a méasdpé of the

' .. order of the perturbatién and will Be set equal to unity in.the final
results. 'The 'gotal wavefunction ?u‘\t) can now be expanded in poweré

of the parameter {42]

pe .
Wi = Zl_b)\s \2(5)(‘7\‘? - ' | AL
Substituting equations 2.3.1 and 2.3.2 into 2.1.1 and grouping in ' )
powers of N leads to the following set of time dependent perturbation -
differential equations ' ' " . ,
(“o(r\—\-‘/*ot\q/ (n-.) =0 . | /
[§ \—\om "-)’M.) \y Lr,t) + (VR XS Q u’ ,8) =0 : : <
» * '
(Ho(ﬂ - leh'.) \Ij et V(\',\ﬂ Q .(‘r\,t\ﬁo , - 1.3.3
® . The first equation in this set corresponds to the stationary
- state problem whose general solutibn is already known ,see 2quatfon
2:.1.6. This statiohary state solution \Pw)k\',t) can now - be
substituted into  the second of equations 2.3.3 to yield an
inhomogenous differential equation f&q the first order correction
\I{m(r,g) .  Higher order corrections to the zeroth order‘wavefur{ct:_lono
can be obtdined q¥/substituting q?“(rtg in the nextl }quation in
2.3.3 and solging for vr%r'ta . The folloiing normalization
condition is imposed on the unperturbed solution .t
(YUl ¥ Tuny = i 2.3
and using equations 2.2.4 and 2.3.2 the following normalization . ‘
condition follows, by r'equiring ?mt\ to be nor'malized through any '
given.order in N [u3], ; : ) e
(‘Qz‘ m\\?“ﬁ%) =0 8§30 235
) Ve
. ® In certain ‘cases the perturbation expansions can be summed to

all " orders but t‘or Ve reasonably large this summation cannot be
_ ecarried . out analytically and some form Of numerical evaluation 'QF
. required [15). - ‘ '

: - | |
%
3
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While different approximation techniques have been employed to solve
equations 2.3.3 subject to the above normalization ditions [43,44],
Qe choose to return to the Dirac expansiqn of the/ total wavefunctioh
§?Lnt3s given by equation.2.2.1 and expand its order cbntripution
G’GQnt) as i
AP —Y. ‘0 X c?.\m exel- LEnt) | 2.3.b
Comparing equatlons 2.3.6 and 2.3.2 with equation 2.2.1 we obtain the
following result (taking N\ =1) | )
by T_ \amu:) ¢ - 2.3.1
Substltuting equation 2.3.6 into 2.3.3, followed ' by some elementary N

-
manlpulatlons, yields the following coupled differential equations for
the coefficients b“u-\ 821,2,......
«) Lol S | of
I RPNV R E I B
' . =0 . :
To satisfy the initial conditions, given by equation 2.2.5, the

following requirements are imposed .
0
b\ = sl'll : . .
S\ R
bh = 0O S‘¥° . ' - 13q
Equation 2.3.
equation 2.3:.5,

, togekther with the normalization condition given by ..
ecifies the boundary conditions and guarantees
unitaritj of the solution for §21ﬂ13 to a given order in) and for all
times. - Hniting out -equation 2.3.8 explicitly fQr s=1 and s=2, we -
obta1n, using equation 2. 3 9

b’b’c Q? w =-L (& u‘)\Vu-,t\\b u-)) ex ?[L(E-\ Eﬂ \'.]

.'b:?(t) = - \,j { #’ v)\\/(\' t’)\ ¢(f)>€1?[b(e“_Ex)t]dt 42310
while for s=2 -
}’lm-. n = —t{(‘b @\Vrl évu'\) e (®) exe\,u(E“ Tt |

™m:0

b“\t = LI‘[_LQw)\\Iwt)\b,g‘)b“(t)exe[(ﬁ B Jar
. o ™0 - QBJ\\
Substituting for b from equation.2.3.10 yields

or

-
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x{ of UM" \Wee,ed\ Qo) exeliles %ﬁ'\'."'ld.\:" } v 2.3.11
-Higher order terms fqr b“cﬂ may be readily obtained by further
successive substitutions of these results i‘nto 2.3.8 forSHYL .

R o

Ebpllcit forms f‘orf,b... () will be derived in the next subsection for
the pertur‘batlon giv@n by equation 2.2. 7

i e ¥

R
-

2.3.2 'ExPLICIi‘.: PERTURBATION RESULTS FOR Viryx) = —p-E Coscoraby.

In this subsection explicit results will be derived for the near

resonant interaction of the oscillating field, E.QoS\Ot-rB} , with a
general atomic or molecular sSystem specified by the Hamiltonian \f\okr)
“"in equation 2.1.2. Writing the perﬁurbatiop \/u‘.t) in exponential

form we get

Virne) = —p;E (exelh (“*31* expl- ‘(‘“—*ﬂ]) ‘2.3.43

where the- oscillating field will be assumed to lie in the z-direction.
Substituting equation 2.3. 13 into 2.3.10 for ‘bi«) we obtain

_ . bmm =Mag E{ 819{ (uj“l+'\))t] '3_) 21?‘_601 / (gt D)
: | . + (@201 (O - D) - 1)exg-48] /(Cnn- «))} 231

-

where

Ora=BamBe 5 by = (@ napa &) 9.3.15
. R In general we are concerned with the' resonant or near resonant
absorption, corresponding to the transition 2-91\ with D, ne? © (for"
emission (J,e( O ) of a photon of frequency VO . In this ‘case the «
' .exponenti'ai tern exP['t(w..,f*-‘\))t] (GXP[L(OO“.T’DR] for emissionfis
rapidly oscillatory and negligible relative to the slowly vérying term
expt\(w“;‘\ﬁt) (or eq[»(q ‘\))t] for emission)}[26,36]). Thus for the
absorption process the first or-der' induced transition prob@ility is
approximately given by*

Pm @ =\t = =& WWnal St h( -0)1'-/ (©Ong-OY 2.3.1b

For the induced emission ‘process the term (wm-«w) in equation_2.3.16
is replaced 'by (ug\l-\-‘\)). For the case in which the t‘réquency D is




°

approximately equal to the level separation LWgg, that 1isW,,-0V*0,

equation 2.3.16 reduces further to

'9‘2m~v€ Wt T/ L 2.3.47

Equation 2. 3.17 and equation 2.3.16 provide strlklng examples of the
secular divergences which arise in time dependent perturbation theory.
For example ?;:\t) , given by equation 2.3.16, can exceed unity as a
function of time if E is fairly large. Such secular divergenceE“also
arise in the case of a static perturbation switched on instantaneously .
at a given time’ [43]. It should be emphasised that these secular
divergences arise even when all terﬁs are,retainéd in the expression
for b:?(th ,See equation 2.3.14, and they cannot be removed by going
to higher order [45,46]. The _divergence arisiﬁg from the small
denominator terms, (Wh,~ V) when Q)“xz&D, in equation 2.3.16 is unique
to the oscillating field perturbation and such terms are called "quasi
secular" [46]. Thesé "quasi secular" divergences are generally
treated by the ehenomenological introduction of the radiative width of
the excited state into the perturbation formula which can be achieved

by modifying equation 2.3.6 as follows

©

\y‘s()v,t\ =7.—_ ‘U:\Q éphm expEL(E“jo“n)t] ' 12.3.\‘8 ]
and rederivi gzghé perturbation resﬁlts. As our interest in these’
pe}turbation results 1lies solely in their interpre;ive value; the
explicit‘introductioﬁ of the radiative widths fulfils no usefgl
purpose at thie stage and we neglect them in the remainder of this

section. Relaxation effects which will be introdueed< in - the next

\ .

* As we‘are.retai;ing only resonant terms in'these approximations,
and the analgous perturbation results that follow, ‘the phase.
dependence ® cancels out in the final expressions and for this reason
we will not carry. it through in the following results for bﬁ?(t\

This phase dependence however will become very important when the

exact solution is obtained for large coupling enérgies\{AE\ ; see
Chapter 4., o . T '

-




section in the context of the rotating field approximation, and im the
eiact solution iq'Chapter 3, will incorporate radiative damping as a \\\\\\

”

special case.

The first or‘aer perturbation results derived above are adequate ) \
to describe many conventional spectroscoéopic problems as the field
1nten51t1es employed in such meaSurements lie well within thelr range

of  validity. However to° understand the many effects (and in

particular nonlmear effects) which- are now being observed with mor'e
intense monochromatiec light sources, the above perturbation resuilts -
must be carried to “higher orders. For example the two photon
transition which corresponds to the lowest order nonlinear effect was ..
Tirst predicted -by Goppart Mé.yer in 1949 [47&&8) and arises from -
second order terms in the perturbation expansion. Substltut),né
equations 2.3.14 and 2.3.13 into equation 2.3.11 ylelds the following
result for the second order contribution to bn(t\ '

b?(ﬂ = \-§ i_\'\r\m V\ml{ e::ﬂ_»(wu*‘l\))t] 1 Q-,;Y\\.(UM—’JQWS 1

. vt (O + A0 gr ) ’(wm-m)(wnn V)

. . s .
+a Om‘(expts ,‘\'-} 1) bt Weaa Sin 0L ‘ 2319 -
(W~ V) e Qe -OY) - _ e
The leading two terms in equation " 2.3.19 "represent the resonant - .

emission and absorption of two photons of f‘requency ~ , via an
1nter'med1ate virtual state with respect to the transition Ré\'\ , When"
the oscillating field frequency lf‘Les near ‘\)'*J“.\l'l where C«OM{O S
for' emission and (.J“,)o for absorption respectively. ‘At this
f‘requency the remaining two terms make a negligiblls .contribution to
either the emission or ‘abgorption pr;oeess as ‘fhgy are rapié:lly
oscillatory. Thus _the induced transition probability for two photon
absorption from state R to state . is- approximately given by - ' —
PP B St (Dan-aot Z Prm Piems Wag Wan
" T (OO (g N wamy | 2320
| Using the fact that the dipole matrlx element P‘& is nonzero only ir

the' states ¢t' and ¢ are of opposite parity, we-can predict from

equation 2. 3 20 that a two photon transition can only. eccur between

two states &nand 471 of the same parity and requires at least one extra

. » .

-




19

»
3 n
3

4

state (\3:&9 of oppgeite parity. This extra stateb can occur at any
pbsit_ion relative’” to &,l; and Q“ except precisely at their midway

S separation®* and ipgpection of the denominator in the summations in™
equatlon 2.3.20 suggests that the optimum fwo photon transition rate

can be acmeved by havmg the third state&‘ as near. as possible to

the midway separation. Equations 2.3.20 also shows the,nonllnear

dependence of the two photon transition probablllty on the field
- 1nten81ty1(¢£) [38,48] with ?nm ) belng proportional to'X_ (= ?,\')
. Finally, a general expressmn [38] for the q-photon induced

transn:lon probablllty, Pnn(t) from state(b to statet\; ' can be wrltten
down by 1nduction

“/ 9,;;_5.&\ = € Q. ‘h.kbonn ‘\«0“—/2 L(;J“g q,\ﬂ

N § P vm--’-vmw | ' ’
X{M’\ (w.... (- DVoXyg (Q.’IW) (w\ DV, —(m-no)} 2371
¢ ‘.where the summatzlon indices in 2. 321 are restricted by th .
. 7 requirement that the fector multiplying =0 .in tpe'deneminator must be]

. : /e
‘. 4, 8reater thme,g\ Inspection of this general expression shows C t

N

the induced transnlon ppabablllty for q-photon absorption P,\mls

proportlonal toI (‘*8“') In‘ additidn, "to observe such ndnllnean

‘t?ansitions, the f‘requency‘:\) must lie close to D~ Whela, and
reia‘tively intense fieldg are required for higher q values; 8‘(L A in

° 'mOSt . cases and E-‘l correspond to a field amp.litude of‘f’-toq Volts/cm.

- The effect of a gene.ral level configuration on the induced tranmtlon'
probablllty ? oy L'\'J is reflected in the summation iln.eq.uat:ion 2.3.21
where the magnitude of this multiplicative term contributes to- the,
overall amplitude of oscillation of P.::':‘.t\ ; the importance of these

N ! ’
< . - , .
eon'figurations,will be described in Chapter 5. ° ‘

- —— - o

= - —

5 -

. , . . ir #k occurs at the midway eeparation between @x and &
would also observe two stepwise single photon transitions, each ot‘

which depends linearly -on 8 and would )er'ef‘ore déninate the. E
. - dependence of the r.wo photon transition

v
.
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Using the parity 'selection rules for the dipole ‘matrix elements
}L;L we can predict the basic types of level cbnfiguratibns»neéded to k
observe these gq-photon nonlinear transitions. For example, in a
simple two level system with states of obposite,périty, all odd ‘photon

(q=1,3,5,..) transitions between states bn and Q* can oceur 4 See

@t

equation 2.3.21. To observe even photon transitions (q=2,u,6?..)
requires at least three states with the initial and final states @2
’ <

and bn of the same parity and the third state bh: of opposite parity

(Maw¥0) Pyyk @ ). A particularly interesting case is a fhree state .
system in :which traqsitions are being observed between the ground
'stat,eltbk and an excited degenerate pair Q“ and Q‘, see Chapter 5. In

- this system ali odd photon transitions are allowed between states Q&
and b of opposite ﬁa}ity while all even photon transitions are
allowed between states bg and Q of the same parlty (§k actg as the
thHird state pof opposite parity).

. . B2
_ While equatlon 2.3.21% is particularly useful for.'predictive
' purposes its ' practical application is severely restricted to very
limited  ranges of field intengity % y due to the ‘various

-appgoximatiops inherent in its derivation; for example the problem of
seéular'divergence discqssed earlier and the dropping‘of the so-called
non resonant terms in deriving it. :These\non resonant terms make an
. important Eontribution to frequency shifts of the resonance.-profile
*:lk,see Section 2.4 and Chapter 5. In addition, various relaxatfbn'or

xgbgwer broadening effects have not ‘been incorporated* into the above

perturbation ‘results .so that the transition probability expressions
derived above predict that each ‘q-photon resonance will appear as an
1nf1nitely narrow line centered .at Wang=94Y. For our purposes these
_expressions are.adequate as we are only using them 8 a predictive

«* -

tgol. ‘ o ) . ’ -

* Poﬁer broadening will appear natu;'a_lly'in the Rabi lineshépe
formula  to be derived in the next section. In Chapter 3 tﬁis
bro;dening will be exactly accounted for and relagation effects will
also be explicitly included in the results.




2.3.3. REMOVAL OF SECULAR DIVERGENGES FROM THE PERTURBATION EXPANSIONS

OF THE DIRAC "VARIATiON OF CONSTANTS METHOD".

The seculgr divergences appearing in the perturQatiop expansion

of Dirac’s "Variatign of Constants" method ,see- equation 2.2.1,
résfricts .the method to short tiﬁes even for relatively" weak

I perturbations . [43,45,46]." These s%cplgg terms arise from the
expansion of an ekponential term (phase) in the wavefunction in powers
of € ,ﬂ whlch in‘ turn leads o practiéal difficulties as the final
perturbatlon results have terms proportional to various®powers d%_i?‘yl
,3ee equation 2.3.17 for example, l%adlng to unbounded perturbation

solutions as ¥ . increases. The source of these difficulties becomes

clear if we write out the known form of the exact solution to the

2

Schroedinger~equation using the-Floquet theory [19],
Yirxy o 1«\ exﬂ_’»‘(}t] : - 3 2,322

wherel&\;f_(tf‘m’l—o\ is a periodic matrix and 9 is a constant
diagonél ma;rix, called the characteristic exponent matrix, .see

: Cha;ter 3 for details. . The constant matrix @ contains the original
unperturbed energy levels for the problem and their respective mean .
level shifts induced by the oscillating field. 1In the limit that the
oscillating field amplitude & goes’to zero the matrix'Q%g‘; where

E is a diagonal matrix containing the original unperturbed energies.
Comparing equatlon 2.3.22 w1tﬂ equation 2.2.1 for the expan31on of the
" total wavefunctlon we observe Lhat the state amplitudes Ehtt) in
., equatien 2.2.1 should contain an gxponential term coﬂtaininé the level
shifts 'for finite € values. ‘The expansion of'b'tt) in  the
perturbation series of equation 2.3.7 leads to an expansion of this

0 «exponential term in powers of L€ . ! . N

A number of methods have béen deveioped to tréat these secular
terms arising from the perturbation expansion of 'the Dirac method.
One such method, called "multiple time scales" perturbation .tpeopy,‘,
seeks to fPremove these secular divergences through each order in the
. perturbation expansion [43,45,46]. The basic 4dea in this ~method is ‘
to replace the time variable { by a multicomponent _variable,

a

| ‘ 7




(to‘t",\'.,_,---‘) where \'.‘a)\\‘\: and N has the same rhéaning as before.
Now the 3“5 order contribution to ‘the state amplitude, Eﬁslt) ,
tba;xsf‘or'ms to b?'n where W refers to that par‘t‘I of the S™ order
state " ampplitude that depends on the time scale Tw only. An
appropriate set of perturbation equaﬁions valid for each time scale
are available and brovide convergent solutipns, within each order of
N , from which secular terms have been systematicaily : removed.
Conquerable algebra’ is involved in deriving the final sclutions agd
for aedetailed discussion see [45,46]. Wéng,mGarrison and Einwohner
[46] recently employed this method to study the induced transition
s probability in multilevel systems for an oscillating field of fixed
phase. The 1limitations and restrictions of the multiple time scales
perturbation method are discussed by these authors_who show explicitly
that the approximate induced transitioh probability‘rapidly goes out

of phase with the numerically calculateq exact result . for - large

coupling strength. N :
@l <7

, M Lo b
Another method developed by Karplus, Lamghoff and..Epgtein‘ME&QJ

seeks to remove both secular §nq ?Qrmalization terms“completely from
the total wavefunction Q?uxﬁﬁ before carryiﬁg'“gai a -perturbation
expansion on the remaining part. A detaileq)feview of this method and
itslcompariéion wi;h other perturbative methéds is given by’ these
authors in (43]. .o

The diffigulties encountered in a pérturbation.expansiod ‘'of the
Dirac'différential,3quat;ons suggests that an alternative method which\
- reflects more precisely the true, nature of the solution Q?trxt) would
be more appropriate. For a periodic Hamiltoni;n,fthe form of the
"solution iS given by equation 2.3.22.and this prompted Young, Deal aqd
Kestner [49] and Sen Gupta [50] *to propose a direct pekturﬁation
expanéion'df the Floquet solution. Béth the periodic matrii 1;L€) and
the characteristic exponent matrix ) in equation 2.3.22 are expanded
in ascending powers of the pertqrbation _parameter A\ - While this
approach completely avoids seculér beﬂaviour it involves an eigenvalue
problem, whicb must be solved to  each order in );\. In the next
Chapter both E) and e \gﬂl be computed exactly to any degree of

’ s
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accuracy . without recourse to perturbation expansions with -their
inherent convergence problems ds a function of field intensity.
< @ . é

-

2.4 ROTATING FIELD APPROXIMATION.

o | The need for accurate solutions, free of the secular divergences
present. in perturbation theory, - whicﬁa%re valid for relative large

- coupling Qpe}giés h*ﬂ\ and over ;apgé times, prompted Rabi [51] ip

™~ = 1939 to ‘adopt a different approach to solve the time dependent
Schroedinger equation. Although Rabi’s method of solution was

- originally developed to exactly solve the problem of a.two level (Spin
1/2) sysfém in&practing with a retating maghetic - field of arbitrary
émplitUde, lit ‘was later applied 'as a zeroth order problem in a

¢ - ' *perturbation treatment of the oscillating field problem by Bloch and
Siegert [52] and more recently generalized to the probiem of the

' resonans intédraction of multiple oscillating fields with multilevél

‘ syd!em; [32]. - A formal analysis of the rotating field approximation

‘ and its ;ange .of wvalidity is given by Messiah [37]. As this
N on inec g
. »analysi§ of any qystéqj'yith more than two 1levels becomes highly
| > ‘ ) spécif‘ic to the actuai':iévél configuration and for this reason we will
oo ~-4’ only review the _two:flé%ei _rotating field apbroximation‘:;n this

section. Specific ‘éppfoximations to the problem of two'oscillating

approximation., is  confined to resonant interactions (¥V~W) the

fields resonantly coupled to ‘a three levegl system will be dealt with
in Appendix B.

.

The time evolution of-a two level system interacting resonantly
’ sinusoidal ' fi%1d* is described in the interaction

ﬁrqpresentation ,see equation' 2.2.3, 'by the following two coupled
. - .

with a

differential equati

¢ C ameeee e ——— ——

# The oscillating field.can be visualized as being made up of two
i _ rotating fields with opposite sensef. of rotation; each.having'an
' amplitude half that of the oscillating field [53].




1 \olbt o, &) - p_\lﬂi‘ er‘._‘_ U-Oz."\))t] + Q’Q‘:L(an\ﬂtl’k bmkt)
2 -
WOl r0) = -\*_‘;l,‘g {exﬂgtpogn—\ﬂt]fexeﬁ-(wt\—e\ﬂ}b‘m !
whereW Gy, = E+-E, )0 , and b&“‘\ , j=1 and 2, are the _amplitudes
- of the states <b8cﬂ exe(-iﬁét] , j=i and 2. If we consider, for example,
the resonant absorption of a photon of frequerncy VO from the ground
state t‘"(ﬂ to. an excited state &®,Lr of opposite parity to Q,-u’)

(that is Y9yt = % at £=0), one of the exponential terms occurring in

each of the above coupled differential equations will be Slowly
varying ( since &Jy,-V=0 ) while the second exponebtial where
Z_Quq-\ﬂoz:l\) will be rapidly ‘oscillat;or'y. Tﬁe slowly varying term
’u“}(:w“-v)t]is‘the main contributor to the change in state ainplitudes
Ethi while the term 819{}Q¢h§vﬂ€)is ‘rapidly oscillatory and ‘its
contribution to b;¢¥) will adverage to zero.** .Thus_ the
"anti-rescnant"” term exyﬁ(ul.-r\ﬂt] is neglected relative to the resonant

term and equation 2.4.1 reduces to

1 : b/btb‘kﬂ - ‘t‘;}.i ) Qm[—i(@u"‘\ﬂt] b, «©
3 .

4

Lb/bt b-._Lﬂ = —_'A_-E{ exe [i(h?u“‘\))t] b| (5] ana
) T

It should be emphasised that in principle these equations are a _good

4

d \

* The phase dependence of the sinusoidal field is ignored as it
cancels in the final. physical result. in the rotating field

»

- u approximation.

- —— - - - — - o - -

#% This statement is only strictly true as long the period ’of
oscillation of the state amplitudes b‘sua is “muc_:h gréater than tl:E
period of oscillation of the coefficient exp[i.(.u,,w\tl This 1is a

’paftiéulér example of the " Method of Averaging" ,referred‘to in the

-

TS

next chapter




approximation only when c.:),,.-‘%o,‘ that is on or near r.esonance‘. These

equations can be easily thansformed to two c'ouipl_ed differential
equations with constant ceefficients by a suitable transformation of
the state amplitudes \)a‘ﬂ and the r-esu.l{:ing differé;atial -equatiohs
solved by standard Laplaée transform tecﬁnique_s, See Appendix B_f and
[éu], The final solutions for the state amplitudes b’&kﬂ are’

b,y =exe S-"'(Uﬁ“\)ﬁl‘l* ‘{J&«:\u-'o)"«—\\ani\"cqs ' Jorors ke~
(Qu-V el 0,,-0) Som 2 (B - THR T L |
Bl(ﬂ‘f- _i._\}\ne\.ex?{_‘(wz\—\ﬂth] ' SW\\‘L ’(w-;..-‘o:—_‘)t‘i_-l\‘\nl;?t 143
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. The corresponding induced transition probability P-.,,_(t) for the

transition 1> is given by

PR ey = €L ___ St (@G or gt t T
* (L0 -0) + (P E I A | o

Equation 2.4.4 is the Rabi formula and from it we see that the ind.uced

’ Q)
transition probability ?n(ﬂ is bourided for arbitrarily long times.
.Equation 2.4.4 assumes a particul‘ar‘ly simple form when the frequency

of the applied sinusoidal field is exactly on réesonance (V2L )

E:;&t\ = Sund \‘u'q.i\tl’z. . ! ) ak.S
Therefore, according,to the rofating. f‘ie}d, approximation, when the
applied field is exactly on resonance, the transition probability
oscillates between 0 and 1 with a period of an/ i €' in "t

It is instmiétive,to compare the Rabi “ formula (equation 2.4.4)
with the simple Ffirst order pertur‘batiOn. result P;?(t) , given by
equation 2.3.16. These equations differ in that the Rabi formula
contains the additional term |pmwE} in the denominator and in the

argument of the Sine. Thus while the perturbation result. "blows up™

on “regonance , (05.01.) .the Rabi formula remains bounded and the
transition probability oscillates i;-x time. In the limit that
I €1 {{ (WDu-D) the Rabi -formula reduces to fhe simple
perturbation result indicating that the perturbation result is
°severely4restricte‘d to small coupling energies “Anfl as well as small
times. C
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" The TRabi  result for the time,  averaged induced transition.
" probability. F{& can be obtained directly from equation 2.4.4 if we
‘replace the S term ﬂ{#its.lbng time average or steady state® result
N o L 4
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Thds, the Rabi,formula predicts that tHe single photon résonanée

- ‘ ¢

profile 1is a . Lorentzian peaking at F{: =0.5'wnen]43==031;. The
half-widgp at_palﬁ maximum of this LorentZian\is given Dby r‘= \\hiil
and as P,‘:‘ = ?‘$=0-5 " when = W, both states are equally pbbulfxted
- (saturated) so that no further ap§o£ption of energy’ can ocgurf : For
this_ reason the term ty~1€j in the denominator of equation 2.4.6 is
-called the "saturation broadeniﬁg" parametér ;} 'power broadening
parameter. Thus as' the field intensigbpis'increased the resdnance

profile broadens and ultimately disappééﬁs in the Rabi approximation.

’i The Rabi lineshape formula _(equation 2.4.6) is valid on the.
t assumption that relaxation effects, such as spontaneous decay and _
; : -ecollision ‘damping, can be neglected relative to the saturation

‘broadening term l}hte\ .* Suech is not ‘the case however in many
situations and: these ‘felaxétion effects muit be - 1ncorporéted
explicitly in the above results. One of the most satié€é¢tory methods . -
of including such damping effects, which will be adedﬁate for the

results derived here and later, is based on collision damping.®* This

simple collision model assumes that the molecules in a gas, when
interacting witﬁ. the external osecillating field, can Qndergo random -
coiiisions ﬁhich'interrupt the radiation process. ‘The probability
that a molecule has survived unaer tﬁié interaction with the field in
the interval (t:-t,), where o is the initial instant at which the
1ntefaétion began, is given by [9,34,55]

N

i. ‘ * p'general theory of 'collision damping is avallable which takes
1§ | into account the detailed form of the interaction potentlal\/hﬂ
'f . between individual atoms or molecules [41,55]. For our purposes a
' ’ simple collision model based on hard collisions will suffiee, see
. ' ‘ below. A ‘ ‘

' ’ . i

A
.




L axef-(t-v)/vrlat
. axg[-(e %)/ ¥ Jato | S
where T is the mean collision time and Y represents the 'time of

- : R’ .
measurement.  As ?{1(€3 describes the interaction of a single
molecule with the external field, the trans}tion bpobability for an

ensemble of molecules in a gas is obtained'by averaging this quantity
over the elapsed times (t - to) and is given by [9,34,55]

J\._; "’? = SP"“ t,) exgl-(t-to)/7 ) dt, | Can -

Substituting equation 2.4.4 for F;i(t) into equation 2.4.8 and
integratlng we obtain '

P : \-\nf.\ ‘
1 J.[('\) LD-;.) +“-‘\1.€\1. Y-t ] 4 . a Y. 8

While the resonance profile still retains its Lorentzian 1lineshape,
the half width is now given by \r‘=(\|-\n£\‘+ 'T't"“f . As long-as’
™)) [pa€l , which is the case for most conventional fleld
amplitudes , we de-not/observe saturation effects ,that is an.* e

Increasing the oscillatiing field amplitude S causes the transition to
gradually saturate ¢( :K= R?‘I‘.-= 0.5 ") and the .system being
irradiated no longer absorbM power from the external field. This
situation ié described Vas .optical bleaching andlhas 5een observed
experimentally with intgnse laser™\ beams -[38].- Breene [55] has
- discussed ‘the -equivalence of the con tant’r"to the radiative width
¥ of the excited stdte ( ¥ ..)3 ,3~ ... ;¥ is taken to be equal
for all spates) in the limit that the gas becomes very dilute. In

fact the constant ¥ can also represeht‘the mean transit time of a
molecule through a finite laser beam width [9] - or the mean trénsit
,\time of molecules through a molecular. beam C-field region [9]. 1In
general, ‘in equation 2.4.8, T~ represents the mfan interaction tiﬁe
for the induced rgdiative process to which the ‘several mechanisms

outlined above can contribute  so that in  effect
- . -t -t ut ' e el e - - -\
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The importamke of the nonresonant terms ignored in 'deri}ing the

Rabi formula (Compare equations 2.4.1 and 2.4.2) was initially
recognised by Bloch and Siegert® [52] who included their contribution
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to first order in perturbation theory using the Rabi approxlmatlon as
the zeroth order problem. While these terms do not appreciably effect
the shape or width of theé spectral profile: ,see equation 2.4,6, aver
_"the range of coupling energies \pafl for which the Rabi formula 1is
valid, .see »for example Chapter U, they_do canse an appreciable shift
of this profile from the centre frequency (D= Wy, predfcted by the
lineshape formula given by equation 2.4.6. The first orde}
contribution to this shift is called the "Bloch-Siegert" shift and is
given by [52]) "

Oges ~ WDy, ='%031\ : .q¥E§§i____ a“\*'q
1

whlch predicts that the resonance shift increases in direct proportion
to the coupling energy squared. In recent years the need for miuch
more accurate frequency shifts has prompted a. number of authors to

extend the perturbation expansion up to tenth order([13,17,18]. '

‘Since the counter rotatihg terms are omitteo in the derivation of
the Rabi approximation, this approximation unlike perturbation theory
can only account for the single photon transition (9-~wy . To account
“for n-photon transitions in multilevel systems within a rotating field
type approximation; resonant terms thi‘orm exp[i(h}‘(nﬁ)t] must b€
extracted from the differential eq®ations in the interaction
representation and. the remaining oscillatory term; dropped. Shirley
[56,57] oescnibesf an elegant method for achieving this extraction
which he calls the " Phase Factoring " method -and this mwmethod yields
equivalent results to those obtained in earlier treatments due‘to
Salwen (58] and Besset, Horowitz, Messiah and Winter [20] The basic
'1dea behind this approach is to extract the n-photon resonant term
'(Gaﬁ-¢r0 ) by redefining the state amplitudes as
bitt'\ = CAU-\) CXQU'Q\'-) and choosing the phase factor d&
appropriately. The effect of nonresonant terms can be accounted for
by perturbation eorrections [56,57] and Shirley point$ out that this

treatment: is limited to situations in which resonance lines do not

overlap and to %elatively weak osclllating field strengths. It should
also be-pointed out thati ‘while nonresonant interactions contribute

mainly to resonant . frequency shifts, they can also cause large

e ) , R
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distortions of the n-photon resonance profile from its Lorentzian
shape predicted by the rotating field approximation, .particularly when
 the coupling energy ]’48\ becomeg ‘comparable in magnitude with the
energy level separation «>, see Chapter 4. For these values of \taﬁ\ -

the phase debendence of the induced transition probabilities, which is

neglected in the rotating field approximation and perturoation theory,

. is important. In such situations the tioe dependent Schroedinger

. ,i;r,————~equatioﬁ”ﬁﬁ§f"6e solved exactly and the next chapter is concerned with
the developement of an exact computationally convenient solution to
- the more, general problem of gb multikevel system of arbitrery
configuration 1nteracting with a%ifield of arbitrary amplitude £
frequency V and phase % .




-y

\ A

i CHAPTER 3

GENERAL N-LEVEL SYSTEM INTERACTING WITH A.SINUSOIDAL FIELD

In the discussions —of the previous chapter the need qu a .~ -
computationally convenient solution to the problem of a mulgiievel'j'ﬁ
system of arbitrary configuration interacting with a sinﬁsoniqal fiélgjix
of arbitrary amglitude ,frequency and pha§e became apparent."Thé faéﬁ

that even the simple two-level system does not admit an exaqi solution

.in terms of tabulated functions {14] dictates the need for some form

of numerical integration. In this chapter an eiégt cbﬁputaﬁioﬁéily
convenient solution to the general multi—leyel s}éfem is developed and“
the theory of linear differential equationggwith periodic coefficients
{19,61,62] is exploited to 3 oast the é;neqal‘solution in a form
suitable for the evaluation of g§§me .physically ‘ingeresting- steady
state properties of the system. In addition the f&%mal Tethod of
solution'developed herein is equally ag;}@cable ?o %;e sﬁggy of beth

degenerate and non-degenerate systems

3.1 MATRIX REPRESENTATION FOR THE SOLUTION OF THE TIME DEPENDENT

.

SCHROEDINGER EQUATION.

Botﬁ for complete generélity and convenience 6f presentation
matrix - notation - will be adopted throughout, making detailed

specification of the system unnecessary. The two-level gnd‘ certain

N-level systems will Dbe dealt:with in'cqépters 4 and 5. The total =+

t ime dependent wavefunction g&hﬁty in the,Schroedingeq representation
can be written in matrix form as follows "4

- ‘
q/(n\:\ = ’é'm c;.m

. 30

(%)
<
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where . , ~
‘ : T Ay » L

' . - Qe . .

Bes ~(gonbn, ), e | M) -

= , ' A QUats) '
and equation 2.2.2 becomes . . ,

g w QW =1 | ‘ : 3

which ensures n&pmalisation ‘of the wavefunction for all times.

Fbllowing . similar. 'developément to that in Section 2.2, Chapter 2,
the time dependent coefficients O.*(t), in the dipole approxlmatlon
{26,38] , satlsfy the coupled first order differentifl equatlons

g - Eg‘""‘ -€ réc°“",t,’"°\9“““‘, S Y B
Wwhere ' - |
: ‘_E\ 0 o O Mo M - - Pa
ok = © E-L ° o0 ‘ ':z:,;\é' . pu p.n‘.‘. ‘.P?N
| EN [TTPEE Pan o/ : 3‘\.5

As dzacussed earlier #(ﬂ and Eé are the wavefunction and fhe ener-gy
of - the A . statlonar'y state of the unperturbed system, E and V) are
the strength and frequency of the applied smusomal field which we

arbltrar'lly take to be dlrected along the 2 co-ordinate axls,% is an

'arbltrary phase wmch will pr-ove quite ‘important for large coupling

strength NAE\ see Chapter 4 and 5 for details, and the P"J are
tr'a ition dlpgle matrix elements coupling the ™ and d statlonary

states, Miy =’ Mgt = (§,ipad ¢U'3>

a zero dlagonal ‘in  general which consider‘ably reduces the

The dipole matrix ’A will have

computa—tlonal “labour in solving 'equation _3 1. 'J * It will become

————— o -——— -

N Lﬁapfadda:tional static field is .introduced . in the totel

}famlltonian, theE matrlx will contain off-dfagonal nonzer-o elements
In this situation the . symmetry arguments’ used later in this chapter
and in Appendix ‘A, to expedite computation over "the- period of the
ﬁamiltonian Hu’t\ will not hold.

-
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obvious that both Qegene'rate andflnon-degenerate sy.s.te'l‘ns. areA totally
equivalent when solved exactly so that a zero diagonal dipole m"atrix.
may be consistently used to expedite comput‘at’io'n . This eq'uivalenc.é
will be explicitly shown in Chapter '54 but = for completeness the
mo?iif‘ications ,thép are necessary when g. halos a nonzero diagonal Vio.;i.ll

also be discussed, see’ Appendix AZ2.

-

i The problem at hand is to solve ,equativon 3.1.4 for the
. 0
time-dependent expansion coefficients _Q.Lt\ subject’ to the initial

conditions, see Chapter 2. ' ’ : i

Q> = A . | ' 316

where A is a column mat.rix ‘of known constants Q'ato)' = Aé with

T §=1,2,...,N ,satlsfying unO.to} =1, .

) - - 3 . ..

Although the formal met.hod»of solutjion will be developed to 301ye
equatiqn‘ 3.1.4 for the state amplitudes Q,"\Lt) ,the final physi,éall
propersies ex_tf‘acted from these solutions are. ;nor'e conveniently

digcussed in terms of'the density matrix. -

The mgtri_x r-‘é‘pr'esentat;ion.of- thé coupled diff.‘erential :'equatJ:.on’s
for the state a'mblitudes O.'akt) ,8iven by equation 3.1‘.11 yleads
naturally to & representation of the final physical- ‘results in terms
.of the dé‘nsity -"ﬂatrix ,QLt) - The’ density matrix IDLt) is det‘lned in
terms of the state\ampiitudes Q_(t\ as t‘ollows

. 4 1ol Qbam - - - o

U © 02t - : :
Lur =amQw = Qe | ?‘,“. SR B
a’” - T ' ) -t -2l 34T

Qi d:\;\“ - oA “(6.,\

and an indiv:Ldual matrix element is given by
- S )
- ka O.Am . o 3.1.8

The differential equation satisfied by p(t) can be derived by first
differentiating equation 3.1.7 to yield o

v ‘o /D(t.) o.m( ’%Q.u:)} ‘( “%tq.(ﬂ) Q.u.) ? ) 3.\.“3‘

- Next. ',using equat.ion 3. 1.4 its adjoint and’ thé fact that the matrices
g and@,ame real leads to tne familar dif‘t‘erential equation satisfied

. N y . ) . . -
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where [A,» B] is a commutator ,for example

[a,80°=AB-0A - 3

v

It is easy to show that the normalizaé&on condition ,given by eqhaticn

* 3.1.3 nqw becomes . .- . ¢ ~
Er RW = ,D&i(ﬂ =1 . o 3.1.12
where tr refers to the trace of a matrlx Finally ,the expectation

. value of -any operator f.(r 2\ with respect to the total wavefunction
Wi is given by . ' e

4 WF \ o) e, t’i) Zaum O.A(t) (o) Kcr,n\iv wd .

- )'_ Pinct) £y () -tr[gm L‘trm] S W
)A 5 '

where an element of the matrix £(r,t) is given by

£ = (& (r)\ﬁmﬂ\bm) e 3

Equatlon 3.1. 13 will prove partlcularly usefal in Section 4.6 where , -
thg physical properties of an N-level system intenactlng w1tﬁ\t
sinusoidal field will be dlscussed:

" L

3.2 POWER .SERIES SOLUTION ’
. , ’ C
Tme power series soiution is'q'familiar means of solving .linear
differential equatipns which do, not admit analytic solutions [63].
" Equations 3.1.4 3hould in principlé provide no’ diffitulty as the
coefflcients are devoid of singularities, so- that the only foreseeable
problem which may arise, would be slow convergenca of the power séries
expansions and this 1in, fact is tme major difficulty encountered in
~,.‘t‘heir' so;utiod. Equationé' 3.1.4 have many analogues ocecurring
pregomin tl§ in elassical m;Lhanics‘and these have been'subjected to
extensive formal investigations by mathematicians over the years
' [19 61 62] Lo .

./
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. . The major difficulty arising in the soiution to equations 3.1.4 .
) ! }
is the occurrence of two time scales in thc problem, one .the time

I scale over which the periodic 'coefficients -in these differential
equations oscillate ‘and ,secondly , the time scale over which the

functions Q.(%) change appreciably. . The latter time scale is pormally

much longer , than the formér, parti arly' when the perturbations

arising from the oégﬁllator coefficients aje weak, and- a . number of
¢ * approximation methods have
- 7 [19,61,62,64].~ These

is basically & lTnear

een develqped to deal with such situations - :

proxd ion methdds all assume that the system

sysybc perturbed by the oscillating

field. Hence any change in bﬁe system occurring over the period of
* T . the perturbation [ short time" ‘scale ] can be averaged out . redu01ng the
problem to a single time scale. The classic cxample in“ the solution
to the differential - quatlons‘ of the ﬁirac method is' the "ROTATING
. FIELD APPROXIMATION". - ; S

.,
¥
i ’

For our pprpcsés_cquation 3.1.4 nceds to be'solGed/for' arbitrary

' c'ouplingc strength lpf\ ; f‘requeccy V and phase% ( or equivalently
starting times to t13] ) .of the ’applied field. Of particular

t ; intérest is ,the region whereI'NE‘ is large as it is over this range

. . that’ ‘most nonllnear spectroscopic ‘effects become important. Clearly
-.for these values of ﬁ\pﬁ\ the Wort time scale over which the
& perturbation Varies becomes increasingly ‘important. In the spirit of

the dbgve discuSsion we adopt the short time scale as the natural

variable for the problem and set ©® =Vt 4% . With this defini

> .
o O E RS ¢ a1 AR R PR . = .

e ’ equation 3.1.4 transforms to

: S oY%, 0 ~EQw ~ECsopge .32

and equatio; 3.1.6 to ' .
Qdy=A ~ : & 3.2.2 o
he following section will be devoted ., to soIving equation 3.2.1
,iubject to' equatidn 3. 2 2 by using a matching povWer series expansion
technique.

v LS
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3.2.1 EXPANSION™AND MATCHING OF SOLUTIONS OVER INTERVAL LENGTHS OF

[ E]

i IN THE VARIABLE ©® =Otsh .

For the reasons discussed earlier a conventional.'powép series
expansion. of Q.w) in powebs of the variable @ would meet witq sevdre
. . convergence difficulties due 40 the oscillatory . nature of the

coefficients in equation 3.2.1. 1Inspection of equgtion'3.2.1 show

,ekplicitly thai,the»cpefficieﬁts have a period in ® of 2W so tha{
\equat;on ;.2.1 ’has , the same general form over adjoining AW
© -intervals. This immediately suggests a direct expansion of gdsﬂ in
powers of ® over a limited range of ® (0¢«8LlW, .followed by a
re-expansion over; the sam; range in subsequent C'LW 2] -inter‘valé.

Matching of the solution at adjoining interval boundaries yields the

solutionQum, at least in principle, for arbitﬁary values of- the
variable ©. : ‘

. If equation 3.2.1 is decoupled and written as a set of N ,

Nﬁ\— order, dif‘f‘éréntial equations for each of the N individual |

amplitgd;s CgakeT, it is found that the coefficients of the

differential eqthionq satisfied by these amplitudes have a period of

T in the variable © ‘( an expliocit example is given f‘or: a, ’ two-level

system iateq ). It is therefore computationaly convenient to set a

W-interval a¥ the upper 1limit on the range of the power sefieﬁ
¢ ~ expansion®. Making the transformation -

(OT+D) = O =Y+ 0T , | N=0,4,1, ... ' 3.23

equations 3.2.1 on the appropriate © -interval transform to

£

-— - . o e o

# It will be seen later that for very strong coupling the

, . «Solution will even slowly _converge for this choice of expansion

'. interval, so that 'a further redﬁction in interval siie becomes

necessary.

P
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and equation 3.2.2 becomes

' ‘ (G\(&) = A . 325

) ‘ ' - .
Coupled .power series solutions to equation 3.2.4 afe readily obtained
/ and are given by

=2 C " oaab
= x,c- ‘.
where (rﬂ

T4 ) ] ’ 4 ‘
Con "n‘)(h\){E c’ * ( DAl Z (amf‘H -2"“"‘} 3.2.7

Here ,'Q -1mY, O and f‘r'om equation 3.2.6 it ~f‘ollous that

() (n) .
Q (o) =§° _ - 3.28
From equations 3.2.3-3.2.8 the matching requirement follows
NG, (el )
am =4 =, 3.2.9

Equations 3.2.7 and 3.2.6 can be used to obtain g.(O) in a stepwise

_amanner by adopting the following computational procedure:

(1). . Use equation 3.2.5 to set the appropriate _initial
-~ N conditions on equation 3.2.4 for a particular choice0 of phase 8 of

. : the sinusoidal field. | o

(11). Generate the expansion coefficients Sz valid for‘:‘ the
©- -irterval [oW] by using equation 3.2.7 with n=0. .

-~ - [0)) o ’ . .
- (141). - Reset, Q.('n) to C_:, and generate the expansion

coefficients C2 for the interval [T\',Tﬂ] by using equation 3,2.7 o ]
oo with n=1. ' _ | g

‘ (GO T ' . :
(1v) Reset Q (rnto Qo‘ and. repeat step.zii) for “fhe

® -interval [am, ?m] | B e

(v). Iterate over any number of requir-ed B-i.ntervals
]

It should be pointed out at this stage that the above matching
power series scheme need only be used at ihost. over the first‘. [O,Z‘ﬂ'}
interval. In ‘Sections 3.3 and: 3 4 a much ‘more et‘ficient 1.terat1ve '
gethod will tmployed to carr'y the solution to 1arger @alues of B..

’ P ' )

4




In the above definition of ¥ the actual variable of the problem

is VT, with the ‘phase® % serving only to reset the Ot origin to
A'dif‘f‘érent points along the sine wave, see Figure 3.1. In ae}:uél
practice the above compuﬁational proceduré is adopted only for“o, =0,
the solu_tion' f‘or‘arbitrary‘b being readily gener,at':ed from - this by a

simple transformation ,see Sections 3.3 and 3.4.

3.2.2 EXPANSION SUB-INTERVALS OF ¥. [nW (¥4 (i ]

As mentibnéd previously equation 3..2.6 mdy only slowly converge,
particularly .ih the very strong coupling \pﬁv\ limit. In such cases
the expansion interval lengt.hl of W in the variable® must be further
reduced to ensure rapid convergence of the power series éxpansion.
This reduction-in expansion interval-size further reduces the sSymmetry
of the problem and timig section outlines.a general method of solution

using an arbitrarw sub-intervat ei:pansionl length.

The oscillatory coef‘fic,ients in equation 3.2.4 must be modified

so that they reflect the behav1our of the differential equations over

37.

the expansion sub-interval of 1nter'est. [‘o achieve this the term .

(-0 Cosx in equation 3.2.4 will be replaced by the more general term

COS{X fd.') = Cos ¥ Cost — Simy SwseL - 3.2.10
The role of the phase factorol is solely to generate the coefficients
of equation , 3.2.1 appropriate to the sub-interval of interest on the

® ~interval [r\ﬂ',(ﬂow] ~ Equation 3.2.4 over this. interval becomes

“%39- L8 s-"" {E g nr) - B Cos ¥ Coset —Siny Sinat ] NG u@ 3 2. \\

add the following recurrence relat:ions can be easily derived t‘or the

_.L

- - - -

i

* The phase & 1is-equi alent to the initial time te at which the
system is instantaneously exposed t.o some point along the'sinusoidal
-wave. - For ‘veak couplings this phase dependenée is unimportant and is

ignor in most treatments of the problem. . However in the strong
coupling region it ’becémeg extremely-impprtant (22,28].

-
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™ .
power series expansion coefficient Q,( [ equation 3.2.6]

CR-H =|.‘0(.2N3{E C(M '8[e°5°( i Vl"‘" H 9:::'“"

LA AN

+Smxig&;;~n\ = =x—m-\l} : 3.2.12

-

Equation 3.2.12 is a generalisation of the recurrence relation given
by equation 3.2.7 for any arbitrary expansion sub-interval length on

"the [‘nn,(mnw] B-interval; In actual practice this recurrence

!

relation will only be used at most on the first (0,2%] @-interval
. while the more efficient iterative metnod to be discussed in Sections
3.3 and 3.4 will be embloyed to carry the solution to larger values of
©. In order to, illustrate the computational procedure over the [Q,T ]
interval Table I llsts the coefficients in equation 3.2.11 appropriate
to each sub-intervsl for bothW/2 and T/W expansion sub-intervals.
Further details regarding the optimum choice of expansion sub—interval
for s particular coupling strength \}.\E\ ’will ‘'be given in Appendix AJ.

3.3 ITERATIVE SOLUTION OVER ADJOINING @ -INTERVALS OF LENGTH T .

While the above matching power sc¥ies method is vastly sunerior
to ‘conventional numericsl techni&

recomputation of (NxK) expansion coefficients g;‘” for each ©-interval
where K+1 corresponds to the number of terms. retained in the power
series expansion, given by equation 3.2.6, to ensupe convergence of

theﬁsclution to the desired accuracy;

Q) {C"“ _ ) 3.3
2:0

However according to the .general theory of ordinary dif‘ferential‘
equations, the general solution to any N“—' order differential equation

( or ecjuivalent system of N first order dif‘feﬁntial equations )
contains at most N arbitrary constants. In the power series expansion

. of each element Q‘(ﬂ in equa‘tion 3 3 1, 'of the K+1 constants C“
' oecurring in this expansion only C :Ls arbitrary with the K other
constants CA’!’Q 21,0 0K - being directly dependent on it. This

les [28,65] it .still .requires :

A

allows "equation 3.3.1 tQ be regrouped into N parts that “are. -

'pr6portional to'the'yeft srbitrary constants CJ,, y J=21,2,...N, for each
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TABLE I, The oscillatory coefficients, (Cosy Cosa - Siny Sina), of
the differential equations given by equation 3.2.11 for (a) a 7/2
expansion sub-interval and (b) a m/4 expansion sub-interval.

L N ' S .

.(a) - 0<ys /2 e
| a=0 - Cosy 0<8xm/2
te‘ . o a = n/2 -Siny = m/2 £ 8 =.m
i
' (v) ’ 0y sw/h
{ a =0 | Cos Y \ 0 <8</
. a = 7/b [€0sy - Siny]l/¥2 = w/h <8 <m/2
o= 1r/2 ' -éiny . - w/2 £6 < 3n/k
| a = 3m/b ) [Cosy + Sin¥y]/V/Z 3m/b £ 6 <7




® V-interval. Hriting out. this result for the first 8 -interval [o %]

one obtains - ' .
Q) f(n ¢’ ‘ 3.3.2

and for the second, G-intenval fw,an) | ' ,
Q@) = = Q) Co . , 3.33

where f‘or the case in which the matrixr&. has zero diagonal elements
“the individual mat.r'ix elements of 5-“) and %(t) are related as follows:
,See Appendix A2, '

0

ﬁ'a‘n ’313"” , /Py =0

i =-g,0. 5 Py xol 3.3,
In the case where rL has nonzero diagonal elements such a simple
relation does not exist between the elements of f(&) and %Lx)[and both
matrices must be computed separately. The: following generalization of
3.3.2 and 3.3.3 to any n‘\“-inte‘r’val of © is obvious

(L))

'gf“‘sn =§-unc N aven ;
9""(3) ng"’“ 0 ooad A | 3?

In general the matrix j-(l), and hence %Lx) , whieh are independent
of ™\ and therefore hav‘e' t.he same power series expansi(m in terms of ¥
on the appropriate adJoiningQ T—intervals, are complicated functions
of the pa}ameters |p€\, E-A and ‘0.’ The elements.of these matrices can
be projected out of equation 3.2.6 by employing the following matrix
technique. ) \

It is clear from. equations 3.2.6 and - 3.2. 7 for n* that t.he

matrix f(l) in equation 3.3.2 can be expanded as a power series in. X
¥ - : | :

I Z Qe ¥ S 3.3.b

where see equation 3.2.7, the recurrence relations for the . expansion

matrices are given by

and

\ : M

o ( \) Q ,
oz'h\ ‘fi‘ﬁiq{i: gx * (-1 E Z (2m)‘ ﬂ' = -Q-‘lfn} 3.3.7.
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’ c\» q"t ‘, qu .
g = qvu %1, Wun . ,) Qo :; .
q,m q,“_. . oh“. 3 3 - 8

where § is the unit matrix. Each solution o.Am has N components
-

which depend directly on the N arbitrary constants C;\,o »J=1,2,....,NK

and as there are N such solutions the matrix g, projects out the N .

individual components of each sclution. The matrix £(¥) represents
the ( NxN ) general solution matrix, see Section 3.4, on the®
interval [0,W ] and the matrix elements q, are the power series
éoef“t‘ic,ient.s of ‘fi.;“)' .These power series coef‘f’icient.s will Dbe 'given.
explicitly’ in terms of the paramete_rs \pﬂ\, Eé "and VD up to 2.-.3 in
Chapter 4. : ’

\

*

For the situation in which P has zero diagoné]' elements the
. %

matrix gcgy is simply generated f‘rom &) by using’ é'quation 3.3.4

' whereas whenr\ has non zero diagonal elements equation 3.3.7 with n=t
needs to be solved. The unitarity of the matrices jm and 3(;\ is
easily shown from the normalization requirement for Q.u) see equation
3.1.3 ’

t of
a’nain =1 = C f@fwn Co
IT L)) ‘“ )
9" B¢ -1 = ¢ gl ¢ 339

-

which r-equir'es that both jqun -I and g.mta(x)—I .# From equations
3.3.2 and 3.2.5 the following relation for the constant matrix Co
follows '

CO = & C°\ A 33:‘0
In other uords the matrix Co depends. on the phase% of the applied
sinusoidal’ f'ield and this result shows explicitly that the solution

need be determined only.f‘or{ a single phasé€,see later.

&

Once the matrices fm and (x) have -been detemined on the
[0, 1] 0-1nt.er-val from the above relaeiona they ean be used to
generate 9.(0) iteratively over ahy humber of @ 2ﬂ'-intervals. The

-

computational procedure follows

“




~ ——

(1). . Determine Q‘:‘ f:rom equation ’3.3.10 for the appropriate

choice of‘&: . ,
) (2). Generate Q.o on the [0,W] interval by using this value of )
C.” and §«x), determined from equations 3.3.7 and 3.3.6 with®zo, in

equation’3.3$2‘( or equation 3.3.5;n even ).

. o . ' .
(3). Set So = Quumyand generate Q,Lo) on the interval [, 1wl by

using equation 3.3.5, if‘ﬁ has zero diagonal elements ( or equatiqji

3.3.7 and 3.3.6 with n=1 for %u) if‘ﬁ has nonzero diagonal elements)ﬂ

(4). Iteratc_a over any” number of required @-intervals using
) ()
equation 3.3.5* for_.n= 2,3,.... setting g, @m\') at each interval :

boundary. .

OIS ST O S . T

The iterative method presented in this section is obviously far
superior to the matching power series method discussed earlier. . It
- .’r'equ'ir'es at most a power series expaqsiqn on the first two ©

w-intervals, [0,%],[w,2%W], and oné’g }(x'z and’ %(lﬂ have been determined

>

- ' . - . . = ‘.'\) .
on these intervals respectively, the cogsiants CA,Q)J:L...N , need
y . only 'bé determined ,on subsequent intervals whereas the original power

. (W)
series method would require recomputation of ( NxK ) constants CJ,I

j=1,..N; ,Qz‘l,...K., on each interval.®

In order to illustrate how the iterative scheme discussed above

is implemented, - equations 3.3.5 are written out explicitly for

0£0O¢ . '
@%@y = S - * 0geeT 3.3.1(0)
o @d®m = g@ 0" L ganfm .’ wepLLW 3.3.1lb)

since C‘:‘s(}(ﬂ) = g‘f%)

# In th.e. pover series expansi¥on the number of teﬁns retained' to

-. ensure convergence 1s generally duit.e large, seelppendix A. Also
K™N 3o that the labour ;aved in using the above. iterative scheme is

considerable. |
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N = g.un j—“\ %m\ Q,'\" S—cn%cﬂ)gu\' Co 14 ®43T 33 11) y
'(_1_“\ =%(Q C. .ngmc, 2\ ¢ “’Q«, K3 Y Cun 3.304)

Closer inspectidn of equations ‘,3.‘3‘.\1 1\\‘-,‘\shov§s" explicitly that tne

solution (}cn when B=n@IM, n:=na..., occ\w's as pr‘odﬁhts of the pair

35 . This “is a reflection of" the f‘act that, as mentioned

previously, the actual -period- of t,ha Hamiltonian and hence that of‘ .
equation 3 2.1, is AW and notw. The choice of aTl-interval in ® was
dictated by the fact that it prov:.ded an u-pper limit .on the expansion
interval f‘or- which rapidly convergent solutions could be obtained and
even this ch01ce of &xpansion interval proved inadequate in the strong
coupling region [22,28]. Thus while it is possible to use the above
iterative —approach over adjoiningW™ O—interval.s‘it proves e'v-en more
efficient to interrupt the above iterative schefie at step (3) and

adopt an interval length of aW in @ for the iterative solution.

3.4 ITERATIVE SOLUTION OVER ADJOINING G-INTERVALé OF LENGTH aTr.

1

As discussed at the end of the last section the . period .of‘ the

Hamiltonian is 3W in the variable © and as is obvious from equations
‘,2 1 and 3.2.4 the transf‘ormation rom thq variable ® in  equation

3.2.1 to the variable ¥ spanning afr-interval in ® introduces ‘_a phase

factor o'f" (-1\“ in equation 3.2.4. |Once the solution g,w)‘has been '

determined over the [ © ,17(]"9-1 terval by adopting the procedures

outlined in the previous sections, it becomes more convenient to ,.usé a

aW @-interval f‘dr' iteration as this choice removes the phase factor

L-:D“ from the problem. Making "the transformation

. LA
(fpt«-‘oi =9 =z 8 +3(am y S=0i1,1, ... - 3.4
in equation 3 2. 1, yields on the appropriate 9-interval ‘
< Eale -€ Qs QL)] :
»,wg & { ® - BRQ 342
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' The solution for Q) on-the first AW-interval is now given by~ .

I

O.cv)-\\:(goco . o 3.w.3

. o - -~ .

. From equations 3.3.11(a) and (b) the ( NxN ) matrix F‘p is directly

expressible in {erms of the matrlcesf and% valid on adjoining T

G-mter‘vals, that is. ) . . :

Al

Ew=feo . oW

) n :

'E’L@ %qﬂnfm\ _ oo o ¢pLaw LR ,
An iterative scheme analgous to that outlined in the pr-e'\rious
section, for iteration over adjoining 2] —intervals, can be adopted

using FQ\ over adjoining ax e-intervals but wi‘th the important —

exception . that the phase factor (1) oceurring -in the earlier
iterative « scheme is’ completely r‘emoved.‘ R Thé g”enér-ali'sation " of
equation 3.4.3 to any s interval is analgous to that outlmed for a W

interval See Section 3. 3, . -

¥ Wm Co o - 3.W.S

A S ', s ’ «

ing ecjuations 3.4.3 and 3.4.5 (S»%1 ) iteratively, in "an
. ' L . PR

ana'lgous -ma\r{ner to-equation 3.3.5 in the previous section, it can be .

readily 3hown that . N ~ . R
(¥-)
a Lp xatgrlsm E(@nﬂ‘i’) go . g 3 3.4.b
ghere = . : . h L
F(g»fasu) —ﬁpffcaw} ] ' | L 3w

Also using equation 3 4. 7 i eratively it f‘ollows that ' ‘ 4

«

Finally -it is easy t.o 'shbw (from quations 3 y, u and 3.3.6 that

‘fcas“') [ﬂ:wr)l U . : - 3i+8
Fo =1 C , 3.49

Combining the results of equations 3. l; 5 - 3 ll 7 enables us to write
the general solution for Q) in equatic)n 3 2.1 in the form ‘

0.(93 Q.aensn) \‘\"q»[l\:(gm:\ C, E 340 . - '
and in addition, from equation 3.4.3 and 3. 2.5, we obtain L
- =%
. . - &
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co ¢ = b (5) A 3.4
The superscrlpt on C. has been dropped as clearly becomes redundant

in Qﬁ’ above results. EquatLOn 3.4.10 represents the exact’formal

5Bolut10n to the problem o; a 'sinusoidal field of. arbitrary frequency

40, %Fplitude j& and phase-& interacting with an N-level system of
' arbitrary configuration. In additlon it shows explicitly that the
solytion for CL(O) on the first [ 0, 1TJ.9-intervaI provides all the
1nformat10n necessary to generate the. complete solution to equation
3 2.1, for arbltrary values of ® orX . This particular property of
lthe solution will be shown to be especially suited for the eomputation
.of many §:;ady state and damped average properties of multl-level

systems int actlng with a sinusoidal field. L.

!

\

. The matrix# E(p) merits: some further discussion as its
determination is erucial to sdlying %he préblem, see e;uation3'3.u.10
and 3.4:11 . " The properties of this .matrix expressed'.by equations
3.4.7 - 3.4.9 are forne}ly discussed by /Erugin LGZ] and others

19,61 ’ n
[96] _ K : y e

Us1ng equation 3.4.5 it is easy to show that the ind1v1dual

< columns of tne integral matrix FLQ) also’ satisf’y equation 3.4.2. As
IF(@) is unitary its columns dre orthogonal and each represents a
solutlon to equation 3.4.2.° The matrix (:oLEN -projects out .the

. anp}opriate columns for the partidular imposed initial conditions. As
‘Qa specific. exemple supposef that the N-level system initially in its
ground state, that iS Q-1 Clawn 0, 371., interacts with a - cosine
wave (3 =0 ) ,see equationw3 1.4, The initial condition matrix C_._.to)
becomes . ~ . A !

PR3 ’ R ‘ - R

N . -
- ) o

* Formally tHe matrix Fq) can be identified with the integral

matrix %olution to a general system of differential equations with

periodic coeffioients discussed by Erugin [62) and others {19,611,

Fi}) is also called the monodromy matrix [61] or the principal matrix

solution. [19] , -

> ™~ - - -
. ' -

)
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C'..\Qa\'-'u ° = ﬁ\

-

, ¥ ‘ ‘ e 3.4\

“and the eolution :Q-WS on the¢ [Vo,)“'] interval becomes, ' seée equation
3.4.3 ot , . :
) e - © : .
. ) ' . ' } .
ew = | BB ) T e = faw 040Lam, 3und
\ Ba®/ © = . '

If, asrin a numberﬂ of experiments, the system i i initially'an

:. 4 admixture of‘ states, then the ‘matrix Cv represents the appropriage
weighting of each column of E‘” in the solution Q(®). -

Q [y - - K
Finally some remark .should be made concerning the computational

ease witr_i which if(p‘ can 'be generated. The ability of the matching
power' seribs method to represent the - solution over arbitrary
sub- inte&vals ot‘ I\' ,y3ee Section 3.2, .ensures that the integral matrix

. ng ¢éan be generated close to ‘machine accuracy in most cases by an

, appropriate choice of the expansion sub-intervals length , see
Appendix ﬂ, This f‘eature is particularly important in the strong
o r;egion where other - numdpical methéd.s/ tend to fail,or to '

. become j,gnpractical [13 14 65] For large times t, or equivalently
large © in equation 3 4.10, the evalua on of [ \F(:\m] is facilitated
by using the relation (X) = ()(")1 iter 3

L)

a3 - o ) : -
3.5 ITERATIVE SOLUTION;IN FLOQUET FORM. .

'I‘he exact 1terative solution, see equation 3.4.10 , provides a
powerful method for the investigation of the behaviour of the general
solution Q-Lt\ to the eystem ot’ coupled differential equations, glven
by equation 3.\.4, for. arbitrary coupling strengths \u8l, frequencies”-
4 and phase‘o the applied sinusoidal field over arbitrary time
intervale The 1integral matrix LO\ , Wwhich re?p.resents the general
solution to equation 3.2.1, 4s no /in a form particularly suited to.
the evaluation of eteady state or average properties of the syst

\,Since such a f‘orq is desirable for complete generality of the. met'jod,
: this section will be devoted to «he transformation of E(O) to a more




useful form for the the evaluation of these proper't.ies.u

©

-~

- - T s

The 'general form of the solution to a 'system of 1linear

,' dif‘f‘erential equations with perlodic coef‘f‘icients has been’ krEan for
some time. It was, first derived by Floquet in 1880 and smce\then has

. been the object of‘ extens:.'ve. formal 1nvest1gation by mathematicians

over the years., </’ -2 ; .-
LT ' < .

i& » .
Floquet “s stheorem [19] asserts that the general solution to-

’ -

. equation 3.2.1 can‘-be written in the form .
o 'QA'“» Le\ exe[‘- 5 o) : o 3.5
. . where ?_(o) is a periodic ( NxN' ) matrlx, :
- . e . P
%wnm L@ D . sa

andg is @ real (NxN ) constant diagonal matrlx, the elements of
'which are called the charat:teristic exponents. The characteristic
'exponents are real as the matrices %(9) and 1(9) are A unitary. The
major concern of this section is to seek a transf‘ormation which places
the integral matrix F(OS in the form of equati\on 3.5.1. 'I‘o achieve

v . this tr'a sformation of the integral matr"!nxwe exploit f‘urther its
' properties outlined in"eq‘u.g‘-t‘ions 3.4.7 2 3.4.9 of the previous

section. From equation 3.4.8. ‘

® -
ﬁzmﬂ an) . - 3%83°
7 However the integral matrix ﬂ'uu) can be. diagonalized
Ve, Fu.m S )\ S LT . S\
wheres +18 a_ constant (NxN ) unitary matrix whose columns are the
. . -1 .
> " -lorth;?nonmal elgeénvectors S; corresponding to the complex eigenvalues.

. )\3’ j=1:2,..:N, of E(‘L‘n).- As E(e)j is imitary" the complex

eigenvalues )\"h satisfy the condition (63)
.-

R YL T . | 3.5.5

and this property allows equation 3.5.4 to be written as

Fam = Sexq[mznls IR 356

where the characteristic exponents AA J =21,2,...N, are deternined
from, the r'ollowing relation ' . . o 4 : -t

’ -
b b . - . s . .
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Lﬁé 2T Qn >\¢ ) . 3.5.1
Substituting equation 3.5.6 1in  equation 3.5.3 yields the general

solution to equation 3:2.1 at @=dnW, that is

: } ) -\ .
FTlaem - S ex(’[t Da““‘] 3 358
Direct comparison of equations 3. 5.8 and 3.5. 1 f‘or' the matrix %(0\
yields the following result

%(ann) = Wunﬂls S e"?{‘ “"‘““) | 35.9

and this result in turn requires that

e e ol

T @anm =§ ¥ 3.5.10
Equations 3.5.1 and 3.5.8 -'3.5.10 lead to definition. of the , the

'- & matr:lx f(é) in- terms of the original integral - matriabf(e) for
arbitrar‘yB — .
. ¥ . . ) ' >
(8) = Y\‘w\S ex?['L ] 9] ) 3. S.\\

(9\ S . ) ‘ 3.5
@ /a sy to show using equation 3.5.6 and equation 3. 5.8 that Z(g)
, fies the periodicity requirement, given by equation 3.5.2. Using
:J/ions 3.4.7 = 3.4.10 the ‘exact solution(liﬁh to equation 3.2.1 can
be written completely 1n terms of the variable 9
° Q® =@ Co (8 3.5.13
where for 9721\' H:(o) is generated iteratively as in equation 3.4.10.
Combining equations 3.5.11 and 3.5. 13 the complete solution (L(Eb can
be written explieitly in Eloquet form
Q. (9) —'ita) expli 8] b (%) ‘ 3.5
wiere T
bs &) = $7Cod v 35S

In the next section the exact solution 9.(93 given by equation 3.5.14
will be shown to be particularly suited to the evaluation of steady
state and average properties of the system . . P

-

- ’ : ! \"
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An important relation between tl'ie charactéristic exponents A;‘
and the original unperturbed energies EA can be derived by using the
following expression [19] for the determinant of“F(O)

duk e exe( ftr{\-\ce )} c\e) ‘35

where

By - g. -pE€Gse | teluw) =tlel 350

s

However, from equations 3.5. 14 and 3. 5"6

c\n‘(.?_f(a“\ =1\:‘7~3 erY_leri ]

3518
Comparing equations 3.5.18 and 3.5.16, yields the required result |,
that is

N © .
"-02(15 vm) - )'_Ea, wm=0,t1,%2,... 354
43
The condition,moo\('o). in equation 3.5.19 follows since exp‘u(d-bm\m]
eze[_}_a'nq\'] The od‘s can be evaluated f the complex ™
eigenvalues AA Ry using equation 3. 5 7. 'Using the polar form for the
complex number ]\8 and equation 3.5.5 yields [66]

L‘-g ’%’% o i\w\ >‘;\/ R‘\a-\-n(m K c\:p',t'i,-f:\, .. 3_5_26

"Equations 3,-5.19 and 3.5.20 show that the characteristic exponents AA
_have inf‘initely many branches bounded by the branch lines
‘“"-l ma: 0,31 .... For operational purposes we 'shall def‘ine [13] a full

’ branch‘ as being bounded by the branch lines wn¥ \11. wmz=0%1..; here a
. full branch indludes a positive or negative rotation of N& through an
angle of Tr_ radians in the upper or lower half of the complex plane,
respectively. Equation 3.5.20 shows ith.at there is a eimple periodic"
relationship between the Gcharacteristic eiponents in adjoininé
branches and that they are eseentiallz arbitrery It will be. shown'
later that the physical properties computed with these Aé’s do 'not
depend on their arbitrariness see also [13,14]. 1n the calculations.’
reported in Chapters 4 and 5 the evaluation. of the'chara:\c'teristic
exponents A d is ca ;,ed out by using equation 3 5.20 and the values
of A _are confined /to the branch bounded by the branch unes ya(
n;o;!‘.i mso) In d4Acussing the behaviour of the A '$ ,as a function
of f‘requency for éxample, their piots will appear discontinous at the




branch lines ¥'/2.. Continous plots can be obtained by using equation

.

R

3.5.19 with en%0 . oo
The formal scheme developed above for constructing the. Floquet
solution, equation 3.5.14, from the integral matrix. W_'(g), given by

equation 3.&'.11,_ can_ be briefly summar'izéd in t;pe following

computational steps.

(1). Determine the integral matrix E(e) err the interval
0¢ ©4 2T for the appropriate .co'uplling str;er;gth W8\, frequency and
pha:;e 3 of the applied'. sinusoidal {‘ield, utilizing t.l’;e methods -
outlined in Se‘ct.io’ns 3.3~3.4.,. :

- t\ + )
(2). Diagonalize the unitary matrix Et‘l.“) to obtain the
appropriate eigenvalues 7\5 and eigenvectors §8 and use these to
construct the periodic ‘matrix 7_;(9\ and the characteristic exponents Aé'
according to equations 3.5.11 and 3.'5,.7 respectively. ©oL7
, ‘ \ .
(3).° Construct the initial condition array \3, (8) from Coth)

defined in equation 3.4.11. . s

{(4). Use equatior;s' 3.5.14 - 3.5,15" to ' generate 9.(97 for
arbitrary © . - “ :

One poessible limitation on the acchragy' of the Floquet ‘_so].ution,
equation 3.5.14, relative to the iterative solution, equation 3.4.10, )
lies Din the diagonalization of the integral matrix !u.w). 'This does N o
not pose a particular problem as very accurate diagoi:aliz,_at.i%_., '

routines are available on standard program packages [67,68].% €
should probably be re-'emph_a'sised at this point %hat while the 'E“ipquet |

form of the solution for g.(.t) 1‘3“ particularly. suited to the evéluabiong , -
<'>f'4 average ' and 'éteady state properties of the system ,[13,2'2‘], it , a
'provide.s no particular advantagé over the iterative, solution, equatidh ‘ '
3.4.10, as far as the'evéluatiion of the peﬁpora; behaviour of Q.tt) is

.
"

concerned. . ) .
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. 3.6 EXPECTATION VALUES OF OPERATORS AND THEIR PHASE AND TIME AVERAGES

The‘physical'properties of any quantum mechanical syetem are
di[ectly expressible in terms of the expectation values, ofr
appropriate operators é; , With ' respecp to the total wavefunction
\I/:r,é)‘ . This section will be meinly concerned with outlining some
icteresting features: of the evaluation of the phase and time averages
of these expectation values when obtained through the Floquet

formulism.
>

-

3.6.1 NEGLECTING RELAXATION EFFECTS

. In this section average properties will be formally represented
in terms of an expectation value of a general operator &if.t) with
respect to the total wavefunction qg(ntq. Our sole interest in, this
thesis, however, will be to evaluate .the various aVereges of the
induced transition probability and explicit formulee for phese

quantities will be presented in Section 3.7.

In order to evaluate these expectation values and their phase and
t;me averages conveniently, density matrix notation will be adopted
{38,701, and see Section 3. 1. The density matrix AQ(tJ‘ in terms of
equation 3.5.14 becomes

Pm-am Vi = Imgct.%)ht) 7 3

where B
g% exe[»é<~nt+83]b.mb,<s>exe[ LQW“""’"] 3.6

and- the expectatign value in this formalism is. written [38,70], see

‘ “ - o : <

* While diaéooelization routines" areﬁ availaole for complex
matrices on most program packages, even more common are very accurate
routines for the diagonalization of real matrices. As . any general
complex ( NxN ‘3‘ array can be written aq a real ( ZNxzh )iérrey the
'iatter routines may prove more appropéiate [69j.

o
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Section 3.1 . ‘
{E ool foo) R = -w{ pwi “‘“’] 3.6.3

where the operator{ is represented on the’ -right hand side by its

. appropriate matrix representatiop ’ , - , o
Lo = (ot Lemoigee) ~ 36l

and{ is assumed to have the following periodiec property with resbect

to time . B -
iir,t) = £U‘,t+ﬂf/0) : ' 355

“which includes {.(ﬂ =constant in time.

For a specified frequency Y and phase‘b of the applied sinusoidal

field, the expectation value of‘l, defined by equation 3.6.3, could be
dir_'ectly computed with the result f‘or/g(t\ g_iven by equation 3.6.1.
However, as mentioned at the end of Section 3.4, the Floquet form of
the sqlution.pr'ovides-hno particular advantage over the iterative - form

given by equation 3.4.10 and jndeed equaﬁion 3.4.10 providés the more

.direct route to the‘evaluation of eq'uation 3.6.3. Further details

regarding the evaluation of equation 3.6.3 will be given in the next
two chapters when ,specif'ic level configurations will be dealt with.

It now remains to be shown why ‘the_ Floquet solution, given by
equations. 3.5.14 and 3.6.1, is particularly advén‘tageous when ‘phase
‘and time averages of equation 3.6.3 are to be computed. At ;his stage

it 1is convenient to define the following phase, long-time and.

long-time/phase averages of equation 3.6.3, ’
w . . A )

if} = “"J ’t‘r{ P,u:)i(r,t)-_\df, : 4 . 335‘5

1{}.\,,,,9 = ,Q\.m ':,-—J Tr[ gmﬁ(r.ﬂ]dt . ' o | 367

The phase averaged expectation value det‘ined by equation 3.6.6
will first. be conswered in some detail. From equations 3.6.1 and
3.6.2 it 1s clear that the tine-dependent expectation value 1z a
‘funetion \of the phase ot the applied sinusoidal rield This phase
dependence alqus for the randcnmeas of excited state formation

- .

@

ty
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* .
[2,13,22] with respect to the interaction of the original stationary

etate system with the applied time-dependent ' field. The. physically’
meaningful temporal behaviour%of', the expectation value will . be

"ormally independent of% and will correspond to the phase averaged
r

esult given bi equation 3.6.6. For example, if the system being.
irradiated is in the gaseous state, then. random collisions between
‘atoms or ‘mplecules in the gas or collisions with the walls of the
container can completely terminate the radiation process. In this-
case the phase ® would correspond to the instant (%) after such a

. collision at which time the system is again exposed to , 3ome point

along the sinusoidal wave representing the applied radiation. . Another
possible source of this phaee dependence in molecular beam or pulse'
experiments could.correspond to the instant (L,) at which the°;tom or
molecule enters the radiation interaction region. To facilitate the
evaluation of equation 3.6. 6,. it is more convenient to rewrite
equati‘on 3.6.1 f‘orp(t) , after some straightforward manipulations, in
the following form

L) = 'E_ EKmmZ wtm\o Hbwexliaraoouy) - 349

which, in turn, allows the phase averaged expectation value, given by,

equation 3.6. .6, to be written as ' ' ‘ -

R = Eaf[»ﬁbx*t\u)*’t]"r[ﬂ «m] . - 360
where
0, ot = ! {7: g«)t-vB)Zé'oth)z_ EKG) b\_‘.t;exq[ Ln;o._)&]]d& -
- 1 ‘
and, because the periodicity of E(t) and ‘f(rt_\ ’ the foll%wing»
* condition on ﬂK‘Lg\)t) holds - g
Q. (—0‘\:\ D__ otram, » ' 3611

'Once the phasa 1ntegral in equation '3.6.11 has been evaluated over the

time 1nté’rva1 04t 4 AWK, the periodic property of' the matrix Sy, 00

given by equation 3.6. 12 allows[&k, equation 3.6.10, to be easily
computed over arbitrary time intervais. F‘urther details regarding -the

‘"~ evaluation of the phase integral in equation 3.6.11 will be siven‘

later, see Appen_dix L, 3.

<
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Next we consider the long time average of equation 3. 6. é defined
by equation 3. 6 7, which corresponds to the steady state response of
the system when perturbed by a sinusoidal field of well defined phase

For the same reasons as Qiscussod‘in the preceding‘paragraph, thg.
physical response of the oystem will normally correspond to the long
time av’efage of (&}g . -'Substitu_ting equation 3.6.9 into equation
3.6.7, gives .

fii ~DD * {YT"[ Z i Wf-*’s) lkﬂt*‘o) £ (r,ta it \‘oKLS\\ +

‘\'-)&

f'ﬁ{ L 7 é«)m-s)?. <ot+‘o)£ £ er?[_ u.\,,‘~ bdwcfﬁ)ﬂ ax BK(&\) cﬁ)} 3683
4 K¥l e

¥
The integrand in the second term of equation 3.6.13 is . bounded and

oscillates in sign =so 5hat its integral is zero. In addition, the
periodicity of Z(t) and {(r,g) in the first integrand alﬂlowsfﬁl.r,,o to
be written in the following ‘convenient form.

‘fk w‘i“‘[i* Wtf‘@ﬁph&)ﬁ«t]} lhas)\

awpy -
’%:rry h—[ L Z, oue f Wotd) & £ ti‘ at |b® [ 3.bib
Equation 3.6.1B shows very clearly' the power of the ‘Floquet form of

¢

the solution for g.(t) with the steady state response -of the system to

a sinusoidal field 8f well defined phase b, reducing to a simple time
average of the expectation value over one period of the Hamiltonian
L*Lntb Further details regarding the evaluation of the time integral
in equation 3.6.14 will be given in Appendix A.3.

Finally the phase averaged steady state response ‘&}7,,‘§ or

equivalently‘i}sﬂg4g, can be written, with the aid of equation 3. 6 14

" and the .definition of the natrix nxbOﬂ ‘given by equation 3 6.11,
in the following convenient form.

u}«'-w o= ”"[ i n'K K("’t)n AN

_\)/mﬁ'-?:\l_i ,(I“Lotﬂdt {ﬁ's o s L N | ‘3.b.|S’

Equation 3. 6 15 will: normally correspond to the physftal steady state
response If ‘the N-level gyaten and the external sinusoidal field can

\
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set up steady.state oscillations before important relaxation effects

set in. Otherwisé relaxation effects cdn be explicitly incorporated

into the above results by replacing the infinite time average, defined

L “in, equations 3.6.7 ‘and 3. 6.8, by the appr‘opriate damped aver‘ages (ix‘r
and i{s'fs, r'espectively

»

The general form c:’f‘ equation 3.6.14, )coupled with equationjs
@ 3.6.13 and 3.6.7, suggests that the total wavei‘unction \Pcr,t) in

B . equation 3.1.1 be rewritten in the following alterhativgfcrm- -

Yo = 7_ \ent) by —7_ Ko (rx) \aK\&ser{meuﬂ 3 b1
where X W U is the periodic part of (.\/Lrt\ defined by )

X.Kcr 0 = &ﬁ%\gwum XK (€ T+aTD) . - 3b. \j

Equations 3.6,16 and 3.6.17 provide an, alternative representation of
the total wavefunction g/(r,t\ and the steady state response of the
b ) system to, the per{aic perturbation, given by equation 3.6.14, in this

new representat ion -becomes

o f{L}«_,p i_{(‘X. kn:)\{cv,:\\xxmt)ﬂ \b._(dn\‘L ,' 3.b.\8

In addition if equation 3.6.16 is substituted mto the time-dependent
s Schroedinger equation, equation 2.1.1 , the following eigenvalue
3 equation can be derived [49] for the characteristic exponents

- LRen + 9bk-tdac) Xywe) =0 . - 3.6.19
It is easy to show _uSing the unitarity of the matrix Z.Lt\ that Xu(f,t)

B

form a set of orthonormal ffﬁnctions , that 1is
. B * ’ . .
4 \'\{K e )| W, \:\}' = A %, éOth) }S\L_\)uﬁ) b&k&) b._ds) ex.e[»(b o .b KXO\'A%;]

, co '\E;L\-. 3.6.20
The functions \{/‘gr,t\ and ‘their eigenvalues (VBy) have been
discuseef formally by Young, Deal. and Kestner [49], see Section 2.4,
‘who derive perturbation expanaions for both \K‘Lr.t\, which' they term
"quasi-periodic" states, . ‘(1)3‘), which are their corresponding
"quasi-ene\gte’ ' The pré;sent formulation 1is equivalent. " to
calculating \Vﬁt\ and kOb.‘) exactly and thus 5wou1d cox'respond to the. .'
parturbation results sumed through all orders. . ‘ -

»



3.6.2 INCLUSION OF RELAXATION EFFECTS

The results derived in Section 3.6.1 were obtained on the
assumption that relaxation effects in the N-level system were
" unimportant in determ;ning the final physical response of t#ls system
to the applied sinusoidal perturbation.- As discussed previously, this
assumption is only valid as long as the coupled system of - oscillating
field and atom can sei up steady state osclllations before relaxation
effects set in. These relaxation effects, when important, can be
ineluded in the analysis by directly incorporating the
phenomenological desay constants 83 (representing the radiative widths
" of the stationary states Q (t) ) into the original set of coupled
differential equations, see Chapter 2 . Alternatively, as in the case
of collision damping, these relaxation effects can be aCCOuhted for by
a statistical weighgipg of the physical property of interestnover some
~ mean interaction time ¥, see Cﬁépter 2. The latter approach provides
a much more meaningful physical picture of the experimental situation
as it can account for the many different damping effects operative in
real gaseous systems, incluaing the spontaneous decay terms 83 of the
former method in the 1limit that the gas {is very dilute.® An
undesirable feature of the former method is that the integral matrix“‘
in equation 3.4.10 is no longer- uhitary Thus the followingAanalysis
of damping phenomena will be solely concerned with the, statfstical
coilisién dampidg whicﬁ has already been employed in Chapteé~2 in
'modifying the Rabi lineshape! '

- &
The damped average of some physical property defined by the
expectation value of the operator£ in equation 3.6.3 is written

{£] ..J.f tr‘_Pu:-t.\fu't-t y)expl- &'c-t.)/"r]dt. 3.6

which correaponds to a weighted average of the property of interest
over the initial times t,, see Chapter 2, where the constant Y refers
"to the mean interaction time of the system with the oscillating field

Equat;pn 3.6.21 can be qasily made consistent wilth the previous

» ' -

-y -

* In the limit that, the gaseous system 1s very dilute, the
damping constant Y approaches the apontaneous decay lifetime of the
state under investigation and’ 1f all of theae litetimes are asaumed
equal ‘then Vs X where Y= 3.'3’1.'- -+ [9455].
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definitions of steady state averages (equations '3.6.6 -3.6.8) by the
simple change of variable

(t (D I — . ) ) 3.5&1
whlch transforms equation. 3.6.21 to : ’ .
‘f.}x:"gTV'Y_PL\:\&(c t)]e:q:[ tI'T] 4 " 3.6.23

Equation 3. 6 23 is now in a convenient . form for the evaluation of the °’

‘gamped average properties both for fields of well defined phase © and

for their phase averaged counterparts, For , example, the damped

analogue to equation 3.6.13 -becomes

{21~ «5“[ i % (om,ﬁ:. (Ot+d) fcr t)] exe\_ RL‘EK at ﬁ?‘“‘“&"’\)i’xk\?‘ %)

3.6.20
where . ’
PKL-‘-' (b - B + LT . B < - R 4.6.25

Equation 3.6.24 can be further simplified by eiploiting the periodic
property of the matrix

(L3, =3 7. { f éta—%ﬁmt«-&)ft(fti] ex\{ “n.t-_\ at +

WO

f tr{z Lom—%‘)%@n%)ﬁ«t]eqi . :]au ]m{tm . .;S]l)m o ‘5
,,_J,{ QI‘{L(D -00 8 b bien tr[icous&m oedexifd

o redtogrenon] e ]

Z exf] (025081 b®HE® j [Zpt»sﬁ oy fgp]exem t]«c

"’L\ - e-.q?[\.r 9'“'11)] o

BBQB

In the limit 1ﬂ7¢o equation 3.6.26 reduces to equation 3.6.14 as.

expected. Finally the ‘damped counterpart to equation 3.6.15 for the

phase averaged steady state response, is given by

(235 ZW)F 0 eoferl e 3‘*’:3"',

where .;1 (Qt) is given by equati,on 3.6.11, The_ above results for
the damped averages, given‘ by equations 3.6.26 and 3.6.27, differ from



4

their szeady state analogues in that the terms. with X$¥L have to be
r‘etﬁled in their evaluatlon, as the integr'ands age no longer purely
oscillatory due .to the ‘presence’ of t;he damping term exv(tl"r]
However, as in"the caée of the steady state results, they still-.reduce
to a simple integration over the period of the Hamiltonlan \\Lrtb
Oné womld expect however that the contributions of these nondiagonal
teras %\,) to the final resuft should become smaller. if (1) for
fixed coupled ‘energy \y&) the relaxation time Y is increased or (2)
Tor fixed ¥ the coupling energy \p&A is increased. These expectations
ape further substantiated in ‘the followiqp *two chapters where explicit

calculations will show that these non-diagonal (KaLJ ‘terms make

. negligible contrlbutions in , many cases for finite values of Y, with

the physical results in éuch cases being given by the sifpler steady
state response, se¢ equations 3.6.143 and 3.6.15. )

1
)

© 3.7 PHASE AND TIME AVERAGEB INDUCED .TRANSITION -PROBABILITIES

. The ciscuSSionS and " results of the previous section show
.explicitly the' power of the Floquet solution in.evaluating average
properties of the N-level. sysbem. Explicit formulae will now be
presented for the 'phase and phase/time:;averages of tce induced
transition probabilities. ’ ¥

%

. S
.

, ; .
The induced transition probability to any state f of the N-level
systen, §ubject to thé appropriate " initial conditions given by

equation 3.1.6, is determined cIrectli from the right hand side of.
equation 3.6.3, with the individual elements of the datrix.é;u defined"

by . . -

£, = 8uby L S )

. This yields the well kﬁoﬁn JJesult r the ced transition

. probability to state f

B =Py =lagl™ L .,,fiﬁfé, . 332

With this detinition ofz.in equations 3.6.6 and 3.6. 10, the phase

averaged induced tranaition probability becomes - ¥

-~

o
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where ﬂ_"scot\ refers to the (f’ f) delement of the ' (NxN). periodic -
matr'ix QKL(Qt\given by equatiom 3:6.1%. ~ Its explicit form is [22]

Afnsiflegeo P botio eqfieanlas | 31u .

The ste dy state induced Lransition proba.bility_ -f‘ollo_ws immediai:pl);
‘ions 3.6. 7 and- 3 6 ;. & . . ¢

. N N R =~

i J

from equ

PA. VIV : s . .
pm- D/Qvf D \?:ﬁf«?m\ At xbum e L 3as
. ® \ . . REX . -. M S -~\‘. - . . R . o
' Finally’ the, __phase-:. avei\aged‘ . steady “ statk © induced transitien
[ .!‘ p - '
probabllity, P&{r” can be dertu\ed ﬁﬁrectly f‘rom équation 3.6.15" : SN .
e el \Lm.o . K‘,‘El . “ - R . v“ P‘ ) ’ . . - . T - . -_’:
.“ ) L4 - . e i
g j' ’Dlaﬂf 2 Q (Qt} At R \ 3 0

1 “

wher‘e the ma‘.rix element ﬂ K,‘Q)l:)is easi‘y cb;aimed from equation
3 7 u :h ‘- ‘;- ‘ * ;" N A ‘._, : . — .' -
n_*-”@ﬂ “—-f\’-?: t«brAS)\ \‘o m\ A% Y. 3.7

T .
In aetuaI oalcumtions a eonvenient numerical check is provided
Dt

by the conservation of‘ transition' probabilit.y, : e I
) . LY C.

1 -\@ I: ?nm 'i? L&) ‘E %PM 3.8
whioh hllows immediately from: the fact that Hee,©) 1s self adjoint.  °

In ad‘tual practiqe a numerical’ eheck on the accur*acy *at each stage of. .
the abov‘e averaging processes ‘ean be made by setting f.he matrix g I

P ',i;n the aﬁpt\opriate equations. , .’___ - - ) 4 W

Ha bogxci}zde this aection by presegting t.ne damped ana gues to '

K

equa’ciqna 3.7. 5. aﬂd 3 7.6. Sub‘atituting equation -3.7. 1 1ato equation
. 3. 6 26 yields the dm:ped induced transiti.on probability f'or' a.
sin’;’:soida,l\field ot‘ u@ll det‘ined phase S )

.“*'- Eainn W
-

) 37X “’ wxe[»m Aﬁﬁ]b t3‘)‘o (U} % ' ': '
,‘P *ﬁ?‘;_-z ’{1 [ ;9f f‘ :w, -j ] f («itig)gt‘.ﬁt':a—m‘ﬁi 1&3&. . ,——-—
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where the relaxation constant-'rhas been discussed earlier [9, 55]
Finally the damped phase averaged induced transition prdbabflity is T,

4 o a

obtained',f‘rom equations3 6.27 AWy . , ~ - "
i P»T : z (i -—exr[_nf: ]] S‘ Qﬁfon e"‘\". KLt] at ’3-7'")' s o

. Where Q K wt) is der:ined,wation 3.6.17.  Equatfon 3.7. 10 will
nOrmally ,yieEd the physically Qbserved spectrum when relaxation
efTQCts‘become important [9,39] and it will be compared directly to

' the simpler steady state result for sﬁecific level configuratidns in
- the'next two chapters. ) \ '

[}
-

' ' =Finally, another source cf line broadening;. which. will not be
considered .in vthis thesfs, ‘but which‘can imporﬁant at micréwave

* throagh" op;ical frequencies, arises from the, Doppler effect' Molecular

‘,‘ béams‘ or oppositely directed lasedyr beams can ba used to elimid%te
' DOppler broadening at xhese freque’Eies[ ,83 ] If Dappler broadening,

is to be included in the abovd'results the pnppegty of doterest, say

" ‘{Nﬂ y ereds to be integratedruv’er‘ an .appr*opriate Nelocit,y b

. . - distribu’tion \A/(‘V‘) whose explicit f'orm depends od the experimental L )
s B conditions[ll 9].- Formally, this Velocity integral may be , writtén as -
e foriows ) : ' | T
. . {W(v) if(w)LwV/c]ﬂ dv' o
ot -0 -

i Unfortunately, none of the” periodic propeﬁyies exploited earlier in
evaluating the -collisicm damping integrals can be used: to evaluate , e

this velocity integral- and a direct numerical -integrat‘iob would " be et
k%2 required oo, .- . a Lo e g
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CHAPTER U4

N
]

THE TW0' LEVEL SYSTEM. _

v

=

Tne problem in‘whicﬁ the infinite set‘ of coupled first -order

differential equations,; given by,eqpation 3.1.4, is truncated o a set
. of two coupled finst order differential equations wiil be consideredg
'inlﬁdetail in -this *cﬂipfer Hisboricaliy the two level system-has
provided the basis for the study of both linear and non-linear
transition - processes - [7,13,14, 18], including the fundamental
oscillations. of the different modes within laser systems {1-3,39,71].
The validity of this two. state approximation has been discussed
qualitatively by different authors previously [13—15} and it is
assumed to provide an adequate description-of the transition process
as long as the spectral profile ,arising from the . transition of
interest does not overlap apgreciably with _any_ other lineshapes
) arising from transitions td‘neigthUPing states of the quantum system.
‘A more. quantitative test of this two state approximation will be
preseﬁted in the next ehapter when these neighboﬁring states .will be
explicitly included in the analysis The formal re,u;;s derived in
the .previous chapter will now . be employed to ®xtract exp}icit“
information régarding induced transitions.in a two-level system. )

. e . . ;e .
. L
P C . \
’ - \

4.1 THE SOLUTIPN OF THE TIME DEPENDENT WAVE EQUATION FOR THE TWO LEVEL
. @ , _.‘- R s a0

‘ PROBLEM

1

clariried, ﬁml of- the geueral r‘-esdlts derived therein 4411 be writtern
out in detail for the two-ievel nondegenerstq systen. Equaﬁ}on 3 1. 4'

° Pl e
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is now written explicitly as

Y (G E, ° o.m 3t b(o p.-.Xa.m)
{t( ) ) - € Cog(SLad)

Q. o th 1 9/\0, & W.1.)
the normalization: condition (equation 3.1.3) becomes . .
Loy l” . . ’ %2

14 ‘ '

uation 4.1.1, in spite of its rather.simple appearance, has not been'

solved 1in general in terms of tabulated functions [14] and the reason
for th}s becomes more apparent if 4.1.1 is decoupled and written ' as
ﬁwo independent second order differential equatfons for- the individual
state amplifudes Cl%x) J-1'2, see also [14];

‘ob: Qe ¥ LiCe, +Eﬂ - Youn ot +b§] {Q «) 1 E (E\— \.‘\)\ Yon (Qt-l-sl

| +\p€\ Cog® (onbﬂ o.ém =0 -3

o~

where a,\u\ ‘l)a&k and . M = M y‘u- The complexity of the

. coefficients in equation 4.1.3° shows.- why" an analytie closed f‘or'm

' solution has .remajned elusive for so long. and closed form solutions

have only been obtained in ‘cert:ain 1imit;ing caseT which will be

brie f‘ly summarized below

-

In the spec¢ial caae that both st.a?.es are degenerate, E .E E,_,

#

equat.:lon 4.1, 1 can be solved exactly in closed for'm by takihg the
following linear combinabions of the state amplitudes Q.,_(t), ’ _
Qetty’ =(Q‘tt\ Q) . ol

'In terms of these symmetric and‘ anti-symmetric linear- ooﬁbinations
-equation 4.1.1 decouples to - yiqld the t‘ollowing simple first order

.,‘

’diff‘erential equations for Que(t)

2_ Qyo =Eq Qevy 3 (p%&slot‘v&\ Qytty . :,‘. " ll-.l.s.‘

- and the solutiona to these equatfons. can be v;ritten down by 1nq;pect.ion -

0..,«:} s'uv\é\'%\'x efo \-(E 3 ¥ (HE" Su\('\)ti—S)J B PR B (.,,':.‘. |

Finally, ‘the general solution rorq t.he mdividual .a.;ate amplitudea;

. 4

q-d(t\ can ‘be-written . 1in the following compact matrix fom
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| o,‘m) ﬂ{Cos‘:m Sintorsd)] ‘g“‘[m S“"wt*ﬂ xexe[ LEe]
' (u,m S 1Y Sinwteb)} Cos(“*g‘Smkﬁh&'} G‘w T
- It 1is interesting "to compare the general solution k1.7 for sthe
two-level degener.:ate syste’mﬁ with a recent solution by Rahman [16]-to
the t;g-level nondegenerate system obtained in the ‘asymptotic limit
Q\pﬁ\/«')»b. As expected both solutions Agree precisely, which is not
surprising as the degenerate, system corresponds exactly to this
.asymptotic 1limit. ~Indeed such asymptotic solutions were previously
derived by Shirley [13] and a number: of other authors [6.17,18]. ';n
view of the above discussion the exact formal solution derived in the
previous chapter can be used- to obtain a quantitative check on the
lower limit of \p?.\/w for which the asymptotic solution remains valid _’

» This point will be discussed f‘urther in Sections 4.2 and 4.3.

1 ) The remainder, of‘ this chapteér will be devotéd to the“'presentation ..
of explicit res,nlts for the two level ‘system, using the formal
' expressions derived for the more general N-level system 'in they
. previous- chapter. In what‘ f‘ollows a- dimensionless parameter@ whiech
- will provide a direot measure of the coupling strength will be used

oL Rswlie LT e wi8

s

and we define the following ranges of‘ coupling strength in agreement
with Autler. and Townes [1'4], ‘ R i
P“l.", ’ LN XY S R S ¢ ' k.19

weak C intermediate strong ! ‘

. ~1In tl'p results t&at follou ‘the latter two ranges ofp will be the main

‘concern as the weak coupling region, ‘P “1 is more Lhan adequately *
represented by both perturbation and rotating field approximations K
see Chapter 2 -The eoupling strength ranges presented above are meant
to be a very rough guide as there is nvd clear delineation between each

P -/ - ,_,'

‘fanze I R DU Sty
= : : P Lo ‘."' =
[ ' H S . '’

The ‘exact iterative eolution to eduat'ion H 1.1, desoribing the
interaction of a two-level nondegenerate system wit‘an exterm;l

-

- sinueoidal field of well. defined pmses din now be wrfitten dinectly .

ifrom -thé" formal, solution given by équauon 3.4.10 'of ‘the preeedips
cbapter [22 28}, ST = ' . ~".‘ - S

\X
»
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\ 1S _ :
aw® = Fer [ ¢ mﬂ Cot® s . O0tetw .1.10
and the initial condition array Co(&\ is given by L
kY = | (b) P\ | ﬂ L ead
where | ' .

Ty = (F“m W-\..w)) A -[Q‘m Coth) = C':':m
- . - 14 Py =
= W‘u") K@/ 2 =

To clarify further the method -of solution for thie two-level
nondegenerate‘ system, equation 3.4.4 for Fm occurring in equation

‘l& 1 10 is writter out explicitly in ter‘ms of the in«iivﬂlual matr"ix

eleqfent,s of S-Le), C . e .
Fu‘a‘@) = -§ GO ‘otecw . s
“"""8(9‘ =§.:(® -“)S-.-_-é(m - f;k(e-’l),’}“u\') WieL2W - .13

where t,s W = \,1. \.H& and ‘the definition of %(e), given by equation
3.3.4, 1is used’ to obtain this'result. The.leading four expansion
matrices, Qg, for 'ftm' are now written out explicitly Yor ‘the

two-level nondegenerate system; see Equationa 3.3. 6-3 3.8;
\ €, “pt AL Ele(pl) —pﬁ(EaEA
( Q'i-’W( Mt Eu Q"' "-‘(‘-0\ -pE(Eve,) E1 +(pf.)
€} +(PEV (1€, +E,) —pELE‘(EnE:)-l'E,,ﬂpﬁ.H%‘))
Q- 3 Luﬂ (N’-( E:.(E-..+E.) +E. +(pQ) +0‘) B r(nEY (2 €. +E)

SH PR 5 78
The higher or'der' t.emn,s in the expansion of. j-ces become increasingly

‘com.plicat.ed functions of‘ the parameters E‘ ’..\Q and \) showing the

need for a recursive computational evaluation ‘.t‘ t.hese terms using
equation 3 3. 7 Further details - regarding the convergence of these

" power' series expansions and the optimum choice of expansion’ intervall

jin © are given.in Appendix A ) : v

2, C ' B A
‘rhe exact solution f‘or Q.u:) has -been gener-ated for difrerernt‘
phaaes 8 and for a wiQe v-ariety of frequenciesQ -and éoupling energies

¢

’ -('.Af)of the applied ainusoiﬂal field. Theae aolutions are employed in ..
'the yllowing sections _where specif'ic propar;.ies of t.he tuo-level

nqndegenerate system.are evaluated. .In all caaes r-apidly eonverg,ent |
solutions ,were obt.ained to any required degree of accuracy. - For .

RN . - o e S

v:- . ’ . ' v
. [ : Lo

Qa.to)) ) = Cx,oﬁ\) w2

T
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example, b&-u ing expension inter¥als ranging f‘romir to ¥/ in © ,see
Chapter h3, Sesff6n 3.2, results accurate to. sixteen significant
figures can be readily obteined .for - values of i& spanning the
intermediate -to strong coupling regionsp [?2,28]; these results
- . require ép most the retention of 30-50 ferms in the corresponding

power series expansions, see, equations 13.2.6 and 3. 3.1. Equation

4.1.1 was also numerically integreted over a finite range of t using a
—_ ' fourth order Runge Kutta method to provide a further check on the
solution for g,m a number of values of the parameters oecurring in
equation 4.1. were considered In all cases the numerical results

agreed with the iterative solution to the number of.figures to which

the numerical metho? was Jseliable. Further details-regarding the
numerical solution aré also given in Appendix'A.
4 o .
. .. . L. . .
\ ! . L] e ’

4.2 INDUCED TRANSITION PROBABIL;EIES FOR THE TWO-LEVEL SYSTEM IN A

C e f - ~

T : " SINUSOIDAL ELECTRIC FIELD <

The' formaigﬁs_ulie;eniy_ed_injection 3_7 of the previous chapter

......................

will now be employed to extract the induced transition probability and

. its various averages for the :wo-level system " The density matrix for

. this two—level system, from which the various physipal properties can
be readily obtained, is given by ’
; . szzf(iam\ : q.m(l S | . R A
, i a mO.,m \Qzlﬂ\ : T )
- 'Using the trace prescription given by ‘equation ‘3. 6.3 along with the
.definition of the . matrix 4; glven by equation 3.7. 1 the induced‘
"transition probability for the two-level system becon‘ih‘

R P}f‘t) =\’Q§L\;)\ f :\ ﬁ . | L. 2.1
Equation §.2.2 and its various averages, see Section 3.7,"3wili,,be
discussed in detail in the remainder of this sectiop. -
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4.2.1 THE TEMPORAL BEHAVIOUR OF THE INDUCED TRANSITION PROBABILITY FOR

. A SINUSOIDAL FIELD OF WELL DEFINED PHASE

*
.

. . The induded temporal transition Hrobability, for both'the ‘ground
and excited State of the two-level system, has been eyaluated for,
different phasess and for a wide range of frequencies'b and/ coupling

— —energies(*ai\ of the ‘applied sinusoidal fiel§. Graphical results for
ﬂ\(t\ for three coupling'strengths nging from intermediate,to' very

‘ weak, are presented# in Figure 4.§ (a), (b) and (c), for the system

initially in the ground state, QL onEL subjected at t=o to a cosine
wave(&ao) » The iterative method is vastly superior to the stepwise
power series method outlined .in Section 3.2 , particularly .  when the T
solution is required over large values of‘8 or t. ?or example, to '
generate the results in Figure 4.1(c), using the stepwise power series
approach, would require approximately a 50-term power series expansion?
and boundary matching in each of w? - 9-—interVals‘ of length \¥, a
‘clearly prohibitive calculation, see equations 3 3.1.- 3.3. ? "~ On the
ad ": R other hand the.-itérative sofution given by equations 3.4.10 and 3.4.11
| - requires well .under one minute on a CDC CYBER 73b1u Conventionral

) numerical integratton techniques being much leas efficient than the

. stepwise power series method, see [22,65] , become totally impractical
— oL when solutions over. physically meaningful time scales are required

- "“ z. L)

B . A number of interesting features come to light) ‘on studying the
' ., graphical. “results in Figuref 1. The véry weak coupling reault in ¥
Figure 4.1(e) exhibita the'pure sinusoidal pattern predieted by -the
Rabi tonmu1a with the- induced transition probabilities for frequenciea
ST equally distributed about the %ebonance frequency“1b-bl agreeing
} R : ‘f . precisqu with one another [6SJ4| As the intermediate coppling region
‘ C is approached (p-axio Y Figure ., 1(b) the on-reaonant results still |
. , : f agree quite cloaeiy wish the Rabi resu;t but- the- orf—reeonant indueed
: , ‘transitiqp probabilities begin to deyiate from one ‘another until’
L - finally in Figure 4.4(a)’ they are out of phase with one another by
e : L AW/2. The undulations whioh firat appear on ‘the induced traneition
S, s ‘probability ' envelopee_ in Figure y, 1(b), *and become much mors
S pronouneed' ip.. Figure 4. 1§a), refledt the- increasingly important ,
s ‘L ~j ' : et . " - , .

-
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Figure 4.1. The induced transition probability; P..(t)‘ Ia,_(al
'functlon of time over two "periods" of P,,(t) for § = 0. (a) B =
(b) B =2.0 x10"%; (¢) B ="2.0 x 108, Actual numerlca.l vdlues o
additlona.l parameters needed to.generate this flgure are; l'a;(O)
U2 = 1.0 , 4 =E, -~ E; = 10,.E1=-20,E1--10 The results of
this figure depend solely on the initiasl conditions and’ 'the value of B

" and not on the magnitudes of the individual parameters.
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contribution of the ' anti-resonant ° terms ignored in the %bi
approximation [22,28,65]. The period Yorf these undulations corresponds
to t= %, which is also the pertod of the coefficients in the
d'if'f‘erential equation for Q¢ given by equation 4.1“.3 [65]. Figures
4:1(a) and (b) illustrate very clefrly the two time* scales otcurring
in the‘ solution of" thé'differential equations with ~ péeriodic
« foefficients described by equations #.1.1 or 4.1.3 with the \shdr;,i time
scale‘ corresponding to tz‘E,o_ and the 1long time scale' 'corresponding
closely to that predicted by the Rabi formula (t'\ﬁ.ﬁ“pi\f-

Recently, Salzman {65] numerically intégnat‘ed equation 4.1.1 with

Q:OJ ’ fbt" ,a nunbgr of phasesﬁ of the,sinusoidal field and ‘concluded
that the. on-resonant Rabi formula closely represents the exact
on-resonant solution averaged over the' phases of the sinusoidal
field. The depehd’ence.of the induced transition "probability on the
phase‘% of the applied sinusoidal becomes imcreasingly .impor'tant asp
increases, see Section 4.2.2. . These results are-not surprising from a
pbysical standpoint since if ‘the trannition probability changes-
appreciabl& bver' a‘ single cycl'e of the applied. f‘ield " the transition
rate ‘should -ke highly sensitive to the phasej? For example the
phase33-0 and 5.“/2 in equatjon 4.1.1 would' orrespond. tosthe "sudden

switching on" and the "slow switching on" o he applied perturbation

-

respectively . The physically obsecV"ed induced transition probability
will normally correspond to the 'phase averaged r-esult and the next

,section will be devoted to tpis pr-oblem.,

.
]

Autler and Townes [111] obtained an ‘exact solution to equation
4.1.1 with B=0 by expinding tie periodic pdrt of the Floquet selution,

. see Section 3. 51 Chapter 3, as a ‘fourier series and, evaluated  the
'bharacteriatic exponenta and. the fourier expansior\:oefficients as a
function of‘Q and p by solving an inrin;tp set of homogenous :
- equatioﬁs by continued rraction techniques. These authons extract .
 very useful analytic approximations for the induced transition

- probability whqn the cbupldng strength. ? \s not too large. ' For
. intemedlate coupl.ing strengths the eontinued’ traction expansions nust

be evaluated numenically ‘and tnese numerieal evaluationa become slowly
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convergent as @ is increased. A detailed analysis bf these continued
fractioh expansions and their limitations is given by Shirley (58] and
he himself resorts to numerical integration of equation U4.1.1 when
these expansions fail. Shirley s results will be discussed further in
the. context of the phase averaged steady state induced transit}on
probabilities in Section 4.4.

TN

<

Before concluding this discussion of temporal induced transition
probabllitlesb reference ehould be made to an abortive attempt by
Wallace [31] to evaluate these transition probabilities using a finite
difference® numerical integretion scheme. The graphical results
presented by this author, purporting to represent the induced
transition probability in a two-level system and resonance Raman
scattering in a three level system, lack any physical significance.
The following analysis will show that this author. adopts a

differential equation previously proposed by Brooks and Scarfone [u5]

in their perturbation analysis of equation 2.2.3 and numerioelly
“integrates it 1q)a coupling region where it is 1invalid. Brooks and

Scapfone s equation (4), representing the matrix element of the

perturbation, becomes in our rotation

Ve = (M E) explivr] + (pik U exql- ) 423
These authors propose, for example, that if either an 1nduced emission
_or an induced Aabsorption process is’béing considered from a single
stationary state of a eystem, subjected to the perturbation given by
equat;on 4.2.3 at time t-o, that only one of the two terms appearing,
in equation . R.2.3 will  be responsible for this induced
emission/absorption process with the second term making a hegligible
contripution. In this approximation the exeet‘*differential equation

" 2. 2 3 can be separated into two approximate differential equations

describing sepérately the induced emission’ process

»‘%t%&) Muﬁ ex?[t(Eg-E.‘\'\)\t]Q‘(ﬂ » EaBi Q0

W.2.\
and the 1nducedvab_sorp‘t1:on process = )
;}Zﬁb;;CL*ct“.*"fg}e'ﬂ?"?‘s'(ja"'ibt -1))‘5]}CL1$$5 Y-

#.
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Clearlyi equationS'u.z.u and 4.2.5 remain valid only as 1long as the

prdcess ignored in each of them makes a negligible cbntnibutionﬁto the

state\amplitudes. In other words the population of 'the final state in

either process must remain sufficiently smail, so that reabsorption or’

reemission processes are unimportant. The results- <presented by

Wallace clearly violate this above réquirement, see Fifure 4.2(a), and

. it is not surprising that his solution requires renormalization at .

each numeriéal grid step in order to remain bounded. Indeed, without
this renormalization his solution becomes unbounded at the same rate
as the perturbation solution, see Eigunewu.;fa), The same conclusions
can be drawn_reggrding the graphical’ results for resonance 7Raman

scatterdng and this will be discussed further in Appendix A.3. The

correct solution for the perturbation given by equation'u 2.3 with the

same parameters as _used in Figure 4.2(a) “is presented in Figure
4.2.(b) for comparative purposes. It should be emphasised that this
solution ‘doed not require renormalization in order to remain bounded
as the hermiticity of equation 4.2.3 ggarantees unitar%ty of the

solution. ) - e

4.2.2 PHASE AND TIME AVERAGED INDUCED TRANSITION PROBABILITIES

The behaviour of the phase and or time averaged induced
transition probabilities for both intermediate and strong coupling
strengthsp and over a wide frequency domain, encompassing bot.h linear
and non-linear transitions, will be studiéd in detail in this section.
Before proceeding further however, a distinction should be made
beiween two -“types of experiment thch yield quite different resqlts.
In one experiment transitions between two states -are monitored by

"sweeping the' frequengy ) of the appliéd ‘radiatiqn through the

tﬁensition of interest wb;le in the other the freguency © is held
fixed and the level separation Y 1s varied by applying a static
electric or magnetie field perpendicular to the'-oaeillato;y field.
The latter technique, for .example, is the basis of Stark switching
apectrqacopy [9,11] and has also upeen extensively applied n
radiocfrequency spectroscop;t[5,6,17,18]. In tne‘formep experiment the

£

°
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as a function of time and for R
> result, (b) the torrect result, both for & = 0.

0.2. (a) Wallace's [31] nonphysical

The perturbation theory

hown for comparatide purposes.

result, (c¢), included in [31) is al
I ué; - E; = 1.0, E;.= -2.0 and E; = -1.0.

Here |21(0)]% = 1,[m2 = 1.0,
- rd -
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-Effecti coupling of the field to the quantized system remains ..
. constan:eT;;E:\tng\entire frebuency ‘domain while in the latsér, as the '. . ‘ '
level separation\e\ipcregses successive higher photon transitiOns are , .
\ ™~ .

\more’ weakly coupled to\thesapplied”!inusoidhl field: For.this reason
ggrturbation exphnsibns up to-- tenth order in @» have - adequately
described f‘requency shi.t‘ts f‘or th‘is latter experiment, even when P is e
quite large However, when the coupling strength p remains constant
and relatively large over the entige frequency domain, a theoretical *

analysis becomes increasingf@ difficult due to strong overlap between :, ‘}

multiphoton resonances. k¢

The formal _results of Sectioh' 3. f,. for the temporal phase
averaged, the phase/time averaged and. the damped averaged induced
transition probabilities, will now be employed to extract explicit
results for the two level systemeunder the different experimental‘.
conditions outlined above,' To further - emphasize< the - generality .of. )
this fgrmal method we will study, in addition; the effect of a statie *
| field €° , applied parallel to. the oscillating field, onf”":EEf o

. multipﬁéton spectra under both types of experimental conditions. The
‘ magnetic analogue to this experiment has been carried out recently by
&abusaki, Murakami ‘and Ogawa [72] who employ two mutually
-perpendicular static magdetic fields one of which splits the ' Zeeman . B
) sublevels of the Cesium atom, while the other, in QOmbination with a
) radiofrequency field of fixed frequency‘0 - induces ‘magnetic dipole
.?transitions between the two substatesf~ Further discussion of this,
experiment\xgpd the above. authors’ theoretical results will be ~
' postponed qnti\\\Seetion 4.3 JHEre it will be demonstrated ‘that both
the electric and magnetie\gipole problems,are intimately related as- -
o_thé*ilmg\dependent Schroedinéer equation’ is )

fsr\%as;,the solution
concerned.

.

_The eady state induced\ transition probability ﬁ;; " see - T?
equation 3.7.6, for the two level hendegenerate system is shown in g
' Figures 4.3(a),(b) as a function of freqnencyib for the~.two - coupling 1

‘strengths P =0.25 and 0. 769 Tbese cholices of @ are made to compare

« Wwith the results of Shirley [13] and to contrest with \those of Gush

‘» \4
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- and 'Gush 151 -who  vary the level separationco and-holdﬂb constant
The’ multiphotgn resonances corresponding to - successively higher odd .
:photon transitions 1,3,5 (1 3,5,7). photon peaks for 9 =0.25(0.769)
¢« have undergone huge shifts relative toé- the positions predictid\\by\\\\\\
‘~either the rotating field approximatidn or: siMple perturbation theory
( that 1sW w}‘? Q/S’ etc .} and each resonance peaks, at ﬁn =.5 due to
the neglect of damping effects Also evident in these plots is an

N

increasing asymmetry in the individual resonance line shapes as e
increases showing a deviation from the symmetric Lorenzian Iineshape
, predicted by the rotating field approximatidén , see Chapter 2. While
both the positions and widths of the resonance peaks are evident from
\\bhe\multiphoton spectra~of Figyres 4. 3(a) and (b), they can easily be ~
determined direotly from plots of the characteristic ewponents £h , of - _

&

the Floquet solution,.see equation 3.5.20, as a function of frequency
Q), without having to evaluate t\e\induced transition probability
. from equation 3 7.6. \\\\\ :

The original interpretation o? these - characts stic exponent
plots was made by ‘Besset, Hbrowitz, ‘Messiah #nd Winter {20] who .
///studied their behaviour for' an N-level system ‘via the rotating field
' approximation. These authors identify. a real transition between :'

states 1 and jJ as occurring at the frequency Y for which the

difference \h - b-..\ is a minimum, where b,_ are the characteristic
éxponients for the Rabi solution, see below. For the two state ' system )

R )
the identification of A? - and O, 4is easy if.the Rabi results-in "

. . .
equation 2.4.3 are written "i#k the Schroedinger representation in
Floquet form, see equaticn 3.5. 1&, A ’

(0-«!) 5. exgliotg] ¥, expliven) exq[m t]
0, @ (‘li-— exe[ﬁlz] ‘Em‘eq{wtla] oL {sbtt]

S | (th(d') o ?
L IXE N B y
" ( i [) Q0. f ' - ‘g..Q,E>4

wherex'- i(l*‘ﬂ.[oﬂ ,C\ J-ﬂ.""-r‘ "> “") and - | .’
L tk 1‘1 ’

-(E +s.m +.L./ﬁ*‘+T,TeT*
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The sum ‘and“diff‘erence of ‘these eharacterisiic exponent,s\,A-" v J=1,2,

becomes ) Y
. A?ﬁ-h: = —(Eg*'Eg)
at-a% = VTR, o o . w1.8

If °the Rxﬁlineshape formula, see equation & 4.6, is now written

directly 1
‘9-11 = —\'\————.( ?,f' = (‘381) ‘ , .
aCet -oh) co-wofrprl ¢ “.1.9
where lpi\ is a direct measure of the width at half maximum of the
resonance - profile in the Rabi approximation. Thus, when \b. b"\

terms of A: , we. obtain

is a minimum (Q-Q ? 21 1S a maximum and this correeponde to the peak
in t.he spectral profile,, see Chapter 2. It is also evident from

equation 4.2.9 that \L\ b,_\ at its minimum value is ‘&-direct measure

of the half uidth of the resonance profile, that is o ‘\r
\A\—Aﬂ = \m&\ - o , .20
N ‘ ‘ . '

Since any physical property ot‘ the system derives directly. from

the. density matrix P(t) ’ through t.he trace prescription of equa&on :

3.6. 3, the occurrence only of the dif‘ferenbe (A' At), ' see equation
4.2.6, 1in this ‘result. indicates that such properties depend only on
the energy difference W(z(€,-%,)), see equation 4.2.8,. and not on the
individual magnit.udei of E.,E-,. making their choice arbitrary Indeed

equation 4.2.7 shows,that the t.erm -LE.+E,)I1. acts as . an absolute

energy ref‘erenee point for the frequency dependent characteristic
exponent.s a and can be convenient.ly,chosen to’ be zero by setting

9? 51;(? The above choice of a zero energy reference point.’

will prove partieularly convenient. uhen the characterist.ic exponenfe

B 56 for_' the exact eolut.ion are computed, see .below_, and Shirley [13].

As the exact eolut,ion and t.he Rabi f‘ormula muet agree in the weak
field 1limit for -0~w we would expect. the characteristic exponente D‘
derived in the fomal method of Chapt.er 3 to be related .to A: in t.hie

limit. Indeed a aeneral e@reseion f'or the sum of t.he exact 4{5 has.

already been obtained, see equation’ 3,5.19 , which is directly

.

analgous to the result of equation 4.2.8 for (A,'AQ ), and whieh,
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for this two .state system becomes -

- €, *'E-;_ - '(A )V - o "“OA('\)\ S ‘ : o \'\"1“
Thus in tne weak field limit f‘or'0~h) we obtain ‘_ S :
(o, + D-,_\'\') 5 *51 mo&b)\ . s WA

Equations k4. 2 11 and.TZ 12 suyggest that plots of the ‘characteristic
exponents' A t‘or- the exact solution can be used \to locate resonance
maxima. and .the shifts of these reeonances from the positions predicted
by the usual per'turbation theor'y result, See equation.2.3.21, or the
rotating field approximation [13,58]. The 'p'owen of such .
characteristice exponent plots botn for loca‘tin_g‘ .i"esonanlce positions
and determining their respective halfwidths*#" will be " demonstrated
explicitly for the two ievel system“in thia 'éhd the f‘ollowing
_sections, see r@{ example Figures 4. usy, 5, ‘and- f‘or multilevel systems
,in Chapter 5. - ‘ S P

The choice-of an absolute energ; reference point of‘ zero, see
gquation 4.2.11, ensures thatA -B,, mod("’l‘.’l), thereby yielding the
f‘ollowing simple symmetric periodic r‘elationship betueen the Enultiple

‘values of & o+ see equation 3.5.20, "that is ' .

SRRV RS EY nNEO LR, kas
where 53 corresponds to the smallest value of AA (N=0). s “was .
pointed out in the previous chapter, ‘thig multivaluedness of the'
characteristic.exponents arises dir'eotly "'fr‘r-od equatione 3.5.19 and
3.5.20 through the arctarrgent function.and from equation ll‘.2.1'J, see
Shirley'[‘13;’58]. Coupled with equation 4.2.13 one_can visualize
- - - o - - e

.
« . . . -

& Note that the multiplicative f‘actor \) must be included in any
phyaical interpretation ‘of the characteristic exponents However as

we are studying their behaviour as a function of ‘\) over ‘a - wide
f‘requency domain it will be more convenient to plot the A"S rather
than ‘\)Aé ’ see Section 4. k. ' :

- o ] - i at sl et a2 -

, *% As a halfwidth 1s' défine¢ only for a symmetric. lineshape, the
' increasing asymetry af the resonance profiles as P increasos makes
such a term become redundant, see. Figures 4.3 and u 5 .However,

- avi0-8,) still provides an estimate of the width of the profile.

“
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infinitely many branches [13,58] of ba (specified by the value of~.n)

lyjng above and below one ahother nd where the values of B are

bounded by the ~branch lines ntia., Due to the simple . periodic
relatiof betweenvtne characteristic expdnents q;, their plots in eacn
branch are identjcal so that we need concern ourselves only with a
single<branoh . . ’ ‘ S

AY
-

* The above’ oharaotqristic exponents ‘also _appear gg\ more recent

fully‘Lquantized studies, by Cohen-TannoudJi and”®. Haroche [71] and’
‘ Yabusaki et al [72,73], of the magnetic interaotions of a spin 172
7 system coupled directly to a general static magnetic field and a

strong radiofrequency field. It van be demonstrath, see Section 4.3,
that the cnergies of the fully quantized systen, in'unitq of v,
computed to tenth order in periurnation theory, coincidé preciéely
with the characteristic exponents Ad derived from the Floquet solution

- in the semiclassical model. In the plots of these energies of the

total system of atom and static¢ and r.f fields, real bransitions occur '

‘at the points at whicn ‘these energies or characteristio exponents 0‘ )

approach but do ' not touck the branch lines n:m. ; such points are

labelled "anti-crossings" and these determine ‘the positions of the

resonance -maxima. Twice the distance rrom sugh an "anti-crossing" to

the. nearest branchline 1is proportional* to the "half wid;h" of - the
respective transition, for exanple see. equation . 2 10. In addition
the points at whioh A% orosses these branch lines arb termed "level

crosaings" and such points correspond to degeneracies in the energies
”oni, Such degeneracies can be removed by applying a static Iplectrie i
- field Ef ‘~'ori magnetic - field g° , Which converts these level

crossings to anti-crossings thereby inducing additional transitions in
tne system, see Sections n 2.3 and u 3 for qleotric and magnetic eases

respectively..
v -
. The actual halfwidth is h by the quantity -o\m B, when
1t ' is a minimum. In the intc tation of a trequoncy swéep
experiment this definition must be ufed to determine ' the prapise

loeation of- thg anti-oroasing since ~ 1is not hold oonstant ,

- . .
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.The interpretation ot‘ the oharaoteristio exponent ‘plots in the'

previous paragraph will be adopted in diseussing results for the two

level syetem while %he: interpretation by Besset ot al [20] will be .
used when multilevel systems are considered in theé hext ohapter. Both

approaches are clearly equivalent" ‘and the abovenehoioes are diotated

by eonvenience. e o T -
) . . - .,

.~

-

. The oharaoteristic exponents 8, correspogding to the indtfced'

transition probabilities shown in Figure 4.3(a),(b) are_plotted over
the same frequency domain O in Figure 4.4(a),(b). From these piots
the multiphoton resonances 1,3, 5(1 3,5,7) in Figures N 3(a), (b) oceur

- at.the anti-crossings A.,M,Ag CAV, A AE, A in Figures y. H(a) (v)

‘respectively. The level crossings (n=2,4,6, 8) are also indicated in
these plots where the subseript n in Ka refers to -an n-photon

allowed transition while . in L.-\ -1t r-efers to a f‘orbidden n-photon

transition. As the coupling strength P increases the. preclse position

ot‘ the anti-crossing A: 1is not obvious and this indicates the very_’
large broadening of the single photon maximum These plots also show

how successive higher pnoton peaks encroach upon cone another as the
t‘requency o] approaohes the static: limit'b -o

,Figure . u'.'SLg),,(b). show the multiphotou 's_peetrum and its

aocom'panying‘ 'cﬁeracteristic exponemt plot in the strong coupling
region ('_2 0). ‘Comparing Figures &, y and 4, 5 He can draw the

f‘ollowlng conclusions regarding the behaviour of‘ ‘these” spectra as a’

function of @ . As‘P increases all of the resonance - peaks .shift

2 t* . 3
’ N f

- e e b . X : - s

» The interpretation of the characteristic exponents a3 used

-

. by Cohen—TannoudJi and Haroche[?%] remains valid as long as the
. condition E,+E1-o is satisfied this implies that - A, :-b,.

¢

~
™

‘;)

)
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Figure BiL.| Plots of the characteristic exponents A; and 42 corresponding
to P2 in Figure 4.3 and over the same frequency domain. -(a) B = 0.25 , -
- (b) B = 0.T69 . A, corresponpd to the "anti-crossings"” signifying an : -
~ allowed n-pl;;ton transidion while L, correspond to the "lewel-crossings"

. which signify a ,"fo;‘ﬁ}ddetg" n-photon transitidn,
, L . o
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, Mgure L. 5. (a) The phase averaged stéady state induced transition

' probability, By,, for.8 = 2. 0._ (b) The accompanying characteristic . .
exponent plots. . The numerical values of the other. parameters used to '
‘' generate this figure are the same as. in the preceding two fisures»

except that - =.2,0, 4 S

/ B . i . ‘
. . . . .

‘ . -
- . . .
. ) . i
.o , . . - y
‘ . . . B /ﬁ' . ) .
. . ) .

e et et~ e

by o < = 4 >t -y L4, . An s

e s s




towarda higher frequency ¥ until finally in the strong couplihg region
((9-2 0) there is such a strong overlap between neighbouring resonances
that the entire spectrum approaches P,_~.5 at which point ?., = ? a2 =0. 5
) and all the transitions are saturated. Ihe characteristic exponent
plots also reflect this behaviour with the level_croseinge Lw moving

along the zero - line to higher frequencies. 'The:gradual approach of

the anti-crossings' to th‘zero line'reflecta'tﬁe broadening‘ of the
n-photon resonances and the asymptotic coupling limit (@-bw) at which
the n-photon transitions completely vanish is represented by the value
of @ . for which A  reaches the zero line ( that is &, and B, are

degenerate). ‘ .

Next we consider the.temporal behaviour - of the phase averaged
induced transition probability £(ey = 1- P40 ror frequencies ) 1ying

on the resonance maxima 15 the multiphoton spectra of Figures -4.3(a)

and (b). .Figures 4.6 and 4.7 show ﬂ{lt\ , 8ee equation 3.7.3, for-

these frequencies over a finite number of "periods" of its 'slowly
varying part (lohg time scale). Even for these intérmediate values of
Q.the sinusoidal pattern for the single photon transition predictéﬁ
- for P,,Lt} by the Rabi t‘ormula begins to breakdown, resulting in a
more complicated aperiodic pattern, compare Figures 4.6(a) and 4. T(a),
which indicates that the anti-reaonant termz ‘ignored in the Rabi
approximation become 'increasingly impartant as 9. increasea.- The
effect .of increasing @ is even more dramatic for the higher photon
induced-transition probabilitiee; see Figures 4.6 and U4.7,  where
complicated oscillatory patterns oceur over the "period" of the alowly
varying part of P“Lt\. The period of these undulations lies cloae to
the period of the.dscillatory perturbation (short time scale) t~WIO
and their amplitudes increase with increasing e  These undulations
arise from the pronounced dependence of the phase degendent induced
transition probability, ,q‘(e,ﬁx on the phase  of the applied
] sinuaoid;l field This phase dependence is ahown explicitly over one
period of  the  Hamiltonian ' in Figures 4.8 and "4.9 for two
representative phases (Sso,'ﬂlt). and for the coupling parameters @ and
frequenciea«b of Fiqurea 4.6 ahd'h;7; It is clear from these results

that the differences in induce‘d transition raﬂzea,%@t H,Lt, 8), for th_e.

»
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. corresponding to’'frequencies v associated with the
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ance maxima of
Figure 4. 3(a); B = 0.25. Figure 4.6(c) appears as ®dark background, as
the graphical sca.le is too small to\resolve the oscillatory pattern.
"B,(t) 1is shown as a function of t ever a finite number. of cycles. Here

time, t, is in.mnits of {2n/v). -

A

Figure 4.6. The phase averaged induced transition wﬁilitiea, B,(t),
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Figuré 4L.7. The phase averaged induced transition probabilities,. B, (t),
corresponding to frequericies v -associated vith the resonance maxima of

Figure 4.3(b); B = 0.769.
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Figure 4.8. The. phase dependent.induced transition probability, p,,(t,8),
for § = 0 and §°'= m/2 as a function of time over one period of the
Hamiltonian for B = 0.25 and the frequencies associated with the three
resonance maxima of Figure L.3(a). Enlarged portions of the _corresponding. .
plots of the phase avgraged induced transition probability, B, (t),

versus t given in Figure 4.6(a), (b) and (c) are included for comparative
purposes. Here t is.in units of {(m/v). ,
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Figure 4.9. The phase dependent induced transition probability, p,(t,8),

for § = 0 and § = 7/2 over one period of.the Hamiltonian for 8 %,0.769
and for frequencies \ a$s®cdiated with the four res nance, maximg of °
-Flgure 4.3(b). Enlarged portions of the corresponding plots of P, (t)
vergus: t given in Figure 4.7(a),{b),(c) and (4) are elso shown for
comperative purposes. ‘
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sudden (8:0) versus the slow (S:ﬂWi) 53witching. on" of the appiied
perturbét?on beeemes more pronounced (1) ae 8 increases .for a
particular multiphdton transition’ and (2) for higher reldtive to lower.
multiphoton transitions for fixed g. The former effeet suggests,.see
also the discussion -above for the. singfe photon, case; that the
retention of only "reeonant" terms intthe representation of ié‘(t) for
fairly large values of § will lead to ihcqrrect results for all
multiphoton transitions. The latter effect'on the other hand -suggests
that there is a strong nonlinear dependence of. the higher photon
transitions on the field intensitytd\pﬂ the transition probability
for a n-photon hransitidn bein& proportional’to \\xi\ [38 1.

s .

The effects of damping on the multiphoton spectra of Figures
4.'3(a)"o and (b), are shown in Figures 4.10 and 4.11 where the damped
phase averaged induced transition pﬁobability i51- is plotted , 8see
eduapiod"3.7.10 s :for three different values of the relaxation
constant ‘Y for§=.25 °a_m_d .769 respectively. These choices of ¥ were
made to damp out certain phase averaged induced transitiom
§¥obabilities\iajxa 'inAFigdres'u.6 and 4.7 for different multiphoton
transitions ‘before steady state oscillatiens can set in,’ thus for
example, Y is chosen in Figure 4.10(b) so that 9‘,(’(’.\ for the 5-photon
transition damps out before there is any significapt accumulation of
transition probabii;ty for the excited state ( that is the resonance
vanishes) “while the ~ 3-photon peak‘ Hes beduped to ~1/2 its undamped -

-height. The systematic drop off in the higher relative to the 1ower

photon resonance maxima for fixed ¥ is caused’ by the increase in the
long time period of P () for the Qigher. photon transitions, see
Figure 4.6. Thus the actual observation of' these multiphoton
resonances in any experiment Qill depend critically _on relaxation
effects In Figdre 4.11 the dahped multiphotoe spectra become more
complicated than in Figure 4.10, because the slowly varying "periods"
of successive higher photon induced‘transition probabilities iﬁ3x3

I3

' begin to approach the same iimit, compare’ Figure 4.6 with.h.7.

- °
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Figure.k4.10. The damped phase averaged induced transition

probability,?zzT, for B = 0.25 over the same frequency domain
and for the same parameters. as in Figure L4.3(a). (&) T = 103
(b) T =10® {(c) T = 50, These chofces 'of T were made to cut

coff Ba2(t)(2(1 - By (t)), see Figure 4.6) at different stages

befare steady state oscillations set in,
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Figure 4.11. The damped phase averaged induced transition
* . probability, P,; , for B = 0.769 over the same frequency domain

- and for the same parameters as in Figure 4.3(b). (a) 1 = 102, .

(b) t =50, (¢) T = 10. Again the choices of T were dictam
by the oscillatory behaviour of Pz2(t)(Z(1 - B,,(t)), see Figure
k.7. . '
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Before concluding this section' we refer briefly to a ‘receni ‘
articke. by Ahmad ([21] which alludes to the fact that a discrepancy
exists between his result for the average transition probability and
that obtained by Shirley [13] when thé applied field is exactly on
resonance (O =W ). It is easy to show, using the formal method gmw
"developed in Chapter 3, that Ahmad has‘in fact calculated 9“}5) for
3-0, see equation®3.7.5, rdiher than 911 yhich corresponds to ‘the
phase average of § LS) Figure 4.12 shows 9 LS) °for three
representative phases § = O“Ib ¥ia along with P-‘.,_ , for® =), as a’
function of the coupling parameter'g The oscillatory behaviour; of
an coincides precisely with Ahmad ’ s description of the average
transition probability over this coupling strength range and. the
values ~of‘9 at which his computed transition probability again eéquals
0.5 (@41-1 23-1.24 and 2.07) coincide precisely with the points at
phich F%tlch crosses the line 0.5. This figure -shows rather
dramatically the strong dependence of the time averaged (induced
transition probability §a1(3)'on the phase 6 of tne:appried sinusoidal
field in the intermediate-strong coupling domains. It is &lso clear
from this figure that the phase- averaged steady state induced
transition probability ‘L; ' which corresponds to Shirley’s physical

. observable, never exceeds!1/2 The oscillatory behaviour of 9&1 below

. 0.5 1is indicative of thJ fact that successive higher photon resonance
maxima are being shifted to higher frequencies past the poiﬂt'b GQ, in
the frequency domain, as Q-increases and for example Figure 4 12 shows
that when PI a increaaes to ~1. 23, the three photon resonance peak
has shifted to V=W in the fréquency domain while when 9}‘.\ x 2. 07 the ,
five photon resonance peak has been shifted,to this freduency

Other tf'eatmente [1’6-18,21-214] of the two level system, wi;h the
exceptién of Shirley[13]1 and Gush and Gush[15], have mot taken the -
effects of phase averaging into ‘account in evaluating induced

transition probabilities in the /intermediate-strong coupling regions.
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Figure-4.12. The phase dependent steady state induced transition probability,
Py2(8), for § = 0, /b, w/2 as a function of the coupling parameter B for =~
v = w. Included for comparative purposes is the phase average of Py, (8)
which corresponds to the physically observed steady state induced
transition probability, Pz,. The numerical values of the other parameters )

. employed in generating this figure are; [2,(0)|? =1, v = w 2 1.0, o L
Ey = «2.0, E; = ~1.0, uy2 = 1.0.. The abscissa in this figure is in units of
B/2 to compare with Ahmad's [21] definition of his coupling parameter S{=g/2).
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‘static fleld £  will mix the two states o

- . . ‘ . .
' . ” N b
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- 4}2.3 EFFECT OF A STATIC STARK FIELD ON THE TWO LEVEL MULTIPHOTON

= v - ’
SPECTRA. . . Lo

*

. ' o- - -
The inclusiom of a static field, E sparallel. to the_ applied

' sinusoidal field, £ Cos (Dt +d), introdpc\as a number of interesting

features in the mult.iphoton spectra of‘ the Yr‘eviqus section. The

;he system so that, in
effect, the oscillating fleld 1s inducing transitions between two

states of mixed - parity [36]. Thus' both odd and even . phot,on

.transit’ions will be allowed in this syatem, see Chapter 2. The ‘total
. Hamiltonian for:the system becomes

Moo Mo —puE 4€ Cosotr®]
\ |

'fhe Hamiltonian still ret,aias its periodic property and the system of ‘ \
coupled dif‘ferential equations describing the 1nter'act,ion is given by

.\,R}( .m) ,( A Q.m) _€ Cos(‘\)l*b)\ V;zXQ‘Lﬂ)
stla,m/ \ug& € N\ "N oNawa) w20

The formal method developed’ eariier still applies to the solution of
eauatiio'n Y4.2.15. However the 'sy;mnet.r'y over adjoining Tt ‘intervals _is

: lost due to the presence of nonzero off diagonal elemen'tsl in the §

matrix, - see- Chapter 3 and Appendix A2, and the matcr_xing power series
sblﬁt;on must be employed on the entire LoO,2W] domain.

In the absence of the osciilatidg field equation 4.2.15 'qa'n be .
'sol‘ved in closed form ‘by; employing atandard Laplace transform
techniques discussed .in Appendix B. The solutﬁ.on, 'C:L\‘t), , to '4-12.15
when € =0 is given by ‘ ' -

O.u.\ 'd e"?[ L(E+EJ1’./1]S&.)Q(0) S o o -

| %.2.16
where S(t) is & unitary matrix, o i 0
Siﬂ’ ([8 Cos f,,xt.g—Lwa{‘uXt] a P\iio Sint2¥t |
T Laipaf® Sin X T I Cos“a.at"‘,-ws"""""-xt] .21t
“and o 4 ‘ ' c - :
Jvupae® 5 w=BacEL 0 e

' . - " A .
Inspection of equations 4.2.16-4.2.78. shows that Qa ) has




"» B .? R -‘ . i ’n E . ) ' - v
exponential terms osoillat.ing at. the s.t‘requeneies '
Qu - = (a2 Ey . - T 0 w1

and in t.he limit that both states are degenerate, WO = o', 'we recover

the .familiar expression ,for the 3gtark splitting of the original
. - ‘»%A.‘
degenherate pair of states [36],

L ‘ . S
» T
2 7, ]

q'_‘, E° .1 ‘-,\\1.8 '),Ec "E’\;‘Ef - - ’ W.2.20

Eguation 4.2.19 t.herefore represent.qél_ the more general Stark splitting

of two nondegenerate st.ates’ and its close resemblence to the

-characteristic exponents A\ cﬂ‘ the Rabi solution (replace n* by

w?* in eqaation y, 2 7°) 1ncﬁcates that* the "characteristic
exponent.s q.. {or Q. ) represent the energies of thé two state syst,em -
when pérturbed by a static (or,. rotating) field. After* some
straightf‘orward manipulations using equations 4.2.16- '4 2. 18 t.he total
wavefunction q/u',t.) can be written in the form : ’

QL\"\'.) \Vs Q'Xet Wgt) & \K ZXQ(. ‘thl ‘ \+ 214
where % and \K ’ corresponding to the eigenvalues qs and qu s
diagpnalize the Hamiltonian s - “, ) : .'
_“("\_ﬂ = “o(ﬁ - "“18 - . o .L»-l-il :
Here i ;

¥ = Chwn *Cpry

C3¢u~\ T Cudoy

.‘;E

c, = —‘[L-oon +%17) Qo) + p.& Qitoy]
= ¥ [(WIL+¥2) Ba(6) + Pat® Qi)
Ca = 5 [(W1L+8/2) Ouoy = Pal® G-Lm]

C, = ¥ [(- W +¥2) Gat) - pat’aia] 2.3
and in ‘the limit L > O '

0O
o
i

Yeerwy = L\/ er[th} ¥ ¢1?[‘- WJ-) 2.2

where

e '/1[(1 to)(cbmffpm +(3.1(0)(¢m*’d>u-))]

‘I-)_ (Q ) + 0-._(0)X¢ wE d) (.ﬂ) .

eetb s
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‘One can now’ visualize t.hat t.he os’cil‘lating Tield, 1in eqdation
§.2.15, is inducing t.r'ansitions' getween twd stationary states \{/‘ and
\Vk of mixed parity and with respecbive energies CLS and q“\. Rather
than use equation 4.2.15 directly, the problem could be solved by
expanding the total wavefunction WC"M a1n tqhe rcpresentation which
diagonalizes the new’ statioﬂu:yAsFage Hamiltonian given'by equation

4.2.22, that is [36,75,76] | . . ’
. a |
Yerp = Qg Y + Q0 W . 1.15

In this representation the coupled differeﬁpial equations become

D Qs Q« 0 YOgw) i m
gt((l. (t\) o q/k QA&\) E CDS('\)t‘k | $S H&A)\ 1
. ’ . M';s Phl

where

CHIBMNEY = B =200 Mo s, AR VW) = fhy = 2CiCaphe
IS AN O KC‘C‘ffC‘C3) P™ H'NS

In the limit that; W0, Mg 'Jg_-'e O and equation 4.2.26 -can
integrated directly to yield the solution to,the two level degenerate
system in an oscillaticg field, see Section 1. As -equation 4,2.26
provides no particular computational advantage over equétion 4.2.15,
we will employ the latter in actual calculations Equation 4.2.26
will be particularly useful however in interpreting the results that
follow: ‘ » )

LY

The effect of the static Stark field €° - on the multiphoton
spectra of Figures 4.3(a) and (b) is shown in Figures 4.13(a)-4.14(a)

" and Figures u.15(a)-u.16(a5, 'respectively, for two values of ihe'

static field  coupling parameter ® = 2 \P,,Eﬂlw Q2,1.0 . Both even

‘and ddd phcton transitions can now occur as the or‘iginal states Q )

and & ) are partially mixed by the static field E y 3ee -Chapter
2. The occurrence of even photon transitfona (2,4,6...). in these

0.&\  w21b
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géectra is further {illustrated by the accompanying characteristic -

exponent plots, see Figures 4.13(b)-4.14(b) and ﬁ;TS(b)Jh.16(b), where
the "level crossings" l.“ (neven) in Figures 4, 4(a) and b, 4(b),
reapectively, have now changed to "anti-crossings* I\n signifying the

occurrence of a real transition at these frequencies Again the

-
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Figure 4.13. The phase averaged steady state induced transition
probability, P22, and the accompanying characteristic -exponeng .
plots as a function-of frequeney v for the static stark coupling
parameter & = 2|u;2£°|/w = 0.2 and for B = 0.25. All n-photon
transitions (n =-1,2,3,4 and 5 are shown in the figure) occur at

.-the positions of the "anti-crossings" A,. All other parameters

needed to generate Figures 4.13 - L,1k ‘are the same as used to
generate Figure L4.3(a).
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Figure h4,1L. _The phase averaged steady state induced t%ansition‘
probability, P;2, and the accompanying characteristic exponent plots
for the static stark field coupling parameter § = 1.0. The remainder
of the parameters are precisely the same as E?ed in Figgre L.13.
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Figure 4.15. The phase averaged steady state induced transition probability,
P22, and the accompanying characteristic exponent plots as a function of
frequency Vv for the static stark field coupling parameter § = 0.2 and

for B = 0.769. This figure shows the leading eight n-photon resonances

(A, n =1,2,3,4,5,6,7,8). The remaining parameters used to generate

this figure and Figure 4.16 are the same as used for Figure 4.3(b).



.

w_

(-]

o~

«~ & -~ .

Y8

°¢ - ¥ —— L\l i)

S0 oS 1.0 .S a0 W

M“

.

Figure h.}6. _The phase &veraged steady state induced transition
prebability, P22, with its accompanying characteristic exponent plots
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precise location of these "ant,i*-cr'ossings" P\r\ as a function oé‘v
frequency ) is given by the minimum in the quantitf \J\pq-a,) or,
equivalently, the vfnequency times twice Che distance of 'cloéest
a'pproa;;'h “to a branch line '(0,%W1), seé Lthe previous section.
increasing the statie Stark field Eo 3hifts the resonance peaks to
higher frequencies (Compare Figures 4.13(a) with U4.148a) and-4.15(a)
with wu.16(a) ) and increasésu further the background to  these
resonanceé. " The constant background to these resonances, for fixed
Eo, ariseé from the frequency independent contribution to the induced
Efansitibn probability.ial . In the absence of the oscillating field

F;i can be obtained from equatfbns 4.2.16-4,2:i8 and is given by. -

— ° 0\ ’ ’
P, = 2 \pnt’ [l + 4\ 81'] €20, Gior=1. L 123
. -] :
Increasing the static field t  further causes this background to
incFeaéE and ultimately reach 0.5, thereby suppressing all resonances,;

compare, for example;°Figure H?43(a) with 4.1U4(4).

»

Transitions in this twoe stgte nondegenerate system may also be
monitored by holding the amplitude &€ and frequency O of the
oscillating field fixed SLile Sta}k‘-tuning the states through a
.re'sopan‘ce' by‘ varying -the -static- field £° . Such Stark tuning
. techniques are commonly employed in situations where, due to techn;cal.
limitations, the oscillating field frequency W cannot be readi%!
shept 11 3. The'typieél experimental set up is indicated in Figure
4.17(a) where the fixed oscillating field frequency ) is-‘slightly
greater than the unpepturbed level'separation<a3 so‘that a relatively

small change -in E° is'requiréd to shift the levels into resonance®,

- see equation 4.2.19 and equatian 4.2.28 that follows. Figure h.18(aX9A

- ——— - — - - O - - ———— P - - — » oo ot ap - —

# A similar Stark tuning experiment could be carried out  for

higher. photon tpansitions with the oscillating'fieldﬁfpequency ~ °

" slightly greater than the 'q—photdn transition frequencyia?]q,. To
obtain a “full multfphoton spectium at a single frequency O would

require’.suph a ‘large variaéion in E.o that most’ of‘the& spectrum would .

completely saturate.

[

PP




Figure 4.17. The level conffgurations employed to investigate stark
tuning experimenitg on two level systemsl (a)} The two level non-
degenerate system where the Jlevel separation w is slightly less than
the fixed frequency v of the sinusoidal field. The actual numefical
values of the parameters used in calculations on this system are;
—Ez—El—OuS E, = -0.5, Ez——005 v = 0.5 and uj;’ = 1.0

(b) Stark tuning expeflment on two degenerate levels (w = O) For
convenience we choose Ep = 0 here and the remaining parameters are the
same as in (a). (c) Stark tuning of near degenerate levels. The

condition v »> w is imposed for this model, see equation 422.28.
Actual values of the parameters used for calculatlons on this system
are; w = 0.01, E; = 0.0, E,-= -0.01, v = 0.5, and Y2 = 1.0. For the
definition of the symbols +, ~, S and A in (b) and (c), see the main
text. v
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. Figure 4.18. The phase averaged steady state induced transition
probability, P,,, foq'the stark'tunigg experiment shown in .
. Figure 4.17(a), as a finction of §, in units of w™!, for the
three values of the coupling parameter B = 1/45, 1/9, 2/9. The
- single photon resonance is explicitly shown in (a) and (b)
contains the aécompanying characteristic exponent plots.
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and (b) shows ﬁu along with its accompanying characteristic exponent S
g plots for ~OfWLI =0l as a function of 8(51\}&.{7."\](& for three values

t of $ < VIWS 5 V19 , 219 for the above exper'i;nent,’ For the ‘

‘weaker oscillat.ing field p-uus the increased background on the high

Stark tuned side (larger‘ 8 ) of the single phot.on profile 1is due to

the relatively large static field E required to tune through the

resonance. If the ratio ©OJW lies closer to unity (that 1is the \
frequency O lies closer to the level separationcd) the entire
profile would become more symmetric, relative to the results of Figure
4.18(ay\as “smaller values of €°  would be required td bring the
system into reésonance. On the other hand, for largér values of
p(‘-'”‘l,'LIQ) the strong- competition between t.?fe large aoscillating
field f_ ’end the l’ar'ge static field £° causes the resonance profiles
to saturate more symmetrically, see Figure 4.18(a) . The accompanying
- characteristic exponent plots r'ef‘lect °t,h.is"saturat.ion by 'start,ing .to
level off to constant values as § increases, so that the location of
the "anti-crossing" A, becomes le,g),s diet;nct. * The Stark tuning
experiment described in Figure h.17(a) indicates that ev@h for weak
‘ oécillating fielns'sat,nr-atiQn.ef‘fects kby _the static field can be
- important unless the ratio V/W 1s ‘close to unity, see Figure o

‘ 4.18(a). If we ignore resonance shifts due to the oscillating -field

(Dynamic Stark shift) the resonance--condition for\Stark tuning is

.

. glven by, see Equation 4.2,19
' ~ - _a - - r Bt
V= AQ, = q, q,b =WJi+d . t.2.28
Thus if V~W the entire profile can be Stark tuned by a small

variation in static field £°(ord ).
.

Finally, we investigate the s/ituation in which VY W  which
would dor‘respond to the Stark t.uning of degener‘ate(w 0),see Figure

4.47(b) , or near degenerate see Figure 4.17¢e) , states in "the
pr‘esence of an oscillat.ing field of f‘ixed frequency =0 and amplitude
&. To sat.ist‘y the resonance condition, given by - equation lt,z.gB,
will require a large variation in b ( E ): since ',\)77<.0 , and hence
we expect that saturation 'ef‘f‘ect.s will dominate over most of the Stark

: tuning domain. It is convenienhtv at this stage to write explicitly the .
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2 . ,
dipole matrix element.’LAscoupling the Stark tuned states. This 1is
obtained by substituting equation 4.2‘.23 into equation 4.4.26 and by

using the initial condition Q,(®) =1,  Q0) =0

. 2 2 .
From this result it is clear that in the limit WH0, Myg> Pt =0
and there 1is no coupling ‘between the static Stark’ tuned ‘states Wi
and \\_ . The plots of the, characteristic exponents DO, §nd D4

which coincide with O, and Q_ when E,+%t, =0 , for the Stark
tuning of an initially deg;ner'ate system are shown in Figure 4.19 as a

function of AQ, = q, -q _=2\u,t% In these . plots no
) "anti~crossings" occur, but a series of "lewvel-crossings" \-n occur at
DQ, = N\ ‘where n=0,1,2,... and 7O is fixed; there are no -

transitions indgced by the oscillating field .so the transition
probabilities P, =P, =0.5 irrespective of the imposed initial
conditions due to the éomp'lete mixing of ¢|Lﬂ and Qzu-\ ‘by the '
static Stark field E,o. The results of Figure U4.19 are independent of
tl . size of the oscillating field which is a manifestation of the fact
tgéi ﬂhere is no coupling whatsoever between the Stark sﬁlit states if

W=0. - ‘ : | o
. - u both states are initially near degenerate that is LW~ O ,  see
o ‘ Figure ‘E‘ 4.17(c), there will be a finite but small coupl,iﬁg between the
Stark éplit states and a series of inteﬁesting resonances are observed
. at A!\"-i\‘\‘\)i " Figure 4,20(a) _shows the phase averaged steady state
induced| transition probabili't,y ?,_,_ as a function of bq, , Subject to
the initial conditions# A ©)=1, Qo) =0, for a number of values of
the couéling parameter ‘3:\\4“?,\/(05 this fiéure includes the first two
,resonancies at A4, =0 and BG,=2~X. While transitions between ¢|(ﬂ

e
I

- - - - - ———— - e e e

# The amplitude of these resonances depends on the dimposed
initial conditions and if we choose .Q (o) = Q40 =0.5 the resonances

.are not observed at all. The greater the difference in population of

the near degenerate state‘s; the greater the amplitude of the resonance.@ »
As a rough guide, for example, we have found that if the. 4@ = .Q,w0)
3 ~Q\(Y0 the maximum amplitude of the dip.at AQ, =) 1s~0@(3.

\
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Figure 4.20(a). Resonance dips (P,;) for the stark tuning (as a function
of Aq/v) of the near degenerate levels shown in Figure 4.17(c). Each
spectrum corresponds to a different value of the coupling strength
parameter B. These dips occur at Aq = nv, see equation 4.2.28 for n = 1.
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P

and Q)I('j\ are completely saturated ( P, = ®, =0.5) by both the -

strong static Stark and oscillating fields over most of the Stark
tunlng domain, a serles of very sharp 'dips“ occur in -P‘n at
bq, =0 . The dip in P,_-,_ at low static and oscillatiﬁg fields, see
Figure 4.20(a) for @ =10 and 25 as Aq(-) O, is indicative of the fact
that the transition 152 1is not Saturated for such f‘ield strengths

 These resonances differ from the conventional resona‘nces discussed in

this chapter, see Sections 4.2 and 4.3, in that they do not broaden or

shift with increasing oscillating field amplitude€ » Pegg anpd Series

[77]  in 'an elegant treatment of the analogous magnetic resondnﬁé
experiment( see the following section for the relevant Hamiltoniap)
predicted that such resonances occur at integgr multiples of
\¥ B} and identified them with a beating between the oscillating

magnetic field, B,y Cos(utt8), and the natural oscillations of the

magnetically “tuned (by Box)} Bo-‘g )  system. ,These - authors
explicitly .deal with the resonant case for the magnetic‘resonance
experiment. and suggest formally how the problem may be treated for
arbitrary values of ¥ Box\ )

The oscillatory behaviour of the resonance minima evident in

Figure 14.20(a) as a function of oscillating field amplitudeﬁ , is
also evident in the characteristic_ exponent plots of A:A shown as a
function of bq, f‘or@ =10,50 and .100,in Figure 4.20(b).. Unlike the
conventional resonances discussed earlier the "anti-crossings" Am do
not shift or broaden as‘fa function qf‘@ but instead undérgo small
oscillations in the vieinity of the branch 1ines 0,%Q.5 at  the
resonance positions Aq,= N, In the asymptotic limit P-)oo these
"anti-érossings" A“ehan'ge Lo '!.level-cros‘sings" La , as 'in Figure
11‘9‘, signifying that - the system  has become degenerate. Figure
4.21(a) and (b) shbws in deta11~tHe oscillatory behaviour of both. the
résonance minima and widths as a function ot‘p for- n=1 and n:é,
respectively, coriﬂqsponding to the spectra in Figure 4.20(a). The
relatively hlgh symmet,rly of the resonances is displayed in Figure, _13}22

, . v
- . .
. These resonances are observed as dips in P,_,_ due to the

imposed initial’ conditions, CLito) .1,]Q1ﬂ°)'0and because 2y cannot

-

exceed 0.5.
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'Figure L.20(b) shows the characteristic expenent plots (8J) for B = 10,
50 and 100 with the "anti-crossings" A; and A; included. The ,
oscillatory behaviour of A, is not very evident in this figure as a
result of the extremely narrow resonance widths, see however

Figure L4.21(b).
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Figure L1.21. (a) The oscillatory behaviour of P,, at the first and second
resonance minima (Aq = v and 2v) in Figure 4.20(a}, as’a function of
coupling strength B. (b) The behaviour of the width at half maximum,

v|A1 -~ A2 |min, of these resonances’ over the same coupling d:main.
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" where the three;resonances corresponding to 049, =0 for at p =25,50 and
75 are "blown up". Finally in Figure Y4.23 we 'show that a simple
1inéar relation exists between the"resonance width, which is given by

a minimum. in VIB, -84\ occurring at an anti-crossing Av, and the

near degenerate fevel separation ) ; -this figure corresponds to the
- first. minimum in E.,_ as a function of @ , shown for 8q,: 0 in
Figurejﬁ.21. ~Thus Lo \’ -
‘*x:-*.;r{j‘fp"""..bt\ = ConsNaml x QO . ’ : L2300 '

;The results lea%ing to eduation 4.2.30 suggest the possibility g‘}':at,
Stark tuning experiments of the type just discussed for near
. ) degeneréte states could be employed to meas:re both  the electric. .
dipole matrix element P"- and the _level separation &2 , if the
constant in equation #.2.30 is determined by using "a syste with a
known near degenergte leyél separation. Also as.ppinted out in the
« footnote on page 107 the amplitude of the’ resonance minima will

depend critically on the relative populations of the near degener'ate

leve.\ls. In many real situations, however, more than “two snear-

degeherate levels can be present in a narrow sp‘ectr:al region and the % .

- thedretical ‘analysislvwould have to bga extended to include thedir '’
contributions. It is interestinghto note that the analgous treatment -
for the magnetic resonapce expériment yields the Lénde g factor, which *
is the magnetic analogue of H“‘- ,“as' disgussed by Pegg ahd Series [77] .
and Chapnfan [78]; in“this situation () is ‘'the known Ze?.man splitting. .

-

_ 4.3 INDUCED TRANSITION PROBA;BII;ITIES FOR THE TWO LEVEL SYSTEM

IN A SINUSOIDAL MAGNETIC FIELD. : 4

’Magnet.ie int.eractions. in‘é two level system. ha&er;eceived o ,
%gnsiderable experiment.al and theoretical attention over' the pdst
twenty years and were the first systems 1in which multiphoton
- transitions f" wer‘e ~obs<’arved experimentally [5,6]. The pu}spose. of this

* brief ?ection will be to show that as far as the solgtio'n to the time
o~ dependent  problem = is concerned, both _E;g\neb\j( and electric - '
a : '/
. interactions are intimately related. It will also e demonstrated o

’\‘ . ! N -
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Figure 4.23. The linear relationship 5etween the resonance width at
half maximum (v|A;-Az|) and the near degenerate level separation w,
.for B = 50 in Figure 4.20(a). T
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that the OAA obtained here through a semi-classical treatment coincide

precisely with the energies of the fully quantized Hamiltonian

recently obtained by Yabusaki, Murakami and Ogawa [72,74].
(-] . .

As a specific e_axamp-le we consider a spin 1/2 system'pertu‘rbed by
two mutually perpendicular ,static magnetic fields, Bo,‘. and B,,*. ,
and a strong radiofrequency field of amplitude B, [72,74,77]. Thg
system "is initially deg;—:ner-ate' and the statoié magnetie-field Box
split,s/t,he Ziegenerate pair into the magnetic substates H—_\I‘L) . and

\-\/1% . - The Hamiltonian representing this interaction is given by
[70] ‘ _
- ' -
Ho = - x"B"'iin .3

©

‘where ¥ 1is the ™gyromagnetic ratio" and Ii is the z-component of the
nuclear angular momentum operator with eigenvalues 4111 . The two
level system therefore consists of two states |+12) and \-\[1)

with respective energies Es =t ¥ ®og| -.  Application ofesan -

oséillating Radiofrequency field Bu Cos(\)t-r%) " ' perpendicular to
B‘,% induces magnetic dipole tr‘ansit‘ions'between the two spin 1/2
states® and for complete generality we include a static magnetic Tield
Box ‘parallel to, B\X which z;af‘f‘.e'ct.ively mixes both states through an
allowed magnetic dipole interaction. The total .Hamiltonian for this

system now becomes
Hrt) = Hoto -8{ B(,%I +(B Co)(’\)t'\'S)) ] W.3.2

where H°(r\ represents the unperturbed Hamiltonian, with energy Eo ,
corresponding to the energy of the initially degenerate spin half

sbates.

’

The coupled dif‘f‘er‘ential equations describing- the time evolth.on
of this system become (IHIZ.)’Q. \*-ij27=z1

'\.\0/ (Q‘“-\) (Et "Hnth B‘;Qmw:( “\1 ‘Lﬂ) o “
t\0aw/ \-p, 8, E, NACT .33

where we have chosen Eo =0, ’An_——x(-lh.ﬁ. f+112) = 'f-z.; and

) ) 7 R .

% Both fields must . be mutually perpendicular to satisfy the
magnetic dipole seleetion rules; 4that,'1s (+ll'l\lx\"‘l'k> % O
[70]. . ‘




E, = "’1.\78°l\,§t’ LY Boa|- Equations 4.3.3 and 4.2.15 _ have
precisely the same form showimg the intimate ~ connection between

electric dipole and magnetic dipole experiments. JIf, for example, the

static magnetic field By , the oscillating field amplitude B, and -

its f‘r'equéncy %) are held constant while the static magnetic field

ch is varied, we have the same sjituation és in the Stark tuning -

experiment descnihbed'in the previous section and the results for both
experiments are identical. On the other hand if 8, , Box and B,y
are- held constant while the frequency © of the oscillating field is

swept, thé results are identical to those obtained Ffor-the frequency

spectrum of a two level system in a fixed static Stark field, see
Figures 4.13-4.16.° . ) .

3 ! -

In & x;ecent calcula}ion, Yabusaki, Murakami and Ogawa used a
'quantized field approach ,doveloped earlier by Cohen-Tannoudji and
Haroce'[73], to calculate the energies of the total system as a
function of ‘the two static magnetic field;sl B,‘ and B,;‘ , while
holdding the amplditude B‘x and frequehcy 0 of the strong (\XB.,,,\«—\ )
raQiof‘r‘equency field constant.  Their irnfi'nite quantized Hamiltonian

‘ matrix, which is analgous to Shirley’s Floquet ﬁlatrix, was truncated
to a 40x40 matrix and diagonalized to‘obtlain the energies accurate to
tenth order 1n perturbation theory. These energy plots as a function

®  of B and B,.‘ were then employed {'.‘o Pocate var'ious resonances in
the system These authors point out ‘that these f‘ul/lly quantized energy
calculations oannot provide any information regarding jhe 1ntensity
* and lineshapes of - the var'ious resonances and they return to
numerically solving the sem;[o].assica‘l 'densit‘y matr‘ixi equations to
calculat?® the multiphoton spectra {723}. . L -

Figure 4.24(a) and (b) shows the characteristic expoﬁent plots,
6 as a function of |XB,1\/1) (“'?LI(J in Yabusaki’s notation), with

LB 10 (W, 1) =1(2),2(4),4(8) for |¥ B \(w")ﬁ,and \x B,.)
=0.45V(090), r"espectively.: Yabusaki et al g:l_ve the quantized energy

plots far 188, 1I0(WIW) = 1€, 200,UBror 18 B l(W,)0 1n . their

Figure 4 ‘and for IXBu\/'o(Uulu)=l(l),l“ﬂfor 1¥8e;) =ouLsSV in
their Figure 7. Direct comparison with Figures 4.24(a) and (b) shows

PN

[ty
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Figure h,Eh. Characteristic exponent plots A} as a function of magnetic
level tuning (|YBy,|/V). (&) Plots of 8j for |YBoyl = 0 end |¥By,|/v =
1,2 and 4. (b) Plots of A3 for |yBoy| = 0.45v and ]'ylellv = 1,2 and
4, The curves are labelled by the appropriate values of IYB [/v. )

"Anti-crossings" are indicated by A while "level crossings" are
- indicated by L.
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that the ‘Oa&gzorrespond precisely to their quantized energies. Such a

) ~ Shirley [13,58] has demonstrated t,hat the semiclassical and quantum
't,r-eat.ment,s should coincide when the photon number N in the quantized
Sfield 1is large.. Unlike the. method of Yabusaki et al[72], the formal
metﬁod of solution develgped in Chapter 3 provides both the ‘energies

. (ﬂbé) and multiphoton sb'ect,ra without recourse to a second

- . ™
calculation.

The multiphoton spectra (P‘n ), subject to the initial

exponent g];ot.s in Figure 4.2k(a) and (b) are shown as a function of
¥ Bn\ll\) in Figures 4.,25(a) and (b), respectively. In the absence
". . of the parallel static magnetic field (\¥Box}=Q only ‘odd photon
‘ transitions _ean occur’' at the positions of the "anti-crossings"™ A ,
see‘i'“i‘gu?'e ’ll.zl%(a), and the resonances corresponding to these odd
‘photop transitions are shown.in Figure 4.25(a) for the three values of
' \X Bq“‘b in Figure Y4.2U4(a). The strong coupling strengths employed in
) 4 " these ca-].culat,ions are ref‘lected in the very broad resonances, whick,;
Py ‘ are approaching 'bmnplet.e saturation as the oscillating field strength
) # . incr-easefs (compare both the spectra and corresponding ls6 plots for
aee ’ IXBR\NJ 2 and My, 'In the presence of the static magnetic field
{(\¥Qox\ = O L\»S‘D) the "level-cr'ossings" L in Figure 4.24(a),
é‘orr'esponding to the forbidden even photon transitions ih Figure
4.25(a), have' now become - "anti-crossings" A signifying the
- occurrence of even phot‘on transitions 1in F:igure 4.25(b). The'se
- resgpance peaks againfccur precisely at the "anti-crossingg“ A whose
position corresponds to a minimum _in ~\Ib, -8, as a function -of
|(‘B°1\ (o - behaviour of thege resonances and characteristic
exponents (quarb energies) is discussed in detail by Yabusaki et

al [72,74].

SR
3 -m._“‘A? -~

correspondence for these coupling strengths is not surprising as

conditions Cimﬂ =1, Qo =0, corresponding to the. char'acter'is.ticA
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Figure h.25(a}. The phase averaged steady state induced transition '
probability, P;,, over the same magnetic tuning domain (|yBgz|/Vv) and for
the same parameters as in Figure 4.24(a).
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Figure 4.25(b).

The phase averaged sttady state induced transition
probability, Pzz, over the same magnetic tumng domain and for the same
para.meters as in Figure L4.24(b).
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4.4 BEHAVIOUR OF THE CHARACTERISTIC EXPONENTS IN THE NEIGHBOURHOOD

* OF A RESONANCE.

- . .

The Peha&iﬂur ofb'thé characteristic exponents 6, ‘in  the
neighbourhood of a resonance has led to some confusion in the
1it§réture.recéﬂt1y [?1]. Besset, Hordwitz,:Messiah and Winter [20]
in ‘their approximate roiating‘field analysis of the\N-level system,
see Section 4.2 , note that as a resonance between two states—1¥3fraﬁd_*
dﬁgﬂ is approached by sweeping over the frequency domain’i),'%he
characteristic exponents A; and b‘A - approach one another and
"anti-cross" +at the resonance frequency.* They note in addition that
(T) as the resonance is traversed the two characteristic exponents oy -
and &‘6 suddenly interchange identity’ (B"(—J’A&) and (2)” both B { and
,d)ba closely mirror the behaviour of the perturbed stat}onary -state
energies and are approximately equal to Ei and E far off resonance
if the oscillating field is sufffciently weak. This change over in
identity however is compensated for by a corresponding change in their
accompanying ergenvectars S; and S , See Besset et al and Chapter 3,
with the result that any physical property being evaluated is
unaffected. Auﬁler‘and Townes [14], in their analysis of the two
level syétem és a function of frequency ¥V, also oﬂserved a'very
complicated behdviour and acereditéd this behaviour to thé skipping

from one solution to another of the  infinitely many allowed solutions

(b; =b3*'\|1,‘\=°ﬁh"9 occurring in the problem, see Section 1.2.

These authors remark that all of these solutions contain the same
physical imformation so that which ones are chosen in an actual

calculation is basically quite arbitrary.

The two level characteristic exponents A, and &, plotted in the
earlier sections of this ‘chapter were well-behaved and continous
(BH,207) ovrer- the entire frequency dqomain and showed none of . the
above behaviour as a function o{,j?ii\The reason for this lay solely
in the cho’ice of energy reference (E.+E2)=0, see Section 4.2 and
Shirley (13}, and we shall now demonstrate explicitly that the
-apparent discontinuity arising from the Sudden interchangé of identity

of & and By ( D, 6> &, ) is nonphysical and indeed whether or not

\
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3 it occurs will depend critically on the choice of (E,+ E, ).
Figurés 4.26(a) and (b) show the single photon profiles for the two

experifnental situations commonly encountered- in magnetic resonance

spectroscopy*#*, namely (a) sweeping with frequency O of the

oscillating field while keeping l¥Bg\fixed, see equation 4.3.2 with

- B4y =0, for three values of \Y¥®ux\/L =0.1, 0.25 and 0.5 and (b)

.magnetically tuning the levels by Vvarying the perpendicular static

: magnetic f%Peld Bo% ‘(again de:O) while keeping ~\0 fixed for three
values of 1¥ Bx|/0 z0.1, 0.25 and, 0.5. The spectra in Figure
4.26(a) were calculated with four -different values of"'(EM-EL ),
: . holding €O =€,-E, fixed, for each individual value of \¥®ux\[wW
while those in Figure 4.26(b) represent three different values of

(E +E,_- ), holding O fixed, for each . value of \¥Q®x\/V , see

below As expeoled these spectra are independent o’f‘ the choice of

(E +E1) for any given value of 18 B\ /W or \¥8x\/V, see

~Section 4.2.

depend strongly ¢

the other hand the characteristic exponents Aé
the choice of ( E.+ EL ), see what follows.

Initially wé confine our attention to the behaviour ' of fhe

characteristic exXnonents D'a , as a function of (E€,+E, ), for the
gure 4.26(a). Figure 4.27(a), shows these
a function of VOV for \¥®uljuw=0.1, 0.25

ich corresponds to the energy choice

frequency épecpra of
. ' qharaoteristic exponents
and 0.5 and for (E,+ E, )=0
made in all the earlieh'eglcula ions in this chapter. These plots are

- -y - - - - - -

# The precise location of the *“anti-crossing" and hencé i;he
resonance .frequency is determined from the minimud in the quantity
V1 D,-01). For the frequency sweep spectrum the "anti-crossings" A“
are so sharp in general as a function of A) that a minimum in O\d,-8,)
coincides graphically with the minimum in 18, =8, .

Y
- - - - am

*% Figure 4.26(a) also éorresponds to the electric dipole case
when '\)ﬁ is swept for P =0.1,0.25, and 0.5. In Figure 4.26(a)
£, ‘Ez. refer to the energles of the magnetic substates split by Bo'«t
which is held constamt. In Figurek26(b) E, and E, are initially
degenerate with common energy Eo = (E.+E)/2 and are tuned by B,i.
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Figure 4.26. (a) P;, as a function of frequency Vv for three values of the

coupling parameter IYBlXI/w = 0.1, 0.285 and 0.5 and with lyBox] = 0.

The numerical values of the parameters used in this calculation are

w=1.0, y=1.0 and four different choices of E, and E,

consistent with the given velue of w=E; - E; but yielding different

values for the energy reference (E; + E»). The individual values of

E: and E, are specified in Figures 4.27 - 4.29 and the resH;ts for Pzz

are independent of (E; + Ez).

(b) P, as a function of magnetic tunlng lyBo l for fixed f&lﬁpency v

and for |yByx|/v = 0.1, 0.25 and 0.5 with ]yBOXI = 0. In this calculation
=1.0, Yy =1.0 and three different choices of energy reference (E; + E;),

now given by the initial degenerate value Eg.= (E, + E;)/2, are made.

which yield identical spectra. The individual values of E, and E; are

given in Figure 4.30. - ‘
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Figure L4.27. (a) The characteristic exponent (Aj) plots correspondlng to’

the frequency spectra in Figure L4.26(a) for.lyB x’ = 0.1, 0.25 and 0.5
and for the choice of energy reference (B, + Ez$ 0.0; E; = -0.5,

Ez = 0.5. (b) The Aj plots for the .same parameters as in (a) except that

The general location of .the
"level-crossing” L; and "antl-crOSSlng‘!hkare indicated on the flgure

-

-
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S};mmgtric about the line - (E&,+ €D/ which-r"epr'esentg the zero energy
’ref‘erénce point* and also coincides p;ecisely with the line 0. In
t hese plots there is no 1interchange of identity by o, and &,
(D> B,) and, ‘the “anti-crossing" ¥# An coincide&precigely. with
the resonance maxima in Figurt 4.26(a) with the "level-’p?‘ossings" L
oceurring on the zero  branchline at. the A forbidden two photon
transition frequency. Figure 4.27(b) shows t.t;e plots of‘( &6, and b
for (€,+ €L )==0.1 for the same values of {¥Bx|[w and ). While
these plots are-still fairly symmetric dBout thel energy reference
point -(€,+BDI1 =.05, particularly to the high frequency side of
A\, the "level-crossing" is dis;placed f‘rom thi§ energy 'ref‘e'rehce
line; the positions of F\‘) \-1. are “unckanged as a function of
frequency. It should also be noted ~that the displacement of the
eneréy reference point —(E.+E)L off the zero Yranch line has caused
the characteristi¢ exponent. b, , f‘o‘i‘ \XB\x\ Iko =.1 to cross: over at
\V~W into the lower half of the next highest branch [0.5, 1.5]. '
ey

This crossing of the branch line should not be coynf‘used “with an
interchange of identity ( D,g—)b-;) as this value of A cannot
represent the smooth continuation of the £, curve.#* It doeg however
indicate the sort of complex behaviour that can arise if a non-zero

energy reference point in choogen'for the problem.

' * This energy reference point is a natural choice for plots of
t,hesx?5

'S as it occurs in' the characteristic exponents for the Rabi

) solu‘ion, that 1is A- =-(E, +E,)I'l*l_{f'+|p.-,_€\1 , see equation
4.2.7, which in turn coincides with ‘\.)A in the weak oscillating f‘ield
1imit. , I

. r

-----J--—- e L L L LTS - ———— - - - - - - - - .-,

#% The arctangent function,. see‘equation 3.5.20 , returns- values

lsring in the branch [-0:5, 0.5]. As the O, curve crosses the bran}:h'

line 0.5 into the "next highest branch [0.5, 1.5] f,he "‘)ar‘ct'ang'eni
function , returns a numerical value of A./ ==-.4999 when
VAW ; D; ZA+| . This value for bl, represents the continuation of
the A’, curve in the upper half of the lower branch [-1.5, -0.5].

’
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. Figure 4.28 shows plbts of 8; for’|¥ Bullw =0.1, 0.25, and 0.5

respectively, for ( E,+E,) =-1.8 which corregponds to an energy
:referénce point of -—(E.+EQ|1 =0.9 located in the branch [0.5,1.5]° and
lying below the nearest b)ranch line at 1.0; the plots of /B, and Dy
are restricted td {~0.5,0.5] due to the properties of“ the arctangent
function, see o._equat,ion' 3.5.20. The behaviour of t.’he characteristic
exponents A-a is - now drastically altered from _t,he;ir symme‘t.riC
behaviou'r in the previous f‘igures. It .should perhaps be 'emphasised at
this point that the computed spectra of Figure 4.26(a) , for any given
valué of V¥®,llw are identical for all choices of (E£,+ €, ). While
both the "anti-crossing"” A\ and "level-crossing" \_, are still
.evident 1in  these spectra, and occur at the sarﬁe values of ‘\5, the
plots ape becoming extremel"y i complicated add ~beg:l.n to los;e thei_f-
interpretive v}alue.' For the f‘irs;t time we observe that &, and A"\-,_ .
begin to interchange identity { 8,4=> b, ) at different points in the
frequency domain- but not at -\oawo. Closer inspection of these plots
shows that am interchange of 'identify (D, é-:')b-,_) occurs in the region
where 18,1 =1D,]) indicated by broken lines in the figures. An
interchange of identity at the "Ievél-cr‘qseiqg" \77_ aiso _oceurs as
this corresponds to ‘a lr‘eal degeneracy '( &= 089) 1in’ the system.
Because of our choice of e gy reference the condition '\A.\ = \.D-d.
_ cannot be_fulfilled inAhe region "0~ ##% and hence no in'terchange g
_identity occurs at 4£his .point (N,&>0q).' This interchange of,
identity can be visualized as the jumping from one solution s,o anothe'r.

of the infinitely many periodic solutions for the problem [13,14] or,

- <

-y -—

* In thesk plots, see Figures 4.28 and 4,29, the characteristic

exponent curves cross the branch lines.,at ¥} 0.5 and could be continued

¥

- smootihly into the neighbouring‘ branches by /using the periodicity

.

relation given by equation 4.2.13.

-y - — -

-~

BT It sholld be r-eca\lled that the ,singlex photon resonance in the
“neighbourhood \of A)a WD requires that -\D{d,-B8,| be_a minimum [20]

the  predise 1location of the "anti-crossing" A, -.
However 1t is clear from Figﬁre 4.28 that O,% B in this region and -
2|Bal  cannot be ’satfsfied.
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equivalently, the jumping from one branch to ahother of the infinitely
many adjoining branches N ZX\(1 ', n=o,:.'1,t7. .-+ « As the arttangent

function, see équat.ion 3.5.19, can only r'et.urn‘the values for éu and

A, 1in the branch [-0.5,0.5] it is not surprising that the choice of’

energy ref‘erehce‘point —(Eu*‘Ez\l’L in some other, branch leads to such
complicated behaviour.
g

Finally, we choo (E)+E,) =-3 in Figuf‘e 4,29 so that the  energy

reference point -(E4+E;}/L =1.5 1lies precisely on_ a 'branch line.
Althoughi thé béhaviour of by and D is as complicated as in Figuhe
k»28 the condition B\ = (Dl is satisfied at D=2¢J and an

interchange of identity ( D\ &> D) occurs precisely at this point.- It
should be noted however that this interchange of identity also oceurs

at other points where \D| =IDa} is satisfied. It is important to
note that a change in identity of the A'A does not imply a resonance,
see [20]. !

'Next. we study the behaviour of t.her bs'.s ‘for the magnetic tuning
exper-iment,‘ see Figure< 4.26(b), which has recetved dohsiderabie
attention in recent years [6,7,17,18,56,57]. Ahmad [21] wused this
example to argue that Shirley’s [13] result fof P11 , see Section 34.2,
was invalid at the point\) ¢ . ' It has been demonstrated in- Section
y. 2 that the quantity comp’ed by Ahmad does not correspond to P-n .
In this magnetic = tuning experiment the two states are initially
degenerate with a common energy Eo which corresx.)onds to (E.+E-;)'h.
Figure 4.30(a), (b)k and (c¢) shows the characteristic exponen\nlots as

a function of lxaq\h)for the three spectra in Figure . 26(b)"
(188ix\{~D = 0.1,0.25,0.5) for three values of the energy reference -

point —(E,+E;)/2 =0,1.4,1.0 (Eo =0,-1. 4,-1.0). These plots, unlike
the previous ones f‘or f‘requency sweeping, retain their symmet;ry for
all cholces of (E.+ E. ) except that the choice of —-(E +E)L =1.4
.has displaced the energy reference line downwards by 0.1. In Figure
k.30(a) A. “and A-L do not int.e'rchange identity at any point in the
tuning domain, including the poj,n,t V=W involved in Ahmads ‘criticism
of Shirley. Although displa—eed from the near'est branch line (1. 5') in
Figure l-l 30(b) both &y and, Do sti? retain their symmetpy about _the

+
\




-

"?-1 tvBuxl/w =0.1
L 4 c -
[)
1
]
]
A ! b,
Ly :
S \
w
o -
[] - .
. 1\ .. Ve Byl 50,25

1 VfW

” B .
(-4
. n
. ‘u.’u- . ‘ VN‘ \Y B|“ l Ww = 0.5
(-]

N V/w -

Figure h.29. The characteristic exponeht plots corresponding to
Figure L1.26(a) with (E; + E;) = -3.0; E; = -2.0, E; = ~1.0. The inter~
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Fléure 4.30, Characteristie exponent plots, for the Zeeman tunlng
experiment for which the spectra are shown in Figure 4.26(d). (a). Eo = 0.0
(v) Eo = -1. 4 and Y¢) Eq = -1.0. (the A}'s interchange identity at

random in this figure but are plot‘ced as continuous curves) The gurves
‘are labelled by the pumerical values of: ]’Yle[/\J. -
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'iem energy r'ef'er‘enc;e point [‘—(‘E:\-EOI‘L =1.4 in the branch [0.5,1.51;
or"_-—(E.fE-DI’L =0.4 ;Ll’i the branch [—'O.5~,0f5] in Figure 4.30(b)] and
.again as the condition B =184 cannot be satisfied at any point
except at th‘e\\"level'-crc)ssing" .1, where D, = &84 , no interchange of

- b1
identity .can occur except at L, ..  Because of the periodic

- ‘f‘elat.ionship between the characteristic exponent.s in adjoining

) branches the &84, curves in the lower ha]:f‘ of the branch [-0.5,0.'5], in

* l;‘igur'e 4.30(b), are identical to those in the lower half of the branch
' [0.5,1.5], that is b',.-- da2+1 .  As a result of this periodic
rela_t.ionship the .characteristic exponent plots, if viewed about I.he

B T e o AL SRR ]

energy reference {line — (€, +€,)/1 =0.4, are precisely the same as
those plot.t,ed‘ about the energy reference line ~(B*E.)r=0 in Figure
4.30(a). - Thus the D2 curves in the lower half of the branch
indicated in the upper half of the branch [io.s,b.S}, can be continued

across the branch 1line 0.5 into the A’—; curves in the lower half of
the branch [0.5,1.5]. Finally the plots of By and &4 appear to be
precisely the same in Figure 4.30(c) as in Figure 4.30(a) where we

have chose;x the energy reference point to lie on the branch line, that -
is -(EB,+E1)|12:=1.0. These plots differ however in that &, and Dy

v .t : ; .

appear to change identity (AO,&» b, ) at random over the entire

R S chaie can ity o i

tuning domain because the condition \&a) =\bda) is satisfied
everywhere. This interchange of iflentity ( A, &> D1 ) does not occur
. . in Figure 4.30(a) due to the choice of energy reference point-.

From the preceding results the behéviour of 'the characteristic

e S

expdnents b‘& for the frequency sweep and magnetic tur;irig experiments
can be summarized as follows. Most importantly, we have demonstrated
explicitly " that the 1nt..erchangé of identity (D, ¢>b, ) Ais
nonphysical and can be made to occur at different points by an
.artificial 'change in ‘the total energy ref‘er;ence (E,¥E1 ). The

s choice of ( EtE, ) has a profound effect on the behaviour of_bA for .

the frequency tun?ig experi'ment. dnd unleéss (E,+ E-L. ) is confined to '

the branch {«0.5,0.5]. an _extremely complicated behaviour of the

cha acﬁer;stic 4,ex‘ponentl.s results, ,;ee [14]. ° This complicated -

i ,behlviour can be rationalized by‘ th; followiné, simple qualitative ‘

argument. In Figure 4.27(a) the individual energies E, and E, are

1

.




equal in magnitude and as VO. and Vbd,, and also b, and b, , closely

mirror the behaviour of these energies when perturbed by the
*oscillating field we would expect the behaviour of D, and B. - to be
smooth, cont,ivnous -and symmetric. In ngur‘e 4.27(b) the.se energies
differ slightl& in magnitude with the result‘that t.heir plots beconme
slightly distorted. In Figures 4.28 and 4.29 E, and El differ
considerably in magnitude with -the result that the zero energy
reference point —(E.+ED occurs in the branch [6.5,1.5]. As a
resonance is approached both O, and b, must - undergo such large
changes in magnitude to achieve the minimum value of VOV Dy —-Da\  that
they can jump from one branch to an'oth,ér. For the magnetic tuniﬁg
experiment however, the actual energ;’tes E'% are being linearly varied
by the static magnetic field Boq‘. This 1linear var'iation. is also
exhibited by the characteristic exponents O, and Dy except. in the
region of a resonance where they "anti-cross"™. The fact that &, and
D, appear to randomly interchange identity (A, &b, ) as a functfdn
of \¥8e3\l0 in Figure #4.30(c) again indicates that the eriergy
reference point -( €,%€,)/2 does not occur in the branch [40.5,0.5].

At this point wé refer briefly to Ahmad’s [21] recent criticism
of Shirley’s result which "is based on his claim that the
charac’teristic exponents are rdiscontir‘)‘oﬁs precisely at the point
Q:u).‘ An' apparently singular expansion, see —Equati'on (29)[13], for
the characteristic exponent g (in Ahmad’s notation) leads thfé author
to argue that the characteristic expor)énts are discontinous at the
point =W and hence cannot be used to compute_.é-“ precisely at this
point via . Shirley's equat.ioh (26), which involvez a derivative of q
with respect to @ . It should be noted that Sh:lr'lei does not us'e this
equatidn to ,det’ermi'ne q, put in fact detemines it directly from an
exact numerical 1integration of the time dependent.’[ Schroeding(_er' .
equation and as he also chooses (E\+€, )=0 in all his calculations
his charaetgristic exbonents will agree with those bi'esented in Figure
4.30(a). This choi‘ce wof energy ref‘erénce, that 1is (&, +E~ )=0
reqdireg' that’ c‘:\(‘z,--q,‘L , or Vb, =-VUb, 1in our n;tation, and  hence
the - expansion for q in Shirley’s equation (29) can be seen to

represent the distinct root _‘on one side of the resonance and
. , ‘ ‘ ! - s 1

K
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on the other side{79]. The characteristic exponent plot presented by

.Ahmad as an incorrect view of their:  behaviour (Ahmad’s Figure '2)

coincides precisely with the exact AE‘S plotted in Figure 4.30(a).
As was demonstrated in Section 4.2, thg characteristic exponent plots
of Figure 4.30(a) coincide precisely with the quantized energies
compdted recently by Yabusaki et al [72,74].

The behaviour of the characteristic exponents. b@ " in  the
neighbourhood of higher photon resonances will also depend critically
on the choice of (E,+E4a ). As long as thislchoice i{s confined to
the branch [-0.5{0.5] plots of the Aé\s remain very informative and
will provide accurate frequency shifts and "widths" for various
n-photon resénance;. The results for the two level system presented
above also suggest that such characteristic exponent plots will be
well behaved and inqumative‘ for multilevél systems as long as we
confine the energy sum .Z“ E"\ to within the ‘branch [-0.5,0.5]. 1In

Chapter 5 such multilevel characteristic exponent plots will be used

to map out more complicated spectra and will be shown to provide‘

accurate frequency shifts and widths for the various resonances

occurring in thes spectra.
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CHAPTER 5

MULTILEVEL SYSTEMS

e

The two level sysiem discussed in Chapter U4 has given ué é deeper
insight into the complex interactiona between radfation and @atter.
Everi this simple system has previously been difficult to .analyse in
the strong coupling region [13,14] as discussed briefly in Section’
4:1. The source of tﬂ.. difficulty is the counter rotating component
of the oscillating field, its presence beiné accounted for previously
[13,17,18,56,57] in the -weak and intermediate coupling regions through
perturbation  corrections up "o ténth order, yhile in the strong
coupling region some form of direct numerical solution pf the originél
differential equations has been required ([13,14,58]. If, in a
transition between two'states, there are neighbouring states coupled
directly to either one of them, one would intuitively expect that the
nonresonant interactipns with such states might be,the‘same order of
magnitﬁde' of, or even greatér than, the honresonant interaction
between the original two statés, [12,8b,81,82]. In such situations
these nonresonant 41nteréctions must be quantitatively accounted for
- ' and in this chapter the formal method developed in Chapter 3 will be
’employed, to spudy‘ a number of model multilevel aystems. In Section
5.4, for example, we wiil see that resonance shifts in complicated
systems can bg éccounted for through the inclusion of a relatively

~

smallﬁnumber of neighbouring states coupled diréctly to the initial
and final states involved in the, transition. '

Another important feature of this chapter 1is to examine' the
L 2 ’ L]

bghavioun of the characteristic pxponents Ag »See equation 3.5.20,.

for some of]theée model systems. These characteristic exponents Al
were 1dentified earlier with -the ~quantized energles of the total

L]

*
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system of atom and perturbing fields,see Chapter 4. Their plots will
prove particularly useful in mapping out . complicated spectfa,
providing both the shifts and "widths" of individual resonances’

without having to compute the multipho%pn spectra.

-

' >

5.1 THREE LEVEL SYSTEM CONT@INING AN EXCITED DEGENERATE PAIR OF STATES

The three level system shown -in Figure 5.1{(a), interacting wigh a
sinusoidal field of arbitrary amplitude £ and frequency VvV, should
eihibit a number of additional interesting features absent from the
simple two level nondegenerate syste:/ﬁéalt with in Chapter 4: For

example, the presence of an excited deg nerate pair of states, #H}r\

- and § «r) , of opposite parity and coupled directly to one another via
‘the dipole matrix element M, , should have a profound effect on the

multiphoton spectrum of this system particularly when the coupling is

large. This type of system will be considered explicitly here, -
choosing the ground state blw\ to have the same parity as &;Lﬂ, see

Figure 5.1(a). For this configuration the eigenvalue matrix £ , the

dipole matrix h} and the state amplitude veetopnggct\ in, the coupled

differential equations, 3.1.4, are given by (/—‘

E, © oa) 0 pg © Qe
'..L

E={0 E,.O Pu © Pas s Ay =| *a 0
= o O q.‘! (o] 'Jr; = Q;Lt\ S.\)

where E =E E In or-der to keep the discussion of‘ this system

completely general- we define the dimensionless parameters

Ba = lptl/wo | . 5a% -

where D =g, ~-E, and

K= {paal/ Ml , = 5.1.3,
Since we will consider transitions from the nondegenerate ground state
to the excited degenerate pair, the parameter ﬁ\af will provide a
rough measure of the strength of such transitions while o is a
measure of the relative couplings between the individual states within’
the system. .In the discusaions that follow we choose¥* = Lf and @a
will be varied. >

- - - -

-

* This choice of ok agrees with the ratioc Haczpl/IMiap ! in
‘the H atom. ~ '
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Before proceeding to discu3.¥this three leyel system in detail a
comment will .be made regarding the representation used to solve thé
problem. In analogy with the two-level system discussed in Section

4.1 , one may employ the original representation given by equation

5.1.1 or, alternatively, a representation generated by first
diagonalizing the time dependent perturbation'\/tr,t) with respect to
the origina} degenerate states qkf" and Qh(vﬁ to yie%d Q;(r\ ’QL“ﬂ

. and Q‘Lﬂ as the new -unperturbed states. In the -perturbation
’ treatment of the problem [36] the latter representation must be

employed as the original representation leads to singular- perturbation

s R

expansiohs. In this new representation the exact coupled diffqrential
equations desbribing the evolution of the system in Figure 5.1(a) are

modified so-that the new dipole matrix rL and state amplithde vector
Q.w) in equation 3.1.4-become . '

{0 M Mo Qe
k"\' = .“‘4-\ HH‘ % > %Lt\'= Q,©
',\_‘ o '.)._ T o Q&) Sy

el
where

My = (Qu\\\—\i\'ﬁ’!«\)‘ ’;,',’.\ﬁ ':(Q)._.,ar\\ Vel %.m)‘
- oo = (Pt QML A =( Aty . sAS

For the Feasons discussed earlier, see Section 4.2.3.and Appendix A.2,

1 ‘the form of the matrix,é in equation 5.1.4 necessitates that the .
matching?power series expansion be continued up to AV , whereas in the

original,reprééentation, given by ‘equation 5.1.1, it can-be terminated

-

* at TU. As the solutions obtained are very accurate over the period of
t the Hamiltonian *i(ﬂtﬁ, which cbincides &ith the period of oscillation
) »  of the degenerate state amgiitqdes QA4 and O3 ()~ see eduation
n.x.v,. both"representations should provide equally aécurate resulté
4nd this has been demonstrated explicitly by numer qgj calculation. -
" Thus an ;aded advantage of the formal method of solution developed
- . herein is that degeneracies in multilevel systeﬁs requi:;‘“hg Special
consideration, so the} the more symmetric and cdmpupation%lly more
convenient representation given by equation 5.1.% can be used ,

throughout . ‘ , ) ’ .

-
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5.1.1 MULTIPHOTON FREQUENCY SPECTRUM OF -THE THREE LEVEL SYSTEM{IN

' FIGURE 5.1(a).

The phase averaged steady state induced transition probability,
(l—-c“)*;(ﬂ; “)‘, subject to .the initial conditions Q w1=41,

141

(e = Q4" =0, is plotted in Figure 5.2(a)5{b),(e) over = wide

_ frequency- domain for - the following values of the coupling parameter

ﬁgi = 0.075, 0.15 and 0.25, respectively. Both eve nd odd photon

transisions occur in this system due to the ity selection rules ,
see Chapter 2. For. the weaker coupling strehgth (Ex = 0.075) the

spectrhm shows the expeected pattern, with individual resonances

peaking at 0.5, indicating that the system is\ effectively behaving as:

a two level system with an excited state mixed -parity [{9]. On

increasing ‘5\1 hqwevér', this pattern begins to\ gradually breakdown

and the higher photon resonances begin to exceed/0.5 until eventually,
for ?rx = 0.25, only the single photon resqgnance .peak remains close to
0.5. This behaviour is indicative of the fact that the radiation is
being partially trapped in the excited degenerate pair and that this
trapping is more‘effective for higher photon transitions. AS’(\-—?&.)
is the sum of the individual indueed transition probabilities P-; and
F;,, a study of their behaviour as a function of frequencyWD should be

particularly enlightening. Figure 5.3 (a), (b) and {(c) shows plots of.

Fﬁt ané ;%3, whose aum comprise the multiphoton epectra in Figure 5.2°

(a),(b) and (c), respectively. If the individual trapsitions
(¢ - 1_) and (¢‘ 7¢3§ oceurred independently of one another we
would expect that the multiphoton spectra for F{l would contain only
odd photon (1,3,5...)transitions while the spectrum for@%a would#
contain only even photon (2,4,6...) transitions. However; it . is
obvious from Figure 5.3 that for the values of Prt chosen here the
oscillating field gives rise to a dynamic Stark. mixing "of the
degenerate pair. Such a 'dynamic Stark mf&ing ‘arises from the
nonresonant interaction of the oscillating field with the degenerate

states, see equation 4.1.6, and as.a result 1t is much weaker than the

e

static Stark mixing which essentially involves a resonant 1nteraction,‘

with a field of zero frequency interacting with a pair of degenerate

o




2

Figure 5.2. The phase averaged steady state induced transition probability
(1--1511) as -a function of frequency Vv, in units of w, for a = qual/}uml =
4 and (a) B12 = 0.075, (b} By = 0.150 (c) By, = 0.250. The 1,2,3,4

arid 5~photon peaks explicitly shown for each spectrum correspond to the
system, shown in Figure 5.1(a),; initially in state.$;(r);that 'is

{al(O)IZ = 1. Numerical values of the parameters used to generate

these results are! Uj; = Uy = O.TLLG, Uy = U3y = =3.000, wyy =

E; - E; = 0.375, E; = -0.5, E; = ~0.125. °
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states, see Chapter 4.- ' ) . s & .

Thus while this mixing is evident for % =0.075, see Figure

5.3(a), ' where the "so called "forbidden" transitions are clearly

occurring in both F%1 and 953, the mechanism of resonant population «
transfer between ‘the ground state Q,(v) and the excited states still ' '
dominates over the competing mechanism of population transfer between

the degenerate states &Lﬁﬂ and b;(v\ via dynamic Stark mixing.

Hence the spectrum in Figure 5.2(a) still retains the characteristios

of a two level system with an excited state.of mixed panity. Also

evident in Figure 65.3(a) 1is the fact that so-oalled "forbidden"
transitions become inereasingly important for the higher' photon
resonances, which 1is not surprising as the frequency V of the
oscillating field is moving toward the static limit V=0, as one N '
.proceed the higher photon resonances. As faz is gpcreased, both ’
mechanisms of population transfer become equally important, until
eventually for 9?; =0.25 radiation trapping in the excited degenerate .

pair ig occurring over most of the frequency domain. This trapping is a\‘
even more ‘evident in Figures 5.3(b) and (c),. WQFPe ( P11.i;ﬁ33}

exceeds 0 5, .indicating population inversiod_in the excited state.

The fact thet this population inversion is greater for successjive

higher photon transitions is due to .the fact that thein induced‘
transition rate decreases as a‘result'pf its nonltnear dependence on

\rhtf\ and hence allows the trapping mechanism between the degenerate

pair to compete more effectively.

3

The phase averaged induced traneition probabilities,
P“ Yy » P.,_.I_Lt) and Pn(t), corresponding to frequencies U lying on
the three photon resonance ‘maxima corresponding to F&l =0.075, O. 15

! ‘s
' -

- - o - - e - e -

. : L
— w

®0f. course the speotrnm for By 1s only observable because of the
presence of Q ™ of ‘opposite parity. However, for sufficiently weak o
coupling str-ength b (" should behave solely as a- virtual " state ‘
coupling ¢Lﬂ tot‘)m‘ so -that there should be ‘no population transfér to
it.. , '




and 0. 25 in Figures 5.2(a), (b) (¢) are shown over a numbei of . cycles |
of their - "slowly varying" part in Figure °5.8¢a),(b) and (e)-
respectively. Their behaviour in the time domai_n is a ,fdrther 4
indication of phe - increased trapping of ‘population in thé excited . '

states as’ p‘ incr'e::xses.q For Pn =0.075 the induced pransition
probability "‘(n oscillates between 1 and 0 in the same manner as in
the simple two level nondegenerate system dealt with ‘.i‘n Chapter 4;
for the three photon resonance the state §3 becomes ;l-eSS important as;‘
Pn. _ decreases. However, as ?u ix:ncreases, the oscillatory behaviour
of R,(t\ begins to deviate .from that expected for a simple two-leval
system. - While the induced transition probability 5;3&\ should be
negligible for weak couplings, these f‘igures show ' that its |,
contribution increases r'apidLy in the inter-mediate coupling region and

for B, =0.15 Pntt) is already greater in magnitude than P k'ﬂ

'[compare Figures 5.4(a), (b) (e) and Figures 5.3(a),(p),{ec) J. _
"Figures 5.5(a),(b) and 5. 6(a) (b) show Ee multiphoton spectra
for . % =0.1 , and 0.2% along with their characteristic exponent plots
over the same f’requency domain.* As pointed out by Besset et al [20],-‘
t-hese characteristic ﬂponen_ts closely mirror the behaviour of‘ the
original unperturbed energies ES between ‘the various resonances.
Thus, for example, " in Figure 5.5(b) ~two of the characteristic
exponents &, and B,, associated with. the deg'enerate pair of states E.La
and Es » remain near degenerate between resonances and each in tur;n
‘"anti-crosses" with the third characteristic exponent A‘ as an odd
‘photon (basicallyl—-)?.) or even photon (basically\=>3) rescnance is

traversed. For e‘xample‘, as{ the two photon résonance (A-,_) is‘

*The characteristic exponents bé f‘,}i'p identity. at . various
. points in the frequency domain but as already demonstrated thi; fiip =
over in identity is hon-physical, see- Section 4.4, and does not affect
the ,phys'ical‘ 'results  For this reason’ they “will be plo'tted 80 that

t“hey mirror. the behaviour of the original unperturbed energies E in
‘the presence @f the osc:lllat.ory field. i . ”
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'F1gure S.4(b) The phase averaged induced transition probabilities,.
Plg(t), P,2(t) and Pya(t), as a function of t, in units of 2m/v,
corresponding to the frequency v = 0.1275 lying 'on the three photon

resonance meximum in Figure 5.2(b).
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Figure 5.5. The phase averaged steady state induced transition
'probablllty (1 -'P11) and the accompanying characteristic exponent (Aj)
plots as'a function of frequency V. for o " = 4, 83, = 0.1 and subject
to theé.initial conditions Ta;(o)]z' 1. The occurrence of an n-photon
resonance in Figure 5.5(a) iz signified by the presence of an "anti-’
‘crossing A, betwden two of ‘the three characteristic exponents. A} in
Figure 5.5(b). Numerical values of the parameters used to generate
these results ‘are; w = Eq ~ E, = 0.5, E; = -0. 5 Ey = Ea E; = 0.0,

‘12 = 1.0 and'uz; = 4.0. Co N
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traversed, the characteristic exponents &, and !&3' anti-cross in

Figure 5.5(b), while &, remains ‘essentially ' unperturbed. The’
"anti-crossing" points A for the transiiion 1-13 occur at the minima

in  the quantity 'O\A -0, \ ,3ee Section 4.2 for discuésion, and

correspond precisely to the resonance maximum of the appropriate

n-photon transition in the accompanying spectra. In Figure 5.6(a),(b)

the effect of strong coupling on the degengrate pair is aramatica;ly

illustrated in the characteristic exponent plots. With the exception
of the single photon transition region, all three 'cha;écteristic

exponents bl are 'strongly perturbed, indicating a strong coupling’

between the ’degenenate pair tb ) and &su-\, which manif‘ests itself in
the accompanying multiphoton spectrum where trapping of the radiation

in the excited state is evident. Now, for example, as the two photon

resonance is traversed in Figure 5.6(b), the tﬁird cﬁaracteristie

éxponentlbu no longer remains unperturbed. This shows clearly that as

Prl'increases, the,two~degenera§e states Qm}ﬂ and dk(" begin to Yose
their identity due to-dynamic Stark mixing. - The,perfbﬂic relatignship
between the characteristic exponents .AA ,see Section 4.2, 1in
neighbouring branches (. for example [0.5,1.51,[-0.5,-1.5] ) is - also
evident i from Figures 5.5(b) and 5.6(?).‘where Qhenever A& crosses a
branch line either at 0.5 or -0.5, it reappears Immediately in phe

other ha%f of the branch at =0.5 or 0.5, respectively

¢
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e 5.6. The phase. averaged steady state induced transltion
probabillty (1 ~ P;1) aud the accompanying characteristic exponent
plots as a function of frequency v for 832 = 0.25. The remainder of
. .the parameters used to generate this figure are the same as for thure

5. 5 " . .




L4
L

5.1.2 EF%‘ECT OF A STATIC STARK FIELD ON THE MULTIPHOTON SPECTRUM OF

4

_THE SYSTEM IN FIGURE 5.1(a). - -

o ,
When a static Stark field £ is applied to the system in Figurep
5.1(a), the degenerate states §1Lv\ and Q‘u'r\ are strongly mixedqa.nd
"split into two states Qgr\(!(@t‘!@,‘)[ﬁ) of mixed parity.  Assuming
that the thdrd state Q‘u-\ ‘is sufficiently remot® from the degenerate

bair, the'splipting of the mixed states is approximately given by |,
see Chapter 4,# : ) ' '
nQ, = a\pn€°\ SA.b-
If an oscillating fleld of amplitude € is now. swept "over the same
frequency domain as in the previous section, we would expect to
observe a series of multiphoton. resonances (even and odd) at the
approximate transition frequencies d,&)"i.(a.)'ls,-? "and w“,u)“n,w"/:s.--'
corresponding to the transitions 'Q‘kﬂ ">Q|,U'J ‘and d?\u-\-’;Q_u-) ,
respectively, _see Figure 5.1(b). The differential equations
describing the time evolution of this system are given by equation
3.1.4 with the dipole and state,amplitude matrices given by equation

- :
5.1.1 and the matrix % becomes

- € - E. ;P_“lgo © °
= ‘Puio =2Y ""1‘52 : ’ . a <
o] -'-‘31.80 ,.E3 ) ' . ! . S\ C o
The‘ phase averaged steady state induced tr-an_si'tibn prqbabil‘it:y
'(l-T)“ ) and its aceoinpanying characteristic exponent plots A'a for the
three level configuration of Figure 5.1(b), subject to the initial
conditions Q(o) =1, Q‘L‘P\’Qz“" =0, is plotted for Pﬂ- =0.1 and& =4 iny ‘
Figure 5.7(a),(b)-5.9(a),(b) for three values ‘of the ratioc ¥ =€°/€ f‘
(that is ¥ =0.1,0.2,0.3). The presence of the “static.Stark fiel\&"

. -
- -

(4

#The phygical interpretation of the. above resutts will be made o
the basg’s "of the (4'4)0 diagonal representation,‘whereas actua
calculations are carried out in the original (h,hubs) representation

_ for the reasons discussed earlier, see Section 5.1.

-

-
-
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Figure 5.7. The phase averaged steady state induced transition
probability (1 - %;1) and the accompanying characteristic exponent
plots as a fnnctlon of- frequency v for the relative field strength
parameter Y = £°/€ = 0.1; see Figure 5. l(b) Otherwise the same
parameters as used to generate Figure-ﬁ 5 are employed here.  The "anti-
crossings" Ay, refer, respectively, to the allowed n photon transitions
. betweeri the initially populated ground state and the Stark split excited
t states shovn in Figure 5.1(b).
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Figure 5.9." The phase averaged steady state \1n‘duced transition
probability (1 - B;]) and the accompanying characteristic exponent
* plots for the relative field strengt"h parameter YS'O 3 and the same
para.meters as. in Figure 5 7 \ .
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is evident .from:the splitting of each n-photon resonance peak 7T11%,2,3

and 4) into two components disp‘1a§ed to either side off—the “original
resonance pos.ition when 8 =0 [Compare with Figure 5.§.(a)]. For the )
"weaker' static Stark fie€ld, X =0.1, ‘enly ‘the three and f‘o‘nr; photon
‘pr'of‘iles_ are ap_Eheciably "split';. " the , two photron ..prpfile is only
partially split’ amd the original single photon peak is not split at
all. ° Increasiﬁhe Stark figld (r-o 2“0*37~causes all profiles to
split until f 11y for ,{ =0.3 the high f‘requency component o.f‘ the
‘f‘Qur' photon doublet and .the' lou frequency component of‘ the three
photon doublet begin to overlab. In each case the low frequency
.component- ‘of each doublet 15- broader than' its hfgh f‘requeney
~ counterpart, _which is in agreement with ‘the relatiVe order' of
magnitudes of , .the . coupling parameters 8- ‘.
' [(@_/@H_) w/(..o )1, < ‘s‘lais the éoupling parameter when>% .0 on
h(p w.-QJ] "The splitting of each n-photon doublet qhen resolved, _;.s
“approximately given .by A‘l,ln as suggested by Figure 5. 1(b) -

The characteristic exponent plots accompamkfing.,these spectre 'see.
"Figur‘es’ 5 7(b) 5.9(b), provide a dramatic illustrati n of the éffect
of the static Stark field 8 on the multiphoton spectra corresponding
to, £° =0. 0., The near degeneracy between resonamces of the two’
oharacteristfc exponents Qqand Dy, in- Fiéure 5. 5(b) is" gradually
broken as the Stark f‘iefd is increased (Compare Figure 5 5(b) with'
5. 7(b)-5 9(b)» +). The ap,pearance of a doubtet at the singie photon ‘
transition f‘r'equencies is sign.ified by the gradual change from a. ’
degenerate pair of "anti- erosstngs™ A.,+ in Figure -5.7(b). to* two“ '
ot neighbouring spiit "anti- crossings" in F;guﬁes 5. 8(b) and 5. ng) " Inl
these plots the "anti-erossi‘ng‘a" Ant occur in pairsvat the preeiseu
frequen"I'es at .which’ the ‘two compo.nents of‘ each ﬂ-photon transition
. “occurw. The¥ greater magnitﬁde of O\ A | Bt eaeh loy freguency
‘ component is indica'tive of the greater "width" of‘ this eomponent T

Finally, the eff’eet of danping on the nultiphoton spectra' of
Figures ':5. 7(3) 5 9(a) is shown in - Figure ‘5, 1,0(3) (b),(c), _
respeetively, wher'e the dwed ‘phase averaged indueed tr'ansition' o

. ’g‘babﬁﬁ} (- BT ) Ses equ&tion 3.7, 1’0 “1s plotted over.the same = -
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f‘requency domain f‘or*" Y =100 ., In all of the‘se spectra the damped
lawer frequency component of each doublet is higher than its high

f‘requency counterpart arid the dif‘t‘erence in - their pélative heights

increases as the static Stark field E° increases . This behaviour'

indicates that each low f’requency component saturates more readily, in

160

-
agreement with the relative order of magnitudes of the coupling‘

parameters 8.> ﬁ“. ; see .also Figlfr-e 5. 1(b)

‘5‘2 THE EFFECT OF STARK MIXING ON AN EXCITED NONDEGENERATE ST'ATE.

e

In the three level, system discussed in the previous section, the
presence ' of even a weak static Stark field caused a strong mixing and
splitting of the excited degenerate pair of states. 'Tbe splitting of
the. excited mixed states &) and §:(vv  was reflBeted in the
splitting of‘ the n-photon resonances which was approximately given by

AC\,/t\ . ' The question naturally arises as to how such a static ,

. 1
Stark field might affect the excited paif of states § v and.d,ce)
'if‘ they are initially nc‘ndegenerate To answer' this questicn we study
the three level configuraticn in Figur'e 5.11 as a function of statie

_Stark * field €°for fixéd values” of B = IMLEVfW and

d —(}1133\/ "P§\=3 ‘ ov‘en the 'fre&uency domain encompassing the
. single photon profile (\%1) For this configuration we-again choose
the states Q,L(.ﬂ and @ 7 to haVe the sdme parijge, sc that in effect
v have displaced. @ ) upwards and (") -downwards from their

positions in Figure, 5. 1(a) Jf we ignore the eﬂfect of - the ground
state @ r) and " the oscillatory electric f‘ield-, we can regard- the

excited states é‘tﬂ dnd “7 (.ﬂ as being mixed - and f'urtber split by thex

applied static field E The energy splitting *between the resulting"~ o

stated is then given by, see Section u 2.3, . - b
\.. . 8 ' B ¢ v JU ’ .. ', . ‘
' I * R N
- .-‘ . \’ . . , .4.- . R ) ' P -
7 * The above choice’ of Y was made fo- damp the' two phcton deublet”

| to ap\chimately two, thirds its undamped height . SR
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- Flgdi‘e ‘ 11.. ‘The three level configuration emaloyed to study the

effect. of Stark mixing on an orlginélly nondegenerate excited state.
Numerical values of the pa.ra.m‘:ers used ‘in subsequen‘t calculgtbons
on this level.configuration are; w =-Ez - E; = O. h5, w3z = E3 - By
010 Ey = -0.5, E2 = -0.05, E3 =°0.05, Wj2>= 1, uzs = 3, M1a = 0,
= 3 and B'= 1/9. These values are used to generate Figures 5 12(a.)
—-(e) ,for different values of the static Stark f‘ield £°.. .
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where Wy,= (E;-E,) and b = a\P,3€Veg, Equation 5.2.1 will prove
useful in a qualitative discussion of the results that follow..

L

- ' The phase averaged steady state induc:ed transition :probability
(- P ) .for @ =1/9 and A =3 is plotted in Figures 5.12 (a),(b),(e)
and (d) along with its accompanying characteristic exponent plotf(l.\a\
for § -0.0,03,0.6 and 3.0 ,( ¥ €% =0.9,0.1,02 and 1.0 )
respectively; ¥ E/E is the relat.ive f‘ield strength parameter. In .
the absence of the static Stark field E , See Figure 5.12(a), one £ :

+ obseéerves the single photOn prof‘ile for the. tr'ansitj.on (\ @) . 'slightly
shifted to higher frequency (°/w~\°‘) f‘rom its unperturbed position.

"at (VfW=1.0) , see Figure 5.11. In the accompanying charactgristic -

- exponent -plots an."anti-crossing" A, occurs at this resonande peak
position, while a "level crd;sing" Lf, occurs at the forhbidden single
photon (1»3) transition f‘requency;' of course the (\-93) two photon - ‘
transition is allbwed and would be ‘observed if we swept yith frequency |
-V in ‘the.'neighbourhood of (E3-€)IA , see .also- Figure 5.12(d).
Introducing a weak.static Starksfield { ¥ 0.1, B =0.3 ), see. Figure
5.12(b), causes a sharp single photon resonance to appear on the bigh'
rr'equency wing of the (1Y) single photon profile at the (1»3) single

, 'photon transition frequency. The occurrence of this single phot.ori'
tr'ansitiOn is alao ref’lected in - the accompanying characteriatic -
exponent plots wher'e the "level crossing" "L" in Figure 5.12(a) has

now changed to an "anti-crossing" ‘A‘. o This - high frequency - single

' photon tran&ition arises from the partial mixing of state “ﬂ with
state batﬂ of op'posite parity ‘and qualitatively, using 8 03 in.-

o : equat.ion 5.2.1, .we would expect the separation between both singie
_photon peaks to be approximately A$~0.2‘5| The actual peak

-~'séparation is ~O.\97, 1ndiea£1.ng that bhe ground state &Lr) acts to
supress the exeim atate aplu:tings , .

-

.

oY
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- @ . Figure 5.12(a) The phase averaged steady state induced transition ‘ )
. . probability (1 -~ P;;) and the accompahying characteristic exponent, Co-
-, . pDlots, as a function of frequency v for 8 = jujz j/m_ =1/9, -

e @ = |uzs|/ui2) =3, 6§ = 2Juzs€"|/w = 0 end v =g"/¢ = 0. The "allowed"
single photon transition cccurg at the position’of the "anti-crossing”
A;”and the "Level crossing" Ly cdrresponds to thej forbidden 143 single
photon t'ra.n,s:ltiog,h' o ' : /J ‘ L ey .
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- TFigire 5.i2(b.) 'Th'e_phése"é,vg.z:aged s'teadj state .ig?ed tra.ns}it'ibn
ctefistic exporent

probability {1®- P;) and the accompanying charac orient
Plots as a function of frequency v for 6 = 0.3, vy =0.1 and B.and

-4 have the same values as in Figure 5.12(a), The appearance of a. sharp

single photon resonance 18 signified.by the occurrencé of the "apti~
crossing" A} . L o -
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Figure 5;12.(.c) ,The phase averaged steady state induced transition =~

ti

. “'probability (1 -'Pj1) and-the accompanying characteristic exponent

“plots, a8 & function of frequency V for § = 0.6, y = 0.2 and @ and B
are the same as. in Figure ;5.12(a), The broadening of the (1+3) siggle-
_photon resenancé is glso evident from the increased width of fhe anti-

> ¢rossing at Al{Compare with Figure 5.12(b)). o L o L -
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- Figure 5. 12(d) The phase averaged steady state indmed transition
R - probability (1 - P;1) end ‘the accompanying ‘characteristic eXponent , _
. . ‘plots as a function of frequency v for 6 = 3.0, Y,= 1.0 and ‘the , same
<., , values of a‘and B as in Figure 5.12(a). The bump on the dow ?requency .
Lo single photon profiYe’ at A a.r‘ises from overdap vith the high frequeney .
oL .- s two. photon proﬁle at’ Az.
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Inéreasing the static Stark field €° (Compare Figures 5.12(b) an%
5.12(e) iﬁcreases the_degﬁée;of mixingqof the excited states and this
is reflected in the increased width ef.the high frequency pro le and
the slightly increased splittifig of the resonance peaks. Again
equation 5.2.1 with 5-: 0.b would predict a 'splitting by, ~ 0.26 '
Whereas the actual splitting ~ 0.22 .. Finally, Figure 5.12(d) shows
the spec'trum' for 8 ‘3 ©(¥%=1.0) yibh its accompénying characteristic
exponent plot. “The" "asymmetry of the low frequency peak arises from
the overlap of the Eigh Yrequency component of the two nhotgn doublet
see Section 5.1 and below, with the 1low frequency single photon
profile. Figure 5. 12(e) shows this overlap region at1§'lcwer value of
(=. .} just before they overlap completely, while the gharacteristic
exponent plots in thi; ’t‘"iwgure show botj\h "anti- . crossings" A, and
F\. before they merge at approximately the same frequency, see
Figure 5.12(d). Again the splittings of the single photon ‘profiles 1in
Figure 5. 12(d) is still given appr'oximately by At‘, in equation 5.2.1.

L

+ The behaviour exhibited in the single photon spectra as a . ®

function of ¥ and 8 discussed above, should -be observed for all higher
photon transiticns with the "forbidden” n-photon resonance occurring
on the -high ”'Vf'recuebcy‘ Side of the allowed n-photon transition.for n
odd and on_the loﬁ t‘re_quency' side for n even, é:ee Figure 5..1‘1. Thds,
for example, the high fre’guency two photbd prchle appeéring in Figure
5.12(d) is the original allowed (133) hoton transition. Also the
Splittings of each n-photon pair‘ ,should be given.approximately by
Muh, see Section 5.1. .. ' '

», L14

- -

-
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5.3 INTERFERENCE EFFECTS BETWEEN A TWO PHOTON TRANSITION AND

y "

'NEIGHBOURING smci.z pao'rp_ﬁ TRANSITIONS IN A THREE LEVEL

'

x

nounmznznnz szsrsu ‘ o \ L : .
B . o ) . .

The three learel nondegenerate system shﬁwn 1n Figure 5.13, uhe}'e
the intermediate . state ¢.(r) of.opposite parity to & and ¢,
lies almost midway between these states, was initially suggested as
JLtie optimum, cohfiguration for wﬁich a two photon tranaiti,on cquld be
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Flg-u.re 5.12(e) The phase averaged steady state induced transition .
probabllity (1 ~ le) and the acdcompahying characteristic eéxponent plots
. as a funttion of frequency v for § = 2.4, vy = 0.8 and @ and B are the '
o same as in Figure 5.12(a). This figure shows the overlap region between
the low frequency eingle photon profile at.A; and the high frequency two
- - photon vprofile at ‘A; for 2 slightly sma.ller valué of.§ than employed in
‘ Figure 5.12(4d).
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Figure 5.13. The three level configuratiorn employed to study -
‘ interference effects between a two photon transition (at v ~ w) and

two neighbouring single photon transitions (at v ~ E; - E; and
. v ~ E3 - E2). Numerical values of the parameters used in subsequent
- * caltulations on this level conflguratlon are (see Figures 5.14. - 5.16);
w={(E; - E4)/2=0.5, By = -0.5, E2 = A =0.01,, E; = 0:5, W, = }123—1,.
M1as = 0. These values are used to generate Figures 5.14 - 5.16 for .
. . different values of the applied sinuscillal field amplifude L ® '
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observed at optical frequencies [29).%* The two photon transition{;lin
this system will be observed at the appromimate frequency

‘\)~(E3—Ehli = QL : ,' S.3.\v
and the deviation of the staté Q (v} from this centr'al frequency 1is
given by )

6 = (w-(g;-E) . : - Y sax
The closeness of the frequercies of the allowed (\2) and (223) single
photori transitions to the two pheton transition frequency suggests
that for sufficiently. high oscillatiAng field amplifude € interference

- effects between the two:photon resonance profile and one or both the
singie photon profiles sh ld be important. I "analogy with the
v~ e€arlier model systemg we define a relative coupling str’fength ‘parlame'terj

P =\pu€\jw, where yd;e chosen pn‘-: Pay=p for convgniénce and 1in

- ‘ addition we define the parameter \'L.\‘.\?.\IA which will provide a

measure of the ir)terf‘erence effect. ) a

The phase/a/veraged steady state induced transition probability
(v -ﬁ.\ ), ’ijjec',c to the 4initial conditions € to)=1, Q (oY =,
s YL =0 , .is ‘plotted as a _fupction of frequency O, along with its’
accompanying characteristic e‘xponent,s A;‘, in"Figures 5.115(a'),§b)'and _
5.16(3),(?) for & =0.01Wand for &= 0.91,0.02 and O-Oh-(f\‘-';O.S., \.O -
and 2.0 ), respectively. The above choice of the parameters 9 and O
e ivs based on our knowledge that the approximate width of a single
photon  profile is \f\i\ , see Section 4.2.2, so that at fy=1 we should
- expect appreciable overlap between the single photon (191) and two
' photon “(¥»3), profiles. 1In Figureqos.'w(d) where § =0.0] and q:o.é g
both resonances are str_ill well resolved and the characterlstic
exponent; A in Figure 5. 114(b) reflect this behaviour with'the ;
"anti-crossings" AP and. A‘ well separated. Increasing the.
oacillating t'i'eld amplituue £ , see Figure 5.15,'89 that@:ozpz and
fi= 1.0 causes both resonances to overlap appreciably. The accompanying

T - - - ) - £ ) - - m‘
. . ;
% Dimensionless notation will be retained in discussing this

system as the results can be scdled to ahy speétra]; region. T
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Figure 5.14. The phase averaged steaﬁ& state 1nduced transition
probability (l -@11) and the accompany1ng~charagter;stlc exponent
plots, for the level conflguratlon specified in Flgure 5.13, gs a
funttion of frequency v for B = |y |/w = 0. 01, N, I I/A 0.5
and subject to the injfial conditions |a;(0)] l. The "anti-
crossings" Al . and A} in Figure 5.1k(b) c01nciﬁe with the 1-+2

-and 2+3 single photon tran31t10n ;reguenc1es while A; coincides

with the 1+3 two photon transition frequency Only the 1-+2 single
photon and 1+3 two ‘photon transition appear in Figure 5. lh(a), see

text for details. - )
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Figure 5.15.. The_phase averaged steady state induced transition

" probability (1 - P,,) and the accompanying. characteristic exponent

Plots as a function of frequency v for B = 0.02 and n=1.
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Figure 5. 16 Thé-phase averaged steady§§;lte nduced transition
probability (1 - P;L) and the accompanying characteristic exponent
‘plots as.a function of frequency v for 8 = 0.04. and n = 2. The
increasing overlap of the two photon and single photon profiles as a
function of increasing field amplltude £ is evident also from the '
‘ gradual merging of the "anti-crossings on goiqg from Figures 5.1% - 5.16.
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'characteristic xp'onent:s'agairi reflect this partial overlap with a
clear distinct.i n between the two phot,on “anti—crossing" A1_ “and the

néighbouring singl\e photon Manti-crossing" P\. becoming less obvious.

Finally in FiguNe 5.16(a) both resonance profiles have a];mq?t;
. completely merged (P Ol N\=2.0) and the "anti-crossings" in Figure
5.16(b) are ba:Bming very broad and less distinct a# a function of

Because of”’the imposed initial conditions on the.system the (293)
’ single phot,on'. ;ranéition although m"allowed", as is clearly evident
from ‘the presence of the "anti-c‘rossing." A'ta’:in tr:e above t’igures.'is
vef-y weak ; its approximate position is given by 9’—-0‘\8 Such a
transition can only occur if_ the state b (¥ 1is appr‘eciably populated
at this' (293} transition frequency and this 192»3 two 'st.ep single
photon transition should occur for large oscillating field strengths.
Howé\{er, 't‘o; these values bf;p)-no-distinctiom c'an be 'made ‘between the
17’;1-73 single ppoton and \-’»3 two: photon mechanism for populating
Q 'Lr5 The picz of 9“ given in Figure 5 17 ‘may b_e useful in
disting\ishing between these two mechanisms k

.

The above results indicate, as expected, tha_t in order'to observe
& distinet two photon resonance experimentally, for this level system
there will be an upper limit on the oscillating fleld strength £ set
_‘b'y the parameter n_ (org )' Also if t,he deviation of the state b.;u")
from the miﬂway separation,increases a corresponding incr'eaae -in p
would ‘be required to observe such 1ntert‘erence eff‘ects

¢

5.4 FREQUENCY SHIFTS DUE TO NONRESORANT INTERACTIONS WITH NEIGHBOURING -

STATES.

As discussed in Section 5.1, the presence of n'eighbouring‘ ’si:at:es
coupled directly to the ' initial and/or final states involved in a .
particular tr'an.siti:on can make a]na,jor contribution to the frequéncy
shift of the resonance. profile. The purpose ot‘\ this sectidn is to
{llusbrate how the formal, method developed in Chapter 3 can bev
empLoyed to evaluate quantitatﬁvely auch t‘requency shit‘ts -We will

) conrine our attentior{ to the t.wo photon transition in two typical
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. . . s , . .
 level 'codfigurations' ,and we sxpect that similar trends should be

observed either at single photon or higher photon® - transition

f‘requencies ' The two photon transition 1is particularly important as -

.DOppler broadening, which is important at optical frequencies, -can be

effectively'eliminated (53, 83] by using oppositely di ected laser,

“beams. : . t

5.u.1_,gwo PHOTON TRANSITION FROM A NONDEGENERATE GROUND sTAfE TO AN

[ ]

EXCITED DEGENERATE PAIR OF STATES.

"The basic three level conf’iguration has already been dealt with

in Section 5.1, see Figure 5.1{(a), where the multiphoton spectrum has,

: been presented for different values of the eoupling strength parameter
p\‘z" ' We now study how th® two photon transition (323 ) 1in this basic
system is affected by the inclusion of extra nonresonant states (Q {r)

‘. Q (v, bu-\) coupled ~directly to § m and Q (v . The full level

conf‘igu.ration is shown in Figur‘e 5.18(a)** yith the absolute energies .

-------- - 3 - - -ay - D b e D e e D E S =S . .-

. \

. ¢ 1In recent iears,' the two. photon transition at optical'
frequencies . has been extensively studied experimentally [83]84, 85], '

particularly in the alkali metals. In these systems ‘there are_ many
' neighbouring’ states present so nonrescnant interactions will be very
' important [12,80,81 82]

-------- —--- - ’ - - o -'e -
-«

' b ’Ijhi's configuration corresponds to the , H-atom level
configuration . with the _two' photon transition oceurring between
¢‘s(§) and le(%\ via the & (Q‘) _state in the origihal study

in Séction 5.1. . The remainink states (‘b ,Q"b“ ) correspond-to the

three next 1owest p-states (@s'b b ', respectively Secondary

couplings or othér's and d states (sven pari@y) through these p statesv

(odd parity) dg not to contribute signit‘icantly to the - two' photon

frequeney shift for the field strengt onsidered here '
. . . '
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‘Figure 5.18. The twb»model’multilevel configurations used to study the

- importance of neighbouring states on the frequency shifts of the two

photon resonance profile. .Convergent results are obtained for both

models on including a‘total of six states. (a) The basic conﬂﬁguration

in this model involves. the three.states ¢1(r), ¢2(r) and ¢3(r with

the excited pair ¢2(r) and ¢3;(y) degenerate and oft opposite’ parity

"The two photon transition occurs between states ¢;(r).and ¢3(r) of the

same parity. Numerical values of the parameters employed in subsequent

calculations on this level configuration are [35] (see Figures 5.19 -

5.21); w = Eg - Ex =0 375, Ey = »0.5, E2 = Ey = Eg = 0.

E1. = =0, 5556(-1), Es ='=0.3125(-1), B = -0. 2(-1); uy2 = 07hk9, .
= 0. 2983, His = 0 1758 Hie = 0. 1205 U32 =‘-3, Usuo = 1. 7695’ ~

Uas = 0.7405, Mse = 0. hh68 and the dipole matrix elements coupling the :

remaining stdtes aré zero. (b) The basic configuration in this model -

involves the noridegenerste states ¢1(r), ¢z(r) and ¢s(r) but now the

state ¢2(r) lies between the.states ¢x(r) and ¢3{r) which are directly

involved in the two photon transition.’ Numerical ‘valyes of the parameters

employed in subseqient calculatiens on this level configurat ion are [83a].

(see Figures 5.23 - 5.24);.w = E; - E, = 0.1173427, E, ‘= -0.1889593,

Ez = -0.111606, E; = =0. 716166(-1') E, = =0.509608(-1) %5 = -0. 292111(-1)

= ~0.189310(-1), uyz = 2. 5194, Wy = 0.2269, u;s-#e0.8319(-1),
U:s 0.4634(<1), us2 = 1.4276, w3y = 5.7165, uss = 0.6739, use = 0. 2721

- and the .dipole matrix elements coupling the remaining states’ -are zero.

.
N . . -
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" quel calculations.

(5§ E~E'E.) 1ndicated.'" The dipole matrix. 'g. for this. six levell

conf‘iguration is, see equation 3.1.4,
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The broken lines 1nsicate “the ' actual ﬁ matrice; used in the

' calculaiions starting with-the 3x3. matrix reprel'seutins the basic three

level conf‘iguration, studied in Sgctien 5.1, and- succesively including
the additional states ktﬂ Q ") one at a time. -The actual
numerical values of the dipole 'matrix e,lements used in these
calculationgs are also indicaj:ed in Figure 5.18(a). This system will
be discussed in terms of absol@q energies’ and ,‘f'ie"lid strengths due Ats

complexity; ' the final resul ‘ however can be scaled to any spectral

region. : _, . , o4

\

" Figures 5.19(a) - 5.21(a) show the two photon profile (l—-é, )
for the basic three level system (¢l‘“ *‘ﬂ *ﬁﬂ in Figure 5.18(a), as a
function of frequency detuning (‘5 W) for the following oscilldting
field amplitudesa l x|o's ,Vx 10 ‘“ , %10~ -3 » yrespectively.

These choices#* of field amplitudes £ were made since they span the

. wide prange of intermediate :to’ very high intensity laser sources [ﬂﬁ].

As expected, thé two photon resonance peak is. shifted to high
fr-equency from the position predicted by the simple perturbation

- »
- bm - P -

(.

- * Higher. field amplitodes 8 could easily be employed 1r!~>the
above calculation but for. the - eonf’iguration of Figure 5.18(a) the

resohance maximum exceeds O 5. when 8 e xlO augsesttng .tha‘t

'population leakége to neighbouring states beeomes important . Under®

these conditions’ (I--p“ ) can excéed 0.5, see Sectlon 5.1, for  these

-

-
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Flgure 5.19 The phase averaged steady state induced transition pqobability
(1 - Py;) as a function of frequency detuning (v - w/2) for the level
configuration of Figure 5.18(a) and for € =1 x 1075, .

The four. two photon profiles appearing in this figure represent
caleulations with a different number of states included, see equation
5.4.1. {a) ¢1(r), ¢2(r) and ¢3(r), (b ¢1(r), d2(r), ¢3(r) and ¢4(r),

(e) ¢1(x), d2(r), ¢3(r), du(r) and ¢s(r), (d) d1(r), ¢2(r), ¢s(r),

¢u(r), ¢s(r) and ¢e(r). 4 L
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pesult, 'see Chapter 2, (that is(V-wWIv)=0).. The numerical values

of these frequency shifts are given in Table II’ .Figures
5.19(b),(c)s(d) ~ 5. 21(b) (e),(d) show the effect of successively

_ including the states Q Q Qb on the basic three level configuration -
‘(Q‘ , Q_L‘Q) . The additional state b w> increases the . frequency

shift -by a factor of ~ 5§ (see Table IT ‘and compare _Ij’igur\es
5.19(a)-5.21(a) with <$Figures 5.19(b)=5.21(b) ,) while the shift
converges rapidly. on includ;ng ¢scﬂ and bbu') ’ see Figures
5.19(e),(d)- 5. 21(c) (d), It is interesting to note .that for any fixed
number ef states, see Table IT , the,f:r'eqruency shift ‘remains linear. in

field intensity T(AE€"), see [38]. The widths of 'these proffles -are

essentially unaffected by these nonresonant F.*.at'at,es, ‘but broaden

niformly as a function of 1ncreasing f'ield amplitude S for a fixed’

number of states.

-

5.4.2 TWQ PHOTON TRANSITION FROM A NONDEGENERATE GROUND STATE TG A

NONDEGENERATE‘EXCfTED SfATE.

The full level config’urétion is shown in Figure 5. 18(0) along
with the absolute values of the energies E and dipcle matrix elements
H ‘ * The dipole matrix ,..L for this syste s the same structure as

oA~

- ._-v_—;».\m

given by equation 5.4.1. The, basic three level system ( &, ,#1,4,3 / ~ .

in this configuratlon, see Figure 5 18(b}), is intérmediate between the
three level eonfiguration discuased in Section 5. 3, see Figure 5.13,
and that discussed 4dn the previous subsection, see Figure 5.18(a).

hd This configuratdon corresponds to - the Na atom level
configpration with the two photon transition occurring between the

| ground state (15Y(2$)" (1?)5 3s S (b(ﬂ\ and the excited  state

asy(as)™ (19) n.s“S(!b) The states ¢1_ ,¢“ '¢S)¢b arg the four lowest
(ln‘(u) (19) np P states ( ¢3',¢“" Q" s .y ) and ‘the higher ™
and d states do not contribute to the frequency shit‘t, see béfore

’ L
. '




"H2 6=61°G seanB1g ur say1yoad uojoyd omy Fuipuodseddod

B

Sy} JO BWIXBW 3JUBUOSSI Y3 WOIJ PIJBUISS 3dom s3JTYS Louanbagy asayl

\
4

”

oy,

¥

\

(0T X g6 | ,0T X1 o-0T X T'€ | 0T X°T L
=0T X g°6 ¢=0T X T g-0T X T°E, w=0T X T 9-T=T ‘(2)7¢
, £ (=0GX §°6 | =0T T 01-0T X T°€ =0T X T :
! ‘' ,-0TXx9'6 | ,-0T x.1 4-0T X g~ g=0T X T 1
4 " =0T X 9'6 | (0T X 1 ¢=0T X §°2 =0T ¥ T 6-T=T “(1)°d,
| ' =0T X 9°6 | O0TXT 01-0T X 8°2 (0T X T
M . 0T X €6 | =0T X T- g-0T X §°2 (=0T X T .
i : 0T X €°6 | (0T XT g-0T X f'g | ,.0TxT1 f-T=1 ¥ (1)°¢
* h OTX €76 | 0T %X T |lr,,-0Txq°2 =0T X T -
w , 0T X Log |- 0T x T (=0T X 07§ e=0T X T . -
w e=0T X L°€ | J0TxT ¢-0T X 0°¢ W=0T X T 1= (1)
w . (=0T X L°g | T X T (10T X 07§ ¢-0T X T
WH . ’ (2/m _8aax (2/m memyv . . papnyouy

§9383S JO Jaqumy

1
».
i
3

{9)

x

gqInsad asayyg
?yg JI03 (g/me—~ mmm>v mpmﬂnm ho¢oﬁvopm sousuosay (%v) ‘11 TIEVE

(®)

"(Q)gT"g *atdtg
TSAST 3y3 JI0J s3Tnsad Jurpucdsadaod ay]

Teprosnute poa1Tdde ay3 Jo sSaNTBA 23JaYy JI0J UOTFBPINITEY Y3 Ul
S978B96 JUBUOSAJIUOU JUTPNTOUT ATSATISSI00ONS JO 309IF3 Y3 FTQLUXS
*(B)QT € 2INITJ UT umoys UOTABANT TJUCD TSAST

.

Uy umoys UoT3BINITIUOD

(a) -

- spnarTdwe pIa1s

/




. . . . .
P iy et s L o e N e L . . . PR [

The two photon profile for the basic three level. system’ X

(-a‘\,‘ . Q-a.‘ ‘Q;s ) is shown in -Figures 5.22(a)-5.24(a) as a function of
frequency detuning (M-wWJL) for the following values of ‘the
_oscillating field amplitude®* € -1x10°%  1x18°% | |0~
I.(d.ex), see Table II and Figures 5;22(a)—5:2u(a1: Addition of the
‘ state Q\-u- increases® the shift b)-' a factor ~ 2.5 (see Table IT 4 CoOmpare
Figures 5.22(a)-5.24(a) with 5.22(b)-5.24(b) ) while the frequency
shift converges very rapidly on inclu&&ng the additlonal states 695
and Qb , see Figures 5.,22(c),(d)-5.2ﬁ(€),(d). As in the previBus
subsection the frgqueney shift remains linear as a function of field

intensity I for any fixed number of states, see Table IT. ‘ v

The results of the a‘bove two calculatioﬁs "show explicitby that
although “the relative rate of convergence of the resonance frequency
shift depends critically on individual .level ‘configurations,
quantitative r:esults for such shifts can be obtvained by including a
finite number of nonrespnant states. In a r‘ecent article Hong,
4 Garrison and‘ Einwohner [46], using. "multiple time séales" perturbation
.theory, arrived at a similar conclusion regarding 'the resonance
frequency shift for a two photon transition between vibrational states
in 'the HF molecule. These authors dischss the 1imitations'A and
r‘estrict.ioris on_, their method as a function of‘ an ef‘fective coupling
parameter = \‘AE\ {(W]2) where 'u\ represents .an average of all

nonzerQ dipole matrix elements in the calculation.

o #% For this level configuration the two phot.on prof‘ile became
distorted and (\- P ) exceeded 0.5 when -€ = |¥|0 was employed .

Again the® frequency shift 'increases 1linearly ‘with‘-'f‘ield .int.,ensity

187

L2



Figure 5.22 The phase averaged steady state induced transitién prob&bility
(1 - Py1) as a function of frequency detuning (v - w/2) for the level
configuration of Figure 5.18(b) and for £ =1 x 10f5. The four two

photdn profiles. labelled (a)-(d) represent calculations with a ‘different
number of states included. (a) ¢1(r), ¢2(r) and ¢3(r), (b) ¢1(r), ¢2(r),
¢3(r) and ¢4(r), (c) ¢1(r),:92(xn), ¢3(r), ¢u(r) ana ¢s(r) and (a) ¢:1(r),
62(r), ¢3(r}, du(r), ¢s(r) -and ¢e(r). . . .
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CHAPTER'6 . : :
CONCLUSIONS -

The main, emphasis of this work has'been to « present an accurate .
means of construc;ing .the exact wavef‘anctiop Q(r t), representing
the solution W XKe ‘problem of a sinusoidal field, of arbitrary
:“f T amplitude, frequency ‘and p ase interacting - with an N*level quantumx
gystem of* arbitrary'configuration via the dipple approximation ) The.

formalism in Chaptér 3,.a owever, is equally agblicable to probleme
vaolving any- periodic Hamiltonian satisfying

- 1) -
- .. s

/Wﬂ a\-\értﬂ') C AN

v The formal 4nalysis wcan be extended to _include higher multipole

. ~interactions in a stratghtforward manner . -~ e
. L While providing very accurate solutions on the time domain for a
) -~ . sinusoidal field of well definéd phase, the - exact wavefunction
o . . . . P ] -

qy(nt)q mhen transformed “to F}oquet mform, provides . a convenient
representation. for. the aceurate. eg@luation of - ‘phasé€  and/or time _

. ‘ averaged prqperties of _the quantum system plus external field(s) The .
4 important role played by the phase'B of the appitgd. sinusoidal field'
. as the coupling st.rength parametex P-'FE“(‘O ~ app?-oaches unit)f is
'readily ’ apparent witgin the present treatment and leads to a
clarirication.of an apparent diserepancy between some recent’ work[21]‘
- éﬁﬁ the earlier’ work of Shirley[13]. " Indeed; © the physioaI'

(Ve
significance of the phase 2) when computing ppysical prpperties:;’
‘the. strong conpling region has not bgen considered by severa ra
recently [16, 18 21,23, 2“] ’

fa - . a

— v

The direct application of the -{ormai solution,
developed in dhapter 3, has beedﬁillustrated jaluatdng nduced
transition probabilities and théir phase and/og;time averages fon a

'multilevel

two level ,system in Chapter. 4 and for a number of

\ . . ' o5

. . , - -




: ' systems in Chapter 5 Indpartiqular, the usefulness of plots or the ~
) e characteri:tj expopents of . the Floquet solution ' in - mapping out,

' “domplicate

pectra and n evaluating multiphoton rq@onance frequency

- shifts has “been explicitly demonstrated in these chaptergn A direct
. coincidence between the characteristic e&bonents and the quantized
energies -computed recentlx. by Yabusaki et al[72,743 for a two lemel

interpretation of the*'characteristic’ exponents, in .general, as
o energies of the N-level quantum system plus external field(s) ZSee

also [20] The present work to our knowledge, represents the first

\‘Fs\ occasion on which the behaviour or the characteristic exponents has
» -
been investigated in the strong’ oonpling region for more than two

. : levels It should be emphasised also that degeneracies pose no‘

particular problem ‘within the formalism used here. o e

An experimentaL verification of some oJ the theqretical results

due to the wide tunability [4=7] of radiofrequency sources and the low
field amplitudes required [4-7] to achieve ? 'values close.to uniﬂ’
An~ increased use of "fast atomic beam',multiphoten radiofrequency
spectrqscopiin‘for precision measurement of fine structure level
separations

Brandenberger y Lundeen and Pipkin[90] These authors measure ?ine

7 - structure separations in Het using such techniques and a quantitative

developed in this thesis should be particularly useful. In

particularr as - the relative populatiOns of the fine structure levels

o, theoreticaliy determine them . by a simple readjustment of thé’initial
o condition arrayg}(cy until the experimental spectra are- reprodéced
N ‘ : This .could 'aid. in the interpretation of such experiments and in the

”*understanding or relative,B level popuiations ' in atomic’ beam

experiments The . very high pfield amplitudes ’required‘at optical
- C frequencies to ohserve many of the eftects discussed in Chapters Y and
’ 5 for B> 4 ‘suggests that multiphoton ionization effects will
s . become predominant in these experimentsf Recent evidence[91] however,

system’has also been demonstrated in - Section 4.3 - and 1leads to an‘"

presented in éhapters 4 and 5 could best be made at radiofreQuencies ‘

hydrogeniclike systems has beeh buggésted recently by
verirication of their experimental results using the fbrmal method-

in this expefiment ar'e poorly understood[90] ,it may be possible to
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suggesta that the ioni;ation‘ﬁfoé;sa iaifhe présgnceféf'a §ery strong
optical field is relatively slow NSO*rtﬂat a possibility exists of
cérrying out the en-tgl.ré eiperiment‘\f.gith‘ ultra short ( $|6n§.tc.)
optical pulses before aﬁpreciab;e populaﬁiog.leakage to other states
can occur. The effects of ‘static Sfark_dhd Zeeman mixing on the
multiphoton spectra as discussed in Chépte;s 4 and 5 should be

observable particularly at radio and microwave Treq@encig;.

Although the.method‘of solution has been explic¢itly. demonstrated

by evaluating. inducegd transition probabilities; any other property
couid have been inves;igated: see Section 3.6. Oné‘such properpy “of
‘particular :interest }s the pblariéation induced 1; the quantwg system
by the strong sinusoidal field.  This property ;s of particular
importance in Laser ﬁheory[39] and recent experiﬁents with intense
laser pulses [1,3,11j\3qggest a need for the ;ccﬁrate ,evaluation* of
this quantity on the tiﬁe domain. ' \ '

-

Finally,,some useful formulée for the transition rates and power .
absorbed and emitted, " which are exgét mwit')hin ’t.he rpt.ating field
approximation, are presented’ in Aﬁpendix B for thrge level quantum
systems resonantly coupled to two classjical oscillating fields. These
fo?mulaé are.derived by using a Laplate transform Eéthod “initially
developed by Freed[32) and his method is extended: ﬁg include
relaxation effects. The ‘exact rotating field solutions derived in
Appéndix B can be used to inveétigate situations wheré b&th fields aré
comparable in magnitude and Eepresent a consideraple ‘igprovement on
recently derived abprdx1maté rotating fieldfresults[33,89].

A Y ]
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A.7 CONVERGENCE OF THE MATRIX POWER SERIES EXPANSION GIVEN BY EQUATION

3.3.1 | ,

- : -

8
‘A sufficient condition for the convergence, as a function of ¥ ,

of the po#er seriég matrix expansion, given b& equation 3.3.1, is that
the individual elements within the matrixE}l converge [86]. Closer
inspection of the recurrence relationship for @g , se€ equation
3?3.7, shows that these matrix coefficients are real or pure imaginary
(’as'.ﬂ is even or odd respectively. ?berefgre, a test on'convergence
can be made by evaluating the ratio ‘q’::n/ q,t: | at each stage of-
the recursive evaluation, where “V} is the t3-W element of the
matrix Qg . This ratjo is checked for each Ly ‘element until the
specified convergence 1s achieved - which corresponds td QM:‘K in
equation 3.3.1. ' ’

. In virtually- all of '%hg calculations carried out in this work
~the maiimum computational efficiency was achieved by restricting the
number of terms retained to ensure -convergence to the range
K~ 15—50. szis restriction in turn required that the generalized
recurrence relations, given by equation 3.2.12, be employed over
expansion subintervals ranging from TW/2-T/(0 for.intermediate to

. very stfong‘coupling P . As a rough guide for all the calculations

. }n ;his.thesis, convergence to 16 significant figures could readily be
obtaingd using a T/2 --Tl’fl.,. ' expansaion subinterval for

P &£ 0.25 wnile for p‘)O-ZS"a Tr/8 ~T/10 -expansion subinterval

was needed. -
’ . ’

< | 195 -
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: A.2 SYMMETRY'RELATION FOR THE ITERATIVE SOLUTION.OVER ADJOINING

W,
DR

I -INTERVALS.

«

- In Sectign 3.3 it was indicated that a simple symmetry, see
equation 3.3. exists between the matrices -S—nn and Q.LK) on
A adjoining T -intervals when all the diagonal elements of the matrix M
and off-diagonal elements of the matrix g , which océur in equation®
/ .2.7 are zero. ,In any other situation Ehe matching power series’
solution, given by equation 3.2.6, must be contipuéd'up to @=2%W .
~To demonstrate how- this symmetry arises the 1leading five (NxN)
expansiqn matrices g.‘ ocecurring in equation 3.3‘£itre 'writtren out

explicitly in.terms of the matrices E amdré 5

4

o =1 , ai=xlg vyl

. é=__ {[E +£\..\*'_\+(—0 f\:\:.\A*'pE]‘}

{[E -\-f(Ep‘.x«-p\':p \A‘&EY:\ +

3T 5
DELEER YENE *RESAE upp T ]}

. 2
Q- 5{[e"+E (EEpup +Eg§w*_§.\mt TREEM+RERE
b EE v€ (- o) *‘?LP 7] e EleEEpEERE
. +Ep§€+peagw‘h B HEMERME *RENRp +RHEp
rprpE -v HE]] A1)
.. Thé phase factor(=\)"*! accompanies only odd powers of the matrix ‘.é
+in .the expressions for @ g while the matrix E and all 1ts higher
powers are diagonal and they are not multiplied by this phase factor.
Each matrix power series coefficient Q g can therefore be represented
as thé sum of two resultant matrices A and g‘ where (‘g* is.
multiplied by the phase factor =", that is vt

#* The arguments that follow also hold for the géneral recurrence

relation, ‘given by equation 3.2.12, where the phase factor (=1)™"! is

replaced by terms involving (oset and S\md




. %
< ., ¢ %
' Nl . . ' T
92 =.P=\x+(\\ @R . _‘.AQ v, . A.Q.l
If the condition A £% 0 implies B,. = O holds, the matrix -

c:)rresponding to N = 0 and O=*1 respectively, ;1111 dif‘fer only in
that the elements q,x édorresponding to nonzero B change sigri
and hence equation#3.3.4 follows. - however-, if A,. ¥ O implies
B;‘ o \ the phase factor will -be scrambled in the resulting itrix
elements. q’l and the simple symmetr'y relation breaks down

Therefore to show the'. symmetry relationship between the matrices*f(x)
and %LX\» , giveh by equatiom ' 3.3. 4, it 1is necessary’ only N tq
demon;trate that the elements of the resultant matr‘iées Ag and BJ.
whose structure is determined by even and odd ' powers of‘ ‘the matrix p

respectively, satisf‘y the condition #o impl.ie,s BA = O

As an example we consider‘ a thr‘ee level system interacting with,

an oscillating field: The dipole matrix (LY for this interaction is

giveg by *
o Pn 2% ) B . : .o '
B = (M, 0 Mg ) o A.2.3
(o] P;-._’, (o} ' . \ : T, N

The 1eading two powers of '.A are adequate to display the structures of
the matrices A,, and Bx in equation A.2.2. -Writing these strugtires

out explicitly -

X O X ‘ o X O
X O 4‘=,= ¥ © X ’
PP X o X ’ HPP 0O X O A4

-

where X denotes a nonzero element. Obviously, all higher even powers
of ,é have the same structure asflﬁ while all higher odd powers have
the same structure as M. ! Ref‘erring back to equation A.2.1 and A.2.2

- - - - - -

% The dipole selection rules ehsure that one of the dff-diagonal
matrix elements of K must be zero, as one state t\)‘u-) of definite
p'ar'ity cannot simultaneously couple with two states Q:Lm and ba(r\
of' multually opposite parities. While we have arbitrarily chosen
,Ju =0 the following results hold in general for states of 'd'efinite
parity. s

QR in adjoining T -intervals, that is {O,W]" and {W ,nvf—, :




(el

A B‘ = hO]‘.d'S. T ) .

o

v

-

. ' . : -

we see “that the matr'ix Bg has the same structur'e as pj '.l while B; has "

the, same structure~" as PR o and hence the condition

{

| An im ruant e)cception to the above symmetry ‘relation occurs when

-a static eLectric or magnetic £ 1d applied parallel to the
oscillating f‘ield is included in t perturbation term VU' x) . This

additional f‘ield introduces nonzero off-diagon&al elements into the E
matrix, dsee Sections 4.2 and 4. 3, which scrambles the phase dependent
elements 1in the .resultant matrices; that is Ag % O does not i,'nply

B;‘ = O . In-this situation the m;:tr'ix %LX\ must be constructed by
. =

a power series expansion on the [TV, AT ] interval, see Section

3.3.

A.3 NUMERICAL ANALYSIS

Equations 2.2.3 for the state amplitudes b ()  in the
interaction representation were numerically ¥Integrated using a fourth
order Runge Kutta method [30] to provide an independent check on the

power series and iter:ative solutions developed in Sections 3..2-3.14.

For economic reasons these numerical sclutions were confined to a few.

two and three mode} ’ '1e\iel systems _and the very sm‘alk grid size
(AL ~-01) required to provide 'compar'ab],e‘acc'ur-acy to the power series
method restricted thes’e‘_ solutions. to short r'ange§ of the 1ndependent
vartable ¥ in equation 2.2.3. In all cases étu_died the .\r)ume:'ical
solutlion agreed with the power series solution te the’ number of
signif‘icant figures to whic‘h :he numerical result was reliable, t)hat
1s atY~ 10 signifioant figures. o

¢ 3 . .
. The Runge Kutta method was also employed to directly. integrate
equation 2.2.3 when the perturbation term V(f.];) representg two

oscillating fields of arbitrary amplitudes &, and &, , frequencies
A), and N0, , and phases 6, and 61_ , respectively.

Ve, ey = -E‘p! Qos('b‘t?m -E,‘:p; Qoﬂﬂ-;f-\»b} . A31¢

PRI
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‘ pe
No in depth investigation of the phase dependence of both fields on

the .computed transition 'probabilities has been carried dut ae the
computatiqnal labour necessary to phase verage the final results )

- would . *be prohibitive. Ins:egg_’gg//ggié Studted the solutions,

) ‘EQ‘E’\ , for several threé leVel configuﬁalions for four combinations

of the. relative phases, namely \’_S,‘SJ = Lo,o0] , eo,ﬂll] .

- Lwia, ol and [“’H. wial . T.iqe‘ results, -as ' expected, depend.

critically ‘on the relative strengths of the dipolar couplings between

the various levels, but qualitatively the same behaviour is observed

as for the single field case. The matching power series me&hod should
provide a much more efficient means for studying solutions to two-

field problems as a function .of time for large field strengths €. and

\
82_, but no satisfactory metho& appears to be available for the
extraction of .phase _ and phase/time averaged properties from these
solutions, except in-the special tJ?e that both frequencies N, and
Y, are commensurable; V,[U,=$ ,°S,a rational number . In this

situation the Hamiltonian is geriodic and the formal method of Chapter

3Acan be directly employed.

»

Finally, “‘for illustr;!Hve purposes, the induced traneition .

" probabilities i%(ﬂ\' ,  evaluated by using the Runge Kutta -
procedure, for the interaction of two oscillating fields given by
4equation A.3.7 with the three level configuration given in Figure A.1, =
are shown~ over " a number of cycles in Figure A.2(a). Tpis
configuration .corresponds to Hallac?% [*31] Pigure 3 for "Resonance
gaman scattering".. For comparative purposes, the induced transitioﬁ
.probabilities obtained by Wallace usiné a non hermitian Hamiltonian

are included in Figure A.2(b). These results correspond to this O

~au£hors’ Figure 5 gnd are .-non physical for ﬁhe‘same~reasons as-

discussed for his treatment of the two level system in Section 4.2.1.

In tbe. calculation of [31) the non-self adjoint nature of the

treatment has led to the neglect of reabscorption by the initdal state ®
" and reemission from the final state; this can be seen’graphicelly by
comparing ‘Figures A.2(a) and A.2(b). The rotating field treatmént of
this problem is the self adjoint analogue of the approach used 1n (31]

L3

and contains these 1mportant reabsorption and reemission terms.
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The .integrands appearing in the phase and time 1integrals, given

. - by equat_ions' 3.7.5 ‘and 3.7.6 (or 3.7.9 and 3.7:10 for their damped
counterparts), were so well-behaved for all of the systems studied in

Chapters 4 ahd 5 that a simple numerical quadrature, ‘using Simpson’s
2/3 rdie [30], reduired approximately 10 to 20 grid points -to yield ’ -
final .results accurate to 5 to 10 Significant figures. The need for
so few ‘grid points is particdlarl; encouraging as the evaluation of
the double integral over phase énd time (equatiqns 3.7.5 and 3.7.6)
becomes the major. time qonsuming process in the computatibnal )
procedure when b517l+‘ where N specifies the number of levels in the ‘ i
system under consideration. 'fhe rate of ‘convergence of the numerical ;
. qqﬁdyaturé is not strongly dépendent on the coupling strength /
paranieter @ =\p'a\lu.) (see Chapters 4 and 5) so .that; accurate results . ,
. are still obtained with the same range of grid points even if %) i T

All of'the spectra presentea'in this thesis Qere generated by

b el

fittiﬁg a cubic spline [87] to the computed discrete” points. P
Approximately 10 to 15 points were  needed to fit an’ individual .
resonanog peak while the rema}nder 6f'the frequency (or tuning domain)

required a lower deﬁsity of points.

The folloyiggrggmpytationai timés rebreéent a very‘rough guide to

the central processor times required to compute the integral matrix,

- E%B)z 0 £°B 2 2m, in double precision to sixteen figure accuracy.
N - levelg C.P. time per point
¢ . N . Al
. . R
2 ‘ 7 c.o.s. ®
- 5 .~ 50 c.p.s.
6 ’ . .~ 80 c.p.s.

These timings were made on a Control Data CYBER 73 machine. A roﬁgh

estimate of the timingg for the evaluation of the phase and time

{ averages, given by equations 3.7.6 and 3.7.10, can be obtained by

i

hultiplying the sbove times by a factor of 3/2.

[}
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APPENDIX B

ROTATING FIELD APPROXIMATION

s A . -~

In Seéction 2.4, the ‘two level syﬁtemWinteracting\résonantlj with
an ‘oscillating field was ,treated "within the gbtating field,
- approximation andlthe genéraliza;ion of this apprd;imation'Bby Freed
{32] was very: briefly mentioned . The purpose of this appendix is
twofold, naﬁely: (i) ‘to demonstrate explicitly, by examples, how this
appfoximation can be applied to situations fo which it remains valid
and (ii) to derive éXplicit.expressiqu'which represent an improvement
to corresponding apprc;imate transition rate and power expressions
derived previously by Roberts and Fortson {33] and \7avaﬁ [34],
respectively. In deriving the results the formal procedure developed
by Freed [32] will pejféllowed closely and extended to include the
raéia&ive widths of individual leveigl Initiaily we brigfly review
Freed ‘s method of solution for a general N-level nondegenerate system .
coupled resonantly to one or more épplied oécillating fie;ds; the
explicit method of solutidn depends on the en;rgy level configuration,
sée examples that ’fqllow._ Here, for complete generality, the
raﬁiatiye widths Y}Il of the individual levels &A(f) making up’> the
system are included in the treatment. The basic set of coupled
- _gifferential equations in the interaction represqptatioh which need to
be solved via the rotating field approximation are given by eéuation
2.2.7 with-the perturbatﬁéﬁ Vﬂr,t) in this equati&n now rgpresénting
one or more oséillating fields ‘Athat is

* The phase dependence "is again ignored as it cancels out in any
fgnal pﬁysical result derived through the ** rotating field -
approximation. ' '

" e .




1 g -
e e A m ey R T i s Ul et e fai SN

- - -

—

. 2 .

Vi) =-pg i_“&& Cos ‘Oét = - H{_zﬁ; {e‘?t“’&‘]* exv[-\.\}af]]
B8.1.1%

As the rotatlng field approxiwation can only describe resonant or near
resonant interactions, the frequencies ﬂqb of the oscillating fields
musghf%e_qlose to the allowed transi}ion frequencies wi?hin the. \>
multilevel system. Thus one qf the two exponential terms in equation
B.1.1 wiil be resonant witnkg particular transition while the second ‘

term will be nonresonant and can be ignored, see_ Section 2.4.

- -
’ d *

B.1. THE LAPLACE TRANSFORM METHOQ OF SOLUTION . »

The initial step 'involved in applying: the rotating field
apprbximation is to drop all nonresonant terms from the coefficieﬁts.
mdltiplying the kﬁLt) in the differehtial equations giveh by equation
2.2.3 . Next, we seek a "phase factoring" transformation (13,58]
which will remove the time dependence from the remaining coefficients.

This is achieved by the following transformation’ see Freed [32],

bm- C ) exe[» 41:] : S , a  B12
where the phases a(- are suitably chosen to remove this time
dependence. The resulting differential equationé for the new
amplitudes C.Lt) can be written as follows 1q_matrix form
3,
Y cm.-.\o\Cm RN . 813
t o “ “\ /

Ej is a constant NxN matrix whose form depends on the configuration of

Ehe N-level systen. Expliecit forms for ?* "will be given in the
foilowing sectioné The coupled differential equations for (: (t) can, »
be transfdrmed to a set of simultaneous algebraic equations by using '

the -following properties [SMJ of the Laplace ‘transform

————— D s S s R s S e i T e G R e T G D G Gy Y T D D VD D S A G S S Y e D N e A - - -

‘

"This transformétipn is énalgous‘to Shiriey's "phase factaring"
method [13,58].
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. where‘ .
. - L) = fexﬂ_ St'lc @At = M, ) ‘

. The inverse Laplace tr‘ansform £ (ﬂ m) fomnally involves a contour ]
integration in the complex plane but “for our purpose&i-‘(n kS)) is
either tabulated or has 'a well known representation in ter‘ms of
partial fractions, see later and [5%]. Following Freed“[32] we set
;33(0\ -cs(c,) where C- (0) are-the initial eondition'e on the
system. The set of- algebraic equations resulting from the Laplace

transform of equa{ion B.1.3 are conveniently written in matrix .

notation as follows,

vg = (9 - ﬂ_m(g ,xs»s . BAS

A
i
X

t : o
{ The matrix equatipon B.1.5 needs to be inverted to solve for
} ‘;’\(s)‘ subject to the initial conditions-specified by the constan&l
" matrix % 3 that is . ’
M(S) (H XI] g ——LD(MQ | Ba1b
A ' -, Where )

Togor = OTHar (8D ear

" where (\9 XI}- denotes the 3% co-factor’ [32,63] of the
. matrix (H N1 ). Once the eigenvalues )\a (or equivalently roéts of

the polynomial in A) “have been found the elements D..A(M can be . e
written as \ .
S Dy = (H %I) /TT (- SN ' 8.18

Finkally, the amplitudes C,d(t) are obtained from the” inverse Laplace
transform. of .equation B.1.6 which _can readily be evaluated by using

]

r © the’ follouing partial fraction representation of the inverse Laplace
‘ tr'ansform' . L : , C

. S € P W e A U S S -an - - -

- s o s o - - o -

* The notation used in eq‘uation B.1.9 is due to 'F'r'éed [342] and
the symbol A“ , Which is the partial fracf,ion representation of the '
inverse Laplace transfom, should not be confused with the similar
symb,ol used to represent the ¢haracteristic exponents A in .t;he main N

. 4
text . ' , i ’ , *
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The use of these partial fractions expansions will be made _clear" in
the applications that follow. ‘'If NY3 the determinant in equation
B.1.7 will need to be evaluated numericall.y in general unless the
'symmet.ry' of the problem allows the NxN matrix E to be partitioned
into smaller blocks, see Freed, for example.

-

B.2 TWO LEVEL SYSTEM

-

) The ‘formal developements due to Freed, discussed in tﬁe previdué
section, will now be employed to determine the state amplitudes»b-(t)
for a simple two state system §,(r) and &,(f), with radiative widths
¥:/ 2. and ‘6’1[1 respectively, ‘interacting with a single oscillating
field. Equation 2.2.3 for. the b (t) will occur in the 1limit that

the radiative widths are ignored. -

The appropriate differential ‘equations that need to be solved are
given by l . .

\L% by = i b,t) +V‘1e19( LA(OT.] b,ltt)
b,w . B2.2
L b,s.\._bztﬂ 5\}4\?\ + Vi, ex?{ A(‘Dt]

A
- Y 4

where

Vi = "'P\'I.E I?. V‘u 3 AQ éwc\) E(EL—E‘)---D BZL

Using the transf‘ormatior') given by equation B.1.2 yields the following
set of coupled dif‘f‘erential equations for the C;(©)

" b/,otC = (o(. -1 /’l)C @) + Vn_ ex?(\-(“t"dl A(.O)t.] C‘l/‘t)

"%t C-‘_(t) : (d\l -1 Klll)czuﬂf\h_‘ ex?t"(d‘_i‘irb w)t] C\ (t’& 1 3

Choosing o(. =-0W and £3=0 removes* the t‘;ime dependence fr‘qm th‘
coef’f‘icients of these differ‘ential equations and yields for the

L




~/

constant matrix E , See equation B.1.3, the following result

-(i8)2. *HW) Vi
o =( | )
= V1_\ - “81,1

8.2

Auation B.1.6 are obtained
from equation B.1.8 and are given eiplicitly by

D“LX\ = "[L g.—l "')‘] /()M—)\z)()\')\t\ \
DI'LKN) = - \In_/ ()\‘)\txh")\’-) ED,_‘()\\

'I"he individual matrix elements of Q.OQ in~

-

Do) = ~L (& +2W) 4+ N]/(A-NXN-AL) '8.25

where A\, and A, are the two roots of the 2x2 determinant A.L’Ch\ and
are given expli@itly by

= =L {L( 1-81) .‘-A &.)} + L rwtﬁ-\}\V\‘l\ (x"x-.)[(xl X,_\ LAU%

The functions P@A(s), given by equation B.T.6, can now be
follows,

_ MY 4 ('Xx-r- WA) v Vo )(g“)
- My ()\_ ANA-AD) JL Vi [(‘1;_' +"A‘-‘°)“'O‘] 3 2.2.7
Taking ‘the inverse Laplace transform/of t’\(S),
’ fraction

written .és

using the continued .
pansipn given by equation B.1.9, we obtain feor Q te)

C, ) - (( E_:.AO*‘QJ : Via Do ¢ \ C,«0) | |
("Cz(t\) - Va1 B [(“'i“f."bw)*" ) )

) c,_to 8.2.8
‘where ] | t\ |
(ex?( \..)\\'t] exﬂ}u Att]‘] /(hu')\z)
=,[A.exé[-f-)‘3*-] ~Naexp Mt/ (n-M) 8.29

Finally, the state amplitudes b () can be obtained by substituting
A . d

-

- - — -~ D D P A S G - - - - - s - an o - - -

> -

* There are several cholces of phases O(d' which accomplish this

We could just as easily have choosen K, = *bwli yOhq = AULIIL but the
final result for the bd(t) S

., would have been the same.
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equation B.2.8 into equation B.1.2 with the definition of &, and ®,
given above... For simplicity we assume that X, =¥, =0 and that 4t_:he . _
'init:ial conditions on the system are .C,t0) = b,lo) = 1 ; C1(©) o

= ,¢0V=0 30 that the final results for the' state amplitudes 'bé&.\

becode . _ 1
oo+ uval Cosidow‘+t-\v‘~.\‘t - 2

b,(t)‘g- e,,?[_'\. uwth:'
LVt t:} /quo .-y\-b\Vn.\

L aw Swni

bty = -1V, EX?E hhﬁl‘l} Stni Jowtuival® t [Vt uwval

B8.2.10
Equation B.2.10 1is tentical to equation 2.4.3 with DWW and Vi

defined abgve.

B.3 TRANSITION RATES FOR A THREE LEVEL SYSTEM RESONANTLY COUPLED IO
TWO OSCILLATING FIELDS

Roberts and Fortson [33] recently suggested .the possibility of

carrying out high resolution double quantum®* spectroscopy in hydrogen

- by observing trans'itions between narrow s states with the much broader

p states act'ing as intermediate states coupling the ::r'ansition. The

basic level bonfiguration suggested for this experiment is shown in

Figure B.1 with the infinitedy narrow ;tate é‘tﬂ (%¥,=0) coupled to

* ' a broad intermediate state &‘_Lﬂ of opposite parity, which in turn is
coupled directly tQ a higher state bg(ﬂ of much narrower width.##

- - ot - A D S G A D G D W ; - > - - - '

* The term double quantum here can refer to two stepwise sinéie
photon transitions or a single two photon transition depending on
"whether both fields on resonance ’witht the transition freq;‘?ncy

'« ( Ea4~E, ) are tuned precisely to the individual transitions, that
is AW, 7 46W,=0 or are mistuned from the intermediaté level so
that H W, = -bub,_ and AW, + /W =0 ; DWW, and BW, are
defined below.
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Figure B.l1. The three level configuration employed by Roberts and
Fortson [33] to investigate high precision double quantum spectroscopy
in the H-atom. The very weak laser field at frequency v; couples the . -~
transition. ¢;(r) - ¢2(r) while.the arbitrarily strong radiofrequency
field at frequency v, couples the transition ¢z2(r). > ¢;
’ L]
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’ (that is ¥, Y ¥a ) 1 4 ). The basic system of
differential equations in the rotati;xg field épproximation Hescribing
the interaction of this system with two oscillating fields, one of

frequency ~D, near rgSonant with the transition ., = (€.-€, ) and
the second of frequency <D+ near resonant with thé transition.
G4 = (E;-E,), are given by RN -

sncgqgf‘"

ot

L bt b, e = - [ g:o b rVia b e xgﬁ. oua.t)+-V,_3 bsgt)ex({-\. nwz_t} o

L) 3 -'y_l_‘f_\ b,y + Vi b, iy expl-taw,x]

3
.L%cb3(t‘ = o'\-glb.;&t\ ¥Vaz b, Qx?[i-bco,_t'_\ ’ a3y -

. where o , & . /
V\-L‘:"r“.-z.ﬁl‘). =V 3y Vay= —Paa&alt =Viq : L

%

B = WO, - Bld, = Wy =0

3 .
and tﬁe nonresonant terms have been dropped from ‘these differntial
equatiofns. Roberts and Fortson [33] assume that theA laser field C‘

coupling the transition 4). -*#1_ is very weak and al¥ts 'as a probe,
while no restriction is placed 6p the magnitude of the radlofrequency
field*® E.‘_ whose frequency ), is held fixed. These authors deri\}e-
sclutions for the state amplitudes bst‘b) and ~b1u:) . under the
assumption that b.(t\~1: that are valid” for, times € ) K;_‘ . after
which transient effects ar'ising from thé spontaneous decay terms have
died out. '

*#%# Roberts ‘and Fortson point out that only the very narrow widths
of "the, initial.. and f‘inal states contribute to the wid;h of the
profile. They explicitly gonsider .the transition 28 938 (virgp )
inf:';';)l\ygrogen ,‘ with a weak, laser field tuned to the .19-93? transition,
while a radiofrequenc.y field is tum to the 33‘39 transition [33].

- . » ®

. . s - — —— - A > W D . —— - - - -

L]
°

* Of 'cour"se the fields must be sut‘f‘idiently small f‘or' the:
rotating field apgroximat.ion"to remain valid [22,28]. ) -

¢ . s ¢

-
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In this sectfon we willyinitia}ly derive cqnveniént closed form
solutions for v "and ‘o, within the restrictiens bw ~2 ,
¢ RN but valid over af} times‘ Thé€se solutions will allow us to study tﬁé
temporal behaviour of the spectra presented by Roberts and Fortson in

. the Figure 2, for example. Finally, equations B.3.1 will be solved

and - these final results for,the transition rates will remain

trary relative magnitudes of Vn. and \/51 .

c. (i) Solution “small WV,,.

Equﬁtlon B. 3 1 can be approximated by o

L : g _/ %E’b"“" - -L'&-., 1) 2 +Vn bs“” eq\'_ \.bub,_t] +V7_\ e.xq‘_\. Duw t-_\

L ﬁ-_ bs(t) = "\-‘1 bsLﬂ + V31 b, ) ex?t\,buo-._f-] ‘ 8.3.2

/ o since V,q small implles that b~ a4, see [33]. Equation B.3‘.2-

A ean. now be solved by fecllowing the foqmal methods of Section B.1.

- . Using ﬁhe transformation given by equé%iéh B.1.2 the sysggm of
C idifferentiafm“auaagons satisfied by Caet3 are T

. Y 0@ =(da-t H) G +Var Carexy Lilka-dtas A«ont} +
. Lo B Va e‘x.?t'.(AuO. -o(m:]
% Cate) = U‘:s— L&) 0 ¥ Vap Cut® exv[utdfﬁsfmégt) ;
| 3

3
H

* Ch0031ng

C L damen gdhmamea0n T gy

o o the et of differential equations satisfied by Ch(t} becomes ’
l‘» C:.(t\ [ALD.+ th]c.,_(t) ‘f Vz; Cal> +V\1. ) ) -

. Lbfstcanﬂ Y_AUD,‘I—DUO;_"" X;] Csuﬂ "*‘Vn C’-;u:) _ ’B.3.5

Equation B.3.5 can easily be solved by the matrix inversion technique

. - outlined in Section B. 1, but the 1nhomogenous term Vta would need to
A be included in an additional constant matrix in equation B.1.3. "It 1s
Just as easy however to take the Laplac transform/of equation B 3 5

and solve the resulting set of two algﬁgziic equations in two unknewns

directly. - These algebraic equations are

)
. . -

‘e
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- -ig, =L aw, —Lxx —\.s] M, + Vaa™Myy +V, [§ =0

~ig, =T sw, *bw,_..;.x,n_ =SIM ) + V,,_“'\,_cs) =0 | Q3.4

-Solving dir'ectly for l"\,,u) and. \a($Y we get

My = - Vi [ 8o +DWy -1 Es -]
. S [pwirbwL -+ B - LsJlowi- ¥ 1S -1Vaa\t]”

' N
Vi LiawieAW) + 83y . LV
SCs*+aas+ K] Cs*+aas+Kx]

M - “’——M 2 [ TA\Vaa - (8O + 8 W2 - LEa fa = LS (Wi~ L ¥aj - L8]

= -V V”/E(S*‘G)L"’btj : 8.3.1

where .
Q =% (arXs) +u (DO +2Wal2)

= J 1Vas\* = (E-¥% + 8w (0 WL ti(32-5))
. ' : [re vy
K =a*+b* - : oL , 3.38s
QSing the tabulated expressions for the inverse Laplace "transform in

>[54‘] we obtain the final expressions for C, and (3(x) o
Cule) = - \.V\q.{‘(bw‘*bw’-)""!"’-[l —expl-at]{Cosbt +  Sm b ] )

R K | +éxpEat] Sinbt/v]

i

(= Nate [ -exefardlcou e snbe]]

L

As botha and b are complex constants the solutions C,(%) and
. C3 (t) contain damping terms. in both solutions' the leading terms are
constant while the remaining ‘terms represent the transient decay terms
which damp out approximately as pr[—(&:rx;\t/l,,]ﬂ- exp‘_lr_g:_] Hence'
if 't » Kz we obtain for b-‘_tﬂ and bsLt) using +the . values of

ok, and'dy above in equation "B.1.2" . R
. bllt) F— —\.V\ [L{Dwr\’bw'])"'x,;/l] erEwa.t]
S W, +B L4
. ‘ | b ) = _.V.-.\,(Vy_ QDLQE\.(A )E] £3.10
3 Equation B.3.1O agree preclisely with Rober-ts and Fortsons equatién (2)

except for some misprints in their equations.




(1i) Exact Rotating Field SolutYons

' Next, we proceed to solve equation B.3.1 exactly using the matrix
method of Section B.1. The tr‘ansf‘ormed differential equations for
Céu:) after the phase factoring transformaci:ion of equation B.1.2 'ar;e
"given by °

>

. i . 4
'»‘o{tc.t;) (o - X2IC 0 + Ve G e xgli(dy <, -ow\)t]

L%_L Cot) = (ay -t ¥2/2)Crl) + V-..C.Ltﬁ"exe[f(d.-m +a watl
- , +Vaa C3 0 exelily-dy - awNt]
LB Cut) = (K -L B3h)Cuetd +Vag Cut) exgll (-, 4o0 0],
LA - , 8.3.1

where we retain ¥, although it will be set ‘to =zero in the final
results. - Choosing )

K, = -BW dy=0 | A3 = AWa .32

yields the following result for the constant matr‘ix E in equation
B 1. 3

 fetewirinn) © 0 Vi o :
E = Vi “L802 V‘gg
o Via (bOa-i¥302 , 8.3y

“-The elements of the matrix DL),) appear-ing in equation B.1.6 are
‘ given by -

O Daen "[(""ﬁz_"”\\(‘x”z’ﬁwt"’)‘) Waal ]} /'W ()3 z,
Dia (3 = Vn. (L*:h - AW, +)\\[T\' (L N = D:“ LAY
D‘3 (‘X) = Vn,V23 /“ (X X ) 03‘ ()\3

DO = Vg ( Aw. ‘H-\'\h.*)\)/ﬁ ) - Dnm o

033 W\ [(L x‘lz +\)(Aw, L 8111.1")\) \Vn\’.] /“ (J\ )\63

Daa ¢ = (Bwiri¥int A')(“’/z-bwq.fﬂfﬁ (-2 )
. _ . 8.3k
where now A, N1 and )\3 represent ‘the roots of the following cubic

equation
e




“ The cubic equation B.3.15 can be solved by standard techniques [88],

v

)\ q-\))\"-t-()\ +d =0 ’ ' ' _ 2.3.1S

where

Y

b = bUOu—bUO:.* (X +X;*X3)

C = "[ \V-‘\.\-L +\V1;\1 +‘/‘+ ( 8\ X;+¥‘X5+ xxX;) + DL, AL.O’-..]

4 "h.( QVD‘L (.‘SV" X1) - b@\(XL‘* x!-\)

A =-Law.(Wal* » ¥4 /u) - a0, (W™= K1)
-5 L6 Woal + 65 W\ e X6, K5 /] | 83.1

but analytic closed form r‘esults can only be obtained in certain

limiting cases [88], see below. The algebraic solutions to equation

B.3.14 are well known and are given by [88]

- 3N+ ?f? -%i3

e

Aoz w IR+ wrVR -bia T
Ay = w13J'E\' .«—wéf@ “ss T BRI
where R -

A= -V TR B:-YrR “"'/%T*q}/u .

P =cC -k*13 > 9= C}—bﬁls *‘% o3 _' 3_3.'\8

and {,w and w? represent the cube roots of unity [88]. - The )‘3‘5

will be very complicated complex numbers in genéral and will need. t,p

(Y

be nume/r;n';ally evaluated. Once these are evaluated the solution for

Cé(_t\ },‘a=\,3 .can be written down for any particular set of initial .

conditi"ons.%;' by. inverting the Laplace transform given by equation

B.1.6. - Choosing C,toy =1 C.';(.o\-;-'("zko) =0. ;nd using the values

of dd given by equation B.3. 12 we finally obtain for the state
amplitudes b Lt} ' ' '

-7

b,y = -Y_ Dqa-(aL0O,- '-szgx;m
x exp{-¢ Aw.\:]

baed = -Vl di+(dw,-t r‘sh.’) Bo)

by = =ViiVas A exel o s t] 8.3.19

where the partial fraction expansions A“ "are given by equation

{- (‘Z‘g’ Vo,V +i§i~ W) b o)
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(1ii) Transition Rates

a

The transition rate R into state &.(v) is defined as
4 ; 4 )

-

“qL > | ‘
= % {b o\ = > \c; U’.)\l 2.3.20
< 19 st ‘Ta :

—~—

r

where the state amplitudes . b"\ (Y are given by .equation B.3.19.

f%ewriting equation B.3.20 as follows

R‘A = \a‘stt) \O{ "o’;ct) *r G‘~ $S} \9{" b- (44 8.3.21
and substituting for Yyt bau:\ and b/’otba“) from equations B.3.1,

- obtain finally, after some algebra, the f‘ollowing expr'essions for
the transition ‘rates ké

Ry T-x \Amm\ = Vii Ul 5, Cos 8wt 4 Ra b7, Sim 2ot )

" ‘ ﬂ-‘. = - X-\.\b-._kt\\ \Ga [\m \OL.Cos alo,t -Ra 8'{\ Scn buo.'t_\'
’ & ) ’ . "V1_3£‘\V1'\ 813 Cb&bwzt 4 Re 8 g\-(\ watl

Ry = ~ ¥3 lbyeol - V3~X'\m‘c_>nc.,;, 8ot~ R Oy Sim BLOLT]
. | . 8.3.11

+ » N r 3 . . '
* _ %:J = Swbey T l;,,.‘) bler.\ : . B8.3. 23

Seorrrenm, -
s \ -» Using the fact tﬁé = 8&" and 8%‘ ';, in equation B.2.22

the sum of the transi™on rates RJ becomes '
Z.R = - Zx ”Dékﬂ\ . | B.3.24-

This re,sult shows explicitly that the transition rate out of ’stafce
4) ry (- R. ) can equal the sum of the transition rates :l:nto states
- @, and Q’m ( RatR3) only if thewidths ¥ of all the states
QJAL') are identically zero; that is, if the nom Z!b‘lﬂ“ is
i conserved. These R‘:;. represent the instantaneous ;ra%sition rates

3 ‘ N
. . AL )




L)

and the transition r&tes discussed by Roberts and Fortson [33]
correspond to their time'average. The average transition rates 9\3 ¢
can be f‘or'uially represented as follows -

R, (v j Voo™ dx

- ¥ \'_\bavn\ “ \oga ] | , 8.3.25

where ’\1 286 [2]. The time constant ¥ in equation B.3.25 can
represent, for exah:ple, the time of measurement, or, a mean collision-

time for a gaseous system,see Section 3.7.

N

_ To compare with [’33] we need to take YY) X.: but equation
B.3.25 allows us to study in addition the temporal developer;lent of the
transition rate frequency spectra over the en-tire time domain. As the
average .transition ‘rate is directly proportional to the induced
transition probability [ \b(‘\')\ \bALo)\z] we study instead the temporal

behaviour of its f‘r‘equency spectrum for T = l y IO " and IO ‘for

the system in Fi&ure B.1 initially 12 the ground state étﬂ, that is,
b,un..1, ‘0,@:'03“’): . The numerical values of the other parameters
needed to generate thisﬁf‘igur‘e ¢orrespond to_thos'e bsed Q{ Roberts and .
Fortson[33] and are given explieitly' in Figure B.X. The value

S 2 . - »
T = 1D satisfies the condition ~» >3 X.L and hence reproduces

the corresponding results of [33],see their Figure 2. .

4Th.e exact transition rate expressions, given by eqﬁation B.3.22
have the obvious advantage ~th>at they can be us~ed , in addition, to
investigate situations f‘or which the perturbation term \/n. is no
longer small and hence violates the conditibn b,u:\ ~3. Of barticular
interest recently for example is the situation where both fields are

‘ saturating[89]. )
In the expressions for the state amplitudes égt) * given by
equation ,B.3.19, the partial fraction expansions An depend solely on
-the eigenvalues )s& of the (3x3) secular determinant . ‘In general,
these eigenvalues are complex and need to be compuited numerically
using the'exp‘ressions given by equation B.3.17. In certain 1limiting

cases however, closed form expressions can be given for the transition

Y




cr

oF

Via =1 x 10-12, Va3
. 4

\*

Figure B.2. Average induced transition probabilities, [1- |b1 T)|2
[ba (T )|? and Ibg(T)lz as a function of frequency detuning Aml(—wZI-v
for three values of the damping constant T. (a) T =10%, (b) T = 10
and (c¢) T = 10'?. The frequency spectrum of [1-|b,(T)]? ] for T = 10°
is not included as this quantity is zerq to the accuracy of the .
computation. . Numerical values of other narameters [33] used in this _
calculation are; Aw; = 0, y; = O, Y2 = 1. 86 x 1078, yy's 6.3 x 10710,
1.526 x 10' '
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rates Rj » Ziven py gquations B.3.22, :and Wwe now proceed to derive
such expressions. For c¢onvenience we now write th_e expressiqns for

A, in'equyivalent polar form [88]

" ,
Y R s I Cosz® -bi3

Xa = -3‘];‘(‘005‘/;0 +\E Suny @) -‘bla
3
)\3 = —F(QQS‘QQ - \rj Sin 7383 'b‘3 R.3.24
where
v = -p3 0
- E e
= 2 * 23
p =C v o3 q, d - \aclaf b Q317
and
' A - J (3 -“v/q, ’ ‘
- ‘ [ \1 A1 ]
_. 9= tom 8.3.2%

~ As an explicit, example ue consider the situation in which all the

widths X“\ are 1 entically zero. In this case the eigenvalues )\¢

are real as A is aNbhermitian matrix and the constants in the
= .

preceding equations can'n be written as

b .= Aw‘-bco,_’ R [\Vn.\ +\Vu\ +mo.mo ]

db = AL, \V-gs\ = ij_ \v ~1-

P ="- Civat *\"\Vu\ +‘/3( AW + 5L, BW +A«.o") ]
Q, = Aw.\\k,\ -aotlv.._\ 3 (80,00, YAV, eyl +Au). um)tn(o‘d-bu:u
SJT‘_ =j L tval +\Vu|1+‘/,(bu), O, m.:..-rbwt)] i3 8.3.29
When both .fields are on resonance, bW, =D W, =0 o .
q.—.O ‘-r? e“-’:rﬁn.\.‘oo ='1T/_L . &330
- and

N, =N ®2 [V Vit
)\c - )\3 =7 JJVi-l.\‘L’HUtS\-L ) . .
N -Ag = - JWabslWaalt ' C Ray




P L

hinally, the transition rates corresponding to ¥é=05"6=‘\,..3’ and

AL-J\ ALO.L_O are given by

R, = Wia\" Wi,V {3\_/.;._\\ Sue :LJ\V.,,\HV-;;\ t +~
W\

(Wl A Vol :
t @ a gm J \V‘\a.\? *'\Vu\\ t }
z‘.‘\. s \ Vn\t ‘ Sen A J\V\t\iﬁ'\vu\t x A
i (\Vl‘l\-‘* \Vu\"' Y ?
Rg \V\ms \Vzl‘sz 2 S J\V“,\ i-\\’-u\ t - g w2 \\kdi-\\/,;\‘t} |
(“kﬁ *“hﬁ\jux ’

8.3.32

Although 'analytic closed form expressions can also he obtained for the
8 8 ’6:"I ¢
the final results; with the exception of those for R3 s, are unweildy

“ situation in which all the widths are équal that

and serve no useful purpose in the context of Robert’s and Fortson’s

work.
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B.4 THE THREE LEVEL MASER

In this section we present expressions for the power emitted,
P¢ , and power absorbed, Qx, , which are exact for the three level .
maser within the rotatiﬁg field approximation. These quantities have
) . - been defined by Javan 1in his classic treatment of the problem [éu]

where he obtained closed form approximate expressions for theg in the.
limit that one field is much weaker than the other. Javan employed
thesé solutions to discuss the conditions under -which Maser action
should be observed when the amplifyln%.field is weak. . In the appendix
of his article, see T34], a method faf’ obtaining the exact solution
within the rotating field appro: _‘ation is indicated but not carried
out explicitly. The purpose of bhis section is to use the formal

methods of Section B.1 to ohtain a convenient representation of the
]

solution valid for all f‘ield.«,str!ngths ‘cons{stent with the validity of

the rotating field approximation.

The basic three level configuratdon considered by Javan is shoﬁn
in Figure B.3 where no‘w the lowest state bu") is coupled directly
to states thﬁ'”«' ang dpsgy\ . ‘Javan assumes that the strong
saturat}ng field of frgquency NV, induces transitions between the

Astates'Qhuﬂ and bauﬂ, ;hat is {L'~:u33,, while a wea¥ radiofrequency
field of frequency V. is applied at W)1'~¢A1u . ﬁhe basic set of
- differential equations deécribing the interaction of the two fields

<

_with this three level system are* \
- v - Y e — - - o e - S S - . . - e S e - O G S AS S G G S S D R W D W . ;\"\\‘

# Javan’'s set of. equations, his equations (9), diftgr in that he~ 1
uses € SuAa-0t and € St to represent the fields while we use
&. Cosvt and E-..CoS‘\),,t . In the rotating field approximation the
results are egquivalent 1in both cases as the phase aepéhdence of the -
fields caﬁcels out in the firal results. Spontaneous decay terms 'are - N
not included in thése differential equations but cqllision’damping
will be included later. : o .
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Figure B.3. The three level configuration employed by Javan [34] to
investigate .maser action. The field oscillating at frequency v,; and
. near resonant with the transition ¢;{(r) = ¢3(r) represents the
saturating field while that at frequency v: and near resonant with
the transition ¢1(r) » ¢,(r) represents a weak radiofrequency field.
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L ;‘?% bl = »V\.L b, ) ex.?[\. bw.t] * V\3 bs ) _ex‘.{'} b uJ,_t‘\

. %r. by = Vo, by eng_-'\. A& |
LR b= Vg, b, exg\-taw,t) ‘ /B
where A W= Vy -y, B, = =0,- -y, are defined to be consistent with
Javan’s equations (9), and WVha = —P\-LE.I‘L Viy = ‘9,381 |2
Apﬁlying the phas'e factoring transformation, given by equation B.1.2,
and choosing la‘. =0 , i, =W, 3gpd °‘3 =& Wy _ we obtaln the
following result for the conStant matrix 33 in eduatien B.1.3

,0' Vn. V\3
E = Vi, 8w, ©O ' _ S A
V3| .o sz <2 s ’ 8\*.1

The elements of the matrix D(l\) in equation B 1 6 are given by

Du“\\ Y.)\ —(.bw,-rnuo.,)}\ -\—nw‘aw{j/-“-u

D‘,_m = -V (bwl—)o /\T Ch-Ag). D_“(g

D= Vi h-aw)/ f‘--“‘ M) “Dad

D= LY -mol)\,—-w.,l 1 I’\T A2 |

Das O = Vi Vig /TY SRSV mm ' o
Dyzn =L —-AUO >\-\\/.1\]/\T(>\ N | B.\. 2

Inverting the Laplace transform of Md\“\) we obtain for C&tt\

N ( Y_o,,-(owﬂswl)n +BW,0L, B, Vnu 8,89 Vy(a-8u,b)

C.® “Via (B, - W, 8,) Ebl‘bwlbl ‘Vl}‘ Ao] " ViaVia bo -
G - V;3 (b, —b\D.bo) V.1_V|3 Bo - [Az" AWl D, "\Vn\‘bg
C| (o) - ‘ ' - C - { )

; X|Catod T ‘
C3 Lo) ‘ {‘\ B L\- . L\—

where the partial fractions An are given by equafion B.1.9 and \d

are the roots of the cubic equation . not ?

Ne+bN +chN +4d =0 . . BLWS
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b =2 = (Wi +oWI) y C = bW, OUD-,_—(\VV;\-!-\V. )
d, = A‘-J)_\V\j_\ + AUJ' \V\Q\ ’ SN N B ‘l+ 6

For convenience we write the formal solutions to this cubie equat.ion

in polar form [88], see equatioﬁ B.3.26, where
d

r = |- LO | D .
T .

1% =C-UL/3 = Aw‘aw,_—(bw +Aw,) /3,_»(\\/‘1\ +N'\3\ ‘)
%C\,=do-‘q_r. 2V =-(r0 mw;\{\ (aLo, a0~ (WY, \+\V\s\) (Au+m..)t)]

¢ 3w !
and ~ L B.4. 7
3 S .. -
£ - -—?.J'P/')JTW/“_ . : .
@ = S B.4.8
The roots )\A are r'eal and distinct in this case, see [88] Javan's
expressions for the power absorbed, P “and power emitted P are - .

giveq in terms of the induced transition probabilities as f‘ollows_
p, = (M) D j‘ pn(t.mexg[ (e-to/v]dc. )
’,. -0 c ’ ' - .
P (Ma-T3) R J\> RO ex.?[(t-‘\‘.o)l‘\’] dto 849 <

o

-

where P, (£-to) _\51({;_1;,)\ subject to the initial conditions '
boy=12", boy = b;Le) =0 and Ps,_tt-—to) \bz&-uﬁ subject to
the initial d¥nditions byler=1, b,y = buey=0 . The_ integrals—"
océurring £2% equation B.4:9 have been discussed previously in.the
collision damping calculations of Section 2.4 and n are the ,.
Boltzmann populations of the individual levels *l(.r) Javan gives a
detailed discussipn of the der‘ivation of these poner e!pressibns and

our im:er-est her'e 1s to’ derive exaet expressions f‘or' these quantities

¥

»within the r‘otating field approximation ,‘

We can now write ouj: the ,explicit -expressions for’ the induced
‘ ; ;
.transition’ probabilities ‘P,_(t—tp) and Pn (t-th from equation

B.4.4, using equation B.1.3. : _ “ )
Boce-tey =Val Iyt - aw(A.U:-to)A (€T +a% L) b.u:—r..,)) |
o + AW b tttylt] _ "
Pttt = Wal iVl thoetal - B.l.10-
N \‘ S & . : e . | .
F e~ - ¢ .
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. 2 . K
Pq-\s (a,-Na) ;\th \an j{\b Lt-\:,)\t B, (A (t'\'.o')ﬂf(t-t.\ +0 olE-1) B, (k-1q)

- =)W, -A s\("x‘)‘zX\'M\fS [(x )‘5)(1-_.{ ﬂ ex?[ Lt-tu\] ato
(BN e M ;—x,xx.-x,\f St L TN W) ex&‘“""’] s, }

)
22000 VY Wl {(mo MBI RN _ (860, - MDY -Aa) Mr
AN I LT+ rdt Y, o L\ + NN YT
+ Lo - MUB W, -M)( M-M} | - / .
i+ ()\:.-)\3\1'71..\ o - B, I...\3
Finally, using the expression for thé total power P"‘ ?e ? ’
6btain
P = 2(nyDy) VY Wit § 1 (Bw ‘)\\)(Bw"k-a] ()\u"’)\t\
Lol = nGa), )(Auk-m](\. Az) +Lv.,\ AUBULI MW ¥os m}
- [1 rOn=Na) T*'_\ | T +(x-.-m“r"]
X

. where T'L = (ﬂ.-ﬂﬂl(mn“)). The power expressions given by ¥quations

S R TIEEEE i E e
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Substituting equation B.4.10 into the ‘expression for Pe ° given by

equation B.4.9 and af‘ter some algebra, we obtain.

R =y o W W\ ; LWCESY exght-towﬂ At .
La A

S
= wlnng 2 RVAIVA {o‘tmm-xgj‘ *i[(x,-x;\kc'-t&c’x‘{-tg;ﬁ)at,

W' x-x,)js [(x.-;.,)(t—c_\] ex&_“ié‘} "\ -'\—()\‘-xa({‘—)«;\ X
t g R ) '3 ! . -
Joilonngeea)lext T dus gy

22and OYNG Y (WA 0 (h-Aa) A }
COVARYNGAD A DOV L O] [\‘\'("1‘:);_\"]

The above integrals are tabulated in [66]. Next substituting
\equat,ioﬁ’ B 4.10 into the expression for the po&r absdrbed P ,-givén

by equation B.j4. 9, y We obtain  after similar manipulatiqns an

.expression for PQ i o °

T R e T T L P T AT

I

W I S

Py AW} \Bute-taf }exg[ LC-T-&] ar,

=HN-ND O W { (80,-X) (B2, -A XN A,\(\-)\;)j' Qm“i[(k L-.Xt-toﬁex‘{ 1] d‘_
t

&

B. 4 ik .
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B.4.12 and B.4, 14 extend beyond the, range of validity of Javan's
expressions and can for example be used to é%udy séturation effects at

the amplifying frequency V,_ , see Javan [34].

Equation B.4.14 for the total power P reduces to a convenient
closed form expression in t{le limit that A, +* AWy =0. . Thisl
condition can be satisfied Af both fields are "on resonance or are
rhist.uned from resonance, ‘the same magnitude; AW, = -bW, . In

-:iéis limit the ¢onsgtants appearing in equation B.4.8 peduée'to
b=0o ,.p=-Uswl+val+wWal*]l | q=0 ,8=Tn

R

R = J(eor st e T/ 3 B4

and the eigenvalues )\A become

)\l = \/A'LO?' +"\V‘1\1+\V|%\L = 8
N = JBwr+ Wal+iver =-95°

7\3: (o] : LA . ' - Y PO Y

Equation B.4.14 for the total power now becomes a

P = 2(Na-ng) o7 Wil 3y, ¢ 62 *-q[mw NWals W} )
%‘[\H»%W‘][w‘b‘-'r‘] +2AWF (| + w&‘-'\-lr_\ ]J

’ . Lo B.u.\)
When both fields are exactly on regonance Lw. 2, bW, =0 | equation

B,4.17 simplifies further to A

P = a(na-n vT\V.\\ {;\V.a T _‘\_I\‘\'(Wn-\ *'\V\s\‘)""'l
. : Li -\—h.(.\vu\‘ﬂv“\"‘)‘\’"]l\:l—f.\Vn.\"+M-,\‘)T"]

o B.l18
Equation B.4.18 agrees precisely wi'th Javan's equation (21) for the

total power - in the limit that the field at the amplifying, frequency
‘\):. is much weaker than the saturating field at frequgncy ), , that is
IVl 2 IVl T+ WV \™  [34). Whilé it would be extremely tedious to
show that equations B8.4.12 and B.4.13 for ?e and Po. , respéctively,
reduce to Javan's . equations (16) and (19) in the limit

Wil €€\ Visd | the former equations can be used to reproduce ‘ his
Figure 2 with the specified values.of his 'parameters. ’ , - °

1' .

] * . . I Vo .

..‘.,
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