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a b s t r a c t 

The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. 

An open question is how these intrinsic timescales are related to sensory or motor information processing and 

whether these dynamics have common patterns in different behavioral states. We address these questions by 

investigating the brain’s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked- 

in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory 

processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state 

data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged 

neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory 

deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity’s intrinsic 

neural timescale is related to the neural capacity that specifically supports sensory rather than motor information 

processing in the healthy brain. 

1. Introduction 

1.1. Intrinsic neural timescale 

The spatiotemporal dynamics of a neural system shape information 

processing. Information is processed by the brain’s intricate temporal 

structure. In other words, much like a radio can receive messages by 

decoding the modulation of the amplitude (AM) or frequency (FM) of 

radio signals, the language that the brain uses to communicate with 

itself is encoded/structured in time. We consequently need to inves- 

tigate the temporal-spatial dynamics of the brain in order to under- 

stand the fundamental processes of healthy and disordered states of 
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consciousness. Different brain regions exhibit different “temporal re- 

ceptive fields ” ( Cavanagh et al., 2016 ) or “temporal receptive windows ”

( Bernacchia et al., 2011 ; Chaudhuri et al., 2015 ; Chen et al., 2016 , 2015 ; 

Cocchi et al., 2016 ; Demirta ş et al., 2019 ; Farzan et al., 2017 ; Gollo et al., 

2017 , 2015 ; Hasson et al., 2015 ; Honey et al., 2012 ; Huang et al., 2018a ; 

Kiebel et al., 2008 ; Luppi et al., 2019 ; Mohr et al., 2016 ; Murray et al., 

2014 ; Runyan et al., 2017 ; Stephens et al., 2013 ; Wasmuht et al., 2018 ; 

Watanabe et al., 2019 ; Wolff et al., 2019 ). These findings led to the 

assumption that different regions and networks in the brain exhibit 

their specific timescales as reflected in the concept of “intrinsic neu- 

ral timescales ” ( Chaudhuri et al., 2015 ; Deco et al., 2019 ; Farzan et al., 

2017 ; Gollo et al., 2017 , 2015 ; Liégeois et al., 2019 ; Murray et al., 2014 ; 

Wasmuht et al., 2018 ). 
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The length of intrinsic neural timescales differs from one brain 

region to another. For example, the intrinsic neural timescales are 

shorter in sensory and motor regions while they seem to be longer 

in higher-order cortical regions ( Murray et al., 2014 ; Ogawa and Ko- 

matsu, 2010 ; Stephens et al., 2013 ). In addition, brain regions that sup- 

port temporal pooling and summation ( Himberger et al., 2018 ) of sen- 

sory ( Gauthier et al., 2012 ; Hasson et al., 2008 ; Lerner et al., 2011 ; 

Stephens et al., 2013 ; Yeshurun et al., 2017 ), motor, and cognitive in- 

formation ( Bernacchia et al., 2011 ; Farzan et al., 2017 ; Hasson et al., 

2015 ; Murray et al., 2014 ) have unique temporal signatures. Thus, these 

distinct intrinsic timescales may provide a meaningful functional dis- 

sociation between brain areas. However, how these intrinsic neural 

timescales modulate and integrate information (e.g., sensory vs. mo- 

tor) remains an open question in systems neuroscience. Addressing this 

question is the main aim of the current investigation. 

Current evidence for a role of intrinsic neural timescales in infor- 

mation processing is largely indirect, stemming mainly from the use 

of temporal measures in pathological cases. For example, abnormal in- 

trinsic timescales from resting-state fMRI in psychiatric disorders such 

as autism ( Damiani et al., 2019 ; Watanabe et al., 2019 ) are accompa- 

nied by deficits in sensory processing and abnormal social behavior. Yet 

another study, using resting-state fMRI, demonstrated abnormally long 

intrinsic timescales in conditions involving reduced or absent sensory 

behavior, e.g., anesthesia, unresponsive wakefulness state (UWS), mini- 

mally conscious state (MCS), or non-rapid eye movement (NREM) sleep 

stages (N1-3) ( Huang et al., 2018a ). Nevertheless, there is a need for 

research employing more direct measures of the brain’s intrinsic neural 

timescale probing their involvement in specific functions like sensory 

or motor functions. For example, measures that quantify the frequency 

characteristics of the periodic oscillations employed in the current study 

(e.g., power spectral density; PSD), arrhythmic scale-free ( “1/f noise ”) 

brain activity (e.g., power-law exponent; PLE), and the repeating pat- 

terns in a signal (e.g., autocorrelation window; ACW) are novel and po- 

tentially powerful ways to explore the temporal structure of neuronal 

communication at the systems level. 

1.2. Metrics of temporal dynamics 

To investigate the intrinsic neural timescale of resting-state EEG, we 

calculated autocorrelation using a well-established measure, the ACW. 

The ACW measures repeating patterns in a signal, and enables us to 

test for the relationship, e.g., correlation in neural activity patterns at 

different points in time ( Murray et al., 2014 ). The ACW has been ap- 

plied at both the cellular ( Bernacchia et al., 2011 ; Cavanagh et al., 

2016 ; Murray et al., 2014 ) and systems levels ( Huang et al., 2018b ; 

Northoff et al., 2020 ; Watanabe et al., 2019 ; Wolff et al., 2019 ). There- 

fore, the ACW can be regarded as a valid and direct measure of the intrin- 

sic neural timescale. Moreover, it has recently been suggested that the 

ACW is related to slow frequencies ( Honey et al., 2012 ). Thus, we also 

measured the frequency characteristics of the periodic oscillations in 

EEG using PSD and the arrhythmic scale-free ( “1/f noise ”) brain activity 

using PLE in our various groups ( He, 2014 ; He et al., 2010 ; Huang et al., 

2017 , 2016 ; Linkenkaer-Hansen et al., 2001 ; Palva and Palva, 2018 ). 

The additional measurements of the PSD and the PLE allowed us to link 

the ACW to power in different frequencies across normal and disordered 

states of consciousness. Exploring the relationship between the ACW and 

the frequency characteristics of the EEG will enable us to identify the 

supposed role of intrinsic timescale in temporal integration of sensory 

or motor stimuli ( Florin and Baillet, 2015 ; Himberger et al., 2018 ). 

1.3. Processing of sensory vs. motor information 

Unresponsive Wakefulness State (UWS) and Minimally Conscious 

State (MCS): The frequency characteristics of intrinsic neural timescales 

can be measured using the PSD ( Chaudhuri et al., 2015 ; Murray et al., 

2014 ; Rosanova et al., 2018 ; Wolff et al., 2019 ). Slowing in the PSD 

would reflect prolongation of the intrinsic neural timescales, and would 

be expected in cases of UWS, MCS, anesthesia, and slow wave sleep 

(N3). Behaviorally, despite their differences, UWS and MCS share the 

loss of sensory function as seen by reduced sensory-evoked poten- 

tials ( Banoub et al., 2003 ; Boisseau et al., 2002 ; Boly et al., 2008 , 

2004 ; Fischer et al., 2010 ; Nakano et al., 1995 ; Noguchi et al., 1995 ; 

Pistoia et al., 2016 ; Rosanova et al., 2018 ; Schiff et al., 2014 ; Sharon and 

Nir, 2018 ; Wang et al., 2003 ; Wijnen et al., 2014 ; Xu et al., 2012 ). In 

contrast, motor function (e.g., reflex movements and motor-evoked po- 

tentials) in UWS and MCS may vary including different ranges: it may 

show normal latency and amplitudes, increased conduction times, uni- 

laterally present or even absent which largely depends upon the under- 

lying brain injury (e.g. lesion of M1, corticospinal tract, etc.) as well 

as whether the patient has undergone motor rehabilitation or neuro- 

modulation during the recovery phase ( Ragazzoni et al., 2017 ). For this 

reason, motor evoked potentials (MEPs) may not be the sole criterion 

of the presence vs absence of motor function in the assessment of con- 

sciousness. This also suggests that abnormal prolongation of the intrinsic 

neural timescales will be associated with a deficit, or loss, of the capac- 

ity for sensory information processing, rather than for motor processing, 

although this possibility remains to be explored. 

Locked-in-Syndrome (LIS) and Amyotrophic Lateral Sclerosis (ALS): 

In contrast to UWS and MCS, locked-in-syndrome (LIS) and amy- 

otrophic lateral sclerosis (ALS) present the opposite behavioral pattern. 

In the case of LIS and ALS, sensory function including somatosensory- 

evoked potentials and brain-stem auditory evoked potentials remain 

completely, or partially intact ( Bassetti et al., 1994 ; Behr et al., 

1991 ; Bensch et al., 2014 ; Facco et al., 1989 ; Gosseries et al., 2009 ; 

Hammond and Wilder, 1982 ; Landi et al., 1994 ; Soria et al., 1989 ; 

Virgile, 1984 ). However, motor-evoked potentials are lost in LIS and ALS 

( Bassetti et al., 1994 ; Facco et al., 1989 ; Kotchoubey and Lotze, 2013 ; 

Landi et al., 1994 ). The loss of motor function in LIS and ALS is due 

to the disruption of descending motor pathways, despite intact activa- 

tion in cortical motor areas ( Cincotta et al., 1999 ). Movement-related 

alterations of PSD in the beta band have also been reported in ALS 

( Bizovi čar et al., 2014 ; Proudfoot et al., 2018 , 2017 ). However, no stud- 

ies have investigated intrinsic timescales in LIS and ALS (see though 

( Babiloni et al., 2010 ; Proudfoot et al., 2018 , 2017 ) for observed power 

changes in alpha, beta and gamma bands). 

If it is indeed the case that intrinsic timescales are related to sensory 

(rather than motor) processing (as in UWS and MSC), one would predict 

no changes in the intrinsic neural timescales in primarily motor condi- 

tions like LIS and ALS where sensory processing is intact. To address 

this, we compared the intrinsic neural timescales in primarily motor- 

deficient but sensory-preserved conditions (LIS, ALS) to those of primar- 

ily sensory-deficient but motor-preserved behavioral conditions (anes- 

thesia, MCS/UWS) and also conditions involving normal and healthy 

reduced motor activity and progressive alterations of sensory process- 

ing (e.g., slow wave sleep). This approach will enable us to determine 

whether the intrinsic neural timescale of the brain’s spontaneous activity 

is central for either sensory or motor information processing, or both. 

1.4. General and specific aims 

The overarching aim of our study was, therefore, to use EEG 

resting-state to investigate the relationship between the intrinsic neu- 

ral timescale of the brain’s spontaneous activity and sensory or motor 

information processing. 

The first specific aim was to probe the ACW (as well as the 

PLE and the PSD) in the EEG resting-state of sensory-deficient but 

motor-preserved behavioral conditions comparing them with sensory- 

preserved healthy states. These conditions included anesthesia, sleep, 

and UWS, where sensory information processing is reduced or lost 

in either naturally (sleep, UWS) and non-naturally (anesthesia) oc- 

curring states. Previous findings report abnormal temporal dynamics 

with slowing of the PSD (and/or high PLE) in anesthesia, sleep, and 
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Table 1 

Summary of the main characteristics of each dataset. 

Sleep dataset Anesthesia dataset UWS dataset ALS dataset 

Ketamine Sevoflurane UWS Controls Non-LIS LIS 

Number of participants 27 10 10 49 23 12 1 

Age (years) 26.00 ± 6.69 32.90 ± 9.48 41.4 ± 13.10 48.88 ± 15.62 44.11 ± 7.15 57.88 ± 13.24 52 

Sex (male:female) 9:18 6:4 8:2 36:13 13:10 7:1 + 4 n.a. 0:1 

Number of electrodes 11 256 257 121 

Sampling rate (Hz) 512 1000 1000 500 

Recording time All night 5 min 5–13 min 5 min 

UWS ( Akeju et al., 2016 ; Casali et al., 2013 ; Demertzi et al., 2019 ; 

Huang et al., 2018c , 2016 , 2014 ; Tagliazucchi et al., 2016 , 2013b ). 

Based on these findings, we hypothesized that the ACW would be longer 

in sleep, anesthesia, and UWS when compared to fully awake states in 

either the same participant (sleep, anesthesia) or some healthy control 

group (UWS). This longer duration of the ACW would suggest that neu- 

ral activities at more distant time points strongly correlate, and thus 

strongly resemble each other. Together with the supposed shift towards 

slower frequencies in the PSD and the PLE, this similarity across distant 

time points increases the processing capacity for temporal integration of 

temporally distant sensory information. This, in turn, reduces the tempo- 

ral precision of specific sensory information at specific discrete points in 

time with the subsequent loss of perception of specific objects or events 

( Himberger et al., 2018 ). 

The second specific aim was to probe the ACW (as well as the PLE 

and the PSD) in the EEG resting-state of motor-deficient but sensory- 

preserved behavioral conditions comparing them with motor-preserved 

healthy states. This was done by comparing primarily motor-deficient 

conditions like ALS and LIS with healthy controls. Given the evidence 

that the ACW may be central in sensory rather than motor information 

processing (see above), we hypothesized that there would be no differ- 

ences in the ACW duration (nor in the PLE and the PSD) in ALS and LIS 

when compared to healthy control participants. In order to test for the 

hypothesis of no difference, we employed statistical tests of equivalence 

for non-inferiority. 

We here assessed, in a static way, the temporal structure of the intrin- 

sic neural timescale of the brain’s spontaneous activity using the ACW, 

PLE and PSD in different behavioral conditions and states of conscious- 

ness. This allowed us to address the question of whether the intrinsic 

timescales of the brain’s spontaneous activity support the processing of 

specific information, that is, sensory or motor information. We used a 

comparative approach in healthy fully awake brain state and sensory- 

and motor-compromised states. In this way, we hoped to reveal how the 

hierarchical structure of intrinsic timescales support temporal integra- 

tion (or segregation) of sensory rather than motor information process- 

ing across normal and abnormal states of consciousness. In addition to 

revealing the functional role of intrinsic timescales, this also provides 

insight into the neural correlates that support conscious arousal and 

awareness under healthy conditions. 

2. Material and methods 

2.1. Participants 

Following the general aim of investigating intrinsic EEG timescales 

in different behavioral conditions, four datasets were analyzed: (1) sleep 

dataset, (2) anesthesia dataset, (3) UWS dataset, and (4) amyotrophic 

lateral sclerosis (ALS) dataset. A description of each follows and are 

presented in Table 1 . 

Sleep dataset. Twenty-seven, healthy adults (age = 26.00 ± 6.69 years, 

18 women) were included in this study. All participants reported nor- 

mal sleep patterns, and were free from signs of sleep disorders, accord- 

ing to standard guidelines ( AASM, 2014 ), assessed from an overnight 

polysomnographic (PSG) screening night. Participants performed a com- 

plete PSG using the Embla Titanium (Natus, San Carlos, CA) PSG system. 

EEG, EOG and EMG signals were acquired with impedances < 5 K Ω, at 

a sampling rate of 512 Hz, referenced to FPz. EEG was acquired using 

11 gold-plated electrodes placed according to the conventional 10–20 

system. The EEG signals were re-referenced offline to the average of the 

mastoid derivations for sleep stage scoring. Sleep stages (wake before 

sleep, N1, N2, N3, REM) were marked using RemLogic analysis soft- 

ware (Natus) following the standard criteria ( Iber et al., 2007 ). For a 

further description of the dataset, see Fang et al. (2017 ). 

Anesthesia dataset. For the anesthesia dataset, the effects of two dif- 

ferent general anaesthetics, i.e. ketamine and sevoflurane were eval- 

uated. To assess the ketamine effect, resting-state EEG recordings 

(Ges300, EGI, USA) in ten right-handed surgical patients aged between 

20 and 60 years (32.90 ± 9.48 years, 4 women), American Society 

of Anesthesiologists (ASA) physical status class I–II, were collected in 

awake (5 min eyes-closed) condition using an electrode cap (HydroCel 

130) of 256 electrodes following 10–20 international system. Then, ke- 

tamine was given to the same 10 participants. Specifically, 1 mg/kg di- 

luted ketamine in 10 ml of 0.9% normal saline was infused over 2 min, 

until OAA/S (Observer’s Assessment of Alertness/Sedation) scale was 1. 

Then, ultrashort-acting opioid remifentanil 1 𝜇g/kg and neuromuscu- 

lar relaxant rocuronium 0.6 mg/kg were given for endotracheal intu- 

bation. After anaesthetic induction, diluted ketamine was infused again 

over 20 min (1 mg/kg/h). EEG data (5 min) were acquired again from 

15 min after the loss of consciousness. In order to avoid external noise 

interference, all participants were placed earplugs in both ears. During 

the EEG acquisition at a sampling rate of 1000 Hz, electrode impedance 

was kept under 5 K Ω. All channels were referenced online to Cz. 

Similarly, ten different participants (age = 41.4 ± 13.10 years, 2 

women) followed the same protocol but under sevoflurane anesthesia. 

In this case, 8% sevoflurane was initially administered in 6 L/min 100% 

oxygen and when OAA/S score was 1, remifentanil 1 𝜇g/kg and rocuro- 

nium 0.6 mg/kg was given for endotracheal intubation. After anaes- 

thetic induction, the end-tidal concentration of sevoflurane was kept at 

1.3 MAC (2.6%). EEG data (5 min) were acquired from 15 min after the 

loss of consciousness. Equipment and EEG acquisition procedures were 

the same as the ones followed under the effects of ketamine. During the 

study period, electrocardiogram, non-invasive blood pressure and pulse 

oximetry were monitored in these non-premedicated participants (see 

Table 2 for further details). 

UWS dataset. Forty-nine UWS participants (age = 48.88 ± 15.62 

years, 13 women; aetiology = 25 stroke, 18 traumatic brain injury, 

6 anoxia) with Glasgow Coma Scale (GCS) score ( Teasdale and Jen- 

nett, 1974 ) from 3 to 10 and Coma Recovery Scale-Revisited (CRSR) 

score ( Giacino et al., 2004 ) from 1 to 8 were included in this study. EEG 

data were acquired for at least 5 min using a 256-channel system (GES 

300, Electrical Geodesics, Inc., USA) and a 256-channel electrode cap 

(HCGSN 257-channel net cap, Electrical Geodesics, Inc. USA). EEG sig- 

nals were acquired at a sampling rate of 1000 Hz and referenced to Cz. 

The impedance of all electrodes was kept below 20 K Ω. 

ALS dataset. A total of twelve ALS patients (age = 57.88 ± 13.24 

years, 7 men, 1 woman, 4 n.a.) with ALSFRS-R score from 3 to 40 

(min = 0, max = 48; Cedarbaum et al., 1999 ), as well as a single fe- 

male ALS patient (age = 52 years) suffering from LIS (ALSFRS-R = 1) 
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Table 2 

The clinical data before and after anesthesia in two anesthesia groups. 

Parameter Awake state Anaesthetic state P -value 

Sevoflurane anesthesia 

HR (beats/min) 69.5 ± 7.6 67.8 ± 7.5 0.37 

SBP (mmHg) 125.2 ± 13.7 101.2 ± 23.7 < 0.01 

DBP (mmHg) 71.2 ± 9.6 56.3 ± 17.9 < 0.01 

RR (times/min) 13.2 ± 1.6 10.7 ± 1.0 0.01 

SpO 2 (%) 98.5 ± 1.4 99.0 ± 0.6 0.08 

PaO 2 (mmHg) 105.5 ± 17.4 451.5 ± 155.8 < 0.01 

PaCO 2 (mmHg) 38.9 ± 3.5 39.1 ± 3.7 0.28 

PH 7.43 ± 0.05 7.42 ± 0.01 0.55 

Ketamine anesthesia 

HR (beats/min) 75.2 ± 13.0 86.3 ± 14.0 0.02 

SBP (mmHg) 137.5 ± 18.3 151.5 ± 18.0 < 0.01 

DBP (mmHg) 73.2 ± 15.2 84.9 ± 8.3 0.01 

RR (times/min) 13.4 ± 1.6 11.4 ± 1.3 0.04 

SpO 2 (%) 98.1 ± 1.4 99.2 ± 0.6 0.08 

PaO 2 (mmHg) 105.5 ± 12.1 451.5 ± 150.8 < 0.01 

PaCO 2 (mmHg) 39.6 ± 3.1 41.8 ± 4.3 0.38 

PH 7.43 ± 0.05 7.42 ± 0.01 0.75 

Note: HR = heart rates; SBP = systolic blood pressure; DBP = diastolic 

blood pressure; RR = respiratory rates; SpO 2 = pulse oxygen saturation; 

PaO 2 = partial pressure of oxygen, and PaCO 2 = partial pressure of car- 

bon dioxide. 

participated in the study. EEG data were acquired for 5 min (eyes-open) 

using 121 active electrodes at a sampling frequency of 500 Hz (Brain 

Products GmbH, Germany). The placement of the electrodes followed 

the international 5–10 system, reference to the left mastoid. For a fur- 

ther description of the acquisition procedure, see Fomina et al. (2017 ) 

and Hohmann et al. (2018 , 2016 ). The same protocol was undertaken 

by twenty-three healthy participants in awake condition. 

2.2. Ethics statement 

All participants (or their legal guardians) provided informed writ- 

ten consent before participation. This research was approved by the re- 

spective Universities/Hospitals depending on the origin of the dataset 

(Western University Health Science Research Ethics Board for the sleep 

dataset, Huashan Hospital, Fudan University for the anesthesia and 

UWS datasets, and Max Planck Society’s Ethics Committee for the ALS 

dataset). This study was conducted in accordance with the Declaration 

of Helsinki guidelines. 

2.3. Data/code availability statement 

The Matlab code is freely available on the following URL: https:// 

github.com/Temporo- spatial/IntrinsicNeuralTimescales- . 

2.4. Pre-processing 

Given the variety of datasets from different equipment and condi- 

tions used in the present study, the specific pre-processing procedure 

was carried out for each dataset depending on the particular require- 

ments of the data. We took special care in removing muscular and ocu- 

lar artefacts in the case of anesthesia, UWS and ALS datasets. For that 

purpose, EEG signals were bandpass filtered between 0.5 and 40 Hz 

using a finite impulse response (FIR) filter. Then, independent compo- 

nent analysis (ICA) was applied to remove components from the mus- 

cular and ocular artifacts. On the other hand, due to the length of the 

EEG recordings (polysomnography during a normal sleep), epochs la- 

beled as noise epochs by a registered technologist were completely re- 

moved from the data. In the remaining epochs, FIR filter between 0.5 

and 40 Hz was applied to the data. All recordings were re-referenced to 

the average activity. Finally, stationary artifacts, specifically eye move- 

ments and muscular noise, were reduced using ICA. Particularly, runica 

function in EEGLAB ( Delorme and Makeig, 2004 ). Further details of the 

pre-processing are explained in Supplementary material. 

2.5. Temporal analysis 

After pre-processing, the ACW was computed for each of the par- 

ticipants from the four datasets. For that purpose, custom scripts 

were developed to compute the ACW by measuring the full-width- 

half-maximum of the temporal autocorrelation function of each elec- 

trode, following the description provided by Honey and colleagues 

( Honey et al., 2012 ). Autocorrelation was calculated using windows of 

20 s-length with and overlap of 50%. The lag was set to 0.5 s since we 

observed in a previous study that the ACW values agreed for different 

lag values (ranged from 0.1 to 1 s) ( Wolff et al., 2019 ). The full-width- 

half-maximum of the main lobe of each the autocorrelation functions 

was then computed for each epoch. ACW was estimated as the average 

of all the epochs for each electrode and condition. In order to reduce the 

number of comparisons and to minimize type I errors, a grand average 

across electrodes was performed. ACW values represent the extent of the 

periodicity of the EEG signal, whereby longer ACWs can be interpreted 

as greater stability of the frequencies over time. The length of the ACW 

can be seen, therefore, as an index that summarizes the degree of reg- 

ularity of a signal, with longer ACW associated with more regular EEG 

oscillations. On the contrary, considering the extreme case, the autocor- 

relation of a white noise signal will have a peak in the origin, whereby 

the ACW, in this case, would be zero. 

2.6. Spectral analysis 

To estimate the PSD of the EEG data, Welch’s method was computed 

( Welch, 1967 ). This method requires a split of the EEG time series into 

overlapped segments of length L . For our analyses, L was set to 3 times 

the sampling rate, (e.g., 3 s), with an overlap of 50%. Then, segments 

were smoothed using a Hamming window. Fast Fourier Transform (FFT) 

was applied in an epoch-based way to obtain the modified periodogram. 

Finally, the PSD was estimated by averaging all the periodograms. This 

allows us to obtain an adequate resolution (two data samples per Hz) 

with an assumable increase of the computational cost. PSD values rep- 

resent the power of oscillatory neuronal activity across the frequency 

spectrum. 

Once the PSD was computed, PLE was obtained using in-house Mat- 

lab scripts. For that purpose, PSD representation was log-log trans- 

formed in both the frequency and the power spectrum range. Then, the 

slope of the PSD was estimated computing linear least squares regres- 

sion. Other approaches, as robust linear regression could be applied. 

This method is less prone to being biased by the presence of spurious 

or oscillatory peaks (see Gao et al., 2017 ). However, since appreciable 

differences between both methods were not observe (see Fig. S1 in the 

Supplementary material), we decided to apply linear squares regression 

for the sake of comparability with most of the studies. Finally, the PLE 

of each was defined as the absolute value of the slope of such regres- 

sion. The averaged PLE across epochs and channels was used for further 

analyses. PLE values represent the extent of broadband arrhythmic neu- 

ronal activity in the EEG. Thereby, lower PLE values, i.e. more flatness 

in the PSD function, is associated with a more arrhythmic activity. The 

extreme is again a white noise signal, with a completely flat PLE. 

It is worth noting that the PLE complements the PSD analysis by 

identifying differences in the temporal structure of the spectrum power 

(in a static way). While the PSD shows the differences of the power 

spectrum in terms of the absolute power at particular frequencies, the 

PLE instead highlights the specific relationship in power between slow 

and fast frequencies, showing how their balance is altered in certain 

states, e.g. in anesthesia ( Zhang et al. 2018 ). For this reason, the increase 

in power of slower frequencies is not always and necessarily associated 

with higher negative slope of the PSD (i.e., higher PLE) and vice versa. 

For example, a PSD that shows high power in slower frequencies may be 

https://github.com/Temporo-spatial/IntrinsicNeuralTimescales-
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associated with low PLE (flat slope) in case of an increased power also 

in faster frequencies. On the other hand, a PSD that shows low power 

in slower frequencies may be associated with higher PLE in case of an 

excessive decrement in the faster frequencies. 

2.7. Statistical analysis 

Statistical analysis was done with Matlab ‘Statistics and Machine 

Learning’ Toolbox (version 2017b). Both to analyze the distribution of 

the values of each dataset (violinplots) and to study the distribution 

of the measurements calculated on the scalp (topoplots) the normal- 

ity and homoscedasticity were assessed using Kolmogorov–Smirnov test 

and Levene test, respectively. For parametric data, paired two-tailed 

t -tests were used for within-group comparisons, whereas independent 

two-tailed t -tests were used for between-group comparisons. When para- 

metric assumptions were not met, Mann–Whitney U -tests and Wilcoxon 

signed rank tests were used for within and between-group compar- 

isons, respectively. In the particular case of the sleep dataset, compar- 

ison among 5 different conditions (i.e. awake, N1, N2, N3 and REM) 

were assessed. Since the data did not meet parametric assumptions, the 

Friedman test was applied. Post-hoc comparisons were performed af- 

ter controlling for False Discovery Rate (FDR) following the Benjamini–

Hochberg procedure. This includes pairwise comparisons between con- 

ditions in the sleep datasets and statistical topographical maps (for the 

multiple comparisons across electrodes). 

It is important to note that some of our comparisons require more 

than a conventional superiority test. In particular, we sometimes want 

to check the equivalence between two different distributions (i.e. H1), 

which is the opposite of the conventional goal. In this case, the null 

hypothesis (H0) would be the contrary (both distributions are differ- 

ent) and equivalence or non-inferiority testing are required ( Walker and 

Nowacki, 2011 ). In this study, we select the more restrictive (equiva- 

lence testing), which is tantamount to applying two traditional one-side 

tests ( Walker and Nowacki, 2011 ). Equivalence margin was set to 50% 

of the PLE and the ACW differences between awake and N1 in the sleep 

data. This value was chosen following the most restrictive recommenda- 

tions of the FDA in mortality studies ( Walker and Nowacki, 2011 ). This 

procedure allows us to minimize type I errors. For correlations, Spear- 

man’s rho test was used since we do not have a priori hypothesis about 

the type of relationship between the variables (i.e. linear or non-linear 

relationship). 

Finally, aimed at controlling for possible bias due to the variety of 

dataset used, we performed a frequency-to-frequency analysis to reveal 

spectral bands with significant differences between groups (see Fig. S6 

in the Supplementary material for details). 

3. Results 

3.1. The subtle differences between power spectral density and 

autocorrelation window 

The relationship between autocorrelation function and power 

spectral density is well-known. In fact, Blackman–Tukey approach 

( Blackman and Tukey, 1958 ), which is based on the Wiener–Khinchin 

theorem ( Kay, 1988 ), states that the Fourier transform of the autocorre- 

lation function of a time series is equivalent to the power spectral density 

(PSD) of such time series. However, the association between ACW and 

PLE is far from being obvious. 

The ACW (defined as the full-width-at-half-maximum of the auto- 

correlation function) and the PLE have been previously used in several 

neuroimage studies due to its ability to identify subtle differences be- 

tween time series that the PSD is not able to recognize depending on the 

spectral resolution of it ( Honey et al., 2012 ; Walden and Zhuang, 2019 ; 

Wolff et al., 2019 ). Nonetheless, both measures have not directly com- 

pared before, remaining unclear their similarities and differences. To il- 

lustrate their behavior and to better understand the main findings of this 

study, a number of simulations were conducted. In particular, four dif- 

ferent 1-min length time series were synthetically generated: pink noise, 

sinusoidal wave of 10 Hz, white noise and up-chirp signal. These signals 

were chosen for their characteristics (differences and similarities in PLE 

and ACW that help illustrate their relationship) and for being present, 

to a greater or lesser extent, in the EEG. All of them were generated with 

500 points per second (simulating a sampling rate of 500 Hz). The time 

series of the mentioned signals, along with PSDs and the autocorrelation 

functions of such signals are shown in Fig. 1 . 

In view of the figures, we can claim that each signal contributes dif- 

ferently to the total PLE and ACW of the EEG. For example, white noise 

ideally has an ACW close to zero and flat frequency response, therefore, 

its contribution to both measures is quite limited. On the other hand, 

pink noise, whose contribution to the spectral structure of the EEG is 

significant, shows an autocorrelation window close to zero, but a rele- 

vant contribution to PLE. Sine-like waves (sine wave at 10 Hz and chirp) 

usually have lower power than pink noise on the EEG, but their contri- 

bution to signal pre-periodicity (and therefore to ACW) is not negligible. 

Apart from their different contribution of the signals to the total PLE 

and ACW, the simulations reveal a dissociation between both measures. 

On the one hand, we can see that white and pink noise signals differ in 

the time and the spectral domain, showing a higher contribution of low 

frequencies in the pink noise signal. These differences are reflected in 

the autocorrelation function, showing larger ACW for pink noise (0.077) 

as compared with white noise (0.002). In fact, as previously mentioned, 

the ACW of a perfect white noise is zero. It is noteworthy that, due to 

the random nature of these two signals, the ACW was computed as the 

average of 100 surrogate data. This example reflects the influence of 

low frequencies in the ACW. On the other hand, the up-chirp signal and 

a simple sinusoidal wave were also analyzed. In this case, the signal 

periodicity of the sinusoidal wave is higher than the chirp. However, 

as Fig. 1 shows, the PSD of both signals are very similar showing, in 

both of them, an important influence of low frequencies. Despite the 

high degree of similarity in both PSDs, the periodicity of the signal is 

directly reflected in the autocorrelation functions, showing more than 

double ACW value for the sinusoidal wave (0.666) than the up-chirp 

(0.306). These simulations reflect the influence of the signal periodicity 

in the ACW, which makes it useful for measuring subtle differences in 

the signals in particular cases. At the same time, this example shows the 

theoretical different contribution of the signals as well as the dissocia- 

tion between ACW and PLE. 

To provide additional evidence on the dissociation between ACW 

and PLE we calculated the correlation (Pearson’s rho test) between both 

measures in the sleep dataset. If both measures were redundant, the 

correlation between them should be not only high, but very similar re- 

gardless of the signals and states assessed. These correlations can be 

observed in the Fig. 1 B, along with the correlation coefficient and the 

corresponding p -value. As the results show, although the correlations 

are always positive, they are very different in each sleep stage (espe- 

cially in the NREM3). Even the correlation is significant in the awake 

state, but is not in any of the sleep stages. This shows that both mea- 

sures must be showing different yet unknown aspects of the underlying 

physiology 

3.2. Intrinsic neural timescales in sleep 

First, the PSD for all the sleep stages were estimated (see Fig. S2 

in the Supplementary material for PSD representations) and visually 

inspected. Then, the ACW and the PLE were computed. Our results 

showed a significant increased length of the ACW values as the sleep 

stages become deeper (Friedman test, 𝜒2 (4) = 79.63, p < 0.01). Interest- 

ingly, the ACW in wake was significantly lower than in N2 (Wilcoxon 

signed-rank test, z = − 4.29, p < 0.01) and in N3 (Wilcoxon signed-rank, 

z = − 4.28, p < 0.01). The ACW in REM was also significantly lower than 

N3 (Wilcoxon signed-rank test, z = − 4.26, p < 0.01), but not significantly 

different from N2 (Wilcoxon signed-rank test, z = 1.17, p > 0.05) (see also 
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Fig. 1. Simulation examples showing the dissociation between PSD and ACW. Different signals are shown in the upper row (some of them usually present on 

the EEG). The second row shows the autocorrelation function for each of the above signals. Autocorrelation window (ACW) is almost zero for pink noise and white 

noise. The bottom row shows the power spectral density (PSD) of each signal. The sine wave and the chirp signal show a very similar power-law exponent (PLE). 

The procedure for obtaining the ACW and the PLE is shown on the left. 

Khalighi et al., 2013 ) (see Fig. 2 c). Analogous changes were observed in 

the PLE (Friedman test, 𝜒2 (4) = 87.1, p < 0.01). Importantly, as with the 

ACW, we could clearly observe increase of the PLE from the awake state 

over N1 (Wilcoxon signed-rank test, z = − 4.14, p < 0.001), N2 (Wilcoxon 

signed-rank test z = − 4.29, p < 0.01), N3 (Wilcoxon signed-rank test, 

z = − 4.29, p < 0.01) and REM (Wilcoxon signed-rank test, z = 1.24, p 

< 0.01), with more noticeable differences with N2 ( Fig. 2 d). Finally, in 

both the ACW and the PLE, global changes were observed in the topo- 

graphical maps ( Fig. 2 e and f), which is supported by widespread statis- 

tical differences found both for the ACW and for the PLE except for REM 

vs N2/N3 comparisons. Note that for Fig. 2 and the subsequent figures of 

each dataset, graphics and topoplot colormaps were adjusted to permit 

a fair comparison between healthy controls and pathological/abnormal 

groups. 

3.3. Intrinsic neural timescales in anesthesia 

The participants receiving sevoflurane (OAA/S = 1) showed the ACW 

and the PLE values that doubled those shown by the same participants 

in the awake condition. This is comparable with the results found for N3 

in the sleep dataset. Wilcoxon signed-rank tests showed statistically sig- 

nificant differences between awake and sevoflurane conditions in both 

the ACW ( p = 0.0125, z = 2.50) and the PLE ( p = 0.0051, z = 2.80) 

for the mean distribution of all the electrodes, demonstrating their ab- 

normally high values in the anaesthetic states as compared to the same 

participants’ awake state ( Fig. 3 a and b). 

Similar patterns were found for ketamine condition (OAA/S = 1), 

both for the ACW and for the same participants’ awake state. How- 

ever, the increases in the ACW and the PLE as compared to the awake 

state were much less noticeable than in the sevoflurane group. In this 

case, no significant differences were found for the ACW (Wilcoxon 

signed-rank test, z = 1.27, p > 0.01) and PLE (Wilcoxon signed-rank 

test, z = 1.24, p = 0.01). Although the ACW and the PLE in the 

ketamine condition were not significantly different from the awake 

state, non-inferiority testing showed non-equivalence between ketamine 

and awake conditions (see Supplementary material for further de- 

tails). In other words, ketamine changes enough the ACW and PLE val- 

ues enough to be considered relevant as compared to placebo condi- 

tions. However, these changes cannot be considered significant as com- 

pared to the awake condition when the mean of all the electrodes are 

compared. 

In other to further characterize these changes, the same procedure 

was applied but using the joint distribution of all electrodes (not only the 

mean). In this case, significant differences were found both for the ACW 

(Wilcoxon signed-rank test, z = 18.03, p < 0.001) and the PLE (Wilcoxon 

signed-rank test, z = 25.21, p < 0.001) as compared to awake condition. 

These differences between sevoflurane and ketamine effects agree with 

the visual inspection of the PSD, where sevoflurane showed an overall 
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Fig. 2. ACW and PLE assessment in the sleep dataset. Illustrative explanation of ( A ) the ACW and ( B ) the PLE computation is shown. ( C ) The ACW distribution 

and ( D ) the PLE distribution are depicted using violin plots and boxplots for each of the sleep stages. A significant increase for both the ACW and the PLE is observed 

for deeper sleep stages (Friedman test). ( E ) Topographical maps for the difference between sleep stages in ACW and ( F ) the PLE are also represented following a 

repeated measures design. Statistical differences (Wilcoxon signed-rank test) after FDR correction for (G) ACW and for (H) PLE, indicating global changes for the 

comparison of most of the sleep states. 
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Fig. 3. ACW and PLE assessment in the anesthesia dataset. ( A ) The ACW distribution and ( B ) the PLE distribution are depicted using violin plots and boxplots 

for anesthesia and non-anesthesia conditions. Non-inferiority testing showed non-equivalence between ketamine and awake conditions both for the ACW and the 

PLE. In addition, a significant increase for both the ACW and the PLE is observed for sevoflurane as compared to awake (Wilcoxon signed-rank test). Topographical 

maps for ( C ) the ACW and ( D ) the PLE are represented for the difference between awake and anesthesia conditions, following a repeated measures design. Statistical 

differences (Wilcoxon signed-rank test) after FDR correction for (E) ACW and for (F) PLE, indicating widespread statistical differences in the scalp in sevoflurane 

conditions. On the contrary, the effects related to ketamine condition are more focused on the parieto-occipital brain region. 

steep decay of the PSD compared to the awake state, with higher PSD 

values in the slow frequencies (1–8 Hz), a flattening of the alpha peak 

and a large PSD slope in the higher frequencies (20–40 Hz). 

On the contrary, ketamine showed a slight flattening of the PSD, with 

a slowdown and a shift of the alpha peak towards lower frequencies 

(see Fig. S3 in the Supplementary material). Finally, as in sleep, the 

topographical maps showed global effects rather than regionally specific 

changes for sevoflurane ( Fig. 3 c and d), showing statistical differences 

across the entire scalp ( Fig. 3 e and f). On the contrary, the effects related 

to ketamine condition are more focused on the parieto-occipital brain 

region ( Fig. 3 e and f). 

3.4. Intrinsic neural timescales in UWS 

Similar to sleep and sevoflurane anesthesia, the ACW was signif- 

icantly longer in UWS as compared to the healthy controls (Mann–

Whitney U -test, U = 216, p < 0.001) ( Fig. 4 a). Analogously, the PLE 

was also significantly higher in UWS as compared to healthy controls 

(Mann–Whitney U -test, U = 205, p = 0.0013) ( Fig. 4 b). These results 

are in line with the visual inspection of the PSD, which showed an over- 

all steeper decay compared to healthy participants, with more power in 

the slow frequencies and a complete flattening of the alpha peak (see 

Fig. S4 in the Supplementary material). Finally, as in sleep, the topo- 
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Fig. 4. ACW and PLE assessment in the UWS dataset. ( A ) The ACW distribution and ( B ) the PLE distribution are depicted using violin plots and boxplots for 

UWS participants and healthy controls. A clear increase for both the ACW and the PLE is observed for UWS participants. Topographical maps for the ACW ( C ) 

and the PLE ( D ) are also represented for healthy controls and UWS participants, indicating regionally no specific effects. This is supported by statistical differences 

(Mann–Whitney U -test after FDR correction) found in most of the electrodes both for (E) the ACW and for (F) the PLE. 

graphical maps for AWC and PLE showed a global effect without any 

specific regional changes ( Fig. 4 c and d), which is supported by statis- 

tical differences found in most of the electrodes both for ACW and for 

PLE (see Fig. 4 e and f). 

3.5. Intrinsic neural timescales in ALS with and without locked-in 

syndrome (LIS) 

We also investigated a unique group of participants suffering from 

ALS with and without LIS. Despite their motor impairment, no signifi- 

cant differences in the ACW (Mann–Whitney U -test, U = 487, p > 0.01) or 

the PLE (Mann–Whitney U -test, U = 162, p > 0.01) were found between 

ALS without LIS and healthy controls ( Fig. 5 ). Importantly, although 

only one individual with LIS participated in this study, this participant 

showed ACW and PLE values in the same range as both ALS (without 

LIS) and healthy controls ( Fig. 5 a and b). To statistically assess this, 

z -score normalization was performed over the ACW and PLE values of 

the LIS participant. In all cases, normalized values showed less than one 

standard deviation from the ACW of the healthy controls ( z = − 0.7181), 

the ACW of the ALS participants without LIS ( z = 0.0802), the PLE of 

the healthy controls ( z = − 0.2633) and the PLE of the ALS participants 

without LIS ( z = 0.4285). 

Consistent with these results, the visual inspection of the PSD, 

showed a very similar trend for the LIS participant, the ALS participant 

without LIS and the healthy controls (see Fig. S5 in the Supplemen- 

tary material). Again, no specific topographical changes were observed 

( Fig. 5 c and d), which is supported by the regional statistical assessment 

(see Fig. 5 e and f). Only slight differences were found in the perimeter 

area of the occipital region. Taken together, these results suggest that 

the intrinsic neural timescale for ALS either with or without LIS could 

not be differentiated from healthy controls. 

4. Discussion 

Using resting-state EEG, in a comparative approach, we investigated 

the relationship between the intrinsic neural timescale of the brain’s 

spontaneous activity and sensory and/motor information processing 

through their manifestation in various sensory- or motor-compromised 
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Fig. 5. ACW and PLE assessment in the ALS dataset. Due to the number of participants, The ( A ) ACW distribution and ( B ) the PLE distribution are depicted 

using beeswarm plots for healthy controls, non-LIS participants and the LIS participant. A similar tendency is shown for the three groups for both the ACW and 

the PLE (non-inferiority testing). Topographical maps for ( C ) the ACW and ( D ) the PLE are also represented for healthy controls and non-LIS participants and 

the LIS participant. Statistical differences (Mann–Whitney U -test) after FDR correction for (E) ACW and for (F) PLE, indicating higher statistical differences in the 

parieto-occipital brain regions. 

behavioral states. We compared two types of behavioral states: (i) those 

where sensory information processing is lost while motor information 

processing seems to remain largely intact, e.g., sleep, anesthesia, and 

UWS, and (ii) those where sensory information processing is preserved 

with only motor information processing being largely deficient, e.g., ALS 

and LIS. 

As predicted, we demonstrated prolonged intrinsic neural timescales, 

indexed by the ACW in sensory-deficient but motor-preserved behav- 

ioral conditions, e.g., sleep, anesthesia, and UWS. Changes in ACW were 

accompanied by shifts towards slower frequencies in the PLE and the 

PSD. In contrast, and as predicted, we did not observe abnormal values 

in the ACW (or the PLE and the PSD) in motor-deficient but sensory- 

preserved behavioral conditions like ALS and LIS. Based on converging 

evidence from these abnormal and normal behavioral states, we con- 

clude that the spontaneous activity’s intrinsic neural timescales are rel- 

evant primarily for sensory rather than motor information processing. 

4.1. Sensory vs motor information processing 

We observed significant modulation (i.e., longer duration) of the 

ACW in sleep, anesthesia, and UWS, whereas no change in the ACW 

was observed in ALS and LIS. These data are well in line with re- 

cent findings of dynamic changes in the brain’s spontaneous activity 

in sleep, anesthesia, and UWS ( Casali et al., 2013 ; Demertzi et al., 2019 ; 

Huang et al., 2018c , 2016 , 2014 ; Piarulli et al., 2016 ; Sarasso et al., 

2015 ; Siclari et al., 2018 , 2017 ; Sitt et al., 2014 ; Tagliazucchi et al., 

2016 , 2013a ; Thiery et al., 2018 ; Zhang et al., 2018 ). Our results ex- 

tend these findings to show a prolongation of the brain’s spontaneous 

intrinsic neural timescales. 

Specifically, our results show that the intrinsic neural timescales of 

the brain’s spontaneous activity are abnormally extended in all con- 

ditions examined where sensory information processing is impaired. 

This included behavioral conditions in different settings, e.g., normal, 
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healthy physiologic (sleep), pharmacologic (anesthesia), and patholog- 

ical (UWS). Despite the remarkable differences between these condi- 

tions, all these states showed prolongation in their ACW. Thus, the ev- 

idence suggests that changes in the brain’s intrinsic neural timescales 

are related to one specific feature that is shared by all these conditions, 

i.e., reduced or absent sensory function, independent of their underly- 

ing cause. Consequently, we propose that the prolonged ACW in these 

conditions reflects the loss of the capacity of the brain’s spontaneous ac- 

tivity to process sensory information due to alterations of the intrinsic 

neural timescale. 

In contrast, we did not observe ACW prolongation in conditions such 

as ALS and LIS where, despite motor deficits, sensory-based interaction 

with the environment (and consciousness) remain intact. Albeit indi- 

rectly inferred through converging evidence using a comparative ap- 

proach in a collection of abnormal behavioral states, we therefore sug- 

gest that the intrinsic neural timescales of the brain’s spontaneous ac- 

tivity are associated with the capacity to support sensory rather than 

motor information processing. The focus of the study is not the actual 

sufficient neural conditions for the state of consciousness in a specific 

moment, i.e., the neural correlates of consciousness. Instead, we are 

rather targeting more those neural capacities (or ‘neural predisposition’: 

Northoff and Huang, 2017 ; Northoff and Lamme, 2020 ) that make pos- 

sible consciousness, i.e., the intrinsic structure of the brain that permits 

the possible realization of consciousness itself (even if it is not actu- 

ally realized). In this sense, the spontaneous activity of the brain is 

interpreted as providing the capacity or neural predisposition for the 

stimulus-induced activity. This is not a clear-cut, white-or-black phe- 

nomenon, since we can see a slight change in the PLE during REM to- 

wards the awake condition, despite the sensory deprivation that this 

sleep phase entails. The same applies to the case of brief sensory iso- 

lation produced, for example, by Multimodal Ganzfeld ( Miskovic et al., 

2019a ). In these cases, although the information coming from the ex- 

ternal or outside is diminished or almost suppressed, it does not mean 

that the capacity or predisposition of sensory information processing 

also remains absent: the actual sensory processing and its neural corre- 

lates are almost absent in these cases whereas their capacity or neural 

predisposition for sensory information may yet be still preserved. For in- 

stance, the capacity for sensory information processing is still preserved 

in REM sleep even though external visual inputs are no longer processed 

(which does not yet exclude the processing of imagery visual input from 

the own spontaneous activity). Hence, the PLE/ACW data reflect the ca- 

pacity, i.e., the neural predisposition, of sensory information processing 

rather than the actual sensory processing itself. 

Our findings complement the observation that the brain’s intrin- 

sic neural timescales are crucially important for the processing of ex- 

ternal sensory stimuli during task-evoked activity; this has been de- 

scribed by temporal receptive window (TRW) ( Chen et al., 2017 , 

2015 ; Hasson et al., 2015 ) and the temporal receptive field (TRF) 

( Cavanagh et al., 2016 ). Given that the magnitude of task-evoked ac- 

tivity is dependent upon an ongoing spontaneous activity ( He, 2013 ; 

Huang et al., 2017 ; Northoff et al., 2011 ), one would assume that the 

intrinsic timescale of the brain’s spontaneous activity also shapes sen- 

sory processing during task-evoked activity. This possibility, however, 

remains to be directly investigated. 

4.2. Temporal segregation and integration of sensory information 

Given that the ACW measures the degree of correlation of neural ac- 

tivity patterns between different time points, accordingly, a short ACW 

allows for increased temporal precision as it makes it possible to sep- 

arate different stimuli at distinct time points ( Himberger et al., 2018 ; 

Murray et al., 2014 ). That is especially relevant for sensory informa- 

tion processing as high temporal precision is required to distinguish be- 

tween different sensory-mediated objects and events in the environment 

in time (i.e., temporal segregation) ( Himberger et al., 2018 ). 

External stimuli in all sensory modalities require fast responses as 

they are brief and change rapidly, which may facilitate behavioral adap- 

tiveness required during healthy, alert wakefulness. This is also reflected 

in the shorter duration of the intrinsic timescales in sensory cortex in 

the healthy brain that exhibits short ACW in both rest and task states 

( Chaudhuri et al., 2015 ; Gollo et al., 2017 , 2015 ; Hasson et al., 2015 ; 

Honey et al., 2012 ; Stephens et al., 2013 ). In contrast, increased ACW 

indicates a stronger correlation across more distant time points. Such 

temporal autocorrelation is central for temporal integration (e.g., tem- 

poral summing and pooling) of different inputs at a particular point in 

time ( Himberger et al., 2018 , p. 163). 

Our findings indicate that such temporal pooling and summing are 

abnormal in those behavioral conditions exhibiting impairment in sen- 

sory information processing. The abnormal prolongation of the ACW 

observed here signifies an increased capacity of the brain’s spontaneous 

activity for temporal summing and pooling. Different sensory inputs at 

different points are thus lumped and integrated into the same neuronal 

event. This would have the consequence of impairing temporal preci- 

sion and segregation of sensory information processing over time such 

that different sensory stimuli at different time points are no longer dis- 

tinguishable from one another. That, in turn, may lead to the loss of 

temporally-specific and -precise sensory-based responsiveness to the ex- 

ternal environment that is shared by all three states, e.g., sleep, anes- 

thesia, and UWS (but not the motor-deficient states like ALS and LIS). 

In addition to the ACW, we also measured the PLE and the PSD. 

Together, as expected ( Casali et al., 2013 ; Colombo et al., 2019 ; 

Demertzi et al., 2019 ; Huang et al., 2017 , 2016 , 2014 ; Lehembre et al., 

2012 ; Miskovic et al., 2019b ; Schiff et al., 2014 ; Siclari et al., 2018 ; 

Sitt et al., 2014 ; Tagliazucchi et al., 2016 , 2013a ; Tagliazucchi and van 

Someren, 2017 ; Zhang et al., 2018 ), our results show decreases in fast 

frequency power with a shift towards relatively stronger slow frequency 

power in both the PLE and the PSD in sleep, anesthesia, and UWS. In 

contrast, such a shift towards slower frequencies was not observed in 

ALS and LIS. 

Slow frequencies can be characterized by long cycle duration which 

distinguishes them from the shorter cycle duration of faster frequen- 

cies ( Buzsáki, 2006 ). The long cycle duration renders the slow frequen- 

cies ideal for integrating or lumping together different stimuli ( He and 

Raichle, 2009 ; Northoff, 2017 , 2014a , 2014b ). We therefore tentatively 

assume that the shift in power towards slower frequencies with their 

long cycle durations, as measured with PLE and PSD, in sleep, anes- 

thesia, and UWS, increases the capacity for temporal integration. Due 

to the concurrent decrease in the power of the faster frequencies, this 

would decrease temporal precision and segregation of sensory informa- 

tion processing. This would, in turn, result in a lack of sensory-based 

responsiveness including conditions such as N1-3 sleep, anesthesia, and 

UWS. However, to conclusively support these hypotheses, future studies 

may be needed. 

4.3. Limitations 

The brain’s intrinsic neural timescale is supposed to exhibit an intri- 

cate hierarchy with sensory regions showing shorter ACW and higher- 

order prefrontal regions revealing longer ACW ( Gollo et al., 2017 , 

2015 ; Honey et al., 2012 ; Kiebel et al., 2008 ; Murray et al., 2014 ; 

Stephens et al., 2013 ). However, our topographical maps did not re- 

veal the specific location of the ACW changes, thus, it was not possible 

to explore the spatial topography of the intrinsic neural timescale. 

We only included participants suffering from reduced or loss of con- 

sciousness. This leaves open the possibility that future studies might as- 

sess ACW in participants with so-called ‘expanded consciousness’, e.g., 

during drug-induced psychosis with LSD, psilocybin, mescaline or oth- 

ers ( Atasoy et al., 2018 ; Carhart-Harris, 2018 ; Muthukumaraswamy and 

Liley, 2018 ). Moreover, the findings show that the power of faster EEG 

frequencies is relatively increased in these states while, at the same time, 

slow frequency power (in absolute terms) is preserved ( Atasoy et al., 
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2018 ). One would consequently expect shorter duration of ACW (as its 

length is then driven mainly by the faster than the slower frequencies) 

and lower PLE (as the increased power in the faster frequencies lowers 

the PLE) in extended consciousness conditions. In addition, the robust- 

ness of these findings would be enhanced by extending the analysis with 

dynamic approaches, which would reinforce the findings of the current 

study. This possibility remains to be investigated. 

It is important to note that our different groups are characterized by 

differences other than sensory vs. motor loss, which was the focus of the 

current investigation. Therefore, we cannot exclude the possibility that 

the observed differences between anesthesia/UWS/sleep and ALS/LIS 

in terms of the ACW, PLE and PSD are due to factors other than the 

difference between loss of sensory or motor function. However, it is 

worth mentioning that the converging evidence from these independent 

groups and conditions suggest that the intrinsic neural timescale varies 

in a meaningful way, despite the underlying cause of the conditions, and 

how they present themselves. To the best of our knowledge, the different 

datasets analyzed here do not vary systematically in some other way that 

might easily explain the pattern of results. 

Due to the diversity of participants and conditions in this study, EEG 

recordings were acquired using different equipment, which involves 

a different spatial resolution or sampling frequency depending on the 

dataset. For that reason, different pre-processing procedures were ap- 

plied according to the necessities of each condition. Although one can 

consider it a drawback, the fact of obtaining consistent findings in all the 

databases increase the robustness, and generalizability of our results. 

Finally, we did not go into details about the results in REM-sleep 

where differences in ACW and PLE were less pronounced and more 

wake-like. This is consistent with the neurophysiology the neurochem- 

istry and cognitive state of REM sleep, which is paradoxically wake- 

like ( Houldin et al., 2019 ) in the sense that the EEG resembles that 

of wake (e.g., high frequency, desynchronized, low amplitude EEG), 

acetylcholine is high, and, as in wake states vivid mentation charac- 

terizes dream content ( Siegel, 2011 ). This suggests that indeed, even 

within healthy and normal diurnal variations in behavioral states, the 

temporal dynamics, e.g., ACW, PLE, and PSD, of the brain at rest can 

be modulated in different degrees on a continuum including a variety 

of different dynamic states (see also Northoff et al., 2019 ; Northoff and 

Tumati, 2019 ). 

5. Conclusions 

Taken together, extending recent findings on temporal receptive 

windows (TRW) during task-evoked activity, we show that the intrin- 

sic neural timescales of the brain’s spontaneous activity are associated 

with temporal integration (or segregation) of specifically sensory rather 

than motor information processing. How the intrinsic neural timescales 

of the brain’s spontaneous activity including how the relationship to 

sensory information processing stands in relation to the sensory-based 

TRW during task-evoked activity remains unclear though. Future stud- 

ies are thus warranted combining both resting and task states during the 

investigation of intrinsic neural timescales. 
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