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Abstract 

Bayesian models are developed to calibrate the accuracies of high-resolution in-line 

inspection (ILI) tools for sizing metal-loss corrosion defects and to characterize the 

growth of individual defects on energy pipelines.  Moreover, a methodology is proposed 

to evaluate the time-dependent system reliability of a segment of a pressurized pipeline 

containing multiple active corrosion defects.  The calibration of ILI tools is carried out by 

comparing the field-measured depths and ILI-reported depths for a set of static defects.  

The measurement error associated with the field-measuring tool is found to be negligibly 

small; therefore, the field-measured depth is assumed to equal the actual depth of the 

defect.  The depth of a corrosion defect reported by an ILI tool is assumed to be a linear 

function of the corresponding field-measured depth subjected to a random scattering 

error.  The probabilistic characteristics of the intercept and slope in the linear function, 

i.e. the constant and non-constant biases of the measurement error, as well as the standard 

deviation of the random scattering error are then quantified using the Bayesian 

methodology.  The proposed methodology is able to calibrate the accuracies of multiple 

ILI tools simultaneously and quantify the potential correlations between the random 

scattering errors associated with different ILI tools. 

The corrosion growth model is developed in a hierarchical Bayesian framework.  The 

depth of the corrosion defects is assumed to be a power-law function of time 

characterized by two power-law coefficients and the corrosion initiation time, and the 

probabilistic characteristics of the parameters involved in the growth model are evaluated 

using Markov Chain Monte Carlo (MCMC) simulation technique based on ILI data 
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collected at different times for a given pipeline.  The model accounts for the constant and 

non-constant biases and random scattering errors of the ILI data, as well as the potential 

correlation between the random scattering errors associated with different ILI tools.  The 

model is validated by comparing the predicted depths with the field-measured depths of 

two sets of external corrosion defects identified on two in-service natural gas pipelines. 

A simulation-based methodology is proposed to evaluate the time-dependent system 

reliability of a segment of a pressurized pipeline containing multiple active metal-loss 

corrosion defects.  The methodology considers three distinctive failure modes, namely 

small leak, large leak and rupture, and incorporates the hierarchical Bayesian power-law 

growth model for the depth of individual corrosion defect.  Both the conventional Monte 

Carlo simulation and MCMC simulation techniques are employed in the methodology to 

evaluate the failure probability.  The methodology is illustrated using a joint of an 

underground natural gas pipeline that is currently in service. 

 

Keywords: Metal-loss corrosion, pipeline, ILI, growth model, measurement error, 

Bayesian updating, MCMC and reliability. 
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Chapter 1  Introduction 

1.1 Background  

Pipelines are transport large quantities of hydrocarbons (e.g. crude oil and natural 

gas) from the production sites to the end users. Compared with other means of 

transporting hydrocarbons such as rail cars and tanker trucks, pipelines are safer, more 

efficient and cost-effective (PHMSA 2012).  There are about 500,000 km of transmission 

pipelines that carry natural gas, oil, and other hazardous liquids across the United States 

(Parfomak 2011).  According to the Canadian Energy Pipeline Association, there are 

more than 100,000 km of oil and gas transmission pipelines in Canada.  In 2010, the 

71,000 km long pipelines regulated by the National Energy Board (NEB) of Canada 

shipped about $85.5 billion worth of hydrocarbons at an estimated transportation cost of 

only $5.5 billion ( NEB 2010).  

As pipelines age the protective coatings on the pipelines have the potential to lose 

their effectiveness and therefore leave the pipelines vulnerable to corrosion (Benmoussa 

et al. 2006; Jeglic 2004).  In fact, corrosion is one of the most common contributors to the 

failure of transmission pipelines in North America and Western Europe (Bolt and Owen 

1999; Eiber et al. 1995; PHMSA 2012).  A comparative study of pipeline performance 

reported by NEB (2008) indicates that about 63% of pipeline ruptures (the most severe 

pipeline failure mode) that had occurred between 1991 and 2006 on the NEB-regulated 

pipelines in Canada were due to corrosion (metal loss and stress corrosion cracking, as 

defined by CSA Z662-07).  The data collected by the Pipeline and Hazardous Materials 
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Safety Administration (PHMSA) of the United States Department of Transportation 

(DOT) show that approximately 25% of pipeline ruptures were caused by corrosion 

during this time span in the US.  The PHMSA database (PHMSA 2012) indicates that 

corrosion was the cause for a total of 166 significant incidents
1
 on the onshore gas 

pipelines in the US between 1992 and 2011; these incidents resulted in 13 fatalities, 4 

injuries and a total property loss of worth about $115 million (in 2011 US $).  

Corrosion is an electro-chemical process that is caused by the chemical interaction 

between metal and its surrounding environment, and results in degradation of metal 

(Davis 2000; Peabody 2001).  The corrosion process involves the combination of 

oxidation and reduction reactions, referred to as the Redox reaction.  The coupled action 

of losing electrons (oxidation) by the metal and consuming those electrons (reduction) by 

the oxidant such as oxygen is key for corrosion to occur.  The typical oxidation and 

reduction reactions for steel are shown in Eqs. (1.1) and (1.2), respectively. 

              (1.1) 

                 (1.2) 

 

                                                 

 

1
 A significant incident is defined by DOT as an incident that causes one or more of the following: 1) 

fatalities or injuries requiring hospitalization the patient; 2) property damage exceeding a certain monetary 

threshold; 3) product loss exceeding a certain amount and 4) release of product resulting in fire or 

explosion. 
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The mechanism of general corrosion is schematically shown in Fig. 1.1.  As shown in 

the figure, the essential conditions for corrosion to take place are 1) existence of an anode 

and a cathode; 2) metallic connection between the anode and cathode (i.e. the electrode), 

and 3) immersion of anode and cathode in an electrically conducive medium (i.e. the 

electrolyte).  The anode, cathode, electrode and electrolyte are all contained in the so-

called corrosion cell. 

 

Figure 1.1 Schematic of a general corrosion process 

 

In case of underground pipelines, the anode and cathode in the corrosion cell can 

form at different locations on the same pipeline due to the differences in metal grain 

composition, milling imperfections, scratches, threads, etc (Beavers and Thompson 

2006).  The pipeline itself acts as the electrode, whereas the surrounding soil works as the 

electrolyte.  The difference in the soil resistivity, oxygen concentration, moisture content 

2e-anode cathode

electrolyte

Fe++

electrode
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and various ion concentrations favors the flow of free electrons.  Once corrosion starts to 

occur, the anode portion of the pipe will corrode, resulting in metal loss and thinning of 

the pipe wall.  The mechanism of corrosion on a pipeline is illustrated in Fig. 1.2.  An 

entire corrosion cell can occur within a drop of water.  Therefore, hundreds of corrosion 

defects can appear within a small portion of a pipeline.  Figure 1.3 shows corrosion on an 

underground steel pipeline. 

 

Figure 1.2 Corrosion mechanism on an underground metallic pipeline (Beavers and 

Thompson 2006) 

 

 

Figure 1.3 Example of corrosion on a steel pipeline 

anode cathode

e-

Oxygen-rich soilOxygen-deficient soil
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In-line inspection (ILI) tools, also known as “smart pigs”, are widely used to detect, 

locate and size corrosion anomalies on pipelines (Caleyo et al. 2007; Desjardins 2001; 

Nessim et al. 2008).  There are mainly two types of ILI tools, namely the magnetic flux 

leakage (MFL) and ultrasonic (UT) tools.  The MFL tools are commonly used to inspect 

gas pipelines, whereas UT tools are used in liquid pipelines.  A typical high resolution 

MFL tool is shown in Fig. 1.4.  Because the inspection data available to this study all 

come from MFL tools, the underlying mechanisms of the MFL tool are briefly described 

in the following.  

During an in-line inspection, an MFL tool is propelled by the product in the pipeline 

and produces a magnetic flux in the pipe wall using a strong permanent magnet or direct 

current electromagnet.  The presence of a corrosion defect causes the distortion of the 

flux field, i.e. the so-called leakage, which is detected by the circumferential array of the 

MFL detectors.  Once a defect is identified, the leakage signal and position (longitudinal 

and circumferential) of the signal on the pipeline are recorded and stored in the data 

recording device of the tool.  High-resolution MFL tools (commonly used nowadays) can 

differentiate between corrosion defects located on the external and internal surfaces of the 

pipe wall.  The mechanism of detecting a corrosion defects on pipeline by a typical MFL 

tool is depicted in Fig. 1.5, which is reproduced from Clapham et al. (2004).   
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Figure 1.4 A typical in-line inspection tool 

 

 

Figure 1.5 Sensor configuration of an MFL tool (Clapham et al. 2004) 

 

The leakage signal obtained from the ILI tool represents the volumetric metal loss of 

the pipe wall.  These signals are then converted into the defect geometry, i.e. depth (in the 

through pipe wall thickness direction), length (in the pipeline’s longitudinal direction) 

and width (in the pipeline’s circumferential direction), using the sizing algorithm of that 

particular tool.  The sizing algorithm is usually developed based on the so-called pull 

through test (Race et al. 2007; Sutherland et al. 2010), where a section of pipeline with 

pre-generated defects of several depth, length and width ranges are tested by the ILI tool.  

Sensor
Mount

Back Iron Mounting Plate

Motion

Pit
Pipe Wall

Magnet Magnet

Steel 

Brushes

Steel 

Brushes
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The signals obtained from the tool are calibrated against the known depths, lengths and 

widths of the defects to develop a sizing model.  From the results of the pull through test, 

ILI vendors can also quantify the tool accuracy.  The accuracy of an ILI tool is 

commonly specified as a two-sided confidence interval, e.g. the measured defect depth is 

accurate within ±10% wall thickness (wt) with a confidence level of 80%. 

Pipeline operators develop and implement comprehensive integrity management 

programs to ensure the safe operation of pipelines.  The pipeline integrity management 

with respect to corrosion typically consists of in-line inspection, defect assessment and 

mitigation (Kishawy and Gabbar 2010).  Characterization of the growth of corrosion 

defects plays a crucial role in the pipeline integrity management.  The corrosion growth 

rate is essential to the forecast of the failure probability of the pipelines, determination of 

the inspection interval and prioritization of defect mitigation and repair.  On one hand, 

overly conservative estimates of the corrosion growth rates lead to too frequent 

inspections and unnecessary excavations and repairs, making the integrity management 

program costly.  On the other hand, under-estimation of the corrosion growth may leave 

critical defects unmitigated and result in failure of the pipeline.  

As more and more pipelines are now being inspected by ILI tools on a regular basis, 

the ILI data from multiple inspections naturally provide valuable information about the 

growth of corrosion defects on the pipeline.  Therefore, there is a pressing need in the 

pipeline industry for developing models to predict the growth of corrosion defects based 

on repeated in-line inspections data (Kariyawasam and Peterson 2010).  This is the main 

drive for the present study. 
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1.2 Objective and Research Significance 

The study reported in this thesis is a part of a Collaborative Research and 

Development (CRD) program jointly funded by the Natural Sciences and Engineering 

Research Council (NSERC) of Canada and TransCanada Pipelines Limited.  The 

objectives of the study were 1) to develop a probabilistic model to characterize the 

growth of the depths of individual metal-loss corrosion defects on energy pipelines based 

on data collected from multiple ILIs; and 2) to incorporate the developed corrosion 

growth model in the reliability analysis to evaluate the failure probability of the pipeline 

due to corrosion.  The study was focused on the growth of the depth of metal-loss 

corrosion defects; the growth of length of metal-loss corrosion defects or growth of other 

types of corrosion defects (e.g. stress corrosion cracking) was not considered. 

The growth model developed in this study accounts for both systematic and random 

measurement errors associated with ILI tools, and is specific to individual corrosion 

defects.  The model will assist pipeline integrity engineers in making informed decisions 

about re-inspection interval and defect mitigation plan that satisfy both the safety and 

resource constraints.  The proposed reliability analysis method provides a framework to 

incorporate the growth model in the pipeline corrosion reliability analysis, which will 

facilitate reliability- and risk- based pipeline integrity management.  

1.3 Scope of the Study 

This study consists of three main components that are presented in Chapters 2, 3 and 

4, respectively.  Chapter 2 describes a Bayesian model to calibrate the ILI tools, i.e. 

quantifying the measurement errors of the ILI tool, based on ILI-reported and field-
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measured depths for the static defects on the pipeline.  The application of the proposed 

model was demonstrated using the static defects on two subject pipelines currently in 

service in Alberta. 

In Chapter 3, a hierarchical Bayesian corrosion growth model is presented to 

characterize the growth of the depth of individual corrosion defects based on ILI data 

from multiple inspections.  This model takes into account the measurement errors (i.e. 

bias and random scattering error) associated with the ILI tools and also the potential 

correlation between the random scattering errors among different ILI tools.  The Markov 

Chain Monte Carlo (MCMC) simulation technique was employed to evaluate the 

posterior distributions of the parameters of the growth model.  Two sets of active 

corrosion defects detected on the two subject pipelines considered in Chapter 2 were used 

to illustrate and validate the proposed growth model.  

Chapter 4 presents a methodology that can be used to evaluate the time-dependent 

system reliability of a segment of onshore natural gas pipeline containing active corrosion 

defects considering three distinctive failure modes, namely small leak, large leak and 

rupture.  The hierarchical corrosion growth model described in Chapter 3 was 

incorporated in the reliability analysis to predict the depth of the corrosion defect at a 

given time.  The failure probability is evaluated using random samples generated from 

both the simple Monte Carlo simulation and MCMC simulation.  The methodology is 

illustrated using a pipe joint in one of the subject pipelines. 
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1.4 Thesis Format 

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, Canada.  The first chapter, 

Chapter 1, is the introductory section of the entire thesis with its own bibliography.  The 

main body of the thesis contains three chapters, Chapters 2, 3 and 4.  Each of these 

chapters is presented as a stand-alone manuscript without any abstract, but with its own 

references.  The final chapter, Chapter 5, includes a summary of the study, main 

conclusion of the thesis and recommendations for future work. 

The tabulated data, mathematical derivations and programming codes are provided in 

the appendices following the last chapter.  An identification that consists of a number and 

a letter is given to each appendix.  The identification number and letter of each appendix 

represent the associated chapter and the sequence of appearance of the appendix in that 

chapter, respectively.  For instance, Appendix 2A is the first appendix associated with 

Chapter 2. 
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Chapter 2  Bayesian Model for Calibration of ILI Tools  

2.1 Introduction 

Over the last few decades, the in-line inspection (ILI) technology has been widely 

used to identify, locate and size corrosion defects on pipelines.  Despite the enormous 

advancement in the ILI technology, ILI data are subjected to measurement errors 

resulting from imperfections in the ILI tool and associated sizing algorithm (Fenyvesi and 

Dumalski 2005; Nessim et al. 2008).  The measurement error includes the systematic 

error, i.e. the constant and non-constant bias of the ILI data (Caleyo et al. 2007), and 

random scattering error (i.e. repeatability error) of the data (Coleman and Miller 2010; 

Spencer et al. 2010).  Moreover, the corrosion growth rate calculated from multiple ILI 

runs involve additional measurement errors due to differences in the magnetic strength of 

different ILI tools, change of the defect sizing algorithm and differences in the sizing 

model for defects, i.e. box or cluster, between inspections (Fenyvesi and Dumalski 2005).  

The in-line inspection data can be used to quantify the growths of the depths of 

corrosion defects on pipelines, which is considered one of the most critical tasks for 

pipeline corrosion management.  It is critically important to account for the measurement 

error of the ILI data in determining the corrosion growth rate on pipelines (Bhatia et al. 

1998).  Although the measurement error can be inferred from the specifications of the ILI 

tool, it is more appropriate to evaluate the de-facto measurement error of the ILI data for 

a specific pipeline.  Such an analysis is referred to as calibration of the ILI tool.  

Knowledge of the de-facto measurement error will also help the ILI vendors to improve 
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the measurement technology and sizing algorithm for corrosion defects on a given 

pipeline. 

The measurement errors of the ILI data reported by a given ILI tool are typically 

evaluated by comparing the field-measured and ILI-reported depths for a set of corrosion 

defects.  The field-measured depths are obtained from the dig sites using field-measuring 

instruments, such as the pit gauge, ultrasonic thickness (UT) measuring device and the 

laser profilometer.  Bhatia et al. (1998) used the well-established Grubbs (Grubbs 1948) 

and Jaech (Jaech 1985) estimators to quantify the measurement errors associated with the 

ILI tool and the field-measuring instrument, and found that Grubbs’ method sometimes 

result in negative values for the variance of the measurement error, which is unrealistic.  

Jaech’s method can overcome such a drawback in Grubbs’ method and ensures that the 

variance of the measurement error to be positive.  Furthermore, both Grubbs’ method and 

Jaech’s method assume that the measurement is unbiased; that is, the measurement error 

only includes the random scattering error.  This assumption may be unrealistic for ILI 

tools.  

Caleyo et al. (2007) developed a statistical method to calibrate the ILI tools using the 

ILI-reported data and corresponding field measurements.  The so-called V-Wald and V-

Jaech methods were introduced to quantify the bias of the ILI data and variances of the 

scattering errors of both the ILI data and field measurements, respectively.  However, the 

potential correlations between the measurement errors associated with different ILI tools 

that are based on the same inspection technology (e.g. MFL) and used to inspect the same 

pipeline at different times cannot be evaluated from their reported model. 
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The objective of the study reported in this chapter was to develop a model to calibrate 

the ILI tool and quantify the measurement error, including the constant and non-constant 

bias as well as the random scattering error, of the ILI data.  The potential correlations 

between the scattering errors associated with different ILI tools were also considered in 

the proposed model.  The calibration was carried out using the Bayesian methodology 

based on comparing the ILI data with the corresponding field measurements.  

This chapter is organized as follows.  Section 2.2 describes the statistical 

methodologies (i.e. Bayesian method and Markov Chain Monte Carlo simulation) 

employed in this study to calibrate the ILI tools.  The basic assumptions associated with 

the calibration model are presented in Section 2.3.  Section 2.4 describes the 

measurement errors associated with the field-measuring devices.  Section 2.5 includes the 

Bayesian formulation of the calibration model as well as the prior distributions for the 

parameters of the calibration model.  Section 2.6 illustrates the application of the 

calibration model in two case studies that involve real ILI and field measurement data on 

two pipelines currently in service.  The conclusions of the chapter are summarized in 

Section 2.7. 
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2.2 Bayesian Methodology 

2.2.1 Basic Formulation 

The Bayesian approach is an advanced tool to fit a probability model to a set of 

observations by evaluating the unknown parameters of the model in a probabilistic way 

(Gelman 2004).  The Bayesian method treats the unknown parameters of a physical 

process as random variables rather than as deterministic values.  It incorporates the prior 

knowledge about the parameters, which may arise from the results of previous studies or 

experience.  The prior knowledge is then updated based on the observed data to obtain 

the revised opinion about the parameters.  The updated belief can be further considered as 

the prior distribution for future updating when new data are available.  Therefore through 

this iterative process the uncertainty in the parameters is minimized. 

Given a set of n observations, X = (x1, x2, …, xn), and a collection of k unknown 

parameters, θk) that characterize the physical process underlying the 

observed data, one can specify the Bayesian model for the parameters.  The objective of 

the Bayesian analysis is to find the updated opinion about the unknown parameters θ 

based on Bayes’ theorem given by (Bayes and Price 1763) 

       
            

    
     (2.1) 

where p() denotes the probability density function of .  Here p(θ),which is called the 

prior distribution of the parameters, characterizes the belief regarding the unknown 

parameters θ prior to any modeling.  The information contained in the data is introduced 

via the so-called likelihood for the data, p(X|θ), which is the value of the probability 
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density function associated with the data conditional on the parameters θ.  The entity 

p(θ|X) is known as the posterior distribution, which reflects the combined information 

from the data and prior distribution.  The quantity p(X) is a normalizing constant that 

ensures the left hand side of Eq. (2.1) to be a probability distribution; that is, p(θ|X) 

integrates to unity, and p(X) is known as the marginal likelihood and can be obtained by 

integrating the numerator on the right hand side of Eq. (2.1) with respect to the unknown 

parameters θ.  Thus, 

                   (2.2) 

Taking into consideration the normalizing constant, one can write Eq. (2.1) as 

                     (2.3) 

where the symbol “ ” indicates proportionality. 

Consider an example to illustrate the Bayesian method.  Assume that y = (y1, y2, …, 

yn) represents a set of n data that follow a Poisson distribution with an unknown rate 

parameter .  Further assume that the prior distribution of follows a gamma distribution 

with known shape parameter and scale parameter .  Therefore, the likelihood and prior 

distribution can be written as, 

 ikelihood          
      

   

 

   

 
        

 
   

    
 
   

           

Prior distribution:      
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where () denotes the gamma function.  

The posterior distribution of  can be evaluated from Eq. (2.3) as follows:  

                      
        

 
   

    
 
   

  
  

    
                           (2.4) 

where    
 

 
   

 
    is the mean value of the observations.  Note that the terms that are 

independent of  (such as Γ() and ) in Eq. (2.4) are omitted in the last step because 

they are part of the proportionality constant.  Based on Eq. (2.4), it can be concluded that 

the posterior distribution of follows a gamma distribution with shape parameter and 

scale parameters equal to n  + and n+, respectively. 

2.2.2 Markov Chain Monte Carlo Simulation 

The main purpose of the Bayesian analysis is to evaluate the probabilistic 

characteristics (e.g. mean, variance and quantiles) of the posterior distribution of the 

unknown model parameters.  Therefore, it is necessary to obtain the marginal posterior 

distribution of each parameter.  The marginal distribution of a parameter i of the 

parameter vector , p(i|X), and the mean value of i, E(i|X), can be evaluated as 

follows: 

                        (2.5) 

                      (2.6) 

where  (-i) denotes the vector of ’s excluding i. 
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In some cases, closed-form solutions of the integrals in Eqs. (2.5) and (2.6) are 

available, or they can be easily computed using numerical methods.  But in most 

applications analytic or direct numerical evaluation of these integrals is very difficult, if 

not impossible, due to the complexity and high dimensionality of the Bayesian model.  To 

overcome this difficulty, the Markov Chain Monte Carlo (MCMC) simulation technique 

has been widely used in the Bayesian analysis (Gilks et al. 1996).  

MCMC works by sequentially generating random samples of uncertain parameters to 

form a Markov process whose stationary distribution is the joint posterior distribution of 

the parameters.  The difference between MCMC and the conventional Monte Carlo 

simulation is that the sample generated in a given sequence in MCMC depends on the 

sample generated in the previous sequence, whereas the samples generated in different 

trials of the conventional Monte Carlo simulation are independent.  

The MCMC simulation starts by assigning an arbitrary initial value to each of the 

parameters considered.  After an initial set of sequences, i.e. the so-called burn-in period, 

the subsequent sequences are considered to converge to the joint posterior distribution of 

the parameters.  The samples generated in different sequences in MCMC are typically 

autocorrelated.  To reduce the autocorrelation, the so-called “thinning” technique is 

employed, where only samples from every k
th

 (k > 1) iteration are stored for the output 

analysis (Congdon 2006; Link and Eaton 2012).  The generated sequences can be 

approximated as independent samples by choosing the thinning interval (also known as 

sampling lag) appropriately.  The samples generated after the burn-in period using a 

suitable thinning interval can be used to evaluate the probabilistic characteristics of the 
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joint posterior distribution or the marginal distribution of a given parameter, just like the 

conventional Monte Carlo simulation. 

There are several standard sampling algorithms to generate MCMC samples from the 

joint posterior distributions.  The most commonly used algorithms are the Metropolis-

Hastings algorithm and the Gibbs sampling.  These two algorithms are briefly described 

in Appendix 2A. 

2.3 Measurement Error Model for Corrosion Defects 

Consider that a set of corrosion defects on a given pipeline have been measured by 

multiple ILI tools and field-measuring instruments at different times.  The defect depths 

reported by the ILI tools and field-measuring instrument are assumed to be related to the 

actual depth as follows (Fuller 1987; Jaech 1985): 

                   (2.7a) 

              (2.7b) 

where dmij is the ILI-reported depth of the i
th

 defect obtained from the j
th

 inspection; j 

andjare the calibration parameters of the ILI tool employed in the j
th

 inspection, which 

characterize the bias of the tool (i.e. if j = 0 and j = 0 the tool is unbiased; if j ≠ 0 and 

j = 0 the tool has a constant bias, and if j ≠ 0 and j ≠ 0 the tool has both constant and 

non-constant bias); daij and dfij denote the actual and field-measured depths of the i
th

 

defect at the time of the j
th

 inspection, respectively;ij and ij represent the random 

scattering errors of the ILI-reported and field-measured depths of the i
th

 defect at the j
th
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inspection, respectively; and j, j, ij and ij are all uncertain.  The main assumptions of 

the measurement error model are as follows: 

 j (or j), j = 1, 2, …, are independent of each other; 

 the field measurement is unbiased and includes the random scattering error only 

(Bhatia et al. 1998; Caleyo et al. 2007); 

 ij has a mean value of zero; at a given inspection time j, ij are mutually 

independent for i = 1, 2, … ; for a given defect i, ij (j = 1, 2, …) are correlated 

(due to the fact that the ILI tools used at different times in general have the same 

underlying inspection technology such as MFL) and follow a multivariate normal 

distribution with a mean of zero and a covariance matrix of ; 

 ij are independent and identically distributed (iid) random variables for i, j = 1, 2, 

…, and follow a normal distribution with zero mean and variance of 
2
, and 

 ij and ij are independent (Bhatia et al. 1998; Morrison et al. 2000). 

In practice, an excavated pipeline segment will be fully recoated before being re-

buried; the recoating essentially arrests the growth of all the corrosion defects on the 

segment and makes it highly unlikely that the segment will be re-excavated for corrosion 

mitigation in the future.  This implies that 1) only one field measurement is usually 

available for a given defect and 2) the defect for which the field measurement is available 

will become static (or cease growing) after the field measurement.  Given this 

observation, Eq. (2.7) can be rewritten for a set of static defects as follows: 
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                  (2.8a) 

           (2.8b) 

where dai is the actual depth of the i
th 

static defect.  

2.4 Measurement Error of Field Measurement 

Consider that two different field-measuring tools are used to measure the depths of 

the same defects at the dig site.  Following Eq. (2.8b), we have 

             (2.9a) 

             (2.9b) 

where i1 and i2 are the measurement errors associated with the two field-measuring 

tools, respectively.  Further assume that i1 and i2 are normally distributed random 

variables with zero means and variances of 
2
 and 

2
, respectively.  The parameters 


2
 and 

2
 can be evaluated using Grubbs’ or Jaech’s method (Fuller 1987; Jaech 

1985).  The procedures of estimating the measurement error variances using Grubbs’ and 

Jaech’s method are outlined in Appendix 2B. 

McNealy et al. (2010) calibrated various field instruments, such as laser scanner and 

ultrasonic thickness device, that are commonly used to measure the depth of the corrosion 

defect at dig sites.  The standard deviations of the measurement errors associated with the 

laser scanner and ultrasonic pen probe were reported to be 0.94% and 1.56% wall 

thickness (wt), respectively, for a pipeline with a wall thickness of 6.35 mm (0.25 inch).  



23 

 

In the present work, a similar study was conducted to evaluate the measurement errors 

associated with a laser scanner and an ultrasonic thickness device based on the measured 

depths of 80 corrosion defects on a natural gas pipeline located in Alberta, Canada.  

Using Jaech’s method (Jaech 1985), it was found that the standard deviations of the 

measurement errors associated with the laser scanner and UT device are 1.01%wt and 

0.92%wt, respectively.  The unity plot for the UT and laser scanner is shown in Fig. 2.1.  

These findings suggest that the measurement errors associated with the field-measuring 

tools are sufficiently small to be ignored in calibrating the ILI tools.  Therefore, Eq. 

(2.8a) becomes 

                  (2.10) 

 

 

Figure 2.1 Comparison of defect depths measured by laser scan technology and UT 
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2.5 Bayesian Calibration Model for ILI Tools  

2.5.1 Formulation and the Likelihood Function  

Consider that the depths of m static defects, dfi (i = 1, 2, …, m), have been obtained 

through field measurement.  The depths of these defects are further measured by ILI tools 

at n different inspections carried out after the field measurement (i.e. j = 1, 2, … n).  Let 

dmi denote (dmi1, dmi2, …, dmin)
T
 for given dfi , where “T” represents transposition.  It 

follows from the description in Section 2.4 that dmi follows a multi-normal distribution 

with a mean vector of i  = +dfi and a covariance matrix of , where  = (1, 2, …, 

n)
T
,  = (1, 2, …, n)

T
, and  is an n × n matrix.  The elements of are denoted by 

klkl for k, l =1, 2, …, n, where kl represents the correlation between the scattering 

errors associated with the ILI tools used in the k
th

 and l
th

 inspections; if k = l, kl = 1 and 

klkl then equals k
2
, which is the variance of the scattering error of the ILI tool used in 

the k
th

 inspection.  It is assumed that dmi (i = 1, 2, …, m) are mutually independent given 

dfi, ,  and ; in other words, the order of measurements is of no significance and 

exchangeability (Bernardo and Smith 2007) is considered appropriate.  The distribution 

function for dmi can be written as, 

    
   
 

           , i = 1, 2, …, m (2.11a) 

           (2.11b) 

where “~” indicates the assignment of a probability distribution to a given random 

variable; “ind” denotes independency between dmi and dmk (for i  k), and MVN (i, ) 

denotes a multivariate normal distribution with a mean vector of i and a covariance 
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matrix of .  Note that Eq. (2.11a) defines the likelihood function for dmi given dfi, ,  

and . 

2.5.2 Prior Distributions  

The constant biases associated with the ILI tools, i.e. j (j = 1, 2, …, n), can be 

positive or negative.  For this reason, the normal distribution was considered appropriate 

as the prior distribution for j.  On the other hand, the non-constant biases, j, is 

considered positive for the ILI tools.  Therefore, the Beta distribution was adopted as the 

prior distribution for j.  It is also assumed that the biases for different ILI tools are 

independent and identically distributed (iid).  Given the above, the prior distributions for 

j and j are specified as follows: 

           
   
 

          (2.12) 

          
   
 

              (2.13) 

where N (a, b
2
) denotes a normal distribution with a mean value of a and a variance of b

2
; 

Be (c, d, l, u) denotes a Beta distribution with shape parameters c and d, a mean value of 

     

   
 , a variance of 

        

             
 , a lower bound of l and an upper bound of u. 

The gamma distribution is widely used as the prior distribution of the inverse of the 

(uncertain) variance of a univariate random variable, because the gamma distribution is 

defined for positive values only and can be conveniently set to be non-informative 

(Congdon 2010; Gelman 2004).  Note that the inverse of the variance of a distribution is 
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also known as the precision parameter in the literature (Lunn et al. 2009).  The 

multivariate generalization of the gamma distribution, known as the Wishart distribution 

(Wishart 1928), is the most commonly used prior distribution for the inverse of a 

covariance matrix.  Therefore, the prior distribution for  was assigned as follows: 

  
           (2.14)  

where W (R, k) denotes the Wishart distribution with a scale matrix parameter R (n × n) 

and a degree-of-freedom parameter k (k  n).  The parameter k is typically chosen as 

small as possible (i.e. n or the rank of R) to represent non-informative prior knowledge 

for the Wishart distribution (Lunn et al. 2009; O'Hagan et al. 2001). 

In Eqs. (2.12) through (2.14), the quantities a, b, c, d, l, u, R and k are called the 

hyper-parameters of the Bayesian model and were assumed to be known in this study.  

Given dfi and dmi (i = 1, 2, …, m), the full conditional posterior distributions for j, j ( j 

= 1, 2, …, n) and  that are used to generate the MCMC samples were derived and are 

given in Appendix 2C.  Given the MCMC samples, statistical inference (e.g. mean and 

standard deviation) can be made for each of the parameters.  The mean values of the 

elements of the covariance matrix  can be used to evaluate the correlation coefficients 

among the scattering errors associated with the ILI tools.  The correlation coefficient kl 

between the k
th

 and l
th

 tool is estimated as 

    
          

                      
 (2.15) 
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where E() represents the mean or expectation, and Z [x, y] indicates the element of 

matrix Z with the row index x and the column index y.   

2.6 Case Study 

2.6.1 General 

Two case studies, involving real ILI data and field measurements for corrosion 

defects on two subject pipelines, were carried out to demonstrate the calibration model 

presented in the previous section.  Each pipeline was inspected multiple times by high 

resolution Magnetic Flux Leakage (MFL) tools.  A set of defects that were excavated and 

recoated were identified on each pipeline, and then manually matched with the 

corresponding defects identified by in-line inspections conducted after the recoating.  An 

example of the defect matching is shown in Fig. 2.2.  The matching was done based on 

the relative distance and clock position of the defects on the pipeline provided in the ILI 

report. The clock position of the defects on the pipeline is illustrated at the right top 

corner of Fig. 2.2.  The field-measured and ILI-reported depths that were found to be 

matched were employed in the analysis.  A Bayesian updating software called 

OpenBUGS (Version 3.2.1) (Lunn et al. 2009) was used to make statistical inferences of 

the parameters (i.e. j, j and ) in the calibration model for each ILI tool based on the 

matched dataset and the Bayesian formulations given by Eqs. (2.11) through (2.14). 
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Figure 2.2 Manual matching of defects on a selected pipe joint 

2.6.2 Case 1  

A 137 km long natural gas pipeline was inspected by high-resolution MFL tools in 

2000, 2004, 2007, 2009 and 2011.  These inspections were conducted by two different 

vendors.  The ILI tools used in 2000, 2004 and 2011 are from Vendor A, whereas the ILI 

tools used in 2007 and 2009 are from Vendor B.  The defects that were excavated and 

recoated prior to the 2004 ILI were employed to calibrate the ILI tools used in 2004, 

2007, 2009 and 2011.  The ILI tool of 2000 was not calibrated because the defects that 

were field-measured and recoated prior to the inspection in 2000 were not available to the 

present study.  It is assumed that the recoated defects become static immediately after 

recoating and remain static thereafter.  A total of 128 recoated defects were manually 

compared with the defect listings reported by the 2004, 2007, 2009 and 2011 ILIs to 

identify the defects in each ILI that match the recoated defects.  
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The mean and standard deviation (i.e. a and b) of the prior distribution of the constant 

biases (i.e. 1, 2, …, n) were set to be 0%wt and 100%wt, respectively, to represent 

non-informative prior knowledge about 1, 2, …, n.  Previous studies reported in the 

literature (Fuller 1987) indicated that the non-constant biases (i.e. 1, 2, …, n) of the 

calibration model given by Eq. (2.11) are generally less than 2.  Therefore, the lower 

bound l and the upper bound u in Eq. (2.13) were set equal to 0 and 2, respectively.  The 

shape parameters c and d were both assigned a value of 5, which makes the prior 

distribution symmetric about the mean value of unity.  A non-informative prior 

distribution was assigned to 
-1

: the degree of freedom parameter k in Eq. (2.14) was 

chosen to be the smallest possible value, 4 (i.e. the total number of inspections) (Lunn et 

al. 2009), and the scale parameter matrix R was specified as a 4 × 4 diagonal matrix with 

all the diagonal elements having a value of 0.001((%wt)
-2

) (Have and Uttal 1994; Lunn et 

al. 2009).  The OpenBUGS code developed for the analysis is included in Appendix 2D. 

To check for the convergence of the samples toward the target distributions, two 

distinct MCMC chains with different sets of initial values were run.  A total of 25,000 

iterations were performed for each of the chains.  A thinning interval of 5 was used to 

reduce the autocorrelation in the generated samples.  The trace plots (i.e. plot of iterations 

versus the generated values) of j, j and three elements of  are shown in Figs. 2.3 

through 2.5, respectively.  As shown in these figures, the samples in both chains mix well 

and move along a steady line without any increasing or decreasing tendencies except at 

the very beginning of the simulation.  This indicates a very good convergence of the 

samples toward the posterior distributions.  A burn-in period of 5000 was considered for 

each chain.  The samples generated after the burn-in period were used to evaluate the 
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posterior distributions.  The marginal posterior distribution plots as obtained from the 

OpenBUGS software for j and j (j = 1, 2, 3 and 4) are shown in Figs. 2.6 and 2.7, 

respectively. 

 

 

 

 

Figure 2.3 Trace plots of 1, 2, 3, and 4 
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Figure 2.4 Trace plots of 1, 2, 3, and 4 
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Figure 2.5 Trace plots of 11, 12 and 22 
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Figure 2.6 Marginal posterior distributions of 1, 2, 3, and 4 

 

   

     

Figure 2.7 Marginal posterior distributions of 1, 2, 3, and 4 
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The mean values of the marginal posterior distributions of the parameters are shown 

in Table 2.1, where , ,  and denote the standard deviations of the scattering 

errors associated with the ILI tools in 2004, 2007, 2009 and 2011, respectively.  The 

results in Table 2.1 suggest that the 2004 ILI tool is the most accurate among the four ILI 

tools considered because the mean values of  and  are closer to zero and unity 

respectively than those of the other tools, and because the mean value of  is the second 

lowest of , ,  and, and in fact only slightly higher than the lowest value, .On 

the other hand, the 2007 and 2009 ILI tools are associated with relatively large 

measurement errors because the mean values of and are markedly different from 

zero and because the mean values of  and  are the largest of all four tools. 

The estimated mean values of the correlation coefficients (i.e. kl as defined in the 

model) between the scattering errors associated with the four ILI tools are summarized in 

Table 2.2.  These values suggest that the scattering errors associated with different ILI 

tools are relatively highly correlated.  The correlation coefficients are all greater than or 

equal to 0.70, even in the case where the corresponding ILI tools are from different 

vendors.  Note that the correlation coefficients between the 2007 and 2009 tools (23 = 

0.78) and between the 2004 and 2011 tools (14 = 0.82), are higher than the other 

correlation coefficients.  This is expected because the 2007 and 2009 tools are both from 

the same vendor (Vendor B), and the 2004 and 2011 are also from the same vendor 

(Vendor A). 
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Table 2.1 Mean values of the parameters in the calibration models for ILI tools used in 

Case 1 

ILI 2004  

(Vendor A) 

ILI 2007 

(Vendor B) 

ILI 2009 

(Vendor B) 

ILI 2011 

(Vendor A) 

1  

(%wt) 
1  

1  

(%wt) 

2  

(%wt) 
2  

2  

(%wt) 

3  

(%wt) 
3  

3  

(%wt) 

4  

(%wt) 
4  

4  

(%wt) 

2.04 0.97 5.97 -15.28 1.40 9.05 -10.38 1.13 7.62 4.84 0.84 5.94 

 

Table 2.2 Mean values of the correlation coefficients (kl) between the random scattering 

errors for different ILI tools used in Case 1 

 
ILI 2007 

(Vendor B) 

ILI 2009 

(Vendor B) 

ILI 2011 

(Vendor A) 

ILI 2004  

(Vendor A) 
12 = 0.70 13 = 0.72 14 = 0.82 

ILI 2007 

(Vendor B) 
- 23 = 0.78 24 = 0.71 

ILI 2009 

(Vendor B) 
- - 34 = 0.74 

 

To visualize the measurement errors associated with the four ILI tools, the depths 

reported by the ILI tools are compared with the field-measured depths of the 128 recoated 

defects in Figs. 2.8(a) through 2.8(d).  Also shown in these figures are the unity line (i.e. 

1:1 line), the bounds representing the field-measured depth ±10% wall thickness (wt), 

which are often used by the vendor as the confidence bounds for the tool accuracy, and 

the calibration line characterized by dmij =     +   j dfi for each of the tools, where     and 

  j denote the mean values of j and j respectively obtained from the Bayesian analysis.  

Figure 2.8(a) and Fig. 2.8(d) indicate that the measurement errors associated with 2004 

and 2011 ILI tools are relatively small and most of the ILI-reported defect depths fall 
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within the vendor’s claimed confidence bounds.  On the other hand, Fig. 2.8(b) and Fig. 

2.8(c) show that both the 2007 and 2009 ILI tools tend to undersize shallow defects (say, 

defects with depths less than 30%wt) and oversize deep defects (say, depths greater than 

40%wt).  

 

a) 2004 ILI data 
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b) 2007 ILI data 

 

 

c) 2009 ILI data 
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d) 2011 ILI data 

Figure 2.8 Comparison of field-measured depths and ILI-reported depths for the recoated 

defects on the pipeline in Case 1 
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to the hyper-parameters, a, b, c, d, l and u of the prior distributions in this case.  The 

parameter k was assigned a value of 3, whereas R was selected to be a 3 × 3 diagonal 

matrix with the diagonal elements equal to 0.001 ((wt)
-2

).  The corresponding OpenBUGS 

code used in the analysis is given in Appendix 2E.  The estimated mean values of the 

calibration parameters are shown in Table 2.3.  The results in Table 2.3 indicate that the 

ILI tool used in 2009 has the smallest bias compared with the tools used in 2004 and 

2007.  However, the mean value of the standard deviation of the scattering error 

associated with the tool in 2009 is also larger than those associated with the tools in 2004 

and 2007.  The estimated mean values of the correlation coefficients between the 

scattering errors associated with the three ILI tools are summarized in Table 2.4.  

Consistent with Table 2.2, Table 2.4 suggests that the scattering errors associated with 

different ILI tools are relatively highly correlated as the correlation coefficients are all 

greater than 0.70 and that the correlation coefficient is slightly higher for the tools from 

the same vendor (i.e. the 2004 and 2009 tools) than those of the tools from different 

vendors.  

Table 2.3 Mean values of the parameters in the calibration models for ILI tools used in 

Case 2 

ILI 2004 

(Vendor A) 

ILI 2007 

(Vendor B) 

ILI 2009 

(Vendor A) 



(%wt)




(%wt)



(%wt)




(%wt)



(%wt)




(%wt)

-4.23 0.89 5.32 -9.50 0.91 7.12 -3.54 1.00 7.66 
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Table 2.4 Mean values of the correlation coefficients (kl) between the random scattering 

errors for different ILI tools in Case 2 

 
ILI 2007 

(Vendor B) 

ILI 2009 

(Vendor A) 

ILI 2004 

(Vendor A) 
12 = 0.76 13 = 0.77 

ILI 2007 

(Vendor B) 
- 23 = 0.71 

 

The comparison of the ILI-reported depths with the field-measured depths of the 128 

recoated defects is depicted in Figs. 2.9(a) through 2.9(c).  These figures suggest that the 

three ILI tools considered in this case study tend to undersize the depths of the corrosion 

defects.  

 

a) 2004 ILI data 
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b) 2007 ILI data 

 

c) 2009 ILI data 

Figure 2.9 Comparison of field-measured depths and ILI-reported depths for the 

recoated defects on the pipeline in Case 2 
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2.7 Conclusion  

The Bayesian method was applied to calibrate the accuracy of the ILI tools for sizing 

metal-loss corrosion defects on pipelines.  The calibration is based on comparing the 

field-measured depths and ILI-reported depths for a set of defects that have been repaired 

and ceased growing.  Jaech’s method was employed first to calibrate the accuracy of the 

field-measuring tool by comparing the depths reported by two different field-measuring 

devices for a set of defects.  The results suggest that the field-measured depth contains 

negligibly small measurement error and can be assumed to equal the actual depth.  The 

defect depth reported by ILI was assumed to equal a linear function of the field-measured 

depth plus a random scattering error.  The intercept and slope of the linear function, i.e. 

the constant and non-constant biases, as well as the random scattering error were then 

quantified using the Bayesian methodology.  The calibration model further allows the 

correlation coefficients between scattering errors of different ILI tools to be quantified.  

The Markov Chain Monte Carlo (MCMC) simulation approach was adopted to carry out 

the Bayesian updating.  

The application of the calibration model was illustrated through two case studies 

where ILI tools were used to inspect two subject pipelines at different times.  The results 

of the calibration indicate that the measurement errors of different ILI tools vary 

substantially.  For example, the constant and non-constant biases of the ILI tool used on 

the subject pipeline of Case 1 in 2004 equal 2.04%wt and 0.97, respectively, and the 

standard deviation of the scattering error equals 5.97%wt.  On the other hand, the 

constant and non-constant biases of the ILI tool used on the same pipeline in 2007 equal -
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15.28%wt and 1.40, respectively, and the standard deviation of the scattering error equals 

9.05%wt.  Furthermore, it was observed that the random scattering errors associated with 

different ILI tools are relatively highly correlated.  The correlation coefficient between 

the scattering errors is consistently greater than or equal to 0.70, even in the case where 

the corresponding ILI tools are from different vendors.  The calibration model reported in 

this chapter can be used to calibrate any number of ILI tools simultaneously and quantify 

the potential correlation between the measurement errors of different ILI tools.  The 

calibration results can assist ILI vendors in improving the accuracy of the ILI data for a 

particular pipeline (e.g. by improving the sizing algorithm for the pipeline) and facilitate 

the development of a reliable corrosion growth model based on data from multiple ILI 

runs.  
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Chapter 3 Hierarchical Bayesian Corrosion Growth Model Based on In-

line Inspection Data  

3.1 Introduction 

External metal-loss corrosion is a major threat to the structural integrity of pipelines 

(Kiefner et al. 2001).  Quantifying the growth of corrosion over time is critically 

important for the risk and reliability analysis of pipelines, planning for corrosion 

mitigation and repair, and determination of time intervals for corrosion inspections.  On 

one hand, underestimation of the growth of corrosion defects may lead to critical defects 

being missed by mitigation actions - failure of these defects can have serious 

consequences in terms of human safety, environmental damages, and economic loss.  On 

the other hand, overly conservative estimation of the growth can lead to unnecessary 

inspections and defect mitigations that result in significant cost penalties to pipeline 

operators.  Hence it is vital to develop a model that can characterize the growth of 

individual corrosion defects on pipelines with a high level of accuracy (Kariyawasam and 

Peterson 2010). 

In-line inspection (ILI) tools are being widely used to detect and size corrosion 

defects on pipelines.  Over the last decade, researchers have been devoting a great deal of 

efforts to characterizing the growth of corrosion defects based on the ILI data.  Because 

the depth (i.e. in the through pipe wall thickness direction) of a corrosion defect on a 

pipeline is the most critical dimension that impacts the structural integrity of the pipeline, 

the growth of the defect depth has been the main focus of the research.  Worthingham et 
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al. (2000) used the data from three consecutive ILIs to develop a corrosion growth model 

and evaluated the accuracy of the proposed model by comparing the predicted depths five 

years after the last ILI with the corresponding field-measured depths.  Desjardins (2001) 

reported a study to determine the corrosion growth rate and severity of the corrosion on 

pipelines based on the data obtained from a single ILI run as well as multiple ILI runs.  

The data from a single ILI run together with the information about the condition of the 

pipeline during construction and age of the pipeline were used to calculate the bulk 

growth rate of the corrosion defects on a pipeline.  Achterbosch and Grzelak (2006) 

developed a linear growth model for depths of corrosion defects on a pipeline in the 

Netherlands based on the data from four consecutive ILI runs.  The so-called constrained 

maximum likelihood method was used to estimate the parameters of the proposed linear 

growth model by incorporating the bias and measurement uncertainty of the ILI tools.  

Nessim et al. (2008) developed an approach to probabilistically characterize the defect-

specific as well as segment-specific corrosion growth rates using the data from two 

successive ILI runs.  The probability distribution of the average growth rate within the 

time interval between the two inspections was defined as a function of the ratio between 

the apparent growth rate evaluated using the ILI data and the measurement error of the 

estimated growth rate.  This approach is only applicable for two ILI data sets. 

Several researchers carried out experiments to investigate the corrosion process on 

metals buried in soil and reported that the growth of metal-loss corrosion is more 

appropriately characterized by non-linear functions of time than by linear functions 

(Soares and Garbatov 1999).  Romanoff (1989) proposed a power-law growth model for 

the depths of the corrosion defects on buried metals based on data collected from 128 test 
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locations throughout the United States between 1910 and 1955.  Caleyo et al. (2009) 

suggested a power-law model for the depth of pitting corrosion on underground pipelines 

and used various properties of the pipe material and surrounding soils to evaluate the 

parameters of the model.  A time-dependent growth model for corrosion defects on 

underground pipelines was proposed by Maes et al. (2009), whereby the growth of the 

defect depth was assumed to follow a non-homogenous gamma process with a time-

dependent shape parameter and a time-independent scale parameter.  The hierarchical 

Bayesian method (Banerjee et al. 2004) as well as a simple equivalent log-likelihood 

method was employed to evaluate the model parameters based on the ILI data.  Their 

model took into account the random scattering error in the ILI data, but did not consider 

the bias of the ILI data.  The corrosion initiation time was also ignored in the model.  

The objective of the study reported in this chapter was to develop a defect-specific 

growth model for the depths of corrosion defects on energy pipelines based on data 

obtained from multiple in-line inspections.  The model incorporates the measurement 

errors associated with the ILI tools, which include both the bias (constant and non-

constant) and random scattering error.  The defect depth was assumed to follow a power-

law function of time.  The parameters of the growth model were assumed to be time-

invariant.  The hierarchical Bayesian methodology was employed to evaluate the 

parameters of the growth model.  

The organization of this chapter is as follows.  Section 3.2 includes a brief description 

of the hierarchical Bayesian methodology.  This is followed by the description of the ILI 

data and associated measurement uncertainties in Section 3.3.  The formulation of the 
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hierarchical Bayesian corrosion growth model as well as the specification of the prior and 

hyper-prior distributions is presented in Section 3.4.  In Section 3.5, two case studies that 

involve two real pipelines currently in service are used to illustrate the application of the 

proposed model.  The effect of correlations among the random scattering measurement 

errors on the model prediction is also examined in this section.  In Section 3.6, the 

predictions made by the proposed model are compared with those of the linear growth 

model commonly used in the pipeline industry.  The conclusions of this chapter are 

summarized in Section 3.7.  

3.2 Hierarchical Bayesian Model 

The Bayesian method treats the unknown parameters of a physical process as random 

variables rather than deterministic values.  The method allows the prior knowledge about 

the parameters, which can be obtained from previous studies or experience, to be updated 

based on the observed data to obtain the updated opinion about the parameters.  The 

updated belief can be further considered as the prior distribution for future updating when 

new data are available.  Therefore through this iterative process the uncertainty about the 

parameters is minimized.  The hierarchical Bayesian model (HBM) (Banerjee et al. 2004; 

Gelman et al. 2004) is a special case of the Bayesian model in which the prior 

distribution is decomposed in conditional distributions in a sequential order (Robert 

2007).  Hierarchical Bayesian models are powerful tools to make statistical inferences of 

parameters of a model that have complex interactions between them, and are particularly 

suitable to characterize population models in which the parameters characterizing the 
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model for an individual in the population are considered to be related to the parameters 

for the other individuals from the same population (Demichelis 2006). 

Consider a population of n random variables, Yi (i =1, 2, …, n) that characterize 

similar physical processes.  Suppose that a set of unknown parameters, θi, define the 

probability distribution of random variable Yi.  One can assign a prior distribution, 

p(θi|), to θi, where p(θi|) represents the probability density function of θi conditional on 

the known parameters , which are assumed to be common to the population of Yi.  

Further let yi
 
represent a set of observed data for Yi.  By combining the observed data and 

prior distribution, the updated opinion about θi can be evaluated based on Bayes’ theorem 

given by (Bayes and Price 1763) 

         
                 

     
  (3.1) 

where          is the posterior distribution of θi;          is the so-called likelihood 

function, and p(yi) is a normalizing constant, which ensures that          integrates to 

unity.  The value of p(yi) can be obtained by integrating the product of the likelihood and 

prior distribution with respect to θi.  Thus,  

                           (3.2) 

Taking into consideration the normalizing constant, one can write Eq. (3.1) as, 

                            (3.3) 

where the symbol “ ” indicates proportionality. 
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Note that until this point the above formulation is a standard Bayesian setup where a 

prior distribution is assigned to parameters θi that govern the distribution of Yi.  This 

model can be extended by assuming that parameters  that govern the distribution of θi 

are also random variables and by assigning a prior distribution, p(|), to .  Here, p(|) 

and  are referred to as the hyper-prior and hyper-parameters, respectively (Banerjee et 

al. 2004).  The parameters  characterize the prior beliefs about  and are typically 

assumed to be known quantities, although in theory one can also treat as random 

variables and proceed to another layer of hierarchy.  The hierarchical structure of such a 

Bayesian model is depicted in Fig. 3.1 where square nodes represent deterministic 

(known) quantities and oval nodes represent stochastic component of the model.  This 

model can be summarized as follows: 

Likelihood of data: p(yi|i)

First stage prior: p(i|) 

Second stage prior: p(|) 

Posterior distribution of i: p(|)  p(yi|i) p(i|)  

Posterior distribution of :                                
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Figure 3.1 Graphical representation of a typical hierarchical Bayesian model 

 

The main advantages of HBM compared to other statistical models are as follows: 

 In the hierarchical model the parameters of a specific group or individual can 

borrow information from the corresponding parameters of other groups or 

individuals with similar characteristics (Ntzoufras 2011).  Therefore, the 

individual level inference can be made accurately and robustly even if the 

sample size of the observed data for a given individual is small.  This is 

particularly advantageous for characterizing the growth of individual 

corrosion defects on a pipeline as the number of inspections is usually limited 

for a given defect.  

 HBM can account for uncertainties from different sources through the 

hierarchical prior assignment.  It provides robust estimates of the parameters 

because the posterior results are averaged across different prior choices 

(Robert 2007).  
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 The decomposition of priors in a hierarchical structure facilitates assigning 

conjugate priors to some of the parameters so that the corresponding 

conditional posterior distributions can be derived in closed form, and therefore 

simplifies the computation of the model by permitting the simple Gibbs-based 

sampling scheme to be used in updating the parameters (Robert 2007).  

The probabilistic characteristics (e.g. mean, variance and percentiles) of the random 

variables involved in the Bayesian model can be evaluated by integrating the 

corresponding marginal posterior distributions.  But in most cases, the close-formed 

solution for the posterior distribution is not available due to the complexity and high 

dimensionality of the Bayesian model.  This difficulty was overcome in the early 1990s 

with the development of the Markov Chain Monte Carlo (MCMC) techniques.  The 

MCMC techniques involve the construction of a Markov chain that starts from the 

assumed initial values of the parameters and eventually converges to the target 

distribution (i.e. the so-called stationary distribution), which, in our case, is the joint 

posterior distribution.  The effect of initial values is minimized by discarding the samples 

drawn at the beginning of iterations known as the “burn-in” period.  The samples 

generated after the burn-in period are then used to make statistical inferences of the 

parameters.  Two types of algorithm are frequently used to conduct the MCMC sampling, 

namely the Metropolis-Hastings algorithm and Gibbs sampler (Gelman et al. 2004).  A 

brief description of these two sampling algorithms is given in Appendix 2A. 
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3.3 ILI Data and Measurement Uncertainties 

To quantify the growth of the depths of corrosion defects based on the data obtained 

from multiple ILI runs, the measurement errors of the ILI data must be taken into account 

(Fenyvesi and Dumalski 2005).  The two main components of the measurement error are 

the systematic error, i.e. constant and non-constant bias of the ILI tool (Caleyo et al. 

2007) and the repeatability error associated with the tool (Coleman and Miller 2010; 

Huyse and Roodselaar 2010; Spencer et al. 2010). 

The measurement bias (constant and/or non-constant) associated with an ILI tool 

represents the ability of the tool to measure the true depth of a corrosion defect 

accurately, on average (Caleyo et al. 2007).  The repeatability error, also referred to as the 

random scattering error, results from the inherent variability associated with the ILI tool.  

This component of the measurement error is typically assumed to follow a normal 

distribution with a zero mean and a certain standard deviation.  Furthermore, the random 

scattering errors among different ILI tools that are based on the same technology (e.g. 

Magnetic Flux Leakage or ultrasonic) can be relatively highly correlated (see Chapter 2).  

A Bayesian method for quantifying the constant bias, non-constant bias and random 

scattering error of the ILI tool, as well as the correlation between the random scattering 

errors associated with different tools is described in Chapter 2. 
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3.4 Hierarchical Bayesian Corrosion Growth Model 

3.4.1 Formulation and the Likelihood Function 

Consider that m corrosion defects on a given pipeline have been detected and sized by 

ILI tools at n different inspection times.  The defect depths reported by ILI tools are 

assumed to be related to the corresponding actual depths as follows (Fuller 1987; Jaech 

1985): 

                   (3.4) 

where dmij and daij denote the ILI-reported and actual depths of the i
th

 defect (i = 1, 2, …, 

m) obtained from the j
th

 inspection (j = 1, 2, …, n), respectively; jandjare the 

calibration parameters of the j
th

 ILI tool, which characterize the bias of the tool, and ij 

represents the random scattering error of the ILI-reported depth of the i
th

 defect at the j
th

 

inspection.  

Let i = [i1, i2, …, in]
T
 denote the vector of random scattering errors associated with 

the depths reported by n ILI tools for the i
th

 defect, where “T” denotes transposition.  It is 

assumed that i follows a multivariate normal distribution, MVN (0, ), with a mean 

vector of zeros and a covariance matrix of . 

                         (3.5) 

where “~” indicates the assignment of probability distribution to a given random 

variable
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The values of jj and  for different ILI tools can be evaluated using a Bayesian 

approach by comparing the ILI-reported depths with the corresponding field-measured 

depths for a given set of defects (see Chapter 2).  These parameters were treated as 

deterministic (i.e. known) values in the corrosion growth model.  By combining Eqs. 

(3.4) and (3.5), the distribution function of dmi can be written as, 

    
   
 

            , i = 1, 2, …, m  (3.6a) 

            (3.6b) 

where “ind” denotes independency between dmi and dmk (i  k); dmi = [dmi1, dmi2, …, 

dmin]
T
 , μi = [μi1, μi2, ..., μin]

T
,  = [1, 2, …., n]

 T
,  is an n-by-n diagonal matrix with 

diagonal elements equal to j (j = 1, 2, …, n), and dai = [dai1, dai2, …, daij, …, dain]
T
.  

The exchangeability condition (Bernardo and Smith 2007) was assumed to be applicable 

to dmi (i = 1, 2, …, m); in other words, dmi were assumed to be mutually independent 

given , , and dai.  

In this study, the growth of the (actual) depth of a corrosion defect was assumed to 

follow a power-law function of time.  It is further assumed that the parameters of the 

power-law growth model are invariant with respect to time, and specific to each 

individual defect.  Finally, defects were assumed to be spatially independent.  Based on 

the power-law model, the depth of defect i at the j
th

 inspection is given by 

                
  

      (3.7) 
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where tj (years) is the elapsed time from the installation date up to the j
th

 inspectionij 

represents the model error of the power-law growth model associated with defect i at time 

tj, and ai, bi and toi are the parameters of the growth model for defect i.  The parameter ai 

(ai > 0) is indicative of the growth of the defect depth within one year from the defect 

initiation; bi (bi > 0) defines the rate of change of the growth path; that is, bi = 1, bi > 1 

and 0 < bi < 1 characterize a linear, an accelerating and a decelerating growth path 

respectively, and toi (years) represents the corrosion initiation time, i.e. the elapsed time 

(years) from the time of installation up to the time at which defect i starts to grow.  

3.4.2 Prior Distribution 

In practice, the number of inspections is usually limited for a given defect.  Therefore, 

hierarchical prior distributions were assumed for the parameters ai and bi, so that the 

information borrowed from other defects through the hierarchy of priors can facilitate the 

evaluation of the posterior distributions of these parameters.  The truncated normal 

distribution was assigned as the prior distributions for ai and bi, because the parameters 

must be positive (ai, bi > 0).  Furthermore, the choice of the normal distribution improves 

the computational stability and efficiency of the model.  Because of the specific prior 

knowledge about the corrosion initiation time, i.e. between zero and the time elapsed 

from installation up to the first inspection (t1), the prior distribution of toi was assumed to 

have only one level of hierarchy and be uniformly distributed between zero and t1.  The 

model error ij for defect i was assumed to follow a normal distribution with a mean 

value of zero (i.e. the power-law model is considered on average unbiased for each 
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defect) and a defect-specific variance.  The prior distributions of ai, bi, toi and ij (i = 1, 2, 

…, m; j = 1, 2, …, n) are summarized as follows: 

  
   
 

       
            (3.8a) 

  
   
 

        
            (3.8b) 

   
   
 

             (3.8c) 

            
   (3.8d) 

where iid denotes independent and identically distributed; N(x, y
2
) denotes a normal 

distribution with a mean value of x and a variance of y
2
, and U(lb, ub) represents a 

uniform distribution with a lower bound of lb and an upper bound of ub.  For a given 

defect i, ij were assumed to be independent and identically distributed at different times, 

and at a given time tj,ij were assumed to be independent for different defects. 

3.4.3 Hyper-prior Distribution 

The parameters of the prior distributions of ai, bi and ij were considered random 

variables and assigned another level of priors that are known as hyper-priors of the 

model.  The normal and inverse-gamma distributions were assumed as the prior 

distributions of a (b) and   
    

     
  , respectively, because these are well known 

conjugate priors of a normal distribution, and the use of the conjugate prior allows 

posterior distributions to be evaluated efficiently (Carlin and Louis 2000).  If a random 

variable Z follows an inverse-gamma distribution, IG (), with a shape parameter  and 
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a scale parameter , then 1/Z follows a gamma distribution, G(), with a shape 

parameter , a scale parameter 1/ and the corresponding probability density function is 

given by 
 

    
 
 

 
 
 

 
 

 
 
   

 
 

 

   (Gelman et al. 2004).  Given the above, the prior 

distributions of a, b,     
 
,     

 
          

 
are specified as follows: 

              (3.9a) 

    
             (3.9b) 

            (3.9c) 

    
           (3.9d) 

     
  
   
 

        (3.9e) 

where c, d, e, f, g, h, k, l, o and p are called the hyper-parameters of the model and are 

assumed to be known quantities.  

The full hierarchical Bayesian model structured with the aforementioned prior and 

hyper-prior distributions is depicted in Fig. 3.2.  In this figure, rectangular nodes refer to 

known constants and oval nodes represent the stochastic (uncertain) components of the 

model.  The logistic (i.e. deterministic) relationship and the stochastic relationship (i.e. 

relationship established through probability distributions) between different parameters 

are indicated by the double-edged arrows and single-edged arrows, respectively.  Iterative 

structures, such as loop from i = 1 to i = m, are indicated by the plates.  Such a 

representation of the model is called directed acyclic graph (DAG) (Lunn et al. 2009; 
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Spiegelhalter 1998).  The full conditional posterior distributions of all the parameters are 

derived in Appendix 3A.  

 

Figure 3.2 Graphical representation of the full hierarchical Bayesian corrosion growth 

model 

 

3.5 Case Study 

3.5.1 General 

The application of the proposed corrosion growth model is illustrated by carrying out 

two case studies that involve two underground natural gas pipelines.  The pipelines, 

which are currently in service, were inspected multiple times by high-resolution MFL 

tools over the last decade.  For the purpose of model validation, two sets of external 
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corrosion defects that were measured at the dig sites were considered in the case studies.  

These defects were identified and manually matched with the corresponding defect 

listings reported by the ILIs prior to the defects being excavated and field measured.  The 

matched ILI data were used to evaluate the parameters of the growth models (i.e. ai, bi, toi 

and ij) using the Bayesian updating software OpenBUGS (Lunn et al. 2009).  The 

estimated parameters of the growth models were then used to predict the depths of the 

defects.  The predicted depths at the time of field measurement were compared with the 

corresponding field-measured depths for model validation. 

3.5.2 Case 1 

The corrosion defects on the subject pipeline described in Case 1 of Chapter 2 were 

used to develop the hierarchical Bayesian corrosion growth model in this case.  The 

pipeline was installed in 1972.  Several joints of this pipeline were excavated in 2010, 

and the depths of the corrosion defects on the excavated pipe joints were measured using 

the ultrasonic (UT) thickness device at the dig sites.  A total of 62 such defects was 

identified and matched with the corresponding defects reported by the ILI tools in 2000, 

2004 and 2007.  Note that the former two ILI tools are from Vendor A and the latter one 

is from Vendor B.  As the measurement error associated with the UT tool has been found 

to be very small (see Chapter 2), the field-measured depth was assumed to equal the 

actual depth of the defect; therefore, the actual depths of the 62 defects in 2010 are 

known.  The ILI data of 2000, 2004 and 2007 were used to develop the model; and the 

predicted depths were compared with the corresponding field-measured depth in 2010.  

Although an ILI was also carried out for the pipeline in 2009, the corresponding data 
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were not used in developing the model so that the prediction is for a forecasting period 

that is not too short (i.e. 3 years, from 2007 to 2010).  The apparent growths of the 62 

defects from 2000 to 2007 as indicated by the ILI data are shown in Fig. 3.3.  This figure 

illustrates the randomness of the growth pattern of the corrosion defects on the pipeline.  

Furthermore, the depths of some defects as reported by the ILI tools decrease from 2000 

to 2004 and/or from 2004 to 2007.  Because the actual depth of a corrosion defect cannot 

decrease, this observation suggests that the measurement errors of the ILI tools have a 

large impact on the apparent growth of the defects.  

 

Figure 3.3 Apparent growth paths of the 62 corrosion defects indicated by the ILI data 

 

The measurement errors of the ILI tools as reported in Chapter 2 (see results for Case 

1) were used in this study.  Because the measurement error of the ILI tool used in 2000 

was not quantified due to a lack of relevant information, it was assumed that the constant 

and non-constant biases (i.e.  and ) associated with the ILI tool used in 2000 are the 
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same as those for the ILI tool used in 2004.  This is based on the fact that the two ILI 

tools are from the same vendor (Vendor A) and employ the same sizing algorithm.  It was 

further assumed that the correlation coefficient between the random scattering errors of 

the 2000 and 2004 ILI tools is the same as that between the ILI tools used in 2004 and 

2011, given that the 2011 tool is also from Vendor A (see Chapter 2).  The correlation 

coefficient between the scattering errors of the 2000 and 2007 tools were assumed to be 

the same as that between the 2004 and 2007 ILI tools.  The biases (constant and non-

constant) and standard deviations of the random scattering errors of the ILI tools, as well 

as the correlation coefficients between the scattering errors associated with different ILI 

tools were assumed to equal the mean values of the posterior distributions of these 

parameters obtained from the Bayesian-based calibration of the ILI tool as described in 

Chapter 2.  The specific values of these parameters are as follows (see Tables 2.1 and 2.2 

in Chapter 2): 1 = 2 = 2.04 (%wt), 3 = -15.28 (%wt), 1 = 2 = 0.97, 3 = 1.40, 1 = 2 

= 5.97 (%wt), 3 = 9.05 (%wt), 12 = 0.82, 13 = 23 = 0.7, where the subscripts “1”, “2” 

and “3” indicate the ILI tools used in 2000, 2004 and 2007, respectively, and wt denotes 

the pipe wall thickness.  

The time interval between the installation of the pipeline (1972) and time of the first 

inspection (2000) is 28 years.  Therefore the upper bound of the prior distribution of toi in 

Eq. (3.8c) was set at 28 years.  Due to a lack of prior knowledge about the potential 

values of ai and bi, non-informative distributions (Gelman et al. 2004) were generally 

assigned to the hyper-priors for ai, bi and i
2
.  A non-informative normal distribution is 

commonly assumed to have a mean and variance of 0 and 10000, respectively, in the 

literature (Hoff 2009; Lunn et al. 2009); therefore, c (g) and d (h) in Eqs. (3.9a) and 
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(3.9c) were set to be 0 and 100, respectively.  The shape parameter o and scale parameter 

p in Eq. (3.9e) both were set equal to 0.001, which result in a mean value of unity and a 

variance of 1000 for the prior distribution of      
 
.  To facilitate the convergence of 

    
 
 and     

 
 toward their posterior marginal distributions, e (k) and f (l) were set 

equal to 0.01 and 100, respectively in Eqs. (3.9b) and (3.9d).  Note that the hyper-

parameters c, d, e, f, g, h, k, l, o and p of the hyper-prior distributions in Eqs. (3.9a) 

through (3.9d) were considered to be dimensionless because they were used to generate 

random numerical values for the parameters (a, a
2
, b, b

2
 and i

2
) of the prior 

distributions only.  Once the values were generated, the corresponding units were 

assigned; for example, a and a were assigned the same units as ai, which is %wt/yr
bi

.  

Further note that the prior distributions of ai (i = 1, 2, …, m) are independent and 

identical with a mean of a and a standard deviation of a; therefore a (a) has the same 

numerical values for all ai but different units for different defects. 

The ILI data and the calibration parameters along with the hyper-parameters were 

input in OpenBUGS to evaluate the marginal posterior distributions of the parameters of 

the growth model using the MCMC simulation.  The OpenBUGS code developed for the 

analysis is included in Appendix 3B. 

Two MCMC chains of samples with two different sets of initial values were run, and 

a total of 35,000 samples were stored after applying a thinning interval of 20 in each 

chain for the model parameters.  The generated sequences of parameters (i.e. a, b and to) 

associated with three selected defects (defects #1, #2 and #3) are shown in Figs. 3.4 

through 3.6.  The trace plots in these figures indicate a very good convergence of the 
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samples toward the marginal posterior distributions of the respective parameters.  A burn-

in period of 10,000 was selected and the remaining 50,000 (25,000 from each chain) 

samples were used to make statistical inferences of the model parameters. 

 

 

 

 

Figure 3.4 Trace plots of a1, a2 and a3  
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Figure 3.5 Trace plots of b1, b2 and b3 
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Figure 3.6 Trace plots of to1, to2 and to3  
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b’s are less than unity.  Figure 3.9 indicates that the overall mean of to for all 62 defects 

equals 13.1 years.  This appears to support a commonly used assumption in the pipeline 

industry: the initiation time of a defect is half way between the time of installation and 

the time of the defect being first detected.  However, it is unclear whether this mean value 

(13.1 years) was governed by the ILI data or by the prior information because the mean 

value of the prior distribution of toi is 14 years. 

Although the prior distributions of ai, bi and toi for a given defect were assumed to be 

mutually independent, the analysis results indicate that the posterior distributions of these 

parameters are correlated.  Based on the posterior samples it was found that for a given 

defect i, the model parameters ai and bi are negatively correlated with the corresponding 

correlation coefficient ranging from -0.75 to -0.85 for different defects; the parameters ai 

and toi are weakly correlated with the corresponding correlation coefficient ranging from 

0.1 to 0.3 for different defects, and there is negligible correlation between bi and toi.  

Finally, it was observed that there is negligible correlation between i
2
 and ai, bi or toi, 
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Figure 3.7 Box plot of the components of parameter vector a of Case 1 
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Figure 3.8 Box plot of the components of parameter vector b of Case 1 
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Figure 3.9 Box plot of the components of parameter vector to of Case 1 

box plot: to
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Figure 3.10 Box plot of the components of parameter vector  of Case 1 

 

box plot: sigma

0.0 20.0 40.0 60.0

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]

[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]

[28]
[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]

[38]
[39]
[40]

[41]
[42]

[43]
[44]
[45]

[46]
[47]
[48]

[49]
[50]

[51]
[52]

[53]
[54]

[55]
[56]

[57]
[58]

[59]
[60]

[61]
[62]

3.1

 (%wt)



73 

 

The actual depths of the defects at different times were predicted by substituting the 

median values of the marginal posterior distributions of parameters ai, bi and toi into Eq. 

(3.7) and setting the model error to zero.  The predicted depths in 2010 were compared 

with the actual depths obtained from field measurement.  The comparison is shown in 

Fig. 3.11.  Also shown in this figure are the 1:1 line (i.e. the line on which the predicted 

depth equals the field-measured depth) and the two bounding lines representing the 

predicted depth = field-measured depth ± 10%wt.  Figure 3.11 suggests that the proposed 

growth model can predict the actual depths of the defects reasonably well: approximately 

89% (55) of the predicted depths fall within the two bounding lines. 

The predicted growth paths from 2000 to 2010 for five arbitrarily selected defects, 

defects #3, #6, #7, #19 and #60, are depicted in Fig. 3.12.  The growth path denoted by 

“prediction from medians” in Fig. 3.12 is obtained in the same way as the predicted depth 

shown in Fig. 3.11.  The 10-, 50- and 90-percentile values as well as the mean values of 

the predicted depths, the ILI-reported depths in 2000, 2004 and 2007, and the field-

measured depths in 2010 are also shown in this figure.  The three percentiles and mean of 

the predicted depths were obtained from samples of daij generated by substituting the 

MCMC samples of ai, bi and toi, and random samples of ij into Eq. (3.7).  Note that the 

random samples of ij were generated from a normal distribution with a zero mean and a 

variance of i
2
, with the values of i

2 
obtained from MCMC. 

Figure 3.12 indicates that the model predicts the actual depths of defects #3, #6, #19 

and #60 fairly well.  However, the predicted depth for defect #7 shows a substantial 

deviation from the actual depth.  Further investigation revealed that defect #7 and several 
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other defects for which there are significant differences, say, greater than 10%wt, between 

the model predictions and actual depths in 2010 are either pinholes
1
 or circumferential 

grooving
2

 defects (Pipeline Operators Forum (POF) 2009).  Consistent with the 

observation by Maes et al. (2008), it was observed that the ILI data tend to have large 

errors for these types of defects, which result in poor predictions given by the growth 

model. 

 

Figure 3.11 Comparison between the predicted and field- measured depths in 2010 for 

Case 1  

                                                 

 

1
 A pinhole is a corrosion defect with both length (in the longitudinal direction of pipeline) and width (in 

the circumferential direction of pipeline) less than A, where A=10 mm and wt for wt <10 mm and wt ≥ 10 

mm, respectively. 
2
 A circumferential grooving defect has a length greater than or equal to A but less than 3A and a length-to-

width ratio less than or equal to 0.5. 
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a) Defect #3 

 

b) Defect #6 
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c) Defect #7 

 

d) Defect #19 
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e) Defect #60 

Figure 3.12 Predicted growth paths for defects #3, #6, #7, #19 and #60 on pipeline of 

Case 1 
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growth pattern of these 60 defects as indicated by the ILI data is shown in Fig. 3.13.  The 

ILI data were used to make statistical inferences of the parameters in the growth model.  

The actual depths of these defects in 2011 were predicted using the growth model, and 

then compared with the field-measured depths.  Although an ILI was carried out on the 

pipeline in 2000, the corresponding data were not included in the analysis because only 

clustered defects were reported by the 2000 ILI tool, which cannot be matched with the 

individual defects identified by the dig report in 2011 or by the ILI tools used in 2004, 

2007 and 2009.  The calibration parameters of the ILI tools in 2004, 2007 and 2009 are as 

follows (see Tables 2.3 and 2.4 in Chapter 2): 1 = -4.23 (%wt),2 = -9.50 (%wt), 3 = -

3.54 (%wt), 1 = 0.89,2 = 0.91, 3 = 1.0, 1 = 5.32 (%wt),2 = 7.12 (%wt), 3 = 7.66 

(%wt), 12 = 0.76, 13 = 0.77 and 23 = 0.71, where the subscripts “1”, “2” and “3” 

indicate the ILI tools used in 2004, 2007 and 2009, respectively. 

 

Figure 3.13 Apparent growth paths of the 60 corrosion defects indicated by the ILI data  

2004 2005 2006 2007 2008 2009
0

10

20

30

40

50

60

70

80

Year

D
ef

ec
t 

d
ep

th
 (

%
w

t)

Growth path based on ILI data

 

 

ILI data



79 

 

The hyper-parameters (i.e. c, d, e, f, g, h, k, l, o and p) of the prior distributions in this 

case were assigned the same values as those of the hyper-parameters in Case 1.  Similar 

to Case 1, two chains were run simultaneously.  A total of 35,000 samples was stored in 

each chain after applying the thinning interval of 20.  After a burn-in period of 10,000, 

the remaining 25,000 samples from each chain (i.e. total sample size 50,000) were used 

to numerically evaluate the marginal posterior distributions of the parameters of the 

growth model.  The corresponding OpenBUGS code used in the analysis is given in 

Appendix 3C. 

The box plot of the marginal posterior distributions of ai, bi, toi and i are shown in 

Figs. 3.14 through 3.17.  Figure 3.15 indicates that the defects tend to grow at a 

decelerating rate in that the 75-percentile values of b for most of the defects are less than 

unity.  Furthermore, Fig. 3.16 indicates that the overall mean of to for the 60 defects 

considered equals 14.9 years, which is close to the mean value of the prior distribution of 

to, i.e. the mid-point between the year of installation (1972) and the year at which the 

defects were first detected (2000).  The median values of the marginal posterior 

distributions were considered as the point estimates of the parameters.  

The MCMC samples indicated that for a given defect i, the posterior distributions of 

ai and bi are strongly correlated with the corresponding correlation coefficient ranging 

from -0.7 to -0.9 for different defects; ai and toi are weakly correlated with the 

corresponding correlation coefficient ranging from 0.1 to 0.4 for different defects, and 

there is negligible correlation between bi and toi for most of the defects.  However, bi and 

toi are somewhat correlated for a number of defects; for example, the correlation 
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coefficients between b and to for defects #6 and #9 were found to be 0.30 and 0.38, 

respectively.  Finally, i
2
 is negligibly correlated with ai, bi or toi.   

 

 

Figure 3.14 Box plot of the components of parameter vector a of Case 2 
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Figure 3.15 Box plot of the components of parameter vector b of Case 2 
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Figure 3.16 Box plot of the components of parameter vector to of Case 2 
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Figure 3.17 Box plot of the components of parameter vector  of Case 2 
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Similar to Case 1, the median values of the marginal posterior distributions of ai, bi 

and toi were substituted into Eq. (3.7) (with the model error term set to zero) to predict the 

actual depths of the defects at different times.  The comparison between the predicted and 

field-measured depths in 2011 along with the 1:1 line and the two bounding lines 

corresponding to field-measured depth ± 10%wt is shown in Fig. 3.18.  As shown in this 

figure, approximately 78% (47) of the predicted depths for the 60 defects fall within the 

two bounding lines. 

 

Figure 3.18 Comparison between the predicted and field-measured depths in 2011 for 

Case 2 

 

The predicted growth paths, including the predictions from medians (obtained in the 

same way as the predicted depths shown in Fig. 3.18), the 10-, 50- and 90-percentile as 

well as mean predictions, the ILI data, and the corresponding field-measured depth in 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

te
d

 d
ep

th
 i

n
 2

0
11

 (
%

w
t)

Field Measured depth in 2011 (%wt)

1:1 Line

Upper bound

Lower bound



85 

 

2011 for five selected defects (defects #13, #23, #35, #50 and #56) are shown in Fig. 

3.19.  This figure suggests that the prediction for defects #13, #23 and #35 is fairly good 

but the prediction for defects #50 and #56 deviates by about 12%wt from the 

corresponding field-measured depths.  Unfortunately the defects located on this pipeline 

could not be classified according to the POF criteria because the length and width of 

these defects were not provided in the dig report.  Therefore, it is unclear whether the 

poor predictions for some defects can be attributed to the large measurement errors of ILI 

data for certain types of defects (e.g. pinholes).  
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b) Defect #23 

 

 

c) Defect #35 
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d) Defect #50 

 

 

e) Defect #56 

Figure 3.19 Predicted growth paths for defect #13, #23, #35, #50 and #56 on pipeline of 

Case 2 
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3.5.4 Effect of Correlation among the Random Scattering Measurement Errors 

In Sections 3.5.2 and 3.5.3, the Bayesian updating of the corrosion growth models for 

Case 1 and Case 2 incorporated the partial correlations among the random scattering 

errors associated with different ILI tools.  To investigate the impact of such correlations 

on the growth model, two additional scenarios, i.e. fully-correlated and independent 

scattering errors, were considered.  The posterior distributions of the parameters of the 

growth models corresponding to these two scenarios were evaluated using OpenBUGS 

for Case 1 and Case 2.  The median values of the marginal posterior distributions of ai, bi 

and toi were then substituted into Eq. (3.7) (with model error set to zero) to predict the 

depths of the defects at the times of the corresponding field measurements. 

The comparison between the field-measured and predicted depths for the growth 

models considering partially-correlated (based on the calibration of the ILI tools), fully-

correlated and independent random scattering errors are shown in Figs. 3.20 and 3.21 for 

the defects of Case 1 and Case 2, respectively.  The results indicate that the percentages 

of predicted depths falling within ±10%wt of the field-measured depths are the same for 

the models with partially-correlated and fully-correlated random scattering errors for both 

Case 1 (89%) and Case 2 (78%).  But this percentage decreases slightly for the model 

with independent random scattering errors: 84% and 75% of the predicted depths fall 

within the two bounding lines for Case 1 and Case 2, respectively.  
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Figure 3.20 Comparison of the predicted depths from the models with partially-

correlated, fully-correlated and independent random scattering errors with field-measured 

depths in 2010 for the corrosion defects in Case 1 

 

Figure 3.21 Comparison of the predicted depths from the models with partially-

correlated, fully-correlated and independent random scattering errors with field-measured 

depths in 2011 for the corrosion defects in Case 2 
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Because the percentage of the predicted depths falling within the ±10%wt bounds 

does not vary significantly among the three models, the mean squared error of prediction 

(MSEP) (Bunke and Droge 1984; Harville and Jeske 1992; Wallach and Goffinet 1987) 

was selected as a metric to further evaluate the predictive ability of these models.  The 

MSEP is given by 

     
 

 
         

  
    (3.10) 

where x denotes the actual value of a given parameter of interest;    is the value of the 

parameter predicted from a certain model, and l is the sample size.  The smaller is the 

MSEP, the better is the predictive ability of the corresponding model (van der Voet 1994). 

Equation (3.10) was employed on the datasets of Case 1 and Case 2 to evaluate the 

MSEP’s for the growth models with partially-correlated, fully-correlated and independent 

random scattering errors.  The results are shown in Table 3.1.  The model with the 

partially-correlated random scattering errors results in the smallest MSEP for both Case 1 

and Case 2, although the differences in MSEP between different models for a given case 

are relatively small.  

Table 3.1 MSEP’s for the models with partially-correlated, fully-correlated and 

independent random scattering errors 

Model 
Case 1 

(%wt)
2
 

Case 2 

(%wt)
2
 

Partially-correlated 46.7 78.0 

Fully-correlated 50.7 88.4 

Independent 50.2 80.7 
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The statistical significance of the difference in MSEP’s between different models can 

be examined using the hypothesis testing technique (Montgomery and Runger 2010).  

van der Voet (1994) proposed a randomization t-test for the hypothesis testing and used 

this approach to evaluate the predictive performance of different models by comparing 

the corresponding MSEPs.  This approach was adopted in the current study to investigate 

the statistical significance levels of the differences in MSEPs corresponding to different 

growth models.  As MSEP for the partially-correlated model is the smallest, comparisons 

were made with respect to MSEP of this model.  The null and alternative hypotheses were 

specified as follows: 

Null hypothesis, Ho: MSEP1 = MESP2 (MSEP1 = MESP3) 

Alternative hypothesis, Ha: MSEP1 < MESP2 (MSEP1 < MESP3) 

where the subscripts “1”, “2” and “3” represent the models with partially-correlated, 

fully-correlated and independent random scattering errors, respectively.  Note that the 

alternative hypothesis is a one-sided hypothesis.  

The hypothesis testing procedure for comparing MSEP1 and MESP2 is outlined below 

(van der Voet 1994): 

1. Calculate                
 
             

 
, i = 1, 2, …, m; where    and 

    are the actual (i.e. field-measured) and predicted depths, respectively; 

2. compute      
 

 
   

 
   ; 

3. for j = 1, 2, …, s, where s = 2
m
 in theory but can be reasonably assumed to equal 

199, do the following: 
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a. randomly assign a positive or negative sign to i; 

b. calculate    
 

 
   

 
   ; 

4. sort the vector T = [Tj, Tobs] in ascending order and find the rank of Tobs, say k, 

and 

5. compute the p-value as k/(s+1). 

The p-values obtained for the datasets of Case 1 and Case 2 are shown in Table 3.2.  

In this study, the specified significance level was set equal to 10% (Montgomery and 

Runger 2010) for the null hypothesis.  The results in Table 3.2 suggest that the 

differences in MSEP’s of the models with partially-correlated and independent random 

scattering errors are statistically insignificant for both Case 1 and Case 2.  On the other 

hand, the difference in MESP’s of the models with the partially-correlated and fully-

correlated random scattering errors is statistically significant for Case 2.  These results 

suggest that it is more reasonable to assume the random scattering errors of different ILI 

tools to be mutually independent in the corrosion growth modeling than to assume the 

scattering errors to be fully-correlated, if the partial correlations among the scattering 

errors of different tools are not quantified. 

Table 3.2 p-values of the null hypothesis, Ho: MSEP1 = MESP2 (MSEP1 = MESP3) and 

alternative hypothesis Ha: MSEP1 < MESP2 (MSEP1 < MESP3) 

Model Case 1 Case 2 

1 (Partially-correlated) - - 

2 (Fully-correlated) 0.15 0.05 

3 (Independent) 0.18 0.28 
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3.6 Comparison with Industry Practice 

In practice, the depths reported by two ILI runs (typically successive) are often used 

to calculate a growth rate for a given defect (Coleman and Miller 2010; Fenyvesi and 

Dumalski 2005; Huyse and Roodselaar 2010; Nessim et al. 2008).  To take into account 

the systematic measurement errors of the ILI tools, i.e. the constant and non-constant 

biases of the measurement error (see Eq. (3.4)), the growth rate for defect i, ri, is 

estimated as follows: 

   

 

  
          

 

  
         

     
    (3.11) 

where dmi1 and dmi2 are the depths of the i
th

 defect reported by the ILI tools at time t1 and 

t2, respectively, and 1 (2) and 1 (2) are the constant and non-constant biases 

associated with the ILI tool used at time t1 (t2), respectively.  Because the actual depth of 

a defect cannot decrease, a lower bound of zero is set for the calculated growth rate in Eq. 

(3.11).  The growth rate obtained from Eq. (3.11) is then used to predict the depth of the 

defect in the future as follows, assuming the defect to follow a linear growth path: 

          
 

  
                (3.12) 

where           is the predicted depth of defect i at a given time in the future, i.e. t2+t. 

The corrosion growth rates of the defects considered in Case 1 and Case 2 were 

calculated using Eq. (3.11) based on the two most recent successive ILI datasets 

respectively, i.e. the 2004 and 2007 datasets in Case 1 and the 2007 and 2009 datasets in 

Case 2.  The calculated growth rates were then substituted into Eq. (3.12) to predict the 
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depths of the defects in 2010 for Case 1, and the depths of the defects in 2011 for Case 2.  

The predicted depths are compared with the corresponding field-measured depths in Figs. 

3.22 and 3.23 for Case 1 and 2, respectively.  Figure 3.22 indicates that only about 76% 

of the predicted depths fall within the ±10%wt bounding lines, compared with 89% of the 

predicted depths falling within the same bounding lines in the case of the Bayesian 

power-law growth model proposed in this study (see Fig. 3.11).  The prediction based on 

the industry practice is also poor for Case 2 as indicated in Fig. 3.23: only 65% of the 

predicted depths fall within the ±10%wt bounding lines compared with 78% of the 

predictions falling within the same bounding lines based on the power-law growth model 

(see Fig. 3.18).  

 

Figure 3.22 Comparison between the predicted depths from the linear growth model and 

field-measured depths in 2010 for the corrosion defects in Case 1 
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Figure 3.23 Comparison between the predicted depths from the linear growth model and 

field-measured depths in 2011 for the corrosion defects in Case 2 

 

3.7 Conclusion 

This chapter describes a Bayesian model to characterize the growth of the depth of 

individual metal-loss corrosion defect on underground energy pipelines.  The depth of an 

active corrosion defect was assumed to follow a power-law function of time; the 

parameters of the growth model were evaluated using the hierarchical Bayesian method 

based on data obtained from multiple in-line inspections for a given pipeline.  The 

measurement errors associated with the ILI data and potential correlations between the 

random scattering measurement errors associated with different tools were accounted for 

in the formulation of the model.  The Markov Chain Monte Carlo (MCMC) simulation 
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was employed to carry out the Bayesian updating and to make statistical inferences of the 

model parameters.  

The application of the proposed model was demonstrated in two case studies that 

involve two underground natural gas pipelines currently in service.  The parameters of 

the growth models were developed for a relatively large number of external corrosion 

defects (62 and 60 defects in Cases 1 and 2, respectively).  The defect depths predicted 

from the growth models were compared with the field-measured depths for these sets of 

defects, where the field-measured depths were assumed to be free of measurement errors 

and equal the corresponding actual depths.  The results suggest that the proposed model 

is able to predict the corrosion growth with reasonable accuracy; for example, 89% and 

78% of the predictions falling within the bounds of actual depth ±10%wt in Case 1 and 2, 

respectively.  The prediction was found to be relatively poor for pinhole and 

circumferential grooving type defects due to the large measurement errors associated with 

the ILI data for these types of defects.  

The effect of the correlation between the random scattering measurement errors 

associated with different ILI tools was investigated by comparing the mean squared 

errors of prediction (MSEP) of the growth models with partially-correlated, fully-

correlated and independent scattering errors.  The results indicate that the predictive 

accuracy is higher for the model with partially-correlated random scattering errors as 

compared to the models with fully-correlated and independent random scattering errors.  

Furthermore, the difference in MESPs of the models with fully-correlated and partially-

correlated scattering errors is statistically significant for Case 2, whereas the difference in 
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MESPs of the models with independent and partially-correlated scattering errors is 

statistically insignificant for both Case 1 and Case 2. 

The proposed Bayesian hierarchical power-law growth model was compared with the 

linear growth model that is commonly used in the pipeline industry.  The results suggest 

that the proposed model is more accurate than the linear growth model.  For instance, 

89% of the predicted depths fall within the ±10%wt bounding lines based on the power-

law growth model, compared with about 76% of the predicted depths falling within the 

same bounding lines based on the linear growth model for the 62 defects considered in 

Case 1. 

The proposed growth model is able to incorporate the accumulated ILI data as well as 

the measurement uncertainties associated with these data to predict the growth path of 

individual corrosion defect on pipelines and quantify the uncertainty associated with the 

growth path.  The model will facilitate the pipeline corrosion management program in 

terms of reducing the number of unnecessary mitigation actions while maintaining the 

structural integrity of the pipeline to an acceptable level. 
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Chapter 4 Time-dependent System Reliability Analysis of a Corroding 

Pipeline 

4.1 Introduction 

Metal-loss corrosion is considered one of the most common attributing factors to 

failures of energy pipeline, especially for the aging underground pipelines (Nessim et al. 

2008; PHMSA 2012).  The reliability-based corrosion management program has received 

increasing attention from pipeline operators (Kariyawasam and Peterson 2008) over the 

last decade.  Such a program typically consists of three cyclic steps: firstly, detecting and 

sizing corrosion defects on a pipeline using the in-line inspection (ILI) technology; 

secondly, evaluating the failure probability of the pipeline as a result of the corrosion 

defects; and finally, mitigating the defects, if the failure probability exceeds a certain 

allowable level.  To this end, implementation of the reliability-based corrosion 

management program requires accurate evaluation of the failure probability of pipelines 

due to corrosion defects so that defect repairs can be scheduled to meet the required 

safety levels while optimizing the allocation of limited resources for repair and 

mitigation. 

The failure mechanisms of a pressurized pipeline containing an active corrosion 

defect can be broadly classified into two categories: small leak and burst (CSA 2007).  

Small leak occurs if the defect penetrates the pipe wall; burst occurs if the internal 

pressure exceeds the burst resistance at the corrosion defect, resulting in plastic collapse 

of the pipe wall.  A burst can be further categorized as a rupture or a large leak.  Rupture 
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occurs if the through-wall defect resulting from the burst extends unstably in the 

longitudinal direction of the pipeline, whereas large leak is the plastic collapse of the pipe 

wall without unstable axial extension of the defect (CSA 2007).  It is important to 

distinguish small leak, large leak and rupture in that the consequences associated with 

these failure modes differ significantly, especially for natural gas pipelines (Nessim et al. 

2009; Rothwell and Stephens 2006; Zhou 2011), with the consequences of ruptures 

generally being the most severe and those of small leaks being the least severe.  Different 

allowable failure probabilities (or target reliability levels) have been proposed for 

different failure modes of natural gas pipelines to address the differences in the 

corresponding failure consequences (CSA 2007): more stringent allowable failure 

probabilities for ruptures and large leaks, and less stringent values for small leaks (CSA 

2007). 

Corrosion growth modeling plays an important role in forecasting the failure 

probability of a corroding pipeline (Kariyawasam and Peterson 2010; Nessim et al. 

2008).  The most commonly used corrosion growth model in practice is the linear growth 

model (Coleman and Miller 2010; Fenyvesi and Dumalski 2005; Huyse and Roodselaar 

2010; Nessim et al. 2008), where the defect depth and length are assumed to grow at 

constant growth rates over time.  The probabilistic characteristics of such growth rates 

have been reported in the literature.  Several researchers (Caleyo et al. 2009; Maes et al. 

2009; Romanoff 1989; Soares and Garbatov 1999) reported that the growth of metal-loss 

corrosion can be better characterized by the non-linear model than by the linear model.  

Furthermore, the growth paths vary from defect to defect (Ahammed 1998; Southwell 

and Bultman 1975).  
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Extensive research has been carried out in the past to evaluate the reliability of 

pressurized pipeline containing active metal-loss corrosion defects (Ahammed 1998; 

Caleyo et al. 2002; Hong 1997; Stephens and Nessim 2006; Zhou 2010).  As far as the 

author of this thesis is aware, the corrosion defects were assumed to grow in a linear 

fashion in all previous investigations involving the evaluation of burst probabilities of 

corroding pipelines.  Furthermore, the same probability distribution of the growth rate is 

typically applied to different defects considered in the reliability analysis.  The 

consideration of non-linear defect-specific growth models in the reliability analysis of 

corroding pipelines has not been reported in the literature.  

The main objective of the work reported in this chapter was to develop a 

methodology that can be used to evaluate the time-dependent system reliability of a 

segment of pipeline containing multiple active corrosion defects by incorporating a non-

linear defect-specific corrosion growth model developed based on data obtained from 

repeated ILIs.  The depth of the corrosion defect was assumed to follow a power-law 

growth path over time.  The failure probabilities associated with three distinctive failure 

modes, namely small leak, large leak and rupture, were evaluated using a simulation- 

based approach that consists of both the simple Monte Carlo simulation for generating 

random samples of the pipe geometric and material properties as well as the defect length 

and Markov Chain Monte Carlo (MCMC) simulation for generating random samples of 

the defect depth.  The methodology was illustrated using a numerical example that 

involves a corroding natural gas pipeline segment. 
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This chapter is organized in seven sections.  The limit state functions associated with 

small leak, large leak and rupture are presented in Section 4.2.  The capacity models for 

burst and rupture are discussed in Section 4.3.  Section 4.4 describes the Bayesian power-

law growth model for the depths of corrosion defects.  Section 4.5 includes the basic 

assumptions adopted in the reliability analysis as well as the procedure of evaluating the 

system reliability using a combination of the conventional Monte Carlo simulation and 

MCMC simulation techniques.  A numerical example is given in Section 4.6 to illustrate 

the proposed methodology.  Results of the sensitivity analysis with respect to the spatial 

variability of the model error associated with the burst capacity model and maximum-to-

average depth ratio are also presented in Section 4.6.  The main findings of the study are 

summarized in Section 4.7. 

4.2 Limit State Functions 

Metal-loss corrosion on pipeline causes volumetric loss of metal in the pipe wall.  

The geometry of a typical metal-loss corrosion defect on a pipeline is illustrated in Fig. 

4.1.  The length, width and depth of the defect are measured in the longitudinal, 

circumferential and through-wall thickness directions, respectively, of the pipeline.  

Based on the above-defined defect dimensions, the limit state functions of a pressurized 

pipeline containing a single active corrosion defect are developed in the following. 
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Figure 4.1 Dimensions of a typical corrosion defect on pipeline 
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1
            ( ) (4.1) 

where wt is the wall thickness of the pipeline, and dmax (t) is the maximum depth of the 

corrosion defect (see Fig. 4.1) at time t.  

The limit state function, g2(t), for plastic collapse under internal pressure at the defect 

at time t is given by 

 
2
      ( )   (4.2) 

where rb(t) denotes the burst pressure resistance of the pipe at the defect at time t, and p is 

the internal pressure of the pipeline and assumed to be time-independent in this study.  

The burst pressure resistance is a function of geometric and material properties of the 

pipeline, and the defect depth and length (see Fig. 4.1).  Because the defect size 

monotonically increases over time, the burst pressure resistance monotonically decreases 

over time. 

Given a burst, the unstable axial extension of the through-wall defect that results from 

the burst is defined as a rupture and is governed by the limit state function g3(t) as 

follows: 

 
3
       ( )   (4.3) 

where rrp(t) is the pressure resistance of the pipeline at the location of the through-wall 

defect resulting from the burst at time t.  A burst is classified as a rupture if g3(t) ≤ 0; 

otherwise, it is a large leak. 
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Based on the limit state functions defined by Eqs. (4.1) through (4.3), failure of a 

pipeline can be categorized into three modes, namely small leak, large leak and rupture.  

Because these limit state functions involve monotonically increasing defect geometry and 

monotonically decreasing pipe resistance, and because the internal pressure is assumed to 

be time-independent, the probabilities of small leak, large leak and rupture within a time 

interval [0, t], Psl(t), Pll(t) and Prp(t) respectively, are defined as follows: 

Psl(t) = Prob[g1(t) ≤ 0 ∩ g2(t) > 0] (4.4a) 

Pll(t) = Prob[g1(t) > 0 ∩ g2(t) ≤ 0 ∩ g3(t) > 0] (4.4b) 

Prp(t) = Prob[g1(t) > 0 ∩ g2(t) ≤ 0 ∩ g3(t) ≤ 0] (4.4c) 

where “∩” represents the intersection (i.e. joint event).  In estimating the probabilities of 

small leak and burst, it is assumed that the occurrences of burst and small leak at a given 

defect are mutually exclusive (Zhou 2011).  

4.3 Burst and Rupture Pressure Models 

In this study, the burst pressure resistance model suggested in Annex O of the 

Canadian pipeline standard CSA Z662-07 (CSA 2007) was selected to evaluate rb in Eq. 

(4.2).  Instead of using the two-term model error (i.e. the additive and multiplicative 

model errors) recommended in Annex O of CSA Z662-07, a single multiplicative model 

error reported by Huang (2011) was employed in this study.  The pressure resistance rb is 

calculated as follows: 

        (4.5a) 
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  (4.5d) 

    
                             

                            
  (4.5e) 

where rbc is the predicted burst pressure without model error; r0 is the burst pressure 

resistance of a defect-free pipe; f, y and u are the flow stress, yield stress and tensile 

strength of the pipe material, respectively; SMYS is the specified minimum yield 

strength; e is the multiplicative model error defined as the ratio of actual-to-predicted 

burst pressure; D is the outside diameter of the pipeline; davg is the average depth of the 

defect (see Fig. 4.1) and can be calculated from the corresponding maximum depth, dmax, 

using the maximum-to-average depth ratio , i.e. davg = dmax/ ; l is the length of the 

defect, and M is the Folias factor or bulging factor.  

The rupture pressure resistance model recommended in Annex O of CSA Z662-07 

was employed in this study.  This model was developed by Kiefner and Vieth (1989) 

based on the flow stress-dependent failure criterion for pressurized pipelines containing 

through-wall flaws.  The rupture pressure resistance, rrp, is calculated as follows: 

    
     

  
   (4.6) 
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The Folias factor M in Eq. (4.6) can be calculated using Eq. (4.5d).  The model error for 

Eq. (4.6) was ignored in the analysis due to a lack of relevant information.  

4.4 Corrosion Growth Model 

The maximum depth of corrosion defect i, dmax, i(t), was assumed to follow a power-

law growth path defined as follows: 

                    
         (4.7) 

where t (years) is the time elapsed since the time of installationi(t) represents the 

model error of the power-law growth model associated with defect i at time t, which is 

assumed to follow a normal distribution with a zero mean and a variance of i
2
, and ai, 

bi and toi define the growth path for defect i.  The parameter ai (ai > 0) is indicative of the 

growth of the defect depth within one year from the defect initiation; bi (bi > 0) defines 

the rate of change of the growth path; that is, bi = 1, bi > 1 and 0 < bi < 1 characterize a 

linear, an accelerating and a decelerating growth path respectively, and toi (years) 

represents the corrosion initiation time (e.g. the time interval between the installation and 

the time at which defect i starts to grow).  The parameters of the growth models, i.e. ai, bi, 

toi and i
2
, can be evaluated using the hierarchical Bayesian model based on the data 

collected from multiple ILIs as described in Chapter 3.  

A linear growth was assumed for the defect length; that is, the length of a corrosion 

defect was assumed to grow at a constant (but uncertain) rate over time (Caleyo et al. 

2002; Hong 1997; Zhou 2011).  Therefore, the length of defect i can be predicted as 

follows:  
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              (4.8) 

where  is the time elapsed since the last inspection (i.e. the forecasting year); li() is the 

length of the defect i at the forecasting year ; loi is the length of the defect i at the time of 

last inspection (i.e. initial length), and rl denotes the length growth rate. 

4.5 System Reliability Analysis 

4.5.1 Basic Assumptions 

In this study, the system reliability of a pipeline was evaluated on a joint-by-joint 

basis; that is, a pipe joint containing multiple active corrosion defects was considered as a 

system.  The typical length of a pipe joint is 10-20 meters.  Because failure of any defect 

on a pipe joint implies failure of the joint, it follows that the pipe joint is a series system.  

The internal operating pressure of the pipeline was assumed to be a time-independent 

random variable.  The internal pressure, pipe geometry and material properties (i.e. 

diameter, wall thickness, yield strength and ultimate tensile strength), maximum-to-

average depth ratio, and the model error associated with the burst pressure model were 

assumed to be mutually independent for a given defect.  Each of these parameters was 

further assumed to be fully correlated for all the defects in a given joint.  

4.5.2 Analysis Procedure 

A combination of the simple Monte Carlo simulation and MCMC simulation 

techniques was used to evaluate the system reliability of a given pipe joint containing 

multiple active corrosion defects.  Because the parameters of the growth model for the 
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defect depth were obtained from the Bayesian updating using the MCMC technique (see 

Chapter 3), it’s advantageous to retain the random samples of these parameters generated 

from MCMC and incorporate the samples in the reliability analysis.  Furthermore, the 

correlations among these parameters are fully preserved by directly using the MCMC 

samples in the reliability analysis.  The simple Monte Carlo technique was used to 

generate random samples for the other parameters in the reliability analysis such as the 

pipe wall thickness, yield strength and model error. 

The samples of dmax,i(t) were obtained by substituting MCMC samples of ai, bi and toi, 

and random samples of i(t) into Eq. (4.7) for different t values corresponding to the 

forecasting years.  Note that the random samples of i (t) were generated from the normal 

distribution with a zero mean and a variance of i
2
, with the values of i

2 
obtained from 

MCMC.  Because the model error, i(t), associated with the power-law model is normally 

distributed,  the random samples of dmax,i(t) may be less than zero or greater than 100%wt, 

which are impossible in reality.  To address this, the distribution of dmax,i(t) was truncated 

at the lower bound of zero and upper bound of 100%wt.  

To calculate the system reliability of a pipe joint containing m active corrosion 

defects over a forecasting period of T years since the last inspection, the follow analysis 

procedure was employed: 

1) Generate N random samples of the maximum depth for each of the m defects at 

each year within the forecasting period T using the procedure described in the 

previous paragraph;  
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2) set sl(), ll() and rp() = 0, where sl(), ll() and rp() denote the counters of 

small leaks, large leaks and ruptures, respectively, that occur in a given 

forecasting year  ( = 1, 2, …, T); 

3) for a given simulation trial k (k = 1, 2, …, N), check if the system has failed and 

determine the corresponding failure mode within the forecasting period T as 

follows: 

3.1) generate samples of the material properties (e.g. y, u) and geometric 

properties (e.g. wt and D) of the pipeline, initial lengths loi (i = 1, 2, …, m) 

and length growth rates rli of the defects, the internal operating pressure p, 

maximum-to-average depth ratio , and the model error e; 

3.2) start from the forecasting year  = 1, carry out the following: 

a) obtain a set of m random samples of the maximum defect depth, 

dmax, i (i = 1, 2, …, m) at , one for each of the m defects; 

b) calculate the lengths of the defects li at  using Eq. (4.8);  

c) calculate 1 max,max{ }i
i

g wt d - ; 

d) substitute the values of wt, D,  e, y (u), li and dmax,i into Eq. 

(4.5); calculate 2 ,min{ }b i
i

g r p - ; 

e) if g1 > 0 and g2 > 0, set  =  + 1 and repeat steps 3.2a) through 

3.2d); if g1 = 0 and g2 > 0, set sl() = sl() + 1; if g2 ≤ 0, calculate 

g3 =       – p, where       is the rupture pressure of the defect with 

the lowest burst pressure at ; set ll() = ll() + 1 if g2 ≤ 0 and g3 

> 0; set rp() = rp() + 1 if g2 ≤ 0 and g3 ≤ 0, and 
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4) repeat steps 3.1) to 3.2) for N simulation trials. 

Once the counts of sl(), ll() and rp() are obtained for the N simulation trials, the 

cumulative probabilities of small leak, large leak and rupture up to a given forecasting 

year , Psl(), Pll() and Prp(), are evaluated as follows: 

       
 

 
       

      (4.9a) 

       
 

 
       

      (4.9b) 

       
 

 
       

      (4.9c) 

4.6 Numerical Example 

4.6.1 General 

The time-dependent system reliability of a joint of a natural gas pipeline located in 

Alberta was evaluated using the methodology described in Section 4.5.  The subject 

pipeline has a nominal outside diameter of 508 mm (20 inches) and an operating pressure 

of 5.654 MPa, and is made from API 5L Grade X52 steel with an SMYS of 359 MPa and 

an SMTS of 456 MPa.  The selected joint is 18.13 m long, has a nominal wall thickness 

of 5.56 mm, and contains ten individual external corrosion defects.  The pipe joint was 

inspected by high-resolution MFL tools in 2004, 2007, 2009 and 2011. 
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4.6.2 Growth Mode for the Defect Depth 

The ILI data of 2004, 2007, 2009 and 2011 were used to develop the power-law depth 

growth model based on the hierarchical Bayesian methodology described in Chapter 3.  

The maximum depths of the defects were predicted for a period of 10 years from the last 

inspection (i.e. 2011).  The growth paths obtained from the median values of the marginal 

posterior distributions of the parameters in the growth model for four selected defects 

(i.e. defects #2, #4, #5 and #7) are shown in Fig. 4.2.   The ILI-reported depths of these 

defects are also shown in this figure.  This figure indicates that the growth paths of these 

defects vary significantly according to the growth model; for example, the depths of 

defects #2 and #4 are predicted to grow by less than 5%wt from 2011 to 2021, whereas 

the depths of defects #5 and #7 are predicted to grow by more than 20%wt from 2011 to 

2021.  
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b) Defect #4 

 

c) Defect #5 
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d) Defect #7 

Figure 4.2 Predicted growth paths for defects #2, #4, #5 and #7 on the selected pipe 

joint 

 

Two Markov chains were run simultaneously to generate 25,000,000 MCMC samples 

(after the burn in period of 10,000) of the defect depth in each chain for each defect at 

every forecasting year.  A thinning interval of 50 was then applied to the generated 

samples to reduce the autocorrelation so that the samples from different sequences can be 

approximately considered to be independent of each other, allowing them to be used in 

the same way as the samples generated from the simple Monte Carlo simulation.  

Therefore, a thinning interval of 50 results in 500,000 samples in each chain to be stored, 

which makes a total of 1,000,000 samples for each defect at each forecasting year.  The 

autocorrelation of the 500,000 samples in each chain was found to be no greater than 0.4-
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0.6 for all the defects considered. The thinning interval of 50 was therefore deemed 

adequate.  

The probability density functions (PDF) of the predicted depths of the four defects 

(defects #2, #4, #5 and #7) in 2012, 2016 and 2021 are shown in Figs. 4.3.  These figures 

indicate that the PDF curves move toward larger depths with time and that the spread of 

these curves also increases over time (i.e. the uncertainty in the predicted depth increases 

with time). 
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c) Defect #5 

 

d) Defect #7 

Figure 4.3 Marginal posterior probability density functions of predicted depths in 2012, 

2016 and 2021 for defects #2, #4, #5 and #7 

 

4.6.3 Probabilistic Characteristics of Input Parameters 

The statistical characteristics of the basic random variables involved in the numerical 

example are listed in Table 4.1.  The statistical information about the pipeline geometry, 

material strength and defect geometry were obtained from previous studies indicated in 
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the table.  The nominal values of the parameters are shown in Table 4.2.  The nominal 

values of the initial lengths of the defects were obtained from the ILI carried out in 2011.  

Table 4.1 Probabilistic characteristics of the basic random variables used in the reliability 

analysis 

Parameter 
Distribution  

Type 

Mean-to- 

nominal 

 ratio 

Coefficient of 

variation 

(COV) 

Source 

Diameter Deterministic 1.00 - 
Jiao et al. 

(1995) 

Wall thickness Normal 1.00 1.5% Zhou (2010) 

Yield stress Normal 1.11 3.4% 
Jiao et al. 

(1997) 

Tensile 

strength 
Normal 1.12 3% 

Jiao et al. 

(1995) 

Initial length of 

defect  

Truncated Normal 

(lower bound = 0) 
1.00 

ILI tool 

specification
a
 

Kariyawasam 

and Peterson 

(2010) 

Defect length 

growth rates 
Lognormal 

3.0
b
 

(mm/yr)  
50% Zhou (2011) 

Internal 

pressure 
Gumbel 1.02 2% CSA (2007) 

Burst capacity 

model error 
Lognormal 1.103

b
 17.2% Huang (2011) 

Maximum-to-

average defect 

depth ratio 

Shifted lognormal 

(lower bound = 1.0) 
2.08

b
 50% CSA (2007) 

 

  

                                                 

 

a
 +/- 10mm with 80% confidence 

b
 Mean value 
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Table 4.2 Nominal values of the input parameters used in the reliability analysis 

Parameter Nominal value Unit 

Diameter 
508 

mm 
Wall thickness 

5.56 

SMYS 
359 

MPa SMTS 
455 

Internal pressure 5.654 

Initial lengths 

of defects 

defect #1 21 

mm 

defect #2 19 

defect #3 24 

defect #4 19 

defect #5 29 

defect #6 41 

defect #7 21 

defect #8 18 

defect #9 25 

defect #10 29 

 

4.6.4 Results 

A total of 1,000,000 simulation trials were carried out to evaluate the probabilities of 

small leak, large leak and rupture of the pipe joint.  The cumulative failure probabilities 

corresponding to the three different failure modes are shown in Fig. 4.4.  This figure 

indicates that the probability of small leak is the highest of those of the three failure 

modes.  Furthermore, the probability of rupture for the first four years of the forecasting 
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period is too small to be calculated reasonably accurately using 1,000,000 simulation 

trials. 

 

Figure 4.4 Cumulative failure probabilities of the pipe segment for three different failure 

modes 

4.6.5 Sensitivity analysis 

The model error associated with burst pressure model was assumed to be fully 

correlated among the different defects in obtaining the analysis results shown in Fig. 4.4.  

In reality, the model errors for different defects are expected to be partially correlated 

because the model error has been found (Huang 2011) to depend on the defect geometry, 

which varies from defect to defect, and the pipe strength, which is likely the same (or 

highly correlated) for all the defects in the same pipe joint.  To investigate the impact of 
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two bounding scenarios, i.e. fully-correlated and independent model errors, were 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e 

fa
il
u

re
 p

ro
b

a
b

il
it

y

Time elapsed since the last inspection in 2011 (yrs)

Small leak

Large leak

Rupture



122 

 

considered.  The failure probabilities of the pipe joint corresponding to independent 

model errors were evaluated and are compared with the failure probabilities 

corresponding to fully-correlated model errors in Fig.4.6.  This figure indicates that the 

probability of large leak corresponding to independent model errors is substantially 

higher than that corresponding to fully-correlated model errors and that the difference 

between the failure probabilities corresponding to these two scenarios decreases with 

time.  On the other hand, the correlation between the model errors has almost no impact 

on the probability of small leak, which is expected because the model error has little 

impact on the probability of small leak in the first place (see Eq. (4.1)).  The correlation 

between the model errors has a negligible impact on the probability of ruptures for this 

example, which can be attributed to the fact that the defects considered are all relatively 

short, making large leak the dominant failure mode given burst. 

 

Figure 4.5 Impact of correlation between the model errors of the burst capacity models, e, 

for different defects on the system reliability  
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Additional sensitivity analyses were carried out to examine the impact of the 

correlation between the maximum-to-average depth ratios for different defects.  For this 

purpose, the probabilities of small leak, large leak and rupture were evaluated considering 

independent maximum-to-average depth ratios and then compared with those of the 

baseline case where maximum-to-average depth ratios for different defects were assumed 

to be fully correlated.  The comparison is shown in Fig. 4.6.  Note that in these two cases 

fully-correlated model errors were assumed for different defects.  Figure 4.6 suggests that 

the correlation between the maximum-to-average depth ratios has a negligible impact on 

the system reliability of the pipe joint. 

 

 

Figure 4.6 Impact of correlation between the maximum-to-average depth ratios, , for 

different defects on the system reliability 
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4.7 Conclusion 

A methodology was proposed to evaluate the time-dependent system reliability of a 

pressurized pipeline segment containing multiple active corrosion defects.  The growth of 

the depth of individual corrosion defect on the pipeline segment was characterized by a 

power-law function of time, and the parameters of the growth model were quantified 

from the Bayesian updating based on data obtained from multiple in-line inspections.  

The pipeline segment was modeled as a series system with three distinctive failure 

modes, namely small leak, large leak and rupture.  A simulation-based approach was 

employed to calculate the probabilities of small leak, large leak and rupture of the pipe 

segment, whereby random samples of the all input parameters except the defect depth 

were generated from the simple Monte Carlo simulation and the random samples of the 

defect depth were generated from the Markov Chain Monte Carlo simulation.  The 

proposed methodology can be used in risk- and reliability-based pipeline corrosion 

management programs to facilitate defect repair and mitigation that satisfy both safety 

and economic constraints. 

The methodology was illustrated using a numerical example that involves a natural 

gas pipeline joint containing ten active external corrosion defects.  Two sensitivity 

analyses were carried out to examine the impact on the system reliability due to the 

correlation between the model errors of the burst capacity models associated with 

different defects and the correlation of maximum-to-average depth ratios for different 

defects.  The results indicate that the probability of large leak is sensitive to the 

correlation between the model errors: the probability of large leak corresponding to 
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independent model errors is markedly higher than that corresponding to fully-correlated 

model errors.  On the other hand, the correlation between the model errors has no impact 

on the probability of small leak.  The results also suggest that the failure probability of 

the pipe joint is insensitive to the correlation between the maximum-to-average depth 

ratios for different defects. 
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Chapter 5  Summary and Conclusions 

5.1 General 

Characterization of the growth of metal-loss corrosion defects on energy pipelines is a 

key focus for pipeline operators because defect growth rates are paramount to a number 

of critical corrosion management actions such as determination of location and timing of 

defect mitigations, development of re-inspection intervals and evaluation of time-

dependent failure probability of the pipeline.  In-line inspection (ILI) has been widely 

used to collect corrosion data on pipeline for the past few decades.  In the study reported 

in this thesis, a calibration model was developed to quantify the measurement errors 

associated with the ILI data; a Bayesian model was then developed to characterize the 

growth of depths of corrosion defects based on the ILI data by incorporating the 

measurement errors associated with the data, and finally a methodology was proposed to 

evaluate the time-dependent system reliability of a pipeline segment containing multiple 

active corrosion defects by incorporating the developed corrosion growth model. 

5.2 Bayesian Model for Calibration of ILI Tools 

In Chapter 2, a Bayesian model was developed to calibrate the ILI tool and quantify 

the measurement errors associated with the ILI data.  The calibration was carried out by 

comparing ILI-reported depths with the corresponding field-measured depths for a set of 

recoated defects.  The measurement error associated with the field measurement was 

quantified first using Jaech’s method (Jaech 1985), and found to be negligibly small.  

Therefore, the field-measured depth was assumed to equal the actual depth of the defect.  
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The ILI-reported depth was assumed to be a linear function of the corresponding field-

measured depth with an intercept representing the constant bias and a slope representing 

the non-constant bias plus a random scattering error.  The model was developed in a 

Bayesian framework.  The Bayesian updating was carried out using Markov Chain Monte 

Carlo (MCMC) simulation techniques.  The probabilistic characteristics of constant and 

non-constant biases, standard deviations of the random scattering errors as well as the 

correlation coefficients between the random scattering errors of different ILI tools were 

evaluated based on the MCMC samples.  The mean value of the marginal posterior 

distribution of each parameter was considered as the point estimate. 

In two case studies, the proposed model was applied to the ILI tools that were used to 

inspect the corrosion defects on two in-service pipelines located in Alberta.  Each 

pipeline has been inspected multiple times by high-resolution Magnetic Flux Leakage 

(MFL) tools that were from two different ILI vendors.  The ILI tools used in 2004, 2007, 

2009 and 2011 on the subject pipeline of Case 1, and the ILI tools used in 2004, 2007 and 

2009 on the subject pipeline of Case 2 were calibrated.  The results of calibration indicate 

that the accuracies of the ILI tools vary markedly.  For example, the ILI tool used in 2004 

on the subject pipeline of Case 1 is the most accurate among the four ILI tools considered 

in that the corresponding constant and non-constant biases (2.04%wt and 0.97 

respectively) are closer to zero and unity, respectively, than those of the other three tools, 

and the standard deviation of the scattering error is the second lowest (5.97%wt) among 

the four ILI tools and only slightly higher than the lowest standard deviation (5.94%wt).  

On the other hand, the measurement error of the ILI tool used on the subject pipeline of 

Case 1 in 2007 is relatively large because the constant and non-constant biases (-
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15.28%wt and 1.40 respectively) are significantly different from zero and unity, 

respectively, and the standard deviations of the scattering error (9.05%wt) is large.  

Furthermore, it was found that the random scattering errors associated with different ILI 

tools used in the same pipeline are highly correlated: the corresponding correlation 

coefficients are consistently greater than or equal to 0.70 for both cases.  It was further 

observed that the correlation coefficient is slightly higher for the tools from the same 

vendor than those of the tools from different vendors.  For Case 1, for example, the 

correlation coefficient between the random scattering errors associated with the ILI tools 

of 2004 and 2011, which are from the same vendor, is 0.82, whereas the correlation 

coefficient is 0.70 between the ILI tools of 2004 and 2007, which are from different 

vendors. 

Any number of ILI tools can be calibrated simultaneously using the proposed 

Bayesian model.  The model will assist the ILI vendors in improving the sizing 

algorithms of the ILI tools used on a particular pipeline, and facilitate the development of 

a reliable corrosion growth model based on ILI data by accurately quantifying the 

measurement errors of the ILI tools as well as the correlation between the measurement 

errors of different tools. 

5.3 Hierarchical Bayesian Corrosion Growth Model Based on In-line Inspection 

Data 

In Chapter 3, a defect-specific growth model was developed to predict the depth of 

individual corrosion defect on underground energy pipelines.  A power-law growth path 

over time, characterized by two power-law coefficients and the defect initiation time, was 



131 

 

assumed for the depths of active corrosion defects on pipeline.  The parameters of the 

growth model were evaluated based on the data obtained from multiple in-line 

inspections using the hierarchical Bayesian method.  The model was formulated to 

account for the constant and non-constant biases and random scattering errors of the ILI 

data, as well as the potential correlation between the random scattering errors associated 

with different ILI tools.  The MCMC simulation was carried out to make statistical 

inference of the model parameters. 

Two case studies, involving ILI data for corrosion defects on two natural gas 

pipelines currently in service, were carried out to illustrate the application of the proposed 

growth model.  In Case 1, the growth models for 62 external corrosion defects were 

developed based on the corresponding ILI data obtained in 2000, 2004 and 2007, whereas 

the growth models for 60 external corrosion defects were developed based on the 

corresponding ILI data obtained in 2004, 2007 and 2009 in Case 2.  The measurement 

errors associated with the ILI tools as well as the correlation coefficient between the 

measurement errors of different ILI tools were obtained from the Bayesian calibration 

model described in Chapter 2.  To validate the growth model, the depths of the 62 defects 

of Case 1 in 2010 were predicted using the growth models and compared with the 

corresponding defect depths obtained from field measurements carried out in 2010, 

assuming that the field measurements are error free.  For Case 2, the depths of the 60 

defects in 2011 were predicted using the growth models and compared with the 

corresponding field-measured depths in 2011. 
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The comparison suggests that the growth model can predict the actual depth of the 

defect reasonable well; for example, 89% and 78% of the predicted depths fall within the 

bounds of actual depth ±10%wt in Cases 1 and 2, respectively.  Because the measurement 

error associated with pinholes and circumferential grooving type of defects is relatively 

larger (Maes et al. 2008), the prediction was found to be relatively poor for these types of 

defects. 

To examine the merit of accounting for the correlations among the random scattering 

errors associated with different ILI tools in the growth model, two additional analyses 

were performed considering fully-correlated and independent scattering errors 

respectively.  The mean squared error of prediction (MESP) was adopted as a metric to 

evaluate the predictive accuracies of the models with partially-correlated (with the 

correlation coefficient obtained from Bayesian calibration), fully-correlated and 

independent random scattering errors among different ILI tools.  The results indicate that 

the predictive accuracy is higher for the model with partially-correlated random 

scattering errors (i.e. the corresponding MSEP is lower) as compared to the models with 

fully-correlated and independent random scattering errors.  Furthermore, hypothesis 

testing was carried out to examine the statistical significance of the difference in MSEP’s 

of different models.  The results suggest that the difference in MESP’s of the models with 

fully-correlated and partially-correlated scattering errors is statistically significant for 

Case 2, whereas the difference in MESP’s of the models with independent and partially-

correlated scattering errors is statistically insignificant for both Case 1 and Case 2.  

Therefore, it is recommended to assume the random scattering errors between different 
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ILI tools to be independent of each other, if the partial correlations between the scattering 

errors are not quantified. 

The predictive accuracy of the Bayesian hierarchical power-law growth model was 

compared with that of the linear growth model commonly used in the pipeline industry.  

It was found that the prediction of the proposed model is more accurate than that of the 

linear growth model.  For example, 78% of the predicted depths fall within the ±10%wt 

bounding lines based on the power-law growth model, compared with about 65% of the 

predicted depths falling within the same bounding lines based on the linear growth model 

for the 60 defects considered in Case 2. 

The proposed growth model will facilitate the application of defect-based pipeline 

corrosion management program by maintaining the structural integrity of the pipelines 

while achieving optimal allocation of the limited resources for maintenance. 

5.4 Time-dependent System Reliability Analysis of a Corroding Pipeline 

In Chapter 4, a methodology was developed to evaluate the time-dependent system 

reliability of a segment of a pressurized pipeline containing multiple active corrosion 

defects.  A defect-specific power-law model was employed to characterize the growth of 

the depth of individual corrosion defect, whereas the length of the defect was assumed to 

grow in a linear fashion.  The parameters of the power-law model were evaluated from 

the Bayesian updating based on the data from multiple in-line inspections.  A 

combination of the conventional Monte Carlo simulation and Markov Chain Monte Carlo 

simulation techniques was employed to evaluate the failure probabilities of the pipeline 
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segment in terms of three distinctive failure modes, namely small leak, large leak and 

rupture. 

The proposed methodology was demonstrated using a numerical example whereby 

the time-dependent system reliability of a joint of an in-service underground natural gas 

pipeline containing ten active external corrosion defects was evaluated.  The burst and 

rupture pressure capacity models recommended in Annex O of the Canadian pipeline 

standard CSA Z662-07 (CSA 2007) were adopted in this study.  The impact on the system 

reliability due to the correlation between the model errors associated with the burst 

capacity models at different defects and the correlation of maximum-to-average depth 

ratios for different defects was investigated in two sensitivity analyses.  The results 

suggest that the probability of large leak is sensitive to the correlation between the model 

errors in that independent model errors result in markedly higher probability of large leak 

than fully-correlated model errors.  On the other hand, the probability of small leak is 

insensitive to the correlation between the model errors.  The results also indicate that the 

correlation between the maximum-to-average depth ratios for different defects has a 

negligible impact on the failure probability of the pipe joint. 

5.5 Recommendations for Future Work 

The recommended work for future investigations includes the following. 

1. Further investigations are needed to quantify the measurement errors of the 

ILI tool for specific types of defects (e.g. pinholes and circumferential 

grooving type of defects) to improve the predictive accuracy of the defect 

growth model. 
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2. The potential spatial correlations among the defects of close proximity need to 

be investigated and incorporated in the corrosion growth model. 

3. Because external corrosion on underground pipelines is largely influenced by 

the protective coating on the pipeline and characteristics of the surrounding 

soils, the corrosion growth model can be improved by incorporating the 

properties of the coating and surrounding soils (e.g. soil type, water content, 

pH value, etc.) in the model. 

4. Research is needed to characterize the growth of the length of individual 

corrosion defect based on the ILI data. 

5. Due to the unavailability of field measurements for internal corrosion defects, 

the corrosion growth model proposed in this study was validated for external 

corrosion defects only; therefore, further studies should be carried out to 

validate the model for internal corrosion on pipeline. 
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Appendix 2A  Algorithms for Performing Markov Chain Monte Carlo Simulation 

2A.1 Metropolis-Hastings Algorithm  

The Metropolis-Hastings (M-H) algorithm is the most general Markov chain based 

simulation technique.  The algorithm was first introduced and formulated by Metropolis 

et al. (1953) and later generalized by Hastings (1970).  This simulation method is 

applicable to any distribution types including multivariate distributions and suitable for 

the high dimensional Bayesian models.  The Metropolis-Hastings algorithm uses two 

distributions, namely the proposal or jumping distribution (Chib and Greenberg 1995) 

and the stationary or target distribution that is the posterior distribution in this study.  The 

initial value of the parameter of interest  is chosen arbitrarily and denoted as (0)
.  At 

each iteration i, the value of  in the next iteration, (i+1)
, is chosen by generating a 

candidate value * from the proposal distribution (|(i)), and checking if * will be 

accepted as (i+1)
 based on the acceptance criterion.  If the candidate value is accepted 

then (i+1)
 is set as*, otherwise (i+1)

 = i.  The acceptance function is defined as, 

                 
               

                 
  (2A.1) 

where            is the probability of accepting * as an updated value of (i) at step i, 

and p() is the probability density function of the target distribution (i.e. posterior 

distribution). 

If the posterior probability is larger for the candidate value (*) than the current value 

((i)), i.e. numerator is higher than the denominator in Eq. (2A.1), the candidate value 
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will be automatically accepted in the next iteration, i.e. (i+1) 
=*.  However, even if  is 

less than unity, the candidate value may still be accepted.  This is determined by drawing 

a random sample from a standard uniform distribution, U(0,1), and comparing the sample 

with  The M-H algorithm is summarized as follows: 

1. Select the initial value (0)
 and set (1)

 = (0)
;  

2. for i = 1, 2, 3, …, N, repeat the following steps: 

a. generate a candidate value * from the proposal distribution conditional 

on the current value, i.e. (|(i)); 

b. calculate the acceptance ratio as follows: 

         
               

                 
  

c. draw a random sample  from a standard uniform distribution U(0, 1), and 

d. if  , set (i+1)
 = *; otherwise (i+1)

 = (i). 

The proposal distribution can take any form.  But the proper choice of the proposal 

distribution will increase the rate of convergence to the target distribution and reduce the 

autocorrelation between the generated samples.  Most commonly used proposal 

distributions are the uniform, normal and student t distributions. 

Recall the example of count data in Section 2.2.1.  Assume that y = (1, 3, 2) are the 

count data, and that the shape and scale parameters of the gamma prior distribution for 

the count rate are  = 2 and  = 2, respectively.  Now we will generate MCMC samples 

for  using the M-H algorithm.  Consider a normal distribution with a variance of unity 

as the proposal distribution.  
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The target distribution is                                 

The proposal distribution is              
 

 
      

 

The algorithm proceeds as follows: 

 Assume an initial value (0)
 = 2.0 and set (1)

 = 2.0; 

 for i = 1 

o draw a candidate sample * 
from (*

|(1)
, 1), i.e. N(2.0, 1.0); * 

= 1.82; 

o calculate         
                

  
 
 
         

 

                    
  

 
   

       
  ;  = 1.0; 

o generate  from U(0, 1); = 0.35, and 

o as   , *
is accepted;(2)

 = *
= 1.82, then the chain of   becomes 

   
    

    
   

    

    
  

 for i = 2 

o draw a candidate sample * 
from N(1.82, 1); *

= 3.24; 

o calculate         
                

  
 
 
         

 

                    
  

 
   

       
  ;  = 0.05; 

o generate  from U(0, 1);  = 0.59, and 

o as <  , the candidate point is rejected;(3)
 = (2)

 =1.82, then the chain of 

 becomes 

   
    

    

    

   
    
    
    

  

The cycle continues for i = 3, 4, …, N to generate N number of samples of . 
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2A.2 Gibbs Sampler 

The Gibbs sampler (Gelfand and Smith 1990; Geman and Geman 1984; Gilks et al. 

1993) is a special case of the Metropolis-Hastings algorithm.  This sampling method is 

applicable where the full conditional distributions of the parameters are available in 

known distribution forms.  The full conditional distribution can be written as p(j |(-j), X), 

where (-j) = (1, …, j-1, j+1, …, k), where k is the total number of parameters.  In 

Gibbs sampling approach, the full conditional distribution is used as the proposal 

distribution, so that the acceptance rate  becomes unity; therefore, the candidate sample 

will always be accepted.  The main advantages of Gibbs sampler are that it does not 

require specification of the proposal distribution; it is highly efficient in getting 

convergence as each candidate value is accepted, and the implementation is very easy due 

to the use of closed form distributions.  The sampling procedure using Gibbs sampler is 

described below.  

Suppose the joint distribution of  = (1, 2, …, k) is uniquely determined by the full 

conditional distributions, pj(j |(-j), X) (j = 1, 2, …, k).  Set the initial values as  
(0)

= 

(1
(0)

, 2
(0)
, …, k

(0)
).  For each iteration i (i = 1, 2, …, N) do the following: 

(1) Draw 1
(i)

 from p1(1 |2
(i-1)

, 3
(i-1)

, …, k
(i-1)

, X); 

(2) draw 2
(i)

 from p2(2 |1
(i)

, 3
(i-1)

, …, k
(i-1)

, X); 

(3) draw 3
(i)

 from p3(3 |1
(i)

, 2
(i)

, 4
(i-1)

, …, k
(i-1)

, X); 

… 
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… 

(j) draw j
(i)

 from pj(j |1
(i)

, 2
(i)
, …,j-1

(i)
, j+1

(i-1)
, …, k

(i-1)
, X); 

… 

… 

(k) draw k
(i)

 from pk(k |1
(i)

, 2
(i)
, …, k-1

(i)
, X); 

 et’s consider a simple fixed effect linear model yi =  + i, where i follows a normal 

distribution with zero mean and variance of 
2
, i.e. i  ~ N(0, 

2
).  Assume that the prior 

distributions of  and 
2 

follow a normal and an inverse-gamma distribution, 

respectively.  Therefore, the model can be summarized as follows: 

Likelihood of data:          
    

 

     
      

 

 
 
    

  
 
 

  
    

Prior distribution of :      
 

    
      

 

 
 
   

 
 
 

  

Prior distribution of 
2
:     

   
 

   
          

 

  
   

The joint posterior distribution of  and 
2
:       

                
          

   
    

where a and b are the mean and standard deviation of the normal prior distribution of ; c 

and d are the shape and scale parameters of the inverse-gamma prior distribution of 
2
.  

a, b, c and d are called the hyper-parameters of the model and are all known quantities. 

The full conditional distributions of  and 
2
 can be evaluated as follows: 
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From the above we can conclude that  

      
        

     
 
       

 

      
 

 
  

   

      
 
  (2A.2) 

    
           

 

 
   

         
      

 
  (2A.3) 

Once the full conditional distributions are available the MCMC samples can be 

generated using the Gibbs sampler that is outlined below: 
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 Set the initial values (0)
 and (

2
)
(0)

; 

 for t = 1, 2, …, N do the following steps: 

o generate (t)
 from   

     
 
        

       

       
       

 
   

         

       
       

 ; 

o generate (
2
)
(t)

 from    
 

 
   

          
  

      

 
 ; 

For a given Bayesian method, the full conditional distributions of the parameters of 

the model are not necessarily all closed-from distributions in most of the cases.  In such a 

case a combination of Metropolis-Hastings and Gibbs sampler, which is known as 

Metropolis within Gibbs procedure (Ntzoufras 2011), is used, whereby Gibbs sampler is 

used to generate samples for the parameters with closed-form full conditional 

distributions and Metropolis-Hastings is used for the rest of the parameters. 
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Appendix 2B  Grubbs’ Estimator and Jaech’s Estimator 

2B.1 Grubbs’ Estimator 

The statistical approach to quantify the random scattering measurement errors 

associated with two measuring devices was first introduced by Grubbs (1948).  The 

methodology uses the method of moment to estimate the variance of the random 

scattering measurement error associated with each tool.  The methodology is described 

below. 

Consider that a given parameter (e.g. depth of a corrosion defect) is measured by two 

different measuring tools, Tool 1 and Tool 2 for m different items (e.g. defects).  The 

relationships between the actual and measured values of the parameter are as follows: 

            (2B.1a) 

            (2B.1b) 

where y1i and y2i (i = 1, 2, …, m) are the measurements reported by Tool 1 and Tool 2, 

respectively, for item i; 1i and 2i are the random scattering errors associated with Tool 1 

and Tool 2, respectively, and xi is the actual value of item i.  It is assumed that 1) 1i and 

2i are independent of each other and also among themselves; 2) 1i and 2i are 

independent of xi, and 3) the mean values of 1i and 2i are zero. 

If m is sufficiently large, the variances of the random scattering errors associated with 

the two tools can be estimated as follows: 

   
     

      (2B.2a) 
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      (2B.2b) 

where1
2
 and 2

2
 are the estimated variances of random scattering errors associated 

with Tool 1 and Tool 2, respectively; s1
2
 and s2

2
 are the sample variances of y1i and y2i, 

respectively, and s12 is the sample covariance between y1i and y2i. 

For m measured items the unbiased sample variances and covariance are given as 

follows: 

  
  

 

   
       

  
    

 

 
     

 
       (2B.3a) 

  
  

 

   
       

  
    

 

 
     

 
       (2B.3b) 

    
 

   
       

 
         

 

 
     

 
         

 
      (2B.3c) 

2B.2 Jaech’s Estimator 

Grubbs’ method results in negative value of the variance of random scattering error, 

which is unrealistic, if the sample covariance is greater than the sample variance (i.e. s1
2 
< 

s12 or s2
2 

< s12).  To overcome this problem, Jaech (1985) introduced the so-called 

constrained expected likelihood (CEL) estimation method to estimate the variances of the 

random measurement errors, whereby the expectation of the variance is restricted to the 

space of nonnegative values only.  In this estimation process a proportion quantity v is 

defined such that the total scatter is distributed to each tool in the proportion of v and 1- 

v.  The quantity v is bounded between 0 and 1 to ensure that the variance of the 

measurement error is greater than zero for each tool for all values of v.  
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Let S denote the total scatter associated with both tools.  Therefore the quantity v is 

defined such that 

   
                (2B.4a) 

   
          (2B.4b) 

The total scatter S can be calculated from the sample variances and covariance as 

follows: 

  
   

 
   

    
       (2B.5) 

Based on the likelihood function the so-called sharing function, f(v), can be derived as 

follows (Jaech 1985): 

      
    

   
          

     
  

     

 (2B.6) 

The estimates of 1
2
 and 1

2
 can be then obtained as follows: 

   
  

         
 
 

       
 
 

 (2B.7) 

   
  

             
 
 

       
 
 

      
  (2B.8) 

References 

Grubbs, F. E., 1948. On Estimating Precision of Measuring Instruments and Product 

Variability. Journal of the American Statistical Association, 43(242), pp. 243-264. 

Jaech, J. L., 1985. Statistical analysis of measurement errors. Jhon Wiley & Sons, 

Inc., New York, NY, USA.  



147 

 

Appendix 2C  Derivation of the Conditional Posterior Distributions of Parameters 

of Bayesian Calibration Model 

1. 1, 2, …, n 

Likelihood:                    

Prior distribution:            
   
 

         

where  = (1, 2, …, n)
T
 and  = (1, 2, …, n)

T
. 

Therefore, the posterior distribution of 1 is as follows: 

                    

 

   

 

       
 

     
 

 

      
 

 
              

   
                 

 
    

 

    
     

 

 

       

     

      
 

 
                  

                 
          

 

 

   
       

     

      
 

 
            

   
                       

   
      

   
   

      
                        

 

 

   
       

     

      
 

 
           

              
 

 

   
       

  
 
      

Now consider (dmi – dai) =(xi1, xi2, …, xin)
T
 and  
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So, 
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Therefore,          
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Similarly for j = 2, 3, …, n the posterior distribution of j is 
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2. 1, 2, …, n 

Likelihood:                    

Prior distribution:             
   
 

             

Therefore, the posterior distribution of 1 is as follows: 
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where   
    

          

          

 
   

 
   

  
    

  

Similarly for j = 2, 3, …, n, the posterior distribution of j is 

            
 

 
       

                                        
   

   

                                  
     

 

 

The prior distribution for   
   was assigned as follows: 

  
                   

Therefore the prior distribution of the covariance matrix  follows an inverse-Wishart 

(R, k) distribution.  The inverse-Wishart density is given by 

      
      

 
  
    

 
  

    
  

     
      

 

 
      

     

where  and R are n x n positive definite matrices; n() is the multivariate gamma 

function;    
 

 
             

 

 
 

     

 
  

   , and tr() denotes the trace of a square 

matrix , i.e. the sum of the diagonal elements of . 
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Following the matrix algebra it can be proved (Hoff 2009) that  

               
   

                
 
          

   , where 

                                
  

    

Therefore, 
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Therefore we have 
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Appendix 2D  OpenBUGS code for Bayesian calibration model of Case 1 

# Model specification 

model{ 

# likelihood function 

 for( i in 1 : m ) { 

  for( j in 1 : n ) { 

   dm[i , 1:n] ~ dmnorm(mu[i , 1:n], tau[ , ]) # tau is the precision 

matrix 

   mu[i , j] <- alpha[j] + beta[j] * df[i] 

  } 

 } 

# Prior distribution specification 

 tau[1:n , 1:n] ~ dwish(R[ , ], n) 

 for( k in 1 : n ) { 

  alpha[k] ~ dnorm(0, 1.0E-4) 

  beta1[k] ~ dbeta(5, 5) 

  beta[k] <- 2 * beta1[k] 
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 } 

# Output analysis 

 Sigma.epsilon[1:n , 1:n] <- inverse(tau[ , ]) 

 for (s in 1 : n){ 

         for (t in 1 : n) { 

   rho [s, t]<-Sigma.epsilon[s, t] / sqrt(Sigma.epsilon[s, s] * 

Sigma.epsilon[t, t]) 

    } 

   } 

}# End of the model 

# Data  

list(dm = structure( 

.Data = c(dm[1, 1], dm[1, 2], …, dm[1, n], 

dm[2, 1], dm[2, 2], …, dm[2, n], 

…  

…  

dm[m-1, 1], dm[m-1, 2], …, dm[m-1, n], 

dm[m, 1], dm[m, 2], …, dm[m, n]), 
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.Dim = c(m, n)), 

df = c(df[1], df[2], …, df[i], …, df[m]), 

m =128, n= 4, 

R = structure( 

.Data = c(0.001, 0, 0, 0, 

0, 0.001, 0, 0, 

0, 0, 0.001, 0, 

0, 0, 0, 0.001), 

.Dim=c(4, 4))) 

# Assignment of initial values for chain1 

list(tau = structure( 

.Data = c(0.01, 0, 0, 0, 

0, 0.01, 0, 0, 

0, 0, 0.01, 0, 

0, 0, 0, 0.01), 

.Dim = c(4, 4)), 
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alpha = c(0, 0, 0, 0), beta1= c(0.5, 0.5, 0.5, 0.5)) 

# Assignment of initial values for chain1 

list(tau=structure( 

.Data = c(0.05, 0, 0, 0, 

0, 0.05, 0, 0, 

0, 0, 0.05, 0, 

0, 0, 0, 0 05), 

.Dim = c(4, 4)), 

alpha = c(1, 1, 1, 1), beta1= c(0.3, 0.3, 0.3, 0.3)) 

 



156 

 

Appendix 2E  OpenBUGS code for Bayesian calibration model of Case 2 

# Model specification 

model{ 

# likelihood function 

 for( i in 1 : m ) { 

  for( j in 1 : n ) { 

   dm[i , 1:n] ~ dmnorm(mu[i , 1:n], tau[ , ])# tau is the precision 

matrix 

   mu[i , j] <- alpha[j] + beta[j] * df[i] 

  } 

 } 

# Prior distribution specification 

 tau[1:n , 1:n] ~ dwish(R[ , ], n) 

 for( k in 1 : n ) { 

  alpha[k] ~ dnorm(0, 1.0E-4) 

  beta1[k] ~ dbeta(5, 5) 

  beta[k] <- 2 * beta1[k] 
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 } 

# Output analysis 

 Sigma.epsilon[1:n , 1:n] <- inverse(tau[ , ]) 

 for (s in 1 : n){ 

         for (t in 1 : n) { 

   rho [s, t]<-Sigma.epsilon[s, t] / sqrt(Sigma.epsilon[s, s] * 

Sigma.epsilon[t, t]) 

    } 

   } 

 }# End of the model 

# Data  

list(dm = structure( 

.Data = c(dm[1, 1], …,dm[1, n], 

 dm[2, 1], …, dm[2, n], 

 …  

…  

dm[m-1, 1], …, dm[m-1, n], 

dm[m, 1], …, dm[m, n], 
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.Dim = c(m, n)), 

df = c(df[1], df[2], …, df[i], …, df[m]), 

m =128, n = 3, 

R = structure( 

.Data = c(0.001, 0, 0, 

         0, 0.001, 0, 

         0, 0, 0.001), 

.Dim = c(3, 3))) 

# Assignment of initial values for chain1 

list (tau = structure( 

.Data = c(0.01, 0, 0, 

        0, 0.01, 0, 

        0, 0, 0.01), 

.Dim = c(3, 3)), 

alpha = c(0, 0, 0), beta1= c(0.5, 0.5, 0.5)) 
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# Assignment of initial values for chain2 

list(tau = structure( 

.Data = c(0.05, 0, 0, 

        0, 0.05, 0, 

        0, 0, 0.05), 

.Dim = c(3, 3)), 

alpha = c(1, 1, 1), beta1= c(0.3, 0.3, 0.3)) 
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Appendix 3A  Derivation of the Conditional Posterior Distributions of 

the HBM corrosion growth model 

1. daij 

Likelihood:                     

By combining Eqs. (3.7) and (3.8d), we can write the prior distribution of daij as follows: 

                  
  
    

   , which is iid for i = 1, 2, …, m; and independent for j = 1, 

2, …, n. 

Therefore, the conditional posterior distribution of daij (i = 1, 2, …, m; j = 1, 2, …, n) can 

be derived as follows: 
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2. ai 

Likelihood:                   
  
    

    



161 

 

Prior distribution:   
   
 

       
          

Conditional posterior distribution: 
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Hence,  

        
      

              
   

         
  

  
          

       
  

   

  
   

   
 

  
          

       
  

   

   

 

3. bi 

Likelihood:                   
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Prior distribution:   
   
 

        
           

Conditional posterior distribution: 
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4. toi 

Likelihood:                   
  
    

    

Prior distribution:    
   
 

           

Conditional posterior distribution: 
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5. i
2
 

Likelihood:                   
  
    

    

Prior distribution of 1/i
2
:      

  
   
 

        

Therefore, the prior distribution of i
2 

is    
  
   
 

         , where   = 1/p 

Conditional posterior distribution: 

     
                          

              

 

   

 

    
 

    
 
      

 

 
 
               

  

   
 
 

   
     

 

    
          

  

   
     

  
 

    
 
 

 

 

    
           

                 
    

       

    
    

     
  

  
 

 
      

     
                 

    
       

    
    

Hence,  
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6. a (b) 

Likelihood:   
   
 

       
           

Prior distribution:             

Conditional posterior distribution: 
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Hence,  

      
     

 
       

 

      
 

 
  

   

      
 
   

Similarly,  
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7. a
2 

(b
2
) 

Likelihood:   
   
 

       
           

Prior distribution of 1/a
2
:     

  
   
 

        

Therefore, the prior distribution of a
2 
is   

  
   
 

         , where   = 1/f 

Conditional posterior distribution: 
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Hence,  

   
     

 

 
   

        
  

       

 
   

Similarly,  

   
     

 

 
   

        
  

       

 
 , where   = 1/l 
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Appendix 3B  OpenBUGS code for HBM model of Case 1 

# model specification 

model {     

      for( i in 1 : m ) { 

       dm[i , 1:n]~dmnorm(mu[i, 1:n] , tau1[, ]) #tau1 is the precision matrix, i.e. tau1=
-1

. 

    for(j in 1: n) { 

    mu[i, j]<-alpha[j] +beta[j]*da[i, j] 

    da[i, j]~dnorm(dma[i, j], tau.eta[i]) 

    dma[i, j]<-a[i] *pow((t[i, j]-to[i] ), b[i]) 

    }    

   a[i]~dnorm(mu.a, tau.a)T(0, ) # “T” denotes truncation 

    b[i] ~dnorm(mu.b, tau.b)T(0, ) 

    to[i]~dunif(0, t1) 

  tau.eta[i]~dgamma(0.001, 0.001) 

  sigma.eta[i]<-1/sqrt(tau.eta[i]) 

  dp[i, 1]<-a[i] *pow((36-to[i] ), b[i]) # Prediction depth 

  dp[i, 2]<-a[i] *pow((37-to[i] ), b[i]) 

  dp[i, 3]<-a[i] *pow((38-to[i] ), b[i]) 

  dp[i, 4]<-a[i] *pow((39-to[i] ), b[i]) 

  dp[i, 5]<-a[i] *pow((40-to[i] ), b[i]) 

  } 

  mu.a~dnorm(0, 0.0001)T(0, ) 
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  mu.b ~dnorm(0, 0.0001)T(0, ) 

  tau.a~dgamma(0.01, 100) 

  tau.b~dgamma(0.01, 100) 

  tau1[1:n,  1:n]<-inverse(var[1:n,  1:n]) 

  var[1, 1]<-35.73 

  var[1, 2]<-29.30 

  var[1, 3]<-37.88 

  var[2, 1]<-29.30 

  var[2, 2]<-35.73 

  var[2, 3]<-38.05 

  var[3, 1]<-37.88 

  var[3, 2]<-38.05 

  var[3, 3]<-82.28  

  } 

# Data  

list(alpha=c(2.04, 2.04, -15.28), beta=c(0.97, 0.97, 1.40),  

dm = structure( 

.Data = c(dm[1, 1], dm[1, 2], dm[1, 3],  

dm[2, 1], dm[2, 2], dm[2, 3],  

… 

… 

dm[m-1, 1], dm[m-1, 2], dm[m-1, 3],  

dm[m, 1], dm[m, 2], dm[m, 3],  
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.Dim = c(m, 3)),  

m =62, n= 3,  

t = structure( 

.Data = c(28, 32, 35,  

28, 32, 35,  

… 

… 

28, 32, 35)  

.Dim = c(62, 3))) 

# Assignment of initial values for chain1 

list(mu.a=10, mu.b=0.8, tau.a=0.05, tau.b=0.05,  

tau.eta=c(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01),  

a=c(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10),  

b=c(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3, 0.3, 0.3),  
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to=c(15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15),  

da=structure( 

.Data=c(10, 15, 20,  

10, 15, 20,  

… 

… 

10, 15, 20),  

.Dim=c(62, 3))) 

# Assignment of initial values for chain2 

list(mu.a =5, mu.b=0.5, tau.a=0.01, tau.b=0.01,  

tau.eta=c(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05),  

da=structure( 

.Data=c(10, 20, 30,  

10, 15, 30,  

10, 15, 30),  

… 

… 
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.Dim=c(62, 3)),  

a=c(15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15),  

b=c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 

0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 

0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 

0.6, 0.6, 0.6),  

to=c(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10)) 
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Appendix 3C  OpenBUGS code for HBM model of Case 2 

# model specification 

model {     

      for( i in 1 : m ) { 

        dm[i , 1:n]~dmnorm(mu[i, 1:n] , tau1[, ]) 

    for(j in 1: n) { 

    mu[i, j]<-alpha[j] +beta[j]*da[i, j] 

    da[i, j]~dnorm(dma[i, j], tau.eta[i]) 

    dma[i, j]<-a[i] *pow((t[i, j]-to[i] ), b[i]) 

    }    

   a[i]~dnorm(mu.a, tau.a)T(0, ) 

    b[i] ~dnorm(mu.b, tau.b)T(0, ) 

    to[i]~dunif(0, 28) 

  dp[i, 1]<-a[i] *pow((38-to[i] ), b[i]) # Prediction depth 

  dp[i, 2]<-a[i] *pow((39-to[i] ), b[i]) 

  dp[i, 3]<-a[i] *pow((40-to[i] ), b[i]) 

  tau.eta[i]~dgamma(0.001, 0.001) 

  sigma.eta[i]<-1/sqrt(tau.eta[i]) 

  } 

  mu.a~dnorm(0, 0.0001)T(0, ) 

  mu.b~dnorm(0, 0.0001)T(0, ) 

  tau.a~dgamma(0.01, 100) 
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  tau.b~dgamma(0.01, 100) 

  tau1[1:n, 1:n]<-inverse(var[1:n, 1:n]) 

  var[1, 1]<-28.35 

  var[1, 2]<-28.87 

  var[1, 3]<-31.44 

  var[2, 1]<-28.87 

  var[2, 2]<-50.75 

  var[2, 3]<-38.75 

  var[3, 1]<-31.44 

  var[3, 2]<-38.75 

  var[3, 3]<-58.71 

  } 

# Data 

list(alpha=c(-4.23, -9.50, -3.54), beta=c(0.89, 0.91, 1.00),  

t = structure( 

 .Data=c(32, 35, 37,  

32, 35, 37,  

… 

… 

32, 35, 37),  

 .Dim = c(60, 3)),   

m = 60, n = 3,  

dm = structure( 
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.Data = c(dm[1, 1], dm[1, 2], dm[1, 3],  

dm[2, 1], dm[2, 2], dm[2, 3],  

… 

… 

dm[m-1, 1], dm[m-1, 2], dm[m-1, 3],  

dm[m, 1], dm[m, 2], dm[m, 3],  

.Dim = c(m, 3))) 

# Assignment of initial values for chain1 

list(mu.a=5, mu.b=0.5, tau.a=0.01, tau.b=0.01,  

tau.eta=c(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01),  

a=c(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10),  

b=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 

0.5),  

to=c(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10),  
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da=structure( 

.Data=c(10, 20, 30,  

10, 20, 30,  

… 

… 

10, 20, 30),  

.Dim=c(60, 3))) 

# Assignment of initial values for chain1 

list(mu.a=10, b.m=0.8, mu.b=0.05, tau.b=0.05,  

tau.eta=c(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 

0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05),  

a=c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),  

b=c(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 

0.3),  

to=c(20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20),  

da=structure( 
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.Data=c(10, 15, 25,  

10, 15, 25,  

… 

… 

10, 15, 25),  

.Dim=c(60, 3))) 
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