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Abstract

Transport in porous media has many practical applicatiossience and engineering. This
work focuses on the development of numerical methods fdiyaimg porous media flows
and uses two major applications, metal foams and the hunmay fa demonstrate the ca-
pabilities of the methods. Both of these systems involve glerpore geometries and
typically involve porous domains of complex shape. Suchngetoic complexities make
the characterization of the relevant effective propertiethe porous medium as well as
the solution of the governing equations in conjugate flwwdepis domains challenging. In
porous domains, there are typically too many individualgsaio consider transport pro-
cesses directly; instead the governing equations are \@kwaraged to obtain a new sets
of governing equations describing the conservation lavasllk sense. There are, how-
ever, unknown pore-level terms remaining in the volumerayed equations that must be
characterized using effective properties that accourthieffects of processes at the pore
level. Once closed, the volume-averaged equations canlbedsoumerically, however,
currently available numerical methods for conjugate damdo not perform well at fluid-
porous interfaces when using unstructured grids.

In light of the preceding discussion, the goals of this wamk i) to develop a finite-
volume-based numerical method for solving fluid flow and eguilibrium heat transfer
problems in conjugate fluid-porous domains that is comfgtiith general unstructured
grids, (ii) to characterize the relevant flow and thermabpgrties of an idealized graphite
foam, (iii) to determine the permeability of an alveolatactt] which is considered as a

representative element of the respiratory region of thedwimng, and (iv) to conduct sim-



ulations of airflow in the human lung using a novel fluid-pa@escription of the domain.
Results show that the numerical method that has been dexttopconjugate fluid-porous
systems is able to maintain accuracy on all grid types, flawations, and flow speeds
considered. This work also introduces a comprehensivef setrelations for the effective
properties of graphite foam, which will be useful for studtyithe performance of devices
incorporating this material. In order to model air flow in tbag as a porous medium, the
permeability of an alveolated duct is obtained using dipece-level simulations. Finally,
simulations of air flow in the lung are presented which useehtbuid-porous approach
wherein the upper airways are considered as a pure fluidrregid the smaller airways

and alveoli are considered as a porous domain.

KEYWORDS: porous media, volume-averaging, finite volumeéhds, unstructured grids,

heat transfer, thermal dispersion, permeability, metafs, alveolated duct, human lung
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1
Chapter

Introduction and Literature Review

1.1 Background

Transport in porous media, generally defined for the purpobthis work as a solid matrix
with fluid-filled voids, has practical applications in a dise range of fields in science and
engineering. The definition of a porous medium is quite biaxadlincludes a wide variety
of materials including concrete, limestone, sand, sodngtar crushed rock, fibreglass,
metal foams, and even biological tissues. Flow can occurimvd porous medium when
the void space is interconnected. In many applicationsof isterest to predict the flow
and other transport processes, such as heat and massrirangfe a porous medium.
For example, in groundwater flows one may seek to determimdldlv field in order to
predict the migration of contaminants into a water supptythle field of heat transfer, it
may be of interest to obtain the flow and temperature fieldeiia porous heat sink to
predict its heat transfer performance. Such predictioas lawever, complicated by the
sheer number of pores present in a typical medium. From a etatipnal perspective, it
would be prohibitively expensive to simulate the flow andhéort processes directly in
all pores.

Due to such complexities in the nature of transport procease¢he pore level, it is

often convenient to model the domain of interest as a poronsraium. This is typically
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accomplished using the method of volume-averaging, a proeeby which the govern-
ing conservation equations in a general medium are inteayeiaged over a representative
group of pores within a porous medium to obtain a new set ofeation equations in
terms of averaged variables. The difficulty with averagirgtimds, however, is that some
terms in the resulting equations remain in terms of porellguantities that are not gen-
erally available when solving the volume-averaged equatidlrhus, suitable models for
the so-called effective properties of the medium must baiobtl to characterize the un-
known pore-level quantities and close the volume-averageations. Difficulties are also
encountered when simulating transport processes in ansysiataining both porous and
pure fluid regions because of various difficulties in couplime volume-averaged model to
the standard models for fluid regions. Difficulties rangerfrihe theoretical development
of appropriate interface conditions to their implememtainto a computational algorithm
in a manner that is numerically stable.

In this work, both the development of a robust numerical mmétior computing trans-
port in conjugate fluid-porous domains and the closure ofréhevant volume-averaged
equations will be considered. Two application areas, nietahs and the human lung, will
then be considered to demonstrate the capabilities of tgatational methods that have
been developed. Metal foams are becoming a popular materiahhanced heat transfer
applications and are ideally suited for simulation in a wodiaveraged framework. Due to
their complex pore shape, however, accurate models forfteetige properties of many
metal foams are unavailable. Thus, in this work a numeritadyswill be conducted to
determine all of the relevant effective properties for agalized graphite foam geometry.
This work also considers modelling the human lung as a coufilgd-porous medium,
which has many potential applications in the medical fietduding the study of particle
transport, gas exchange, and many other topics. Poredewalations will be conducted
to determine effective properties for the porous lung modéile volume-averaged sim-

ulations will be conducted to predict the air flow in the condad lung and airway tree
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geometry.

To summarize, this work encompasses several major topiedaedance in the field of
porous media, particularly for porous media with complerepshapes or systems where
the shape of the porous domain is complex. The specific tdbatsare covered in this

work include:

i. the development of an accurate simulation method forisglthe closed forms of the

volume-averaged equations for fluid-porous systems,

ii. the determination of relevant effective properties éwsure of the volume-averaged

governing equations for graphite foams and the human lumd), a

iii. the simulation of air flow in the human lung, which is to bensidered as a complex

fluid-porous system.

Thus, the literature review presented in the forthcomirgises will proceed as fol-
lows. First, a brief review of the method of volume-averagwith be presented in light
of the applications to be considered in this work. The gdrikesory of volume-averaging
will be discussed first in order to facilitate subsequentubsions regarding closure of
the volume-averaged governing equations. Next, a disoussi the relevant numerical
techniques for simulating flow in porous media and, in paftéc conjugate fluid-porous
systems will be presented. Focus will be placed on fluid-psmterface conditions, which
have been a subject of much research over the past sevesaledecFrom here, the two
main application areas of this work, metal foams and the mulmag, are reviewed and
discussed. Following the review of the literature will beiscdssion of the objectives of

the present work and an outline of the thesis.



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 4

Figure 1.1: An illustration of a typical averaging volume, V, for an drary porous medium
containing fluid and solid volumes \nd \¢, respectively.

1.2 The Method of Volume-Averaging

1.2.1 General Theory

The method of volume-averaging is a procedure by which themgang conservation equa-
tions in a general medium are integral-averaged over aseptative portion of a porous
medium to obtain a new set of governing equations in termsuahtties averaged over
many pores. The method of volume-averaging was pioneer&titbtaker [1-3] and Slat-
tery [4, 5] and has been refined by Gray [6]. In the paragraptsltow, the basics of
volume-averaging are briefly described as it is commonlglusday. Further details are
readily available in the original sources [1-6] as well ag@mecent reviews [7, 8.

Consider the flow in an arbitrary porous medium composed tf thaid and solid con-
stituents, as depicted in Fig. 1.1. N\ denote the space occupied by the porous medium
with length scalel and letV C V,, define the averaging volume having length scale
In order to have statistically meaningful averagésnust be taken large enough that the
volume-average at a point is relatively insensitive to theipular choice ol. Also,V
must be taken small enough thak L, ensuring that the volume-average of a quantity
does not vary significantly withik' and can be considered as a constant in integral terms

[2, 6-8].
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The extrinsic volume-average of a quantyly defined at the centroid &, is defined

as

1

(@)= 9 @dv, (1.1)

wherek € {f,s} denotes the phase in which the quantityis defined with f’ and ‘s
indicating the fluid and solid phases, respectively. Alrrely, the intrinsic average is

defined as

k_ 1
(@) —\7k/vk<pxdv, (1.2)

which is an average over a single phase only. The intringcaae may be more convenient
for quantities such as pressure because it is the physieatityithat would be measured
experimentally. The two types of averages are related tirdbe porositye = Vs /V,

according to
=] for k=t (1.3)
(1-¢e){@)® if k=s

Simply applying the integral operator given in Eq. 1.1 to ¢fozerning partial differ-
ential equations is not sufficient to derive volume-avedagguations that can be solved in
practice. The resulting equations would contain averafiéervatives, while derivatives
of averages are required for ease of solution. Terms irnglgpatial derivatives are thus
simplified using the ‘spatial averaging theorem’ [1-3, 6-Fr the gradient operator, this

theorem is given as

(U = D( ) +\1//Ak| AN dA, (1.4)

wherek,| € {f,s}, k# |, and the unit normal vectany is oriented from the-phase to
thel-phase.Ay is the area contained withv forming the intersection 0¥ andV,. In
addition to the form given in Eq. 1.4, the spatial averagimgptem may be stated for the

divergence of a vector or second-rank tensgras

(0-a) =D~<ak>+\%/Aklak-nkldA (15)
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Note that in Egs. 1.4 and 1.5 the subscripts denote eithdtuigeor solid phase, thus no
summation is implied over repeated indices.

To simplify volume-averages of products of variables, sagthose encountered when
averaging convection terms, a quantity may be decomposed into its intrinsic volume-

average and a pore-level spatial deviatfpnaccording to

&= ()" + @, (1.6)

leading to the volume-average of a product of variabfgs,andg o, being defined as

(Ge1th2) = §k<cn<,1><cn<,z> T (Pai), (1.7)

where all terms are expressed using extrinsic averagehiakephase porosityg, = Vi /V,
which is introduced so that results are general to both flaitd solid-phase averages.
Note that in arriving at Eq. 1.7 it has been assumed that velaweraged quantities are
constant within a particular averaging volume, which carshewn to be valid provided
¢ < L. Additionally, it is assumed that the volume-average otigpdeviations are zero

1,3, 6, 8].

1.2.2 Closure of Volume-Averaged Mass and Momentum Eqguatio

With the theory of volume-averaging discussed in Sec. 1@g can readily derive the
volume-averaged mass and momentum equations requirediaute the flow field within
a given porous medium. Assuming incompressible flow, theegoug equations at the

pore level are the standard continuity and Navier-Stokestons, given as

O-u=0 (1.8)
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and

o (‘;t -Du) = —Op+ pfD%u, (1.9)

respectively, where is the velocity vectorp is the pressuregys is the fluid densityus is
the dynamic viscosity of the fluid, artds the time. Volume-averaging Eqgs. 1.8 and 1.9,

assuming a constant porosity for the purposes of this dismoisresults in

0-(u) =0 (1.10)

— t g D(u>) = —e0(p) " + s O2(u)

l N ™ ~ o~
+\7/A (—Pnts+ pr 00 ngs) dA—ps O- (Gl1) (1.11)
fs

in the notation given in Sec. 1.2.1. As a result of the last terons in Eq. 1.11, which
depend on the pore-level spatial deviatidrend, this equation cannot be solved without
supplementary information about the pore-level velocityg aressure fields. The typical
method for seeking closure of Eq. 1.11 is the semi-empiapairoach of Vafai and Tien
[10], which seeks to replace the unknown pore-level terntk vamiliar terms from the

extended Darcy equation. Using this approach, Eq. 1.11rbeso

EHt EPtCt

(Sl + o) = —e0ip) -+ ) - K - i, @a2)

ot £

where the final two terms on the right side of Eq. 1.12 are tlsestance terms in the
extended Darcy equation. The paramete@ndcs are known as the permeability and the
Forchheimer (or form drag) coefficient, respectively. Tapgproach to closure is widely
used most likely because of its physical relevance, i.esfeady flow in a fixed porous

material without macroscopic velocity gradients, Eq. Ird@uces exactly to the extended
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Darcy equation,

2 PtCt

-0(p)' = W+ \F|< ){u), (1.13)

in the form suggested by Ward [11]. This is a highly desirdé#ture for a closure method
since the extended Darcy equation is widely used and therenigltitude of data available
for the parameterk andc; for a wide variety of porous media.

While the closure method proposed by Vafai and Tien [10] jgles a convenient way
of casting the unknown pore-level terms in a more familianfpit does not provide a
procedure for determining the two parameters that aredntted. One straightforward
method of obtaining these parameters is by correlatingraxpatal results where the flow
is effectively one-dimensional (i.e. macroscopic bougdiyers are of negligible size com-
pared to the size of the sample) and the governing momentuatieq reduces to the one-
dimensional form of Eq. 1.13 [11-19]. Analogously, one caa numerical simulations to
determine the pressure drop across a representative @pafous medium as a function
of the velocity to correlat& andcs to the calculated pressure drop [20-24].

The difficulty with methods involving correlation of datarfpressure drop versus ve-
locity is that it can be difficult to detect certain subtle pbeena such as the cubic de-
pendence of the pressure drop on the velocity for weak adédivs [22, 25-27]. Thus
the closure method of Whitaker [28], which analytically aegies the closure problem into
flow-independent (Darcy) and flow-dependent (Forchheipans proves useful, since this
closure method makes it much simpler to observe non-lineangmena in the Forch-
heimer term. It is important that one is aware of the effe€isaak inertia on the pressure
drop behaviour since it implies that the Forchheimer extensf Darcy’s law is not strictly

valid for all flow regimes.
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1.2.3 Closure of Volume-Averaged Energy Equations

For a porous medium consisting of fluid and solid phases, therging pore-level energy

equations are

oT
PiCp. <a—tf—|—u-DTf> — k¢ 02Ty (1.14)
and
aT.
pscs(?—tS = ksDZTs (1.15)

for the fluid and solid phases, respectively, where the sidiscf’ and ‘s again denote
guantities associated with either the fluid or solid phase Jpecific heat capacities of the
fluid and solid are denotea}, 1 andcs, respectively, whil&k denotes thermal conductivity.
Intrinsically volume-averaging these equations accayttirthe procedure described in Sec.

1.2.1 results in

o(Ty)"

1 ~
Pt Cp, f £T + (u) - |:|<Tf>f} = Eka2<Tf>f +0- <\—/ kafnfsdA>

Ass

1 g i
+ [, kiOTe nisdA—gpscp 0 @T)" (1.16)
Afs

and

S
(1—£)psc50<Ts> = (1—&)ksO%(Te)S+0- <E kST”SnsfdA)
ot V Jas
+1 ksOTs-nsfdA (1.17)
\ Ass

Under certain limiting conditions, one may assume locairtteg equilibrium between the
fluid and solid phases, i.€T;)f = (Ts)S= (T), and add Egs. 1.16 and 1.17 together. In this
case, the second last term in Eq. 1.16 and the last term in.E@, Which represent heat
exchange between phases, sum to zero. To characterizentiagnineg pore-level terms,
Vafai and Tien [10] proposed a semi-empirical closure metheherein the additional

terms are treated as a macroscopic heat flux, such that tfegitsecan be characterized as
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an augmentation to the thermal conductivity of the mediurhusl the volume-averaged
energy equation under local thermal equilibrium condsgitakes on the form
o(T)

[€prCp. + (1 — €)psCs] —5r T PCpi{u)-O(T) =T (ke- O(T)), (1.18)

whereke is the effective thermal conductivity tensor of the mediuvhjch takes into ac-
count all of the pore-level effects. Typically, the eff@eticonductivity is considered to be
made up of three parts: the material, tortuosity, and dgperconductivities. The tortu-
osity portion of the effective conductivity takes into agob the fact that the conduction
path in a porous medium is longer than it would be for a norepsmedium. The ther-
mal dispersion conductivity, which arises from volumefaging the convection term in
the energy equation for the fluid phase, describes the appambancement in conduction
within the fluid phase, resulting from pore-level mixingn&s dispersion depends on the
flow direction, the dispersion conductivity must generéiéyconsidered as a tensor, which
leads to an effective conductivitlge, which is also a tensor.

Dispersion was first studied by Taylor [29] and Aris [30] facteemical species flowing
in a tube. These studies showed that the flowing speciesperdisd relative to a plane
moving at the mean flow speed with an apparent axial diffys@gual to the molecular
diffusivity plus the dispersion diffusivity, which is progtional to the square of the Péclet
number. This phenomenon is illustrated schematically qm Ei2. While this is strictly
only valid for flow in a tube, similar Péclet number dependes have been observed and/or
assumed in many other cases of significantly different gégmidowever, since dispersion
depends on local mixing, any results obtained are parti¢daléhe flow configuration for
which they are derived. To this end, many experimental ardlyinal studies have been
undertaken to explore dispersion in other porous media asgbacked beds of particles
and fibrous media, which have revealed a range of behavioitinsr@spect to the Péclet

number [31-41]. More recently, numerical studies have e to investigate tortuosity
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Figure 1.2: An illustration of Taylor dispersion in a tube. The upperwrag shows, from left to
right, the velocity profile, the initial concentration, thewnstream concentration in the absence of
molecular diffusion, and the downstream concentratiorhapgresence of molecular diffusion. The
lower drawing plots schematically the distributions of thean (radially averaged) concentration,
Cnm, for each of the cases shown in the upper drawing.

and thermal dispersion in porous media. One type of closwathoa that has been used
involves direct calculations of the pore-level flow and that fields and integration of the
results to obtain the effective conductivity [42—44]. Aulinally, there have been closure
methods proposed which use numerical calculations of thefitdds as well as additional
closure equations used to determine the effective condiyddt5—47].

In all of the literature discussed up to this point, it hasrbagsumed that local thermal
equilibrium conditions prevail. However, when the thermadperties of the fluid and solid
constituents are substantially different, as in the casggbf-conductivity metal foams with
air or water as working fluids, it is necessary to considealldcermal non-equilibrium
between phases. This can be accomplished empirically asiraglditional exchange term
[48] or more rigorously using constitutive equations to regs pore-level quantities in
terms of volume-averaged quantities [49]. When constiéugiquations are used it can be
shown that in addition to the effective thermal conducyitérm and an interfacial exchange

term, a modification to the convecting velocity is requird®,[ 50]. The thermal non-
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equilibrium energy equations for the fluid and solid contitts are given generally as

proa (2200 4.01)") =0 (kie- 0T ) anehes(T0°- (T01) (1.29)

and

0(Ts)®
ot

(1— €)PsCs — - (kse- O(Te)®) —afshfs(<Ts>s—<Tf>f ) (1.20)

respectively. Note thdt;e andkge are the effective conductivity tensors for the fluid and
solid phases, respectivebys is the specific surface area of the porous medium apcs

an interfacial heat transfer coefficient. The convectirigeiéy U is typically taken to be the
extrinsically averaged velocityu), however it can be shown that in general it is different
from this value [49, 50].

To date, there have been only a small number of studies igegisty closure of the
volume-averaged energy equations under general thermaauailibrium conditions. Quin-
tard et al. [49] were among the first to investigate this peobhnd formulated an elegant
method for determining all of the required effective prdjger. Their method involved the
formulation of constitutive equations for the fluid and ddiemperature deviations, which
resulted in a set of closure problems, the solutions of whailld be integrated to obtain
the relevant effective properties. Note that the solutibthe closure problems given by
Quintard et al. [49] is quite complex. Thus, a simplified middemulated specifically for
high-conductivity porous media was recently proposed bgidet and Straatman [50].
This model eliminates the need to solve any closure problentise solid region of the
porous medium and thus eliminates coupling of equationstatfaces. Another approach
to closure under non-equilibrium conditions, which is ateexied version of the closure
models employed by Kuwahara et al. [42, 43] for thermal algiilm conditions, has also

been employed [51-55].
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1.3 Numerical Modelling of Transport in Conjugate Fluid-
Porous Domains

From a numerical perspective, solving volume-averageaigong equations is typically
no more difficult than solving standard transport equatguth as the continuity, Navier-
Stokes, and energy equations, since they follow the typarah of a transport equation
including transient, convection, diffusion, and sourcen® The difficulty comes when
one must simulate coupled fluid and porous regions, sincetédace must be considered
carefully in order to have a numerically stable method tinggphysically reasonable re-
sults in the neighbourhood of the interface. In this sectiberature related to modelling
transport in conjugate fluid-porous domains is revieweth boterms of theoretical devel-
opment and numerical implementation.

At fluid-porous interfaces, there is consensus in the liteegthat the extrinsic velocity
on the porous side should be continuous with the velocityhenfiuid side [56—74], as
shown by Ochoa-Tapia and Whitaker [57]. While the corretriiace condition for veloc-
ity is straightforward, developing an appropriate comudtitior the fluid stress, which relates
to the velocity gradient, is significantly more challenglmerause a meaningful averaging
volume containing only the porous region cannot be contdugery near an interface.
As a result, any averaging volume in the neighbourhood ohterface must necessarily
contain both the fluid and porous regions, leading to a piatigntmportant porosity gra-
dient as the averaging volume encompasses more of the flyimhteThis effect has been
characterized as an effective excess stress at the irgaafat has been accounted for us-
ing a stress-jump interface condition [57, 60, 65, 66]. Altgh a stress-jump condition
is reasonable from a theoretical perspective, it can benvegent to use since it requires
parameters to be obtained from experiments which may natyaslwe available or straight-
forward to measure. Additionally, the stress-jump onlyegpg in the component of the

stress tangential to the interface, not the normal comporigus, for flow that is largely
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perpendicular to the interface, any jump in tangentialsstigould be negligible.

Other interface conditions that have been used for the iglgradient at fluid-porous
interfaces include stress continuity [58, 61, 67, 70, 72,ar@l a continuous velocity gra-
dient [64, 68, 69, 74]. While there is little support for theeuof a continuous velocity
gradient condition, a continuous stress condition may b#fjed physically and is almost
universally accepted as the correct condition for dealinitp Whe normal stress compo-
nent. Alazmi and Vafai [63] compared the stress-jump, ecamtus stress, and continuous
velocity gradient interface conditions for flow parallelda interface and found that the
continuous stress model gave reasonable results for tloeiyeprofile that were a fair
compromise between the cumbersome stress-jump conditibnh& oversimplified con-
tinuous velocity gradient condition. Note that in all of theidies listed above, there is
consensus that, like the velocity, the pressure at thefateshould be continuous in order
to balance the normal stresses at the interface. With tinéseace conditions established,
it becomes possible to conduct numerical simulations inugate fluid-porous domains.
However, as will be discussed later, the numerical impleatem of these interface con-
ditions may be complicated, particularly on non-orthodagrals and for flows at higher
Reynolds numbers.

In addition to interface conditions on velocity, pressaeg the gradient of velocity, it
is necessary to devise appropriate conditions for temperathen considering heat trans-
fer. Selection of such conditions first depends on whetheli®oonsidering a local thermal
equilibrium or non-equilibrium heat transfer model. Fougigrium models the most pop-
ular choice for such interface conditions is a continuongerature and a heat flux balance
to determine the gradients on either side of the interfade 8, 69—-72, 74, 75]. In some
cases where the distribution of the solid constituent ofgii®us medium changes appre-
ciably near the interface, a temperature slip condition beagppropriate along with a heat
flux balance [45]. When thermal non-equilibrium energy d¢imues are used, treatment

of the interface temperature is more complicated since erptirous side of the inter-
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face there are two temperatures to account for, narfigly’ and (Ts)S, whereas on the
fluid side there is only one temperatuiig, Typically, the temperature on the fluid side
is taken to be continuous with the porosity-weighted terapge on the porous side, i.e.
T = &(Tt) T+ (1—£)(Ts)S on the interface [58, 61, 73]. The temperature gradient threei
side of an interface is typically obtained using heat fluxabaks for each of the fluid and
solid phases [61, 73].

Numerically, the greatest difficulty encountered when sg\flows in conjugate fluid-
porous domains is to maintain coupling between pressure/@lodity at the interface. It
has been observed that there are significant issues mangtaiccuracy in the neighbour-
hood of interfaces, particularly for internal flows where tverage velocity vector is per-
pendicular to the interface and the Reynolds number is grélaan one [61]. Since much
of the current literature has focused on flows parallel terfiaces [59, 60, 63, 73, 74], low
Reynolds number flows perpendicular to interfaces [59], extérnal or natural convec-
tion flows [58, 62, 64, 66, 76] this problem is not well-stuttli€€osta et al. [60] proposed
a control-volume finite-element model, which is claimed dzcurate near interfaces,
however, it is clear from their results that some problenespesent at higher Reynolds
numbers. As described by Betchen et al. [61], the accuramylgms result primarily from
the change in form of the advection term as the medium tiansifrom fluid to porous,
i.e. in the fluid region the advected velocity is a factoredarger than it is in the porous
region, which can lead to a force imbalance at the interfaneti properly taken into ac-
count. It should also be noted that there have been sevematnzal models proposed
which incorrectly use an advected velocity in the porousoreghat is a factor o€ too
large [59, 62, 76], which artificially eliminates this preloh, even at higher Reynolds num-
bers.

The solution proposed by Betchen et al. [61], which intraatlia pressure correction
at the interface, has been proven effective on structurdebgonal grids, however, some

of its robustness appears to be lost when working with ndmegional grids [65]. Since
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unstructured grids are a requirement for studying porog®ns with more complicated
geometries, more work needs to be done in order to extentireximethods such that they

are robust on general unstructured grids.

1.4 Transport in High-Conductivity Metal Foams

Transport in high-conductivity metal foams is of practicaportance in many heat transfer
applications including compact heat sinks and heat exarar@2—-15, 77-80]. While the
effectiveness of high-conductivity porous media as enbdrteat transfer materials has
been shown, there are significant challenges involved imlgitimg the flow and thermal
performance of devices incorporating these materialsceSimere are generally thousands
of pores contained within a given domain of interest, it ipractical to compute the pore-
level fields directly. Thus, the method of volume-averagidigcussed in Sec. 1.2.1, is
typically employed to derive transport equations govegrihve averaged flow and thermal
fields. Characterization of the pore-level terms remainimthe governing equations (as
discussed in Secs. 1.2.2 and 1.2.3) must be carried out ar twdletermine the required
effective properties. Once these terms are properly cteiaed, it becomes possible to
simulate the performance of designs incorporating metahf®using the numerical meth-
ods outlined in Sec. 1.3, however, for most porous metalgétermination of the correct
effective properties remains an open area of research.

Graphite foams are one particular type of porous metal thsioleen the subject much
research over the past decade as a potential material faneeti heat transfer applications
[13-15, 77, 79, 81]. Unique features of graphite foams thaiterthem attractive for heat

transfer devices include:

i. A high solid phase thermal conductivity (800-1900 W/m Kading to a very high
effective solid conductivity (40-160 W/m K) [13].

ii. A large amount of exposed internal surface area per wiitrae available for convec-



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 17

Figure 1.3: Comparison between the actual graphite foam pore geomstigyn in the electron
micrograph images (a) and (b), to the geometric idealizatiwoposed by Yu et al. [82], shown in
the rendered images (c) and (d).

tive heat exchange (5000-50,006/m3) [13].

While the heat transfer characteristics of graphite foaavelibeen investigated experi-
mentally [13, 14, 79, 81], there have been relatively fewrafits to determine the relevant
effective properties such that the performance of desigrporating graphite foams can
be accurately simulated numerically using volume-avedageulations. Although there
exist numerical methods to solve these equations, the acgof such simulations is lim-
ited by the accuracy of the effective properties specifiedHe foam region. Further com-
plicating matters is the fact that the extremely high solége conductivity necessitates
the consideration of local thermal non-equilibrium betwé®e fluid and solid phases.

Many of the required geometric parameters of graphite foeamsbe obtained from
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the idealized geometric model of the pore structure prappdseYu et al. [82], shown in

Fig. 1.3 in comparison to images of actual foam. From thisnggtac model, many im-

portant parameters such as the effective thermal condlyctif’ the solid matrix can be

obtained. Using the model of Yu et al. [82] and experimengdhd Straatman et al. [13]
used volume-averaged simulations to calibrate an intedstxchange model to match ex-
perimental results. Note that in this work, thermal disfggrsvas modelled simply using
the correlation of Calmidi and Mahajan [83] for aluminumfogand was not part of the
calibration procedure. Recent work by Karimian and Straatf23] used direct simula-
tions of flow and heat transfer at the pore level to investigaial dispersion using a sim-
plified model. Since the development of accurate closuréaukstis now quite mature and
the computational tools exist to readily solve the poresldlow field and the associated
closure problems, the effective properties of new metahfoaaterials, including graphite

foam, can be determined such that volume-averaged sirongatnay be conducted.

1.5 Transportin the Human Lungs

1.5.1 Lung Structure and Function

The human lungs perform the essential task of providing erylgom the atmosphere to
the bloodstream while removing excess carbon dioxide froenllood and expelling it
into the atmosphere. Breathing is driven by the thoracipltiagm, a sheet of muscle ex-
tending across the bottom of the rib cage, which is able taeapghe lung causing air to
flow in through the oral and nasal cavities. The internalcttme of the lung is generally
characterized as a network of bifurcating airways that bexemaller in both length and
diameter with each bifurcation, or ‘generation’. In all tb@re approximately 23 genera-
tions in the human lung. The first sixteen generations caephe ‘conducting’ region of
the lung, shown in Fig. 1.4, which is primarily responsilde warming and humidifying

the air before it enters the ‘respiratory’ region where nofshe gas exchange occurs. The
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Figure 1.4: A diagram of the human lung with components of the condueiiingays labelled.

respiratory region of the lung includes all airway generagibeyond the conducting region
and are known as the respiratory bronchioles, alveolasgaot alveolar sacs. This region
is also commonly referred to as the lung ‘parenchyma’ sitisglne ‘functional’ part of the
lung, taking part in gas exchange. As seen in Figs. 1.5a &y the respiratory bronchi-
oles and alveolar ducts are tube-like while the alveolas ¢ac‘alveoli’) are sponge-like
in their appearance. Overall there are approximately 30malveoli in the human lung
with a surface area of approximately 7@ available for exchange. For further details on
lung structure and function, see West [84].

In order to simulate transport in the human lung, a geometondel is required. Tra-
ditionally, the pulmonary anatomy has been described udiegized models based upon
direct measurements of cadaver lungs. The classical modkIig category is the model
proposed by Weibel in 1963 [85]. Based on extensive measmanm\Weibel was able to
determine many quantities of interest, such as the totabeurof alveoli and the overall
surface-to-volume ratio of the lung. In addition, a modeltfee lengths and diameters of
each airway generation was given. Horsfield et al. [86] stidiresin cast of a human lung

and proposed a similar model which took into account the asgtry of the airway tree.
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Figure 1.5: Scanning electron microscope images of (a) the transitiom frespiratory bronchi-
ole to alveolar duct and (b) alveolar ducts containing matyeali. These images are obtained
from a mouse lung and come from the Lawrence Berkeley Natladzoratory Lung Lab Tour,
http://imglib.Ibl.gov/ImgLib/COLLECTIONS/LUNGSTRUCTURE/.tour/pagel.html.

While these models are extremely useful, they represenewtbiat of an ‘average’ lung,
not the lung of a specific individual. To perform simulatidosa specific individual, more
detailed anatomical data is needed. Fortunately, medijing has emerged as a method
of extracting information regarding the anatomy of an imdiiaal’s lungs, making it possi-
ble to perform personalized simulations of lung functionnt® specific numerical studies
that have employed either idealized or subject-specificmg#ioc models of the airway tree

will be discussed in the following section.

1.5.2 Simulation of Transport in Conducting Airways

With the continual increase in computational power, it hesdme a major topic of research
to numerically simulate air flow and transport processesénlting using computational
fluid dynamics (CFD) methods [87—104]. Numerical simulasi@re an attractive method
for analyzing transport in the lung since measuring sucmpimena experimentally would
be exceptionally challenging. Additionally, numericamsilations can typically provide

resolution not possible with most experiments. Some speafplications where CFD
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Figure 1.6: A sketch of an airway tree.

simulations can benefit the study of the human lung includégb@ or aerosol transport
and deposition [87, 89-91, 94, 95, 100, 103], heat and maasfar [88, 104], and the
general study of the flow behaviour within the lung [92, 96881, 102].

There have been many computational fluid dynamics studiedumted in which the
flow is computed in idealized or subject-specific airway getiias for a fixed number
of airway bifurcations within the conducting region of theny. The trouble with this
approach is that the computational requirements grow kapglmore airway generations
are added to the model, as can be inferred from Fig. 1.6 winolvs a sketch of a fairly
extensive airway tree. As a result, most direct simulattodies to date have focussed on
the upper six or seven generations, although some work rexs d@ne to include more
generations with only partial resolution. One of the eatli@tempts to simulate flow in
the human airway tree was by Comer et al. [89] in 2000, who vable to compute the
three-dimensional flow field within an idealized tree comitag two bifurcations in order to
study aerosol transport and deposition. Shortly thereafteang et al. [90] and Zhang and
Kleinstreuer [87] studied airflow and particle transporfonr-generation airway models

based on the Weibel geometry model for steady and unsteagyration, respectively.
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Both studies considered the third to sixth airway genematioZhang and Kleinstreuer
[88] later considered a similar four-generation model wtbk addition of an idealized
mouth, pharynx, and larynx model to simulate heat and massfer in the zeroth to third
generations.

In an effort to study particle transport in a more realisteogetry than the Weibel
model, Calay et al. [99] and van Ertbruggen et al. [91] coragwgolutions using the ge-
ometric model of Horsfield et al. [86] in the upper four andeewairway generations,
respectively. Luo and Liu [92] used computed tomography)({@fages to construct a
subject-specific airway model to simulate flow in the uppeg fienerations. In an effort
to use an even more realistic geometric model, Lin et al. {@8lducted a study of flow
in subject-specific airway geometries, based on CT imagesdper airways and an ide-
alized model for lower airways. Yin et al. [102] used a submgeecific airway tree along
with subject-specific boundary conditions based on redioewtilation patterns measured
using CT imaging techniques.

At this point in time, the computational methods for simurgtflow in the upper air-
ways are well established, however, present computatagbilities limit the number
of airway generations that may be considered. In an efforedoice computational costs,
Nowak et al. [94] and Zhang et al. [95] simulated flow in snmradlebsections of the lung
using the outlet condition of one subunit as an inlet conditd the next. Nowak et al. [94]
simulated twenty-three airway generations using this @ggr, although beyond sixteen
generations it is questionable whether the Weibel geomrmetigtel [85] is accurate due to
the presence of alveoli in the respiratory region. Zhand. ¢98] simulated flow in sixteen
airway generations, or the full conducting region, usirig thethod. The downside of this
method is that for each subsection the outlet boundary tiondnust be specified priori,
which is not a straightforward task.

Ma and Lutchen [96] proposed a hybrid model of direct simatain the upper six

airway generations and a simple impedance model to specigrdependent pressures at
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the outlets of a subject-specific airway model. Gemci et@] Hirectly simulated flow
in a seventeen generation model, although only 1453 brangbee included, rather than
the 217 = 131,072 required for a fully-resolved model. Thus, many of thenthes were
truncated, and the computational grids used were insutftiéee grid-independent results.
Also, the authors used a constant pressure boundary camditiall outlets, which is not
appropriate in general. Recently, Walters and Luke [98pWéd an approach similar to
Gemci et al. [97] in which many generations could be simuldg truncating one of the
branches at each bifurcation, resulting in a significanthaker computational domain.
To prescribe boundary conditions at the truncated brandhey proposed a stochastic
coupling of pressures at truncated outlets with correspgnbbcations in resolved flow
paths.

In summary, much work has been done to model transport in piperuairways of
the human lung. The major challenge that remains, regardiesshether one employs
idealized or subject-specific airway models, is that thaltoumber of airway branches
that can be simulated is limited by the available computaioesources. As a result there
must necessarily be information about the transport psssethat occur in the missing
branches that is lost. Thus, an important area of reseattchdsvelop novel methods to
simulate transport in the lung in as much detail as possiataput directly simulating the
flow in every individual branch of the airway tree, such tHaimaportant influences on the

transport are properly accounted for.

1.5.3 Simulation of Transport in Respiratory Airways

In addition to simulating flow and transport in the condugtairways, much attention has
been paid to transport in the respiratory region of the Iyagticularly in alveolated ducts
(shown previously in Fig. 1.5) [105-116]. Earlier works basonsidered fairly simple
geometric models such as a circular duct with a toroidal@dbse[105, 106], a circular

duct with a series of orifice plates [107, 116], or a circulactdwith chambers shaped as
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partial annular rings [116]. More recently, fully threevd#nsional model geometries such
as a circular duct with spherical alveoli [108, 110] and sphiting alveolar structures
[110, 111, 115] have been explored. Some studies have evkedat several consecutive
branches of alveolated ducts using space-filling [110] besipal alveoli [114].

The above-mentioned studies of transport in alveolatetsduere typically focused on
the analysis of particle transport and the physics of thefilelds. As a result of the sponge-
like nature of the respiratory region of the lung, it has begggested that flow in the lung
parenchyma can be modelled as a porous medium [117, 118]n @meLewis [117] con-
sidered coupled fluid flow and solid displacement in alvet$mue during high-frequency
ventilation, which is a form of mechanical ventilation oatag at high frequency and low
tidal volume. To transform the equations governing the flioiel and solid displacement at
the alveolar level, homogenization was used to expand thé@oas an asymptotic power
series in terms of the small parameder ¢/L, which is the ratio of the microscopic length
scale to the macroscopic length scale. The resulting eapsatvere, however, expressed
in terms of coefficients which depend on the unit-cell geaynd®roper determination of
these closure coefficients was not considered in this warlg; rough estimates were made
in order to obtain selected one-dimensional results.

Despite the lack of accurate effective properties, the vasrOwen and Lewis [117]
was an important step because it was the first attempt to noodglled flow of air and
viscoelastic solid displacements in lung tissue as a parmdium. They did not, however,
attempt to couple their macroscopic model for the respiyategion with models for the
flow in the larger conducting airways to form a model for theolehlung. Additionally,
their geometric model of the alveoli was very much simplifiadd further work should
be undertaken to consider more realistic geometries, ssithase used for simulations
of alveolated duct flow. Finally, since the perturbation rageh is only valid for small
departures from the reference solution, further work sthbeldone to obtain more general

results for more typical breathing conditions.
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1.6 Obijectives of the Present Work

The overall goal of this work is to develop methods for anagzransport in porous media
with complex pore and/or porous domain geometries and tly éipgpse methods in relevant
applications. To work towards this overall goal, the foliog/specific objectives have been

identified:

i. to develop a suitable numerical method for computing flldev and heat transport
in conjugate fluid-porous domains, based on the finite-velunethod, that incorpo-
rates robust and accurate fluid-porous interface conditioat are effective for all flow

speeds and grid types,

ii. to study the closure of volume-averaged momentum andygreguations in order to
characterize the effective properties of porous media watimplex pore shapes with
specific applications to convective heat transfer in griggpioiams and air flow in alve-

olated ducts within the human lung, and

iii. to further extend the proposed computational model tibze moving unstructured
grids and to apply the model to the study of air flow in the hutogug, which is to be
considered as a fluid-porous system wherein a subset of ffer apway tree is taken
as a pure fluid region and the remainder of the lung volume idelted as a porous

medium.

The primary motivation for this work is the development oéfud computational tools
for treating transport in systems involving porous mediat tave clear applications in
science and engineering. While two specific applicatioashosen to demonstrate the ca-
pabilities of the tools developed in this work, these corapahal techniques are in no way
limited to these particular applications. The developnuérst general framework for solv-
ing conjugate fluid-porous transport problems, describeadbjective (i), is of relevance not

only to the applications considered in this work but also dverse range of applications
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encompassing tissue engineering scaffolds, desiccaimiggstc. Similarly, with regards to
objective (ii) listed above, closure of volume-averagedatmpns is critically important for
obtaining accurate results for transport in all porous meWith regards to objective (iii),
the extension to moving unstructured grids represents poritant capability for transport
in many biomedical applications which are inherently dyi@pnocesses.

While the first objective deals with the development of a gaheomputational frame-
work that is to be used in the remainder of the work, the finaldwjectives involve specific
applications that have been chosen to demonstrate the itagalmf the computational
model. Closure of volume-averaged equations is first cemsdifor a graphite foam pore
geometry and all effective properties required for compyfiuid flow and heat transfer
are obtained by numerically solving the relevant closuab@ms over a wide range of
parameters. While the pore geometry for graphite foam hagic structure, the alveo-
lated duct geometry considered for flow in the human lung gharnn time, which adds
an additional level of complexity to the closure approact mnconsidered in this work.
Following from the work on closure of the volume-averagedmeatum equation for flow
in the human lung, objective (iii) relates to the extensiénhe computational model to
moving unstructured grids which is applied to computingfiaw in the human lung us-
ing a coupled fluid-porous approach, wherein the airwayig@ensidered as a pure fluid
region and the parenchyma is considered as a connectedspagiaon. As air flow in the
lung is driven primarily by the motion of the diaphragm thelgidnal capability of mesh
motion is a required addition to the computational modelriheo to allow the motion of
the porous region drive the flow in the remainder of the lungj@anvay tree.

To summarize, the overall goal of this work, to develop usefunputational tools for
the study of transport in complex porous systems, has leie tobjectives of developing a
general computational framework for solving flows in corgtegfluid-porous domains, the
study of closure of the volume-averaged governing equstiand the implementation of a

moving grid framework. In this work, the computational ®ualill be applied to convective



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 27

heat transfer in graphite foams and air flow in the human lbhogjever, the computational
techniques are developed generally and are applicable by m@blems beyond those

considered in this work.

1.7 Thesis Outline

The remaining chapters of this thesis detail the steps takereet the objectives described

in §1.6. Chapters will be presented as follows:

e Chapter 2 A finite-volume method for computing fluid flow and heat trmsn
conjugate fluid-porous domains is presented. The key deredat presented in this
chapter is the set of robust conditions for fluid-porousrfiatees that allow the use of
unstructured grids, which are required to discretize cempkeometries such as the
human lung. Although this chapter considers heat transtasl@ms, the proposed
model is equally applicable to mass transfer, which is afselevance in applica-

tions involving the human lung.

e Chapter 3 A comprehensive set of results for the effective flow andrtia prop-
erties of an idealized graphite foam pore geometry is ptegenThe results are
obtained using advanced constitutive equation-basedr@dosethods and 198 indi-
vidual numerical simulations. The key outcome of this cbajst a set of correlations
for the effective properties of graphite foam that can beldseconducting volume-
averaged simulations of devices incorporating this maltewhich was previously
not fully characterized in this manner. Additionally, vole-averaged calculations
are presented to demonstrate the impact of the choice cérdism model on overall

heat transfer predictions.

e Chapter 4 Numerical results for the permeability of the lung pargmoh are pre-

sented using the same closure approach as in Chapter 3 $orelof the momentum
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equation. The pore geometry is taken to be an idealized naddefully alveolated

duct, since this structure makes up the majority of the veoifrthe parenchyma. Al-
though the alveolar walls are moving and breathing is a igabprocess, it is shown
in this chapter using rigorous scaling arguments, whichvatelated using further
numerical simulations, that the closure problem reducebadb of the steady case
for physiologically relevant values of the key parametditse results of this chapter

enable volume-averaged calculations of flow in the humag.lun

e Chapter 5 Simulations of flow in the human lung are conducted usingrgugate
fluid-porous model, wherein a truncated airway tree is amred as a fluid region
and the remainder of the lung volume is considered as a cdypeous region.
The permeability of the lung parenchyma used within the m&Etaveraged model
comes from the results of Chapter 4. The geometries of batlaittway tree and
the remaining lung volume are based on CT images and are ltlysgcplly realistic.
The flow is considered to be driven by the motion of the diaghrawhich requires
the governing equations to be solved on a moving mesh. Thek®pme of this
chapter is the novel method of treating the human lung as pgate medium and

the numerical solution of such a complex system.

e Chapter 6 A summary of the present work and its key contributions v@gialong

with suggestions for future work.
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2
Chapter

A Numerical Model for Flow in Conjugate

Fluid-Porous Domairs

2.1 Introduction

Problems involving fluid flow and heat transfer in domainstaoring both fluid and porous
regions have many applications in areas such as filtratiacked bed reactors, and ther-
mal management. In recent years there has been signifidanéshin the use of high-
porosity, high-conductivity metallic foams for heat tréearsenhancement [1-8]. In order
to effectively simulate the performance of such devicestehs a need to develop robust
mathematical and numerical models, which are capable afrately computing the flow
and thermal fields in fluid and porous regions as well as miaimizcoupling at interfaces
between these regions. While the equations governing netudd flow in porous media
are readily derived using the method of volume-averagihgi@onjunction with suitable
closure models such as the empirically-based models of "afth Tien [10], it often re-
mains challenging to obtain physically reasonable sahstia the vicinity of fluid-porous

interfaces.

TA version of this chapter entitled “A finite-volume model farid flow and nonequilibrium heat transfer
in conjugate fluid-porous domains using general unstredtgrids” has been published Numerical Heat
Transfer, Part Bvol. 60, pp. 252-277, 2011.
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Several different numerical models have been proposedhéosimulation of flow and
heat transfer in conjugate domains using staggered, arttabdinite-volume grids, either
under the assumption of local thermal equilibrium [11-13hon-equilibrium [14]. While
equilibrium models are appropriate where the fluid and sadidductivities are similar, it
is necessary to consider local thermal non-equilibrium soide separate, coupled energy
equations for each constituent when the conductivitiesabstantially different as in many
heat transfer applications [14, 15]. As a result, Phanikuamal Mahajan [14] extended
the applicability of earlier conjugate models by considgtiocal thermal non-equilibrium
between the fluid and solid constituents. While all of thelg@rithms were successful
for their specific applications, which were two-dimensioaad easily discretized using
orthogonal grids, it is quite challenging to implement aygered grid formulation for more
general three-dimensional problems where non-orthoggnidd are required.

More recently there have been models proposed which utibdecated grids, where
the grids used for pressure and velocity calculations artidal. For example, Costa et
al. [16, 17] proposed a control-volume finite-element mddelconjugate domains that
was developed generally for arbitrary unstructured griadsyever, the model was only
tested for relatively simple geometries that were diszeetiusing orthogonal grids. Thus,
it is unclear how the model would perform for non-orthogogiatls. Betchen et al. [18]
proposed a collocated finite-volume model and introducedhgroved estimate of the
interface pressure, which allowed results to be obtainedgit Reynolds numbers for
interfaces perpendicular to the flow direction. As desdtitvethis work, it is much more
challenging to obtain physically reasonable solutionshim meighbourhood of a porous-
fluid interface when the flow is perpendicular to that inteefas a result of the change
in the form of the advected momentum flux across the interfadenigh flow rates, this
results in a significant change in pressure in the immediateity of the interface in order
to satisfy a momentum balance on the fluid side of the interf&8]. This effect is most

pronounced for internal flows where the fluid is forced to ghssugh the porous medium,
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as opposed to external flows where much of the fluid flows arthegorous region.

The idea of a pressure correction at interfaces has not bekstwdied in the literature,
due in part to the fact that many previous studies have feclisa low Reynolds number
flows where the change in pressure as a result of the change iadivected velocity is
indeed negligible. Additionally, there have been severabels proposed [11, 12, 16]
which use an advected velocity in the porous region that ectof ofe too large, which
artificially eliminates this problem even at higher Reymsotdimbers. It is clear that high
Reynolds number flows in porous media are of great practicpbrtance in heat transfer
applications, so it is important that accurate results aioed in the presence of fluid-
porous interfaces. The pressure condition proposed byhBetet al. [18], which takes into
account the rapid change in pressure resulting from thegehamthe advected velocity at
the interface, is capable of obtaining results for high Régs numbers without spurious
oscillations in the pressure or velocity fields. Costa e{X&l] have also reported some
simulations with perpendicular interfaces at moderatenRkels numbers, however, there
still appear to be issues with spurious oscillations in gues at the interface (as seen in
Fig. 9(c) of Ref. [17]), which is likely due to a force imbal@mas a result of the change in
the advected velocity across the interface without an gp@ate change in pressure.

The main disadvantage of the model of Betchen et al. [18]as ithhas been devel-
oped specifically for geometries which can be discretizedgusrthogonal grids. Yu et
al. [19] implemented the interface pressure condition psepl by Betchen et al. [18] into
their model which uses multi-block, body-fitted meshes, éav, their model cannot pro-
duce smooth solutions for Reynolds numbers as high as tloostdered by Betchen et al.
[18]. This difference could stem from a multitude of factareluding the gradient recon-
struction at the interface or the treatment of the advediind) advected velocities at the
interface, which are not described in detail in Ref. [19]aty case, these results highlight
the special difficulties encountered with non-orthogorradggthat must be dealt with in

order to have a robust model.
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In summary, it is clear that the model proposed by Betchen. 18] is very robust
and is able to produce physically reasonable solutiondf&eynolds and Darcy numbers
considered, however, there are some difficulties encoathtethen extending the model
for use on non-orthogonal grids [19]. While the model of @asttal. [16, 17] was devel-
oped for general unstructured grids, it thus far remairgelgruntested for non-orthogonal
grids. Additionally, even with orthogonal grids, the modéICosta et al. [16, 17] seems
to produce some small unphysical oscillations in the sotutields near interfaces. Thus,
the goal of this work is to develop a robust finite-volumedzhalgorithm for computing
conjugate fluid-porous flows using general unstructured;erthogonal grids that is able
to obtain smooth solutions for all laminar Reynolds numbers

In this chapter, we first outline the relevant governing ¢igua in the fluid region and
briefly outline the volume-averaging procedure that is usederive the governing equa-
tions for the porous region. This is followed by a discussibithe interface conditions
imposed at the intersection of the fluid and porous subdanaBubsequently, the dis-
cretization of the governing equations and interface dod and their implementation
into a finite-volume computational fluid dynamics code isaliged. Finally, we present

two relevant cases which illustrate the performance of thdeh

2.2 Governing Equations

In this work, we consider fluid flow and heat transfer in a cgafe domainQ, which
consists of pure fluid and porous regiof, andQor, respectively. InQg¢;, the flow is

governed by the continuity and Navier-Stokes equationgrgby

O-u=0 2.1)
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and

G,
o [0—3+D-(UU)} = —0p+ p; D2y, (2.2)

respectively. The energy equation in the fluid region is igias

Pt Cp, f B—I—i-ﬂ-(uT)] = kaZT, (2.3)

where the effects of viscous dissipation and heat generat®considered negligible since
we are considering only laminar flows where the Eckert nundbgenerally low and it is
assumed that there are no internal heat sources.

While we do not consider pure solid regions in this work, weréequire an energy
equation for the solid constituent of the porous region fdume-averaging. This is given
as

oT

PsCs - = ks(I2T. (2.4)

In Qpor the flow is governed by the volume-averaged counterpartgief E1-2.4. Let
us define an averaging volume occupying the spaeéhich contains fluid and solid, oc-

cupying the space# andVs, respectively. Then, the volume-averaging operator isddfi

as
(@) :\1/ 9 @adv (2.5)
or
(@0~ [ v (2.6)

for extrinsic and intrinsic averages, respectively, whiere { f,s} denotes the phase in
which the generic quantity, is defined. Clearly, the two averages are related through the
porositye = Vi /V.

Extrinsically averaging the continuity equation, Eq. 2rilaccordance with the defini-
tions above, we have [10, 20]

0. (u) = 0. 2.7)
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The extrinsically averaged momentum equation, arisinmfiy. 2.2 with certain length-

scale constraints [20] and the assumption of a constanspgris expressed as [10]

pr ( T+ 30 () ) = —e0(p) + P — S w)

_ EPtCy

VK

ot € (W {u), (2.8)

where the final two terms on the right side of Eq. 2.8, knowrmadXarcy and Forchheimer
terms, have been used empirically to close the set of equsatie suggested by Vafai and
Tien [10]. These terms describe the viscous and form dragadaotion between the fluid
and solid constituents in terms of volume-averaged quastitather than the pore-level
guantities that arise directly from the averaging procedur

The energy equations Ry are derived under the assumption of local thermal non-
equilibrium, leading to separate energy equations for tinel find solid regions. These
equations are given for the fluid and solid regions, respelgtias [21]

f
PiCp 1 <30<;:> +D~(<u><Tf>f)):kfeDZ<Tf>f+hfsafs<<Ts>s—<Tf>f) (2.9)

and

(1 o2 — o210 ears (97— (1)) 210)

Here, the effective fluid and solid conductivitiége andkse are used to close the set of
equations and may include a component to account for theteftd thermal dispersion.
The final term in each of Eq. 2.9 and Eq. 2.10 accounts for tingemive heat exchange

between the fluid and solid constituents within the poroudiora.

2.3 Interface Conditions

The treatment of fluid-porous interfaces has been wellistudver the years [14, 16-18,

22-25]. There is consensus in the literature that the mgstogpiate condition for the
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velocity at the interfaced Q| por = Q1 N Qpor, is to enforce its continuity, i.e.

u‘fl = <u>‘por on deI,por (2.11)

which was shown by Ochoa-Tapia and Whitaker [24]. Develg@in appropriate condi-
tion for stress at the interface is more complicated, sinbecomes difficult to construct a
proper averaging volume containing only the fluid or only pleeous region very near the
interface. In this case, some terms involving the spatiabgity gradient, which are ne-
glected in arriving at Eq. 2.8, may become important and fe&dcess stresses at the inter-
face. A stress-jump condition has been used successfuljy\2f], however, this approach
requires parameters to be obtained from experimental daiizhwnay be unavailable for
a particular flow configuration of interest. For interfacesgtlel to the flow direction,
Alazmi and Vafai [25] showed that taking the fluid stress tacbetinuous at the interface
gave good results for the velocity profile and representedaaanable compromise be-
tween the somewhat cumbersome stress-jump condition amslrtiplistic approximation
of a constant velocity gradient on both sides of the intexfadus, for the purposes of this
work, we require that the stress carried by the fluid is camtirs at the interface.

The stress tensors in the fluid and porous regions, in irldioi@tion, are given as

Jui du
and
i) O(u;
(Gij) = Us (%Jr%) —e(p)'a;. (2.13)

The stress on the pure fluid side of the interface, howevearised partially by the fluid
and partially by the solid constituent within the porous med Therefore, only a fraction

¢ of the stress on the pure fluid side is balanced by the fluidgodf the porous medium,
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resulting in the interface conditions [18, 23]

Pla = (P)| o 09 por (2.14)
por
and
du pi 9{u)
=27\ Q 2.1
f(?n | ¢ on o on Q¢ por, (2.15)

wheren is the unit-normal vector at the fluid-porous interface.
In the energy equations, we take the temperature on the fileds be continuous with
the average temperature on the porous side. Additionallyreguire an energy balance

over the surface to be satisfied. These conditions are stedtematically as [18]

Tl = <s(Tf)f +(1—s)<Ts>s) on Qs+ por (2.16)
por
and
oT\ _ (. 9" 9(Ty®
(kf (9!’1)” = <kfe an +Kse an - on 9Q¢| por- (2.17)

2.4 Discretization and Implementation

2.4.1 Governing Equations

Discretization of the relevant governing equations isiedrout for general, unstructured
grids with arbitrary cell topology using a cell-centred t@volume method. As such, we
integrate the governing equations over an arbitrary cortlnme Qp having volumevp
which is bounded by the control surfa@®p. It is assumed thalQp may be expressed as
the union of the discrete control surfaa#Q;, each of ared\p, whereip € {1,2,...,Np}

andNip is the number of discrete control surfaces. For the govgrequations in the fluid
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region, Egs. 2.1-2.3, this results in

Nip
> g =0 2.18)
ip=1
dU Nip Nip Nip
PiVp—_— ot + Z Mip(Uip — Up) = — Z PipNipAip + Z Hs DU‘.p NipAip, (2.19)
ip=1 ip=1 ip=1
and
o0Tp Nip Nip
PtCp,tVp—5— ot + Z Mip(Tip—Tp) = Z Ky DT||p NipAip- (2.20)
ip=1 ip=1

Note that Eq. 2.18 multiplied byp andTp has been subtracted from the discretized forms
of Egs. 2.2-2.3, respectively, to ensure a conservativhaodetSimilarly, the discretized

governing equations in the porous region arising from Eg5-210 are given as

Nip
Z mip— (2.21)
ip=1
3 (u)p Nip M Nip Nip
PG 3 T W (W) == 3 ElplioAp + 3 e DUl i
ip=1 ip=1
EVp s 8PfVPCf
— up— u wp, (2.22
K (e K [(u)p|(u)p, (2.22)
T f Nip Nip
eo1ep VTS + 3 Comp((Toly— (T = 3 kieDIT)'| oo
ip ip=
+htsassVp <<T3>|S:> — <Tf>|];) , (2.23)
and
0(Ts)p _ L
ot p

ip=1
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Equations 2.18-2.24, presently in semi-discrete formsao®ond-order accurate in space
provided the point$ andip are taken to be at the centroids of the control volume and
discrete control surfaces, respectively. Thus, to maingasecond-order method, all re-
maining interpolations used to cast the equations in fdiberete form must be accurate
to a minimum of second-order. In general, interpolationstva in terms of both the cell-
centred values of the dependent variables as well as theliegrts. Terms involving the
cell-centred values may be incorporated implicitly inte toefficient matrix describing the
linearized problem, while other terms must be added exjyli@ the right side of the linear
systemAx = b. Generally, we aim to include as much implicit informatian@ossible to
enhance stability and convergence of the linearized proldea solution of the non-linear
problem.

To obtain second-order accuracy in time, all partial derres with respect to time
are computed using second-order backward differencels tigtvalue at the present time-
step being implicit. The only exception to this is at the ftrste-step in which first-order
backward differences must be used. For the spatial intatipols, the gradient vectors and
Hessian tensors are reconstructed using the method ppysBetchen and Straatman
[26], which provides second-order accurate gradients asiddider accurate Hessian ten-
sors. Convection terms are discretized using second-oggeind interpolations with the
flux-limiter of Venkatakrishnan [27], which was chosen hesm of its excellent conver-
gence properties in comparison to many other limiters. Thegure terms in Egs. 2.19 and
2.22 are evaluated using third-order accurate spatiajiatations to obtain the pressure at
the integration points. In general, a third-order integbioin using cell-centred values of a

guantity@ and its derivatives is expressed as [26]

@p=(1—fip) @+ fip@o+Dt.ip- [(1— fip) D@lp + fip @] ny)

1
+3 [Dt.,ipDt,ip — fip(1— fip)DpnbDpnb) : [(1— fip)D0@|p + fipDO@|n] +O(8°)

(2.25)
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Figure 2.1: An illustration of two adjacent control volumes, P and nbihvihe relevant geometric
parameters noted.

where the relevant displacement vectors are defined in HigNbte that we have takefp
such thaDppy- Dt jp = 0, as suggested by Betchen and Straatman [26] in order tomzigi
the size of the correction associated with the interpatfefiom the pointxp + fijpDpnp to
the pointx;p.

Diffusion terms must be considered carefully since in thenfgiven in Egs. 2.19—
2.20 and Egs. 2.22-2.24 there is no dependence on the o#lédevalues and thus cannot
be considered implicitly. One option is to decompose thiusgibn term into normal and
cross diffusion terms [28] or to use the approach of Denitrdihd Muzaferija [29] where
a higher-order estimate of the gradient is used and the lol@rcestimate is subtracted
explicitly. We employ a formulation similar to Demirdzaénd Muzaferija [29] where the
normal derivative at the integration point for a scaqars estimated with second-order

accuracy as

@o— @ ((1—fip)Oolp + fipd|nb) - Denb

_ +0(8%),
Dpnb- Nip Dpnb - Nip (%)

(2.26)

Olip - Nip = Wp‘ip “Nip + {

where Wp) denotes a second-order interpolationCap to the integration point, given
ip

generally as

@‘ip =(1- fip)Dq"P‘i‘ fipD§0|nb+ Dt ip- [(1— fip)DD§0|P+ fipDD§0|nb] +O(52)~
(2.27)
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In Eq. 2.26, the first term in square brackets is a first-ordémate of the gradient at the
integration point and may be treated implicitly, bringirtglslity to the solution method.

Further, it may easily be shown using Taylor series that

o — @0 = (1~ fip)0@lp + fipO@|np) - Do+ O(8°) (2.28)

such that the term in square brackets in Eq. 2.26 is of ther @%las required to maintain
the second-order accuracy of the given interpolation. Nad¢ in this work, an inverse
distance approximation of the gradient is employed in teetkerm of Eq. 2.26, rather than
a simple mean as in Ref. [29], although both result in the danmeation error.

The mass flux through the discrete control surfaces, redquodorm the continuity

eqguations and the convection terms, is computed as

Mip = PtAp(U)ip - Nip, (2.29)

noting that(u)ip, = ujp in the fluid region. The advecting velocityl)ip, is computed
using the approach of Rhie and Chow [30] which uses a spgdalistructed momentum
equation to ensure coupling between the velocity and pred$mids. As an illustration, let

us consider the—momentum equation, given for the control voluRe

L apf . a(p)
aP<U>PZipz_lanb,ip<u>nb,ip+bp—8VP Ix P—<U>P—8V x| (2.30)

wheree = 1 in the fluid region. Similarly, for the volumeb sharing an integration point

ip with the volumeP, we may write

o(p)’
ox

anb{Wnb = (()nb— EVhb (2.31)

nb

By analogy, we may write a similar equation for a ‘virtual’'ntoml volume centred about
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the integration poinip, to obtain an estimate of the advecting velocifyip, given as

(Oip  &Vip 9(p)
dip ap OX ip7

(Q)ip = (2.32)
whereVip = (Vp +Vip)/2 andaip = (ap + anp) /2. The value of(l)ip is then found by
interpolation using the values @fi)p and(0), at the surrounding control volumes. When
P andnb are both located in the same region (i.e. they are both payobsth fluid), we
may assume thap ~ anp ~ ajp andVp ~ Vpp = Vip in Egs. 2.30-2.31 then interpola(i)

to the integration point from the values at the neighboudogtrol volumes. This results

. f
(@)ip = (Uip— o (0222 ) ) (2.33)
ip

dip
where the overbar again indicates a second-order intdipolto the integration point.

in
_a(p)f
ox

ip

Forming similar equations for the advecting velocity in teenaining directions, we may

compute the mass flux as

g = prfn [ mip—edp (00| - DT )ona]. 239
whered, is the average ¥, /a;p in each of the coordinate directions, weighted by the

magnitude of the normal vector in that direction. Then, gdii. 2.26 forC(p)f \ip ‘Nip

the second-order interpolation of the pressure gradietmetinterface cancels out leaving

Mip = PtAip [<T>ip “Nip

- (=P (A= fip)O(P) P+ fipD(p) o) - Deni
_£d|p< DP,nb'nip - DRnb'nip . (235)

Thus, we have now managed to incorporate the pressure iatcatbulation of the mass
flux at the integration point, which allows us to express thetinuity equation in terms of

both velocity and pressure. During the solution procedtre pressure term in Eq. 2.35
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acts to smooth out spurious oscillations in the pressurm fidhile in a converged solution,
this term will vanish to within the second-order truncatemor of the numerical scheme.
It should also be noted that we solve the mass and momentuatieas simultaneously as

a coupled set rather than solve in a segregated manner assi{28; 31].

2.4.2 Interface Conditions

At the interface between a fluid and porous region, care naustken in obtaining estimates
of the pressure, advecting velocity, as well as the difiisind advective fluxes to ensure
they are physically reasonable and do not induce spuriatiéad®ns in any of the solution
fields. When estimating the advecting velocity in either pliee fluid or porous regions,
we are able to assume that the active coefficieaptsand a,,, on either side of a control
surface are approximately equal, simplifying the expas$or (0)jp substantially. In the
case where one of the volumes is fluid and the other is poroigssimplification is invalid
as a result of the potentially large Darcy and Forchheimengepresent on the porous
side of the interface. Additionally, the advective momentilux on the fluid side of an
interface takes on the formy,(u)ip/€, while in the remainder of the fluid region it is of
the formmip(u)ip. As a result, special consideration must be made for thespresat the
interface to account for its rapid change as the fluid appresthe interface, such that the
pressure forces balance the differing advective fluxeseaintierface in comparison to that
a small distance away from the interface. Also, the valuegtidcity and temperature at
the interface must be calculated such that they corrediilyfgahe proper diffusion balance
equation.

Since we are developing special methods for estimating eélecity, temperature, and
pressure at the interface, it is important to ensure thaethvalues are taken into account
when reconstructing the gradient vectors and Hessianten&e a result, any fluid-porous
interfaces are effectively treated as boundaries in theigmaand Hessian reconstruction,

in which the value of the independent variable is specifiatlthe gradient is extrapolated
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Figure 2.2: An illustration of a control volume, P, with the relevant geetric parameters for
evaluating the normal derivative noted.

in the same manner described by Betchen and Straatman [26}diodard boundaries.
However, as will be described later, the interface valuelusdghe gradient and Hessian
reconstruction is not always the same as that used for otirpopes, such as advective

fluxes or pressure forces.

Diffusive and advective terms
Let us first consider a general diffusion balance at an iaterfoetween two regions,
given as

Cp O@lip p Nip = b Ui np Nips (2.36)

whererl’; is the diffusion coefficient for the volumeand the subscripp,i denotes a quan-
tity evaluated at the integration point, from the side ofwoki. The normal derivative
at the integration point can be formed by extrapolating thiéaentred value at poirfe
to a point which is located on a line through the integratiomp in the direction of the
normal to the face as illustrated in Fig. 2.2. Using a finitéedénce approximation along
this line for the volumé, it is determined that a second-order approximation of threnal

derivative at the integration point is given as

@p — (@ + 0¢|p- (Dpip — (Dpip - Nip)Nip)]

+0(d?), 2.37
Drip- iy (0%) (2.37)

D§0|ip7P'nip =



CHAPTER 2. ANUMERICAL MODEL FOR FLOW IN CONJUGATE
FLUID-POROUS DOMAINS 57

whereDpjp = Xjp — Xp. Then, considering two volumeB, andnb, on opposite sides of
an interface, we may formulate an expression for the valug af the integration point
which satisfies the diffusion balance by substituting theression given in Eq. 2.37 and
an analogous expression for the volunieinto the general diffusion balance given in Eq.

2.36. As aresult, it is shown that

_ b(Dpip - Nip) 'p(Dnb,ip - Nip)
~ Trn(Dejp - Nip) — Tp(Dnbjip - Nip) b Mb(Dpip - Nip) — Fp(Dnb,ip - Nip)
Mnb(Dprip - Nip) (Dnbip — (Dnbip - Nip)Nip)
M nb(Dpip - Nip) — F'p(Dnbjip - Nip)
_ TP(Dnbjip - Nip) (Dpip — (Dpip - Nip)Nip)
M nb(Dpip - Nip) — Fp(Dnbjip - Nip)

@p

: D(p|nb

-Oglp+0(5%), (2.38)

whereDppjp = Xip — Xnp. Equation 2.38 may then be substituted back into Eq. 2.37 to
obtain the normal derivative, which is used in forming th#udion terms. The result is

summarized as

Gho— P N (Dnbjip — (Dnbjip - Nip)Nip)
(Dpip-Nip) = 2 (Dbip - Nip) ~ (Dpip - Nip) — = (Dnpjp - Nip)
__ (Drip — (Dpjp - Nip)Nip)

(Drip - Nip) — 1= (Dnnip - Nip)

D(p|ip,P'nip = U@y

- Oglp+0(5%). (2.39)

Note that the first two terms in Eq. 2.38 and the first term inZ£89 are equivalent to those
given by Betchen et al. [18], while the remaining terms eas@cond-order accuracy when
the grid is non-orthogonal. In cases where the grid is owhatDpjp — (Dpjip - Nip)Nip =
Dnb,ip — (Dniiip - Nip)Nip = 0, so these additional terms will be identically zero. Whsimg
Eq. 2.39 in diffusive terms, the first term is treated imphgiwhile the remaining terms
must treated explicitly.

For the particular case of the stress balance at the ineervee may také p = us and
b = Ui /€ when volumeP is on the fluid side, or the reverse when volumés on the

porous side of the interface. Substituting these valueskigt 2.39, yields the appropriate
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value of the normal derivative at the interface, which isdusecompute the diffusion terms
in the momentum equation. Additionally, the value of theoegly at the integration point
is computed using Eq. 2.38, which is used to provide a phigiczalistic estimate of the
advective momentum transfer through the control surfacatém at an interface.

In the energy equations, we implement the parallel condnatnodel proposed by

Betchen et al. [18], given for an arbitrarily oriented irfiéexe as:
af = ek¢ OT | ‘Nip = Kre D<Tf>f |por - Nip 0N Q¢ por (2.40)

and

qg =(1-¢e)ks OT |- Nip = kse O(Ts)® |por - Nip 0N Q¥ por, (2.41)

for the conduction heat flux within the fluid and solid consgitts, respectively. Note that
the addition of Egs. 2.40-2.41 satisfy the interfacial lileatbalance given by Eq. 2.17 and
may be implemented quite simply using Eqgs. 2.38-2.39 tookhe advected temperature
at an interface. These equations are also used in formimgstié fluxes at interfaces,
however, it must be noted that on the fluid side of the intexfdlce heat flux through the
interface is the sum aff andqg given in Egs. 2.40-2.41. Additionally, when computing
the fluid temperature gradients and Hessians, the intetéanperature on the fluid side
of the interface is defined by the average given in Eq. 2.16levam the porous side it is

defined in the same way as the advected temperature.

Interface pressure

In order to compute the pressure forces in the momentumiegsats well as the mass
flux at the integration points for volumes adjacent to irgeefs, the interface pressure must
be considered carefully. The first issue that arises is thergdly discontinuous nature of
the pressure gradient across the interface as a result pfeeence of the Darcy and Forch-
heimer terms on the porous side, which results in a greagsmspre gradient required to

drive the flow. Additionally, as a result of reduction in flowea as the fluid flows from the
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Figure 2.3: An illustration of two control volumes on opposite sidesoflaid-porous interface, P
being fluid and nb being porous (indicated by shading), whih frelevant partial control volumes
indicated with dashed lines.

fluid region into the porous region, the advecting velocitgergoes a rapid change, which
must be balanced by appropriate pressure forces. Let ugleoas example, illustrated in
Fig. 2.3, in which fluid is flowing into a porous region from arpuluid region. Follow-

ing a momentum balance on the narrow control volume on thd fligie of the interface,

neglecting any mass flux from the sides of width, the pressure ap is found to be [18]

1—emp(U)ip - Nip

2.42
e A (2.42)

Pip = Pip- —
while a similar momentum balance on the porous side of tlezfaxte indicates

Pip = Pip+> (2.43)

wherep;,- andp;,+ are computed using third-order Taylor series extrapatatfoomP and

nb, respectively. Then, letting—,d" — 0 gives us an estimate of the interface pressure
at an infinitesimally small distance fromp on either side of the interface that accounts
for the change in advecting velocity at the interface. QYedhis means that a different

pressure will be used in the fluid and porous regions to coenfhé pressure forces in
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the momentum equations. Thus, while we do not directly eefohe pressure continuity
condition listed in Eq. 2.14, it is implied that it is satisfiatip, however we evaluate the
pressure forces using pressures very small distances amrayd to avoid any difficulties
associated with the discontinuous gradient at this poistwAl be shown, it has been found
that this approach is necessary on non-orthogonal gridsoid apurious oscillations in the
velocity field.

When computing the gradients at the cell centroids, howéwwes not make physical
sense to take the pressure at the integration point to bentbdace pressure computed
above, since this would artificially change the magnitudiénefgradient in the fluid region.
While Betchen et al. [18] were able to use the corrected presa computing gradients,
this is due to the structured, orthogonal framework of tloale; which blends this estimate
with an estimate of the gradient from the other side of therobrolume. In the present
non-orthogonal code, the gradient and Hessian tensornregion are tightly coupled
together meaning that an over- or under-estimate of theeraddjacent to the interface
will propagate itself throughout that domain. Thereforagw computing the gradients and
Hessians at volumes adjacent to an interface, we take tlssymes on either side to be
the pressures extrapolated using third-order Taylor seédi¢he pointsp~ andip™ with
d~,0" — 0. From a physical perspective, this gives a better estiofaige gradient and
Hessian over the control volume as a whole, since the ra@dgsin pressure described
by Eq. 2.42 occurs over such a small portion of that volumeaiAgwe will show that
this method is required to obtain a realistic estimate ofpfessure gradient in volumes

adjacent to interfaces and to avoid spurious oscillatiarie velocity field.

Advecting velocity
At fluid-porous interfaces, special consideration musb &ls given to the advecting
velocity since the assumpti@p ~ ay, ~ ajp is not valid due to the potentially large Darcy

and Forchheimer terms on the porous side of the interfaabidrtase, the interpolation of
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(0) to the integration point based on Egs. 2.30 and 2.31 takeseofotm

(Gip = (1— fip)ap(u)p + fipano(U)nb

, (2.44)
ip

+Dtip- (1 — fip)apO{u)p+ fipanp(U)|nb) + (svdg;)f)

where again the overbar indicates a second-order intdéipolto the integration point.

Using this expression in Eq. 2.32 results in

ap

(@ip = (1- fip)aip Snb

(Wp “‘flpa— )b+ D ip - —flp >|P+f|p?5< >|nb)
Vi o(p)’ 1 a(p)f
aip <8|p ox |i, Vip <sv ax ) ip) - @8)

Sinced(p)’/dx is generally expected to be discontinuous across fluidysoiaterfaces

we make the following assumption regarding the pressurigmnaat the integration point

1 <epvp 2(p)’ ) L (a4
p ipt

2V, ox
which is a volume-weighted average of the porosity mukiglby the pressure gradient,

o(p)’
ox

o(p)’

Eip 5%

+ EnbVnb
ip~

ip

estimated from either side of the integration point. Aduhally, the interpolated pressure

gradient term in Eq. 2.45 is treated simply as the mean of dheeg on either side of the
integration point, i.e.

7 alp\f\ 9o\
(222 ;(Spvpﬁg;g ) )
ipt

Combining Egs. 2.46 and 2.47 with Eq. 2.45 and forming singitaiations in the remaining

a(p)f
ox

+ €nbVhb
ip~

ip

coordinate directions, we arrive at an estimate of the massflthe integration point, given
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. — ~ [ lepVp —
vy = prtsp | Wi~ (5707 (08l ~TB ) -1
1 &npVhb f =7
30 (0 e~ TB ) 1 )| (240
Where<T)i/p is a special interpolation to the integration point whichwisighted by the

active coefficients and is defined as

(Wip = (1= fip) - (Wp + ip (U)o
+Dijp- ((1— fip) 22 (U)o + fip—a‘*?bm<u>|nb) (2.49)
dip dip

As before, the pressure gradients in the direction of thenorimal at the integration point

are estimated using Eq. 2.26, resulting in

f f
. — ~ [1epVp [ (P)ip— (P 0(p)f|p- Dp;
Mip = PfAp [<U>ip'nip_dip (éE\P/ipP << >p < >P_ (P lp Rp)

Dpip - Nip Dpip - Nip

f f
+}Enanb (Pip = (P)ab  O(P)[nb- Drbip . (2.50)
2 Vip Dnb,ip - Nip Dnb,ip - Nip

2.5 Results and Discussion

In this section, we consider two particular configuration®lving coupled fluid and porous
regions and solve the flows using the numerical model destpbeviously. The first prob-
lem to be solved is that of plane flow through a parallel pldt@nmel with a porous plug
inserted some distance from the inlet. At high Reynolds rennifRey > O(100)), this
problem is typically quite challenging to solve numerigahd special consideration of the
interface conditions is necessary [18]. In this case weesfilvRegy = 1000 and find that

accurate results are obtained at all locations, includiegnterface. This problem is used
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Figure 2.4: A schematic diagram of the porous plug case, where the shaggoh indicates the
porous subdomain.

to demonstrate the effectiveness of the present formulaticnon-orthogonal grids as well
as to show the problems that occur when modified formulatavesemployed, even on
orthogonal grids. The second problem involves a porousdiektwhich demonstrates the
effectiveness of the conjugate heat transfer model in gg@esehat cannot be discretized

using orthogonal grids.

2.5.1 Porous Plug Flow

The porous plug problem considered here is identical todbasidered by Betchen et al.
[18] and is illustrated schematically in Fig. 2.4. In thiseave are interested in computing
the flow field forRey = 1000 andDa = 102 since the pressure correction term given in
Eq. 2.42 will be rather large and thus challenging to solvaerically. This particular case
is discretized using both hexahedral and triangular prigmealumes, shown in Fig. 2.5, in
order to demonstrate the effectiveness of the non-orthalgamrection terms introduced in
this paper, since these terms will be relatively large indage of the triangular prismatic
grids and identically zero in the case of the hexahedrabkgrid

The cases using hexahedral grids are configured in the saynasia Ref. [18], where
the lengths shown in Fig. 3.11 were specifiedixs = Ax, = 5H andAxz = 50H. In
this case the large value ks is chosen to ensure fully developed conditions at the out-

let. Although this case is two-dimensional, it is discretiaising three-dimensional grids
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Figure 2.5: Plots of the (a) hexahedral and (b) triangular prismaticdgj near an interface, used
for the porous plug case.
with a single row of volumes in thedirection with symmetry conditions imposed on the
planes of constart The velocity boundary conditions consist of a fully-depd plane
channel flow specified at the inlet boundatys 0, fully-developed conditions at the outlet
boundaryx = 60H, and zero velocity at the channel waNss= 0 andy = H. The pressure
was specified as zero at the outlet boundary to set the peekeual, while pressure was
extrapolated to all other boundaries.

Using hexahedral grids, it is possible to create volumestiesoutlet boundary which

are very long in the flow direction in order to greatly reduce humber of volumes in the
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Table 2.1: Grid independence study for the porous plug case discretiming hexahedral grids,
including the percent difference and grid convergencexn@Cl) as defined by Celik et al. [32].
Note that the number of control volumes is given for the perplug section only and that the
pressure difference is given across the full length of theala.

Ny > Ny Ap % difference GCI u(2.5H,0.5H)/U % difference GClI

35x21 1463.41 N/A N/A 1.476 N/A N/A
50x 30 1466.36 0.2 0.6 1.494 1.2 3.5
70x42 1469.27 0.2 0.6 1.497 0.2 0.6

portion of the domain downstream of the porous plug. AltHotigese volumes have a very
high aspect ratio, accuracy is maintained since the flow @&lydully-developed. With
triangular prismatic grids this approach is not practitialis a great number of volumes
are required to compute the downstream flow, which is not igdigeof interest. To avoid
this issue we instead choo&r; = 5H and implement a velocity boundary condition based
upon an application of the continuity equation at the outlee. In this case, since the
primary flow is in thex—direction, the velocity components in tiie andz—directions are

simply extrapolated to the outlet, while the pressure igseero. Based on the continuity

:_(a_\/+a_vv) . (2.51)
ip dy 0z ip

eguation we may state
Jdu
ox

Then, sincenip =i, Eq. 2.37 may be applied to firdl/dx at the integration point which

results in an expression for the integration point velggityen as

ov ow

Uip =Up—+ Du\p~ (DP,ip— (DP,ip : i)i) - (E/—'_ E) (DP,ip‘i)7 (2-52)
p

which is used to specify the velocity component in xradirection at the outlet boundary.

Grid independence studies were performed for each volupes tyhere the total num-
ber of volumes was repeatedly doubled until all quantitiesterest were independent of
the grid resolution to within a certain tolerance. In thise&awe wish to obtain results

which are grid independent to within 1% and have an accepigiidl convergence index
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Table 2.2: Grid independence study for the porous plug case discrktiseng triangular prismatic
grids, including the percent difference and grid convergemdex (GCI) as defined by Celik et al.
[32]. Note that the number of control volumes is given forpleous plug section only and that the
pressure difference is given across the full length of thaala (which is truncated in comparison
to the hexahedral grid case). Also note that for all gride trowth rate was 10% per row with a
maximum characteristic grid size 4#,,.

&  Npor Ap  %diff. GClI u(25H,05H)/U %diff. GCI

0.0375 4644 1382.83 N/A N/A 1.486 N/A  N/A
0.0227 9272 1394.43 0.8 2.5 1.490 0.3 0.8
0.0129 18726 1400.07 0.4 1.2 1.494 0.3 0.8

[32]. The results of the present grid independence studeestanmarized in Tables 2.1 and
2.2. In general, it was found that obtaining an overall pressirop across the domain that
was grid independent did not always yield velocity fieldsathivere also grid independent.
Thus, in addition to the pressure drop across the domainJseecansider the velocity at
the point(2.5H,0.5H), which is associated with how well momentum diffusion isotesd

in the upstream channel and should approach 1.5 as thewvlativell-resolved. Using
hexahedral grids it was found that using>331 control volumes in the porous region, with
similar grid densities in the fluid regions, was sufficienbttuain grid independent results
for the pressure drop, but that further refinement was reduiv obtain grid independent
velocity results. A grid with 5 30 volumes in the porous region was found to be suffi-
ciently refined for the velocity field to be grid independehgrefore this grid is used for
all subsequent calculations. Note that in all of these ¢abesvolumes adjacent to the
interface and walls were refined in comparison to those inrtexior of the domain, as
shown in Fig. 2.5(a).

Using the prismatic grids, shown in Fig. 2.5(b), it was fouhdt about 4644 volumes
were needed to discretize the porous region in order to @aehiesults for pressure and
velocity fields that were grid independent, in comparisoth#1500 volumes for the hex-
ahedral grids. This is reasonable, however, due to the ninegonal nature of these grids

as well as the smaller area occupied by a triangle in conmpatis a square of the same
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Figure 2.6: A plot of the streamwise velocity component for the poroug problem with Rg =
1000 and Da= 1072 as a function of position along the ling/i = 0.5 on the interval XH ¢
[2.5,12.5] using the two grid types in comparison to results from Betateal. [18].

characteristic dimension. While the prismatic grid comitag 4644 volumes was sufficient
to obtain grid independent results, it proved challengmgame locations to interpolate a
smooth curve along the channel centreline. As a result, ildecgntaining 9272 volumes
in the porous region has been used for subsequent caladatince the volumes near the
centreline are smaller and lead to more accurate intefpokafor plotting purposes.
Figure 2.6 shows the results computed using the two diffegeid types described
above for the streamwise velocity component along the yift¢ = 0.5 on the interval
x/H € [2.5,12.5] in addition to the results obtained by Betchen et al. [18].islItlear
from this figure that the results obtained using the two diffie grid types are in quite
good agreement with one another, indicating that the tertmshwaccount for the non-
orthogonality of the grid are accurate. Additionally, carpg to the results given by
Betchen et al. [18] for the same case, we see similar resli®ugh the profiles near the

interfaces are slightly different due to the different treant of the pressure at the interface.
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While Betchen et al. [18] blends the pressure obtained Usgey 2.42 and 2.43 to arrive at
an estimate for the interface pressure and uses this pegsdiund the pressure gradient, we
use different interface pressures on either side of thefate and do not use the corrected
pressure to reconstruct the pressure gradient field. Thegressure forces on the fluid at
the interface are slightly different leading to a slighfeliénce in the velocity field.

In addition to evaluating the effects of grid type, we alsslwio evaluate the impact of
the present form of the pressure correction in comparisather possible treatments of

the interface pressure. To do so, we introduce the modifieeirses:

1. Use a standard second-order interpolatiorpfgat interfaces and perform no special

pressure correction in the momentum equations.

2. Take the interface pressure to be the average of the ésimizen in Egs. 2.42 and
2.43 (as in Ref. [18]) and use this pressure for both the gradeconstruction and

the pressure forces in the momentum equations.

Results shown in Figs. 2.7(a) and 2.7(b) indicate that tieeafi®ither of these modi-
fied schemes yields highly unrealistic results in the vigioif the interface and it is clear
that the velocity has become quite decoupled from the predsid. The failure of the
first modified method indicates that a pressure correctiomdised required, while failure
of the second modified method shows that the corrected peestould not be used for
reconstructing the gradients for reasons described prshioIn summary, this indicates
that the interface pressure conditions proposed in thikaoe indeed required to obtain
reasonable results for higRey on unstructured grids, even if orthogonal, due to issues
associated with the gradient reconstruction.

It should also be noted that the convergence of the proposéubth is not significantly
slower than the first modified method and that it is signifibafdster than the second
modified method. All cases were solved using a single large-8tep with a non-linear

residual tolerance, normalized by the average magnitudbeofjiven field, specified as
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Proposed Method
Modified Method 1

u/U

Proposed Method
Modified Method 2

u/U

Figure 2.7: A plot of the streamwise velocity component for the poroug ptoblem at Rg = 1000
and Da= 102 as a function of position along the lingli = 0.5 on the interval XH < [2.5,12.5]

for the modified methods of treating the interface pressotegradients. Note that these cases were
run using hexahedral grids.
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Figure 2.8: A plot of the streamwise velocity component for the poroug problem at Reg =
1000as a function of position along the linglt = 0.5 on the interval XH € [2.5,12.5] for Da €
{10°2,10°3,104,10°°}.

10-%. The proposed scheme converged in 43 iterations, whilevthentodified methods
converged in 31 and 135 iterations, respectively. Thusduhteon to adding significant
accuracy, the proposed method maintains good convergeopertes.

Finally, we have computed results fBa € {1073,1074,107°} and Rgy = 1000 to
demonstrate the robustness of the model over a wide rangamfyDumbers with high
Reynolds number. Results for the streamwise velocity carapbalong the ling/H = 0.5
on the intervak/H € [2.5,12.5] are plotted in Fig. 2.8 and indicate that the model is capable

of obtaining physically reasonable results for porous ntewith low permeability.

2.5.2 Graphite Foam Heat Sink

Recently, there has been interest in creating graphite fegahsinks with unique structures
intended to balance the excellent heat transfer propestigsaphite foam with its gener-

ally poor hydrodynamic properties which lead to very highgaure losses when forcing
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Figure 2.9: (a) A schematic diagram of the corrugated heat sink geometimgre the shaded re-
gion indicates the porous subdomain and (b) a plot of a setegbrtion of a 2D section of the
computational grid on a plane of constant z which uses badmgular prismatic and hexahedral
volumes.

fluid through the foam structure. Heat sinks proposed by festral. [7] and Wu et al.
[8] employ corrugated foam structures to allow fluid to pasatively easily through the
narrow porous regions while still obtaining some of its higahsfer benefits. The heat
sink described in Ref. [8] is of particular relevance to twisrk because of its V-shaped
corrugations, or ‘porous fins’, which cannot be discretibgdrthogonal grids. With the
present model, these heat sinks may be readily analyzed¢onuee their heat transfer
characteristics and to perform optimization of their stuoe. While a complete parametric
study is beyond the scope of this work, we shall demonsttestieg one particular flow
configuration, the ability of the present model to solve tbevfand thermal fields in such
applications and show that the results are physically restse.

A schematic diagram of the geometry under consideratioivengn Fig. 2.9(a). This
geometry is a simplified version of the heat sink considesetVa et al. [8], obtained by

considering only one symmetric section of the heat sink attefiing the curved surfaces.
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Note that we have added fluid sections upstream and downstiEtne heat sink in order
to allow the fluid to enter and exit in a natural way. As in R&, fthe height of the heat
sink was taken to bél = 20 mm. Additionally, we prescribed the dimensidkg /H =
Dxz/H =1, Mxp/H = 2.5, andW /H = 0.3. The thickness of the porous fins was taken to
beW /2 and the slope of the fin was taken such that the fluid gap amksteof the heat sink
is double the minimum gap size, occurring<@aH = 3.35.

A uniform inflow condition was imposed afH = 0 along with the mass-based outlet
condition described in the previous sectiorkgtl = 4.5. On the upper and lower walls,
z/H = 0 andz/H = 1, a no-slip condition was imposed, while on the symmetrygsa
y/W = 0 andy/W = 1, zero-derivative conditions were applied. The pressuas set to
a reference value of zero at the outlet and was extrapolatedl bther non-symmetric
boundaries. On the symmetry planes, the derivative of pressormal to the plane was
setto zero. At the inlet and at the heated bagh, € [1,3.5], the uniform temperaturek,
andT,, were applied, respectively. At all remaining boundarielalaatic conditions were
imposed. All graphite foam properties were taken from $tnaa et al. [3] for POCO foam
and fluid properties were taken as standard properties.of air

A plot of a selected portion of the computational grid is give Fig. 2.9(b), which
shows the use of multiple volume types. ResultsRe; = 100 are given in Fig. 2.10 for
the dimensionless pressure and temperature fields as wsdhae selected streamlines in
the planez/H = 0.5. Based on the results for the dimensionless pressure]ezbwith
the plotted streamlines, we clearly see how the high pressarone side of the porous
region coupled with the low pressure on the other side leaddair amount of fluid being
drawn directly through the foam. The dimensionless tempegglot clearly shows the
rapid increase in temperature as the fluid picks up heat ffarsolid constituent of the
graphite foam and exits the heat sink at nearly the wall teatpee. It should also be noted
that although this grid is relatively coarse near interé&asenooth results are still obtained.

The results given in this section are one example of a nevg dbproblems that may
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Figure 2.10: Contour plots on the plane/Bl = 0.5 of (a) the dimensionless pressue) f /pfU?
along with selected streamlines and (b) the dimensionlesstémperaturé (T;) F — Tin) /(Tw — Tin).
Note that the porous region is outlined with dashed lines.

now be solved numerically using the newly developed modeh&at and fluid flow in
conjugate fluid-porous domains. In this case, the geometmynat be discretized using
orthogonal grids, due to the sloped fins. The present modelever, is capable of obtain-
ing physically reasonable results for this type of heat saithough to compare directly
with the experimental results of Wu et al. [8] a turbulencededlavould be required in the
fluid regions due to the higher Reynolds numbers consideréiait work. Nevertheless,
we have demonstrated that smooth results are obtainedgtintbe interface and in future

work more rigorous validation may be pursued for this anéotases.

2.6 Conclusions

A numerical model for computing fluid flow and heat transfeiconjugate fluid-porous
domains using unstructured, non-orthogonal grids has pegyosed. Novel, physically-

reasoned interface conditions have been proposed whickharen to be very robust at
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high laminar Reynolds numbers and induce no spurious asotfis in any of the solution
fields. The major contribution of this model is the abilityuse non-orthogonal grids to
discretize complex geometries without affecting the rabhess of the model or having any

significant impact on the computational time required taoba solution.
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3
Chapter

Numerical Results for the Effective

Properties of Graphite Fodm

3.1 Introduction

High-conductivity porous materials, such as aluminum aragblgite foams, have been the
subject of much research over the past decade as a poteatiatiah for enhanced heat
transfer devices [1-9]. In particular, graphite foams hagen of significant interest due
to its extremely high solid-phase thermal conductivity@80900 W/mK), which leads to
a very high effective solid conductivity (40-160 WA) [5]. This enables heat to pene-
trate deeply into the foam structure leading to significhatiinal non-equilibrium between
the fluid and solid, creating potential for convective exad®m Combined with the large
amount of exposed internal surface area, which can be asasigh000-50,000 #fm3,
there is little resistance to convective exchange and geatlithansfer performance can be
obtained.

Experimentally, the heat transfer characteristics of gitegoams in various configura-

tion have been explored [4-6, 8], however, the ability talgtine performance of devices

TA version of this chapter entitled “Numerical results foetaffective flow and thermal properties of
graphite foam” has been publishedliournal of Heat Transferol. 134, art. 042603, 2012.

79
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incorporating graphite foams numerically remains chajieg due to incomplete knowl-
edge of its effective properties. Since any practical donadinterest will contain a large
number of pores, the pore-level flow and thermal fields arecaotputed directly. Rather,
volume-averaged governing equations [10] are solved taimbesults for the average
fields. While numerical methods exist to solve these equnatj@1-13], the accuracy of
the simulations depends on the accuracy of the models faetbeant effective properties
such as the permeability and thermal dispersion condtctivi

To obtain many of the required geometric parameters of giejdbams, Yu et al. [14]
developed an idealized geometric model, shown in Fig. 3cbmparison to images of an
actual foam. Additionally, Yu et al. [14] proposed a simgldianalytical model for the
effective thermal conductivity of the solid constituenttbé foam and used experimental
data to develop models for the permeability and Forchhetuefficient. Straatman et al.
[5] used further experimental data to obtain results forgbemeability and Forchheimer
coefficient and used volume-averaged simulations to @aklan interstitial heat exchange
model of the formNu, = hts¢/ks = CRg'Pr", where/ is an appropriate length scale, to
match experimental results. Thermal dispersion was mddeden Calmidi and Mahajan
[15] for aluminum foams as a linear function of the Péclemniver. However, recent work
by Karimian and Straatman [16], involving direct simulatiof the pore-level flow and
thermal fields in graphite foams, indicates that the Nusasetiber and thermal dispersion
conductivity correlations may be more complicated thaséhoonsidered by Straatman et
al. [5].

While there have been a number of studies undertaken torexpie effective properties
of graphite foam, there have been no comprehensive studiebave computed all of the
required properties to obtain a fully closed volume-avedagnodel. In particular, thermal
dispersion in graphite foams has not been well-studied anginy important for flow at
high Péclet numbers. While Karimian and Straatman [16aioleld some results for the

axial dispersion conductivity, there is a need to studythesverse dispersion conductivity
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Figure 3.1: Electron micrograph images of a graphite foam specimen) {a,comparison to a CAD
model of the idealized pore geometry proposed by Yu et &l (¢ld).

and to obtain functions which relate the dispersion condiiigtto the flow conditions.
Recently, a general method for obtaining all of the requi#dctive thermal properties
for high-conductivity media has been proposed based on ncahsimulation of the pore-
level flow fields [17]. Similarly, a method has been proposgtMhitaker [18] to obtain the
relevant effective flow properties required for closurehs volume-averaged momentum
equation. Thus, with these two methods, it is possible taial#ll of the relevant effective
properties to fully characterize graphite foams and perfegolume-averaged simulations
of their flow and thermal behaviour.

Thus, the purpose of the present work is to obtain direct kitiwun results for an ide-
alized spherical void phase foam geometry, proposed by Ml.ef14], and then apply
the closure methods proposed in DeGroot and Straatman fitiA\nitaker [18] to obtain
results for all relevant effective properties. As such, wi first outline the relevant gov-

erning equations and the associated closure problems wiist be solved to close the
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volume-averaged equations. Next, we will present resoltshfe closure of the momen-
tum equation which results in the permeability and non-Rahag terms. Of particular
interest is the non-Darcy drag term, which is typically medeas a quadratic function of
the Reynolds number and is characterized using the Fortieneioefficient, since there is
some evidence that this term may in fact be cubic with resjpeBeynolds number [19—
21]. We then present results for the effective thermal progee which are the thermal
dispersion conductivity tensor, the modified convectinpery, and the interfacial Nus-
selt number. Special attention is paid to modeling thernsgeatsion since it is typically
modeled as a simple function of the Péclet number and teenédence that this may be an
oversimplification of the physics for complex three-dimensl structures such as graphite
foams [16]. Finally, results based on volume-averaged Isitiauns are presented to com-
pare the present dispersion model with that of Calmidi antidytn [15] to highlight the

differences arising from the different models.

3.2 Governing Equations and Closure

3.2.1 Pore-Level Governing Equations

At the pore level, the flow and thermal fields are governed leydtandard mass, mo-
mentum, and energy conservation equations for a generdhoam. The continuity and

Navier-Stokes equations are given by
O-u=0 (3.1

and

P (%+U~DU) — —Op+ p 02U (3.2)

and are used to directly compute the pore-level flow fieldiregifor closure of the relevant

volume-averaged equations. The equations governing theeceation of energy in the
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fluid and solid phases are given as

oT
P+ Cp,t (d—tf—f—U'DTf) = k¢ 02Ty (3.3)
and
o0T.
pscsa—tS = ksDsz, (3.4)

respectively, where viscous dissipation in the fluid phaseeglected. Also note that Egs.
3.1-3.4 are the pore-level governing equations from wteh/blume-averaged equations

are to be derived.

3.2.2 The Method of Volume-Averaging

The method of volume-averaging is a procedure by which tiiggpdifferential equations
describing the flow and thermal fields in a general medium neapntegral-averaged over
many pores of a porous medium to obtain a new set of govermogt®ns in terms of
guantities averaged over many pores. In the paragraphditevfdhe basic definitions
relevant to volume-averaging transport equations ardlypeitlined. For further details
regarding the method of volume averaging, see [10, 17, 22-25

The definition of the extrinsic volume-average of a quandity over the volume/

containing fluid and solid volumé& andVs, is given by

(@) z\% 9 @dv, (3.5)

wherek € {f,s} denotes the phase in which the quantikyis defined. Alternatively, the

intrinsic average is defined as
1

<<n<>k=\7 @V, (3.6)
k /' Vk

which is an average over a single phase only. The two typegeoéges are related through
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the porosityg = V¢ /V, according to

elgy)f if k=f
(@) = : 3.7)
(1—-¢)(@)® if k=s
To convert averages of derivatives to derivatives of avesaghe ‘spatial averaging

theorem’ [10, 24, 25] is employed. For the gradient operalis theorem is stated as

(00 = 0l + [ anadA 38)

wherek,| € {f,s}, k1, and the unit-normal vectay, is oriented from thé&-phase to the
[-phase and\ is the area contained withih forming the intersection of andV,. Analo-
gous to Eq. 3.8, the spatial averaging theorem for the dérerg of a vector or second-rank
tensoray, is given as

(0-a) =D~<ak>+\%/Aklak-nkldA (3.9)

Note that in Egs. 3.8 and 3.9 the subscripts denote eithdtuigeor solid phase, thus no
summation is implied over repeated indices.

To simplify volume-averages of products of variables a gityag may be decomposed
into its intrinsic volume-average and a pore-level spat@liationg. The quantityq is

then expressed as

W= ()" + @, (3.10)

leading to the volume-average of a product of variabfgs,andg o, being defined as

(e1th2) = ;t<@,1><@,2> (i), (3.11)

where all terms are expressed using extrinsic averagefhakephase porosityg, =V /V,

which is introduced so that results are general to both flud solid-phase averages.
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3.2.3 VWolume-Averaged Mass and Momentum Equations

To obtain the volume-averaged mass and momentum equakqgss3.1 and 3.2 are ex-

trinsically volume-averaged, for a constant-porosity mag to yield [25]

0-(u) =0 (3.12)

>t T D<u>) = —e0(p) "+ ps O(u)

1 9 ™~ ~ o~
+\7/A (—Pnts+ peOb-nts) dA—prO- (G0). (3.13)
fs

Note that the spatial averaging theorem as well as the $pattamposition given in Eq.
3.11 are required to arrive at Eq. 3.13. In its present form, E13 is of limited practi-
cal value because it depends on the unknown pore-levels$piaviationspandi. The
closure of these equations, which involves characteanaif these unknown terms will be

discussed next.

3.2.4 Closure of the Volume-Averaged Momentum Equation

To close Eqg. 3.13, we follow the approach of Whitaker [18] inietr transport equations
for the spatial deviations are derived by subtracting EtR rom Eq. 3.1 and subtracting
Eq. 3.13, divided by, from Eq. 3.2. Various scaling arguments are made and theiolg

equation is derived for the pressure and velocity deviation

~ ~ . 1 ~ ~
pfu-Du:—DerufDZu—\Tf/A (—Pnfs+ ps00-nts) dA (3.14)
fs
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Then, Whitaker [18] has proposed the following constiteitdguations foti and p:

G=M-(u'+v, p=pm (U +&, (3.15%,b)

whereM is a second-rank tensor andis a vector, both of which are functions of position.
Whitaker [18] proves that is zero anc is constant, such that it does not pass through any
integrals and is therefore inconsequential to the soluifdhe closure problem. Whitaker
[18] then makes substitutions which separate the problémarmpart which depends only
on pore geometry and a part which depends on the flow field. erbebstitutions are

summarized as
m = a+c, M=A+C, (3.16a,b)

wherea and A are by definition only dependent on the pore geometry sineertértial
terms are dropped from the equations governingatla@d A fields. Further, in order to
eliminate integral terms from the closure problems, Whatgdlt 8] makes substitutions as

follows:

d=¢ta-K, D=eYA+I)-K, HI=K1.(1+F), (3.17b,9

|=¢Im-H, L=eYM+I)-H, (3.17,8

wherel is the identity matrixK is the Darcian permeability tensor, aRds the non-Darcy

drag tensor. Then, to obtak we first solve the boundary-value problem

0-D=0 (3.18a)

—0d+0°D+1 =0, (3.18b)
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Figure 3.2: An illustration of a periodic unit-cell for an array of cylders with the relevant geo-
metric parameters indicated.

subject to the boundary conditions

D =0, onAss (3.19a)
D(Xin +AX) = D(Xin), onAfe (3.19b)
d(xin +AX) = d(xin>7 OnAf87 (3190)

whereAgse is the area on the periodic faces of the unit-cell under cmnation andAx
refers to the spatial period, as shown in Fig. 3.2. The pebitigatensor is then obtained

through integration of the comput&field according to
K =&(D)". (3.20)
To obtain the non-Darcy drag tensor, we solve
O-L=0 (3.21a)

(%) 0L = — 0+ 2L 41, (3.21b)
f



CHAPTER 3. NUMERICAL RESULTS FOR THE EFFECTIVE PROPERTIEE O
GRAPHITE FOAM 88

subject to the boundary conditions

L =0, onAss (3.22a)
L (Xin +AX) = L (Xin), onAse (3.22b)
[(Xin +AX) = 1(Xin), 0N Ate, (3.22¢)

such that the non-Darcy drag tendéyjs defined by the equations:

H=eL)!, F=K.-HI-I (3.23,0)

Note that the closure problems given in Eqgs. 3.18 and 3.28ianiéar in form to the steady
forms of the Stokes and Navier-Stokes equations with saeroes, respectively, such that
any solution technique for these equations that incorpserperiodic boundary conditions
can easily be adapted to the solution of Egs. 3.18 and 3.21.

Whitaker [18] has shown th& must be symmetric. In the case where pore geometries
exhibit symmetry about all three coordinate planes, it cariusther shown thaK is di-
agonal. Additionally, if the flow field is similar in all threepordinate directions (i.e. flow
is at a 45 degree angle to all positive axes), then the tetswitl also be symmetric with
all diagonal components being equal to one another andfaliajonal components being
equal to one another. In such cases with geometric as webhadi#lld symmetry, only a
single row or column of the tensoBsandL needs to be evaluated using solutions to Egs.
3.18 and 3.21 in order to obtain the diagonal componenks a$ well as the value of the
diagonal and off-diagonal components-of

OnceK andF are evaluated, the closed form of the volume-averaged mmesqua-
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tion is given as
pr ( 2+ 00 ) = 0P 4 e 20 — ek () ek L )
(3.24)
where thep; O - (i) term has been neglected since in regions away from bounding s
faces,(lill) is constant from cell-to-cell when the flow is periodic. Alsote that ifK and
F are diagonal ané is a linear function ofu), the empirically closed equation of Vafai

and Tien [26] is recovered by defining the Forchheimer caefii¢c, according to

K
Fo— ch — Reccy, (3.25)
f

whereFyy is the diagonal component Bfwhen the flow is in the-direction andRe is the
Reynolds number based on the square root of the permeaislitye length-scale.

The advantages of the approach described in this sectidwafeld: (i) the computed
permeability tensor represents the “true permeabilityhat it depends only on pore geom-
etry, and is thus not influenced by the effects of inertia aifdhe non-Darcy drag tensor,
representing the remaining drag, is computed in genenaistenaking it quite simple to

determine its dependence on Reynolds number.

3.2.5 \Wolume-Averaged Energy Equations

The volume-averaged energy equations are derived by amgrggs. 3.3 and 3.4, yielding

o(Te)f
ot

prcpr | +<u>~D<Tf>f} _ ek (T

1 ~ o
+\—/ ki OTf -n¢sdA— Eprpny<qu>f (3.26)
Ats



CHAPTER 3. NUMERICAL RESULTS FOR THE EFFECTIVE PROPERTIEE O
GRAPHITE FOAM 90

and

(1- S)pscsﬁ<Ts>s = (1— &)ksI(Te)S+O- <\E/

at ks-rsns fd A)

fs

1 ~
\ Ats

where the simplifications listed in [17] based on the highdstd-fluid phase conductivity
ratio have been made in the fluid energy equation. Note tlafitlal term in Eq. 3.26
represents thermal dispersion, while the second last teEnq.3.26 and the last term in Eq.
3.27 represent heat exchange between phases. Also notedhattuosity term has been
neglected in the fluid energy equation since convection datas conduction in the fluid
[17, 27]. In the solid energy equation, the tortuosity tesiretained (as the second last term
in Eqg. 3.27) since this term can be significant in forming tffeative solid conductivity
[28]. Again, these equations are not particularly amiablediution, since they depend on

the unresolved pore-level fields. Closure of the energy teaumawill be discussed next.

3.2.6 Closure of the Volume-Averaged Energy Equations

As in the closure of the volume-averaged momentum equatiwesubtract the volume-
averaged energy equation for the fluid phase, divided,ldyom the energy equation for
a fluid continuum. This equation is simplified using the sgglarguments given in [17],

resulting in
F s f 2z 1 =
PiCp.i <U-DTf G- 0(T) ) =k C2Tr = o [ kOTrnesda (3.28)

f Afs

The constitutive equation for the temperature deviatisrgguen as [17]

To=b-0(Te) + 9 (Tu—(T0)"), (3.29)
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whereT,, is the constant wall temperature Aps. The resulting closure problems that must

be solved for the two closure parametbrand are given as [17]

piCp,f (G+u-Ob) = kazb—Vi ki[db - ngsdA, (3.30)
f Afs
subject to
b =0, onAss (3.31a)
b(Xin +AX) = b(Xin), onAse (3.31b)
(b)" =0, (3.31c)
as well as
1
prepru-OY =kiD?y— - | keOy-nidA (3.32)
f Afs
subject to
Y =1 onAss (3.33a)
Y (Xin +2AX) = Y(Xin), onAse (3.33b)
)y =o. (3.33¢)

Noting thatT,, = (Ts)® within any averaging volume, the closed volume-averageugn

eqguation in the fluid phase is given by

prcp (2200 4.0 ) =0 (kier 00T e (0%~ (1)) @34

where the convecting velocity is defined by

U= (u) —&(liy)" —\%/A pfl::fprbﬂfsdA (3.35)
fs y
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and the effective conductivity tensor is defined by
Kfe = ksl + €ky, (3.36)
where the dispersion conductivity tensor is given by
kg = —prCp.r(Tb)'. (3.37)
Finally, the interfacial heat transfer coefficient is defirgy

&
afshfs:\Tf/A K Ow-nysdA (3.38)
fs

Note that due to the fact that the solid region of graphitefeaay be highly anisotropic
and that the solid phase effective conductivity can difi@tejsubstantially fronf1 — €)ks,
it is recommended that the solid energy equation be closed as appropriate empirical
or analytical model for the effective solid conductivity wh takes into account the tor-
tuosity term and any anisotropy in the material. The in®daexchange term, however,
is closed using Eq. 3.38 as in the fluid energy equation. Tosed form of the volume-
averaged energy equation in the solid phase is then given by

0(Ts)®
ot

(1— €)psCs — 0 (kse- O(To)®) —afshfs(<Ts>s— (Te) ) (3.39)

wherekge is the effective solid conductivity tensor.

3.3 Non-dimensionalization and Parameters of Study

In order to provide more general results and to provide quidaegarding the relevant
parameters of study, the volume-averaged governing emsatgiven by Eqgs. 3.12, 3.24,

and 3.34 are non-dimensionalized. Neglecting unsteadystethe required dimensionless
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variables are

- f

=% =4, w=§ (=L, @4mbcg
f_T S_T

o= g= (T, (3.402f)

The resulting dimensionless equations are then:

O0"-u* =0, (3.41)
<U>* * * * fx i *2 * 21 —1 *
. -O0%(u)* = —e0*(p) +REbl [0 (uy* —ed“K™=- (1 +F) - (u)*], (3.42)
o 00 = — o (Ko gy ) 1 Nug(6e— 61) (3.43)
f= RQ]PI‘ kf f fs\Us f)l» .
and
f

where " = d/9x]i + d/9x5] + d/9x5K is the dimensionless gradient operator and the

relevant dimensionless groups are

o arshrsd?

_ psUd

Rey pr — .rHI

) 3.45,b,
Hs Ks ( 9

By inspection of Eqgs. 3.41 to 3.44 we note nine dimensiordasameters, namelRey, Pr,
Nuss, d°K~1, F, U*, ke/Ks, kse/Ks, ande. By specifying the pore geometry, fluid prop-
erties, and boundary conditions, the parametefRegy, andPr are fixed. As mentioned,
the effective solid conductivity is determined by an appiaie model, fixingkse/ks. The
remaining parameterdluss, d’°K 1, F, 0%, andk t¢/ks, are defined by the solutions to the
closure problems.

In this study, we consider three different Prandtl numbers; {1,5,10}, which cover

the range of typical fluids encountered in heat transferiegipbns (i.e. air, water, and
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Figure 3.3: Schematic diagram of the computational domain for direrisation of the pore-level
fields, in this case for a graphite foam wigh= 0.85.

refrigerants). The range of Reynolds numbers considerd®igjs= [1,100. Creeping
flows whereRegy < 1 are not considered herein since they are of limited pralctialue

in heat transfer, while flows aboWgy = 100 are not considered due to the onset of tran-
sient/turbulent effects.

The pore geometry under consideration is based on an iddafimodel of the pore
structure for graphite foams, proposed by Yu et al. [14] dmuws previously in Fig. 3.1.
This model considers the pore shape as a repeating cubatwstwf sizeH, wherein
the solid region is formed by removing a spherical void raegid diameterd from the
cube. A schematic diagram of the computational domain isvehia Fig. 3.3. In this
study, porositieg € {0.80,0.85,0.90} are considered, which cover the primary region of
interest for heat transfer applications. Belewt 0.80, the smaller pore windows lead to an
exceedingly high pressure drop, while abeve 0.90, foams are difficult to manufacture as
the ligaments become small. For the porosities considéredatios of the pore diameters

to the unit-cube size ad/H € {1.2018 1.2491 1.3051}.
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3.4 Simulation Details and Grid Resolution

In all, the flow field and momentum closure problem is solvedf® cases and the thermal
closure problem is solved for 198 cases (as a result of tlee tArandtl numbers consid-
ered). For each unique pair of porosity and Reynolds nuntberfirst case involved the
solution of the flow field as well as the thermal and momenturswie problems. For the
subsequent Prandtl number cases, the flow solution was reaudthe previously gener-
ated data files and only the thermal closure problem was dosenerally, cases were run
using 64 processors in parallel. Cases in which the flow fiatil lzoth closure problems
were solved took about 8-10 hours, while only solving thertta closure problem took
about 2-3 hours. Thus, the total computational time expgobt&ining the present results
is approximately 6—8 CPU years (i.e. the time taken to ruoaaks sequentially on a single
processor).

One factor leading to the large computational requirementbe sensitivity of the
closure problems to the accuracy of the flow field computatwhich require that the
specified tolerances be set quite restrictively. The marimarmalized non-linear residual
in a converged solution was specified asI¥) the maximum relative difference between
the actual and specified mass flux through the periodic facesset to 10°, and the
maximum value ofb) " and(y)" in the root-finding algorithm to obtain the correct source
terms (as described in [17]), was specified as20 Thus, all solutions presented herein
are well-converged and would not improve with lower tolemsettings.

Finally, before moving on to a discussion of the results, vighvio make a comment
with regards to the coordinate system employed and the flogciitbn imposed. Within
the periodic unit-cells considered, the flow field is takebégeriodic in all three coordi-
nate directiongX,Y, Z), such that the average velocity vector makes equal angtbsaii
coordinate axes. Karimian and Straatman [16, 29] foundttdiang the flow to enter the
pores on such an angle is of greatest practical intereste simepresents somewhat of an

average flow condition for randomly oriented pores and pceduhe best agreement with
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Figure 3.4: A plot of the tetrahedral grids used for the (&)= 0.8 and (b)e = 0.9 cases generated
with a grid size at the wall oé,, = 0.0118H (where H is the unit-cube size), a growth rate of 8%

per row, and a maximum grid size &fax= 3dw.

experiments. Thus, all effective properties are obtairesktd on this macroscopic flow
direction. While this coordinate system is convenient famputation and implementation
of the periodic boundary conditions, it is more customargliszuss quantities in a coordi-
nate system with the primary axis in the direction of the voduaveraged velocity vector.
Therefore, we report values which have been transformddgsa@oordinate system, which
we refer to as the ‘flow-oriented’ systefr y,z) by the appropriate change of basis.

A grid resolution study was conducted to ensure that theepted solutions are inde-
pendent of the particular grid used for the simulations.his study, the total number of
control volumes in subsequent refinements was approxiyndtaibled until all required
parameters changed by less than a specified tolerance. fowad that grid-independent
solutions were obtained for grids generated using a charstit grid size ob, = 0.011&8
at the wall with a growth rate of 8% per row, and a maximum gri of dnax = 3ow.
These grids are shown in Fig. 3.4 for the- {0.8,0.9} cases and contained 1,000,592 and
890,720 control volumes, respectively. Upon doubling thember of volumes in the grids,
it was found that the Nusselt number was grid-independenittin 2%, while all other

variables were grid-independent to within 1%, which is ¢desed acceptable.
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Table 3.1: Summary of the dimensionless permeabilities obtained ncaflg for & <
{0.80,0.85,0.90}.

Porosity,e K/d?
0.80 909x 103
0.85 124x 102
0.90 170x 102

3.5 Results for Momentum Closure

Based on the momentum closure model described previol&ypeérmeability and non-
Darcy drag tensors are obtained across the range of poasgityReynolds numbers con-
sidered. Considering steady, uniform flow in thdirection, the closed volume-averaged

momentum equation, Eq. 3.24, reduces to

d<p>f _ s (u) n s (U) Fux

(3.46)

which is essentially an extended version of Darcy’s law whbe non-Darcy drag term has
been left in general terms witRy characterizing the deviation from Darcy’s law. In fact,
Fxx represents the ratio of the non-Darcy term to the Darcy té&earranging Eq. 3.46 to

solve forFyy, we find

which can be used to compare resultsFgrobtained from the closure problems with the
corresponding pressure drop data to assist in validatgtbposed model.

Upon transformation to the flow-oriented coordinate systie permeability tensor is
diagonal withKyx = Kyy = Kz; = K. The permeabilities computed for each porosity are
summarized in Table 3.1, and are represented non-dimeailsidny K /d? as suggested by
the dimensionless momentum equation. In Fig. B.pis plotted as a function of Reynolds
number for each of the three porosities as it is obtained ttasolution of the momentum

closure problem as well as directly from the computed pmesdtop via Eq. 3.47, where
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Figure 3.5: Plot of the non-Darcy drag termk as a function of the Reynolds number obtained
from the solution of the momentum closure problem in corsparto results obtained directly from
the computed pressure field.

the permeabilities used to non-dimensionalize the presdtap are those computed from
the closure problem. Figure 3.5 shows excellent agreenetnteen the results obtained
from the closure problem and from the flow solution, indiegtihe solution to the closure
problem indeed captures the required information reggrttia pressure drop.
Additionally, it is observed that, in general, the non-Badrag term does not grow
linearly with Reynolds number as it would if the second temr&q. 3.46 was quadratic with
respect to velocity, as in the Darcy-Forchheimer equati@ather, we notice non-linear
behaviour at both low and high Reynolds numbers. At low Ré&saumbers, this can be
due to the effects of weak inertia [19-21] leading to a nomeR&erm that is quadratic with
respect to velocity (such that the second term in Eq. 3.46bganith respect to velocity).
Karimian and Straatman [29] observed a similar trend at l@yri®lds numbers for uni-
directional flow in idealized graphite foams. Interestingle also observe a non-linear

trend at higher Reynolds numbers, particularlydar {0.85,0.90}.
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While it is clear that there are indeed non-linear effectateel to weak inertia, Fig.
3.5 indicates that foRegy < 10, where the effects of weak inertia are most prominent, the
magnitude of the non-Darcy term is less than 10% of the Daney.t Thus, moderate errors
in characterizing~y in this region, such as considering it to be a linear functieii not
have a great impact on the overall pressure drop since theyDe&mm is strongly dominant.

To explore the relationship between the non-Darcy drag terdReynolds number further,
we have obtained models using least-squares fits for thedRisynumber rangeRey < 10

andRey > 10, given generally by the polynomial

Foc= a0+ a1Rey + 2R + ... + anRe). (3.48)

To ensure a physically reasonable model, with a zero nowyD@rm at zero Reynolds
number,ag = 0 for the regionRey < 10. Results for the coefficients;,, along with the
maximum error between the model and the actual data, are auged in Tables 3.2 and
3.3 for linear and quaderatic fits, respectively. Note thatdlror is given in absolute terms,
since Ry represents the ratio of the non-Darcy to Darcy terms, anbus & convenient
metric for the error as it is relative to the size of the Dayrt. As expected, the quadratic
fits yield less error than the linear fits for all cases, sin¢cga higher-order model. Gener-
ally, the improvement is by an order of magnitude, excepttie = 0.80,Rg; > 10 case
which is close to being linear, such that the linear fit givesdjresults. Also, we may note
that in all of the higher Reynolds number cases there arepteidt, coefficients involved,
indicating that the non-Darcy drag term cannot be adequédescribed as a simpkeg re-
lationship as commonly assumed. Further tests using lieaat-squares fits over the full
range of Reynolds numbers, corresponding to Forchheirasssmption that the deviation
from Darcy’s law is linear, indicate that the error is higliean the previously considered
cases.

Overall, it is clear that considering the non-Darcy term éoabquadratic function of
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Table 3.2: Summary of the polynomial coefficients for the linear lesagtares fits for the non-Darcy
drag term, ky, along with the associated maximum absolute error.

f Rey ap a Max. Error
0.80 <10 0 699x 103 1.02x10°?
0.80 >10 —-6.54x102 155x102 3.74x10°3
0.85 <10 0 699x 102 1.15x 102
0.85 >10 —-367x102 1.35x102 1.66x 102
0.90 <10 0 741x 103 1.31x 102

090 >10 847x10°3 1.13x102 3.84x10?2

Table 3.3: Summary of the polynomial coefficients for the quadratistisguares fits for the non-
Darcy drag term, k, along with the associated maximum absolute error.

£ Rey ag a1 a Max. Error
0.80 <10 0 146x10° 827x10 % 221x10°
0.80 >10 —-592x102 151x102 495x10°% 3.18x10°3
0.85 <10 0 146x 102 827x10% 1.33x10°3
0.85 >10 —-572x102 148x102 —144x10° 364x10°3
0.90 <10 0 180x 102 7.30x10% 1.84x10°3

090 >10 -571x102 149x102 —-348x10° 3.15x10°3

Reynolds number, in separate low and hiRgy regimes, produces the best results. Con-
sidering the term to be a linear function®g; in the two flow regimes separately results
in a substantial increase in error, however, relative tosthe of the Darcy term, the error
in Fy is of the order 102 or less which may be acceptable for some purposes. It also bee
shown that the common assumption tRgtis a simple linear function of Reynolds num-
ber (leading to the Darcy-Forchheimer equation), is nai@aarly accurate, as previously
indicated for weak inertia flows [19-21].

One may also consider how the present results for the peihtgand non-Darcy
drag term compare with data from experiments involving ggaphite foams, for which
the present model is an idealization. In general, it can Baraed that the ideal results
will differ from experimental results due an imperfect coaerization of the geometry.
Karimian and Straatman [16] explored this issue for grapioidms and developed methods
to calibrate idealized results to experimental resultsdnsering pore blockage and solid-

phase size variations. Although we do not consider suchredions in this work, we find
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it necessary to point out that this is an additional stepliradin closure modelling when
the idealized geometry varies from the actual geometry. mibee realistic the geometric
idealization is, however, the better the results from tlsute problem may be. In fact,
since the idealized geometry usually produces more désirabults, it is in the interest of
material scientists to strive to manufacture materialscivl@ipproach the homogeneity of

the idealized models.

3.6 Results for Energy Closure

3.6.1 Dispersion conductivity

In general, the dimensionless effective conductivity eenscaled by the porosity, is di-
agonal and takes on the forkie/(€ks) = | +Kkse/Ks. Thus, since this tensor is simply
the addition of the identity tensor and the dimensionlespelision conductivity tensor, it
suffices to simply discuss the dispersion tensor. Also,esime are considering the flow-
oriented coordinate system in which the bulk flow is in #direction, we may state by
symmetry that(kq)yy = (K4)zz and simply discuss the axiak)(and transversey(and )
dispersion conductivities.

Generally, the dispersion conductivity in both the axiatl dransverse directions is
considered to be a simple function of the Péclet nuntegr[30—32], while, more recently,
Kuwahara et al. [33, 34] have considered the dispersionuaiiaty to also be a function
of porosity. The present results indicate that in genemldispersion conductivity is not
well characterized by the Péclet number alone, ratheratfisction of the Reynolds and
Prandtl numbers separately, as well as the solid fradtlon€). As such, we propose a
model for the dimensionless dispersion conductivity as

% = aR&Pr(1—¢g)%, (3.49)
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Figure 3.6: A plot of the dimensionless axial thermal dispersion cofidilg as a function of
RE!Pré2(1— )%, where the coefficientéa, ay,as) are obtained using a least-squares fit of the
data.

whereky may represent either the axial or transverse dispersiodugiivity while the
coefficients(ag, a1, ap, a3) are found using least-squares. In Fig. 3.6, the axial désper
conductivity is plotted as a function of the dimensionlessug Re;91Prl72(1 — )19,
obtained by a least-squares fit of the data, which showslexteollapse of the data onto
a single line. This confirms the fact that for the geometryarmmbnsideration, the axial
dispersion conductivity cannot be simply considered ationcof Pg]}. In this case we
find the axial dispersion conductivity has a slightly strendependence on the Reynolds
number than the Prandtl number as well as a roughly lineatioelship with respect to the
solid fraction, 1— ¢.

The transverse dispersion conductivity is plotted as atfon®f Pey in Fig. 3.7. In
this case, performing a least-squares fit to Eqg. 3.49 ovdutheange of the data does not
result in a good fit, since there exist different behaviouithiw different Péclet number

regimes. FolPgy < 10, we find that the transverse dispersion conductivity exjadtely
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Figure 3.7: A plot of the dimensionless transverse thermal dispersamuactivity as a function of
Pey.
described by the Péclet number and the solid fraction geetinga; = a, in Eq. 3.49).
In Fig. 3.8(a) the transverse dispersion conductivity atteld as a function of the dimen-
sionless groupPel78(1 — €)1-37, which is found using a least-squares fit of the data for
which Pgy < 10. In this case we find good collapse of the data onto a singgeal low
Péclet numbers. At higher Péclet numbers, the Reynold€Paandtl numbers needed to
be considered separately in order to obtain a good fit. Refultthe transverse disper-
sion conductivity as a function of the dimensionless gr&ey?1Pro-776(1 — £)0-786 gre
plotted in Fig. 3.8(b). The least-squares fit in this case eained using data for which
Re21Pr0-776(1 — £)0786 > 30. In this region we find generally good collapse of the data,
but we also note that at the highest Péclet numbers, a eliffdrehaviour appears to be
emerging.

Overall, the dispersion behaviour discovered in this waek proven to be relatively

complex in comparison to the relatively sim@?e] models typically observed in most of
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Figure 3.8: Plots of the dimensionless transverse thermal dispersimuectivity as a function of
the dimensionless groups P&(1— €)13" and R§21Pr0778(1 — £)%-786 obtained by least-squares
fits for the regimes (a) Re< 10and (b) R§2!Pro76(1 — ¢)%-78 > 30, respectively.
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the literature. Itis believed that much of this is due to the that the geometry and flow is
fully three-dimensional and relatively complex in compgan to arrays of rods as is often

studied in the dispersion literature.

3.6.2 Convecting velocity

To study the dimensionless convecting velodity,it is convenient to define the convecting
velocity modificationd’™ = U* — (u)*. The component of the convecting velocity in the
direction is plotted in Fig. 3.9 as a function®é,. Results indicate asymptotic behaviour at
low Péclet numbers, followed by a gradual decrease andegulest increase with increas-
ing Pey. Overall we have found that* decreases with porosity for a fixed Prandtl number.
For a fixed porosity, we find very similar behaviour for =5 andPr = 10, with a smaller
velocity modification being observed f@r = 1. It is interesting to find that the convect-
ing velocity modification is quite significant (up to 40% okttmagnitude of the extrinsic
velocity), given the fact that is it generally neglected wieonducting volume-averaged

simulations.

3.6.3 Interfacial Nusselt number

Next, we present results for the interfacial Nusselt numbefined by Eqg. 3.45c. Re-
sults are plotted as a function of the Péclet number in Eif).3Here we note asymptotic
behaviour at lowPey, representing the effects of molecular diffusion [16]. Toe-Pey
asymptote is higher with decreasing porosity. At lowerl@&eumbers, it appears that for
each porosity the behaviour is independent of the Prandibeu, whereas fdPey > 40 the
Nusselt number behaviour depends on the Prandtl numbes, TdnithePey < 40 a model

of the formNuss = (a1 + agPe§3)(l— €)# is proposed. A least-squares fit then reveals that
a good model is

Nuss = (33.340.51Pe)8)(1—£)042, (3.50)
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Figure 3.9: A plot of the dimensionless convecting velocity modificaitiothe flow direction as a

function of the Bclet number.
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which has a maximum error of 4.9% relative to the computedsBlaisiumbers. It has
been found that a model of this form is unsuitable Rer> 40, thus a model of the form
Nurs = (a1Pré + agRe*Pr3) (1 — €)% is proposed. A least-squares fit of tRey > 40

data reveals that a good model is
Nuss = (32.0Pr%%77+ 1.18Re} 03pr038) (1 — £)042, (3.51)

which has a maximum error of.4% relative to the computed Nusselt numbers. Straat-
man et al. [5] proposed a model for the interfacial Nussember using volume-averaged
simulations calibrated to experimental results. Their eiéook the formNu, = CRg'Pr",
where/ is the appropriate characteristic length, in this case,caivalent particle diame-
ter. The exponentsi andn were found in that work to ben= 0.27 andn = 0.33. Thus,

we have found a stronger dependence on Reynolds number amia slependence on
Prandtl number in comparison to the study of [5]. In our work &so found a non-zero
asymptote at low Péclet numbers, which is physically reabte, but difficult to determine
using experimental results and a calibrated volume-aeeragpdel. Karimian and Straat-
man [16] also observed a non-zero Nusselt number asympttiteir study of heat transfer

in graphite foams using direct pore-level simulations.

3.7 Comparison of Dispersion Models

With the closure relations developed, we may implement thregma volume-averaged al-
gorithm to obtain results for bulk flow and heat transfer vétar. Here, we use the finite-
volume algorithm proposed by Betchen et al. [12] to solvevitiame-averaged equations
in order to compare results using our newly developed thiedmspersion model in com-
parison to results using the model of Calmidi and Mahajan, [itbwhich the dispersion
conductivity is linear with respect to the Péclet numbdthdugh this model was developed

for aluminum foams, it has also been employed by Straatmah E] for graphite foams
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Figure 3.11: Schematic diagram of the domain under consideration fontleme-averaged simu-
lations.

since no models had been developed specifically for theserialat To isolate the effects
of thermal dispersion on the volume-averaged temperatldsfiwe use the present model
for the Nusselt number in conjunction with the two differeligpersion models. Note that
the effective solid conductivity is obtained from the anigl model proposed by Yu et al.
[14] and the convecting velocity is obtained directly fromg.F3.9, since the flow field is
essentially a plug flow.

The particular configuration under consideration in thigtise consists of a block of
graphite foam in a sealed channel, heated from below, wittedsiond. x L x H, as shown
in Fig. 3.11. Note that we do not consider the fluid regiondngjasn and downstream of the
porous block, since, as shown by Straatman et al. [5], trext@as have little effect on the
final solution. In this casd,/d = 100 andH /d = 12, similar to the case considered in [5].
Also, we have chosen= 0.85, such thaK /d? = 1.24 x 10~2. To highlight the dispersion
effects, we have chosen the working fluid to be water at 300¢hvhas a relatively high
Prandtl number oPr = 5.8 and a solid-to-fluid conductivity ratio ¢&/ks = 2447, which
is sufficiently high for the present model to be applicabldhe Womain was discretized
using 30 control volumes in each direction, with some refi@ettowards the boundaries.
A grid resolution study indicated that doubling the totahmher of control volumes within
the domain resulted in less than 0.2% change in pressureatiipverall heat transfer, so

it is concluded that the results are independent of thequéati grid employed.
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The dimensionless boundary conditions on the velocity eé&dsummarized as

(U) =0 =1, D<U>*‘x*:L/d =0, <u>*|y*:0 =0, (3.522,b,9

(Wyora=0 (Wz_0=0, (W) |z_py/q=0. (3.52.e,f)

The dimensionless pressure is simply set to zerg“at L/d and is extrapolated at all
other boundaries. The dimensionless boundary conditionthe temperature fields are

summarized as

00

6ile0=0 Gx| =0 oo o=0 (3.53,b,9
gsf oL /d =0, 6, _,=1, % g 0, (3.53,e,)
5lero= 0 B =0 &l ,=0 (3.53,h,)
o yooL/d =0, 6, o=1 3= tyd (3.53,k,I)

Results are obtained for two Reynolds numbBeg, € {50,100}, using the two differ-
ent dispersion models and are presented in terms of thegev&hasselt number, defined

as

N— Qtotd
kab(TW Tin)

x*=L/d py*=L/d
/ / (Kte) 2209f+(k5e)zzdes dx'dy*. (3.54)
o o ki Oz ki 07" ) ,._g

The Nusselt number results, summarized in Table 3.4, iteliteat atRe; = 50 the dif-
ference between the two dispersion models is relativelllsmbereas aReg = 100 the
difference is much more significant. This is also illustdate the contour plots of the di-
mensionless fluid temperature in each case, given in Fig2.&81d 3.13, which show that
the new dispersion model results in more conduction withéftuid in comparison to the

model of Calmidi and Mahajan [15], with this effect beingostger in theRgy = 100 case.
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Table 3.4: Summary of the average Nusselt number computed using thadigp&rsion models for
Rey € {50,100} and the percent difference between them.
Re; Nu(Calmidi and Mahajan model [15]) Nu (present model) Percent difference
50 357 368 3.4
100 550 618 12.4

Further calculations witt /d doubled showed that the difference in the average Nusselt
number for the two dispersion models was greater.

In summary, the results obtained using the volume-averaget®| indicate that there is
a significant difference between the present dispersioretaydl the model of Calmidi and
Mahajan [15] when applied to graphite foams. It appearsdhktwer Reynolds numbers,
the difference between the two models is much less, whictaggwhy the Calmidi and
Mahajan [15] model gave good results for the cases considereStraatman et al. [5].
It is concluded, however, that as the Reynolds number antklfleight are increased, it
becomes important to use a model developed specificallyraghite foams, such as the
one proposed in this work. It should also be noted that if tiierfacial Nusselt number
correlation is calibrated to match experimental data,ltiespin less heat exchange at the
fluid-solid interface, the size of the dispersion term wéllarger by comparison and may

result in greater differences in heat transfer betweenvtbadispersion models.

3.8 Summary

In this study, we have presented results for the relevaat®fie properties for an idealized
graphite foam material which are required to close the velaveraged momentum and
non-equilibrium energy equations. To close the momentuoagon, we computed the
permeability and the non-Darcy drag term, which lead us teckale that the relationship
between the non-Darcy drag and Reynolds number is generatiylinear, casting some
doubt on the validity of the Darcy-Forchheimer approach gsreral method of modelling

flow in porous media. To close the energy equations, we cosdpilte thermal disper-
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(b)

Figure 3.12: Contour plots of the dimensionless fluid temperatéke,along the center plane de-
fined by y = %% for Rgy = 50using (a) the dispersion model of Calmidi and Mahajan [1581dh)
the present dispersion model.

0 10 20 30 40 50 80 70 80 90 100

(b)

Figure 3.13: Contour plots of the dimensionless fluid temperatéke,along the center plane de-
fined by y = 3% for Rey = 100using (a) the dispersion model of Calmidi and Mahajan [15Han
(b) the present dispersion model.
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sion conductivity, convecting velocity, and interfaciai$éelt number. We concluded that,
in general, the Péclet number alone does not adequatelgIrttusl dispersion behaviour,
rather, the Reynolds number, Prandtl number, and solididrashould be considered sep-
arately. Additional results for the convecting velocitydanterfacial Nusselt number have
also shown behaviour which is more complicated than tylyicddserved for porous media
with simpler pore geometries. Calculations using the psepovolume-averaged model
indicate that it is important to use a model specific to gragpfiams to accurately model

dispersion behaviour, particularly at high Péclet nuralzerd large block thicknesses.
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4
Chapter

Fluid Flow in an Alveolated Duct: A

Porous Media Approach

4.1 Introduction

Simulation of flow in the human lung is of interest becauseait provide details of the
flow that cannot be measuredvivo. Knowledge of the flow patterns within the lung are of
practical importance because of the potential impacts spina&tory drug delivery, particle
deposition, and our general understanding of the reldtipnsetween lung structure and
function [1]. The internal structure of the lung consistaafetwork of bifurcating airways
that become smaller in both length and diameter with eackesjuent bifurcation. Each
level of bifurcation is referred to as an airway generatidie first sixteen generations
are known as the conducting airways which take no part in #seegchange process, but
lead the air to the respiratory region of the lung [2]. Gashexge occurs by passive
diffusion through the thin walls of small sacs, known as alyavhich line the airways in
the respiratory region (17th generation and beyond) [2, 3].

Simulating flow in the lung is particularly challenging duethe large number of flow

TThis chapter is an extension of the work presented in “Sitiariaf Flow in an Alveolated Duct within
the Human Lung with Application to Porous Medi@toceedings of the 20th Annual Conference of the CFD
Society of Canad&®012.
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paths and the wide range of length scales spanned by theisar@mnponents of its struc-
ture. The zeroth generation of the airway tree is the traclvbach has a typical diameter
of about two centimetres [3]. At each of the approximatelyb#8rcations, the diameter
of the subsequent generation is reduced by a factor of appately 2/3, leading to di-
ameters as small as a fraction of a millimetre [3]. There gr@aimately 300 million
alveolar sacs in the human lung, each of which are about 0.3mudiameter [3]. Many
computational fluid dynamics (CFD) studies have been caeduto study flow, particle
deposition, as well as heat and mass transfer in the uppesyar[1, 4—20]. Similarly, in
the respiratory region, CFD simulations have been conductéenvestigate the flow and
particle transport in alveolated ducts [21-32]. Althougime attempts have been made to
couple computational models of flow in the upper airways taet® of flow in the lower
airways [15, 17], the lower airway models employed in thdseliss are typically quite
simplified.

It has been proposed by Owen and Lewis [33], in their thewaktivork on high-
frequency ventilation, that the lung parenchyma can be itemtlas a porous continuum.
Using homogenization and volume-averaging, they develapmaodel to describe the flow
and tissue deformation for small uniform samples of lungugs While the theoretical
development of their model was well-founded, it dependedeveral effective proper-
ties of the porous lung parenchyma that were only roughiynegséd and only select one-
dimensional results were obtained for the flow and tissuerdeitions. However, it was
suggested that such a macroscopic description could béezbwith models for the upper
airways. This would provide a convenient way to simulategport processes in the whole
lung since full resolution in the upper airways can be oladjnvhile a coupled porous
media model is used to account for activity the remaindehefairways and parenchyma.

Following a similar concept as that put forward by Owen andikg33], it is the goal
of this work to develop a porous media model for air flow in tineg parenchyma using the

method of volume-averaging [34—37], which is chosen bez#yselds very general results
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Figure 4.1: A schematic diagram of an idealized geometric model of aeaddted duct.

that are applicable to three-dimensional flows and is redbtistraightforward to couple
with models for the upper airways. Closure of the resultinlyimne-averaged momentum
equation is considered theoretically, which results inaswate problem that can be solved
numerically on a periodic unit-cell of the parenchyma toedaiine the relevant effective
properties, shown in this case to be solely the permeafmlitthe resistance to flow. As the
majority of the lung parenchyma is made up of alveolatedgubis is taken as the pore
geometry of interest. Results for the permeability are iobthusing a realistic geometric
idealization of an alveolated duct, shown in Fig. 4.1 whiels bbeen used previously by
Kumar et al. [29, 32] to study flows in alveolated ducts. Theuheng volume-averaged
model is then compared to direct pore-level simulationswdilaeolated duct with moving
walls and some one-dimensional results are presented.elyhauitcome of this work is the
permeability of the alveolated duct which can subsequedrglyised in large-scale three-

dimensional simulations of flow in the lung.
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Figure 4.2: An illustration of a typical averaging volume, V, for an drary porous medium
containing fluid and solid volumes \énd \{, respectively.

4.2 Governing Equations and Closure

Flow in the airway tree and alveoli is governed by the stathadamtinuity and Navier-

Stokes equations, given by

O-u=0 4.1)

and

[ok; (%—i—u-ﬂu) :—Dp+ufD2u, (4.2)

respectively, whera is the fluid velocity vectorp is the pressuregs is the fluid density

is time, andu; is the fluid dynamic viscosity. Since there are far too mamgalar ducts in
the human lung to consider directly, we average the abovatems over a representative
element of the lung parenchyma to obtain equations that eaolved for averaged quan-
tities. For an arbitrary porous medium composed of fluid apldi cONStituents, shown
schematically in Fig. 4.2, the definition of the extrinsidwmoe-average of a quantity, is

given by
1

_ - dv, 43
) Vvk@ (4.3)

(@

wherek € {f,s} denotes the phase in which the quantityis defined with f’ and ‘s

indicating the fluid and solid phases, respectively. Nott ¥ andVs are the fluid and
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solid volumes, respectively, contained within the averggiolumeV. For the purposes
of this work, the air within the alveolated ducts repres¢nésfluid phase while the tissue
represents the solid phase. In addition to the extrinsica@ee the intrinsic average is

defined as

1

(@) = [ @av, (4.4)
k JVi

which is an average over a single phase only. For the purmdsbe theoretical develop-
ment to follow, it is assumed that the porostiys V¢ /V, of the porous region may vary in
both time and space. Under such conditions, the volumeageercounterparts to Egs. 4.1

and 4.2 are

O-(u)y = —% (4.5)

and

pr| %0 (@) = e0tp) -+ uRw)

1
+

— —pn OG- n¢s) dA—ps - (Q0), (4.6
v Afs(t)( pnts+ U fs) p:0-(UG), (4.6)

respectively, wheré\(t) is the area of intersection between the fluid and solid vogjme
Vs andVs. The unit-normal vector directed from the fluid to solid phasA¢s(t) is denoted
nts. Spatial deviations are denoted, for a generic saplasQ = ¢ — (@)". Note thatAss
is taken as a function of time since the walls of an alveolalect are in motion as they
expand and contract through the breathing cycle. For fudktails on the derivation of
Egs. 4.5 and 4.6 see Gray [34], which considers a similar. case

To close Eg. 4.6, we follow the general approach of WhitaB&j [n which transport
equations for the spatial deviations are derived by sutig&q. 4.5, divided by, from
Eq. 4.1 and subtracting Eq. 4.6, divided&yfrom Eq. 4.2. In this case, however, there are
additional terms arising from the fact that the porositylisveed to vary in space and time.

The transport equation for the velocity deviations aridimgn the continuity equation is
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given as
loe 1

Compared to the equation of Whitaker [38], Eq. 4.7 is quiteplicated, however it
can be shown through various scaling arguments that it casirbplified substantially,
such that it is equivalent to that of [38]. The assumptioas #ne made for this analysis are

summarized as:

(i) Variations in the velocity deviationsi, occur over the length scale of the averaging
volume with length scalé, while variations in the volume-averaged velocity,,
and porosityg, occur over the length scale of the porous domain with lesgtie
L; the length scalé corresponds to the size of an alveolus, which has a lengté sca
of approximately B mm [2] andL corresponds to the size of the lung which is

O(10~ 1 m).

(i) The velocity deviations and the volume-averaged vigyoare of the same order, that
ist~ O(U) and(u) ~ O(U), whereU is a characteristic velocity; the characteristic

velocity within an alveolated duct (102 m/s) [21].

(i) The average porosity of the lung parenchyma is appratelye = 0.9 [3], such that

€ ~ O(1) and the deviation from this value is smallg < 1).

(iv) The time scale of a breath cyclg, is of the order of seconds; the time scale of the

porosity variations is the same.

With these assumptions, which are all physiologicallydaashe order of magnitude of
each of the terms in Eq. 4.7 may be estimated. On this basissahgptions (i) and (ii), it

can be said that
U

D-GNO(?). (4.8)

Adding assumptions (iii) and (iv), the orders of magnitufiéhe remaining terms may be
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estimated as

1o0¢ JA¥
T (g) (4-9)
and
1 AeU
?Dg.w) No<—L ) (4.10)

Based on the length scale and characteristic velocity astisngiven by assumptions (i)
and (ii), respectively, the order of magnitude of the tersteld in Eqg. 4.8 is of the order 10
s~ 1. Since, according to assumption (iv), the time sciléds of the order of seconds and
the variation in porosity¢ is much less than one, it is clear that the term listed in E9). 4.
is much less than § 1. As a result, the term on the left side of Eq. 4.7 has been fooind
be much larger than the first term on the right, given the apsioms above, and may be
neglected in this analysis. Comparing the term given in E8|.td the term given in Eq.
4.10, itis clear that the term given in Eq. 4.10 is much smaileceAc is small and. > /.

As a result, the last term on the right side of Eq. 4.7 may aésodglected in comparison
to the term on the left. Thus, the simplified transport equmator the velocity deviations,

arising from the continuity equations is
O-0=0, (4.11)

as in the analysis of Whitaker [38]. Subtracting Eq. 4.6id#d bye, from Eq. 4.2 results

in

a2l 1 0¢ ~ o~ f Le f £\ ~ 2~
f(dt =2 3t (u)+u-0a+a-0(u) - (u)' (u) )— Op+ psU

0%e _ 20e- Ds) 2[e 1

—~ — e —O(u) — —p 0d- A
uf<U>< . -2 He =~ B = /Ame( Pnss+ pr0d-nys) d

+ %D (@0 (4.12)

after much algebraic simplification. Let us first examine tinéers of magnitude of the
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terms on the left side of Eq. 4.12, under the assumptioresllisteviously. These are listed

as:
%g~o<%), (4.13)
é%%m~o<%?), (4.14)
uﬂGNOC;), (4.15)
U 2
UDwVNO(T), (4.16)
and

(4.17)

Sincel < L andA¢ < 1, the terms given in Eqs. 4.16 and 4.17 are negligible in @ispn

to the term given in Eq. 4.15. As stated previously/ is of the order of 10 st and the
characteristic time scalé,, is of the order of 1 s. Thus, the term in Eq. 4.13 is an order
of magnitude smaller than the term in Eq. 4.15, which is deksmeall enough that it may
be neglected. Sincke < 1, the term in Eq. 4.14 is much less than the term in Eq. 4.13,
so this term may also be neglected in comparison to that idlB&. Therefore, of all the

terms on the left side of Eq. 4.12, only the third survivesefsince

to-@i)~o (), (4.18)

the final term on the right side of Eq. 4.12 may be neglectedmparison to the surviving
term on the left side.
The additional viscous terms, arising from the fact thatgheosity is assumed to be

spatially varying, can also be simplified. Since we have

U

[?"~o<ﬁ), (4.19)
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(u)O% UAe
~ — 4.2
. O 7 ) (4.20)
(u)O%e U (Ag)?
~ 4.21
c O z ) (4.21)
and
Ue UAe

and since <« L andAe < 1, we can neglect all but the first viscous term, which is tiste
in Eqg. 4.19. With these simplifications, the transport emurefior the velocity and pressure

deviations given by Whitaker [38] is recovered. This is gias

~ ~ .1 ~ ~
pfu~Du:—Dp+ufD2u——/ (—pnts+ pe 00 nts) dA (4.23)
Vf Afs(t)

The fact that the transport equation for steady problems @ghstant porosity is recovered
is significant because it means that one may neglect any taperdience as well as any
porosity variations when considering the pore-scale cwguoblem, under the assump-
tions given previously for air flow in an alveolated duct. §i8 quite advantageous since
these additional terms would be quite challenging to de#t wi a general way. Fortu-
nately, under these limiting conditions, the transportadiguns for the spatial deviations
reduce to those of Whitaker [38] and we may use the closur@adeproposed in that
work. In fact, since the Reynolds number in alveolar flowsasyMow, one can further
show that the convective term on the left side of Eq. 4.23 ni&xy lae neglected, resulting

in the final form of the transport equation for the velocitylgmessure deviations, given as
~ o 1 ~ -
O0=-0p+ s U——/ (—pnfs—l-ufDu-nfs) dA (4.24)
Vi Jag(t)

Next, the boundary conditions on Egs. 4.11 and 4.24 must bsidered. On the moving
walls of the alveolated duct, the velocity deviation is egsed adi = u— (u)’. Since the

wall displacement over a breath cycled§10~°> m) over a timescale that (1 s), the wall
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velocity can be estimated &(10~° m/s), which is considered negligible in comparison
to the bulk velocity which is typicalyD(10~2 m/s). Additionally, although the velocity
field is not strictly periodic due to the volume flow into thepaxiding alveoli, a periodic
condition can still be considered appropriate since thamel flow rate into the alveoli is
typically less than 1% of that in the alveolar duct [29]. Th$ias been shown that wall
motion can be neglected within the context of the pore-leledure problem. In summary,

the boundary conditions on the velocity and pressure dewvisiire given as

0=—(u)f, onAss (4.25a)
0(Xin +Ax) = U(Xin), onAse (4.25b)
P(Xin +AX) = P(Xin), onAgte, (4.25¢)

where the conditions given in Egs. 4.25b and 4.25c expresgdhiodicity of the flow
between an inflow poink;j, on Ase(t) and the corresponding outflow locatia, + AX.
Note thatA;s andA¢e are no longer considered functions of time since it has bhew:s
that the boundary motion can be neglected within the clogtoblem.

To derive the closure problem, which is to be solved on the@pyate periodic unit-
cell, we first redefine the additional integral term remagnin Eq. 4.6 in terms of the

permeability tensoK according to
1 ~ ~ 1
\7/ (—Pnfs—+p00-nts) dA= g K™ (U). (4.26)
Ats(t)
Then we use the following constitutive equations, propdseWhitaker [38] forli and p:
G=M-(u)f+v (4.27a)

p=prm-(u)’ +&, (4.27b)
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whereM is a second-rank tensor andis a vector, both of which are functions of position.
Whitaker [38] has shown that is zero and¢ is constant for the conditions considered
herein. Thusf cannot pass through any integrals and is therefore incoesgial to the
solution of the closure problem and is thus not considergdather. Whitaker [38] then
made substitutions to separate the problem into a part vd@pknds only on pore geometry
and a part which depends on the flow field. In this work, sinceameeconcerned with very
low Reynolds number flows, this step is not necessary. Idstea have simply neglected
the inertial terms on the left side of Eq. 4.23 to arrive at£84. To eliminate the integral
terms from the closure problems, we follow an approach asind Whitaker [38], which is

summarized by the substitutions below:

d=¢'m-K (4.28a)

D=¢1(M+1)-K. (4.28b)

Substituting Egs. 4.28a,b into Eqgs. 4.27a,b and substifdiie result into Eq. 4.23 results

in the closure problem

0-D=0 (4.29a)
—0d+0°D+1 =0, (4.29b)
subject to the boundary conditions
D =0, onAss (4.30a)
D(Xin +Ax) = D(Xin), onAse (4.30Db)
d(Xin +Ax) = d(Xin), onAge. (4.30c)

Now, Eqgs. 4.29a and 4.29b may be solved along with the camditisted in Eqs. 4.30a—
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4.30c to determine the permeability tensor as
K =¢g(D)". (4.31)

Note that for a general deforming domalfjs a function of the pore geometry and thus a
function of time. For general motions, this would requiralesation ofK for each required
configuration, however, as will be seen, the characteamatif K as a function of time
is simplified for motions where the domain is simply scaledsaiypically assumed for
alveolated duct flows.

With the definition of the permeability, the closed form oétholume-averaged mo-

mentum equation is then given by

or| 20 (0| =0 st —euk L. @32)

where the final term in Eq. 4.6 has been neglected due to petiodNote that although
it was found that transient and porosity gradient effectg beneglected at the pore-level
closure problems, such effects may still be taken into agtatthe volume-averaged level

through the closed volume-averaged momentum equatior.B2,.

4.3 Results and Discussion

4.3.1 Permeability Tensor

For flow in a duct where the bulk flow is in thedirection and the walls are impermeable,

the permeability tensor takes on the general form

K 00
K=|0 0 0], (4.33)
0 00O
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whereK is the scalar permeability in thedirection, since bulk flow transverse to the duct
axis is not permitted. From a numerical perspective, howekies form poses a problem

since the matrix given in Eq. 4.33 is clearly non-invertibl&us, we assume the form

K 0 ©0
K=|0 1/a 0 [, (4.34)
0 0 Ya

whereais taken to be an arbitrarily large value. Thus, the invefsbepermeability tensor

is given as
1/K 0 O
K'=| 0 ao]|, (4.35)
0O O a

which according to the closed volume-averaged momenturategugiven in Eq. 4.32,
prevents any bulk flow transverse to the axis of the duct tjindbe very large Darcy term
in these directions. Note that some care must be taken intsgje to ensure that it is
sufficiently large to serve its purpose, but not so largeitiauses numerical difficulties.

Results for the permeability tensor are obtained by nurallyisolving Eqgs. 4.29—4.30
using the finite-volume code described in Chapters 2—3 drdiating the results according
to Eg. 4.31. The domain under consideration was a periodiecceil representing the
idealized alveolated duct geometry shown in Fig. 4.1. Theagll geometry, taking into
account the symmetry about a central plane, is shown in F8y. Mote that to solve the
permeability using the proposed model requires only a singimerical solution of Egs.
4.291t0 4.30. A grid resolution study indicated that a corapahal grid containing 244,331
tetrahedral volumes, refined towards walls, was sufficierdttain a permeability tensor
that is independent of the grid to less than 1%.

To promote generality of the results, the computed scalangabilityK is presented

in dimensionless form ak /(¢Dg), whereDy is the hydraulic diameter of the central
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Figure 4.3: A schematic diagram of a periodic unit-cell of the idealizggbmetric model of an
alveolated duct.

duct. Scaling the results by the hydraulic diameter is coierg because it allows the time-
varying nature of the volume-averaged flow to be simplified eise-varying permeability
where the dimensionless permeability is constant but tliraufic diameter of the duct
changes. The permeability is also scaled by the porositesie do not wish to specify a
particular porosity for this model, since the choice of @ityodepends on the nature of the

system being modelled at a volume-averaged level. Nunedsalts confirm the form of

the permeability tensor given in Eq. 4.33 and show KeD?) = 9.46 x 1073,

4.3.2 \Verification of the Porous Media Model

In order to verify the proposed porous media model of flow irabseolated duct and the
validity assumptions underlying the theoretical basishaf inodel, transient simulations
were conducted using ANSY8 CFX, Release 13.0, to compare the model predictions
with direct CFD calculations in an expanding and contractiveolar duct geometry. A

one-dimensional version of Eq. 4.32, neglecting any maaonais velocity gradients, results
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o' o' eur(u)f
Pt = ax K (4.36)

where all averages have been converted to intrinsic average a constant porosity is
assumed for the purposes of this verification exercise. ipyihg Eq. 4.36 byDﬁ and

solving forK /(D) results in

K _pw' [ dip"  aw”

= — — 4.37
€D, DZ, dx P ot ’ ( )

where the terms on the right side of Eq. 4.37 may be obtaimedtty from CFD calcula-
tions to verify that the results match the modelled eDZ) expression.

The CFD calculations are conducted using the full alvedldigct geometry shown in
Fig. 4.1. Atthe inlet a uniform velocity profile was specifiath that the Reynolds number
based on the hydraulic diameter of the duct Ras,, = 0.01 in the initial undeformed
geometry. At the outlet a specified average static presswerowas imposed. At all other
walls, the velocity was taken to be the velocity of the walks, a no-slip, no-penetration
condition relative to the walls. All boundary surfaces wereved as a simple sinusoidal

scaling of the domain, according to

X(t) = Xo[1+ AwsSin(wt)], (4.38)

wherex(t) is the position of a point at time X is the location of the corresponding point
in its initial configuration at time& = 0, /\,y is the amplitude of the wall motion, and is

the angular frequency of the motion. For the cases conslderee, the amplitude of the
motion is taken to bé\,, = {0.125 0.25} and the angular frequency is taken such that the
Womersley numbekVo= Dy /2,/psw/ps = 0.01. Note that the choice of parameters for
these verification cases is not motivated by the study of aifsp@hysiological process,

rather we seek to choose parameters that are of the corregtitonde for the process of
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Table 4.1: Summary of the maximum and average percent errors betweemaldelled value of
K/(eD3) and the value obtained using transient simulations in aealated duct and Eq. 4.37.

Aw  Max. % Error Avg. % Error
0.125 1.3 1.0
0.250 4.5 19

breathing to test the modelling assumptions. For exampajownot claim that a constant
velocity imposed at the entrance of the alveolated ductssacdy represents the breath-
ing process as it occurs physiologically, rather it repnese simplified problem with the
correct magnitude of the key parameters such that the asgumaf the model may be
tested.

Results for the difference between the predicted dimetessipermeability in compari-
son to those obtained from the transient simulations antyieygEq. 4.37 at each timestep
are summarized in Table 4.1. This shows that the modellegevat the dimensionless
permeability matches well with the value obtained direftbm the transient simulations
conducted in the alveolated duct. Given the combined digetteon errors of the perme-
ability calculation and the direct CFD calculation, theegmnent between the two cases
for the Ay = 0.125 case is regarded as excellent. For/ye= 0.250 case, the agreement
is not as close, but is certainly quite reasonable. Conigiglehat the simplified porous
media model, which requires fairly basic calculations tlvespis able to match the results
of a complex CFD calculation to within less than 5% at a langgplétude of motion, this
approach has clear utility. Taking these results togetheties that the theoretical devel-
opment proposed in this work is indeed sound and that trahsféects can be neglected
within the closure problems. Further it shows that the immdidhe alveolar expansion
on the permeability is conveniently characterized throngh-dimensionalization by the
hydraulic diameter such th&t/(¢D3) is a constant value throughout the transient expan-

sion/contraction process &g; changes.
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4.3.3 One-dimensional Results for Flow in an AlveolatedtDuc

In this section, results are presented for one-dimensitmalin an alveolated duct, up to

a terminal alveolus. In one dimension, the volume-averagedinuity equation, Eg. 4.5,

reduces to
o(u)y  de
N = 3 (4.39)
while the volume-averaged momentum equation, Eq. 4.32exito
o(u)  2(waw] _ _a(p)] 0%(u)  epr{u)
Piior Ve ax | T Fax Mok K ' (4.40)

where the porosity is considered to be a function of time,dautstant in space for the

purposes of this analysis. Defining the dimensionless group

X =oo (4.41a)
H

U = % (4.41b)
f

Pt = ;%2 (4.41c)

=0 (4.41d)

whereU again represents a characteristic velocity, Egs. 4.39 attilkecome

ou* 2 W& de

= _" 4.42
ox* nMRe, ot* ( )
and
2 W& du*  2u* du* op* 1 d%u* 1 K \ 1!
< WO ou — ¢ - " 4.43
MRe, U | € x  ‘ox  Rey, 0x? Re, (wﬁ) oo e
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respectively, where

Dn /ptw
Wo= —, /—— 4.44
>/ m (4.44)
is the Womersley number and
ub
Rep, = ° fu H (4.45)
f

is the Reynolds number based on the hydraulic diameter of¢h&al duct. Results are
then to be obtained for an alveolated duct, whepe at O there is a terminal alveolus such
thatu* = 0 and the pressure is the alveolar presquyeor in dimensionless fornp;. To

solve the problem described above the porosity and hydrdidimeter of the duct must be
known as functions of time in order to properly define all of frarameters appearing in

Egs. 4.42 and 4.43. Let us assume both vary sinusoidally as

‘S(gt ) _ 14 Agsin2rt?) (4.46)
0
and
Dn(t) _ 1+ Ap,, sin(2mt*), (4.47)
Dh o

respectively, whereg andDy o are the mean porosity and duct diameter Apgcand/Ap,,
are the dimensionless amplitudes of the changes in porrsitgliameter. Solving Eq. 4.42

using Eqg. 4.46 and the boundary conditiorxat O results in a solution fau* as

u*(xf,t*) = -4 wo

AN 2mt*)x* 4.48
RQDH & eCOS( )Xv ( )

where both the Reynolds and Womersley numbers are funatidiree, since they depend
on Dy. This result shows that the velocity is lineanihsuch that the viscous term in Eq.

4.43 is zero, and the equation f@p* /dx* can be reduced to

ap*  1[2W&du 2udut | 1 <K)1

T | T Raw 2
eDg

el u* 4.49
ox* € | TRey,, Jt* * £ Ox* + Rey, ] ’ ( )
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where all quantities on the right side of Eq. 4.49 are knowrafgiven time, such that it
can be numerically integrated to obtain pressure profilegjifeen instants in time. For
the present results the initial Womersley and Reynolds rusbhat is the Womersley and
Reynolds numbers at timié = 0O, are taken to b#&/0= Re,,, = 0.01. The initial porosity is
taken to begg = 0.9, which is a typical value for the lung parenchyma [3]. Thepltades
of the porosity and diameter variations are taken td\pe= 0.1 andAp,, = 0.25. Using
these parameters, the dimensionless velocity profileslettse times are plotted in Fig.
4.4a. Integrating Eq. 4.49 with respectxXousing a variable-step Runge-Kutta method
results in the pressure profiles shown in Fig. 4.4b up'te 10.

As would be expected, this figure shows the same pressurdepnofi— p; = 0, at
t* = 1/4 (maximum duct size and porosity) atfd= 3/4 (minimum duct size and porosity),
since the fluid velocity is zero. Next, let us compare the gues profiles at dimensionless
timest* = 1/8 andt* = 3/8. In these cases, all af, du*/dt*, anddu* /dx* are of opposite
sign, such that the first and third terms in Eq. 4.49 are of epsign and the second term
is of the same sign. Thus, it appears that the convectioniteffq. 4.49 has a negligible
influence on the pressure field since it is of opposite sigthfetimes considered, while no
difference was observed in the pressure profile. A similaeolation is made by compar-
ing the pressure profiles Ht = 5/8 with those at* = 7/8 and those &t = 0 with those
t* = 1/2. Finally, the differences between the pressure profiles-atl/8 andt* = 7/8 as
well as att* = 3/8 andt* = 5/8 warrants some discussion. Here, although all of the terms
on the right side of Eq. 4.49 are of opposite sign when compgakhie two sets of times, the
hydraulic diameter of the duct and the porosity are smatlettfet* = 5/8 andt* = 7/8
cases, so the pressure increases more rapidlyxith

Comparing the present results with the one-dimensionaltsesf Owen and Lewis [33]
for their ‘alveolar capsule’ boundary conditions at lowscitlation frequencies, we find a
favourable qualitative agreement. As in the present waikyelocity field was found to be

a linear function of position, while pressure increasedemapidly. Note that a quantitative
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Figure 4.4: A plot of (a) the dimensionless velocity and (b) the diffeegibetween the dimensionless
pressure and the dimensionless alveolar pressutre; p, as functions of the dimensionless coor-
dinate X for initial Womersley and Reynolds numbers (att0) of Wo= Re, = 0.01, £, = 0.9,

Ne =0.1, and/Ap, = 0.25.
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Figure 4.5: A plot of the difference between the dimensionless pressulethe dimensionless
alveolar pressure, p— pj, as a function of the dimensionless tinfeat X = 5 for initial Womersley
and Reynolds numbers (dt+ 0) of Wo= Rey, = 0.01, & = 0.9, A, = 0.1, andAp, = 0.25.
comparison with the results of Owen and Lewis [33] is notratited since they also solved
the displacement of the solid tissue and used a very singpbéimate of the permeaubility.
One final point of interest is that the maximum and minimunugalof pressure do not
occur at peak expansion and peak contraction as might betedoeRather, the minimum
pressure occurs after peak expansion and the maximum peessturs before peak con-
traction, as shown in Fig. 4.5 for the poixit= 5. This implies that after reaching peak
expansion, there is a time lag before the minimum pressureaished, but also that the

pressure begins decreasing again before it reaches pealkstap.

4.4 Conclusions

In conclusion, a theoretically-based closure model has Bpplied to the study of air flow

in an alveolated duct. The closure model is based upon tlxatien of a transport equa-



CHAPTER 4. FLUID FLOW IN AN ALVEOLATED DUCT: A POROUS MEDIA
APPROACH 138

tion for the spatial deviations of velocity and pressure greduse of constitutive equations
to transform these terms into terms depending on volumeaged quantities. There are
several difficulties that are faced due to the transientreaifithe flow and the assumption
that porosity may vary in space and time, however, it is shaging rigorous scaling ar-
guments that these factors may be ignored at the closurkediesig¢hat the closure problem
that must be solved reduces to that for a fixed, constant ppmoedium. The resulting
closure problem has been solved to obtain the permeabilityeocalveolated duct geome-
try, the scaling assumptions were verified using direct fatian of flow in an expanding
and contracting alveolated duct, and some one-dimensresalts for flow in an alveo-
lated duct were presented using the proposed volume-aaragdel. The key outcomes
of this work are the permeability of the alveolated duct, ahhénables volume-averaged
simulations to be conducted in large, three-dimensiorgibres of the lung parenchyma,
as well as the simplified closure method which allows the gadnility to be obtained for

alveolated ducts in a straightforward manner.
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O
Chapter

Conjugate Fluid-Porous Flows with
Moving Boundaries: Application to the

Human Lung'

5.1 Introduction

The ability to simulate flow in the lung is of great interesthe medical community be-
cause of the potential advancements in respiratory drugesgl particle deposition, etc.
that can be attained with detailed knowledge of the flow pastevithin the lung [1]. The
air-filled portion of the lung can be separated into two magions: (i) the conducting
region, which consists of a network of bifurcating airwalyatttransport air to the respira-
tory region, and (ii) the respiratory region, where gas exge occurs by passive diffusion
through the thin walls of the alveolar sacs which surrouedéspiratory airways [2]. As an
inherently multi-scale problem, simulation of flow in the @ lung remains an extremely
challenging task. Length scales range from the order ofircettes at the trachea to a

fraction of a millimetre in the alveoli [2]. Additionallyhiere are approximately 300 mil-

TThis chapter is an extension of the work presented in “Towaréorous Media Model of the Human
Lung” Proceedings of the 4th International Conference on Poroweslisl and its Applications in Science,
Engineering and Industr2012 and published in AIP Conference Proceedings 14531,69/12.
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lion alveolar sacs in the human lung [2], which cannot pdgdib considered individually
when simulating processes in the lung.

Computational fluid dynamics (CFD) simulations of flow haeeb conducted in both
the upper airways [1, 3—19] and alveolated ducts within gspiratory region [20-31],
however, there is great difficulty in connecting the resattghe two levels in order to sim-
ulate processes in the whole lung. As computational powsrif@eased over the years,
the total number of airway segments considered in uppelgigimulations has increased
from seven [3] to over 1400 [4] (although the computationakmwas not sufficiently re-
fined in this case to have grid-independent results). Hovyagedhe total number of airway
segments in a full 23-generation airway tree would be maaa 6 million, it is clear that
simulations in a fully-resolved airway tree are well out e&ch since hundreds of billions
of mesh elements would be required to adequately discrétezelomain [12, 18]. Thus,
in order to simulate transport processes in the full lungypsified models for the smaller
conducting airways and the respiratory region are requisesteral innovative methods for
simulating more branches of the airway tree have been deinstiding those that simu-
late small subsections of the airway tree and use the outfetitton of one subunit as the
input to the next subunit [10, 11], the use of partially resdlairway trees [4, 12], and the
coupling of 3D CFD models for the upper airways with 1D resmise models for the lower
airways [1, 9]. It is also worthwhile to note that even withvadcements in computational
abilities leading towards more detailed simulations in enextensive airway tree geome-
tries, any physical description of the small-scale lungngetsy may only be considered
as an approximation, therefore, it is logical to consideylpg approximate methods in
modelling such regions of the lung. In the previous chaphertheoretical development of
a porous media model for flow in alveolated ducts within thenho lung was described,
which represents a reasonable candidate for an approximade| for processes in the
respiratory region.

In light of the preceding discussion, it is the goal of thisrkvto extend the capabili-
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ties of the computational model described in Chapter 2 shahit is capable of solving
problems in conjugate fluid-porous domains with moving gadd to demonstrate that the
human lung geometry can be considered in this manner, wheregper airway tree is
considered as a fluid region and the lower airways and alaeelconsidered as a porous
region. First, the governing equations will be outlined émelbasic numerical method for
solving the problem on moving grids, including the methoddalf/ing the mesh motion, are
described. Next, the setup of the problem is discussedjdinal the method for obtaining
the lung geometry from computed tomography (CT) imagesildedf creating a meshed
lung model, parameter estimation, and boundary conditibmally, results are presented
using the coupled fluid-porous description of the lung amdaitoposed numerical method.
The results of this work constitute a platform for condugtsimulations of transport in
moving conjugate fluid-porous domains, which has been dstrated using a realistic ge-
ometry of the human lung. The case involving the lung sergebustrate the robustness
of the model on a complicated geometry and also introduces/al mnd potentially use-
ful modelling paradigm for simulating processes in the lupgn further validation and

possible calibration with experimental results.

5.2 Governing Equations and Numerical Methods

In this work, the lung is considered as a conjugate fluid-psrdomain, where the fluid
region is a truncated airway tree and the porous region isgtimainder of the lung. In the
fluid region, the flow is governed by the continuity and NaxBéokes equations, while in
the porous region it is governed by their volume-averagamhtparts. At the interface
between the fluid and porous regions, the equations are edinyl appropriate interface
conditions which ensure a balance of fluxes across intesfasavell as a balance of viscous
and pressure forces. The basic numerical approach takleis iwark follows that presented

in Chapter 2, which has been shown to be an effective methodugfling fluid and porous
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regions where general unstructured grids are requirecstwetize the domain of interest.
Since breathing is driven by the motion of the boundary oflting, the computational
mesh must be considered to be moving for the cases underdeoaison in this work.
Thus, modifications to the original method proposed in Cérapmust be made in order to
formulate the method in an arbitrary Lagrangian-EuleriabE) framework. Writing the
governing mass and momentum equations for the fluid regiamégral form, taking into

account the mesh motion, results in [32, 33]

/ u-ndS=0 (5.1)
2Q

and

z/pfudv—i—/ pfu(u—us)-ndS:—/ pndS+/ gsdu-ndS (5.2)
ot Jao Q Q Q

whereQ denotes an arbitrary control volume in space bounded bydhea surface?Q.
Differential elements of the control volume and controlface are denotedV anddS
respectively, and the unit-normal vector to the surf@@eis denotedh. The field variables
u and p denote the velocity vector and pressure, respectivelylewdyi and us are the
density and dynamic viscosity of the fluid. Finally is the velocity of the control surface,
which is used to account for mesh motion. Note that the medfomdoes not change the
continuity equation since the fluid is considered to be ingssible [32].

Similarly, the integral forms of the mass and momentum eqoatpresented in the

previous chapter are, for a moving control volume, given as

oe
/m<u)-nd8: —/Qﬁdv (5.3)
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and

%/pr<u>dv+/m%<u)(<u>—us)~ndS:—/

e(p)fnd8+/ psO(u) -ndS
20 20

EUs
— Q7<u)dv, (5.4)

where(u) denotes the extrinsically volume-averaged velocity veatwl (p) " denotes the
intrinsically averaged pressure, according to the stahdafinitions of volume-averaged
guantities [34, 35]. In this case, the permeability tenkgiis assumed to be diagonal such
that the scalar permeability may be used. Note that one might consider using a tensor
permeability to bias the flow in the direction of ducts, hoeswor the purposes of this
work it is assumed that the orientation of the ducts is randagh that the flow has no
preferred direction within the parenchyma. Also, as diseddsn the previous chapter, the
Forchheimer drag term is neglected since the Reynolds nuimltee lung parenchyma is
very low. Furthermore, for simplicity of the governing etjoas, the porosity has been
assumed to vary temporally, but not spatially, althoughaiti@ition of a spatially varying
porosity is relatively straightforward to implement numcatly after expansion of the dif-
ferential form of the convection term by the product ruleeMariation in porosity will be
further discussed in Sec. 5.3.4 which deals with the estimaif physical parameters of
the lung parenchyma. Note that the porous-fluid interfacelitmns are the same as those
for a fixed mesh, discussed in Chapter 2, and thus are notildeddrere.

One final consideration when calculating flows on moving reesis that one must
ensure that the surface velocity, is selected in such a way that volume is conserved in
order to avoid artificial mass sources in the domain. Thisephis expressed through the

‘geometric conservation law’ (GCL) [32, 33, 36—38], whighgiven as

3/ dV—/ Us-ndS= 0, (5.5)
ot Ja Q
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Discretization of Egs. 5.1 to 5.4 is carried out in the samg asfor a stationary mesh
using a spatially second-order finite-volume method, ashapfer 2, with the appropriate
modifications to the transient and convection terms to agicion the changing cell volume
and control surface velocity [32, 33]. For the moving gridcoations presented herein, a
first-order backward Euler method was used for the transgnts, which are discretized

for a general scalag, as

J _ Ve — Ve
< /Q pav = I (5.6)

where @ = psu in the fluid region andp = ps(u) in the porous regiongS indicates the
value of @ at the previous timestep at the centroid of the control va@&®nandVp andVF?

are the volumes of control volunt at the current and previous timesteps, respectively.
Additionally, the mass flux through a discrete control scefawhich was calculated as

mip = Pt (0) - NipAip for fixed meshes, is now computed as
Mip = P¢(0) - NipAip — Pt Us;p - NipAip, (5.7)

to account for the motion of the control surface through Wwhlee mass flux is calculated,
whereusjp is the surface velocity at the integration poiptand njp is the unit normal
vector to the discrete control surface atwith areaAp,.

Geometric conservation is enforced by computing the sarfatocity in such a way

that the discretized form of Eq. 5.5 is satisfied to machimeigion, i.e.

N Ni
Ve — VP Ly ® dVip
— = Usip - NipAip = v (5.8)
At ipzl ip=1 At

whereNip is the number of discrete control surfaces surrounéimd dVp is the volume

swept by the motion of the discrete control surface comgiip from the previous timestep
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to the current timestep. Thus, selecting

My

o (5.9)

Us,ip - NipAip =
for all control surfaces guarantees the satisfaction of@fit. since the sum of all swept
volumes equals the change in volume represented on theidefio Eg. 5.8. Note that
the GCL has been shown using a first-order backward Eulerddization of the transient
terms, however, this may be extended to higher order terhpcnames if desired.

In addition to discretization of the governing equationgracedure for updating the
locations of the mesh nodes, based on prescribed bounddryrmsois required. Several
strategies have been proposed that fall into the class ahtsfanalogy’ methods which
considers the mesh edges as tension springs [38, 39] aoiaprings [40, 41] in order to
solve for the nodal displacements. Spring analogy methualgever, will eventually fail
given large enough boundary displacements [42]. To accaatedarger mesh motions,
algorithms have been proposed which use a linear elastioi@yogy [42, 43], which are
exceptionally robust but also computationally expendia.the purposes of this work, the
motion of the mesh nodes is determined by numerically sglizaplace’s equation with a
variable diffusion coefficient and Dirichlet conditions alhdomain boundaries [44], which
is reasonably robust for large deformations, is relatigdtgightforward to implement, and

is not overly expensive computationally. The Laplace equagiven by

0-(FOv) =0, (5.10)

wherel is the mesh stiffness andis the mesh displacement, is discretized using a cell-
centred finite-volume method, similar to that used to solvether transport equations.
Since the resulting displacements are stored at the cellasrthey must be interpolated
to the nodal locations in order to reposition the nodes. Altfh using a nodal formulation

may be a more natural choice for this problem, no particulicdlties were encountered
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Figure 5.1: An illustration of a control volume, P, with the relevant geetric parameters for
evaluating the normal derivative noted.

as a result of the cell-centred formulation employed in Wagk. The mesh stiffness,,
is taken to be inversely proportional to the cell volume stit larger cells absorb more
of the motion and smaller cells move more like a rigid bodyc8i is different for each
control volume, an approach similar to that for diffusiomass a fluid-porous interface is
adopted. Discretization of Eqg. 5.10 using the finite-volunmegthod, for a control volume
results in

ip=1

where agaimp refers to the integration points surrounding the volim&he gradient term

is given as
Vnb — VP (Dnb7ip—(Dnb7ip‘nip)nip)
Dv‘ipf’ ‘Nip = _ _ L o _ ] _ _ Mo ] N Dv‘nb
(Dpip - Nip) — r_nb(Dnb,lp ‘Nip) ~ (Dpip-Nip) — |-—nb(Dnb,|p ‘Nip)
(Deip = (Deip Mip)ip) 1y, (5 1)

(Dpip - Nip) — rr_rf:)(Dnb,ip ‘Nip)

where the first term on the right side of Eq. 5.12 can be treggdicitly, while the re-
maining terms are explicit, and the relevant geometric rpatars are shown in Fig. 5.1
for the volumeP. Note the definitions of the displacements &gjp, = Xijp — Xp and

Dnbip = Xip — Xnb, Wherexip, Xp, andxpp are the positions of the integration point, cell
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centre ofP, and cell centre ofb, respectively.

5.3 Problem Setup

5.3.1 CT Image Segmentation

Low-dose whole lung CT images obtained from a single breatti With a 1.25 mm slice
thickness were obtained from the ELCAP Public Lung ImageabDase {ttp://wuw.
via.cornell.edu/databases/lungdb.html). From these images, a three-dimensional
representation of the airway tree, up to a certain bifuocatand a representation of the
remaining lung volume were required. The truncated airweg tvas extracted using the
segmentation software ITK-SNAP [45], however, only a ledithumber of bifurcations
were captured to prevent the segmented volume from leakiogegions of the lung out-
side of the airways. The resulting segmentation was expaite stereolithography (STL)
file and was smoothed and decimated (to reduce the total mohfaeets) using MeshLab
(http://meshlab.sourceforge.net/).

The remaining lung volume was segmented by first using thenaatic threshold seg-
mentation feature in OsiriX [46], however, due to limitatein the segmentation algo-
rithm, it was not possible to exclude the airway tree fromghgmented volume. Thus,
the airways were manually removed from the segmented voamdeany geometric prob-
lems were manually repaired. The segmentation obtainedgin»Owas then exported as
a new image series and segmented using ITK-SNAP [45], whiodyzed significantly
smoother surfaces than OsiriX. Again, MeshLab was used two#mand decimate the

exported faceted surface.
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Figure 5.2: An illustration of the combined airway tree (blue) and thedwsurfaces (green).

5.3.2 Geometric Model and Meshing

After segmentation, the STL surfaces generated for theagitvee and the remaining lung
volume were imported into ANSY® ICEM CFD, Release 13.0, to be combined, further
cleaned up, and meshed for CFD simulations. The airway axgivalume surfaces were
first intersected and the portion of the lung surface petestray the airway tree was re-
moved. Additionally, the ends of the airway tree branchebteachea were modified such
that they formed flat surfaces. The resulting surface madghown in Fig. 5.2. From this
figure, it is obvious that the CT images did not include dstail the mouth and larynx.
If one were to conduct simulations of purely inspiratory flowa truncated airway tree,
this configuration would not necessarily pose a problemesmstandard inlet boundary
condition could be applied where the trachea is truncateoweier, in this case, a full
breathing cycle with both inspiratory and expiratory flowtase considered and the flow

is to be driven by the motion of the boundary. Therefore, fhening where the trachea is
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truncated must allow both inflow and outflow, possibly sirmn&ously when the bulk flow
is changing direction. As a result, the trachea was exteadetwhat to allow the flow to
develop more fully before exiting the domain and a hemisphécap was added to mimic
expansion to an open environment. Treatment of this boynalidirbe discussed further in
Sec. 5.3.5.

The resulting geometric model was meshed in ANSYEEM CFD, Release 13.0,
using tetrahedral volumes that were refined near fluid-pomterfaces as well as at the
airway walls and the lung boundary. The meshed model is shiowdgs. 5.3a and 5.3b

which show the main lung volume and the trachea extensispewtively.

5.3.3 Grid Motion

To provide boundary conditions for Eq. 5.10, an estimatehef lireathing rate and the
nature of the lung motion is required. For the test casesideresl, a breathing rate of 12
breaths per minute was chosen, which is within the normajeaf breathing rates [47].
The motion of the lung, which drives breathing, is a resuthef motion of the diaphragm,
a thin sheet of muscle located along the bottom surface olutinge [47]. Although there
is also motion of the ribcage, it has been shown that the magdmiof the motion of the
diaphragm is somewhat larger [48]. Thus, for simplicitysiassumed for the purposes of
this work that all motion is driven by the diaphragm and tlnet tnagnitude of its motion
is 1.5 cm, consistent with normal breathing [47]. It is fouhdt this specification of the
lung motion results in a tidal volume of approximately 400,mlhich is slightly smaller
than the typical tidal volume of 500 mL given by West [47], shrepresents light breathing.
It should be noted at this point that the lung motion is simglyoundary condition to the
mesh motion algorithm and is thus easily modified if one wsdioeexplore more elaborate
specifications of its motion to better reflect reality.

Although it has been stated that the mesh motion at the digphishould be 1.5 cm,

the mesh motion must be specified on all boundaries in ordsolie for the motion of
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Figure 5.3: Plots of the computational meshes for the lung geometry isigo(®) the main lung
mesh and (b) the trachea extension.



CHAPTER 5. CONJUGATE FLUID-POROUS FLOWS WITH MOVING
BOUNDARIES: APPLICATION TO THE HUMAN LUNG 156

the interior nodes. In this case, the motion of all boundaniedes is taken to be in the
z—direction, where the flat surface where the trachea was esitihi thexy—plane. The
magnitude of the displacement should be 1.5 cm at the babke @ing, whereas at the top
of the lung it should be zero. Thus, an appropriate varidietween these two values must
be specified. To avoid motion of the truncated airways, théanas blended between a
value of zero and 1.5 cm in the region below the truncatedasiswTo avoid bunching of
nodes below the airway tree, the magnitude of the displaneimblended sigmoidally and
is adjusted such that centre of the sigmoid function movds thie displacement. With all
of these considerations taken into account the magnitudieeomesh displacement for a

given time step on the boundaries is given by

di = [1+exp(100z+2,))] * dn;axa)sln(outl)AtI (5.13)

wheredmnax is the maximum displacement occurring at the base of the (isgcm in this
case),w is the angular frequency of the breathing motidhandt; are the timestep size

and time value at the timestepandz, is an offset value, given by
Z=03-= Zl—wsm wtj) A (5.14)

wherenis the current timestep number. Figure 5.4 illustrates idpasidal blending factor
[14exp(100(z+2))] * as a function of the coordinate in relation to the fully inflated

lung geometry, where the offset, is at its base value of 0.3.

5.3.4 Parameter Estimation

According to Weibel’s idealized ‘Model A’ lung geometry, meothan three quarters of
the volume of air in the lung resides in generations 20 to 23ckvare fully alveolated
ducts or alveolar sacs [2]. Further, almost 90% of the aidessin generations 17 to 23

which have at least some degree of alveolation [2]. Thusgi&dbapproximation for the
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Figure 5.4: Plots the blending factor for the lung motion with reference 2D section of the lung
in its maximally inflated state.

permeability of the lung parenchyma is the permeabilityrobéveolated duct, which has
been determined numerically in the previous chapter. Tpkivolume-weighted average of
the airway diameters in generations 17 to 23 given by Weltjglields an average diameter
of 0.43 mm. Using this average diameter and the previoudtrEsuthe dimensionless

permeability yields an estimate for the average permeésglmfi the lung parenchyma of

K /e = 1.75x 10~° m?, where the porosity remains to be determined.

According to Weibel [2], only 10% of the parenchyma is congabsf tissue and the
remainder is composed of air. This leads naturally to amegé of the porosity as= 0.9,
which means the permeability 6 = 1.58 x 10-° m?. Note that this estimate is for the
airway diameter at mean inflation, so it will change with exgian and contraction of the
lung. For the purposes of this work it will be assumed thatgbeosity and hydraulic

diameter of the duct vary sinusoidally with time, accordiag

€ = &1+ N coqwt)] (5.15)
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and

Dy = D 0[1+ Apy cog wt)], (5.16)

wheregy and Dy o are the porosity and hydraulic diameter at mean inflation/andnd
Np,, are the dimensionless amplitudes of the changes in porasiyhydraulic diameter,

respectively. This leads to the permeability as a functicimee, given as

K = Ko[1+ A¢ cog wt)][1+ Ap,, cog awt)]?, (5.17)

whereKy is the permeability at mean inflation, iy = 1.58 x 10~2 m2. According to
studies by Sznitman et al. [24] and Harding and Robinson [g&]volume of an alveolated
duct changes by approximately 15% from minimum to maximufiafion, indicating that
the length scale of the duct changes by about 5%. Accorditigdyamplitude of the change
in duct diameter is taken to b&,,, = 0.025. The amplitude of the porosity change is much
more difficult to determine accurately, although it is expeddo be reasonably small. Thus,
for the purposes of the present stutlyis taken to be zero, although with more information

the porosity change can be taken into account using theiegsaaiutlined previously.

5.3.5 Boundary Conditions

The walls of the airway tree are considered as fixed no-slipenetrable walls, such that all
velocity components may be set to zero and the pressureregpeiated from the interior
of the domain to the boundary. Note that the walls of the ededntrachea and the flat
lower surface of the hemispherical cap are treated in theesaay as fixed walls. The
lung boundary is considered to be a moving no-slip, impaidétrwall and the velocity
components are selected such that there is no mass flux thamygof the control surfaces
on the moving walls. On the moving walls, the pressure is aldoapolated from the
interior of the domain.

At the open boundary, i.e. the curved portion of the hemigpakcap, the derivatives of
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all velocity components normal to the boundary are set to. 2&then the fluid is exiting the
domain, a constant static pressure is specified, whereas thbdluid enters the domain,
a constant dynamic pressure is specified, as recommendeaitnyand Murthy [49] for
open boundaries. Mathematically, this condition is stated

p°°7 m) Z O
Po = (5.18)

Po—3P1U5, <O
whereuy, is the magnitude of the velocity at the boundamy,is the mass flux through the
boundary control surface, amg, is a specified ambient pressure. Note thgis obtained
from the mass flux at the integration point on the boundam,as m,/(psAp), whereA,

is the area of the boundary control surface.

5.4 Results and Discussion

5.4.1 Parameters of Study

The model for air flow in the human lung described in the presieections was run for
five full breath cycles to ensure any initial transient bebarvwas dissipated and results
were extracted from the final full breath cycle computed. ther purposes of the results
to be presented, the time= 0 corresponds to the beginning of the final breath cycle. The
computational mesh, shown previously in Fig. 5.3 contaidgtl, 156 tetrahedral control
volumes. In this section, results will be presented for treximum pressure difference
across the domain, representing the pressure drop fromatieeia to the most distal alve-
olus, as well as pressure contours on the surface of the hohgedocity vectors in a plane
intersecting the bifurcation from the trachea to the mawnbhi. Although detailed ex-
perimental data for comparison is not yet available, cotioes will be made with typical

values for pressure drop in the lung.
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Figure 5.5: A plot of the maximum pressure difference within the domaim &nction of time,
where t= 0 represents the beginning of the breath cycle at maximuntiwrila

5.4.2 Alveolar Pressure

Figure 5.5 shows the maximum pressure difference acrosddimain, representing the
pressure drop from the inlet surface to the most distal &leavhere the pressure differ-
ence is maximum. Note the maximum magnitude of the alveakesgure shown in this
figure is just over 50 Pa, which is the correct order of maglatior a healthy lung which
has a pressure drop on the order of 1 cpg®©H98 Pa) for normal breathing [47]. Since the
breathing simulated here is light breathing with only 80%hef tidal volume as compared
to normal breathing, this is indeed the correct magnitudehfe pressure drop. Certainly,
this increases confidence in the validity of this approaachtae method of estimating the

permeability, although experimental verification shoudddarsued in the future.
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Figure 5.6: Contour plots of the pressure in Pascals for the times (ab,0(B) 1.25, (c) 1.75, (d)
2.5, (e) 3.25, (f) 3.75, (g) 4.25, (h) 5.0 seconds from théninéng of the breath cycle.
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5.4.3 Pressure Field

Contour plots of the pressure on the surface of the lung maebiven in Fig. 5.6 for
various times within the breath cycle. This figure illustisathe higher pressures exhibited
during expiration near the diaphragm where the lung motsdangest in Figs. 5.6a-c. In
its fully contracted state, shown in Fig. 5.6d, and in it$yfeixpanded state, shown in Fig.
5.6h, the pressure is nearly zero everywhere since theeenstflow in or out of the lung.
In Figs. 5.6e-g it is shown that the pressure is lower neab#se of the lung as the air
is drawn into the lung. In all cases, it can be seen that thespre within the trachea is

similar.

5.4.4 \Velocity Field

Velocity vectors at two time points are shown in Fig. 5.7 inxaplane that intersects a
portion of the trachea and the region where the tracheadaifes into the main bronchi.
Figures 5.7a,b show the vectors for the time 1.25 s from the beginning of the breath
cycle (peak expiratory flow rate) while Figs. 5.7c,d showtbetors for the timé¢=3.75 s
from the beginning of the breath cycle (peak inspiratory ftate). These figures show the
velocity magnitude dropping significantly after the maimichi bifurcate, such that the
velocity vectors are hardly visible. Within the porous myithe velocity is clearly very
small as expected for the respiratory region. Note the suwkvelocity shown in Figs.

5.7a,c which occur where the slice intersects a smallergiimcluded in the fluid region.

5.4.5 Comparison with Direct CFD Approach

With the results presented, it is important to put into pecspe the advantages of the
proposed approach to simulating processes in the lung.nhipadson to direct simulations
in truncated airway trees, the proposed approach has theadwantage of being able to

consider both an upper airway tree and the remainder of tigethrough the porous media
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(© (d)

Figure 5.7: Contour plots of velocity vectors in the xy-plane, at time®) 1.25 and (c,d) 3.75 s
from the beginning of the breath cycle.

model. Additionally, the computational cost of adding thequs region is significantly
less than adding enough airway branches to the direct CFhtodapture the full lung
or any significant part of the respiratory region. Note ttreg turrent model employed
911,156 control volumes and that a fully-resolved airwag twould require an estimated
720 billion control volumes [12, 18].

As another comparison, consider the recent work of Gemdi @Javhich simulated

1433 individual airway branches across 17 generation ohtlrean lung. While this is

far from the more than 100,000 branches actually present iaidvay generations, the



CHAPTER 5. CONJUGATE FLUID-POROUS FLOWS WITH MOVING
BOUNDARIES: APPLICATION TO THE HUMAN LUNG 164

6.7 million control volumes used to discretize the domae (@pper limit possible on the
given hardware) was far from sufficient for obtaining gridié@pendent results. To esti-
mate the number of control volumes actually required, aerdine work of Yin et al. [17]

who were able to obtain grid-independent results in a reaks5 generation airway ge-
ometry using 4.6 million control volumes. Recently, Wadtend Luke [12] proposed a
novel stochastic coupling method to reduce the number of flathis that must be simu-
lated directly, although up to 4.3 million control volumesne still required to discretize
an 8-generation airway tree model. Although the proposetiodds also somewhat com-
putationally expensive, taking on the order of three to fdays of computational time

(depending on convergence criteria, timestep selectimn), ¢o compute five full breath

cycles using 32 processors in parallel, there still apptai®e an advantage in terms of
reduced computational requirements that can be attainednparison to the previously
mentioned approaches. Even with significant grid refineraedtthe addition of several
more airway generations, it is doubtful that the current edegbuld need to approach the
number of control volumes required for reasonably extenaimvay tree computations and

certainly not the requirements for a full airway tree model.

5.5 Summary and Future Directions

In summary, this chapter presented the development of ameahmethod for computing
flows in conjugate fluid-porous domains with moving bounesri While the method is
general and can be used to solve a wide range of problemsauganedia, its robustness
has been demonstrated using a complex, physiologicadlystee geometry of the human
lung. This case was selected because it is believed thatderbiluid-porous model of the
lung provides a convenient method of simulating processt®ei full lung that is consider-
ably more efficient than simulating flow in large airway tregace as the airways become

smaller and more numerous, the computational costs inedrasnatically. Additionally,
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the details of the flow in very small airways and alveoli aregenerally of interest, rather
their bulk behaviour is sought. Thus, a porous media apprappears logical.

In the future, itis foreseen that this modelling paradigr prove useful for modelling
transport processes in the lung for applications such gsragsry drug delivery. While
this work serves to introduce this new approach, it is exgzethat future work will be
directed at experimental validation and calibration ofriiedel, improved specification of
the boundary motion using imaging and/or solid mechandsitigues, and the addition of

more transport models for particle and species transport.
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O
Chapter

Summary

6.1 Summary of the Present Work

In this work, computational methods for analyzing fluid flomdeheat transport in porous
media and determining the relevant effective propertiesewleveloped. There were two
major application areas selected in this work, metal foanasthe human lung, to demon-
strate the robustness and utility of the proposed modelsmmptex porous domains and
pore shapes. In addition to the development of the comjpumi@timethods, useful data for
closure parameters was generated and a novel modellindigarfor simulating transport
processes in the human lung was proposed.

In Chapter 2, a finite volume-based computational methodon@sosed for simulating
fluid flow and heat transfer in conjugate fluid-porous domaifkis work involved the
development of novel fluid-porous interface conditionstides to ensure that the method
was robust for all flow speeds and grid types. Special atiemtias given to the accurate
estimation of diffusive and advective fluxes at interfacassuring a balance of pressure
forces and viscous stresses across the interface, as vessure-velocity coupling. The
resulting model has been shown to be very robust and acdoratl test cases considered.

In Chapter 3, closure of the volume-averaged momentum aedygrequations were

studied using a unique constitutive equation-based apprfma flow and heat transfer in
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an idealized graphite foam pore geometry using extensimeenigal simulations. While
the main motivation of this work was to generate correlaitirat enable volume-averaged
simulations to be conducted, several interesting aspétt® dlow physics in such porous
media were elucidated. First, the existence of a non-lideag term, proportional to the
cube of the volume-averaged velocity, for flows in the weadttia regime was confirmed.
Second, as a consequence of considering a more complicatedypometry than much
of the literature, it was found that the dispersion behavieas much more complicated.
While the dispersion conductivity is typically consideredbe a function of the Péclet
number (the product of the Reynolds and Prandtl numbensgstfound in this work that
the Reynolds and Prandtl numbers must be considered asasep#tuences in order to
obtain a good fit with the data. Finally, the importance okesthg a dispersion model
specifically formulated for the porous medium of interess\@damonstrated using volume-
averaged calculations.

In Chapter 4, closure of the volume-averaged momentum eouats considered for
flow in an alveolated duct within the human lung. Althoughstig an unsteady prob-
lem, it was shown using detailed scaling arguments basedgsiglogically reasonable
orders of magnitude that the closure problem reduces tooftidte steady case and that
any changes in the permeability due to unsteadiness carkée itato account by the ap-
propriate scaling of the permeability tensor. The assumngtunderlying the theoretical
model were tested using direct CFD calculations to confireir thalidity. Finally, some
selected one-dimensional results for flow in an alveolatett ere presented using the
volume-averaged model developed.

In Chapter 5, a conjugate-fluid porous model for computindl@v in the human lung
was proposed using the results obtained in Chapter 4 for ¢éhmgmbility of the lower
airways and lung parenchyma. The geometry under consioenats based on publicly
available CT image sets that were segmented to extract aateoh airway tree and the

remainder of the lung volume. In order to allow the motionts tung boundary to drive
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the flow, the computational model developed in Chapter 2 wésneed to an arbitrary

Lagrangian-Eulerian framework for moving meshes. Theltiegumodel was tested with

the physiologically-realistic lung model to demonstrdte ability of the computational

method to solve such a complex flow configuration. Furthds Work sets up a new

modelling paradigm for simulating transport in the humanglwhich is believed to be

of significant value with the appropriate validation andhwation, which is suggested as
future work.

To conclude, this work has led to the development of a usefuierical tool for solv-
ing fluid flow and heat transfer in complex geometries usingegal moving unstructured
grids. It has also extended the state of the art when it coom@ssure of volume-averaged
equations and has produced new insights in this area. ¥iaatiovel coupled fluid-porous
methodology for modelling flow has been proposed which haatgyotential as a tool for

modelling transport in the lung with further development.

6.2 Summary of Contributions

1. Development of a numerical method for computing fluid flow ad heat transfer in
conjugate fluid-porous domains using general moving unstrctured grids. In Chapter
2, the development of a finite volume-based numerical metvasidescribed that enables
the solution of fluid flow and heat transfer problems in thespree of fluid-porous in-
terfaces on unstructured grids. Prior to the developmenhisfmethod, there were no
computational methods capable of accurately solving suehliems when employing un-
structured grids. In the present work, novel interface @wots were proposed to ensure
accurate estimates of diffusive and advective fluxes as agelpressure forces at fluid-
porous interfaces. Additionally, the coupling of the pregssand velocity fields was con-
sidered to ensure that no decoupling occurred at interfaldes resulting model has been

shown to be robust for all flow speeds considered and is ssittes maintaining accu-
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racy on all grid types. This is a very important developmenireny practical situations
involve coupled fluid-porous domains with geometric comjties that necessitate the use
of unstructured grids. This numerical method was furthéemated in Chapter 5 in order
to handle moving grids using an arbitrary Lagrangian-Ealeapproach, such that moving
boundary problems may also be solved. This is an importargldement, particularly for
biomedical applications were domain motion is common.

2. Characterization of the effective flow and thermal propeties of graphite foams.In
Chapter 3, results were obtained for all of the relevantéffe flow and thermal properties
of a high-conductivity graphite foam material such thatwvoe-averaged calculations may
be conducted for devices incorporating this material. biittah to establishing these useful
correlations for use in volume-averaged calculations $iiildy was the first to consider
closure of volume-averaged equations using a constitedyation-based approach in a
three-dimensional geometry for non-creeping flows. Thu$as been shown that this
approach is appropriate for such geometries and flow cofiiguns, indicating that similar
characterizations are possible for other high-condugtporous materials.

3. Elucidation of flow and thermal physics for flow through a canplex pore shape.In
Chapter 3, in addition to the development of correlationsefitective properties, several
interesting phenomena were uncovered. First, the existeinwon-linear pressure drop be-
haviour in the weak inertia flow regime was confirmed for thastigular geometry. Addi-
tionally, it was observed that while the literature typigalonsiders the thermal dispersion
conductivity to be a function of the Péclet number, subislin better fits to the data were
obtained by considering the Reynolds and Prandtl numbess@rate influences. Finally,
it was found that the spherical void phase material consitlgrthis work exhibits substan-
tially different dispersion behaviour as compared to rdéted metal foams and that this
difference has a meaningful impact on the volume-averaggealts. Taken together, these
conclusions are very important to those conducting volawverage simulations involving

graphite foams, or more generally, any high-conductivayops material.
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4. A novel application of porous media theory and closure métods to flow in an
alveolated duct. In Chapter 4, flow in an alveolated duct was considered usipgraus
media approach and closure of the resulting volume-avdragementum equation was
considered. Typical closure methods are not compatible miving domains or varying
porosities, however, in this work the transport equatiomgegning the pore-level veloc-
ity and pressure spatial deviations were carefully simgalifusing physiologically-based
scaling arguments. This lead to the conclusion that at tbeucé level one may neglect
transient effects and the effects of porosity gradient® d$sumptions underlying the the-
oretical part of this work were then tested using direct $ations, which were in good
agreement with the given results. Thus, this work serveldwshe important fact that a
steady closure model may be used for alveolar flows and pesgbsat properly scaling the
permeability tensor allows transient effects to be inctlitievolume-averaged simulations.
Additionally, it provides a value for the permeability of alveolated duct that can be used
to conduct volume-averaged simulations of flow in the lung.

5. Proposal of a new conjugate fluid-porous approach for modéng transport in the
human lung. In Chapter 5, a new modelling paradigm for simulating flowghi@ human
lung was proposed, wherein the upper airway tree is coreidgirectly as a fluid region
and the remainder of the lung is considered as a coupled poegion. Test cases were
shown to demonstrate that the proposed numerical methdd cwdeed solve this com-
plicated flow problem for a physiologically realistic lungoael based on segmented CT
images. Although full validation of this model is beyond gwope of this work, it is be-
lieved that the proposed approach will be useful for conmmutiansport in the whole lung

upon experimental validation and calibration.
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6.3 Suggestions for Future Work

1. Investigation of effective properties in other porous méerials. In this work, all of
the effective flow and thermal properties of graphite foamen@btained and the perme-
ability of an alveolated duct was determined. Clearly, thisnly a small subset of all of
the porous materials in existence. Thus, a practical stiggefor future work is to use
the closure methods described in this work to investigageeffective properties of other
porous materials such as aluminum or copper metal foamsiatugjlral tissues including
bone, muscle, solid tumours, etc. Such work would have angdiate impact on the qual-
ity of volume-averaged simulations that may be conductétchvcould have a significant
impact on the design of porous devices or the study of mdgicallevant processes.

2. Investigation of effective properties at interface regons. In this work, a compre-
hensive investigation of the effective flow and thermal emes of graphite foam was
conducted for transport processes in regions of the poraasum where the macroscopic
properties, such as porosity, are uniform and interfaceesfare negligible. Thus, it would
be an interesting topic for future research to investigateimpact of porous-fluid and
porous-solid interfaces on the results for the effectivapprties of porous materials us-
ing the closure models discussed in this work. At porousHinierfaces phenomena such
as stress-jump [1, 2] could be investigated and more insngbtthe heat convection and
conduction processes at the interface could be obtainegomus-solid interfaces, further
insight into the conduction and thermal dispersion proegs®uld be gained [3]. Such
advancements in the mathematical treatment of interfadésimdoubtedly serve to im-
prove the accuracy of the volume-averaged descriptionamisport in porous media and
may readily be incorporated into existing numerical meghmd porous media flows, such
as the one proposed in this work.

3. Incremental improvement of the porous media model of the aman lung. While
significant progress was made towards a porous media desorgbh transport in the human

lung, this modelling philosophy is still in its early stageAs a result, there are several
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improvements that can be made to the model in an incremestaildn in order to gradually
increase the extent to which it replicates a real human I@me such improvement is to
segment more generations of the airway tree to determinénahvpoint the benefits of
computing the flow directly are sufficiently small that a s#ion to a porous media model
is appropriate. Additionally, improvements could be maméhe specification of the lung
motion using either calculations of the tissue motion witbeg material properties and
applied loads, using medical imaging to determine the maticthe lung as a function of
time, or a combination of both approaches [4, 5].

4. Experimental validation and calibration of the porous malia lung model. Since
full experimental validation and calibration of the porauedia model of the human lung
was beyond the scope of the present work, it is recommendeduture work is directed
at collaborating with medical imaging experts in order tof@en as much validation and
subsequent model calibration as possible with currentigdies.

5. Study of other transport processes in the lung using volueraveraged simulations.
The volume-averaged simulations presented in this worle\isaused on the air flow pro-
cess within the human lung. With this model in place, it beesmelatively straightforward
to study other relevant transport processes, such as gaaree, heat transfer, and particle
transport in a similar, volume-averaged framework witlatigely minor additions to the
model proposed in this work.

6. Medical applications of volume-averaged simulations ofransport in the human
lung. This work presented a volume-averaged method for analyamitpw in the human
lung. As discussed above, it is relatively straightforwtreéxtend this model to include
other relevant transport processes. A fairly long-rangsd i the extension of this work,
which will require substantial research effort, is to findolgations of such methods in
the medical field. While the proposed model certainly féaiés the study of transport
processes and may lead to new knowledge, it would be veryestiag to work towards

such models playing an active role in the medical field. Soassible applications include
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optimizing drug delivery, surgical planning, and diagmncst

7. New applications of porous media theory in the biomedicalield. While this work
focused primarily on the lung as a porous biological tissiiere are certainly many other
biological systems of interest that can be modelled as godomains. For example, ther-
mal ablation is a process by which cancerous tissue is gestrasing thermal energy
[6-8]. Such a process is ideally suited to being considesed porous system. If this
process can be accurately modelled using porous mediaytlibere are immediate appli-
cations in planning and optimizing the ablation procedaminimize extraneous cell death
around the cancerous region. Another interesting biona¢digplication of porous media
is macromolecule transport through arterial walls [9, 18]nce this work introduced a
new method for simulating conjugate fluid-porous systenvsgusnstructured grids, many
problems that were previously too geometrically complexmaw be solved, and represent

an interesting possibility for future work.
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Appendix A

Additional Code Validation and Test

Problems

A.1 One-dimensional porous plug flow

In this validation problem, a one-dimensional version efplorous plug problem presented
in Chapter 2 and shown in Fig. 2.4, is solved. In this case timeputational domain is
x € [0,3] with a porous regionx € [2,3] and fluid regionsx € [0,1) andx € (2,3]. The
domain is meshed using three-dimensional hexahedralaloriumes, however, there is
only one volume in each of the- andz—directions with symmetry conditions g and
z—planes such that the problem reduces to being one-dimaisiorthex—direction, six
control volumes are used; two in each fluid region and two éytbrous region. Since this
is a one-dimensional flow, the continuity equations in thelfand porous regions imply
u= (u)y =U, whereU is a constant. Here we take= 1. In the fluid region, this implies
pressure is constant in both the upstream and downstreaomsedn the porous region, we
assume; = 0 such that Darcy’s law is valid, which implies a linear prassprofile with

respect tx. Specifying the outlet pressure to pe= 0 and assuming a continuous pressure
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Figure A.1: A plots of the results for the one-dimensional porous plugecabtained using six
control volumes in comparison to the analytical solution.

at interfaces gives the following analytical solution feegsure:

%, xe [0,1)
p) =¢ —E(x—2), xe[2,3 - (A.1)
0, xe (2,3

Numerical results are obtained with the proposed numenieghod using a Dirichlet
condition on velocity at the inleu(= U) and a Neumann condition at the outl@u(dx =
0). On pressure, a Neumann condition was specified at th(iimliet pressure extrapolated
from interior) and a Dirichlet condition was imposed at thelet (p = 0). The numerical
results are plotted in Fig. A.1 fdf = u;s = U = 1 in comparison to the analytical solution
given in Eq. A.1. Results show excellent agreement with theyaical solution and have
a maximum relative error of.@ x 10-6, which indicates that the algorithm and interface

conditions are working properly.
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A.2 One-dimensional non-equilibrium heat transfer

In this validation problem, we solve the non-equilibriuneegy equations for a special one-
dimensional case with no flow component to ensure that theygmguations are solved
properly. Note that we make no claim that this is a physiaalgvant problem; it is simply
designed to test the code. In this problem, we considergtaetdimensional heat transfer
between the fluid and solid components of a porous mediumhdé\btigin, the body is
insulated. At the other end of the domain= L, there is a finite temperature difference
between the fluid and solid constituents. For simplicitgl Bmenable an analytical solution,
constant properties are assumed. Since advection is tegjléais problem serves to verify
the diffusion and exchange components of the code.

The two governing energy equations are given as

2 f
ke S hisars((T9° (1)) =0 (a.2)
and
2 s
et L hraais(T°— (1)) =0 (»3)

Boundary conditions are given as

d f
(Tt) —0, (A.4)
dx |, o
S
d{Ts) =0, (A.5)
dx x=0
<Tf>f‘ =T (A.6)
and
<Ts>s|x:|_ =TsL. (A.7)

TThanks to Juan Carlos Morales of ANSYS Canada Ltd. for suiggethis test problem.
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Rearranging and combining Eqgs. A.2 and A.3 results in

d2<Tf>f B d2<Ts>s B htsass(Kie + Kse)

f sy
dx2 dx2 Kt ekse ((Tf) —(Ts)°) =0. (A.8)

For convenience, we lap = (T¢)" — (Tg)S such that the governing differential equation

becomes
d2
—dx‘f _A2p—0, (A.9)

whereA? = [hisass(Kre + Kse)]/ [Kreksd. The boundary conditions then become

ol _p (A.10)
dx|,_o
and
Ol =@ =Tr L —TsL. (A.11)

The differential equation given by Eq. A.8 with boundary diions given by Egs. A.10

and A.11 has a simple analytical solution given by

_ coshAX)
P(x) = L CosHAL) (A.12)

To test the code using this problem, we choose a unit lengtiado( = 1) with a unit
temperature difference at= L (@ = 1) for convenience. Two values Afare selected such
thatA € {5,50}. Three different grid resolutions are selected with 5, @ 20 control
volumes in thex—direction to examine the effects of the grid density. Sirwe ¢ode is
three dimensional, the control volumes are hexahedra, Vewsince there is only one
volume in they— andz—directions with symmetry conditions on thg— andxz—planes
the problem is reduced to a single dimension.

In Fig. A.2(a), results obtained from the code are compaoetie analytical solution

for A= 5. This figure indicates that reasonable results are olataisag only five con-
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Figure A.2: Plots of the dimensionless temperature differepgé@ as a function of the dimension-
less position xL for two values of the parameter A, namely, (a)-% and (b) A= 50 for different

grid densities.
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trol volumes (maximum percentage error: 8.9%) and that geyd results are obtained
with ten control volumes (maximum percentage error: 2.78though not shown in Fig.
A.2(a), results were also obtained using 20 control volumieish showed the error was
further reduced (maximum percentage error: 0.7%). In tise eghereA =5, it is clear
that neither the diffusion or interstitial exchange medsians are strongly dominant. The
temperature difference imposed»at L is diffused through the domain and is reduced
towardsx = O due to the interstitial exchange mechanism. &et 5 the fluid and solid
do not come to thermal equilibrium at any point within the dam For larger values of
A, the interstitial exchange mechanism is more dominant bedtal equilibrium may be
achieved.

Next we consider results fok = 50, which are shown in Fig. A.2(b). In this case,
thermal equilibrium conditions are attained a short distaftomx = L as the interstitial
exchange mechanism is strongly dominant over diffusionthis case, the profile of the
temperature difference is very steep nearL which is clearly not captured using only five
control volumes. Using 10 or 20 control volumes, it appehas the analytical solution is
accurately matched. In this case, using a percentageatifferis misleading since many
of the values are very close to zero, so instead the absafteeetice is discussed. For the
cases using 10 and 20 control volumes, the maximum absohote®below 0.07, however
itis clear that the shape of the analytical solution caneadgonstructed in either case due
to insufficient data points where the valuegfq_is changing rapidly. In this case, it would
be prudent to refine the grid towards this end of the domaredine temperature gradients

are so high.
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A.3 Comparison of porous plug results with those from AN-

SYS Fluent

In order to demonstrate the usefulness of the proposed oheftamnsidering flow in con-
jugate fluid-porous domains, the porous plug case consldar€hapter 2 is also solved
using ANSYS® Fluent, Release 13.0, a popular commercial software padiagerform-
ing computational fluid dynamics simulations, and the rissare compared with those from
the proposed model. The grids used for the Fluent simulatiwa identical to those used
for the simulations conducted using the proposed modelsdliter parameters in Fluent
were selected to be as similar as possible to those speaifibe iproposed code. Results
for two Darcy numbersDa € {10-2,10~°}, which represent the two extremes considered
in Chapter 2 are plotted in Fig. A.3.

For the higher Darcy numbeRa = 10~2, there are significant differences between
the present results and the results from Fluent, partiguiarthe vicinity of the fluid-
porous interface. Since the Fluent solution does not ekaity spurious oscillations near
the interface, it is clear that some sort of special condihas been applied to assist in
maintaining coupling at the interface, however the Fluarduinentation does not specify
what sort of condition may be applied. At the outlet, the Rlusolution exhibits unusual
behaviour as fluid accelerates out of the porous plug. Itagaeat the rate of acceleration
is increasing, which does not make physical sense sincarntrisase in velocity along
the centreline is due to momentum diffusion away from thesnas the flow redevelops
from essentially a plug flow at the exit of the porous block.ti¢ lower Darcy number,
Da = 10"°, good agreement between the present results and the résattFluent is
obtained.

Thus, it appears that the interface conditions imposedueritlare able to produce a
good solution at low Darcy numbers where the velocity prafiianges sharply at the inter-

face. In cases where the Darcy number is higher and the #eldtanges more gradually
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Figure A.3: Plots of the streamwise velocity component for the poroug ptoblem at Rg = 1000

and (a) Da= 102 and (b) Da= 10> computed using the proposed method and ANSYS Fluent.
Note that these cases were run using the same hexahedral st for the cases presented in
Chapter 2.
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as it enters and exits the porous plug, it does not appeathibaesults obtained using Flu-
ent are particularly accurate near interfaces. In suchscésgppears beneficial to consider
a more rigorous approach to treating fluid-porous intedasach as the method proposed

in this work.
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