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Abstract

Business activities often involve a common agent managing a variety of projects

on behalf of investors with potentially conflicting interests. The extent of the agent’s

actions is also often unknown to investors, who have to design contracts that provide

incentives to the manager despite this lack of crucial knowledge. We consider a game

between several principals and a common agent, where principals know only a subset of

the actions available to the agent. Principals demand robustness and evaluate contracts

on a worst-case basis. This robust approach allows for a crisp characterization of the

equilibrium contracts and payoffs and provides a novel proof of equilibrium existence

in common agency by constructing a pseudo-potential for the game. Robust contracts

make explicit how the efficiency of the equilibrium outcome relative to collusion among

principals depends on the principals’ ability to extract payments from the agent.
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Business enterprises often involve various projects that must be carried out in tandem.

For instance, having offices or plants in multiple locations as is the case for multinational

operations and (vertically or horizontally) integrated businesses. These projects are often

funded by different financiers or investors but are jointly managed by a single agent. This

situation can bring the financiers’ interests into conflict. In this context, financiers design

contracts to incentivize the manager to maximize their own profits. The optimal contracts

depend on the actions the manager can take, for instance favoring one of the projects over

others, but not all of the manager’s potential actions are usually known by the financiers.

This can be because of physical distance from the projects or lack of expertise in their

management. How should a contract be designed to be robust to unforeseen agent actions?1

We study this type of situation in a moral hazard common agency game where various

principals design contracts that are robust to misspecification of the agent’s action set.2

Specifically, principals seek to maximize the minimum guaranteed payoff across possible

action sets as in Carroll (2015). The game has two stages. First, risk-neutral principals (the

financiers) simultaneously and non-cooperatively offer contracts to a risk-neutral agent (the

manager) that is protected by limited liability. Second, the agent takes an unobserved and

costly action that affects the distribution of output across each principal’s project. Contracts

specify payments to the agent contingent on the realization of output across the projects,

which is observed by all principals.

We provide an explicit characterization of the optimal contracts and payoffs. We show

that, for any given contracts offered by the other principals, robust contracts take the form

of linear revenue sharing contracts. These contracts align incentives by tying the principal’s

1Similar situations arise for governments taxing multinationals, where the firm’s actions change while the
tax system remains unchanged, or for firms with a common supplier (e.g., marketing agencies, Bernheim and
Whinston, 1985; Mezzetti, 1997) with unknown complementarities in the production of the goods.

2Common agency, as introduced in Bernheim and Whinston (1986a,b), has been applied in a variety
of settings. Multiple lobbyists influencing a politician (Grossman and Helpman, 1994; Dixit, Grossman
and Helpman, 1997; Le Breton and Salanie, 2003; Martimort and Semenov, 2008). A firm being taxed by
the local, state and federal government (Martimort, 1996; Bond and Gresik, 1996). An agent performing
complementary tasks for two principals (Mezzetti, 1997). A public good provider eliciting payment from
consumers (Laussel and Le Breton, 1998). An auctioneer facing multiple bidders (Milgrom, 2007).
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payments to the agent’s linearly, making any action that increases the agent’s payment also

increase the principal’s payment. This result parallels the “sharecropping” arrangements in

Hurwicz and Shapiro (1978) and the linearity result in robust contracting presented in Carroll

and Walton (2022),3 but differs in that the optimal contracts depend on the competing

contracts offered by other principals through their effect on the agent’s payments.

When all principals offer linear revenue sharing contracts, contracts are affine in total

output, so that all players (the principals and the agent) receive a share of total output. That

is, seeking robustness, the financiers would make it so that payoffs depend equally on each

project’s output, rather than trying to incentivize the manager to favor their own project

(potentially at the expense of others). The agent’s limited liability shapes the contracts

preventing the principals from offloading all risk onto the agent.4

We show that a pure strategy Nash equilibrium of this game always exists. To show

this, we lever on the characterization of optimal contracts and payoffs that we provide, while

imposing minimal assumptions over the action set of the agent. We show that the game

has a pseudo-potential, similar to that of the standard Cournot competition model, and

use it to establish the existence of an equilibrium as in Monderer and Shapley (1996) and

Dubey, Haimanko and Zapechelnyuk (2006). This approach is new in the common agency

literature and complements previous results on the existence of equilibrium (e.g., Bernheim

and Whinston, 1986a; Fraysse, 1993; Carmona and Fajardo, 2009).

In our equilibrium analysis we assume that principals correctly predict the behavior of

the other principals and focus on robustness with respect to the agent’s action set. This

setup captures many situations in which the behavior of principals is known at the time

of contracting but the behavior of the agent is only known afterward. For instance, when

3See also Chassang (2013), Antic (2021), Garrett (2014), and Frankel (2014), among others. Dai and
Toikka (2022) study an analogous problem of moral hazard in teams (one principal and multiple agents).
They find that the optimal contract for the principal is to give each agent a share of total output.

4Limited liability makes moral hazard common agency games intractable in general. Our robust
contracting approach makes it possible to overcome this issue. See Martimort and Stole (2012) for an
application of common agency with limited liability. Their model, without robustness concerns, can be seen
as a special case of ours, where output is perfectly correlated between all principals.
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jointly financing a new project proposed by a (previously unknown) entrepreneur, or when

contracting is subject to financial disclosure laws that make the agent’s other dealings known

to interested parties. Our focus on robust contracts makes the analysis tractable without

restricting the principals’ choice set as in Dixit (1996) and Maier and Ottaviani (2009).

Moreover, our results do not depend on the details of the agent’s action set or the information

structure as is usual in other common agency setups (Martimort, 2006).

We further explore the efficiency properties of the equilibrium, as captured by the sum

of (expected or guaranteed) payoffs across players, that we refer to as surplus. We show

that the share of output that each player receives under linear revenue sharing contracts also

corresponds to their share of total surplus. Moreover, total surplus increases monotonically

on the agent’s share, as it is the agent who is making decisions over output and bearing the

cost of actions. The outcome is of course not efficient in general, unless the agent appropriates

all output at the expense of the principals.

We use these results to revisit the classical question of the efficiency of competitive

outcomes relative to collusion among principals (Bernheim and Whinston, 1986b). When

principals collude, the problem reduces to that of a principal incentivizing a multi-project

agent, an extension of the problems in Holmstrom and Milgrom (1987) and Carroll (2015).

The solution is a contract that gives the agent a share of total output across projects. This

result makes it possible to compare the outcome of the common agency game to that of the

game where principals collude and offer a joint contract.

Surplus is higher under collusion than under competition among principals because the

agent’s share of output is lower when the principals compete. This is because principals

impose an externality on each other when they compete, reducing the willingness of other

principals to provide incentives to the agent.5 When a principal increases their share of total

output, they decrease the agent’s share, lowering total surplus and thus the payoffs of other

5This result is similar to those in Bernheim and Whinston (1986a), Holmstrom and Milgrom (1988), and
Martimort and Stole (2012) under moral hazard, Martimort and Stole (2012) and Bond and Gresik (1996)
under adverse selection, where free-riding among principals reduces the agent’s effort.
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principals. Principals take into account the effects on their own and the agent’s payoff, but

ignore the effects on other principals. This is the case when different projects of the same

business enterprise are funded by different investors.6

Finally, we show that limited liability plays a central role in shaping equilibrium contracts

and their efficiency properties. We consider two cases. First, we consider a stronger form

of limited liability that operates over each individual contract and not over the agent’s total

payment. That is, each project’s payments are considered separately, for instance, as in a

multinational operation where limited liability applies to each project residing in a different

jurisdiction. In this case, equilibrium contracts are such that each principal gets a share of

total output for a fee. This fee is proportional to the share of total output that the principals

appropriate for themselves, effectively pricing the share for the principals. This results in

the agent’s equilibrium share of total output being higher than under collusion, overturning

the relative efficiency of collusion over competition.

Second, without limited liability, the equilibrium outcome is efficient because it is optimal

for the principals to offload all risk onto the agent. The optimal contracts demand a fixed

payment from the agent and make them the residual claimant of all output, as in Bernheim

and Whinston (1986a). We see this limiting case as instructive of the role of limited liability

in shaping the agent’s incentives.

1 Model setup

Consider a game played between two principals, indexed by i ∈ {1, 2}, and one agent A, all

risk-neutral.7 This can be the case of an agent jointly managing the projects of two financiers,

as in multinational operations. The game has two stages. First, principals simultaneously

and non-cooperatively offer contracts to the agent specifying payments contingent on realized

output. Second, the agent takes an action in their action set, A. Actions stochastically affect

6The presence of multiple investors for the same project can be explained with frictions as those in soft
budget constraints (Dewatripont and Maskin, 1995).

7We extend the results to N principals in Appendix E.
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the projects’ output at a cost to the agent. Then, output realizes, and payments take place.

Principals observe output in both projects but do not observe the agent’s action.

Moreover, they do not know the complete set of actions, A, available to the agent.

However, each principal knows only a subset Ai
0 of A, for i ∈ {1, 2}, as in Carroll (2015).

In the case of multiple projects funded by different financiers, this reflects financiers’ lack of

information about what the manager can do in the projects. The lack of information can

come from the financiers’ lack of expertise in the workings of the projects, or physical or

temporal distance from the projects, that can be located in different jurisdictions and take

place in the future when new actions can be taken.

Agent’s actions and output. The agent’s actions stochastically affect the projects’ output,

y1 and y2 respectively. The output space for the projects is Y ⊂ R2, with Yi, the projection

onto R (the set of real numbers), assumed compact with min {Yi} = 0 and max {Yi} = yi.

The agent chooses an action from a compact action set A ⊂ ∆(Y )×R+, where ∆(Y ) denotes

the space of Borel distributions on Y , and R+ the set of positive real numbers. An action is

a pair (F, c) ∈ A, where F is a probability distribution over output y = (y1, y2) and c ≥ 0 is

the cost of the action. We endow the space ∆ (Y ) with the weak-⋆ topology and ∆ (Y )×R

with the natural product topology.

We impose the following three assumptions on the known action sets A1
0 and A2

0.

Assumption 1. (Inaction) (δ0, 0) ∈ Ai
0, for i ∈ {1, 2}, where δ0 ∈ ∆(Y ) is the distribution

assigning probability 1 to output (0, 0) ∈ Y .

Assumption 2. (Positive Cost) For all (F, c) ∈ Ai
0, i ∈ {1, 2}, if c = 0, then F = δ0.

Assumption 3. (Non-triviality) There exists (F, c) ∈ Ai
0 for i ∈ {1, 2} such that

EF [y1 + y2]− c > 0.

Assumption 1 says that the agent can always choose not to produce (generating the

minimum output with certainty) at no cost. Assumption 2 requires the agent to pay a cost
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in order to produce. Assumption 3 ensures that the principals and the agent will, potentially,

find it beneficial to participate in the game.

Contracts and limited liability. A contract is a continuous function wi : Y → R specifying

payments conditional on realized output. A contract scheme is a vector of contracts w =

(w1, w2). The agent is protected by limited liability which places restrictions over the type

of contracts that principal can offer. We follow Martimort and Stole (2012) in imposing the

following assumption on the aggregate payments to the agent:

Assumption 4. (Limited Liability) w1 (y) + w2 (y) ≥ 0 for all y ∈ Y .

Assumption 4 protects the agent rather than individual projects, reflecting cases in

which the projects can cross-subsidize payments (for instance if they are part of the same

conglomerate). That is, the manager can only pay from the projects’ output but not from

their own pocket. We discuss other limited liability assumptions in Sections 6 and 7,

including a stronger form of limited liability that operates over projects (for instance if

they operate in different jurisdictions) and the related private common agency case where

principals are restricted to contract only on the output of their own project, as opposed to

the public common agency considered throughout the paper.

Actions and payoffs. Given a contract scheme w and an action set A, the agent will choose

an action (F, c) to maximize their expected payoff. The set of optimal actions and the value

they give to the agent are, respectively:

A⋆ (w|A) = argmax
(F,c)∈A

EF [w1 (y) + w2 (y)]− c (1)

VA (w|A) = max
(F,c)∈A

EF [w1 (y) + w2 (y)]− c. (2)

The value of a principal, given a contract scheme w, is the minimum payoff guarantee
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offered by the contract scheme (Carroll, 2015):8

Vi (w) = inf
A⊇Ai

0

Vi (w|A) , (3)

where Vi (w|A) is the principal’s value for a given action set A:

Vi (w|A) = min
(F,c)∈A⋆(w|A)

EF [yi − wi (y)] . (4)

The principals do not know which action in A⋆ the agent will choose, so they consider the

minimum payoff across those actions.9 Any other tie-braking rule can lead to cases where

the expected payoff the principal actually gets is lower than Vi (w|A). This is because, in

general, the same action that generates high output for one principal can imply low output

for another.

The best response of principal i to a contract wj is:

BRi (wj) = argmax
wi

Vi (wi, wj) . (5)

We call the contracts in the best response robust, because they maximize the principal’s

guaranteed payoff across all possible action sets. The principal’s actions and payoffs are

independent of the agent’s action set, A. They instead depend on Ai
0.

We can now define a Nash equilibrium for the game. We seek to capture situations in

which the behavior of principals is known at the time of contracting but the behavior of

the agent is not, focusing the uncertainty of the principals on the unknown action set of

the agent. This can happen when financiers jointly finance a new multi-project endeavour

proposed by a entrepreneur, or when contracting is subject to financial disclosure laws that

8In Appendix G, we allow for a lower bound on the cost that the agent faces, imposing restrictions on the
action sets A ⊇ Ai

0 considered by the principals. Doing so does not change our main results. In particular,
a version of Theorem 1 can be proven and Proposition 1 goes unchanged.

9We depart from the usual assumption in the robustness literature, where the principal believes that the
agent will take the best action for the principal among those in A⋆ (w|A) (e.g., Frankel, 2014; Carroll, 2015).
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make the agent’s other dealings known to interested parties. The difference in the principal’s

knowledge of the agent affect their choices, captured by differences in Ai
0.

Definition 1. A pure strategy Nash equilibrium is a contract scheme w⋆ = (w⋆
1, w

⋆
2) such that

w⋆
i ∈ BRi

(
w⋆

j

)
for i, j ∈ {1, 2} and i ̸= j, along with an action choice by the agent A⋆ (w⋆|A)

given an action set A.

2 The robustness of linear revenue sharing contracts

We now characterize the principals’ best responses. We propose a set of contracts that imply

linear revenue sharing (LRS) between the principal and the agent and show that they are

robust to misspecification of the agent’s action set. That is, they maximize the principal’s

guaranteed payoff so that there is always a LRS contract in the principals’ best response.

Definition 2. (Linear Revenue Sharing Contracts) Given a contract wj, a contract wi is a

LRS contract for principal i if it ties the principal’s ex-post payoff linearly to the agent’s

total revenue. That is, for some αi ∈ (0, 1] and ki ∈ R

yi − wi (y) =
1− αi

αi

(w1(y) + w2 (y)) + ki, j ̸= i. (6)

The share αi ∈ (0, 1] plays an important role by tying the agent’s revenue

(w1(y) + w2 (y)) to the principal’s (yi − wi (y)). This link will underpin the relationship

between the principals’ and the agent’s payoffs in equilibrium, when all principals offer LRS

contracts. We return to this in Section 3, where we show that, in equilibrium, each

principal appropriates a share θi (α1, α2) ∈ (0, 1] of total output.

We can characterize LRS contracts further. From (6), any LRS contract wi satisfies

wi (y) = αiyi − (1− αi)wj (y)− αiki, (7)

for i ∈ {1, 2}, j ̸= i, all y = (y1, y2) ∈ Y , and some αi ∈ (0, 1] and ki ∈ R. The first term of

8



the contract in (7) is reminiscent of the max-min optimality of linear contracts in principal-

agent settings (e.g., Hurwicz, 1977; Hurwicz and Shapiro, 1978; Chassang, 2013; Carroll,

2015). The second term resembles the behavior of principals in the common agency setup

of Bernheim and Whinston (1986a), where a principal first offsets the payments of other

principals to then design their preferred incentive scheme. However, under LRS contracts

the payments of other principals are only partially offset. The principal claims a fraction of

both their project’s output and of the payments made by the other principals to the agent.10

This results in the sharing of the agent’s total revenue. In this way, LRS contracts deal with

the dual objective of the principal: providing incentives to the agent to increase their output

and competing against the offers made by other principals.

The main result of this section establishes the robustness of LRS contracts by showing

that offering a LRS contract is always a best response for the principals. The proof of this

result follows the arguments in Carroll (2015) and we provide it in full in Appendix A.1.

Theorem 1. For any contract wj, there exists a LRS contract wi such that wi ∈ BRi (wj)

and min
y∈Y

{w̄i (y) + wj (y)} = 0. That is, there is always a LRS contract that is robust for

principal i.

The key for establishing the robustness of LRS contracts is the affine link they imply

between the principal and the agent’s payoffs. To see this, consider a scenario where the

principals offer some contract scheme (w1, w2). Figure 1a, depicts the payoffs implied by

the contract scheme. The convex hull of these payoffs captures all possible distributions on

the projects’ output. The guaranteed payoff of the principal is the lowest (expected) payoff

that the agent could induce given their known actions (Ai
0).

11 It is possible to improve

principal i’s guaranteed payoff by offering a LRS contract w̃i that (weakly) increases the

agent’s guaranteed payoff. The payoffs implied by the LRS contract lie on the solid line.

10It is instructive to think of the principal’s problem in two steps: (i) Undoing other principals’ payments,
and (ii) offering the agent an aggregate contract w̃i. When wi is a LRS contract the aggregate contract is:
w̃i (y) = αi (yi + wj (y))− αiki. Principal i receives 1− αi of the payoff (yi + wj (y)) and the agent receives
the rest. ki acts like a transfer between the principal and the agent, determined by limited liability.

11The agent only takes actions such that EF [w1 + w2] ≥ VA

(
w1, w2|Ai

0

)
. See Lemma 1 in Appendix A.1.
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(a) Contract scheme (wi, wj) (b) LRS contract w̃i

Figure 1: Principal i and Agent’s Ex-Post payoffs

Note: The figure shows the ex-post payoffs for a principal (i) and the agent. The left panel presents the convex hull of payoffs

under an arbitrary contract scheme (wi, wj) and under an alternative scheme where principal i offers a LRS contract w̃i. The

right panel shows how the guaranteed payoffs of the principal and the agent increase with the LRS contract. w̃i offers weakly

higher payoffs for the agent than wi which increases the agent’s guaranteed payoff. This, in turn, increases the guaranteed

payoff of the principal. The figures are generated for Y1 = Y2 = [0, 1], wj (y) = y2
j/2 and wi (y) = y2

i/2 + 1−y2
j/5.

Linear revenue sharing implies that an increase in the agent’s payoff leads to a proportional

increase in the principal’s payoff, and vice versa, so that the agent cannot exploit the contract

in a way that would hurt the principal. The logic behind Figure 1 applies in general and

constitutes the core of the proof of Theorem 1.

3 Equilibrium in linear revenue sharing contracts

We now establish the existence of an equilibrium in pure strategies where principals offer

LRS contracts. We do so by first providing an explicit characterization of LRS contract

schemes and their associated payoffs. Then, we show that the common agency game has a

pseudo-potential function as in Dubey, Haimanko and Zapechelnyuk (2006). This approach

avoids the typical challenges posed by the failure of convexity of the principals’ best responses

(see Bernheim and Whinston, 1986a, Fraysse, 1993, and Carmona and Fajardo, 2009).
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Proposition 1 characterizes LRS contracts schemes that satisfy the limited liability

condition in Assumption 4 with equality. When both principals offer LRS contracts, each

principal appropriates a share, θi, of total output (y1 + y2). The shares {θ1, θ2} depend on

the parameters {α1, α2} that characterize the LRS contracts offered by the principals.

Hereafter, we focus only on the shares {θ1, θ2} because they characterize contracts in a LRS

contract scheme and determine payoffs as shown below.

Proposition 1. Let w be a LRS contract scheme satisfying Assumption 4 with equality. There

exist {θi, ki}i∈{1,2} such that contracts satisfy

wi (y) = (1− θi) yi − θiyj − ki, for i ∈ {1, 2} , j ̸= i, (8)

where k1 = −k2 and θi ∈ [0, 1− θj]. Moreover, principal i’s guaranteed payoff satisfies

Vi (w) = θi max
(F,c)∈Ai

0

{
EF [y1 + y2]−

c

1− θ1 − θ2

}
− ki. (9)

The liability constraint imposed in Assumption 4 implies that each principal is

constrained by the other principal’s actions. In this way, the strategy space of each

principal in terms of their choice over their share of output (θi) depends on others’

strategies (θj). This makes our framework into a quasi-game in the sense of Debreu (1952).

We provide further discussion of this in Appendix B.12

Contracts in a LRS contract scheme balance the principals’ dual objectives of incentivizing

the agent and competing with the other principal by giving the agent a fraction (1− θi) of

the principal’s project output and taking a share θi of the other project. This implies that

the payoffs of all players depend only on total output, with principal i receiving a share

θi of it (i.e., ex-post payoff satisfy yi − wi (y) = θi (y1 + y2) + ki) and the agent receiving

a share (1− θ1 − θ2). By tying all payoffs to total output, the objectives of the principals

12The original choice of the principals in terms of α1 and α2 is not constrained in this way, with each
principal choosing αi ∈ (0, 1]. However, it is convenient to cast the problem as choosing θi ∈ [0, 1− θj ]
because it is θi directly characterizes the equilibrium wages and payoffs.
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are made congruent. This makes explicit the intuition behind the solution to the common

agency game in Bernheim and Whinston (1986a, p. 929):

“[W]e underscore the need to make principals’ objectives congruent in

equilibrium: since all principals can effect the same changes in the aggregate

incentive scheme, none must find any such change worthwhile. One can think of

this congruence as being accomplished through implicit side payments among

principals.”

Under LRS contracts, there are no distributional concerns coming from the agent’s

actions. Even though the agent can, in principle, favor one project’s output, the LRS

contract scheme makes this irrelevant because payoffs depend only on total output.

Moreover, the agent’s actions depend only on the shares θ1 and θ2 and not on k1 and k2. In

this sense, k1 and k2 act as transfers between the principals channeled through the agent.13

We proceed by further characterizing contracts and payoffs in an equilibrium in LRS

contracts. Following Proposition 1, we focus on the role of the shares θ1 and θ2 that define

LRS contract schemes. The principals’ actions depend on the set of the agent’s actions that

they know, A1
0 and A2

0. As mentioned above, equation (9) ties the principals’ payoffs to a

distorted version of total surplus (note that the cost of the action is inflated). The actions

in Ai
0 dictate how large principal i believes this surplus can be, and therefore how much

they want to incentivize the agent by setting the value of θi. In this way, differences in Ai
0

result in differences in the contracts offered by different principals. Principals that believe

the agent to be able to generate a higher surplus will set a higher θi. Proposition 2 presents

the results.

13The values of θ1 and θ2 can be computed separately from those of k1 and k2 because of the effect of ki on
the payoff of principal i is independent of θi (see 9). However, the values of k1 and k2 are not pinned down
(Bernheim and Whinston, 1986a). The values can be pinned down by imposing a participation constraint
for the agent and an outside payoff for the principals if the agent does not participate. If each principal can
induce the agent not to participate, the value of transfers is set to ensures that each principal receives at
least their outside payoff.
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Proposition 2. A pure strategy Nash equilibrium in LRS contracts satisfying Assumption 4

with equality is characterized by a pair of shares (θ1, θ2) and transfers (k1, k2), such that, for

i ∈ {1, 2}, the share θi satisfies

(1− θ1 − θ2)
2 =

(1− θj) ci
EFi

[y1 + y2]
(10)

for an action

(Fi, ci) ∈ argmax
(F,c)∈Ai

0

{(√
(1− θj)EF [y1 + y2]−

√
c

)2
}
, (11)

and transfers satisfy k1 = −k2.

The equilibrium contracts satisfy (8) and the principals’ guaranteed payoffs are

Vi (w) =

(√
(1− θj)EFi

[y1 + y2]−
√
ci

)2

, i ∈ {1, 2} , j ̸= i. (12)

Finally, Propositions 1 and 2 make it possible to prove that an equilibrium in LRS

contracts always exists by characterizing contracts and payoffs in terms of the shares of total

output appropriated by the principals. That is, finding a pair of shares (θ1, θ2) such that θi

maximizes principal i’s guaranteed payoff, Vi, given θj, for i ∈ {1, 2} and j ̸= i.

Theorem 2. A pure strategy Nash Equilibrium in LRS contracts with θ1, θ2 > 0 exists.

To prove Theorem 2, we use the characterization of the principals’ guaranteed payoffs in

(9) to construct an ordinal potential for our common agency game (Monderer and Shapley,

1996; Dubey, Haimanko and Zapechelnyuk, 2006). This function induces the same order

over θi as Vi does for each principal and thus, any pair (θ1, θ2) that maximizes the potential

characterizes a Nash equilibrium of the game for any pair of transfers (k1, k2) satisfying

k1 = −k2. We then establish the existence of equilibria by proving that the potential

function achieves an maximum for some θ1, θ2 > 0.
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4 Collusive contracts

We now describe the outcome of the game when principals collude. Collusion serves as a

natural reference point for contrasting the efficiency properties of common agency games

where principals compete with one another. When colluding, principals seek to maximize

their joint guaranteed payoff, for instance when there is a single investor (or group of

investors) financing a multi-project endeavor. In this case, principals offer a single contract

that depends on realized output and satisfies limited liability, w : Y → R+. Given an action

set A and a contract w, the agent’s optimal actions are

A⋆ (w|A) = argmax
(F,c)∈A

EF [w (y)]− c. (13)

The joint guaranteed payoff for the principals across all action sets A ⊇ A0 is:

VP (w) = inf
A⊇A0

VP (w|A) , (14)

where the guaranteed payoff given an action set A is:

VP (w|A) = min
(F,c)∈A⋆(w|A)

EF [y1 + y2 − w (y1, y2)] . (15)

The optimal contract under collusion is linear in total output (y1 + y2) and ties the

principals payoff to the agent’s as in Theorem 1 and Proposition 1. By making the contract

depend on total output the principals leave to the agent the decision of which project (y1 or

y2) to favor. The decision depends on the agent’s true action set, which is unknown to the

principals when contracting. Even if the principals want to prioritize a project, say because

the one of them is more profitable under the known action set A0, the same incentives do

not generalize across all possible action sets of the agent, and thus do not provide the best

guaranteed payoff for the principals. We summarize these results in Theorem 3 and present

the proof in Appendix A.2.
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Theorem 3. The optimal contract under collusion is

wc (y) = (1− θc) (y1 + y2) , (16)

where the share θc satisfies 1 − θc =
√

c⋆/EF⋆ [y1+y2] for an action

(F ⋆, c⋆) ∈ argmax
(F,c)∈A0

{(√
EF [y1 + y2]−

√
c
)2}

. Moreover, for any contract of the form

w (y) = (1− θ) (y1 + y2) that guarantees a positive payoff, VP can be expressed as:

VP (w|A0) =
θ

1− θ
max

(F,c)∈A0

{(1− θ)EF [y1 + y2]− c} . (17)

The principals’ problem under collusion is a generalization of the problem in Carroll

(2015) to a multi-project principal-agent problem where the agent controls two projects or

tasks (y1, y2). This type of problem has received extensive attention in the literature. A key

question is how the incentives should depend on the different tasks controlled by the agent.

Holmstrom and Milgrom (1987) find that the optimal scheme is not generally linear in total

output, instead it rewards the agent differently for different tasks.14 They specifically note

(Holmstrom and Milgrom, 1987, p.306):

“The optimal scheme for the multidimensional Brownian model is a linear

function of the end-of-period levels of the different dimensions of the process.

...If... the compensation paid must be a function of profits alone ..., or if the

manager has sufficient discretion in how to account for revenues and expenses

then the optimal compensation scheme will be a linear function of profits. This

is a central result, because it explains the use of schemes which are linear in

profits even when the agent controls a complex multi-dimensional process.”

[Emphasis added]

In our model, robustness leads to linearity in total output (profits) regardless of the

14Specifically, they consider an agent who controls the drift of a multi-dimensional Brownian motion, the
principal chooses how to reward the agent given the terminal value of the Brownian motion.
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complexity of the multi-dimensional process that the agent controls. The alignment of

incentives between the principal and the agent requires linearity in output.

5 Efficiency

In this section we examine the efficiency properties of the equilibrium and collusive contracts,

as captured by total (expected or guaranteed) payoffs. We show that competition between

principals leads to a less efficient outcome than collusion.15 In equilibrium, principals’ receive

a share of total output. This gives rise to a free-rider problem because principals do not

internalize the effect of an increase in their share of total output on the other principals’

payoffs. Consequently, the share of output accruing to the agent is lower than under collusion.

We show that this implies a less efficient outcome.

We consider two notions of efficiency:

Definition 3. (Total expected surplus, TES) Given a contract scheme w and an action set

A, total expected surplus measures the sum of the expected payoffs of all players. This is,

TES (w|A) =

{
EF [y1 + y2]− c | (F, c) ∈ argmax

(F,c)∈A
{w1 (y) + w2 (y)− c}

}
, (18)

and under collusion, where principals offer a joint contract wc,

TES (wc|A) =

{
EF [y1 + y2]− c | (F, c) ∈ argmax

(F,c)∈A
{wc (y)− c}

}
. (19)

Total expected surplus is a standard notion of efficiency in the literature. Given an action

setA, we compute TES for any action the agent would take from that set. However, principal

i only knows a minimal action set Ai
0, which leads us to consider total guaranteed surplus

15This efficiency result parallels finding in the literature, see for instance Bernheim and Whinston (1986a),
Holmstrom and Milgrom (1988), and Martimort and Stole (2012), as well as the adverse selection models of
Martimort and Stole (2015, 2012), Martimort and Moreira (2010) and Bond and Gresik (1996). In common
agency games of complete information, the issue of efficiency was tackled by considering truthful equilibria
(Bernheim and Whinston, 1986b), which are always efficient.
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as a second notion of efficiency.16 In what follows, we assume that Ai
0 = A0 to facilitate

comparison across principals.

Definition 4. (Total guaranteed surplus, TGS) Given a contract scheme w and the known

action set A0, total guaranteed surplus measures is the sum of guaranteed payoffs, this is,

TGS (w) = V1 (w|A0) + V2 (w|A0) + VA (w|A0) , (20)

where Vi is principal i’s guaranteed payoff as in (3) and VA is the agent’s payoff as in (2),

and under collusion, where principals offer a joint contract wc,

TGS (wc) = VP (wc|A0) + VA (wc|A0) , (21)

where VP is the principals’ joint guaranteed payoff as in (14).

We can further characterize TGS when principals offer LRS contracts or the optimal

linear contract under collusion, then TGS depends exclusively on the share of output going

to the agent, θA = 1 − θ1 − θ2 if principals compete and θA = 1 − θc if they collude. Using

(9) and (17) to replace Vi and Vp on (20) and (21), we get

TGS (w) =
1

θA
max

(F,c)∈A0

{θAEF [y1 + y2]− c} . (22)

Moreover, the principal’s share of total output (θ1, θ2, or θc) is equal to their share of total

guaranteed surplus (before transfers)

Vi (w) = θiTGS (w)− ki, i ∈ {1, 2} , or VP (w) = θcTGS (w) . (23)

Theorem 4 states the main result of this section, namely that collusion leads to a more

efficient outcome than competition between principals.

16The payoff function of principal, Vi, is quasi-linear in lump sum transfers. This allows us to consider the
sum of payoffs as a measure of efficiency.
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Theorem 4. Let w be a Nash equilibrium in LRS contracts and wc be an optimal collusion

contract. Total expected and guaranteed surplus are weakly higher under the collusive

contract. That is, for any known action set A0 and action set A ⊇ A0, and surpluses

sNTES ∈ TES (w|A) and sCTES ∈ TES (wc|A), it holds that sNTES ≤ sCTES and

TGS (w) ≤ TGS (wc).

The key for comparing the equilibrium and collusive outcomes is that the agent gets paid

a share of total output under both scenarios. That is, the agent’s problem under an LRS

contract scheme or a linear collusive contract reduces to:

max
(F,c)∈A

{θAEF [y1 + y2]− c} , (24)

for some share θA ∈ [0, 1]. The agent’s actions are, in general, not efficient (in the sense that

they do not maximize TES). However, we can establish how total (expected and guaranteed)

surplus varies with the contracts. Contracts that offer the agent a larger share of realized

output are more efficient. We formalize this argument in Proposition 3.

Proposition 3. Let w and w
′
be contract schemes such that the agent receives a share of total

output given by θA and θ
′
A respectively. Total expected and guaranteed surplus are weakly

increasing in the share of total output going to the agent. That is, for any known action set

A0 and action set A ⊇ A0, let sTES ∈ TES (w|A), and s
′
TES ∈ TES

(
w

′ |A
)
. If θA < θ

′
A ≤ 1

then sTES ≤ s
′
TES and TGS (w) ≤ TGS

(
w

′)
.

Proposition 3 allows us to compare the efficiency of the pure strategy Nash equilibria and

collusion contracts by comparing the agent’s share of output. Under collusion, the agent’s

share of output (θA = 1− θc) satisfies (16) as in Theorem 3. This condition also arises from

the problem of a principal (i) under competition facing θj = 0; see equation (9) in Proposition

1. Then, it is sufficient to show that the share that principal i wants to induce for the agent is

decreasing in the share of principal j to establish that the collusive outcome is more efficient.
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Proposition 4 shows that the agent’s share is higher under collusion than in the Nash

equilibrium in LRS contracts. Intuitively, when competing, each principal i only internalizes

1 − θj of the increases in output because of the other principals’ actions.17 Therefore, the

principals do not want to give as much incentives to the agent as they would under collusion,

knowing that their gains are dampened by the share of total output being appropriated by

their competitors. This is the same force at the heart of the “free-rider” problem described

in Bernheim and Whinston (1986a), Holmstrom and Milgrom (1988), Maier and Ottaviani

(2009) and Martimort and Stole (2012).

Proposition 4. Let w and w
′
be LRS contract schemes such that principal j’s shares of total

output satisfy θj < θ
′
j and principal i’s contracts are best responses to principal j’s contracts.

Then, the agent’s shares of total output satisfy 1− θ1 − θ2 ≥ 1− θ
′
1 − θ

′
2.

Proposition 3 and 4 imply that the collusive contract provides a higher surplus than the

Nash equilibrium LRS contracts, as stated in Theorem 4. When principals compete they

induce a lower share of output for the agent than when they collude (Proposition 4), which

reduces both total expected and guaranteed surplus (Proposition 3). We provide all proofs

in Appendix C. In Section 6, we revisit this result highlighting the role that limited liability

plays in generating a lower surplus when principals compete.

6 Limited liability and efficiency

We now show that the ability of principals to implicitly make side-payments through the

agent is crucial for the efficiency result in Theorem 4. These side-payments are possible

under the limited liability restriction imposed in Assumption 4. To highlight the role that

limited liability plays, we consider two other scenarios. First, a more restrictive form of

17The principal’s problem in (9) can be framed as that of a single principal facing a multitasking agent.
The choice is over a share θ̃i ∈ [0, 1] out of the “reduced” output space Ỹ ≡ (1− θj)Y . The problem is:

maxθi∈[0,1−θj ] θi

(
EF [y1 + y2]− c

1−θj−θi

)
−ki = maxθ̃i∈[0,1] θ̃i

(
EF [ỹ1 + ỹ2]− c

1−θ̃i

)
−ki, where θ̃i ≡ θi/1−θj

and ỹh ≡ (1− θj) yh for h ∈ {1, 2}.
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limited liability imposed on individual projects, so that the payments of each principal to the

agent have to be non-negative. This prevents principals from making side-payments through

the agent and results in a more efficient outcome than collusion as principals incentivize the

agent by offering a higher share of total output. Then, a more relaxed scenario without

limited liability constraints that results in the efficient outcome being implemented after the

principals offload all risk onto the agent.

6.1 Individual limited liability

We start by replacing Assumption 4 with a stronger form of limited liability that applies to

each principal’s contract. This is the case if the projects are located in different jurisdictions

(as is the case for multinationals), or if the projects are registered as separate entities (as is

the case for not fully integrated businesses).

Assumption 5. (Individual Limited Liability) wi (y) ≥ 0 for all y ∈ Y and i ∈ {1, 2}.

Assumption 5 constrains the ability of principals to transfer resources through the agent.

In this way, individual limited liability limits the ability of a principal to free-ride on the

incentives provided by their competitors. LRS contracts are still robust for the principals

following the same arguments as in Section 2 (see Theorem 7 in Appendix D.1). However,

the form of LRS contract schemes changes under Assumption 5 by pinning down the value

of the transfer provided to the agent. In particular, we show in Proposition 5 of Appendix

D.2 that LRS contract schemes satisfy

wi (y) = (1− θi) yi + θi
(
yj − yj

)
(25)

for θ1, θ2 ∈ [0, 1], where θi ∈ [0, 1− θj] as in Proposition 1 and yj = max {Yj} as defined in

Section 1.18

18The form of the LRS contract in (25) requires an additional assumption on the output space, namely
that (0, ȳ2) , (ȳ1, 0) ∈ Y . This pins down the lowest contract for each principal and the value of the transfers
to the agent. We formalize this in Appendix D.2.
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Principals now incentivize the agent through a combination of high and low powered

incentives, in the form of a share of total output (1− θi) and a constant fee (θiȳj) respectively.

In this way, each principal appropriates a share θi of total output for themselves after paying

a fee that can be interpreted as the price payed for this share (ȳj is the price per unit share

of total output faced by principal i). This makes it costly for the principal to free-ride when

increasing their share θi.
19

The equilibrium contracts under Assumption 5 imply higher (expected and guaranteed)

surplus than collusion, as we show in Appendix D.3. The result follows, as before, from

comparing the share of total output accruing to the agent in each case. The fee that principals

now pay when increasing their share of output is enough to reverse the result of Theorem 4.

The main reason for these results lies in the form of the payments offered by the

principals in equilibrium. Under Assumption 4, the principals choose their share of output

independently of the constant k. As we discussed above, their choices induce an externality

on the payoffs of other principals lowering the agent’s share of output. This externality is

absent when principals collude, leading to higher surplus. Under Assumption 5 the free

riding problem is addressed in a different manner. In order to satisfy individual limited

liability, the principals have to increase the fixed payment to the agent (k) as they increase

their share of output. This force is absent when principals collude because they do not

have to pay any fees to the agent in order to satisfy limited liability. This leads the

principals to choose a lower share of output in equilibrium and a higher share for the agent

relative to the outcome under collusion. We make this argument precise in Theorem 9.

19The dependency of the contract in the maximum output (size) of the competing principal requires
stronger conditions on what a principal needs to guarantee herself a positive payoff. In particular, Assumption
3 (non-triviality) is not enough. A necessary condition for principal i to guarantee herself a positive payoff
is that there exists an action (F, c) ∈ A0 such that EF [y1 + y2] − c > yj . We provide conditions for the
existence of a pure strategies Nash Equilibrium in Theorem 8 of Appendix D.2.
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6.2 No limited liability

Finally, we consider what happens when we dispense with limited liability, instead imposing

a participation constraint on the agent, guaranteeing the agent a given expected payoff

(normalized here to 0). Without limited liability the outcome of the game is efficient. The

solution is the same as in Bernheim and Whinston (1986a), where each principal “sells their

firm” to the agent, leaving the agent as sole claimant on total output. To see this, let s0

denote the total expected surplus under the known action set A0,

s0 = max
(F,c)∈A0

{EF [y1 + y2]− c} , (26)

and consider a contract by principal j that gives the agent all of project j’s output for a

price sj ≤ s0, wj (y) = yj −sj. Principal i cannot be guaranteed a payoff higher than s0−sj,

otherwise the agent’s participation constraint would be violated. This payoff is achieved if

principal i offers wi (y) = yi − (s0 − sj). Thus, giving the agent all of project i’ output is a

best response of principal i and the principals divide among themselves all the surplus under

the known action set.20 The outcome without limited liability is therefore efficient, both in

terms of total guaranteed and total expected surplus.

7 Discussion and concluding remarks

Taking a robust contracting approach provides a crisp characterization of equilibrium

strategies and payoffs in the complicated problem of common agency. The central issue in

the literature of how competition among principals affects the efficient provision of

incentives can be easily pinned down to one component, namely the share of total output

that the agent receives in equilibrium. We show that when principals can make side

payments (through the agent) to each other a free-riding problem appears. Free riding

20The solution leaves the division of surplus indeterminate as in Bernheim and Whinston (1986b). The
same equilibria arise in private common agency, when contracts can only depend on the principal’s output.
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leads to lower incentives given to the agent, compared to the collusive outcome. When such

side payments are not possible, because of individual limited liability, then principals are

forced to internalize their externality, which leads to the competitive outcome being more

efficient than the collusive outcome.

Our results are themselves robust to several extensions of the setup described in Section

1. First, we consider a game with more than two principals. We show in Appendix E that

this does not substantively alter our results. The only difference arises under individual

limited liability, where we need to impose a more demanding constraint on the projects’

output (ȳi) to guarantee a positive payoff to the agent and the principals (recall that under

Assumption 5 contracts depend on the maximum output of other principals). It follows that

principals may have negative ex-post payoffs in equilibrium contracts. Alternatively, we can

impose a form of “double” limited liability, i.e., impose a cap to principal’s payments to the

agent, guaranteeing principals a non-negative payoff. We show that a modified version of

LRS contracts is still robust under these conditions in Appendix F.

Second, we allow principals to have partial knowledge of the agent’s possible action sets,

rather than considering any set A ⊇ A0. In particular, we show in Appendix G that LRS

contracts are still robust when principals know of a lower bound on cost that is a function

of the expected project outputs. This makes it clear that our results do not depend on

unreasonable flexibility on the potential actions the agent can take. This, however, does

come at a cost in terms of the tractability of the results.

Third, we consider a private common agency game where principals are restricted to

contract only on their project’s output. This reflects a variety of situations in which

principals cannot observe or contract on the agent’s other projects, for instance when an

agent represents several celebrities, or a realtor represents several home sellers. In these

cases, it is common for celebrities to give their agents a share of their earnings, regardless

of the earnings of the agent’s other clients, or for home sellers to pay the realtors a share of

the value of the house, and do not explicitly reward them for not working for other clients.
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We show in Appendix H that the equilibrium contract that arises in this setting provides a

rationale for this behavior. The principal’s best strategy is to give the agent a share of

their project’s output. The value of the share depends on the project’s of other principals

and the agent’s known actions.

Finally we want to give a brief overview of how the setup we develop can be used to study

different problems where a group of parties is interested in the decision of a single agent. We

go into these problems in detail in Appendices I and J.

Taxation of multinationals. We reinterpret the common agency game we have studied as

the problem of two governments (the principals) designing a tax system on the profits (y1, y2)

that a multinational (the agent) generates in each country. This is more easily understood

after a simple change of notation, letting ti (y) ≡ yi −wi (y) be the taxes payed in country i

and the total (ex-post) payoff of the agent be
∑

i yi − ti (y) =
∑

i wi (y). In this formulation

the agent “owns” all of the profits and pays a portion to the principals as taxes.

Governments need for robustness can reflect their inability to adjust the tax system in

response to changes in corporate practices, or their lack of knowledge of the firm’s technology.

Tax systems cannot be tailored to specific situations and it is thus desirable for them to

perform across the widest variety of possible situations.

The limited liability restrictions we considered above (Assumptions 4 and 5) map to

the degree of enforceability that governments have. That is, whether or not they can tax

the multinational beyond their borders. Individual limited liability implies that ti (y) ≤ yi,

restricting taxes to be at most the firm’s domestic profits.

We show that it is optimal to implement a worldwide tax, where the firm’s global profits

are taxed at a constant rate θi, allowing for the full deduction of taxes payed to country j,

and a potential tax incentive (in the form of a lump sum subsidy ki):
21

ti (y) = θi (y1 + y2 − tj (y)) + ki. (27)

21The enforceability regime, i.e, limited liability, determines the value of ki.
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This is the tax system proposed in the Bipartisan Tax Fairness and Simplification Act of

2011 by Senators Wyden and Coats (Senate Bill 727, 2011). Interestingly, it also coincides

with the taxes found by Feldstein and Hartman (1979).22

Procurement Auction. We also consider a setup where two competing firms bid for a

government contract (e.g., for the provision of services, construction, or the privatization

of a government asset). It is known that the government faces a cost c > 0 awarding the

contract, representing the costs of evaluating and screening bids. However, firms have reasons

to doubt the announcement. For instance, the government can (secretly) favor one of the

firms. It is also possible that the government can lower the cost by randomizing between

the firms, this might be the case if bids are hard to assess, or if technicalities can arise that

create the chance of a lower bid to be awarded the contract.23

In a perfect information setting, this setup is that of a first price auction. The bids in

the auction are undefined because the firm with the highest highest valuation would try to

marginally outbid the other firm. In contrast, we show that there two equilibria of the game

in LRS contracts. In both cases the government awards the contract to the firm with the

highest valuation and the bids are pinned down. The difference between the equilibria lies in

the bid of the lowest valuation firm (ℓ), which is indifferent between bidding their valuation

(wℓ (y) = ȳℓ) and not bidding at all (wℓ (y) = 0). In each case, the bid of the winning firm is

a share θh of their valuation ȳh that we derive in closed form in Appendix J.3.

Provision of public goods. A similar setup applies to the provision of public goods. In this

case, output is perfectly correlated across principals, who vary in their (private) valuation of

the public good produced by the agent. This setup is typically subject to free rider problems

22Feldstein and Hartman (1979) assume complete information and restrict attention to linear taxes. Their
“full taxation after deduction” result rests on concerns on the optimal allocation of capital between countries.

23Randomness in who is assigned the contract can also arise from last minute changes in the rules (not
uncommon in developing countries), or from challenges made in courts to the rules or the decision of the
government. It is worth pointing out that randomization is not itself necessary for our results. The firms
could simply be worried that the government can allocate the good with certainty to the other contractor.
This is in fact the worst case scenario they face.
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that prevent the public from being provided even when the valuation of the principals is

enough to cover the provision costs. In contrast, we show that when the principals act

robustly (not knowing what the real cost of providing the cost would be) the efficient outcome

is implemented and the good is always provided (when the known cost warrants it).

Nevertheless, the equilibrium has each principal “partially” free riding on the other by

lowering compensation by a fraction of the other principal’s payoff, while guaranteeing that

the agent optimally chooses to provide the good. An interesting feature of this equilibrium

is that all principals get the same share of expected output and the same guaranteed payoff

regardless of their valuation.
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A Principals’ Best Responses

A.1 Principals’ best response under Assumption 4

We now turn to establishing the optimality of LRS contracts for the principal. We ignore the
index i on the known action set as there is no confusion in what follows on which principal is
making a choice. We start by defining the set of eligible contracts as those that outperform
the “lowest” contract the principal can offer. That is, the contract that undoes all payments
and offer the agent zero payoffs with certainty, i.e., wi (y) = −wj (y). Under assumption
2, the agent’s unique optimal action, under any action set, given this contract is to choose
inaction. This provides us with a lower bound on the payoff of the principal, which we use
to define eligible contracts.

Definition 5. (Eligible Contracts) A contract wi is eligible for principal i if it satisfies:

Vi (w) > wj (0, 0) . (A.1)

Next, we consider the problem of characterizing the agent’s actions given a contract
scheme. Despite the principal’s lack of knowledge over the agent’s actual action set (A), it
is possible to impose restrictions on the actions the agent will consider given the incentives
provided by a contract scheme w. Intuitively, the agent will only induce actions that generate
a payoff higher than the guaranteed payoff under the principal’s known action set (A0). We
formalize this idea in the following lemma.

Lemma 1. Let w be a contract scheme, A ⊇ A0 be an action set, and (F, c) ∈ A⋆ (w|A) an
optimal action for the agent. Then, it holds that

F ∈ F ≡ {F ∈ ∆(Y ) |EF [w1 (y) + w2 (y)] ≥ VA (w|A0)} . (A.2)

Proof. Consider (F, c) ∈ A⋆ (w|A), then it holds that:

EF [w1 (y) + w2 (y)] ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0) (A.3)

Then F ∈ F .

Lemma 1 makes it possible to characterize the principal’s payoff for a given contract
scheme using the set F . Crucially, F only depends on the contract scheme and the known
set of actions A0. In this way we replace the complexity of the definition of Vi (w) in (3)
with an object that depends only on known elements. Lemma 2 formalizes this idea.

Lemma 2. Let w be an eligible contract scheme for principal i. Then

Vi (w) = min
F∈F

EF [yi − wi (y)] . (A.4)

Moreover, if F ∈ argmin
F∈F

EF [yi − wi (y)] then EF [w1 (y) + w2 (y)] = VA (w|A0).
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Proof. Let w be an eligible contract scheme and A ⊇ A0 be an action set.
From the definition of Vi (w|A) in (4) and Lemma 1 we can write:

Vi (w|A) ≡ min
(F,c)∈A⋆(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)] , (A.5)

where the right hand side establishes a lower bound for Vi (w|A) that is independent of A. Then,
from the definition of Vi (w) in (3) we get:

Vi (w) ≡ inf
A⊇A0

Vi (w|A) ≥ min
F∈F

EF [yi − wi (y)] . (A.6)

To prove equality suppose that Vi (w) > min
F∈F

EF [yi − wi (y)], and let

F
′ ∈ argmin

F∈F
EF [yi − wi (y)]. From Lemma 1, EF ′ [w1 (y) + w2 (y)] ≥ VA (w|A0). There are two

options:

1. F
′
does not place full support on the values of y that maximize w1 + w2.

Let ŷ ∈ argmax {w1 (y) + w2 (y)}, and F̂ = δŷ be a distribution that gives probability 1 to ŷ.

Let ϵ ∈ [0, 1] and Fϵ ≡ (1− ϵ)F
′
+ ϵF̂ . For all ϵ there exists a ξϵ > 0 such that:

EFϵ [w1 (y) + w2 (y)]− ξϵ > VA (w|A0).

Now consider the action set Aϵ ≡ A0 ∪ {(Fϵ, ξϵ)}. The unique optimal action of the agent in
Aξ is (Fϵ, ξϵ). Then:

Vi (w) ≤ Vi (w|Aϵ) = EFϵ [yi − wi (y)] = (1− ϵ)EF ′ [yi − wi(y)] + ϵEF̂ [yi − wi(y)] . (A.7)

This condition holds for all ϵ > 0. Letting ϵ → 0 we arrive at a contradiction:

Vi (w) ≤ EF ′ [yi − wi(y)] = min
F∈F

EF [yi − wi(y)] < Vi (w) . (A.8)

2. F
′
places full support on the values of y that maximize w1 + w2.

There are still two possible cases:

(a) EF ′ [w1 + w2] > VA (w|A0). Then there exists ξ > 0 and an action set A′ ≡ A0 ∪{(
F

′
, ξ
)}

such that
(
F

′
, ξ
)
is the unique optimal action for the agent in A′

and:

Vi (w) ≤ Vi

(
w|A′

)
= EF ′ [yi − wi(y)] = min

F∈F
EF [yi − wi(y)] < Vi (w) (A.9)

(b) EF ′ [w1 + w2] = VA (w|A0). This implies VA (w|A0) = max
y∈Y

{w1(y) + w2(y)} which can

only be satisfied if F
′
is available in A0 at zero cost. By Assumption 2 this implies

that F ′ = δ(0,0) and that w1 (0, 0) + w2 (0, 0) = max
y∈Y

{w1 (y) + w2 (y)}. In this case the

unique optimal action for the agent under any action set is (δ0, 0), so the value of the
principal is Vi (w) = −wi (0, 0) ≤ wj (0, 0), where the inequality follows from limited
liability (Assumption 4). This contradicts eligibility (Definition 5).

This establishes the first claim in the lemma.
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We now establish the second claim. Let F
′ ∈ argmin

F∈F
EF [yi − wi (y)] and suppose for a

contradiction that EF ′ [w1 (y) + w2 (y)] > VA (w|A0). Then we can define Fϵ = (1− ϵ)F
′
+ ϵδ0 for

some ϵ ∈ [0, 1]. For a low enough ϵ it holds that: EFϵ [w1 (y) + w2 (y)] > VA (w|A0). Then there
exists ξϵ > 0 such that A⋆ (w|Aϵ) = {(Fϵ, ξϵ)}, where Aϵ = A0 ∪ {(Fϵ, ξϵ)}. The payoff to the
principal under Aϵ is then:

Vi (w|Aϵ) = (1− ϵ)EF ′ [yi − wi (y)] + ϵ (−wi (0, 0))

= (1− ϵ)Vi (w) + ϵ (wj (0, 0)− (wi (0, 0) + wj (0, 0)))

≤ Vi (w)− ϵ (Vi (w)− wj (0, 0))

< Vi (w) .

This gives a contradiction so that EF ′ [w1 (y) + w2 (y)] = VA (w|A0).

The following lemma takes the results of Lemma 2 one step further and is at the core
of the linearity argument. It shows that there exists an affine link between the principal’s
and the agent’s guaranteed payoffs, Vi (w) and VA (w|A0) respectively. This link allows the
principal to increase her own guaranteed payoff by controlling the payoff given to the agent.

Lemma 3. Let w be an eligible contract scheme. There exist k ∈ R and α ∈ (0, 1] such that:

wi (y) ≤ αyi − (1− α)wj (y)− αk, for all y ∈ Y (A.10)

Vi (w) = k +
1− α

α
VA (w|A0) (A.11)

Proof. The result follows from applying the separating hyper-plane theorem.
We start by defining the following two convex sets:

1. Let S ⊆ R2 be the convex hull of all pairs (w1 (y) + w2 (y) , yi − wi (y)) for y ∈ Y .

2. Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w).

We proceed by establishing that S ∩ T = ∅. Let (u, v) ∈ T , and let F ∈ argmin
F∈F

EF [yi − wi (y)],

where F is defined as in Lemma 1. Then, by definition of T and Lemma 2:

u > VA (w|A0) = EF [w1 (y) + w2 (y)] , and v < Vi (w) = EF [yi − wi (y)] . (A.12)

Now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆(Y ) such that

u = EF ′ [w1 (y) + w2 (y)] and v = EF ′ [yi − wi (y)] . (A.13)

F
′
guarantees a payoff to the agent larger than VA (w|A0) so F

′ ∈ F but

EF [yi − wi (y)] > EF ′ [yi − wi (y)] , (A.14)

which contradicts minimality of F . Then S ∩ T = ∅
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We can now apply the separating hyperplane theorem. There exist constants (k, λ, µ) such that
(λ, µ) ̸= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (A.15)

k + λu− µv ≥ 0 (u, v) ∈ T (A.16)

Now consider F ⋆ ∈ argmin
F∈F

EF [yi − wi (y)]. The pair (EF ⋆ [w1 (y) + w2 (y)] , EF ⋆ [yi − wi (y)])

lies in the closures of both S and T . Then:

k + λEF ⋆ [w1 (y) + w2 (y)]− µEF ⋆ [yi − wi (y)] = 0. (A.17)

Using equation (A.17), we can derive equation (A.10).
It is left to show that λ, µ > 0. Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily

low. So for (A.16) to hold it must be that λ ≥ 0 and µ ≥ 0, with at least one strict inequality.
There are then two cases to rule out:

1. Suppose µ = 0, then it must be that λ > 0. From (A.15) and (A.16)

u ≤ −k

λ
(u, v) ∈ S and u ≥ −k

λ
(u, v) ∈ T (A.18)

So, max
y∈Y

[w1 (y) + w2 (y)] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0). Which implies:

max
y∈Y

[w1 (y) + w2 (y)] = VA (w|A0) . (A.19)

Equation (A.19) only holds if the agent takes an action with zero cost. Assumption 2 implies
that F = δ(0,0) and that w1 (0, 0)+w2 (0, 0) = max

y∈Y
{w1 (y) + w2 (y)}. In this case the unique

optimal action for the agent under any action set is (δ0, 0), so the value of the principal is
Vi (w) = −wi (0, 0) ≤ wj (0, 0), where the inequality follows from limited liability (Assumption
4). Vi (w) ≤ wj (0, 0) contradicts eligibility, so, it follows that µ > 0.

2. Suppose λ = 0 and µ > 0. From (A.15) and (A.16)

v ≥ k

µ
(u, v) ∈ S and v ≤ k

µ
(u, v) ∈ T (A.20)

So min
y∈Y

[yi − wi (y)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w), then:

Vi (w) ≤ min
y∈Y

[yi − wi (y)] ≤ min
y∈Y

[yi + wj (y)] ≤ wj (0, 0) (A.21)

which violates eligibility (the second inequality follows from limited liability, Assumption 4).
So λ > 0.

To finalize the proof we normalize µ = 1, giving from (A.15):

k + λ (wi (y) + wj (y))− (yi − wi (y)) ≤ 0, y ∈ Y. (A.22)
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And from (A.17):

Vi (w) = k + λVA (w|A0) . (A.23)

Equations (A.10) and (A.11) follow from rearranging and denoting α ≡ 1
1+λ ∈ (0, 1].

The affine link between the agent’s payoff and the principal’s payoff is a crucial element
in providing incentives for the agent. Given the partial knowledge over the agent’s set
of actions the principals’ optimal strategy is to tie their payoff to that of the agent, thus
aligning the agent’s objectives with their own. This is the same mechanism at the heart of
the optimal contracts in Hurwicz and Shapiro (1978) and Carroll (2015), and will be crucial
in establishing the optimality of affine (LRS) contracts in our setting.

Equation (A.10) can be exploited by the principal to construct an alternative contract
that dominates the original one, in the sense that it weakly increases principal i’s guaranteed
payoff. This contract is a LRS contract, as defined in (7). The following two Lemmas
formalizes the process.

Lemma 4. Let w be an eligible contract scheme. There exist k ∈ R and α ∈ (0, 1] such that
the contract

w
′

i (y) = αyi − (1− α)wj (y)− αk (A.24)

satisfies limited liability with equality and Vi

(
w

′
i, wj

)
≥ Vi (w).

Proof. From Lemma 3, there are k ∈ R and α ∈ (0, 1] so that wi satisfies equations (A.10) and
(A.11). Use the same α and k to define an alternative contract w

′′
i as

w
′′
i (y) = αyi − (1− α)wj (y)− αk. (A.25)

Rearranging gives: (
yi − w

′′
i (y)

)
= k +

1− α

α

(
w

′′
i (y) + wj (y)

)
. (A.26)

Then, take any A ⊇ A0 and (F, c) ∈ A⋆
(
w

′′
i , wj |A

)
. Taking expectations gives:

EF

[
yi − w

′′
i (y)

]
≥ k +

1− α

α
VA

((
w

′′
i , wj

)
|A0

)
≥ k +

1− α

α
VA (w|A0) = Vi (w) , (A.27)

where the first inequality follows from the definition of the agent’s guaranteed payoff,

EF

[
w

′′
i (y) + wj (y)

]
≥ VA

((
w

′′
i , wj

)
|A0

)
, the second inequality from (A.10), w

′′
i (y) ≥ wi (y),

and the last equality from (A.11). This process applies to any optimal action for the agent in any
A ⊇ A0, so the right-hand-side is a lower bound for the payoff principal i under the alternative

contract scheme
(
w

′′
i , wj

)
. This gives the desired result: Vi

(
w

′′
i , wj

)
≥ Vi (w).

It is only left to handle limited liability. The contract scheme
(
w

′′
i , wj

)
satisfies limited liability,

i.e., min
y∈Y

{
w

′′
i (y) + wj (y)

}
≥ 0, because w

′′
i (y) ≥ wi (y) for all y ∈ Y from equation (A.10). The
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alternative contract can be modified by subtracting a constant, making it satisfy limited liability
with equality, weakly increasing the principal’s payoff. We define w

′
i as:

w
′
i (y) = w

′′
i (y)−min

y∈Y

{
w

′′
i (y) + wj (y)

}
(A.28)

This new contract (w′
i) can be written as in (A.24) by appropriately redefining k.

Taking stock, we have shown that an eligible contract that satisfies limited liability is
weakly dominated by a LRS contract satisfying limited liability with equality, i.e., with
ki = miny∈Y {yi + wj (y)}. We have two more results to prove, establishing the form of the
principal’s payoffs under LRS contracts and the existence of an optimal contract in that
class.

Lemma 5. Let w be an eligible contract scheme, such that wi satisfies (7) for some αi ∈ (0, 1]
and ki ∈ R, and satisfies limited liability (Assumption 4) with equality for some output level.
Then:

Vi (w) =
1− αi

αi

VA (w|A0) + ki = max
(F,c)∈A0

(
(1− αi)EF [yi + wj (y)]−

1− αi

αi

c

)
+ αiki.

(A.29)

Proof. Let F ∈ argmin
F∈F

EF [yi − wi (y)]. By Lemma 2, there exist αi ∈ (0, 1] and ki ∈ R:

Vi (w) = EF [yi − wi (y)] =
1− αi

αi
EF [w1 (y) + w2 (y)] + ki =

1− αi

αi
VA (w|A0) + ki (A.30)

The second equality follows by replacing VA (w|A0) and wi from (7).

Remark. When αi = 0 the principal offsets the other principal’s payments to the agent,
i.e., wi (y) = −wj (y). In this case the agent’s unique optimal action under any A ⊇ A0 is
(F, c) = (δ0, 0) because of Assumption 2. Then, Vi (w) = wj (0, 0). The result is consistent
with Lemma 5 if we interpret the term 1−αi

αi
c as 0 when c = 0 and ∞ for c > 0. In this way

we can treat the result of Lemma 5 more generally as applying to αi ∈ [0, 1].

Lemma 6. In the class of LRS contracts that satisfy limited liability (Assumption 4) with
equality there exists an optimal one for principal i.

Proof. From Lemma 5 we can express Vi (w) directly as a function of αi as in (A.29). Recall that
ki = min

y∈Y
{yi + wj (y)} is independent of αi. Moreover, the function (1− αi)EF [yi + wj (y)]− 1−αi

αi
c

is continuous in αi, thus its maximum over A0 is continuous in αi as well. Continuity implies that
the right-hand-side of equation (A.29) is continuous in αi it achieves a maximum in [0, 1]. This αi

gives the optimal guarantee over all LRS contracts that satisfy limited liability with equality.
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We can now state the complete proof of Theorem 1. We can strengthen some of our
results under an additional assumption on the agent’s actions:

Assumption 6. (Full Support) For all (F, c) ∈ A0, if (F, c) ̸= (δ0, 0) then supp (F ) = Y .

Theorem 1. For any contract wj, there exists a LRS contract wi such that wi ∈ BRi (wj)
and min

y∈Y
{w̄i (y) + wj (y)} = 0. That is, there is always a LRS contract that is robust for

principal i.
Moreover, if A0 satisfies Assumption 6, any robust contract is a LRS contract or

max
wi

Vi (wi, wj) = wj (0, 0).

Proof. Consider a contract wj by the competing principal. By Lemma 4 any eligible contract, ŵi,
is weakly dominated by a LRS contract satisfying limited liability with equality. By Lemma 6 there
is a contract that is optimal in the class of LRS contracts satisfying limited liability with equality,
call it w⋆

i . This applies to any eligible contract, so that Vi (w
⋆
i , wj) ≥ Vi (ŵi, wj).

Alternatively, any ineligible contract, w̃i, satisfies Vi (w̃i, wj) ≤ wj (0, 0) = Vi (−wj , wj) ≤
Vi (w

⋆
i , wj), where the first inequality follows from Definition 5, the equality from the remark above,

and the inequality from the fact that wi = −wj is a LRS contract satisfying limited liability with
equality with αi = 0.

It follows that w⋆
i weakly dominates any eligible or ineligible contract, so that w⋆

i ∈ BRi (wj).
Finally, we turn to the second clause of the theorem. Consider a contract wj by the competing

principal. Suppose that there exists an eligible contract, then any contract in the best response
is eligible. Let wi be an optimal contract for principal i. Define a LRS contract w

′
i as in Lemma

4 with respect to the eligible contract scheme w ≡ (wi, wj). The contract scheme w
′ ≡

(
w

′
i, wj

)
satisfies:

EF

[
yi − w

′
i (y)

]
≥ k +

1− α

α
VA

(
w

′ |A0

)
= Vi (w) +

1− α

α

(
VA

(
w

′ |A0

)
− VA (w|A0)

)
≥ Vi (w) ,

(A.31)

where the equality follows from replacing for k using equation (A.11) from Lemma 3, and the second

to last inequality from the fact that VA

(
w

′ |A0

)
≥ VA (w|A0), with strict inequality unless w

′
i is

identical to wi. To see this, recall that w
′
i (y) ≥ wi (y) for all y ∈ Y from Lemma 3 and that A0

satisfies the full support property, Assumption 6.

Equation (A.31) holds for all F . It follows that Vi

(
w

′
i, wj

)
≥ Vi (w), with strict inequality when

wi is not identical to w
′
i. Then wi = w

′
i, LRS contracts, or else optimality would be contradicted.

A.2 Principals’ best response under collusion

The proof of Theorem 3 follows from Theorem 1 in Carroll (2015). We proceed in a similar
way as in the proof of Theorem 1 in Appendix A.1 by establishing a series of Lemmas that
allow us to apply Carroll (2015)’s result. Lemma 1 applies unchanged to the collusion setting
because it depends on the aggregate contract the agent faces (which is w1(y) + w2(y) when
principals compete and w(y) when they collude). Lemmas 2 and 3 also have analogues for
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collusion that we state below. The proofs of these lemmas remains unchanged after taking
into account the change in payoffs.

Lemma 7. Let w be an eligible contract then

VP (w) = min
F∈F

EF [y1 + y2 − w (y)] .

Moreover, if F ∈ argmin
F∈F

EF [y1 + y2 − w (y)] then EF [w (y)] = VA (w|A0).

Lemma 8. Let w be an eligible contract. There exits k ∈ R and θc ∈ (0, 1] such that

w (y) ≤ (1− θc) (y1 + y2)− (θc − 1) k (A.32)

VP (w) = k +
θc

1− θc
VA (w|A0) (A.33)

With Lemmas 7 and 8, we can use the framework developed in Carroll (2015) to obtain:

Theorem 3. The optimal contract under collusion is

wc (y) = (1− θc) (y1 + y2) , (A.34)

where the share θc satisfies 1 − θc =
√

c⋆/EF⋆ [y1+y2] for an action

(F ⋆, c⋆) ∈ argmax
(F,c)∈A0

{(√
EF [y1 + y2]−

√
c
)2}

. Moreover, for any contract of the form

w (y) = (1− θ) (y1 + y2) that guarantees a positive payoff, VP can be expressed as:

VP (w|A0) =
θ

1− θ
max

(F,c)∈A0

{(1− θ)EF [y1 + y2]− c} . (A.35)

Finally, If A0 satisfies assumption 6, then all optimal contracts satisfy (16).

Proof. The results follows from Lemmas 7 and 8 along with Lemmas 2, 4, 5 and 6 in Carroll (2015).
The argument is the same as in Carroll (2015, Thm. 1) replacing his y for y1 + y2.
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B Existence of Nash equilibria

We start by providing a proof of Proposition 1 that characterizes LRS contract schemes and
their payoffs.

Proposition 1. Let w be a LRS contract scheme satisfying Assumption 4 with equality. There
exist {θi, ki}i∈{1,2} such that contracts satisfy

wi (y) = (1− θi) yi − θiyj − ki, for i ∈ {1, 2} , j ̸= i, (B.1)

where k1 = −k2 and θi ∈ [0, 1− θj]. Moreover, principal i’s guaranteed payoff satisfies

Vi (w) = θi max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θ1 − θ2

}
− ki. (B.2)

Proof. Consider a contract scheme (w1, w2) such that, given wj , the contract wi satisfies definition
2 for i ∈ {1, 2} and j ̸= i. Then, there exist shares α1, α2 ∈ [0, 1] and constants k1, k2 ∈ R such
that:

wi(y) = αiyi − (1− αi)wj(y)− αiki, i ∈ {1, 2} , j ̸= i. (B.3)

The aggregate contract offered to the agent is thus

w1 (y) + w2 (y) =
α1α2

α1 + α2 − α1α2
(y1 + y2 − k1 − k2) . (B.4)

We arrive at (8) by defining θi ≡ (1−αi)αj

α1+α2−α1α2
∈ [0, 1− θj ] and solving the system of equations

formed by (B.3) for i ∈ {1, 2}.
The relationship between the constants k1 and k2 follows from satisfying Assumption 4 with

equality, which implies that k1 = −k2. Recall that min
y∈Y

yi = 0 for i ∈ {1, 2}, so limited liability

requires w1 (0, 0) + w2 (0, 0) = 0.
We simplify the expression for the aggregate contract offered to the agent to:

w1 (y) + w2 (y) = (1− θ1 − θ2) (y1 + y2) . (B.5)

The ex-post payoff of principal i follows from replacing wi as in (B.3). The principals’ guaranteed
payoffs are obtained using equation (A.29) and Lemma 5.

Proposition 2. A pure strategy Nash equilibrium in LRS contracts satisfying Assumption 4
with equality is characterized by pairs of shares (θ1, θ2) and transfers (k1, k2), such that, for
i ∈ {1, 2}, the share θi satisfies

(1− θ1 − θ2)
2 =

(1− θj) ci
EFi

[y1 + y2]
(B.6)
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for an action

(Fi, ci) ∈ argmax
(F,c)∈Ai

0

{(√
(1− θj)EF [y1 + y2]−

√
c

)2
}
, (B.7)

and transfers satisfy k1 = −k2. The equilibrium contracts satisfy (8) and the principals’
guaranteed payoffs are

Vi (w) =

(√
(1− θj)EFi

[y1 + y2]−
√
ci

)2

, i ∈ {1, 2} , j ̸= i. (B.8)

Proof. Consider a LRS contract scheme w satisfying Assumption 4 with equality. The contracts in
w are characterized by two shares (θ1, θ2) and two transfers (k1, k2) satisfying k1 = −k2 (Proposition
1). Moreover, The values of θ1 and θ2 can be computed separately from those of k1 and k2 because
of the effect of ki on the payoff of principal i is independent of θi (see 9).

For w to be a Nash Equilibrium of the common agency game (Definition 1), the contract of each
principal must maximize their guaranteed payoff taking the competing contract as given. From (9),
this amounts to the share of principal i, θi, solving

max
(F,c)∈Ai

0

max
θ∈[0,1−θj ]

{
θEF [y1 + y2]−

θ

1− θ − θj
c

}
. (B.9)

For a fixed (Fi, ci) ∈ A0, the solution to the inner max in (B.9) is characterized by:

(1− θi − θj)
2 =

(1− θj) ci
EFi [y1 + y2]

, 0 ≤ θi, θj ≤ 1. (B.10)

When both principals satisfy (B.10) we have

1− θ1 − θ2 =

√
(1− θj) ci

EFi [y1 + y2]
=

√
(1− θi) cj

EFj [y1 + y2]
. (B.11)

We obtain (Fi, ci) by replacing (B.10) in (B.9) which gives the rest of the result

(Fi, ci) ∈ argmax
(F,c)∈Ai

0

{(√
(1− θj)EF [y1 + y2]−

√
c

)2
}
. (B.12)

Proposition 1 implies that we can represent the principal’s choices over LRS contracts
as choices over their share of output, θi. Similarly, the guaranteed payoffs depend on the
principal’s choices only through the shares {θ1, θ2}, so we write Vi (θi, θj) for principal i’s
guaranteed payoff. As mentioned in the main text, doing this makes our framework into a
quasi-game in the sense of Debreu (1952). Before proving the existence of a Nash Equilibrium
in pure strategies for the common agency game, we state a formal definition of the game.

Definition 6. (Quasi-Game) Consider a game with three players, the agent (A), and
principals 1 and 2. We denote the players by the subscript, i = A, 1, 2. The agent’s action
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set is ΓA ⊂ ∆(Y ) × R+. Each principal’s action set is Γi ≡ {w : Y → R|w is continuous},
i ∈ {1, 2}, the set of continuous functions mapping Y into R. The 3-tuple of actions,
a = (aA, a1, a2), is an element of Γ = ΓA × Γ1 × Γ2. Player i’s payoff is a function
vi : Γ → R. For each player i we define the set of other players’ actions: ΓA = Γ1 × Γ2 and
Γi = A × Γj for i ∈ {1, 2} and j ̸= it, with typical elements aA = (a1, a2) ∈ ΓA,
a1 = (aA, w2) ∈ Γ1, and a2 = (aA, w1) ∈ Γ2. Given ai (the actions of all other players except
player i), player i’s choice is restricted to a non-empty set Si(ai) ⊆ Γi; for i ∈ {1, 2} this is
Si(ai) = {wi ∈ Γi|w1(y) + w2(y) ≥ 0 ∀ y ∈ Y }. Player i chooses ai in Si(ai) so as to
maximize vi(ai, ai). Following Debreu (1952), a⋆ is an equilibrium point if for all
i ∈ {A, 1, 2}, a⋆i ∈ Si(a

⋆
i ) and vi(a

⋆) = maxai∈Si(a⋆i )
vi(a

⋆
i , ai).

We now provide the proof of Theorem 2.

Theorem 2. A pure strategy Nash Equilibrium in LRS contracts with θ1, θ2 > 0 exists.

Proof. Consider a LRS contract scheme w satisfying Assumption 4 with equality. The contracts in
w are characterized by two shares (θ1, θ2) and two transfers (k1, k2) satisfying k1 = −k2 (Proposition
1). The principals’ guaranteed payoffs are as in (9).

A pure strategy Nash Equilibrium in LRS contracts is then a pair of values for (θ1, θ2), such
that θi ∈ [0, 1− θj ] maximizes principal’s i guaranteed payoff taking θj as given, along with any
pair of transfers (k1, k2) satisfying k1 = −k2.

To prove the existence of an equilibrium, we follow Monderer and Shapley (1996) and construct
an ordinal potential function for the game:

P (θ1, θ2) = θ1θ2G (θ1 + θ2) , (B.13)

where we define G : R+ → R as follows:

G (x) ≡

{
1

1−x max(F,c)∈A0
{(1− x)EF [y1 + y2]− c} if x < 1

0 if x ≥ 1
. (B.14)

G is continuous.
Given some transfers (k1, k2) satisfying k1 = −k2, the function P is an ordinal potential for the

game for shares θ1, θ2 > 0 because the function P induces the same order over θi as the function
Vi, that is for all θj > 0 and θ, θ

′ ∈ [0, 1]:

Vi (w (θ, θj , k1, k2))− Vi

(
w
(
θ
′
, θj , k1, k2

))
> 0 ⇐⇒ P (θ, θj)− P

(
θ
′
, θj

)
> 0. (B.15)

where w (θ, θj , ki, kj) is a LRS contract scheme. The result follows from manipulating (9).
Maximizing the principals’ guaranteed payoffs is equivalent to solving

Ṽi (θ, θj) ≡ max
θ∈[0,θj ]

θG (θ + θj) . (B.16)

Thus, (B.15) implies that any maximum of P such that θ1, θ2 > 0 is a pure strategy equilibrium of
the common agency game.

We end the proof by verifying that such a maximum is achieved. P attains a maximum in [0, 1]2

by Weierstrass’ theorem. Assumption 3 ensures that there exist θ1, θ2 > 0 such that G (θ1 + θ2) > 0
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(and thus that P (θ1, θ2) > 0). This follows from there being an action in A0 that generates enough
(expected) output to cover the cost of production. Then, all (θ⋆1, θ

⋆
2) ∈ argmax(θ1,θ2)∈[0,1]2P (θ1, θ2)

satisfy θ⋆1, θ
⋆
2 > 0. All these pairs, along with the transfers k1 and k2 are taken as given above,

characterize contracts that are Nash equilibria of the common agency game.
If Assumption 3 is violated then it is not possible to induce the agent to produce and the

game has a trivial solution. An equilibrium still exists. For instance, it is a best response for both
principals to set θi = 0, implying Ṽi = 0.
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C Relative efficiency of Nash and collusion contracts

Proposition 3. Let w and w
′
be contract schemes such that the agent receives a share of total

output given by θA and θ
′
A respectively. Total expected and guaranteed surplus are weakly

increasing in the share of total output going to the agent. That is, for any known action set
A0 and action set A ⊇ A0, let sTES ∈ TES (w|A), and s

′
TES ∈ TES

(
w

′ |A
)
. If θA < θ

′
A ≤ 1

then sTES ≤ s
′
TES and TGS (w) ≤ TGS

(
w

′)
.

Proof. Let w and w
′
be contract schemes such that the agent receives a share of total output given

by θA and θ
′
A respectively, with θA < θ

′
A.

We first prove that total expected surplus is increasing in θA. Consider (F, c) ∈ A⋆ (w|A) and(
F

′
, c

′
)
∈ A⋆

(
w

′ |A
)
, then

ṼA (θA|A) = θAEF [y1 + y2]− c < θ
′
AEF [y1 + y2]− c ≤ θ

′
AEF ′ [y1 + y2]− c

′
= ṼA

(
θ
′
A|A

)
. (C.1)

The first inequality follows from θA < θ
′
A and the second one from (F, c) being feasible at θ

′
A.

Furthermore, EF ′ [y1 + y2] ≥ EF [y1 + y2], otherwise (F, c) /∈ A⋆ (θA|A). To see this, note that
if EF

′ [y1 + y2] < EF [y1 + y2], from the second inequality in (C.1) we get

c− c
′ ≥ θ

′
A

(
EF [y1 + y2]− EF ′ [y1 + y2]

)
. (C.2)

Then, because θA < θ
′
A and we have assumed that EF [y1 + y2]− EF ′ [y1 + y2] > 0, we can write

c− c
′ ≥ θA

(
EF [y1 + y2]− EF ′ [y1 + y2]

)
. (C.3)

Rearranging gives

θAEF ′ [y1 + y2]− c
′ ≥ θAEF [y1 + y2]− c. (C.4)

This violates (F, c) /∈ A⋆ (θA|A) because (F, c) would provide a higher payoff.
Finally, using the second inequality in (C.1) we have

c
′ − c ≤ θ

′
A

[
EF ′ [y1 + y2]− EF [y1 + y2]

]
; (C.5)

c
′ − c ≤ EF ′ [y1 + y2]− EF [y1 + y2] ; (C.6)

EF [y1 + y2]− c ≤ EF ′ [y1 + y2]− c
′
. (C.7)

The inequality holds for arbitrary actions in the agent’s best response, which proves the
monotonicity of expected total expected surplus on θA.

We now prove that total guaranteed surplus is increasing in θA. Consider (F, c) ∈ A⋆ (w|A0)

and
(
F

′
, c

′
)
∈ A⋆

(
w

′ |A0

)
, then:

θ
′
AEF [y1 + y2]− c ≤ θ

′
AEF ′ [y1 + y2]− c′ (C.8)
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by optimality of the agent. From (22) we have:

TGS (w) = EF [y1 + y2]−
1

θA
c < EF [y1 + y2]−

1

θ
′
A

c ≤ EF ′ [y1 + y2]−
1

θ
′
A

c
′
= TGS

(
w

′
)
. (C.9)

The inequalities follow from θA < θ
′
A and (C.8), respectively.

Proposition 4. Let w and w
′
be LRS contract schemes such that principal j’s shares of total

output satisfy θj < θ
′
j and principal i’s contracts are best responses to principal j’s contracts

(i.e., wi and w
′
i attain (9) for wj and w

′
j respectively). Then, the agent’s shares of total

output satisfy 1− θ1 − θ2 ≥ 1− θ
′
1 − θ

′
2.

Proof. Suppose for a contradiction that the best response of principal i implies a higher share for
the agent when responding to w

′
j than when responding to wj : 1− θi − θj < 1− θ

′
i − θ

′
j .

Because wi is a best response to wj , principal i’s payoff under θi is at least as high as under
any other share, given fixed transfers (k1, k2). Consider an alternative share for principal i: θ̃i ≡
θ
′
i −
(
θj − θ

′
j

)
. This alternative share implies that the share of the agent is the same as under w

′
,

that is 1− θ̃i − θj = 1− θ
′
i − θ

′
j . It must be that:

θi

(
EF [y1 + y2]−

c

1− θi − θj

)
≥ θ̃i

(
EF ′ [y1 + y2]−

c
′

1− θ
′
i − θ

′
j

)
. (C.10)

Where (F, c) ∈ A⋆ (w|A0) and
(
F

′
, c

′
)
∈ A⋆

(
w

′ |A0

)
. The pair (F, c) is determined by the agent’s

problem and thus depends only on the share of the agent.
Similarly, w

′
i is a best response to w

′
j and we can consider an alternative share for principal i:

θ̃
′
i ≡ θi−

(
θ
′
j − θj

)
. As before, this alternative share implies that the share of the agent is 1−θi−θj .

It must be that:

θ
′
i

(
EF ′ [y1 + y2]−

c
′

1− θ
′
i − θ

′
j

)
≥ θ̃

′
i

(
EF [y1 + y2]−

c

1− θi − θj

)
. (C.11)

By subtracting these inequalities we get:

(
θi − θ̃

′
i

)(
EF [y1 + y2]−

c

1− θi − θj

)
≥
(
θ̃i − θ

′
i

)(
EF [y1 + y2]−

c

1− θ
′
i − θ

′
j

)
. (C.12)

Using the definitions of θ̃i and θ̃
′
i we obtain:

θi − θ̃
′
i = θ̃i − θ

′
i = θ

′
j − θj > 0, (C.13)
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where the final inequality holds by assumption of the proposition. Then we can write

(
θ
′
j − θj

)(
EF [y1 + y2]−

c

1− θi − θj

)
≥
(
θ
′
j − θj

)(
EF [y1 + y2]−

c

1− θ
′
i − θ

′
j

)
; (C.14)

max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θi − θj

}
≥ max

(F,c)∈A0

{
EF [y1 + y2]−

c

1− θ
′
i − θ

′
j

}
; (C.15)

TGS (1− θi − θj) ≥ TGS
(
1− θ

′
i − θ

′
j

)
. (C.16)

This contradicts Proposition 3 because 1− θi − θj < 1− θ
′
i − θ

′
j .

Theorem 4. Let w be a Nash equilibrium in LRS contracts and wc be an optimal collusion
contract. Total expected and guaranteed surplus are weakly higher under the collusive
contract. That is, for any known action set A0 and action set A ⊇ A0, and surpluses
sNTES ∈ TES (w|A) and sCTES ∈ TES (wc|A)

”
it holds that sNTES ≤ sCTES and

TGS (w) ≤ TGS (wc)

Proof. Under collusion, the agent’s share of output (θA = 1− θc) satisfies (16) as in Theorem 3.
This share is also a solution the problem of a principal (i) under competition facing θj = 0, see
equation (9) in Proposition 1. Proposition 4 establishes that the share of the agent implied by the
optimization of principal i is decreasing in the share of the competing principal. From 2 we know
that in a Nash equilibrium in LRS contracts θ1, θ2 > 0, so it must be that the share of output going
to the agent is lower in any Nash equilibrium in LRS contracts than under collusion. Proposition
3 gives the result.
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D Individual limited liability

D.1 Principals’ best response under Assumption 5

The results obtained in Appendix A.1 under Assumption 4 apply with almost no changes
under Assumption 5. We now derive the parallel result to Theorem 1 through a series of
lemmas following the arguments Appendix A.1.

First we adapt the definition of eligibility to reflect the change in limited liability. Eligible
contracts are those that outperform the “lowest” contract the principal can offer. That is,
the zero contract, i.e., wi (y) = 0. This contract makes the ex-post payoff of the principal
equal to yi, and their guaranteed payoff equal to 0 (corresponding to the worst case scenario
in which the agent can reduce their cost by not producing for principal i). This provides us
with a lower bound on the payoff of the principal, which we use to define eligible contracts.

Definition 7. (Eligible Contracts) A contract wi is eligible for principal i if it satisfies:

Vi (w) > 0. (D.1)

The results in Lemmas 1, 2, and 3 apply without changes, even though the proofs are
slightly altered to account for the change in limited liability. In the proof of Lemmas 2 and 3,
the value of the principal satisfies Vi (w) = −wi (0, 0) ≤ 0 rather than Vi (w) = −wi (0, 0) ≤
wj (0, 0) when the agent takes action (δ0, 0). In both cases the inequality follows from limited
liability and implies a violation of the eligibility of the contract (Definition 7).

Then, for any contract scheme w, we can then construct an alternative contract for
principal i of the LRS form (Definition 2) that satisfies individual limited liability. This
result parallels Lemma 4 is only adjusted to account for the change in limited liability in
Assumption 5.

Lemma 9. Let w be an eligible contract scheme. There exist k ∈ R and α ∈ (0, 1] such that
the contract

w
′

i (y) = αyi − (1− α)wj (y)− αk (D.2)

satisfies the limited liability condition in Assumption 5 with equality and Vi

(
w

′
i, wj

)
≥ Vi (w).

Proof. From Lemma 3, there are k ∈ R and α ∈ (0, 1] so that wi satisfies equations (A.10) and
(A.11). Use the same α and k to define an alternative contract w

′′
i as

w
′′
i (y) = αyi − (1− α)wj (y)− αk, (D.3)

just as in Lemma 4. This contract gives principal i a (weakly) higher payoff, Vi

(
w

′′
i , wj

)
≥ Vi (w).

The proof has no changes relative to that of Lemma 4.
It is only left to handle limited liability. Recall that the original contract satisfies Assumption

5, wi (y) ≥ 0 for all y ∈ Y . Then the new contract w
′′
i also satisfies Assumption 5 because

w
′′
i (y) ≥ wi (y) > 0 for all y ∈ Y , where the first inequality comes from equation (A.10). The

alternative contract can be modified by subtracting a constant, making it satisfy limited liability
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with equality, weakly increasing the principal’s payoff. We define w
′
i as:

w
′
i (y) = w

′′
i (y)−min

y∈Y

{
w

′′
i (y)

}
(D.4)

This new contract (w′
i) can be written as in (D.2) by appropriately redefining k.

As in Appendix A.1, Lemma 9 allows us to establish an affine link between the principal
and the agent’s guaranteed payoffs. The result in Lemma 5 applies without changes. Finally,
we can use these results to establish the existence of an optimal LRS contract among those
satisfying Assumption 5.

Lemma 10. In the class of LRS contracts that satisfy the limited liability (Assumption 5)
with equality there exists an optimal one for principal i.

Proof. From Lemma 5 we can express Vi (w) directly as a function of αi as in (A.29). For wi to
satisfy Assumption 5 with equality it must be that k (α) = min

y

[
yi − 1−α

α wj (y)
]
, which is continuous

in α for a given wj . Moreover, the function (1− αi)EF [yi + wj (y)]− 1−αi
αi

c is also continuous in αi,
thus its maximum over A0 is continuous in αi as well. Continuity implies that the right-hand-side
of equation (A.29) is continuous in αi it achieves a maximum in [0, 1]. This αi gives the optimal
guarantee over all LRS contracts that satisfy limited liability (Assumption 5) with equality.

We can now state the main result of this Appendix establishing the optimality of LRS
contracts under Assumption 5.

Theorem 7. For any contract wj, there exists a LRS contract wi such that wi ∈ BRi (wj)
and min

y∈Y
w̄i (y) = 0 for i ∈ {1, 2}. That is, there is always a LRS contract that is robust for

principal i. Moreover, if A0 satisfies Assumption 6, any robust contract is a LRS contract
or max

wi

Vi (wi, wj) = 0.

Proof. Consider a contract wj by the competing principal. By Lemma 9 any eligible contract, ŵi, is
weakly dominated by a LRS contract satisfying limited liability with equality. By Lemma 10 there
is a contract that is optimal in the class of LRS contracts satisfying limited liability with equality,
call it w⋆

i . This applies to any eligible contract, so that Vi (w
⋆
i , wj) ≥ Vi (ŵi, wj).

Alternatively, any ineligible contract, w̃i, satisfies Vi (w̃i, wj) ≤ 0 = Vi (0, wj) ≤ Vi (w
⋆
i , wj),

where the first inequality follows from Definition 7, the equality from the remark above, and the
inequality from the fact that wi = 0 is a LRS contract satisfying Assumption 5 with equality with
αi = ki = 0.

It follows that w⋆
i weakly dominates any eligible or ineligible contract, so that w⋆

i ∈ BRi (wj).
The proof of the second clause of the theorem is the same as in Theorem 1.
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D.2 Nash equilibria under Assumption 5

We focus on characterizing equilibria in LRS contracts as in Section 3. The main difference
with our previous results is that individual limited liability pins down the transfers of the
principals to the agent (k1, k2). Proposition 5 states the result (which parallels that of
Proposition 1)

Proposition 5. Let w be a LRS contract scheme satisfying Assumption 5 with equality. There
exist θ1, θ2 ∈ [0, 1] such that contracts satisfy

wi (y) = (1− θi) yi + θi
(
yj − yj

)
, (D.5)

where θi ∈ [0, 1− θj]. Moreover, principal i’s guaranteed payoff satisfies

Vi (w) = θi max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θ1 − θ2

}
− θiyj. (D.6)

Proof. Consider a contract scheme (w1, w2) such that, given wj , the contract wi satisfies definition
2 for i ∈ {1, 2} and j ̸= i. Then, there exist shares α1, α2 ∈ [0, 1] and constants k1, k2 ∈ R such
that:

wi(y) = αiyi − (1− αi)wj(y)− αiki, i ∈ {1, 2} , j ̸= i. (D.7)

Solving the system of equations formed by (D.7) for i ∈ {1, 2} and defining θi ≡ (1−αi)αj

α1+α2−α1α2
∈

[0, 1− θj ] we arrive at

wi (y) = (1− θi) yi − θi (yj − ki − kj)− ki. (D.8)

The resulting contract is increasing in yi and decreasing in yj , so minwi (y) is attained at yi = 0
and yj = yj .

24 In order to satisfy Assumption 5 it must be that minw (y) = w
(
0, yj

)
= 0. This

implies ki = − θi
1−θ1−θ2

(
(1− θj) yj + θjyi

)
. Replacing for k1 and k2 we get (25).

The aggregate contract faced by the agent is: w1 (y) +w2 (y) = (1− θ1 − θ2) (y1 + y2) + θ1y2 +
θ2y1. The ex-post payoff of principal i follows from replacing wi as in (D.7). The principals’
guaranteed payoffs are obtained using equation (A.29) and Lemma 5.

Before proceeding, it is useful to understand the characteristics of the game that induce
a principal to offer high powered versus low powered incentives. A lower θ gives the principal
a lower share of total output, and, all else equal increases the share of the agent. It also
reduces the fee that the principal pays. Hence incentives are ‘high powered’. Conversely a
higher θ gives the agent a smaller share of output, and it increases the fee the principal pays
to the agent. Hence incentives are ‘low powered’.25 This allows for understanding the effect

24The points (0, y2) and (y1, 0) are in Y by the assumption that Y is a cross product. This assumption
is not a necessary one, and is just convenient for determining the values of (y1, y2) for which miny wi (y) is
attained. If the assumption is lifted only the constants k1 and k2 are directly affected. For instance if output
is perfectly and positively correlated minwi (y) is attained when y1 = y2 = 0 and k1 = k2 = 0.

25The payment of fees to the agent implies that the ex post payoffs of the principals can be negative. Yet,
our results do not rely on the ability of principals to make unbounded payments to the agent. In the online
appendix we augment the model by adding limited liability on the principal’s side.
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of competition and productivity on the use of ‘high powered’ incentives by simply analyzing
how they affect the share of output θ.

We now provide sufficient conditions for the existence of a pure strategy Nash equilibrium
in LRS contracts under Assumption 5.

The first condition in Theorem 8 allows us to use the potential approach of Theorem 2
by making the principals’ contracts in (25), and payoffs in (D.6), symmetric. The condition
is not overly restrictive. Only the maximum output that can be produced is required to be
the same across principals, leaving the rest of the output space unconstrained and imposing
no constraints on the agent’s known actions. For instance, the agent can be known to
favor production for one of the principals, or one of the principals can have just extreme
realizations of output (only high and low values of yi in Yi). The second condition ensures
that the principals’ best responses are single valued by making the agent’s (implied) cost
function convex enough. Single-valuedness of the principals’ best responses is sufficient to
ensure existence of a pure strategy Nash equilibrium.

We can also show existence of equilibrium outside of the conditions in Theorem 8 for
several special cases. For instance, when the cost function is linear in expected total output,
or when the agent is indifferent between actions.26 The latter condition is well suited to
describe situations such as auctions or lobbying, where the agent is expected not to have
preferences over actions.

Theorem 8. A pure strategy Nash equilibrium in LRS contracts that satisfy Assumption 5
with equality for some y ∈ Y exists if either of the following conditions hold:

i. (Symmetry) The output space is such that max {Y1} = max {Y2} = y.

ii. (Convexity of A0) The known action set A0 satisfies the following properties:

a) The projection of A0 onto ∆(Y ), FA0 = {F ∈ ∆(Y ) | (F, c) ∈ A0}, is convex
and so is the set of expected total output that can be achieved under A0, XA0 ={
x ∈ R | ∃F∈FA0

x = EF [y1 + y2]
}
.

b) The function f : XA0 → R defined for each x ∈ XA0 as

f (x) = min
{
c | ∃F∈FA0

(F, c) ∈ A0 and EF [y1 + y2] = x
}

(D.9)

is a continuous function and its square root is a convex function.

Proof. Consider the first condition in Theorem 8. As in the proof of Theorem 2, we show that the
function G : R+ → R defined in (B.14) can be used to construct an ordinal potential for the game.

We can use G to express the the guaranteed payoff of each principal i (Vi as in D.6) as

Vi (θi, θj) = θi (G (θ1 + θ2)− y) . (D.10)

26Bernheim and Whinston (1986a) also establish the existence of an equilibrium of the common agency
game and show that it implements the efficient outcome for the case in which the agent is indifferent between
actions. We reproduce their results under this condition in the online appendix.
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Then, as in Monderer and Shapley (1996), we define an ordinal potential function P that satisfies
(B.15) for θ1, θ2 > 0. That is,

P (θ1, θ2) = θ1θ2 (G (θ1 + θ2)− y) . (D.11)

For θj > 0, the function P induces the same order over θi as the function Vi. Moreover, P attains
a maximum in [0, 1]2. Any such maximum characterizes a pure strategy Nash equilibrium in LRS
contract scheme that satisfies Assumption 5 with equality.

There are two cases to consider for the maximum of P .

1. There exists an action (F, c) ∈ A0 such that EF [y1 + y2] − c > y. Then, there is an action
that generates enough (expected) surplus to cover the cost that the principals pay in fees.
So, there exists θ1, θ2 > 0 such that G (θ1 + θ2) − y > 0, which implies P (θ1, θ2) > 0.
Then, the maximum of P on [0, 1]2 is not attained in the boundary, that is, for all (θ⋆1, θ

⋆
2) ∈

argmax
(θ1,θ2)∈[0,1]2

P (θ1, θ2), it holds that θ
⋆
1, θ

⋆
2 > 0.

2. There is no action (F, c) ∈ A0 such that EF [y1 + y2] − c > y. Then the principals cannot
guarantee themselves a positive payoff. A trivial equilibrium exists where θ1 = θ2 = 0.

Consider now the second condition in Theorem 8. From Proposition 5, only expected total
output is relevant in determining payoffs for LRS contracts schemes. Hence, it is without loss to
have the agent choose expected total output, x, and an associated cost, c. Naturally, if two actions
have the same expected total output the agent will choose the one with lower cost. These actions
form the lower envelope of the action set in the (x, c) space and imply the cost function of the agent
given by (D.9).

When principals offer a LRS contract scheme we can cast the problem of principal i as that of
choosing the share of output going to the agent θA ≡ 1 − θ1 − θ2. The value of principal i in D.6
can be written as

Vi (w) = max
(F,c)∈A0

max
θA∈[0,1−θj ]

{
(1− θj − θA)

(
EF [yj + yi]− yj

)
− 1− θj − θA

θA
c

}
. (D.12)

Given an action (F, c), there is a unique solution for θA

θA =


√

(1−θj)c
EF [yj+yi]−yj

if (1− θj)
(
EF [yj + yi]− yj

)
≥ c;

1− θj otherwise.

(D.13)

Replacing back into the principal’s guaranteed payoff and imposing (D.9) gives

Vi (w) = max
{x|x=EF [y1+y2];F∈FA0}

{(
max

{√
(1− θj)

(
x− yj

)
−
√
f (x) , 0

})2
}
, (D.14)

where we consider choices over expected total output available in A0, with the relevant cost given

by f . The continuity and convexity of
√
f imply that

√
(1− θj)

(
x− yj

)
−
√

f (x) is continuous

and strictly concave and hence admits a unique global maximum on the set
x̃ (θj) ∈ {x|x = EF [y1 + y2] ;F ∈ FA0}. We define the argmax of Vi as: x⋆ (θj) ≡ max {x̃ (θj) , x},
where x is the lowest value of x for which

√
(1− θj)

(
x− yj

)
−
√

f (x) = 0, so that Vi ≥ 0. The

47



Theorem of the Maximum implies that x⋆ (θj) is a continuous function. The best response of
principal i is then:

θi = BRi (θj) = (1− θj)−

√
(1− θj) f (x⋆ (θj))

x⋆ (θj)− yj
(D.15)

which is also a continuous function.
Finally, consider the function g : [0, 1]2 → [0, 1]2 defined by

g (θ1, θ2) = (BR1 (θ2) ,BR2 (θ1)) (D.16)

This function is continuous and maps a compact convex subset of an Euclidean space into itself. By

Brouwer’s fixed point theorem it has a fixed point. That is (θ⋆1, θ
⋆
2) ∈ [0, 1]2 such that θ⋆i = BRi

(
θ⋆j

)
for i ∈ {1, 2}, j ̸= i. These shares define a LRS contract scheme that is an equilibrium of the game.

D.3 Efficiency under Assumption 5

Theorem 9. Let w be a Nash equilibrium in LRS contracts satisfying Assumption 5 and wc

be an optimal collusion contract. Total expected and guaranteed surplus are weakly higher
under the Nash Equilibrium contract scheme. That is, for any known action set A0 and
action set A ⊇ A0, and surpluses sNTES ∈ TES (w|A) and sCTES ∈ TES (wc|A), it holds that
sCTES ≤ sNTES and TGS (wc) ≤ TGS (w).

Proof. As in the proof of Theorem 4, Proposition 3 implies that it is sufficient to compare the share
of output accruing to the agent in a Nash equilibrium in LRS contracts under Assumption 5 with
their share under collusion to prove the theorem. The results in Proposition 3 still apply because
fees do not play a role in the agent’s decisions and are net out when computing total payoffs.

Let w be a contract scheme in LRS contracts as the one in equation (25) characterized by shares
(θ1, θ2). The share of output going to the agent is: θNA = 1 − θ1 − θ2. Assume further that w is a
Nash equilibrium of the game. Under collusion, the principals offer a contract wc that gives them
a share θc of output and the agent a share θCA = 1− θc, see (16) in Theorem 3. The problem of the
agent is then equivalent to that in (24).

Before proceeding with the proof, we define the following shorthand for the guaranteed payoffs
of the agent and the principals as functions of the shares (θ) that define contracts. The agent’s
guaranteed payoff depends only on their share of total output (see 24), so we write

ṼA (θA) ≡ max
(F,c)∈A

{θAEF [y1 + y2]− c} (D.17)

The principals’ payoffs depend only on their share and that of the agent (see D.6), so we write

Ṽi (θi, θA) ≡
θi
θA

ṼA (θA)− θiyj . (D.18)

Now, suppose that w and wc are such that θNA < θCA . We will show that this leads to a
contradiction. There are five cases to consider.
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Case 1. Both principals can reduce their share of output so as to give the agent the same share
of output as under collusion. This is,

θi ≥ θCA − θNA , i ∈ {1, 2} . (D.19)

Thus, any principal can unilaterally induce the collusive outcome by reducing their own
share, θi, to θCi ≡ θi −

(
θCA − θNA

)
. Doing so would decrease the principal’s payoff by

0 ≥ Ṽi

(
θCi , θ

C
A

)
− Ṽi

(
θi, θ

N
A

)
=
(
θCA − θNA

)
ȳj +

θCi
θCA

ṼA

(
θCA
)
− θi

θNA
ṼA

(
θNA
)

(D.20)

because w is a Nash equilibrium. This applies to both principals and implies that

0 ≥
(
Ṽ1

(
θC1 , θ

C
A

)
− Ṽ1

(
θ1, θ

N
A

))
+
(
Ṽ2

(
θC2 , θ

C
A

)
− Ṽ2

(
θ2, θ

N
A

))
(D.21)

=
(
θCA − θNA

)
(ȳ1 + ȳ2) +

θC1 + θC2
θCA

ṼA

(
θCA
)
− θ1 + θ2

θNA
ṼA

(
θNA
)

(D.22)

=
(
θCA − θNA

)
(ȳ1 + ȳ2) +

(
1− θCA
θCA

−
θCA − θNA

θCA

)
ṼA

(
θCA
)
−

1− θNA
θNA

ṼA

(
θNA
)

(D.23)

=
(
θCA − θNA

)(
ȳ1 + ȳ2 −

ṼA

(
θCA
)

θCA

)
+

(
1− θCA
θCA

ṼA

(
θCA
)
−

1− θNA
θNA

ṼA

(
θNA
))

(D.24)

Where the second equality follows from the definition of θCi ,

θC1 + θC2 = θ1 + θ2 − 2
(
θCA − θNA

)
= 1− θNA − 2

(
θCA − θNA

)
=
(
1− θCA

)
−
(
θCA − θNA

)
(D.25)

The second term in the right hand side of the inequality is positive,

1− θCA
θCA

Ṽ C
A −

1− θNA
θNA

Ṽ N
A ≥ 0, (D.26)

because the principals maximize 1−θ
θ ṼA (θ|A0) when they collude, see (17) in Theorem

3. The first term is also non-negative. θCA − θNA ≥ 0 by assumption and

ȳ1 + ȳ2 >
Ṽ C
A

θCA
(D.27)

because Assumption 2 (positive cost) prevents the agent from guaranteeing a payoff
equal to the maximum output under the known action set A0 (all (F, c) ∈ A0 satisfy
EF [y1 + y2] ≤ ȳ2 + ȳ2 and c ≥ 0 with at least one strict inequality). This contradicts
the original inequality, violating the assumption that w is a Nash equilibrium. At least
one principal has a profitable deviation.

Case 2. Only one principal, say principal i, can reduce their share of output so as to give the
agent the same share of output as under collusion and the other principal’s contract
satisfies θj > 0. This is

θi ≥ θCA − θNA > θj > 0. (D.28)
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Consider then the following expression

0 ≥
(
Ṽi

(
θCi , θ

C
A

)
− Ṽi

(
θi, θ

N
A

))
+
(
θj −

(
θCA − θNA

))( 1

θCA
ṼA

(
θCA
)
− ȳi

)
− Ṽj

(
θj , θ

N
A

)
,

(D.29)

where the first term is less than or equal to zero because wi is a best response to wj as
in Case 1, the second term is also less than zero because of (D.28), and the third term
is also less than or equal to zero because wj is eligible for principal j and must therefore
provide a positive guaranteed payoff (Definition 7).

We can expand the first and last terms using (D.18) and (D.20) as in Case 1 to get

0 ≤
(
θCA − θNA

)(
ȳ1 + ȳ2 −

ṼA

(
θCA
)

θCA

)
+

(
1− θCA
θCA

ṼA

(
θCA
)
−

1− θNA
θNA

ṼA

(
θNA
))

. (D.30)

However, this leads to the same contradiction as in Case 1. Hence, it must be that
Ṽi

(
θCi , θ

C
A

)
− Ṽ1

(
θi, θ

N
A

)
≥ 0, proving that principal i has a profitable deviation. Then

wN is not an equilibrium.

Case 3. None of the principals can reduce their share of output so as to give the agent the same
share of output as under collusion

(
θ1, θ2 < θCA − θNA

)
and θ1, θ2 > 0. We can consider

0 ≥
(
θi −

(
θCA − θNA

))( 1

θCA
ṼA

(
θCA
)
− ȳj

)
− Ṽi

(
θi, θ

N
A

)
, i ∈ {1, 2} , j ̸= i, (D.31)

where the inequality follows as in Case 2 from θi < θCA − θNA along with the fact that
ṼA

(
θCA
)
≥ 0 (Assumption 1) and that w is eligible, so that Ṽi

(
θi, θ

N
A

)
> 0. By summing

(D.31) for i = 1, 2 we get (D.30) as in Cases 1 and 2, which again implies a contradiction.

Case 4. One principal, say j, has no share of the surplus, so that θNj = 0. Then, the problem of
principal i is equivalent to choosing the agent’s share. Because w is a Nash equilibrium,
it must be that

θNA = argmax
θA∈[0,1]

{
1− θA
θA

ṼA (θA)− (1− θA) yj

}
. (D.32)

Consider the case where θA < θCA , then

1− θA
θA

ṼA (θA)− (1− θA) yj ≤
1− θCA
θCA

ṼA

(
θCA
)
−
(
1− θCA

)
yj (D.33)

because 1−θA
θA

ṼA (θA) ≤
1−θCA
θCA

ṼA

(
θCA
)
for θA ̸= θCA from the collusion problem (17) as in

Case 1, and − (1− θA) yj < −
(
1− θCA

)
yj by assumption. It then follows that θNA ≥ θCA .

Case 5. Finally, we consider the case where both principals have no share of the surplus in
equilibrium, so that θ1 = θ2 = 0, implying that θNA = 1, which contradicts θCA > θNA .
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E Multiple principals

The model considered in Section 1 can be extended to multiple principals preserving all of
our main results. In what follows, we denote the number of principals by N , and given a
principal i, we define the vector of competing contracts as:
w−i (y) = (w1 (y) , . . . , wi−1 (y) , wi+1 (y) , . . . , wN (y)) . We first extend the definition of LRS
contracts (Definition 2) to an environment with N principals.

Definition 8. (Linear Revenue Sharing Contracts with N Principals) Given a vector of
competing contracts w−i, a contract wi is a LRS contract for principal i if it ties the principal’s
ex-post payoff linearly to the agent’s payment. That is, for some αi ∈ (0, 1] and ki ∈ R

yi − wi (y) =
(1− αi)

αi

(
N∑

n=1

wn (y)

)
− ki. (E.1)

A version of Theorem 1 applies so that there is always a LRS contract in each principal’s
best response.

Theorem 10. For any set of contracts w−i, there exists an LRS contract wi such that
wi ∈ BRi (w−i) ≡ argmax

wi

Vi (wi, w−i) and wi satisfies either Assumption 4,

min
y∈Y

{
w̄i (y) +

∑
j ̸=i wj (y)

}
= 0, or Assumption 5, min

y∈Y
{w̄i (y)} = 0. If A0 satisfies the

Assumption 6, then any robust contract for principal i is a LRS contract or they cannot
guarantee a payoff higher than

∑
j ̸=i

wj (0, 0) under Assumption 4 or 0 under Assumption 5.

Proof. The proof is virtually identical to that of Theorems 1 and 7. Lemmas 1 to 6 follow unchanged
by defining the aggregate competing contract wc (y) =

∑
j ̸=i

wj (y).

We can also extend the characterization of LRS contract schemes provided in Propositions
1 and 5, with LRS contracts schemes being characterized by a share, θi, of total output and
total guaranteed surplus going to principal i. Guaranteed surplus is computed relative to
the payoffs under inaction. However, we show in Proposition 6 that in order to have θi > 0
in equilibrium under Assumption 5, the agent needs to have access to an action (F, c) such
that EF [yi] >

∑
j ̸=i EF

[
yj − yj

]
. This condition is stronger than non-triviality (Assumption

3) and increasingly difficult to satisfy as the number of principals increases. Intuitively the
LRS contract compensates the agent for their forgone earnings from other principals, this
requires principal i’s payoff to be large in order to guarantee a positive payoff.

Proposition 6. Let w be a LRS contract scheme satisfying limited liability with equality.
There exist (θ1, ..., θN) and (k1, . . . , kN) such that the for all i ∈ {1, 2, . . . , N} contracts are:

wi (y) = (1− θi) yi − θi
∑
j ̸=i

yj − ki Under Assumption 4 (E.2)

wi (y) = (1− θi) yi + θi
∑
j ̸=i

(
yj − yj

)
Under Assumption 5 (E.3)
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where
N∑
i=1

ki = 0 under Assumption 4.

Proof. Let w be a LRS contract scheme satisfying limited liability with equality. Each contract wi

has the following form

wi (y) = yi −
1− αi

αi

N∑
n=1

wn (y)− ki. (E.4)

Then, the sum of contracts satisfies

N∑
n=1

wn (y) =

∑
(yn − kn)

1 +
∑N

n=1
1−αn
αn

. (E.5)

Letting θi ≡
1−αi
αi

/1+
∑N

n=1
1−αn
αn

, we arrive at (E.2). Assumption 4 implies that
N∑

n=1
kn = 0. Under

Assumption 5, it must be that minwi (y) = 0, the minimum is achieved when yi = 0 and yj = yj
for j ̸= i. We solve for ki in that case

ki = −θi
∑
j ̸=i

yj + θi

(
N∑

n=1

kn

)
. (E.6)

Replacing back into principal i’s LRS contract we get (E.3). From Lemma 5 we can establish that
the share of total guaranteed surplus going to principal i in equilibrium is equal to θi. Principal i’s
payoff given inaction is −θi

∑
j ̸=i yj and total surplus given inaction is zero by construction. Then

we have:

θi =

Vi (w) + θi
∑
j ̸=i

yj∑
n
Vn (w) + VA (w|A0)

(E.7)

=

1−αi
αi

VA (w|A0) + ki + θi
∑
j ̸=i

yj(
1 +

∑
n

1−αn
αn

)
VA (w|A0) +

∑
n
kn

=

1−αi
αi

VA (w|A0)− θi
∑
j ̸=i

yj + θi

(∑
n
kn

)
+ θi

∑
j ̸=i

yj(
1 +

∑
n

1−αn
αn

)
VA (w|A0) +

∑
n
kn

= θi

(E.8)
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F Double limited Liability

Under individual limited liability (Assumption 5), equilibrium contracts require principals
to pay a fee to the agent. This fee depends on the maximum potential payment that other
principals can make, thus, in equilibrium, principals offer potentially large payments to the
agent. Thus, principals can have negative ex post payoffs. In this Section we explore the
implications of allowing for this payoffs by introducing limited liability on the principals. We
show that the core of our results does not rely on the principals offering unbounded rewards
to the agent.

Assumption 7. (Principals’ Limited Liability) yi − wi (y) ≥ 0 for all y ∈ Y , i ∈ {1, 2}.

Imposing limited liability on the principals amounts to restricting contracts so that yi −
wi (y) ≥ 0 for all y ∈ Y . Under assumption 7 only the definition of LRS contracts changes,
adding a cap to the amount that the principal can pay to the agent.

Definition 9. (Linear Revenue Sharing Contracts under Assumption 7) Given a contract
wj, a contract wi is a LRS contract for principal i if it ties the principal’s ex-post payoff
linearly to the total revenue of the agent. That is, for some αi ∈ (0, 1] and ki ∈ R

yi − wi (y) = min

{
(1− αi)

αi

(w1(y) + w2 (y)) + ki , 0

}
, j ̸= i. (F.1)

We show that LRS contracts remain optimal. Lemmas 1 and 2 remain unchanged.
Crucially, the argument in 3 also goes through unchanged as it does not impose any
restrictions on how high the payments stipulated by contracts can be. The following
Lemma establishes that (A.11) applies for LRS contracts satisfying Assumption 7.

Lemma 11. Let w be an eligible contract with wi (y) = min {αyi − (1− α)wj (y)− αk , yi}
for some α ∈ (0, 1] and k ∈ R. Then

Vi (w) = k +
1− α

α
VA (w|A0) (F.2)

Proof. Let F ∗ ∈ argmin
F∈F

EF [yi − wi]. By Lemma 2 we have that

k +
1− α

α
VA (w|A0)− Vi (w) = k +

1− α

α
EF ⋆ [w1 + w2]− EF ⋆ [yi − wi] (F.3)

= k +
1

α
EF ∗ [wi] +

1− α

α
EF ∗ [wj ]− EF ∗ (yi) (F.4)

= k +
1

α
EF ∗ [min {αyi − (1− α)wj (y)− αk , yi}]

+
1− α

α
EF ∗ (wj)− EF ∗ (yi) (F.5)

Suppose for a contradiction that F ∗ places some positive probability, δ > 0, on a set Ȳ ⊂ Y such
that such that αyi−(1− α)wj (y)−αk > yi for y ∈ Y . Rearranging, 0 > (1− α) (yi + wj (y))+αk.
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Rearranging again, − α
1−αk > yi+wj (y), where the right hand side is the agents payment if output

is y.
Now, consider ŷ ∈ Y for which αŷi − (1− α)wj (ŷ)− αk = ŷi. Rearranging,

ŷi + wj (ŷ) = αŷi − (1− α)wj (ŷ)− αk + wj (ŷ) (F.6)

(1− α) (ŷi + wj (ŷ)) = −αk (F.7)

ŷi + wj (ŷ) = − α

1− α
k (F.8)

ŷi + wj (ŷ) > yi + wj (y) (F.9)

It must be that F ∗ puts positive probability on a ỹ ∈ Y for which the payoff to principal i is
positive by eligibility.

Now, consider an alternative distribution F ′, which is equal to F ∗ except that it shifts all
the weight δ in Y to ŷ. Then EF ′ [wi + wj ] > VA (w|A0) because of (F.9). Further, consider F ′′

that is the same as F ′ but shifts a small but positive weight from ỹ to ŷ such that we still have
EF ′′ [wi + wj ] ≥ VA (w|A0). It holds that F ′′ ∈ F . But then, the payoff to principal i under F ′′ is
worse than that under F ′ and F ∗ which violates the minimality of F ∗.

Hence, it must be that F ∗ places full support on y ∈ Y for which αyi− (1− α)wj (y)−αk ≤ yi.
Then we have from (F.5)

k +
1− α

α
VA (w|A0)− Vi (w) = k +

1

α
EF ∗ [αyi − (1− α)wj (y)− αk] +

1− α

α
EF ∗ (wj)− EF ∗ (yi)

= k + EF ∗

[
yi −

1− α

α
wj (y)− k

]
+

1− α

α
EF ∗ (wj)− EF ∗ (yi)

= 0. (F.10)

The last equality gives the result.

We can now use Lemmas 3 and 11 to construct a LRS contract that improves over any
contract considered by principal i.

Lemma 12. Let w = (wi, wj) with wi satisfying (A.10) and (A.11) from Lemma 3. Then,
the contract

w
′

i (y) = min {αyi − (1− α)wj (y)− αk , yi} (F.11)

where k is such that min
y

w
′
i (y) = 0 satisfies Vi

(
w

′
i, wj

)
≥ Vi (w).

Proof. Following the arguments in Lemma 9, we use (A.10) to define an auxiliary contract

w
′′
i (y) = αyi − (1− α)wj (y)− αk

′′
, (F.12)

where k
′′
is such that min

y

{
w

′′
i (y)

}
= min

y

{
αyi − (1− α)wj (y)− αk

′′
}
= 0 This contract improves

principal i’s guaranteed payoff, Vi

(
w

′′
i , wj

)
≥ Vi (w).
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Contract w
′
i is characterized by the same alpha and by k ≥ k

′′
, and satisfies

w
′
i (y) ≤ αyi − (1− α)wj (y)− αk (F.13)

k +
1− α

α

(
w

′
i (y) + wj (y)

)
≤ yi − w

′
i (y) . (F.14)

Now, let A ⊇ A0 and (F, c) ∈ A⋆ (w|A). Taking expectations we get

EF

[
yi − w

′
i (y)

]
≥ k +

1− α

α
EF

[
w

′
i (y) + wj (y)

]
(F.15)

= k +
1− α

α
VA

((
w

′
i, wj

)
|A0

)
(F.16)

= k
′′
+

1− α

α
VA

((
w

′
i +

α

1− α

(
k − k

′′
)
, wj

)
|A0

)
(F.17)

This applies to any optimal (F, c) under any action set, so this guarantees a payoff for principal i.
Moreover,

w
′
i +

α

1− α

(
k − k

′′
)
= min {αyi − (1− α)wj (y)− αk , yi}+

α

1− α

(
k − k

′′
)

(F.18)

> min {αyi − (1− α)wj (y)− αk , yi}+ α
(
k − k

′′
)

(F.19)

= min
{
w

′′
i , yiα

(
k − k

′′
)}

(F.20)

≥ wi. (F.21)

The inequality holds for all y ∈ Y because w
′′
i ≥ wi and wi satisfies principals limited liability,

wi ≤ yi ≤ yi + α
(
k − k

′′
)
. So, the agent is always at least as well off under w

′
i +

α
1−α

(
k − k

′′
)
as

under wi, VA

((
w

′
i +

α
1−α

(
k − k

′′
)
, wj

)
|A0

)
≥ VA (w|A0). Joining with (F.17) gives

EF

[
yi − w

′
i (y)

]
≥ k

′′
+

1− α

α
VA (w|A0) = Vi (w) (F.22)

which holds for all (F, c) ∈ A⋆ (w|A) so that Vi

((
w

′
i, wj

)
|A
)
= minF∈A⋆(w|A)EF

[
yi − w

′
i (y)

]
≥

Vi (w) which gives the desired result Vi

(
w

′
i, wj

)
≥ Vi (w).

We can now establish the optimality of LRS contracts.

Theorem 11. For any contract wj, there exists a LRS contract

wi (y) = min (αyi − (1− α)wj (y)− αk, yi) (F.23)

such that wi ∈ BRi (wj) and wi satisfies Assumptions 5 and 7. That is, there is always
a LRS contract that is robust for principal i. Moreover, if A0 satisfies Assumption 6, any
robust contract is a LRS contract or max

wi

Vi (wi, wj) = 0.

Proof. By Lemma 11 the value of a principal under an LRS contract satisfies (F.2). This function
is continuous on α by interpreting the term 1−α

α c as 0 when c = 0 and ∞ for c > 0. Recall that
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the value of k that ensures Assumption 5 is satisfied with equality is also a continuous function of
α. Then, there is a α⋆ that maximizes (F.2) and characterizes the optimal LRS contract w⋆

i .
Consider an arbitrary contract wi. By Lemma 12, there is always a LRS contract that weakly

improves over wi. This contract is itself improved upon by w⋆
i . Then, the w⋆

i in the best response.
Now, impose Assumption 6 and suppose wi is an optimal contract for principal i. Define w

′
i as

in Lemma 12 and let A ⊇ A0 and (F, c) ∈ A⋆ (w|A). From equation F.17,

EF

[
yi − w

′
i (y)

]
= k

′′
+

1− α

α
VA

((
w

′
i +

α

1− α

(
k − k

′′
)
, wj

)
|A0

)
, (F.24)

where k− k
′′ ≥ 0 as in the proof of Lemma 12. Contract wi satisfies Equation (A.11) from Lemma

3 which we use to replace for k and obtain

EF

[
yi − w

′
i (y)

]
≥ Vi (w) +

1− α

α

(
VA

((
w

′
i +

α

1− α

(
k − k

′′
)
, wj

)
|A0

)
− VA (w|A0)

)
.

(F.25)

As in the proof of Lemma 12, w
′
i + α

1−α

(
k − k

′′
)

≥ wi (y) point wise and therefore

VA

((
w

′
i +

α
1−α

(
k − k

′′
)
, wj

)
|A0

)
≥ VA (w|A0), with strict inequality unless w

′
i +

α
1−α

(
k − k

′′
)

is identical to wi. Then, using Lemma 2 and the lower bound for EF

[
yi − w

′
i (y)

]
in the last

equation we obtain

Vi

(
w

′
i, wj

)
≥ Vi (w) +

1− α

α

(
VA

((
w

′
i +

α

1− α

(
k − k

′′
)
, wj

)
|A0

)
− VA (w|A0)

)
> Vi (w)

(F.26)

where the strict inequality follows when wi is not identical to w
′
i +

α
1−α

(
k − k

′′
)
. Then, wi =

wPLL
i + (k

′′−k)
λ , or else optimality would be contradicted. This proves the result.
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G Lower bound on costs

In our common agency model, Section 1, principals do not know the agent’s true action set
A. In Section 2 we show that LRS contracts offer the best guaranteed payoff possible across
all possible action sets A ⊇ A0. This includes action sets where large amounts of output
produced for free, making the distributions that induce the worst case guarantee have zero
cost. This assumption is convenient for the exposition of the problem, but it stands to reason
that production is costly. To address this, we now assume that the principal knows a lower
bound on the cost of producing any given level of expected output. We also assume full
support (Assumption 6) and the stronger form of limited liability (Assumption 5), although
the proofs can be modified to apply under Assumption 4. We prove that LRS contracts are
still a best response to LRS contracts under these conditions.

Let b : R → R+ be a convex function satisfying b (0) = 0. An action set is a compact set
A ⊂ ∆(Y )× R+ such that for any (F, c) ∈ A we have that c ≥ b (EF [y1 + y2]). This holds
also for any (F, c) ∈ A0 with a strict inequality (i.e., c > b (EF (y)) if (F, c) ∈ A0). This is
similar to the positive cost assumption when there was no lower bound on costs.

The following Lemma parallels Lemma 1 and relates the expected payments to the agent
under any action set with its value under A0.

Lemma 13. Let (F, c) ∈ A⋆ (w|A). For A ⊇ A0, it holds that:

EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2])

Moreover, if (F, c) ∈ A⋆ (w|A) then F ∈ F where:

F = {F ∈ ∆(Y ) |EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2])}

Proof. To see the first inequality let (F, c) ∈ A⋆ (w|A) for A ⊇ A0:

EF [w1 (y) + w2 (y)]− b (EF [y1 + y2]) ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

where the first inequality holds since c ≥ b (EF [y1 + y2]). Then F ∈ F .

Lemma 14. Let w be an eligible contract for principal i (Definition 5), then
Vi (w) = min

F∈F
EF [yi − wi (y)]. Moreover if F ∈ argmin

F∈F
EF [yi − wi (y)] then

EF [w1 (y) + w2 (y)] = VA (w|A0) + b (EF [y1 + y2]).

Proof. Let w be an eligible contract. It must be that: Vi (w) ≥ min
F∈F

EF [yi − wi (y)], to see this, use

the definition of Vi in (3),

Vi (w) = inf
A⊇A0

min
(F,c)∈A⋆(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)] , (G.1)

where the inequality follows from Lemma 13 because if (F, c) ∈ A⋆ (w|A) then F ∈ F .
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Now we can establish the equality in the first statement of the Lemma. Suppose not, then
it must be that Vi (w) > min

F∈F
EF [yi − wi (y)]. Then, for F ∈ argmin

F∈F
EF [yi − wi (y)], we have

that EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2]). Finally, consider the action set A′ ≡
A0 ∪ {(F, b (EF [y1 + y2]))}. It follows that (F, b (EF [y1 + y2])) ∈ A⋆

(
w|A′

)
, which implies

Vi (w) ≤ Vi

(
w|A′

)
= min

(F,c)∈A⋆(w|A′)
EF [yi − wi (y)] ≤ min

F∈F
EF [yi − wi] < Vi, (G.2)

a contradiction.
Now, for the second result in the Lemma, let F ∈ argmin

F∈F
EF [yi − wi] and suppose for a

contradiction that EF [w1 (y) + w2 (y)] > VA (w|A0) + b (EF [y1 + y2]).
Let ϵ ∈ [0, 1] and consider Fϵ = (1− ϵ)F + ϵδ(0,0) and Aϵ = A0 ∪

{(
Fϵ, b

(
EF

′ (y1 + y2)
))}

.
It follows that

{(
Fϵ, b

(
EF ′ (y1 + y2)

))}
= A⋆ (w|Aϵ) for low enough ϵ because the agent’s payoff

is strictly greater choosing Fϵ at a cost of b
(
EF ′ (y1 + y2)

)
, than choosing any (F, c) ∈ A0. By

convexity, b (EFϵ (y1 + y2)) ≤ (1− ϵ) b (EF [y1 + y2]) + ϵb (0). Principal i’ payoff is

Vi

(
w|A′

ϵ

)
= (1− ϵ)EF [yi − wi (y)]− ϵwi (0, 0) < EF [yi − wi (y)] = Vi (w) ≤ Vi

(
w|A′

ϵ

)
, (G.3)

which contradiction the definition of Vi. The strict inequality follows from EF [yi − wi (y)] > 0 by
eligibility and wi (0, 0) ≥ 0 by the agent’s limited liability.

We are interested in LRS contract schemes. So, suppose that principal j offers a contract
of the form, wj (y) = (1− θj) yj + θj (ȳi − yi), as in Proposition 5 and that principal i’s
contract, wi : Y → R+, is eligible but is not an LRS contract. In particular, there does not
exist θi ∈ [0, 1− θj] and k such that wi (y) = (1− θi) yi + θi (ȳj − yj) + k. Our objective is
to show that there exist an alternative LRS contract w

′
i that dominates wi, where w

′
i (y) =(

1− θ
′
i

)
yi + θ

′
i (ȳj − yj) for some θ

′
i ∈ [0, 1− θj].

The same separation argument as in Lemma 3 applies. However, the separation is done
in outcome space and not in payoff space.

Define the function

t (x) = max {b (x) + VA (w|A0) , (1− θj)x+ θj ȳi − Vi (w)}

Clearly t is a convex function.
Now let S ∈ R2 be the convex hull of pairs (y1 + y2, wi (y1, y2) + wj (y1, y2)) for all

(y1, y2) ∈ Y , and let T ∈ R2 be the set of all pairs (x, z) such that x lies in the convex hull
of points y1 + y2, and z > t (x).27 These sets are convex and disjoint.28 If there weren’t
disjoint there would exist F ∈ ∆Y such that EF [wi (y1, y2) + wj (y1, y2)] > t (EF [y1 + y2]).
Then, the following two inequalities hold

EF [wi (y1, y2) + wj (y1, y2)] > b (EF [y1 + y2]) + VA (w|A0) , (G.4)

EF [wi (y1, y2) + wj (y1, y2)] > (1− θj)EF [y1 + y2] + θj ȳi − Vi (w) . (G.5)

27Formally T =
{
(x, z) ∈ R2|x ∈ [minY {y1 + y2} ,maxY {y1 + y2}] ∧ z > t (x)

}
.

28The first one is a convex hull, so it is convex, the second one is the intersection of the upper contour set
of a convex function (a convex set) with two half spaces (convex sets), so it is convex as well.
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Replacing wj (y) = (1− θj) yj + θj (ȳi − yi), the second inequality becomes

Vi (w) > EF [yi − wi (y1, y2)] (G.6)

From Lemma 14 we know that Vi (w) = min
F∈F

EF [yi − wi (y1, y2)], but from the first inequality

we know that F ∈ F , this is a contradiction.
Then, by the separating hyperplane theorem, there exist λ and µ and k with (λ, µ) ̸= (0, 0)

such that

λ (y1 + y2) + µz ≤ k ∀ ((y1 + y2) , z) ∈ S (G.7)

λ (y1 + y2) + µz ≥ k ∀ ((y1 + y2) , z) ∈ T (G.8)

The second inequality implies that µ ≥ 0. Now suppose µ = 0 then it must be that λ = 0,
which is a contradiction. This implies that µ > 0.

The inequality in (G.7) implies that

wi (y1, y2) + wj (y1, y2) ≤
k − λ (y1 + y2)

µ
, (G.9)

from which we can construct the following contract

w
′

i (y1, y2) =
k − λ (y1 + y2)

µ
− wj (y1, y2) = θ

′

iyi +
(
1− θ

′

i

) (
yj − yj

)
+ k

′
(G.10)

where θ
′
i = θj − λ

µ
and k

′
= k

µ
− θj ȳi −

(
1− θ

′
i

)
yj. Note that w

′
i ≥ wi pointwise, and recall

that wi ̸= w
′
i by assumption. Now we need to check that Vi

(
w

′
i

)
≥ Vi (wi).

Consider any action set A ⊃ A0. Then we have that
VA

(
w

′|A
)

≥ VA

(
w

′|A0

)
> VA (w|A0). The last inequality follows because A0 has full

support (Assumption 6) and w
′
i (y) > wi (y) for some y ∈ Y .

Now, let (F, c) ∈ A such that (F, c) = argmin
(F,c)∈A⋆(w′ |A)

EF

[
yi − w

′
i (y)

]
. Then, Vi

(
w

′ |A
)
=

EF

[
yi − w

′
i (y)

]
. From equation G.8

t (EF [y1 + y2]) ≥ EF

(
k − λ (y1 + y2)

µ

)
(G.11)

= EF

[
w

′

1 (y) + w2 (y)
]

(G.12)

= VA

(
w

′ |A
)
+ c (G.13)

> VA (w|A0) + c (G.14)

≥ VA (w|A0) + b (EF [y1 + y2]) . (G.15)

Because the inequality is strict then we have that t (EF [y1 + y2]) = (1− θj)EF [y1 + y2] +
θj ȳi − Vi (w).
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Then we have that

Vi

(
w

′ |A
)
= EF

[
yi − w

′

i (y)
]

(G.16)

= EF [yi + wj (y)]− EF

[
w

′

i (y) + wj (y)
]

(G.17)

= (1− θj)EF [y1 + y2] + θj ȳi − EF

[
w

′

i (y) + wj (y)
]

(G.18)

= t (EF [y1 + y2]) + Vi (w)− EF

[
w

′

i (y) + wj (y)
]

(G.19)

≥ Vi (w) (G.20)

This holds for all A ⊃ A0, which implies that Vi

(
w

′) ≥ Vi (w). So any contract wi (as
described above) can be dominated by a contract of the form:

w
′

i (y1, y2) = θ
′

iyi +
(
1− θ

′

i

) (
yj − yj

)
+ k

′
. (G.21)

This contract can be improved upon by dropping the constant k
′
. Doing so makes it satisfy

limited liability with equality (when yi = 0 and yj = yj), it also does not affect the problem
of the agent, and it weakly increase the value of the principal (strictly if k′ > 0).
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H Private common agency

We now consider the case where principals are restricted to contract only on their own
output. This can be due to their inability to observe the other principal’s output, or because
of regulation that prohibits contracting on output other than your own.

In the private common agency game, a contract is a continuous function wr
i : Yi → R+.

We show that the principal’s best response is to give the agent a share of their output
under Assumption 5 on limited liability. The share of output given to the agent depends on
the competition between the principals. These linear contracts are different from the LRS
contracts discussed in Section 2 (Definition 2). The essential feature of the LRS contracts is
that they tie the principal’s and the agent’s payoff in an affine way (6). This was achieved by
partially offsetting competing contracts given to the agent. Forcing the contract to depend
only on the principal’s output makes this impossible.

Theorem 12. For any contract wr
j , there exists θi ∈ [0, 1] such that the contract

wr
i (yi) ≡ (1− θi) yi is in principal i’s best response, wr

i ∈ BRi

(
wr

j

)
. Moreover, if A0

satisfies Assumption 6, if wr
i ∈ BRi

(
wr

j

)
then wr

i (yi) = (1− θi) yi for some θi ∈ [0, 1].

When both principals play linear contracts as in 12, the best response of principal i is

BRi (θj) = argmax
θi∈[0,1]

[
max

(F,c)∈A0

{
θi

1− θi
EF

[
(1− θi) yi − (1− θj)

(
yj − yj

)
− c
]}]

. (H.1)

An interior solution satisfies

1− θi =
c+ (1− θj)

(
yj − EF [yj]

)
(1− θi)EF [yi]

(H.2)

where (F, c) ∈ A⋆ ((θi, θj) |A0).
29 The numerator in (H.2) is the opportunity cost of the

agent of taking action (F, c), as perceived by principal i, that is, the accounting cost of the
action (c) plus the expected forgone earnings from the other principal. The share of output
that principal i gives to the agent is equal to the ratio between this cost and the expected
payment that the agent receives from the principal.

The principal increases the share of output given to the agent as the forgone earnings
from the other principal increase. This resembles the second term in the equilibrium contract
(25) found in Proposition 5. When contracts were not restricted, each principal was able to
compensate the agent for the forgone earnings from the other principal. Under the restricted
contracting domain this explicit form of competition is not possible. Instead, principals
compete with each other by offering higher shares of their own output to the agent.

We now present the proof of Theorem 12. Lemmas 1 and 2 remain unchanged. Lemma
15 parallels Lemma 3 and links the principal’s payoff guarantee to the agent’s payoff given
the known action set A0 in an affine way. This link allows the principal to increase its own
guaranteed payoff by controlling the payoff given to the agent. The lemma also offers a
relation between any contract wi, the outcome yi and the contract wj offered by the other
principal.

29We slightly abuse the notation by writing (θi, θj) instead of (wi, wj).
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Lemma 15. Let w be an eligible contract. There exist k, λ with λ > 0 such that for all y ∈ Y :

wi (yi) ≤ 1

1 + λ
yi −

λ

1 + λ
wj −

1

1 + λ
k, (H.3)

Vi (w) = k + λVA (w|A0) , (H.4)

where wj = max
yj∈Yj

wj (yj).

Proof. Let S ⊆ R2 be the convex hull of all points (wi (yi) + wj , yi − wi (yi)) for yi ∈ Yi and
wj = max

yj∈Yj

wj (yj), and T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w).

T is convex. As in Lemma 3, S∩T = ∅. To see this, let (u, v) ∈ T then let F ∈ argmin
F∈F

EF [yi − wi],

by definition of T and Lemma 2:

u > VA (w|A0) = EF [wi (yi) + wj (yj)] (H.5)

v < Vi (w) = EF [yi − wi (yi)] (H.6)

now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆(Y ) such that:

u = EF ′ [wi (yi)] + wj (H.7)

v = EF ′ [yi − wi (yi)] (H.8)

Because Y = Y1 × Y2 we can choose F
′
such that EF ′ [wj (yj)] = wj . Then:

u = EF ′ [wi (yi) + wj (yj)] > VA (w|A0) (H.9)

That is, F
′
guarantees a payoff to the agent larger than VA (w|A0) so F

′ ∈ F but:

EF [yi − wi] > EF ′ [yi − wi] (H.10)

which contradicts minimality of F . Then S ∩ T = ∅ and, by the separating hyperplane theorem,
there exist (k, λ, µ) ∈ R3 such that (λ, µ) ̸= (0, 0) and

k + λu− µv ≤ 0 (u, v) ∈ S (H.11)

k + λu− µv ≥ 0 (u, v) ∈ T (H.12)

Now, let F ⋆ ∈ argmin
F∈F

EF [yi − wi (yi)] such that EF ⋆ [wj (yj)] = wj . This F ⋆ always exists

because the objective function EF [yi − wi (yi)] only depends on yi. Then, if F ∈ F , the distribution
F ⋆ with the same marginal over yi as F and full probability over wj also belongs to F . Therefore,
the pair (EF ⋆ [wi (yi) + wj (yj)] , EF ⋆ [yi − wi (yi)]) lies in the closures of both S and T , implying

k + λEF ⋆ [w1 + w2]− µEF ⋆ [yi − wi] = 0 (H.13)

It is left to show that λ, µ > 0. (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So
for (H.12) to hold it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:
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1. Suppose µ = 0, then it must be that λ > 0. From (H.11) and ((H.12)

u ≤ −k

λ
(u, v) ∈ S (H.14)

u ≥ −k

λ
(u, v) ∈ T (H.15)

So, max
yi∈Yi

[wi (yi) + wj ] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0), which implies

max
yi∈Yi

[wi (yi) + wj ] = VA (w|A0) (H.16)

This can only happen if the agent has an action (F, 0) ∈ A0 such that EF [w1 (y1) + w2 (y2)] =
w1 +w2, but, by Assumption 2, the only action in A0 with zero cost is (δ0, 0), so w1 +w2 =
w1 (0)+w2 (0). This is also the unique action in A⋆ (w|A0) so Vi (w) ≤ Vi (w|A0) = −wi (0) ≤
0. This violates eligibility (Vi (w) > 0).

2. Suppose λ = 0, then it must be that µ > 0. From (H.11) and (H.12)

v ≥ k

µ
(u, v) ∈ S (H.17)

v ≤ k

µ
(u, v) ∈ T (H.18)

So, min
yi∈Yi

[yi − wi (yi)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w). But we know that min

yi∈Yi

[yi − wi (yi)] ≤

0− w (0) ≤ 0 this implies Vi (w) ≤ 0 which contradicts eligibility. So λ > 0.

Because λ and µ are greater than zero, we normalize µ = 1 to arrive at (H.3):

k + λ (wi (yi) + wj)− (yi − wi (yi)) ≤ 0. (H.19)

Finally, from (H.13) and Lemma 2 we get (H.4).

We can now extend Lemma 4 to the private common agency case using (H.3) to define
an alternative contract and then adjusting to satisfy limited liability (Assumption 5) with
equality. This contract is linear in the principal’s output,

wi (yi) = (1− θi) yi, (H.20)

where we set 1−θi ≡ 1/1+λ for λ as in Lemma 15. The proof is virtually identical and we omit
it for space. Hereafter, we focus on linear contracts because they dominate other contracts
available to the principal.

In the last lemma, we characterize the principal’s payoffs under linear contracts and the
existence of an optimal contract in that class.

Lemma 16. Let w an eligible contract scheme with wi (yi) = (1− θi) yi for some θi ∈ [0, 1).

Vi (w) =
θi

1− θi
(VA (w|A0)− wj) = max

(F,c)∈A0

(
θi

1− θi
(EF [(1− θi) yi − (wj − wj (y))]− c)

)
(H.21)
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This also holds for θi = 1 if we interpret the term θi
1−θi

c as 0 when c = 0 and ∞ for c > 0.
Moreover, there exists an optimal linear contract for principal i given contract wj.

Proof. From (H.4) in Lemma 15, changing variables using 1−θi ≡ 1/1+λ, and setting k to guarantee
that wi(0) = 0 in (H.3), we get

Vi (w) =
θi

1− θi
(VA (w|A0)− wj) . (H.22)

Replacing for VA we arrive at the desired result.
The function θ

1−θ (EF [(1− θ) yi − (wj − wj (y))]− c) is continuous in θ in [0, 1], moreover it is
also continuous in (F, c) (because wj is a continuous function) and A0 is a compact set (constant
with respect to θ). Then Vi is continuous in θ as well (by the Theorem of maximum). Because the
RHS is continuous in θ it achieves a maximum in [0, 1]. θ⋆ characterizes the optimal linear contract.

Finally, we state the proof of Theorem 12.

Proof. (Theorem 12) By Lemma 16 there is an optimal contract among the class of linear contracts
for principal i, call it w⋆

i . Suppose there is an arbitrary contract wi that does strictly better than
w⋆
i : Vi (wi, wj) > Vi (w

⋆
i , wj). By Lemmas 15 and 4 there exists a linear contract w

′
i such that

Vi

(
w

′
i, wj

)
≥ Vi (wi, wj). This contradicts w

⋆
i being optimal among the linear contracts.

Now, impose Assumption 6 and let wi be an optimal contract for principal i. Define w
′
i using

(H.3) as in Lemma 15. w
′
i satisfies

EF

[
yi − w

′
i (yi)

]
≥ k + λVA

((
w

′
i, wj

)
|A0

)
, (H.23)

and Vi satisfies (H.4) with equality. Replacing for k on (H.4) we get

EF

[
yi − w

′
i (yi)

]
≥ Vi (w) + λ

(
VA

((
w

′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
. (H.24)

It must be that VA

((
w

′
i, wj

)
|A0

)
≥ VA ((wi, wj) |A0), with strict inequality unless w

′
i is

identical to wi, because w
′
i (yi) ≥ wi (yi) pointwise and A0 satisfies Assumption 6. Moreover, the

equation above holds for all F , so

Vi

(
w

′
i, wj

)
≥ Vi (w) + λ

(
VA

((
w

′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
> Vi (w) (H.25)

where the strict inequality holds when wi is not identical to w
′
i.

Then, wi = w
′
i, or else optimality would be contradicted. Then wi is linear in yi.
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I Robust taxation of multinationals

There is a big debate among policy experts and lawmakers on how to reform the corporate
income tax with a particular focus on foreign profits. The debate in the United States has
centered on whether to adopt a territorial approach–taxing only the profits generated in the
U.S.–or a worldwide approach–taxing all profits, foreign and domestic, the same. The need
for tax systems to be robust to profit shifting strategies is evident as tax reforms are slow,
and complex processes, hard to adapt to changes in firms’ actions.

We apply the setup developed in Section 1 to the problem of taxing multinational
companies and show that a worldwide tax with a deduction paid for taxes in the foreign
countries is robust changes in the firms’ production technologies across countries. This is
the tax system proposed in the Bipartisan Tax Fairness and Simplification Act of 2011 by
Senators Wyden and Coats (Senate Bill 727, 2011).

Consider two countries i ∈ {1, 2} and a multinational firm denoted by A. Let πi be
the firm’s profit in country i. The set of possible profits that can be declared in country
i is Πi ⊂ R with minΠi = 0 and maxΠi = π̄i. Also Π = Π1 × Π2. The firm’s actions
are distributions (F ) over the profits in Π, and a cost (c) associated with each distribution.
The firm’s action set (A) is then composed by pairs (F, c) ∈ ∆(Π) × R+. The cost can
be interpreted as an economic cost (after accounting costs are deducted) of engaging in
transfer pricing between the firm’s subsidiaries in each country. Alternatively, the cost can
be interpreted as unobservable effort from the firm’s manager as in Laffont and Tirole (1986).

Each country’s government chooses a tax function to maximize their guaranteed corporate
tax revenue when they only know a subset A0 ⊂ A, all assumptions on A and A0 are as in
Section 1. The tax function for country i is a continuous function ti : Π → R. These tax
functions map to the contracts in Section 1 as ti (π) = πi − wi (π) and the multinational’s
(agent’s) payoff is therefore

∑
i πi − ti (π) =

∑
i wi (π).

We consider two different restrictions over the range of the taxes which are equivalent to
the two versions of limited liability imposed in the common agency game in Assumptions 4
and 5. We refer to them as weak and strong enforceability:

Weak Enforceability: Countries have weak enforceability if they can only tax up to the
amount of profits declared in their respective territories. This implies: ti (π1, π2) ≤ πi.

Strong Enforceability: Countries have strong enforceability if they can collect taxes on
all profits generated by the firm. This implies: t1 (π1, π2) + t2 (π1, π2) ≤ π1 + π2.

Weak enforceability is a reasonable restriction for small countries that have a subsidiary of
a big multinational. This restriction is equivalent to individual limited liability, Assumption
5.30 Strong enforceability is a more reasonable restriction for large countries like the United
States where the multinational corporation has most of its activity this restriction. This
restriction is equivalent to Assumption 4.

The firm’s problem is to maximize after tax profits, given a tax scheme t = (t1, t2),

A⋆ (t|A) = argmax
(F,c)∈A

EF [(π1 − t1 (π)) + (π2 − t2 (π))]− c. (I.1)

30Weak enforceability does not amount to a territorial approach to taxation. A territorial approach would
amount to restricting the domain of the taxes, so that ti (π1, π2) = ti (πi), as in the private common agency
setup of Appendix H.
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The payoff of government i depends on their tax revenue and the firm’s after tax profits,

Ri (t) = inf
A⊇A0

{
min

(F,c)∈A⋆(t|A)
EF

[
ti (π) + ρi

2∑
j=1

(πj − tj (π))

]}
, (I.2)

where ρi ∈ [0, 1] is the weight each country puts on the profits of the multinational company.
If 0 < ρi < 1 country i cares about raising some distortionary taxes, so that the shadow
value of a tax dollar exceeds that of a unit of factor income. See Bond and Gresik (1996)
for a justification of the governments’ objective function. When ρ1 = ρ2 = 0 the problem is
isomorphic to the common agency problem considered in Section 1.

Similarly to Theorem 1, we can show that given the tax system of country j, country i’s
best response contains a worldwide tax, the equivalent to LRS taxes.

Definition 10. (Worldwide Tax) A tax function ti is a worldwide (flat) tax rate if the firm’s
global profits are taxed at a constant rate αi

1−αiρi
, allowing for the full deduction of taxes

payed to country j, and a potential tax incentive (in the form of a lump sum subsidy). That
is, for some αi ∈ (0, 1] and ki ∈ R:

ti (π) =

(
1− αi

1− αiρi

)
(π1 + π2 − tj (π)) + ki. (I.3)

The enforceability regime, i.e, limited liability, determines the constant ki.

The tax proposed by Senators Wyden and Coats has this form. It proposes a flat tax rate
for all profits independently of country of origin. We show that this tax system possesses
a robustness property, that a territorial tax system does not have. This property has been
informally articulated among tax policy experts (Hungerford, 2014). We provide a rigorous
treatment of the policy debate. Crucially, a worldwide tax is not just an equilibrium outcome
of the game. A worldwide tax is a best response for country i to any arbitrary tax system
of country j.

Interestingly, the worldwide tax has the same form as the taxes found by Feldstein and
Hartman (1979). Unlike us, they have a complete information setup and restrict attention
to linear tax functions, and their “full taxation after deduction” result rests on concerns on
the optimal allocation of capital between countries.

Another important issue is that of the effects of tax competition and the welfare
implications of a tax treaty between the countries. As shown in Section 5, competition
between countries—the common agency setup–would lead to a lower (higher) overall tax
rate on the multinational, relative to cooperation between countries through a tax
treaty—the collusion setup—when countries have weak (strong) enforceability and it would
lead to a higher (lower) overall tax rate on the multinationals.

I.1 Optimality of the worldwide tax when countries value domestic profits

We establish the optimality of the worldwide tax following the same steps as in Appendices
A.1 and D.1. The notation changes so that π = y and the ex-post payoffs of governments
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(principals) and the multinational (the agent) are, respectively,

ti (π) = πi − wi (π) ; (I.4)∑
i

πi − ti (π) =
∑
i

wi (pi) . (I.5)

In the following proofs we consider a particular form of the countries’ payoffs where they
only care about the domestic profits:

Ri (t) = inf
A⊇A0

{
min

(F,c)∈A⋆(t|A)
EF [ti (π) + ρiπi]

}
, (I.6)

Lemmas 1 and 2 apply without changes. We present them here without proof, adjusting
the notation to the multinational case.

Lemma 17. Let t be a tax scheme, A ⊇ A0 be an action set, and (F, c) ∈ A⋆ (t|A) an optimal
action for the multinational. Then, it holds that

F ∈ F ≡

{
F ∈ ∆(Y ) |EF

[
2∑

i=1

πi − ti (π)

]
≥ VA (w|A0)

}
. (I.7)

Lemma 18. Let t be an eligible tax scheme for country i. Then

Ri (t) = min
F∈F

EF [ti (π) + ρiπi] . (I.8)

Moreover, if F ∈ argmin
F∈F

EF [ti (π) + ρiπi] then EF

[∑2
j=1 πj − tj (π)

]
= VA (t|A0).

As before, we can use a separating argument to design what will end up being the optimal
tax function. This is the equivalent of Lemma 3.

Lemma 19. Let t be an eligible tax scheme for country i. There exist k, λ with λ > 0 such
that for all π ∈ Π:

ti (π) ≥
λ− ρi
1 + λ

πi +
λ

1 + λ
πj −

λ

1 + λ
tj (π) +

1

1 + λ
k; (I.9)

Ri (t) = k + λVA (t|A0) . (I.10)

Proof. Let S ⊆ R2 be the convex hull of all points (π1 − t1 (π) + π2 − t2 (π) , ρiπi + ti (π)) for π ∈ Π,
and T ⊆ R2 be the set of all pairs (u, v) such that u > VA (t|A0) and v < Ri (t).

The rest of the proof follows the same steps of Lemma 3, showing that S ∪ T = and applying
the separating hyperplane theorem to construct (I.9) and (I.10).

We can them proceed as in Lemma 4 by using (I.9) to construct an alternative tax
function that improves the country’s guaranteed payoff and satisfies enforceability (weak or
strong) with equality. This alternative contract is a version of the worldwide tax (Definition
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10) modified to account for the country only placing value on domestic profits. Letting
α ≡ 1/1+λ we can write

ti (π) = (1− α) (π1 + π2 − tj (π))− α (ρiyi + k) . (I.11)

Moreover, among the class of taxes satisfying (I.11) there is an optimal one for country i, as
in Lemma 6. This optimal tax is in the countries best response. The argument is the same
as in Theorems 1 and 7, and follows from constructing an alternative tax function to any
initial tax schedule using Lemma 19 which weakly dominates the initial tax, then this tax is
improved upon by the optimal worldwide tax.

Theorem 13. For any tax tj, there exists a worldwide tax ti such that ti ∈ BRi (tj) and ti
satisfies (I.11) for some α and k, and (weak or strong) enforceability with equality.

I.2 Optimality of the worldwide tax when countries value worldwide

profits

When countries the multinational’s worldwide after tax profits, say for efficiency motives,
as in I.2, we can also establish the optimality of worldwide taxes (I.3 in Definition 10). All
arguments are the same as before, except for that of Lemma 19 that we modify as follows:

Lemma 20. Let t be an eligible tax scheme for country i. There exist k, λ with λ > 0 such
that for all π ∈ Π:

ti (π) ≥
λ− ρi

1 + λ− ρi
(π1 + π2 − tj (π)) +

1

1 + λ− ρi
k; (I.12)

Ri (t) = k + λVA (t|A0) . (I.13)

Proof. Let S ⊆ R2 be the convex hull of all points
(π1 − t1 (π) + π2 − t2 (π) , ρi (π1 + π2 − t1 (π)− t2 (π)) + ti (π)) for π ∈ Π, and T ⊆ R2 be the set
of all pairs (u, v) such that u > RA (t|A0) and v < Ri (t).

The rest of the proof follows the same steps of Lemma 3, showing that S ∪ T = and applying
the separating hyperplane theorem to construct (I.12) and (I.13).

Just as before, we use (I.12) to construct the worldwide tax. Letting α ≡ 1/1+λ we have

λ− ρi
1 + λ− ρi

=
1/α − 1− ρi

1/α − ρi
= 1− 1

1/α − ρi
= 1− α

1− αρi
, (I.14)

which gives I.3 after redefining the constant k. We omit all other statements of the modified
lemmas for space. The equivalent statement of Theorem 13 applies.

Theorem 14. For any tax tj, there exists a worldwide tax ti such that ti ∈ BRi (tj) and ti
satisfies I.3 for some α and k, and (weak or strong) enforceability with equality.
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J Applications of common agency under Assumption 5

J.1 Constant marginal cost

To better understand the determinants of the share θ we consider the case where the agent’s
production technology exhibits constant marginal cost of production in total output, putting
structure on the agent’s action set A. We characterize the agent’s production technology
via a cost function, f , as in Theorem 8 of Appendix D.2. In particular, we assume that
the lowest cost of inducing a given expected total output is proportional to that expected
output.

Assumption 8. For any x ∈ [0, ȳ1 + ȳ2] there exists (F, c) ∈ A0 such that EF [y1 + y2] = x
and

γx = min {c| (F, c) ∈ A0 and EF [y1 + y2] = x} , (J.1)

where γ < 1 is the marginal cost.

Assumption 8 allows us to replace the maximization of the agent over (F, c) ∈ A0 with
one over the expected value of total output x ∈ [0, ȳ1 + ȳ2]. We do this to characterize the
equilibrium strategies of the principals and the agent.

Proposition 7. Impose Assumption 8 and let w be a LRS contract scheme such that principal
j plays the contract wj (y) = (1− θj) yj + θj (yi − yi) for some θj ∈ [0, 1]. Then, principal i
best responds with a contract of the form wi (y) = (1− θi) yi + θi

(
yj − yj

)
with:

θi =

{
(1− θj)−

√
(1− θj) γ

y1+y2
yi

if θj < 1− γ y1+y2
yi

0 otherwise
(J.2)

Moreover, an equilibrium exists. In that equilibrium, if the true action set is A = A0, the
agent chooses (F, c) such that EF [y1 + y2] = y1 + y2 and c = γ (y1 + y2).

Proof. Under Assumption 8, the cost function has the form: f (x) = γx for some constant γ > 0.
The agent’s value and optimal action are:

VA (w|A0) = max
x∈X

{(1− θ1 − θ2 − γ)x}+ θ1y2 + θ2y1, x⋆ =


x if 1− θ1 − θ2 > γ

0 if 1− θ1 − θ2 < γ

X if 1− θ1 − θ2 = γ

. (J.3)

Then, the best response of principal i is

BRi (wj) = argmax
θi∈[0,1−θj ]

{
θi
(
x− yj

)
− θi

1−θ1−θ2
γx if 1− θ1 − θ2 > γ

−θiyj if 1− θ1 − θ2 ≤ γ
. (J.4)
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The function in the first case is strictly concave, its critical value if x > y is

θ⋆i = (1− θj)−

√
(1− θj) γx

x− yj
. (J.5)

This is an interior solution if 1− θj − θ⋆i > γ and 0 ≤ θ⋆i ≤ 1− θj . These conditions are satisfied if

and only if
x−yj
x > γ

1−θj
, i.e., if expected output is enough to pay for the agent’s cost and the fees.

Then, principal i’s best response is

BRi (θj) =

{
θ⋆i if (1− θj)

(
x− yj

)
> γx

0 otherwise
. (J.6)

The best response of each principal is then single valued. As in the proof of Theorem 8 of Appendix
D.2, this implies the existence of an equilibrium in pure strategies.

When θi = 0 principal i’s guaranteed payoff, Vi, is zero as well. If this is the case in
equilibrium, we say that the principal has been driven out of the game. Effectively, the
principal renounces their output by setting wi (y) = yi. In particular, if yi < γ (y1 + y2),
the principal cannot guarantee themselves a positive payoff, regardless of θj (equation J.2).
For a principal to be able to profit in the game, they must be able to cover the (total)
production cost of the agent. Clearly, when wi (y) = yi, the principal can always opt for the
zero contract (wi (y) = 0). This is another way to opt out of the game because the principal
cannot guarantee herself a positive payoff without incentivizing the agent.

J.2 Constant cost

We now make the agent indifferent between actions. The characterization is very similar to
that under Assumption 8. We outline it below.

Assumption 9. Let (F, c) ∈ A0, if EF [y1 + y2] > 0, then c = γ > 0.

Under Assumption 9, the agent will choose to induce the maximum expected total output,
as long as it covers the cost γ. Recall that, under LRS contracts, the agent’s payoff is
increasing in expected total output.

x⋆ (θ1, θ2) =

{
x if (1− θ1 − θ2)x > γ

0 otw
. (J.7)

Then, the best response of principal i is

BRi (wj) = argmax
θi∈[0,1−θj ]

{
θi
(
x− yj

)
− θi

1−θ1−θ2
γ if (1− θ1 − θ2)x > γ

−θiyj if (1− θ1 − θ2)x ≤ γ
, (J.8)
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where the function in the first case is strictly concave, its critical value if x > y is

θ⋆i = 1− θj −

√
(1− θj) γ

x− yj
. (J.9)

This is an interior solution if (1− θj − θ⋆i )x > γ and 0 ≤ θ⋆i ≤ (1− θj), which are satisfied
if and only if x− yj >

γ
1−θj

, i.e., if expected output is enough to pay for the agent’s cost and

the fees. The best response of principal i is:

BRi (θj) =

{
θ⋆i if (1− θj)

(
x− yj

)
> γ

0 otherwise
. (J.10)

The best response of each principal is then single valued. As in the proof of8 of Appendix
D.2, this implies the existence of an equilibrium in pure strategies.

J.3 First price auction

Consider now a setup where two competing firms bid for a government contract (such as a
contract for the provision of services to the government, the construction of a public good,
or the privatization of a government asset). The government announces that the contracting
process has a fixed cost c > 0, and that the contract will be awarded with the objective
of maximizing the government’s profits. The cost of the contract can be interpreted as the
social benefit of carrying out the project that the contract stipulates, or the valuation of
a government asset that is being privatized. Both firms have their own valuation of the
contract, we denote them by y1 and y2. We assume without loss that y1 > y2 > c.

The possible outcomes of the contracting process are that firm 1 is awarded the contract,
firm 2 is awarded the contract, or the process is declared null and neither firm gets it. In
a perfect information setting, this setup is that of a first price auction.31 However, if the
government is known to be corrupt the firms would have reasons to doubt the announcement.
For instance, the government can potentially (and secretly) favor one of the firms. It is also
possible that the government is willing to randomize between the firms and lower the cost,
this might be the case if bids are hard to assess and the government can lower costs at the
expense of adding error to the contracting process, or if technicalities can arise that create
the chance of a lower bid to be awarded the contract.32

We show that there are two equilibria in robust contracts for this game. The output
space is Y = {(0, 0) , (ȳ1, 0) , (0, ȳ2)} and the known set of actions for the government (the

31The bids in the auction are undefined because firm 1 would try to marginally outbid firm 2.
32Randomness in who is assigned the contract can also arise from last minute changes in the rules (not

uncommon in developing countries), or from challenges made in courts to the rules or the decision of the
government. It is worth pointing out that randomization is not itself necessary for our results. The firms
could simply be worried that the government can allocate the good with certainty to the other contractor.
This is in fact the worst case scenario they face.
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agent) are A0 =
{
(δ0, 0) ,

(
δy1 , c

)
,
(
δy2 , c

)}
. LRS contracts have the following form

wi =


θiyj if y = (0, 0)

yi − θi
(
yi − yj

)
if y = (yi, 0)

0 if y =
(
0, yj

) , (J.11)

where wi

(
0, yj

)
≤ wi (0, 0) ≤ wi (yi, 0) because θi ≥ 0 and yj > 0. That is, the principals

always pay more if they win the auction, followed by no one winning and lastly if the auction
is won by the other principal.

The government’s problem is:

VA (w|A0) = max
{
θiyj + θjyi, (1− θi) yi + θiyj − c, (1− θj) yj + θjyi − c

}
. (J.12)

For any strategy of the firms (θ1, θ2) the government will either award the contract to the
firm with the highest valuation (firm 1) or not award it at all.

The best response of firm 2 given the government’s strategy is to set θ2 = 0 or to offer
the zero contract. This gives rise to two equilibria of the game where the government ends
up awarding the contract to the firm with the highest valuation.

i. Firm 2 sets θ2 = 0, bidding w2 (y) = y2, and firm 1 optimally sets

θ1 =

1−
√

c
y1−y2

if c
(

y1−y2
y1

)
< y1 ∧ y2 + c < y1

0 otherwise
, (J.13)

guaranteeing that the government will prefer awarding the contract to firm 1 over
declaring the process null, and that the firm 1’s valuation is enough to pay the
government’s cost and compensate it for not awarding the contract to firm 2 (this
ensures that θ1 ≥ 0).

ii. Firm 2 walks away from the bid, setting w2 (y) = 0, and firm 1 sets w1 (y) = (1− θ1) y1
with θ1 = 1 −

√
c/y1. For this to be an equilibrium, the zero contract must be a best

response for firm 2. That is the case when y2 <
√
cy1.

If y1 = y2, there are no eligible contracts for the firms, because the government will be
indifferent between them and neither firm can guarantee to be awarded the contract.
Because of this the only equilibrium in that case is for both of them to set wi (y) = yi.

J.4 Provision of public goods

Consider now an agent that produces one unit of a public good with variable quality q ∈ [0, 1]
at a cost f (q) = γq. There are two principals that value the public good with yi = νiq,
i ∈ {1, 2}. The output space is then

Y =
{
(y1, y2) ∈ R2

+|∃q∈[0,1] y1 = v1q ∧ y2 = v2q
}
. (J.14)
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Output is perfectly correlated across principals (as opposed to a cross product space as in
our baseline model), making so that there is no competition factor as both principals can
take advantage of the public good simultaneously. We show that this will only change the
intercept of the LRS contract. The efficient outcome is of course to provide the good at
highest quality if ν1 + ν2 ≥ γ.

The equilibrium has each principal “partially” free riding on the other by lowering
compensation by a fraction of the other principal’s payoff, while guaranteeing that the
agent optimally chooses to set q = 1. An interesting feature of this equilibrium is that no
matter how different the valuations are, all principals get the same share of expected
output and the same guaranteed payoff.

Proposition 8. Let θ be such that 1−θ/(1−2θ)2 = νi+νj/γ. The contracts wi (y) = (1− θ) yi− θyj

are an equilibrium of the game if
(νj−νi)

2

max{νi,νj} ≤ γ ≤ ν1 + ν2.

Proof. The LRS contracts in equilibrium change because of our assumption on the output space
Y . If principal j offers a contract wj = (1− θj) yj − θjyi, then the LRS contract of principal i, as
in (7), is increasing in both yi and yj as long as:

(α+ (1− α) θj) νi − (1− α) (1− θj) νj ≥ 0 (J.15)

In this case, the minimum is achieved when yi = yj = 0. This implies k = 0 and wi = (1− θi) yi −
θiyj , with θi = (1− α) (1− θj) and no fees payed to the agent. Condition (J.15) is verified later.

The value of the agent is

VA (w|A0) = max {0 , (1− θ1 − θ2) (ν1 + ν2)− γ} . (J.16)

The agent will choose either to induce the highest quality of not to produce at all.
The principal’s best response are

BRi (wj) = argmax
θi∈[0,1−θj ]

{
θi (ν1 + ν2)− θi

1−θ1−θ2
γ if (1− θ1 − θ2) (ν1 + ν2) > γ

−θiyj if (1− θ1 − θ2) (ν1 + ν2) ≤ γ
. (J.17)

The interior solution assuming that the agent produces is

θ⋆i = (1− θj)−

√
(1− θj) γ

ν1 + ν2
(J.18)

Moreover, in equilibrium it must be that

1− θj

(1− θi − θj)
2 =

νi + νj
γ

∧ 1− θi

(1− θi − θj)
2 =

νi + νj
γ

(J.19)

which implies that θi = θj = θ, where θ is such that: 1−θ
(1−2θ)2

=
νi+νj

γ .

It is left to verify the assumptions, namely condition (J.15) which is satisfied if
(νj−νi)

2

max{νi,νj} ≤ γ,

and profitability of the agent ((1− θ1 − θ2) (ν1 + ν2) > γ), feasibility of the share θ
(
0 ≤ θ ≤ 1

2

)
and profitability of the principals, which are always satisfied.

73



References

Antic, Nemanja, “Contracting with Unknown Technologies,” 2021. Northwestern

Working Paper, https://www.kellogg.northwestern.edu/faculty/antic/

ContractingUnknownTech.pdf.

Bernheim, B. Douglas and Michael D. Whinston, “Common Agency,” Econometrica, 1986,

54 (4), 923–942.

and , “Menu Auctions, Resource Allocation, and Economic Influence,” The Quarterly

Journal of Economics, 1986, 101 (1), 1–32.

and Michael Whinston, “Common Marketing Agency as a Device for Facilitating

Collusion,”RAND Journal of Economics, 1985, 16 (2), 269–281.

Bond, Eric W. and Thomas A. Gresik, “Regulation of multinational firms with two active

governments: A common agency approach,” Journal of Public Economics, January 1996,

59 (1), 33–53.

Breton, Michel Le and Francois Salanie, “Lobbying under political uncertainty,” Journal of

Public Economics, 2003, 87 (12), 2589–2610.
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