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where H j corresponds to the Shannon entropy of the set composed by the concatenation of all the time-courses
of components ci that are assigned to the k-th community, i.e, the set composed by all the samples of the time
courses of the components in Tj , with Tj = f i; such that ci is equal to j g. More specifically:

H j = !
X

i

pj
i ln pj

i (2)

where pj
i is the probability occurrence of intensity i in the time courses of all the components inside Tj . Note

that (1) aims to quantify the amount of information among each community. High values for this function can
be expected when each community contains highly informative RNSs.

2.3.2 Otsu Criterion

The Otsu’s method29 is based on the discriminant analysis. Their main idea is to maximize the inter-cluster
variance, and simultaneously, to minimize the intra-cluster variance, as follows:

f Otsu (C) = (u1 ! u2)
2 + (u1 ! u3)

2 + : : : + (u1 ! uk )
2+

(u2 ! u3)
2 + (u2 ! u4)

2 + : : :+
(u2 ! uk )

2 + : : : + (uk ! 1 ! uk )
2+

(3)

where uj =
P

i ip j
i .

2.3.3 Multiobjetive optimization

Both criteria (1) and (3) are explicitly measurements of modularity-segregation for the FCN network. The Ka-
pur’s criterion search the partition that is maximally informative, and Otsu’s criterion look for the minimally
variant segmentation inside each community and simultaneously, the maximally variant segmentation between
communities. However, even if both criteria aims to measure the same network property they differ in their
nature. In order to consider both criteria simultaneously, we propose to find the partition that maximizes simul-
taneously both criteria. This search problem can be solved by using a multi-objetive optimization formulation,
as follows:

C � = argmaxC (f Kapur (C); f Otsu (C)) (4)

In this formulation commonly there is no a solution that maximizes both objective functions simultaneously.
Therefore, the solution is selected from the Pareto front, i.e., the locus of solutions that cannot be improved in
any of the objectives without degrading at least one of the other objectives.30

2.4 Optimization Algorithm

The exhaustive search of the solution among the complete set of possible RSNs segmentation is computationally
intractable. Therefore, we used an heuristics algorithm to approximate the solution. Specifically, we used the
fast elitist multi-objetive genetic algorithm (NSGA-II).30,31 This algorithm aims to find the non-dominated or
pareto-optimal solutions, which are those solutions in the set which do not dominate each other, i.e., neither of
them is better than the other in all the objective function evaluations. The solutions on each pareto-front are
pareto-optimal with respect to each other.

2.4.1 Chromosome representation

In the NSGA-II approach the possible solutions are codified as chromosomes consisting of n genes, each one
organized in a vector structure. In this case, we used C as the chromosome codifying a possible solution.
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2.4.2 Optimization parameters

For the NSGA-II optimization we used a multi-objective genetic algorithm with simulated binary crossover (SBX)
and polynomial mutation operators implementation x. For this experimentation the initial set population was
set to 70 and generation number to 70. These parameters were experimentally determined based on convergence
and reproducibility criteria. For the others parameters, the default values in the implementation were used.

2.4.3 Optimal solution selection

First, the NSGA-II was used at the subject level to find a non-dominated, as a result 70 feasible solutions were
found. Then, a matrix Sp 2 R70� n was constructed by using each feasible solution as row. To find a single
solution the mode over the values of each column of Sp were computed. This process resulted in a vector sr

which represents the solution for a single run. Because NSGA-II is a non-deterministic algorithm each run can
result in a different solution. In order to find an stable solution per-subject, we repeated the optimization 20
times for each subject. Then a similar procedure was used to find an stable solution per-subject, i.e., a matrix
Sr 2 R20� n was constructed by using the reduced run solutions of the subject s1r ; s2r ; : : : ; s20r as rows. Following,
the modes over the columns of Sr were used again to reduce Sr to a single solution ss. Finally, to find the
solution at the population level a matrix Ss 2 Rq� n was constructed by using the solutions for the q subjects
in a determined population. Then the mode was used again over the columns of Ss to find the solution at the
population level. An illustration of this procedure is shown in figure 2.

Figure 2. Optimal solutions selection flow. Four level of optimal solution selection was applied. In the first level, the mode
solution into Pareto front is obtained by one subject in a particular experimental replica, later, the mode solution is anew
obtained for all runs by a particular subject. Finally, the mode solution among all subjects in a particular population is
calculated, this structure is a characteristic solutions at population level.

3. RESULTS AND DISCUSSIONS

Figure 3 shows the communities obtained at the population level for the healthy control and the DOC (VS/UWS
and MCS) populations by using the procedure described in 2.4.3. As observed, in controls two visual systems
(medial and lateral) are grouped into a single community and visual occipital emerge as an independent com-
munity. In contrast, in the DOC population these three visual systems conform a single community, suggesting
a reduction in the segregation level. A similar result is observed for ECR and ECL that constitute indepen-
dent communities for healthy controls and conform a single community for DOC. Evidence associated with the
reduction in the segregation level between ECR and ECL in DOC condition, had already been reported.5,6

Interestingly, this networks are thought to control mechanism of attention to external stimuli and processing of
sensory information, two mechanisms that possibly are associated with the emergency of the consciousness.32

xhttps://atlas.genetics.kcl.ac.uk/ rschulz/
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Specifically, the executive systems (ECL and ECR) are thought to be involved in handling novel situations,
maintain the attentive control on current task goals as well as responding to salient new information or alerting
stimuli in the environment.33

A reduction of segregation level is associated with decreased specialization in brain function.34 In this context,
segregation level is measured through number of communities emerging. Recent evidence, suggests that some
brain state or brain pathological conditions may be characterized by alteration in brain segregation level.35–37

These evidence has been quantified by using graph theory, however, reduce the brain dynamic to only pairs of
interactions, can be an oversimplification inadequate. In our approach, not is necessary this simplification of
problem, because, our methodology is based only on the raw data.

Figure 3. Communities at the populations level. Left communities obtained for healthy controls, and right communities
obtained for DOC population (VS/UWS and MCS)

In our results, the number of communities in the DOC population decrease compared to healthy controls
indicating a reduction in the segregation level related to loss of consciousness. Our results bear out the recent
evidence suggesting that the brain integration and brain segregation must coexist in the best balance for an
suitable brain functions.35 All RSNs reported in the literature, have been consistently and reproducibility
identified in healthy subjects,2 but, any approach has validated the existence of these RSNs in DOC conditions.
Our results suggest, that some RSNs can not exist as segregated entities in DOC condition. Therefore, models
as FNC could not be appropriate to characterize pathological conditions as DOC.

4. CONCLUSIONS

In this work, we proposed a novel method to find the communities in resting state. Our approach is based in a
multi-objective optimization problem that considers two mutually exclusive criteria of modularity-segregation.
Our results suggests that the proposed method can find highly the structural conformation of the networks
into communities without using any prior information. Our results suggests that the segregation levels in DOC
conditions is reduced when compared to control subjects. These results suggest that the segregation level maybe
linked the consciousness levels.
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Européenne du Travail” , “Fondazione Europea di Ricerca Biomedica” and the University Hospital of Liége.
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