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Abstract

We investigate a model of deterministic stochastic choice for the standard con-

sumer problem. We introduce the framework of statistical consumer theory where

the individual maximizes their utility with respect to a distribution of bundles that

is constrained by a statistic (e.g. mean expenditure). We show that this behavior

is observationally equivalent to an individual whose preferences depend only on the

statistic of the distribution. Statistical consumer theory neither nests nor is nested

in the random utility approach. We provide a formal statistical test of the model

accounting for sampling variability and demonstrate it in an illustrative example

using data on capuchin monkeys.

∗We thank Keith Chen for providing access to the data.
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1 Introduction

Stochastic choice occurs when an individual faces a budget set several times and pro-

duces a distribution of choices from that budget set. In economics, a large literature has

emerged to understand stochastic choice. There are two main approaches. The first one

assumes that stochastic choices are generated by random preference shocks. This led to

the development of random utility models (RUMs).1 The second approach assumes that

stochastic choices are generated by an individual who chooses a most-preferred distribu-

tion of bundles and randomizes according to that distribution. Following the literature,

we call this approach deterministic stochastic choice, since individuals have a determin-

istic preference over the distributions of commodity bundles.2 In this paper, we examine

deterministic stochastic choice for the standard consumer problem when an individual

maximizes their utility with respect to distributions over consumption bundles that are

constrained by a statistic. We call this framework a statistical choice model. We show

that these restrictions are equivalent to a model where the individual’s preferences depend

only on the statistic that constrains the distributions.

Within the paper, we focus on restrictions from the mean statistic. We are interested

in the case where an individual faces budget restrictions that depend on mean expen-

diture, however the ideas readily extend to other statistics. We consider the standard

consumer problem where an individual can choose a distribution of consumption bun-

dles, but faces a budget constraint that mean expenditure is less than income. The main

result (Theorem 1) shows that an individual makes choices consistent with the constraint

on mean expenditures if and only if the generalized axiom of revealed preference (Afriat,

1967; Diewert, 1973; Varian, 1982) is satisfied on mean consumption bundles. This result

follows while only assuming local nonsatiation of the preference over distributions.

The main result also shows that when the budget constraints depend only on mean

expenditure, it is equivalent to assume an individual (i) has a nonsatiated preference over

all distributions, or (ii) has preferences that depend only on mean consumption. More

1Random utility models are studied in Thurstone (1927), Luce (1959), Block and Marschak (1960),

Falmagne (1978), McFadden and Richter (1990), McFadden (2005), and Kitamura and Stoye (2018).
2An early paper to consider this perspective is Machina (1985). For a more recent work in this

framework see Swait and Marley (2013), Fudenberg et al. (2015), Freer and Martinelli (2016), Cerreia-

Vioglio et al. (2019), and Allen and Rehbeck (2019).
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generally, if there are systematic budgetary restrictions from a statistic of the distribu-

tions, then one can model individual behavior as arising from preferences that depend

only on the statistic. After stating the main result, we show through examples that this

framework neither nests nor is nested by random utility models.

The model of statistical consumer theory we present has intuitive appeal. A natu-

ral starting point when considering an individual choosing a distribution of bundles is

to consider what constraints are placed on the distributions that can be chosen. Con-

straints on the distributions by a statistic (e.g. mean) may occur by necessity since an

individual cannot overspend their income indefinitely. These constraints may also occur

via mental accounting (Thaler, 1980) where an individual allows themselves to purchase

bundles beyond their income (e.g. vacation), but does not allow these regularly. Using a

statistic may be easier for an individual performing mental accounting since it is a lower

dimensional object than the whole distribution.

Statistical consumer theory also provides a new perspective for models of stochastic

choice. As mentioned earlier, there are many papers that study stochastic choice. The

approach of random utility models (McFadden and Richter, 1990) is often criticized since

it is difficult to apply it to welfare analysis because an individual’s distribution of pref-

erences is in general not uniquely identified.3 In contrast, when stochastic choices are

generated from a preference over distributions following Machina (1985), a researcher can

use the standard welfare framework of consumer theory. This paper provides a bridge

that allows a researcher to use the ideas of standard consumer theory to study stochastic

choice, since natural statistics such as the mean lead to an analogue of the generalized

axiom of revealed preference.

This paper also provides theory that matches the analysis used in experiments on

animal decision making following the work of Kagel et al. (1975), Battalio et al. (1981),

Kagel et al. (1981), Battalio et al. (1985), and Kagel et al. (1995).4 Since researchers

performing experiments on economic rationality of animals are not able to explain the

3This need not be true if one restricts the class of preferences. For example, the single-crossing random

utility models in Apesteguia et al. (2017) yield point identification on distributions of preferences.
4There are other papers that study rationality of animals. For example, Shafir (1994), Chen et al.

(2006), Latty and Beekman (2010), Lea and Ryan (2015), Krasheninnikova et al. (2018), and Natenzon

(2019) study rationality properties of choice distributions from bees, capuchin monkeys, amoeboids, frogs,

and parrots.
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directions to their subjects, these studies are concerned about noise being present from

a single choice. For these reasons, rationality of animals is mainly tested using mean

choices. While the test of mean rationality is standard in such experiments, it does not

follow from any standard revealed preference result. This paper fills this gap.5

Following the theory, we provide a simple statistical framework for testing rationality

using mean choices. Many experiments examining rationality in animals look at choices

from two linear budget sets. These experiments are often designed so that a violation of

rationality can only be detected when there is a violation of downward-sloping demand

in consumption-compensated budget sets. We present a method to test for violations of

mean rationality for any two budget sets. In particular, our test can be used for budget

sets that are not consumption-compensated. We illustrate how to to perform the test

using data on capuchin monkeys from Chen et al. (2006).

This paper also informs work on revealed preference which is discussed in a textbook

setting in Chambers and Echenique (2016). In particular, we build off the standard

demand setting studied in Afriat (1967), Diewert (1973), and Varian (1982). To the best

of our knowledge, the idea of considering how revealed preference restrictions from budget

constraints are related to the objective function of the individual is new. However, the

results are mathematically similar to those developed in Forges and Minelli (2009). The

approach is also related to Richter (1979), Chambers et al. (2019), and Deb et al. (2019),

which examine the relation between primal and dual revealed preference relations.

The remainder of the paper is organized as follows. Section 2 defines the model

with constraints on mean expenditure and presents the main results. Section 3 contrasts

behavior of statistical consumer theory with random utility models. Section 4 presents the

results on the statistical methods for common budgets used in tests of mean rationality

for animals and provides an illustrative example using data from Chen et al. (2006).

Section 5 provides a discussion of the results and some final remarks.

5In contrast, experiments on human often use a single choice from each budget, e.g. Harbaugh et al.

(2001), Andreoni and Miller (2002), Choi et al. (2007). Nonetheless, a researcher may be concerned that

a human does not understand instructions and be interested in examining mean rationality.
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2 Model and results

In this section, we present a model of consumer choice where the individual maximizes

their utility over a distribution of consumption bundles, but faces a restriction on mean

expenditure. We discuss how this extends to general statistics in Appendix A. All proofs

not found in the main text are located in Appendix A.

We identify the consumption space with the positive orthant of the L-dimensional

real space RL
+. Hence, a consumption bundle is a vector x ∈ RL

+, where for ℓ = 1, . . . , L

each entry xℓ determines the amount of one of the L commodities. We endow RL
+ with a

norm ∥ · ∥ and the natural product order ≥.6 Let ∆ denote the space of Borel probability

measures over the consumption space RL
+. For technical reasons, we restrict our attention

to measures that satisfy
∫
∥y∥dµ(y) < ∞, which is without loss of generality in this

framework.7 Finally, we endow ∆ with the weak topology.8

We consider a model of consumer choice in which an individual maximizes their util-

ity function with respect to probability distributions over the consumption space. Thus,

stochastic choice is generated by an agent who chooses a most-preferred distribution of

bundles and randomizes the selection of a particular bundle in RL
+ according to this dis-

tribution. See Sopher and Narramore (2000), Agranov and Ortoleva (2017), and Feldman

and Rehbeck (2019) for experimental evidence supporting this view of stochastic choice.

The primitive dataset D :=
{

(pt,mt, µt) : t ∈ T
}

consists of a finite number of prices

pt ∈ RL
++, incomes mt ∈ R++, and probability measures µt ∈ ∆. Here, we interpret the

probability measure µt as being chosen by a single consumer. We abuse notation and

use T both to refer to the number of observations and the set of their labels, where the

meaning is clear from the context. Later in the paper, we show that one may assume

mt =
∫

(pt · y)dµt(y) without loss of generality for statistical consumer theory.

6This is to say that, for any vectors x = (xℓ)
L
ℓ=1, y = (yℓ)

L
ℓ=1 in RL, we have x ≥ y if xℓ ≥ yℓ, for all

ℓ = 1, . . . , L. In addition, the relation is strict and denoted by x > y if x ≥ y and x ̸= y.
7Equivalently, the Bochner integral

∫
y dµ(y) in RL

+ is well-defined. This follows from Theorem 11.44

in Aliprantis and Border (2006).
8A sequence {νk} in ∆ weakly converges to ν if the Lebesgue integral

∫
fdνk converges to

∫
fdν, for

any continuous and bounded function f : RL
+ → R. In particular, this space is metrizable.
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2.1 Statistical consumer theory

The focus of this paper is on a case of statistical consumer theory where the set of feasible

distributions is constrained by mean expenditure, given the observed prices. Specifically,

given prices p ∈ RL
++ and income m > 0, a feasible distribution ν must be contained in

the mean expenditure budget defined by the mapping

A(p,m) =

{
ν ∈ ∆ :

∫
(p · y)dν(y) ≤ m

}
. (1)

The mean expenditure budget allows an individual to purchase bundles that cost more or

less than their income. However, on average the expenditure can not exceed the income.

Following the interpretation of deterministic stochastic choice, the individual selects a

distribution µ to maximize their utility over the budget A(p,m).

With this restriction, we consider mean expenditure datasets of the form DA :={
(At, µt) : t ∈ T

}
where At := A(pt,mt) and µt ∈ At. Throughout the theoretical

analysis, we assume there is no error in measuring the chosen distribution µt. However,

when applying these results to certain empirical settings, sampling variability may arise

since only finitely many realizations of µt can be observed. These realizations would be

interpreted as “choices” in a standard deterministic or random utility model. In contrast,

for our approach, preferences are defined over distributions µt and the realizations are

drawn from the chosen distributions. We discuss methods to address finite sample issues

in Section 4.

We are interested in when the dataset DA can be described, or rationalized, by utility

maximization. Equivalently, we wish to know when there exists a utility function U :

∆ → R such that for all t ∈ T , the chosen distribution µt satisfies

U(µt) ≥ U(ν), for all ν ∈ At. (2)

Clearly, with no additional restriction on the utility function, any dataset can be ratio-

nalized with a constant function U . For this reason, we restrict our attention to the

class of locally nonsatiated utility functions U . Local nonsatiation of U requires that, for

any probability measure ν ∈ ∆ and neighborhood, there is some distribution ν ′ in the

neighborhood that satisfies U(ν ′) > U(ν).

The above framework allows for a natural definition of revealed preference relations.

We begin by specifying the directly revealed preference relation R defined over the set of
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observed choices {µt}t∈T . For any t, s ∈ T , we say that measure µt is directly revealed

preferred to µs, and denote it by µt R µs, when
∫

(pt · y)dµs(y) ≤ mt; i.e., whenever the

measure µs was available from the budget At. Next, we define the strictly directly revealed

preference relation P . For any t, s ∈ T , we say that measure µt is strictly directly revealed

preferred to µs, and denote it by µt P µs, when
∫

(pt · y)dµs(y) < mt.

It is straightforward to show that both relations are consistent with any locally non-

satiated utility function U that rationalizes the set of observations DA. Indeed, whenever

the consumer selects a measure µt at time t, they directly reveal that it is preferable to

any other option µs that satisfies the mean expenditure constraint
∫

(pt · y)dµs(y) ≤ mt.

Hence, µt R µs must imply U(µt) ≥ U(µs).

One can show that the strict directly revealed preference P is also consistent with a

locally nonsatiated utility. First, recall that local nonsatiation of U requires that for any

element ν ∈ ∆ and neighborhood, there is some ν ′ in the neighborhood such that U(ν ′) >

U(ν). By continuity of function ν →
∫

(pt·y)dν(y), the set
{
ν ∈ ∆ :

∫
(pt·y)dν(y) < mt

}
is

open. Therefore, for any element µs contained in the set, there must be some distribution

ν ′ such that U(ν ′) > U(µs). Since ν ′ is also available from the At budget, the previous

claim implies U(µt) ≥ U(ν ′) > U(µs).

Now we construct the revealed preference relation R∗ from the previous direct revealed

preference relations. Specifically, for any t, s ∈ T , we say that µt is revealed preferred to

µs, denoted by µt R∗ µs, if there is a sequence of indices a, b, c, . . . , z ∈ T such that

µt R µa, µa R µb, . . . , and µz R µs. (3)

Moreover, we say that µt is strictly revealed preferred to µs, denoted by µt P ∗ µs, when

there is a sequence as in (3) with at least one pair strictly revealed preferred. This

immediately implies the testable restriction of mean acyclicity.

Definition 1 (Mean acyclicity). For any cycle C =
{

(a, b), (b, c), . . . , (z, a)
}

in T × T

such that
∫

(pt · y)dµs(y) ≤ mt for (t, s) ∈ C, we have
∫

(pt · y)dµs(y) = mt, for (t, s) ∈ C.

The definition of mean acyclicity depends only on the information contained in the

primitive dataset, but it is equivalent to restrictions on the revealed preference relations.

Indeed, it is satisfied if and only of the revealed strict preference relation P ∗ is irreflexive.9

9The relation P ∗ is irreflexive if not µ P ∗ µ, i.e., no element is strictly preferable to itself.
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At the same time, the definition coincides with the generalized axiom of revealed preference

(GARP) on the revealed preference relation R∗ so that

µt R∗ µs implies not µs P µt. (4)

We use the definition in equation (4) to construct a statistical test in Section 4.

Mean acyclicity requires further comment. In particular, the condition applies to one

element cycles C =
{

(t, t)
}

. It follows that maximization of a locally nonsatiated utility

function requires that
∫

(pt · y)dµt(y) = mt, for all t ∈ T . Thus, the budget constraint

must be binding for every observed choice. An important practical implication of this fact

is that it is not crucial for the econometrician to observe income mt. Thus, given prices

pt and the distribution µt, the average expenditure must satisfy mt =
∫

(pt · y)dµt(y).

Mean acyclicity is a straightforward extension of GARP (as in Afriat, 1967; Diewert,

1973; Varian, 1982) to choices over probability measures, rather than consumption bun-

dles. In fact, if the consumer chooses only degenerate lotteries, GARP coincides with

mean acyclicity. To see this, for all t ∈ T a degenerate lottery satisfies µt = δxt , where

the latter denotes the Dirac measure concentrated at some xt ∈ RL
+. Therefore, we have∫

(pt · y)dµs(y) = pt · xs for all t, s ∈ T , which reduces mean acyclicity to GARP.

Finally, by Lemma 11.45 in Aliprantis and Border (2006), we have∫
(p · y)dν(y) = p ·

∫
y dν(y)

for all ν ∈ ∆ and t ∈ T . This implies that all relevant information for mean acyclicity

is summarized by the mean bundle
∫
y dν(y) for the distribution ν. We leverage this

observation for the test in Section 4, where we exploit the fact that, when faced with

sampling error, estimating mean consumption rather than the whole distribution µt is

sufficient to test for mean acyclicity.

Since we can represent the budget set as a restriction on mean bundles, it is natural

to study utility functions that depend only on the mean bundle. We provide a formal

definition of a mean choice rationalization below.

Definition 2. We say the dataset DA is rationalizable with a mean choice model if there

is a locally nonsatiated function f : RL
+ → R such that

U(ν) := f

(∫
y dν(y)

)
8



rationalizes DA as in condition (2).

If the dataset can be rationalized with a mean choice model, then the utility that

rationalizes the data only depends on the mean bundle (a vector), rather than the whole

set of distributions. In the main theorem below, we argue that locally nonsatiated prefer-

ences are equivalent to the mean choice model when the sets of distributions are restricted

by the mean expenditure budget defined in equation (1).

Theorem 1. For any set of observations DA with mean expenditure budgets, the following

statements are equivalent:

(i) DA satisfies mean acyclicity.

(ii) DA is rationalizable with a locally nonsatiated utility function U : ∆ → R.

(iii) DA is rationalizable with a mean choice model.

(iv) DA is rationalizable with a mean choice model with a continuous, strictly increasing,

and concave function f : RL
+ → R such that U(ν) := f

( ∫
y dν(y)

)
.

This result has several implications. First, the revealed preference analysis of sta-

tistical consumer theory is simple and parallels classical revealed preference analysis.

The main theorem shows this connection when consumer choices are restricted by mean

expenditures. However a more general statistical consumer theory is developed in Ap-

pendix A.2. Second, in the above framework, the mean choice model is observationally

equivalent to locally nonsatiated preferences. Therefore, this property of consumer pref-

erence has no additional testable implications. In fact, given statement (iv), there is no

loss of generality in restricting attention to a mean choice model with a well-behaved

function f . We emphasize that these equivalences depend on the assumptions imposed

on the observable budget sets and are not true in general, as shown in Section 2.2.

2.2 Alternative budgets

In the main analysis we focus attention on the mean expenditure budget. However, in

some settings it is natural to consider an alternative specification. Given the primitive

dataset D :=
{

(pt,mt, µt) : t ∈ T
}

, we consider support budgets defined by the mapping

B(p,m) :=
{
ν ∈ ∆ : ν

(
{y ∈ RL

+ : p · y ≤ m}
)

= 1
}
, (5)
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for prices p ∈ RL
++ and mean income m > 0. We call this a support budget since

ν is restricted to satisfy affordability for (almost) every realization. When using these

support budgets, we denote the corresponding dataset by DB =
{

(Bt, µt) : t ∈ T
}

where

Bt := B(pt,mt). Thus, we require for all t ∈ T that µt ∈ Bt.

This budget is more restrictive than the mean expenditure constraint considered pre-

viously. Recall that mean expenditure budget allows violations of p · y ≤ m with positive

probability, as long as the mean expenditure is bounded by m. We study the support

budget because it better matches the application of experimental studies on animal ra-

tionality. Experiments on animal rationality have each subject (e.g., capuchin monkey)

make choices from the same budget set several times. Repeated choices from a budget set

in an experiment then give a distribution of choices that can be used to study whether

data are consistent with the mean choice model, as in Definition 2.

Analogously to (2), a dataset DB =
{

(Bt, µt) : t ∈ T
}

is rationalizable by a utility

function U : ∆ → R if U(µt) ≥ U(ν), for all ν ∈ Bt and t ∈ T . Moreover, the set is

rationalizable with the mean choice model if U is specified as in Definition 2.

The revealed preference analysis of the mean choice model is similar with support

budgets. Consider the directly revealed preference relation R defined earlier. Notice that

even though the set of distributions available to the consumer differs, such a preference

relation is rationalizable with a mean choice model. For example, suppose that µt R µs,

or equivalently pt ·
∫
y dµs(y) ≤ mt, for some t, s ∈ T . The latter condition implies that

the mean bundle ȳµs :=
∫
y dµs(y) corresponding to the measure µs was affordable in

observation t. Therefore, it was possible for the individual to select a measure in Bt with

the same mean as µs, e.g., the Dirac measure δȳµs concentrated at the vector ȳµs . Hence,

for any mean choice model with the utility function U(ν) := f
( ∫

y dν(y)
)
, it must be

that µt R µs implies U(µt) ≥ U(δȳµs ) = U(µs). Note that this is true even when the

support of measure µs is not contained in
{
y ∈ RL

+ : pt · y ≤ mt
}

.

Whenever the corresponding function f is locally nonsatiated, it must be that µt P µs

implies U(µt) > U(µs). Clearly, this suffices for the revealed preference relations R∗ and

P ∗ to be consistent with preference induced by any model of mean choice that rationalizes

the data DB with support budgets. We now arrive at the following proposition.

Proposition 1. For any set of observations DB with support budgets, the following state-
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ments are equivalent:

(i) DB satisfies mean acyclicity.

(ii) DB is rationalizable with a mean choice model.

(iii) DB is rationalizable with a mean choice model with a continuous, strictly increasing,

and concave function f : RL
+ → R such that U(ν) := f

( ∫
y dν(y)

)
.

That a mean choice model implies mean acyclicity follows from the argument above.

The other implications follow immediately from Theorem 1. Recall that Theorem 1 is

stated over mean expenditure budgets rather than support budgets. An important dis-

tinction is that with support budgets, the mean choice model is no longer observationally

equivalent to the general model with locally nonsatiated utility. Below is an example of a

dataset that is inconsistent with the mean choice model but is rationalizable by a locally

nonsatiated utility function. We discuss the testable restrictions for other assumptions

on preferences with support budgets in Appendix B.

Example 1. Let D =
{

(pt,mt, µt) : t = 1, 2
}

, with prices p1 = (2, 1), p2 = (1, 2) and

incomes m1 = m2 = 1. Moreover, suppose that measure µ1 assigns probability 1/4 to

vector (0, 1) and 3/4 to (1/2, 0), while distribution µ2 assigns probability 1/4 to point

(1, 0) and 3/4 to (0, 1/2). See Figure 1. Notice that the mean vectors corresponding

to µ1, µ2 are ȳµ1 = (3/8, 1/4) and ȳµ2 = (1/4, 3/8), respectively. In particular, since

p1 · ȳµ2 = p2 · ȳµ1 = 7/8 < 1, the set D violates mean acyclicity.

We show that despite this, the dataset can be rationalized by a locally nonsatiated

utility U : ∆ → R with support budgets. For example, consider the function U : ∆ → R

given by

U(ν) := min
{

sup
{
pt · y : y ∈ supp(ν)

}
: t = 1, 2

}
,

where supp(ν) denotes the support of measure ν. Indeed, it is locally nonsatiated in the

weak topology, while U(µ1) = U(µ2) = 1. At the same time, for any measure ν with the

support contained in
{
y ∈ R2

+ : pt · y ≤ 1
}

, it must be that U(ν) ≤ 1 for t = 1, 2. Clearly,

this suffices for U to rationalize the corresponding set DB with support budgets.

To see that the above utility U does not rationalize the data with mean expenditure

budgets defined in (1), consider the distribution ν ′ that assigns probability 1/10 to (0, 2),

1/10 to (2, 0), and 8/10 to (1/8, 1/8). It follows that
∫

(pt · y)dν ′(y) = 9/10 < 1, for

11



Good 1

G
oo

d
2

bc
(
0, 12

)

bc
(
1
2 , 0

)

bc
(
1
4 ,

1
2

)

bc
(
1
2 ,

1
4

)
b ȳµ1
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Figure 1: Graphical interpretation of the dataset in Example 1

t = 1, 2, so ν ′ is available for each mean budget. However, U(ν ′) = 4 which dominates µ1

and µ2 and is feasible for the respective budgets.

3 Comparison to random utility models

In this section we compare the mean choice model to random utility models. For a random

utility model, randomness arises because an individual’s preference is random. Thus, an

individual maximizes utility given a random draw of preferences on a standard budget

constraint. We follow the definitions of random utility models in McFadden and Richter

(1990), McFadden (2005), and Kitamura and Stoye (2018).

Recall that the budget in the standard deterministic consumer problem is given by

C(p,m) :=
{
y ∈ RL

+ : p · y ≤ m
}
, (6)

for prices p ∈ RL
++ and income m > 0. For brevity, we let Ct := C(pt,mt). The support

budget set described in equation (5) can also be written as

B(p,m) :=
{
ν ∈ ∆ : ν

(
C(p,m)

)
= 1

}
.
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Distributions of choices generated from random utility models will necessarily be included

in the support budget dataset DB =
{

(Bt, µt) : t ∈ T
}

since the individual maximizes

random preferences on each Ct.

We now formally describe random utility models. Let U be the space of strictly

quasiconcave locally nonsatiated utility functions u : RL
+ → R. A set of observations D

is rationalized by a random utility model (RUM) if there is a probability measure ρ over

the space of functions U such that, for all t ∈ T :

µt(O) = ρ
({

ũ ∈ U : argmaxy∈Ct ũ(y) ∈ O
})

, (7)

for any measurable subset O ⊆ RL
+, where the argmax set is a singleton since U consists

of strictly quasiconcave functions. In other words, the probability of choosing a bundle

in the set O is equal to the probability of drawing a utility function that is maximized

over Ct at some point in the set O. For a linear programming characterization of RUM

see McFadden and Richter (1990), McFadden (2005), and Kitamura and Stoye (2018).10

We show through examples that mean choice models neither nest nor are nested by

random utility models. In Example 2 we discuss a dataset that can be rationalized only

by a mean choice model. Here, there is no distribution over preferences that can generate

the observations. Despite this, the mean behavior is consistent with mean acyclicity. In

contrast, the dataset in Example 3 is only rationalizable by a RUM. Here, it is critical

that the distribution of goods are optimal for a given draw of utility but there are no

restrictions on aggregate behavior of the distribution. Thus, the model of mean choice

may be more appropriate for an individual whose behavior does not appear systematic

on day-to-day purchases, but who has consistent choices when studying, say, weekly

purchases from the same budget.

Example 2. Let a primitive dataset be given by D =
{

(p1,m1, µ1), (p2,m2, µ2)
}

, where

p1 = (2, 1), p2 = (1, 2), and m1 = m2 = 1. In addition, suppose that measure µ1 assigns

probability 7/12 to bundle (1/2, 0) and 5/12 to (0, 1), while µ2 assigns weight 7/12 to

(0, 1/2) and 5/12 to (1, 0). Clearly, both measures µ1, µ2 belong to the corresponding

support budgets B1, B2, respectively.

10There is also a condition called the axiom of revealed stochastic preferences given in McFadden and

Richter (1990) and McFadden (2005) that is more similar to GARP.
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Figure 2: Graphical interpretation of the dataset in Example 2.

Since both
∫

(p1 ·y)dµ2(y) and
∫

(p2 ·y)dµ1(y) are equal to 13/12 > 1 = m1 = m2, this

suffices for the set of observations to satisfy mean acyclicity and, thus, be rationalizable

by a mean choice model (by Proposition 1). Equivalently, the means of distributions µ1,

µ2 are given by ȳµ1 = (7/24, 5/12) and ȳµ2 = (5/12, 7/24), respectively, where p1 · ȳµ2 =

p2 · ȳµ1 = 13/12 > 1. See Figure 2 for a graphical interpretation.

In contrast, the data are inconsistent with the random utility model. Indeed, since

p1 · (0, 1/2) = 1/2 < m1, for a mass of at least 7/12 of utilities, bundle (0, 1/2) would

be strictly inferior to (1/2, 0). Analogously, as p2 · (1/2, 0) = 1/2 < m2, at least 7/12

of utilities would have to rank (0, 1/2) strictly over (1/2, 0). However, this would imply

that for a mass of at least 1/6 of all utilities we would have both u(1/2, 0) > u(0, 1/2)

and u(1/2, 0) < u(0, 1/2), which yields a contradiction.

Example 3. Consider the primitive dataset D =
{

(p1,m1, µ1), (p2,m2, µ2)
}

from Ex-

ample 1, where p1 = (2, 1), p2 = (1, 2), and m1 = m2 = 1; moreover, the measure µ1

assigns probability 1/2 to bundles (1/2, 0) and (1/4, 1/2), while µ2 assigns probability

1/2 to (0, 1/2) and (1/2, 1/4). Clearly, both measures µ1, µ2 belong to the corresponding

support budgets B1, B2, respectively. Recall Figure 1.
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As shown in Example 1, the dataset violates mean acyclicity. At the same time, it is

straightforward to show that the set of observations can be rationalized with a random

utility model. Clearly, one can always find a function u1 : R2
+ → R in U that is uniquely

maximized at (1/2, 0) over C1 :=
{
y ∈ R2

+ : p1 · y ≤ 1
}

and uniquely maximized at

(1/2, 1/4) over C2 :=
{
y ∈ R2

+ : p2 ·y ≤ 1
}

. Analogously, there is a function u2 : R2
+ → R

in U that is uniquely maximized at (0, 1/2) over C2 and uniquely maximized at (1/4, 1/2)

over C1. Therefore, a random utility model ρ that assigns probability 1/2 to each of these

utility functions rationalizes these data.

4 Testing mean acyclicity

The previous analysis describes the empirical content of mean choice models when the

distributions are known. However in many applications, the distribution µt is not known

perfectly. Instead, an analyst may see particular selected bundles, each interpreted as a

realized draw of consumption from the distribution µt. This section describes a method

of statistical inference that accommodates sampling variability arising from the fact that

the distribution given by µt is not known exactly.

4.1 The statistical test

The method of inference we present is designed for application to common datasets used

to test rationality of animals. This empirical setting has several features that simplify

testing relative to a more general setup. First, prices and income are known exactly, so

they do not need to be estimated. Second, there are several realized choices from each

budget, which allows us to use the central limit theorem to justify a normal approximation

of the means of the sampled distributions. Third, there are only two budgets (T = 2).11

This means there is a single cycle to consider when checking mean acyclicity. After

describing the test, we apply the methods to the data from Chen et al. (2006).

We now describe the test in detail. We assume an analyst observes a collection of nt

realizations {Y it}nt

i=1 corresponding to each observation t. These are treated as random

variables and we denote them in upper case. Each realization Y it is a vector of quantities,

11The methods of Hsieh et al. (2018) can be used for a statistical test with more than two budgets.
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i.e., Y it ∈ RL
+. These realizations are draws from the distribution µt, which we interpret

as the actual choice. We interpret the population mean quantities E[Y it] as the mean of

the distribution µt described previously, so that E[Y it] =
∫
y dµt(y), for all t ∈ T .

When T = 2, as in our application, we write the null hypothesis of mean acyclicity as

H0 : ps · E[Y it] ≤ ms implies pt · E[Y is] ≥ mt, for all t ̸= s in {1, 2}.

This is reformulation of condition (4), that uses the fact that
∫

(p ·y)dν(y) = p ·
∫
y dν(y).

The alternative hypothesis is

Ha : ps · E[Y it] ≤ ms, for all t ̸= s in {1, 2}, with at least one inequality strict.

Recall that in the application, prices and income are measured without error, so we use

lower case letters to indicate that they are nonrandom.

We reject when sample averages are sufficiently far from the null. Formally, let

Y
t

:=
1

nt

nt∑
i=1

Y it.

First note that if Y
t

were nonrandom and equal to E[Y it], we could reject when

p1 · Y 2 ≤ m1 and p2 · Y 1 ≤ m2,

with at least one inequality strict. If we allow for sampling variability, the empirical

means may be different from the theoretical ones. Thus, we propose a test of the form

ϕ := 1
{
p1 · Y 2 ≤ m1 − σ̂2c√1−α; p2 · Y 1 ≤ m2 − σ̂1c√1−α

}
,

where 1{·} is the indicator function, ϕ = 1 denotes rejection, and ϕ = 0 denotes failure

to reject. We denote the nominal size of the test by α (e.g. 0.05), and let c√1−α be the
√

1 − α-quantile of the standard normal distribution. In addition,

σ̂1 :=

√√√√ 1

n1

n1∑
i=1

(
p2 · Y i1 − p2 · Y 1

)2

σ̂2 :=

√√√√ 1

n2

n2∑
i=1

(
p1 · Y i2 − p1 · Y 2

)2

,
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are sample analogue estimators of the standard deviation of p2·Y 1
and p1·Y 2

, respectively.

The key assumption that justifies this test is that for t = 1, 2 there is a large number, nt,

of independent draws Y it from each distribution µt.

To provide some intuition behind this test, note that each inequality in the argument

of ϕ is motivated by a standard one-sided testing problem. Under the independence

assumption and some mild conditions, we have the large sample approximation

Prob
(
p1 · E[Y i2] ≤ p1 · Y 2

+ σ̂2c√1−α

)
≈

√
1 − α.

Thus, on the event

p1 · Y
2 ≤ m1 − σ̂2c√1−α,

or equivalently

p1 · Y
2

+ σ̂2c√1−α ≤ m1,

we have strong evidence against

p1 · E[Y i2] ≥ m1.

A similar argument holds when testing the other inequality. Thus, when the test function

ϕ is 1, we have strong evidence against both inequalities

p1 · E[Y i2] ≥ m1 and p2 · E[Y i1] ≥ m2,

i.e., strong evidence against H0. The choice of c√1−α comes from the fact that we have

to reject two inequalities. In more detail, this threshold is motivated by

Prob
(
p1 · E[Y i2] ≤ p1 · Y 2

+ σ̂2c√1−α ; p2 · E[Y i1] ≤ p2 · Y 1
+ σ̂1c√1−α

)
= Prob

(
p1 · E[Y i2] ≤ p1 · Y 2

+ σ̂2c√1−α

)
Prob

(
p2 · E[Y i1] ≤ p2 · Y 1

+ σ̂1c√1−α

)
≈

√
1 − α

√
1 − α = 1 − α,

where the first equality follows from the independence assumption.

We note that the test we propose is not consistent against alternatives in which one

of the inequalities is binding. That is, a configuration such as

p1 · E[Y i2] = m1 and p2 · E[Y i1] < m2
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violates the null, but is not reject with probability 1 as the sample size increases.12

There are a few other features of this test to point out. First, note that if a determin-

istic test (e.g. using Y
t

in place of E[Y it]) satisfies mean acyclicity, then the statistical

test fails to reject for any α < 0.75. This is because if α < 0.75 then c√1−α > c0.5 = 0.

One may not find the failure to reject an interesting way to differentiate between

datasets. Instead, one can compute the least nominal size α∗ under which the null is

rejected. To do this, one can compute the largest c∗√
1−α

under which the test rejects the

data and then find the corresponding α∗. The construction of α∗ is related to a p-value

but is distinct because there are configurations consistent with the null hypothesis in

which rejection probabilities are not asymptotically equal to nominal size α.

High α∗ gives less evidence against the null. To see why this is the case, note that if

α∗ is high (α∗ > 0.75), then c√1−α∗ is negative. Thus, this requires the data to not only

satisfy mean acyclicity when failing to reject, but that the distance of the average bundles

must also be far away from rejecting. The closer the α∗ is to one, the lower the evidence

is against the null since this suggests the mean bundles are statistically far apart.

4.2 Application to Chen et al. (2006)

We apply the above procedure to the data on choices by capuchin monkeys that was

previously analyzed in Chen et al. (2006). We examine whether the capuchin monkeys

are rational according to standard rationality, random utility models, and mean choice

models. Thus, we check whether individuals satisfy the generalized axiom of revealed

preference, the axiom of revealed stochastic preference, and mean acyclicity.

The experiment was performed on three different capuchin monkeys. We refer to the

three subjects under their abbreviations: AG, FL, and NN. The consumption bundles

consisted of two goods: slices of apples and gelatin cubes or grapes (depending on the

subject). In the experiment, capuchin monkeys traded tokens for food items under two

different exchange rate regimes. In the first regime, one token could be exchanged for

12This suggests a potential power issue with the design of Chen et al. (2006), which is constructed

to detect violations of the compensated law of demand by pivoting the budget constraint. It is not a

deficiency of the test we present. Intuitively, the alternative hypothesis is on the boundary of the null

hypothesis, and so it is not possible to statistically distinguish it from nearby points in the null. One

may report the minimal nominal size (described below) as a way to describe evidence against the null

hypothesis.
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Subject

AG FL NN

Budget 1: p1 = (1, 1)

m1 12 12 12

n1 12 11 6

Ȳ 1 (6.08, 5.92) (5.64, 6.36) (5, 7)

Budget 2: p2 = (1/2, 1)

m2 9 10 10

n2 22 14 10

Ȳ 2 (9, 4.5) (13.86, 3.07) (12.8, 3.6)

GARP No No Yes

RUM Yes Yes Yes

Mean acyclicity Yes Yes Yes

α∗ 0.993 0.998 1.00

Table 1: Results of tests

one slice of apple or one gelatin cube/grape. In the second regime, two slices of apple

could be exchanged for one gelatin cube/grape. Per each subject, the data generated in

the experiment consisted of multiple choices from the two budget sets. For additional

information on the experiment, we refer the reader to Chen et al. (2006).

The details and results of the test are contained in Table 1. We note that two of the

three subjects from Chen et al. (2006) refute utility maximization, while all three subjects

could be described by a random utility model or a mean choice model. We note that all

monkeys satisfy mean acyclicity so the statistical test proposed earlier does not reject

for any α < 0.75. To better discern between the different datasets, we also report the

least nominal size α∗ that results in a rejection. We note that all α∗ computed are greater

than 0.99. Thus, there is weak evidence against the hypothesis that subjects satisfy mean

acyclicity.

5 Conclusion

This paper shows that models of deterministic stochastic choice can place strong restric-

tions on data and be taken to applications. In particular, if one constrains the distribution

19



of bundles chosen to have mean expenditure less than income, then maximizing a general

utility function over distributions is observationally equivalent to a model of preferences

defined over mean consumption only. Thus, intuitive budget constraints greatly reduce

the class of deterministic stochastic choice models. In addition, we show how assump-

tions on the budget constraint crucially affect the interpretation of the revealed preference

analysis, and that this approach neither nests or is nested in the random utility model. Fi-

nally, we present a simple method of statistical inference for two budgets, which matches

the data from Chen et al. (2006) used in the illustrative example.

Overall, this paper highlights that there are often several intuitive mappings of prim-

itive datasets to budget sets that can greatly affect the analysis. For example, even

though the datasets with mean expenditure budgets DA and support budgets DB are

derived from the same primitive data, mean acyclicity is not equivalent to a general non-

satiated utility function of distributions when studying support budgets. An interesting

potential application would be to examine distributions of choices for different periods

of time (e.g. weekly, bi-weekly, monthly) using individual panel data such as that found

in Cherchye et al. (2017) and compare random utility models to mean choice models to

further examine the difference between these models of stochastic choice.

Appendix A Main proofs

Here we present proofs that were not included in the main body of the paper. Unless

stated otherwise, we follow the notation introduced in the paper.

A.1 Proof of Theorem 1

It is clear that (iv) ⇒ (iii) ⇒ (ii). From the main text we have shown (ii) ⇒ (i). It

remains to show (i) ⇒ (iv). Throughout this proof, define the function gt : ∆ → R by

gt(ν) :=

[∫
(pt · y)dν(y) −mt

]
,

for all t ∈ T . Clearly, since
∫
∥y∥dν(y) < ∞, for all ν ∈ ∆, by 11.45 in Aliprantis and

Border (2006), any such function gt is well-defined. Moreover, it is straightforward to

show that it is also continuous (with respect to the weak topology), strictly increasing

with respect to the first order stochastic dominance, and concave (in fact, linear).
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Mean acyclicity holds if and only if, for any cycle C =
{

(a, b), (b, c), . . . , (z, a)
}

in

T × T such that gt(µs) ≤ 0, for all (t, s) ∈ C, we have gt(µs) = 0, for all (t, s) ∈ C. By

Lemma 2 in Forges and Minelli (2009), there exist numbers {ϕt}t∈T and strictly positive

numbers {λt}t∈T such that ϕs ≤ ϕt + λtgt(µs), for all t, s ∈ T .

Take any such numbers {ϕt}t∈T , {λt}t∈T and define the function f : RL
+ → R by

f(y) := min
{
ϕs + λs

[
ps · y −ms

]
: s ∈ T

}
,

which is continuous, strictly increasing, and concave. We claim that function U : ∆ → R,

given by U(ν) := f
( ∫

y dν(y)
)
, rationalizes the set of observations. Indeed, take any

t ∈ T and ν ∈ ∆ such that
∫

(pt · y)dν(y) ≤ mt, or equivalently gt(ν) ≤ 0. Then,

U(ν) = f

(∫
y dν(y)

)
= min

{
ϕs + λs

[
ps ·

∫
y dν(y) −ms

]
: s ∈ T

}
≤ ϕt + λt

[
pt ·

∫
y dν(y) −mt

]
= ϕt + λt

[∫
(pt · y)dν(y) −mt

]
= ϕt + λtgt(ν)

≤ ϕt

≤ min
{
ϕs + λsgs(µt) : s ∈ T

}
= min

{
ϕs + λs

[∫
(ps · y)dµt(y) −ms

]
: s ∈ T

}
= min

{
ϕs + λs

[
ps ·

∫
y dµt(y) −ms

]
: s ∈ T

}
= f

(∫
y dµt(y)

)
= U(µt),

where the first inequality follows from the property of the minimum function, the second

inequality is implied by λt > 0 and gt(ν) ≤ 0, while the third follows from the construction

of the numbers {ϕt}t∈T and {λt}t∈T .

It is straightforward to show that function U is strictly increasing in the sense of first

order stochastic dominance (see Appendix C). Thus, following Lemma C.4 presented in

Appendix C, the function U is locally nonsatiated.
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A.2 General statistical consumer theory

Theorem 1 can be extended to more general models of statistical choice. Here, a statistic

is a finite-dimensional summary of a distribution. In particular, let S : ∆ → RL be

a continuous function from the distribution of bundles to the L-dimensional real vector

space.13 As we require an additional monotonicity condition on S, we assume that it is

strictly increasing with respect to first order stochastic dominance.

We assume that the budget constraint for observation t ∈ T is represented by a

continuous function gt : Rk → R that is strictly increasing on Rk.14 Distribution ν ∈ ∆ is

feasible if gt
(
S(ν)

)
≤ 0. The dataset is given by DG =

{
(gt, µt) : t ∈ T

}
. Any variables

describing gt (such as prices) are absorbed into the function, as it is indexed by t.

Definition 3. The dataset DG with statistic S is rationalizable with a statistical choice

model if there is a locally nonsatiated function f : RL
+ → R such that the function

U(ν) := f (S(ν))

rationalizes DG, i.e. if gt
(
S(ν)

)
≤ 0 then U(µt) ≥ U(ν), for all t ∈ T .

Similar to the mean expenditure constraint, we can define a direct revealed preference

relation RS by setting µtRSµ
s if gt(S(µs)) ≤ 0. Similarly, we can define a strictly directly

revealed preference relation PS so that µtPS µ
s if gt(S(µs)) < 0. Since the statistic S and

the budget constraint functions gt are assumed continuous, we can repeat the arguments

in the main text to show that these relations are consistent with a rationalization of the

choices by a locally nonsatiated function.

Similarly, we can take the transitive closure of RS, which must be consistent with the

utility function. For any t, s ∈ T , we say that µt is revealed preferred to µs, denoted by

µt R∗
S µs, if there is a sequence of indices a, b, c, . . . , z ∈ T such that

µt RS µa, µa RS µb, . . . , and µz RS µs. (A1)

Moreover, we say that µt is strictly revealed preferred to µs, denoted by µt P ∗
S µs, when

there is a sequence as in condition (A1) with at least one pair is ordered with P ∗
S . From

this discussion, we consider the following acyclicity condition.

13More generally the statistic can map from ∆ into a space with dimension that is not equal to L.
14Function gt is strictly increasing when y′ℓ ≥ yℓ, for all ℓ = 1, . . . ,K, implies g(y′) ≥ g(y), for any

y, y′ ∈ RL, where the latter inequality is strict if y′ℓ > yℓ, for some ℓ = 1, . . . , L.
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Definition A.1 (Statistical acyclicity). For any cycle C =
{

(a, b), (b, c), . . . , (z, a)
}

in

T × T such that gt
(
S(µs)

)
≤ 0, for (t, s) ∈ C, we have gt

(
S(µs)

)
= 0, for all (t, s) ∈ C.

The above definition is equivalent to the revealed strict preference relation P ∗
S be-

ing irreflexive. Equivalently, following the proof of Theorem 1, we see that statistical

acyclicity is necessary and sufficient for a statistical choice model.

Theorem A.1. For any set of observations DG, the following statements are equivalent:

(i) DG satisfies statistical acyclicity.

(ii) DG is rationalizable with a locally nonsatiated utility function U : ∆ → R.

(iii) DG is rationalizable with a statistical choice model.

(iv) DG is rationalizable with a statistical choice model with a continuous and strictly

increasing function f : RL
+ → R such that U(ν) := f

(
S(ν)

)
.

Thus, while we presented the result for mean choice in Theorem 1 of the main body

of the paper, analogous result holds for any continuous statistic of the distribution of

bundles for restrictions enforced by the functions gt, for all t ∈ T .

Appendix B Alternative models

In this subsection we discuss the testable implications of three alternative models of

deliberately stochastic choice when the budget set is specified as

B(p,m) :=
{
ν ∈ ∆ : ν

(
{y ∈ RL

+ : p · y ≤ m}
)

= 1
}
, (A2)

for prices p ∈ RL
++ and income m ∈ R++. In particular, we look at the implications of

local nonsatiation and first order stochastic dominance.

We begin with the most general question concerning when the set of observations

DB :=
{

(Bt, µt) : t ∈ T
}

can be rationalized by a locally nonsatiated utility function

U : ∆ → R. Perhaps surprisingly, this model places no restrictions on choice behavior.

In contrast, when the utility U is strictly increasing with respect to first order stochastic

dominance (defined below), there are restrictions on behavior for the dataset DB.
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We again use the notation Ct :=
{
y ∈ RL

+ : pt ·y ≤ mt
}

for the standard deterministic

budget constraint, with ∂Ct :=
{
y ∈ RL

+ : pt · y = mt
}

corresponding to the budget

line, for all t ∈ T . Therefore, we have Bt =
{
ν ∈ ∆ : ν(Ct) = 1

}
, for all t ∈ T . Since

each set Bt consists of measures with their supports included in the compact set Ct, we

may restrict our attention to the space of probability measures with compact supports,

without loss of generality. Recall that the support of a probability measure ν is the

smallest (by set inclusion) closed set K such that ν(K) = 1.

B.1 Locally nonsatiated models

Here we determine the necessary and sufficient conditions under which a set of observa-

tions DB =
{

(Bt, µt) : t ∈ T
}

is rationalizable as in Section 2.2 with a locally nonsatiated

utility U : ∆ → R. Before we proceed, notice that each set Bt can be re-defined as

Bt =
{
ν ∈ ∆ : supp(ν) ⊆ Ct

}
,

where by supp(ν) we denote the support of ν.

Proposition B.1. Any set of observations DB is rationalizable with a locally nonsatiated

utility function U : ∆ → R.

Unlike the main analysis in Section 2 with the dataset DA, whenever choices of individ-

uals are limited to probability distributions over budget sets Bt, the locally nonsatiated

model has no testable implications. To see this define U : ∆ → R by

U(ν) :=

 0 if supp(ν) ⊆
∪

t∈T Ct,

sup
{
1 · y : y ∈ supp(ν)

}
otherwise;

where 1 denotes the unit vector. Since we focus on measures with compact supports, the

function is well-defined. Moreover, it trivially rationalizes the set of observations since

U(µt) = 0 for each t. To show that it is locally nonsatiated, take any measure ν and a

vector y ̸∈
∪

t∈T Ct such that y > z, for all z ∈ supp(ν). Given the compact support

of the measure, such a vector always exists. Consider now a sequence of measures {νk},

where νk := (1 − 1/k)ν + (1/k)δy, for all k, and where δy denotes the Dirac measure

concentrated at y. We see that the sequence {νk} converges to ν in the weak topology.

Since supp(νk) = supp(ν) ∪ {y}, we have U(νk) = 1 · y > U(ν), for all k.
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The above result follows from the fact that weak convergence of probability measures

does not imply convergence in their supports. In particular, for any measure ν with a

support contained in a budget set Ct, one can find a measure arbitrarily close to ν with

its support not contained in Ct. Because of this, choices reveal no information about the

strict preference over probability measures and the model has no testable implications.

B.2 Strictly monotone models

We now investigate the conditions under which a support budget dataset DB is rational-

izable as in (2) with a utility function U : ∆ → R that is strictly increasing with respect

to the first order stochastic dominance ⪰. More formally, for any µ, ν ∈ ∆, if µ ≻ ν then

U(µ) > U(ν). See Appendix C for a discussion on first order stochastic dominance.

The above framework allows for construction of a directly revealed preference relation

over observed choices {µt}t∈T , similar to the one in Section 2. We say that the measure

µt is directly revealed preferred to µs, and denote it by µt RF µs, whenever µs(Ct) = 1.

Equivalently, supp(µs) ⊆ Ct. Moreover, we define the strictly directly revealed preferred

relation as µt PF µs if µs(Ct) = 1 and µs(∂Ct) < 1. Therefore, we have µt PF µs when

µt RF µs and the support of µs is not contained in the corresponding budget line.

The above relation is weaker than the one defined in Section 2. Indeed, it is true that

µtRFµ
s (µtPFµ

s) implies
∫

(pt · y)dµs(y) ≤ (<) mt. However, since the above relation

requires the support of the measure µs to be contained in Ct, the converse is not true.

Moreover, it is clear that the weak relation RF is consistent with any utility function that

rationalizes the data. In the following lemma, we claim that PF is also consistent if U is

strictly increasing in the sense of first order stochastic dominance.

Lemma B.1. For any strictly increasing utility U : ∆ → R that rationalizes a set of

observations DB, it follows that for any t ∈ T , if ν
(
∂Ct

)
< ν

(
Ct

)
= 1 then U(µt) > U(ν).

Proof. Take any probability measure ν ∈ ∆ with ν
(
∂Ct

)
< ν

(
Ct

)
= 1. From Lemma C.1,

there is a probability space (Ω,F , τ) and random variable X : Ω → RL
+ such that

ν(O) = τ
({

ω ∈ Ω : X(ω) ∈ O
})

,

for any measurable set O ⊆ RL
+. Given the assumption imposed on the probability
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measure ν, there is a set Ω′ ⊆ Ω that satisfies

τ
({

ω ∈ Ω′ : pt ·X(ω) < mt
})

> 0.

Take any random variable X ′ : Ω → RL
+ such that pt · X ′(ω) ≤ mt and X ′(ω) ≥ X(ω),

for all ω ∈ Ω, and X ′(ω) > X(ω), for some ω ∈ Ω′ which clearly exists.15 Define measure

ν ′(O) := τ
({

ω ∈ Ω : X ′(ω) ∈ O
})

,

for all measurable sets O ⊆ RL
+. By Lemma C.1 in Appendix C, we have ν ′ ≻ ν.

Given that the function U is strictly increasing in the first order stochastic sense, while

ν ′(Ct) = 1, we obtain U(µt) ≥ U(ν ′) > U(ν) which concludes the proof.

As in the main body of the paper, we denote the transitive closure of RF by R∗
F .

Therefore, we have µt R∗
F µs if there is a sequence of indices a, b, c, . . . , z ∈ T such that

µt RF µa, µa RF µb, . . . , and µz RF µs.

Moreover, the relation is strict, or µt P ∗
F µs, if at least one comparison is strictly directly

revealed preferred. Lemma B.1 leads to the following acyclicity condition.

Definition B.1 (F-acyclicity). For any cycle C =
{

(a, b), (b, c), . . . , (y, z)
}
in T ×T such

that µs(Ct) = 1, for all (t, s) ∈ C, we have µs(∂Ct) = 1, for all (t, s) ∈ C.

Equivalently, the revealed strict preference relation P ∗
F is irreflexive. We now prove

that F-acyclicity is also sufficient for a dataset DB to be rationalizable with a strictly

increasing utility function U . We summarize this result in the following proposition.

Proposition B.2. For any set of observations DB with support budgets, the following

statements are equivalent:

(i) DB satisfies F-acyclicity.

(ii) DB rationalizable with a utility function U : ∆ → R that is strictly increasing in the

sense of first order stochastic dominance.

(iii) DB rationalizable with a utility function U : ∆ → R that is strictly increasing in the

sense of first order stochastic dominance, continuous, and concave.

15For example, take any ℓ = 1, . . . , L and define X ′(ω) := X(ω) + 1
pt
ℓ

[
mt − pt · X(ω)

]
eℓ, where eℓ

denotes the ℓth basis vector, i.e., an element of RL with the ℓ-th entry equal to one and all others equal

to zero.
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Proof. Clearly (iii) ⇒ (ii) ⇒ (i) from the arguments in the text. We show (i) ⇒ (iii)

constructively. First, take any number β such that

β > max

{
−

∫
Ct(p

t · y −mt)dµs(y)∫
RL
+\Ct(pt · y −mt)dµs(y)

: µs
(
RL

+ \ Ct
)
> 0 and t, s ∈ T

}
.

For every t ∈ T define a function ft : RL
+ → R by

f t(y) :=

 (pt · y −mt) if y ∈ Ct,

β(pt · y −mt) otherwise;

which is continuous and strictly increasing.

Define the function gt : ∆ → R by gt(ν) :=
∫
f t(y)dν(y), which is continuous, concave,

and strictly increasing in the sense of first order stochastic dominance. Moreover for all

s ∈ T , we have gt(µs) ≤ 0 if and only if µs(Ct) = 1. Indeed, if µs(Ct) = 1 then

gt(µs) =

∫
f t(y)dµs(y) =

∫
Ct

f t(y)dµs(y) +

∫
RL
+\Ct

f t(y)dµs(y)

=

∫
Ct

f t(y)dµs(y) =

∫
Ct

(pt · y −mt)dµs(y) ≤ 0.

To show the converse, suppose that µs
(
RL

+ \ Ct
)
> 0. Then:

gt(µs) =

∫
f t(y)dµs(y)

=

∫
Ct

f t(y)dµs(y) +

∫
RL
+\Ct

f t(y)dµs(y)

=

∫
Ct

(pt · y −mt)dµs(y) + β

∫
RL
+\Ct

(pt · y −mt)dµs(y)

>

∫
Ct

(pt · y −mt)dµs(y) −
∫
Ct

(pt · y −mt)dµs(y)

= 0,

where the strict inequality follows from the choice of β.

The above observation implies that DB satisfies F-acyclicity if and only if, for any cycle

C =
{

(a, b), (b, c), . . . , (z, a)
}

in T × T such that gt(µs) ≤ 0, for all (t, s) ∈ C, it must

be that gt(µs) = 0, for all (t, s) ∈ C. Following Lemma 2 in Forges and Minelli (2009),

there exist numbers {ϕt}t∈T , {λt}t∈T such that ϕs ≤ ϕt + λtgt(µs), for all t, s ∈ T , where

λt > 0, for all t ∈ T . Given that ν(Ct) = 1 implies gt(ν) ≤ 0, for any measure ν ∈ ∆, one

can show that the function U : ∆ → R defined as U(ν) := min
{
ϕs + λsgs(ν) : s ∈ T

}
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rationalizes the set of observations by arguments that mimic the proof of Theorem 1.

Moreover, by the properties of functions gt, it is also continuous, strictly increasing in

the sense of first order stochastic dominance, and concave.

Clearly, the model of consumer choice discussed in Section 2.2 is a special case of the

model that satisfies strict monotonicity in the sense of first order stochastic dominance.

Indeed, given a dataset DB it is easy to show that mean acyclicity implies F-acyclicity.

However, unlike the model introduced in Section 2.2 (which neither nests nor is nested by

random utility models), the strictly monotone model is a generalization of random utility

models (McFadden and Richter, 1990). However, there are strictly monotone models that

are not rationalized by random utility models (recall Example 2).

Proposition B.3. If a dataset DB is rationalized by a random utility model as described

in (7), then there is a utility function U : ∆ → R that is strictly monotone in the sense

of first order stochastic dominance and rationalizes DB.

Proof. We prove the result by showing that whenever a dataset DB violates F-acyclicity

then it can not be rationalized with a random utility model. Suppose there is some cycle

C =
{

(a, b), (b, c), . . . , (z, a)
}

such that µs(Ct) = 1, for all (t, s) ∈ C, and µs(∂Ct) < 1, for

some (t, s) ∈ C. For any probability measure ρ as in (7), this implies that the measure

of utilities ũ such that maxy∈Ct ũ(y) ≥ maxy∈Cs ũ(y) is equal to one, for all (t, s) ∈ C.

Moreover, there is a set of non-zero measure of utilities for which the inequality is strict,

for some (t, s) ∈ C. However, this implies that there is a non-zero measure set of utilities

ũ that induce a strict cycle, which yields a contradiction.

Appendix C First order stochastic dominance

In this section we discuss properties of the first order stochastic dominance. Let ∆X

denote a Borel space of probability distributions over some X ⊆ RL. We consider the

usual partial order over RL, i.e., for x, y ∈ X ⊆ RL, x ≥ y if and only if xi ≥ yi for each

ℓ = 1, . . . , L. Distribution µ first order stochastically dominates ν, or µ ⪰ ν, whenever∫
fdµ ≥

∫
fdν, for any measurable, bounded, and nondecreasing function f : X → R.

One can show that ⪰ is a partial order over ∆X . This follows from Theorem 2 in

Kamae and Krengel (1978) and the fact that RL is a Polish space.
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Lemma C.1. Suppose that µ ⪰ ν, for some µ, ν ∈ ∆X . There is a probability space

(Ω,F , τ) and random variables Xµ, Xν : Ω → X such that

(i) Xµ and Xν are distributed according to µ and ν respectively, i.e., for any Borel

measurable set O ⊆ X we have

µ(O) = τ
({

ω ∈ Ω : Xµ(ω) ∈ O
})

and ν(O) = τ
({

ω ∈ Ω : Xν(ω) ∈ O
})

;

(ii) Xµ(ω) ≥ Xν(ω), for all ω ∈ Ω.

See Lemma 4 in Kamae and Krengel (1978) for the proof. Using Lemma C.1, we say

that µ ≻ ν when µ ⪰ ν, µ ̸= ν, and there exists a measurable set F ⊆ Ω such that for all

ω ∈ F we have Xµ(ω) > Xν(ω). We now prove a series of lemmas.

Lemma C.2. The distribution µ first order stochastically dominates ν, or µ ⪰ ν, if and

only if µ(D) ≥ ν(D), for any measurable and upward comprehensive set D.16

Proof. We prove the implication (⇒) by contradiction. Suppose that µ ⪰ ν, but there is

some measurable, upward comprehensive set D such that µ(D) < ν(D). Let χD be the

indicator function, taking values χD(x) = 0, for x /∈ D, and χD(x) = 1 otherwise. The

function is obviously bounded. Since D is upward comprehensive, the above function is

increasing. Since the simple function is defined on a measurable set, it is measurable.

However, it must be that
∫
χDdµ = µ(D) < ν(D) =

∫
χDdν, which contradicts that µ

first order stochastic dominates ν.

The converse follows directly from the definition of Lebesgue integration. Suppose

that, for any upward comprehensive and measurable set D, we have µ(D) ≥ ν(D).

Clearly, D is upward comprehensive if and only if its complement RL \ D is downward

comprehensive. Thus, for any such set E, we have µ(E) ≤ ν(E).

Take any bounded, measurable, and increasing function f : RL → R. Clearly, for all

r ∈ R any sets of the form
{
y ∈ RL : f(y) > r

}
and

{
y ∈ RL : f(y) < r

}
are upward

and downward comprehensive, respectively. Moreover, they are both measurable, by

16Set D ⊂ RL is upward (downward) comprehensive if y ∈ D and x ≥ (≤) y implies x ∈ D.
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measurability of f . This implies that∫
fdµ =

∫ ∞

0

µ
({

y ∈ RL : f(y) > r
})

dr −
∫ ∞

0

µ
({

y ∈ RL : f(y) < r
})

dr

≥
∫ ∞

0

ν
({

y ∈ RL : f(y) > r
})

dr −
∫ ∞

0

ν
({

y ∈ RL : f(y) < r
})

dr

=

∫
fdν.

Since this is true for any increasing function f , the proof is complete.

Before we state the next result, a function f : X → R is strictly increasing if y′ℓ ≥ yℓ,

for all ℓ = 1, . . . , L, and y′ℓ > yℓ, for some ℓ, implies f(y′) > f(y), for any y, y′ ∈ X.

Lemma C.3. Suppose that µ ≻ ν, for some µ, ν ∈ ∆X . For any strictly increasing

function f : X → R, we have
∫
fdν >

∫
fdµ.

Proof. Given that ν ⪰ µ, Lemma C.1 implies that there is a probability space (Ω,F , τ)

and random variables Xµ, Xν : Ω → X that are distributed according to µ, ν respectively,

and Xµ(ω) ≥ Xν(ω), for all ω ∈ Ω. Since µ ≻ ν, let Ω′ ⊆ Ω be defined so that

Ω′ =
{
ω ∈ Ω : Xµ(ω) > Xν(ω)

}
.

where τ(Ω′) > 0 (recall Lemma C.1). For any strictly increasing f : X → R, we have∫
fdν −

∫
fdµ =

∫
Ω

[
f
(
Xν(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω)

=

∫
Ω′

[
f
(
Xν(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω) > 0.

This competes the proof.

Lemma C.4. Suppose that X + RL
+ ⊆ X. For any measure µ ∈ ∆X and neighborhood,

we have ν ≻ µ, for some ν in the neighborhood.

Proof. We show that for any µ ∈ ∆ there is a sequence {µk} in ∆ that weakly converges

to µ and µk ≻ µ, for all k. Take any probability space (Ω,F , τ) and the random variable

Xµ : Ω → X that is distributed according to µ, i.e., for any measurable O ⊆ X we have

µ(O) = τ
({

ω ∈ Ω : Xµ(ω) ∈ O
})

.

Take any sequence {Xk} of random variables Xk : Ω → R that pointwise converge to Xµ

and satisfy Xk(ω) > Xµ(ω), for all ω ∈ Ω.
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For each k, define a probability measure µk so that for any measurable O ⊆ X

µk(O) := τ
({

ω ∈ Ω : Xk(ω) ∈ O
})

.

Since X + RL
+ ⊆ X, we have µk ∈ ∆X . Moreover, for any measurable, upward compre-

hensive set D, it must be that

µk(D) = τ
({

ω ∈ Ω : Xk(ω) ∈ D
})

≥ τ
({

ω ∈ Ω : Xµ(ω) ∈ D
})

= µ(D),

since for all ω ∈ Ω if Xµ(ω) ∈ A then Xk(ω) ∈ D. Therefore, by Lemma C.2 and

since Xk(ω) > Xµ(ω), for all ω ∈ Ω, it follows for all k that µk ≻ µ. Finally, take any

continuous, bounded function f : X → R and notice that

lim
k→∞

∣∣∣∣∫ fdµk −
∫

fdµ

∣∣∣∣ = lim
k→∞

∣∣∣∣∫ [
f
(
Xk(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω)

∣∣∣∣ = 0,

since Xk(ω) → Xµ(ω), for all ω ∈ Ω. Thus {µk} weakly converges to µ. Clearly, this

implies that, for any neighborhood around µ, there is some µk in the neighborhood such

that µk ≻ µ.
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