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Abstract

Applied research often tolerates misspecification in order to reach informa-

tive conclusions. We focus on how the degree of misspecification varies with the

level of aggregation of data for quasilinear utility models. We present aggre-

gation results formalizing that the model cannot get worse when aggregating.

Using scanner data, we find that while all individuals are inconsistent with a

quasilinear utility model, we cannot refute the hypothesis that a representative

agent is a quasilinear utility maximizer. This provides evidence that deviations

from a quasilinear model may average away.
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at the Robustness in Economics and Econometrics conference at the University of Chicago, and
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1 Introduction

But economics is not, in the end, much

interested in the behavior of single individuals.

Its concern is with the behavior of groups. A

study of individual demand is only a means to

the study of market demand.

— John Hicks [1946]

An extensive literature has studied whether general demand models are consistent

with data. For example, Kitamura and Stoye [2018] are unable to refute utility max-

imization with general preference heterogeneity using repeated cross-sections. How-

ever, there is a tension between generality and certain pragmatic goals of applied

research. Indeed, many applied papers impose stronger restrictions on preferences

to reach stronger conclusions even though the preferences might be misspecified. A

natural question is whether more-structured preferences could describe data while

allowing a limited amount of misspecification.

In this paper, we study the consistency of quasilinear utility with data allowing mis-

specification/misoptimization. We focus on the relationship between individual and

aggregate data.1 A distinguishing feature of quasilinear utility is if individuals are

exactly consistent with the model, then a representative agent is as well [Gorman,

1953]. We provide a conceptual and mathematical generalization of this: if individ-

uals are approximately consistent, then aggregation will maintain this feature. The

important possibility remains that data are (approximately) consistent with a repre-

sentative agent but not with individuals. Indeed, Becker [1962] theoretically shows

individual demands may be erratic, yet market demand may have economic regulari-

ties. We empirically investigate this possibility, finding support for quasilinear models

to describe market demand of grocery store purchases.

To accomplish this, we provide a simple way to check whether individual or aggregate

data are consistent with quasilinear utility while allowing up to ε dollars loss due to

misspecification/misoptimization. We also propose a method of statistical inference

for market demand that accounts for sampling variability. Specifically, we provide a

1Chetty [2012] studies a related problem involving parameter recoverability, misoptimization,
and the level of aggregation.
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statistical test of whether a representative agent (population mean demands) has a

degree of misspecification no greater than a given value ε. The test involves linear

moment inequality restrictions involving the mean of quantities in different time pe-

riods, which is a well-understood problem (e.g. Chernozhukov et al. [2014], Romano

et al. [2014]).

In an empirical application using grocery store panel data on purchases, we examine

the amount of misspecification needed to explain individual and aggregate data.2 We

find that all households are inconsistent with quasilinear utility in a deterministic

framework. In contrast, we find that average demands are consistent with quasilinear

utility using either a statistical or deterministic framework. Thus, while there is

approximation error for every individual, the pattern of heterogeneity does not lead to

a rejection of quasilinear utility in the aggregate. We thus reach a different conclusion

from Russell and Thaler [1985], who hypothesize that systematic violations at the

individual level would aggregate. Indeed, if demand curves are upward sloping for

everyone this would be preserved under aggregation and would violate the model,

but we do not find evidence of this. We note that in the empirical application there

are many goods, yet linear programming facilitates quick computation.3 Thus, the

methods we present can readily be applied to other datasets.

We now discuss in more detail the focus on quasilinear utility and the results in

the paper. First, this paper is focused on the relationship between misspecification,

amount of modelling structure imposed, and the level of aggregation. While these

concepts can be studied in other settings, we focus on quasilinear utility because

it has been widely used, including in mechanism design [Myerson, 1981], discrete

choice [McFadden, 1981], testing rational expectations [Browning, 1989], and testing

the generalized axiom of revealed preference [Echenique et al., 2011].4 It forms the

foundation for some random coefficients models of demand in the spirit of Berry et al.

2The dataset is the Stanford Basket Data, which was previously used in Echenique et al. [2011].
3The number of inequalities to check in the linear program is the square of the number of time pe-

riods. Our empirical application has 375 goods and 26 time periods. For comparison, Kitamura and
Stoye [2018] test the general model of utility maximization and reach the computational boundary
with around 5 goods and 8 time periods.

4Echenique et al. [2018] provide a statistical test of the generalized axiom of revealed preference.
In order to compute a critical value, they assume that the marginal utility of income is constant,
stating, “It seems a reasonable assumption for our application to supermarket purchases.” Constant
marginal utility of income is observationally equivalent to quasilinear utility.
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[1995].5 A closely related structure also shows up for a large class of econometric

models with observable characteristics, where an unknown utility index for each good

plays the role of a (negative) price [Allen and Rehbeck, 2019a].

While quasilinear utility is prized for its tractability, it is usually viewed either ex-

plicitly or implicitly as an approximation.6 The model assumes no income effects,

which for many economists is “obviously” wrong. For some, however, general utility

maximization is also “obviously” wrong. Rather than check whether data are exactly

consistent with a theory, we provide a method to check whether the data are consis-

tent with the theory, allowing a fixed level of misoptimization. If the data retute the

model allowing a level of misspecification, we can still measure the minimum amount

of misspecification needed.7 Specifically, we calculate the smallest ε˚ such that for

some quasilinear utility function, all of an agent’s choices are within ε˚ dollars of the

maximum utility possible.

While there are many ways to enlarge a baseline model, the approach we consider

preserves certain important convexity properties of the original quasilinear model.

Specifically, we show if individual behavior is (approximately) quasilinear, then ag-

gregate behavior will also be (approximately) quasilinear (Proposition 3). The ag-

gregation property for approximately quasilinear models has no such analogue for

general preferences. This is because for demand models that allow general income

effects and heterogeneity, aggregate demands may not have much structure even if all

individuals act consistently with the model.8

This paper is meant to complement the standard paradigm in economics that posits

a correctly specified model that includes individual shocks or measurement error. In-

stead the paper focuses on a framework that has misspecification built into the model.

5Equation (2.3) in Berry et al. [1995] describes a quasilinear demand system combined with
characteristics entering the utility additively, while (2.7a) in that paper is not quasilinear in terms
of prices.

6Weyl [forthcoming] discusses quasilinear utility as just one type of approximation used in eco-
nomics. Weyl [forthcoming] highlights with notable exceptions (e.g. Willig [1976], Chetty [2012]),
the approximation of quasilinear utility is not treated explicitly.

7We are not the first to advocate for this. See for example Hansen et al. [1995], Hansen and
Jagannathan [1997], and Masten and Poirier [2018b].

8The Sonnenschein-Mantel-Debreu Theorem clarifies that average demands have only trivial
restrictions if general income effects and heterogeneity are allowed. See Rizvi [2006] and references
therein. This is not true when one studies the entire distribution of demand [McFadden and Richter,
1990, McFadden, 2005, Kitamura and Stoye, 2018]
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One distinction is that “errors” arising due to misspecification/misoptimization are

not necessarily welfare-relevant. This contrasts with standard application of latent

utility models, where all shocks enter the indirect utility function [McFadden, 1981,

Small and Rosen, 1981]. We further discuss in Section 3.2 how one could interpret

misspecification when there are also stochastic components, according to the frame-

work in this paper. In addition, the empirical question “What is an appropriate level

of aggregation for a model?” is relevant since stochastic components are typically used

to augment a model that already exhibits “ ‘laws’ of behavior” [Haavelmo, 1944]. It

is not a priori obvious at what level of aggregation such laws might hold.

Finally, we further contrast measuring misspecification with testing. A byproduct of

our statistical analysis is that we can test whether aggregate demands are exactly

rationalized by quasilinear utility, which is a novel contribution in a statistical frame-

work. Even when we refute this hypothesis, we obtain an informative measure of the

size of deviations from quasilinear utility by providing a confidence set for ε˚. Typ-

ically, when one rejects a model using a specification test, it is not obvious how to

interpret how far away the particular specification is from the dataset.9 In contrast, a

lower one-sided confidence set provides a lower bound on the minimal misspecification

needed to explain the data. The bound is in units of dollars per time period and is

an economic measure of misspecification in the spirit of Varian [1990].10

The remainder of the paper proceeds as follows. Section 2 provides definitions, charac-

terizes the model of approximate quasilinearity, and provides intuition on the behavior

allowed in approximately quasilinear models. This section also gives an interpretation

of approximation error as a measure of misspecification and describes computation of

the measure. Section 3 shows that the approximation error of the representative agent

is less than the average error of individuals, describes how our analysis relates to the

general model of utility maximization, and discusses interpretation of the measure

when there are also shocks. Section 4 details a statistical test for the representative

agent and a method to construct confidence intervals. Section 5 provides an em-

9This is related to work on sensitivity analysis in econometric models. Recent work includes
Conley et al. [2012], Kline and Santos [2013], Masten and Poirier [2018a], Andrews et al. [2017],
Andrews et al. [2018], Bonhomme and Weidner [2018], Armstrong and Kolesár [2019], Christensen
and Connault [2019].

10In a different setting, Hansen and Jagannathan [1997] provide a measure of misspecification
and study large sample properties of it. Their measure is related to misspricing and can also be
interpreted in units of dollars.
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pirical assessment of quasilinear utility for individuals and the representative agent.

Section 6 conducts simulations to better understand the results of the empirical anal-

ysis. Section 7 provides a review of the related literature. Section 8 contains our final

remarks.

2 Definitions and Model

We consider a notion of approximate rationality for the consumer problem when an

“individual” has quasilinear utility. In this paper we interpret “individual” as either

a single person, a household, or a sum of individual demands. Quasilinear utility

specifies that an individual values the consumption bundle px, yq P RK
` ˆ R using

the function upxq ` y where u : RK
` Ñ R is a locally non-satiated function and y is

interpreted as the numeraire good.11 A numeraire good is one which has a price of

one. This means utility is measured in dollars per time period.

With quasilinear utility, maximization of the utility function is well-defined when an

individual faces prices p P RK
``. A consumer facing prices p P RK

`` and with income

I P R solves

max
xPRK

` ,yPR
upxq ` y ðñ max

xPRK
`

upxq ` I ´ p ¨ x

s.t. p ¨ x` y ď I.

We allow y to be negative (e.g. borrowing), otherwise this equivalence may not

hold for low levels of income. We consider datasets of the form tpxt, ptquTt“1 where

each xt P RK
` , pt P RK

``, and T is an integer greater than or equal to one. We treat

consumption xt as an abstract object for the theoretical analysis of this section, which

can accommodate several distinct settings. Each observation xt may be interpreted as

the quantities chosen at the specified prices pt for a single individual. Alternatively,

xt may be interpreted as the sum or average of individual demands. Finally, in a

statistical framework one may interpret xt as (population) mean demands at prices

pt.

11We use R` “ tx P R | x ě 0u and R`` “ tx P R | x ą 0u.
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We differ from previous work by studying when demand data are approximately

quasilinear. In particular, we say a model is approximately quasilinear if the observed

demand data are within ε dollars of a quasilinear utility maximizer. This relaxation

of quasilinear utility allows income effects and other violations of quasilinear utility as

long as they are less than the prespecified amount ε. We provide a formal definition

of when data are ε-rationalized by a quasilinear utility model.

Definition 1. A dataset tpxt, ptquTt“1 is ε-rationalized by quasilinear utility for ε ě 0

if there exists a locally non-satiated utility function u : RK
` Ñ R such that for all

t P t1, . . . , T u and for all x P RK
` , the following inequality holds:

upxtq ´ pt ¨ xt ` ε ě upxq ´ pt ¨ x.

We also refer to the above by saying a dataset is ε-quasilinear rationalized. When ε

equals zero, it is convenient to say the dataset is quasilinear rationalized.

It is helpful to contrast this with additive random utility models, which include an

additive disturbance to the desirability of each possible choice (e.g. McFadden [1981],

Dagsvik [1994]). Here, while ε is an additive disturbance, it only shows up on one side

of the inequality and is a disturbance to optimization. In addition, it is a single value

across all decision problems and is not random.12 We note that McFadden [1981]

states additive disturbances in the additive random utility model may be interpreted

as “errors in judgment.” This paper provides a different formalism of this idea. We

further discuss how the value ε is related to utility shocks in Section 3.2.

Before characterizing ε-quasilinearity, it is useful to understand how this notion of

approximate rationality relates to standard results on quasilinear utility. Recall that

if an individual has quasilinear utility then they satisfy the law of demand for prices.

Similarly, if an individual is ε-rationalized by quasilinear utility, then they satisfy the

ε-law of demand.

Proposition 1 (Approximate Law of Demand). If the dataset tpxt, ptquTt“1 is ε-

rationalized by quasilinear utility, then for any r, s P t1, . . . , T u it follows that

1

2
pps ´ prq ¨ pxs ´ xrq ď ε.

12It is straightforward to extend the results in this paper to the case where ε is time-specific. See
Appendix C.
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To see the restrictions this places on data, consider univariate demand (K “ 1), where

we use the notation x to represent the quantity demanded of the good that is not

the numeraire. Consider demand restrictions about a point px̃, p̃q in Figure 1. When

ε equals zero, this requires that demand be downward sloping through px̃, p̃q. This

is illustrated by the dark area in Figure 1. However, when ε ą 0, one could observe

consumption of x that increases as its price increases. Thus, the law of demand must

only hold approximately.

x

p

∆p∆x ď 0

x̃

p̃

(a) Law of Demand

x

p

1
2
∆p∆x ď ε

x̃

p̃

(b) Approximate Law of Demand

Figure 1: Versions of the Law of Demand

Perhaps surprisingly, a small ε can allow a great deal of flexibility for small price

changes due to the hyperbolic nature of the approximate law of demand. Indeed, even

when ε is small, a small increase in price could allow a large increase in quantities.

This theoretically-motivated enlargement of the set in Figure 1(a) is thus distinct from

alternative topological enlargements. We now provide a complete characterization

when a dataset is ε-rationalized by quasilinear utility.

Theorem 1. For any dataset tpxt, ptquTt“1 and ε ě 0, the following are equivalent:

(i) tpxt, ptquTt“1 is ε-rationalized by quasilinear utility.

(ii) There exist numbers tutuTt“1 that satisfy the following inequalities for all r, s P

t1, . . . , T u:

us ď ur ` pr ¨ pxs ´ xrq ` ε.
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(iii) For all finite sequences ttmu
M
m“1 with tm P t1, . . . , T u and M ě 2, the inequality

1

M

M
ÿ

m“1

ptm ¨ pxtm ´ xtm`1q ď ε

holds, where pxtM`1 , ptM`1q “ pxt1 , pt1q.

(iv) tpxt, ptquTt“1 is ε-rationalized by a quasilinear utility function that is continuous,

monotonic increasing, and concave.

This is a generalization of Browning [1989] and Brown and Calsamiglia [2007]), who

study the case ε “ 0 and impose concavity. Part (ii) resembles the Afriat inequalities,

except it allows model approximation error of ε. For computational purposes, part (ii)

is the most useful. Indeed, one can check (ii) by a linear program with T variables (the

ut), and T 2 inequality constraints. The inequality of (iii) is a requirement that the

average money extracted from a “money pump” be less than ε.13 The equivalence

between (i) and (iv) shows that continuity, monotonicity, and concavity place no

additional empirical restrictions on data. We note that there is always some ε that

will rationalize the model. In particular, ε “ maxtPt1,...,T utp
t ¨ xtu suffices. However,

there may be values ε ą 0 such that a dataset cannot be described by the model.

One example is presented below.

Example 1. Consider the dataset with pq1, p1q “ p2, 1q and pq2, p2q “ p6, 2q. We

check whether ε “ 1 can ε-quasilinear rationalize the data so that the average “money

pump” must be less than one dollar per time period. We obtain

1

2

`

p1
pq1
´ q2

q ` p2
pq2
´ q1

q
˘

“ 2 ą 1 “ ε.

Thus, this dataset cannot be ε-rationalized by quasilinear utility when ε “ 1.

2.1 Measure of Misspecification

The smallest ε that ε-quasilinear rationalizes the data are a natural measure of mis-

specification. We denote this as ε˚ and call it the measure of quasilinear misspeci-

13A “money pump” assumes the existence of an arbitrager who will buy goods and re-sell them
to the consumer for a profit. Each difference ptm ¨ pxtm ´ xtm`1q in Theorem 1 represents one such
trade. This idea is explored in the model with income effects in Echenique et al. [2011].
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fication. We interpret it as the least approximation error induced by a quasilinear

model. However, there are many other ways to interpret this measure. It could be in-

terpreted as the least average money extracted through a “money pump” (Echenique

et al. [2011]). Alternatively, one can think of this measure as an additively separa-

ble version of the Afriat Efficiency Index (AEI) (Afriat [1973]) for quasilinear utility.

Lastly, one could interpret this measure as measuring the width of thick indifference

curves for an individual with approximately quasilinear utility (cf. Dziewulski [2018]).

The following result describes two equivalent ways to compute this measure. The first

way involves unknown utility numbers and is a tractable linear program. The second

condition only involves the observables, and motivates the approach to statistical

inference described in Section 4.

Proposition 2. Given a dataset tpxt, ptquTt“1, there exists a smallest non-negative

value ε˚ such that the dataset is ε-quasilinear rationalized. Moreover, for all ε ě ε˚,

the dataset is ε-quasilinear rationalized. This value may be computed by either of the

following equivalent linear programs:

min
εPR`

u1,...,uT PR`

ε s.t. us ď ur ` pr ¨ pxs ´ xrq ` ε for all r, s P t1, . . . , T u, (1)

min
εPR`

ε s.t.
1

M

M
ÿ

m“1

ptm ¨ pxtm ´ xtm`1q ď ε, (2)

where the minimum of (2) is taken with respect to all finite sequences ttmu
M
m“1 with

tm P t1, . . . , T u, M ě 2, and pxtM`1 , ptM`1q “ pxt1 , pt1q.

This proposition follows essentially from Theorem 1(ii)-(iii).14 We highlight that this

measure differs from the money pump index of Echenique et al. [2011] because it does

not scale by expenditure of the cycle and does not restrict attention to violations of

the generalized axiom of revealed preference.

14One straightforward generalization of our setup is to allow a separate wedge for each time
period, as in Varian [1990]. If we consider a separate εtV for each time period t and consider the

vector εV “ pε1V , . . . , ε
T
V q, then other objective functions such as the mean 1

T

řT
t“1 ε

t
V are also

computable by linear programming. See Theorem 2 in Appendix C.
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3 Aggregation

A classic result is that quasilinear utility induces demand that can be aggregated

across individuals.15 We show a similar aggregation property holds when each in-

dividual dataset is εi-quasilinear rationalized and individuals face the same prices.

These results illustrate that if a given level of aggregation is “acceptable” in the sense

that the misspecification is bounded by some prespecified value, then aggregating any

further will maintain this feature. A special case of this is the classic version stating

that if individuals are exactly consistent with quasilinear utility, then aggregation will

preserve this.

To formalize this, suppose that there are i “ 1, . . . , n individuals, where each indi-

vidual has a dataset tpxpi,tq, ptquTt“1. Let xt “ 1
n

řn
i“1 x

pi,tq denote the average demand

at the price pt. We now define the aggregate dataset as tpx̄t, ptquTt“1. We make use of

Theorem 1(ii) to show how the measure of misspecification behaves under aggregation.

Proposition 3. (i) If each individual dataset tpxpi,tq, ptquTt“1 is εi-rationalized by

quasilinear utility, then the aggregate dataset tpx̄t, ptquTt“1 is ε-rationalized by

quasilinear utility, where ε “ 1
n

řn
i“1 ε

i.

(ii) The measures of misspecification satisfy

ε˚ ď
1

n

n
ÿ

i“1

εi,˚, (3)

where ε˚ is the measure of misspecification for the aggregate dataset and εi,˚ is

the measure of misspecification for the dataset for individual i.

Proposition 3(i) provides an alternative way to show the classical result that quasi-

linear utility is preserved under aggregation. Indeed, if all individuals are exactly

quasilinear rationalizable (εi,˚ “ 0) then ε˚ “ 0, i.e. the representative agent is ex-

actly quasilinear rationalizable. It also describes linear aggregation properties of the

class of ε-quasilinear models. Proposition 3(ii) shows that the measure of misspecifi-

cation weakly decreases with aggregation, but does not say how much. If all individual

data sets are identical, then (3) holds with equality. The magnitude of the gap in

(3) depends on the particular distribution of individual demands. We investigate this

15See e.g. Varian [1992], Section 10.6 for a textbook reference.
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gap in our application.

We illustrate (3) in a simple example with one good and a dataset consisting of two

prices.16 Since there are only two prices, we need only check a single cycle. We obtain

εi,˚ “ max

"

0,
1

2
∆p∆xi

*

,

where ∆ takes a difference. We consider three cases: (1) all individuals have downward

sloping demands; (2) all individuals have upward sloping demands; and (3) some

individuals have upward sloping demands, and some have downward sloping demands.

In cases (1) or (2) we have

ε˚ “
1

n

n
ÿ

i“1

εi,˚.

However, in case (3) we instead have

ε˚ ă
1

n

n
ÿ

i“1

εi,˚.

Thus, the measure of misspecification strictly decreases upon aggregation provided

some individuals are consistent with downward sloping demands, and some individuals

are not. We illustrate this further in the following example, in which average demand

data are rationalized by quasilinear utility even when there are individuals whose

datasets cannot be exactly rationalized.

Example 2. Consider univariate demand pK “ 1q with two individuals. Individual

one has a dataset with pxp1,1q, p1q “ p2, 1q and pxp1,2q, p2q “ p6, 2q and individual two

has a dataset with pxp2,1q, p1q “ p6, 1q and pxp2,2q, p2q “ p2, 2q. The aggregate dataset

is given by px̄1, p1q “ p4, 1q and px̄2, p2q “ p4, 2q. The first individual has minimal

ε1˚ “ 2. The second individual has minimal ε2˚ “ 0. However, the aggregated demand

is also rationalized by quasilinear utility since

1p4´ 4q ` 2p4´ 4q “ 0.

We provide a probabilistic counterpart of Proposition 3 to lay the foundation for

16We thank Fernando Alvarez for this example.
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our statistical analysis in Section 4. To state the result, we now consider Xpi,tq as a

random vector of quantities for K goods for individual i at observation t. We stack

quantities in the vector X i “
`

Xpi,1q1, . . . , Xpi,T q1
˘1

. We let pt be a predetermined

(nonrandom) vector of prices for the K goods at observation t. Fixing prices, we

may then consider the mapping ε˚pX iq that finds the smallest ε such that the dataset

tpXpi,tq, ptquTt“1 is ε-rationalized by quasilinear utility.

Proposition 4. Assume X i is identically distributed and ErX is exists.

(i) tpErXpi,tqs, ptquTt“1 is ε-rationalized by quasilinear utility, where ε “ Erε˚pX iqs.

(ii) The mapping ε˚ : RKˆT Ñ R` is convex. In particular,

ε˚pErX i
sq ď Erε˚pX i

qs.

Proposition 4(i) is a probabilistic counterpart to Proposition 3 over the minimal

ε˚pX iq. A similar result holds for any random variable εi that satisfies εi ě ε˚pX iq

almost surely. The inequality in Proposition 4(ii) follows from convexity and Jensen’s

inequality.

We can further interpret these aggregation results in the context of a latent utility

model. To that end, suppose individual i satisfies

upXpi,tq, ηiq ´ pt ¨Xpi,tq
` εi ě sup

xPRK
`

upx, ηiq ´ pt ¨ x @t P t1, . . . , T u, (4)

where ηi represents unobservable heterogeneity in tastes. Then the dataset

tpX i, ptquTt“1 is εi-rationalized by quasilinear utility. Proposition 4 shows that data

generated in this manner will satisfy

upErXpi,tq
sq ´ pt ¨ ErXpi,tq

s ` Erεis ě sup
xPRK

`

upxq ´ pt ¨ x @t P t1, . . . , T u

for some utility function u.

13



3.1 Relation to General Utility Functions

Proposition 3 is an aggregation result that holds because ε˚ is convex when viewed

as a function of the quantities, fixing prices. Thus, it is a measurement result that

does not rely on specific assumptions concerning how the data are generated. We

now relate our aggregation result to the more general model of utility maximization

subject to a budget constraint, without the assumption that utility is also quasilinear.

First, we recall that if we aggregate individuals who each satisfy the general model of

utility maximization, then the average demands may not be consistent with the gen-

eral model. Aggregation for utility maximization is known to require more structure

[Gorman, 1953]. Thus, without more structure the previous aggregation results have

no analogues for the general model.

Becker [1962] provides a theoretical result that flips this: even “irrational” individuals

may aggregate in a manner that is consistent with general utility maximization.17

Becker’s analysis relies on the presence of the budget constraint in an essential way.

A version of Becker’s result holds for quasilinear utility, which can be written without

a budget constraint, but it is trivial. Suppose Xpi,tq is independent and identically

distributed across time and individuals, with prices treated as nonrandom parameters.

In other words, choices are unrelated to prices. This means the vector of mean

demands ErXpi,tqs is constant across time. From Proposition 1(iii) it is easy to see that

with this data generating process, tpErXpi,tqs, ptquTt“1 is consistent with quasilinear

utility, where we interpret ErXpi,tqs as a population-level mean demand.

This example is close to Becker’s in the sense that we integrate to form a (nonrandom)

population mean. A natural question is whether a similar result might hold when

there is sampling variability. The following result suggests the answer is no, suggest-

ing instead that rationalizations for quasilinear utility are unlikely if individuals are

choosing in a manner unrelated to prices. To state the result, consider a sample of

size n and let X
t
“ 1

n

řn
i“1X

pi,tq be the vector of average demands for the sample for

each time period t.

Proposition 5. Treat prices as nonrandom parameters and assume pr ‰ ps for r ‰ s.

Assume Xpi,tq has a density with respect to Lebesgue measure and is independent and

17See also Grandmont [1992], Kirman [1992], Birchenall [2016], and references therein.
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identically distributed across time and individuals. The probability
!´

X
t
, pt

¯)T

t“1
is

rationalized by quasilinear utility is given by

P

ˆ

ε˚
ˆ

!

X
t
)T

t“1

˙

“ 0

˙

“
1

T !
.

In contrast, tpErXpi,tqs, ptquTt“1 is exactly consistent with quasilinear utility.

We are not aware of a related analytical result for general utility maximization; usually

the probability of a dataset satisfying the restrictions of general utility maximization is

estimated by simulation [Bronars, 1987]. A noteworthy feature of Proposition 5 is that

the sample size n does not alter the probability of a rationalization. Thus, in finite

samples aggregation need not “mechanically” alter the probability of a rationalization.

This clarifies that our previous results (e.g. Proposition 3) do not imply that we

should necessarily expect a representative agent to be consistent with quasilinear

utility with an arbitrary dataset. We note that if Xpi,tq has a discrete distribution, in

general this probability needs to be adapted to depend on the number of individuals

and the distribution of quantities.

3.2 Shocks

This paper studies the measurement of misspecification relative to a baseline deter-

ministic model without random preference shocks. In this section we describe how the

measure of misspecification in this paper can be interpreted when there are random

preference shocks and individuals are not exact optimizers. First, however, we em-

phasize there is a core difference in interpretation between the present framework and

a typical shocks framework. Following McFadden [1981] and Small and Rosen [1981],

standard welfare analysis of latent utility models interprets all shocks as structural,

welfare-relevant unobservables. In contrast, deviations from a baseline model that

are due to misspecification/misoptimization need not be welfare-relevant.

We now turn to analysis of the measure of misspecification when there are shocks. To

formalize this, let ηpi,tq be an individual-time specific shock, which enters the utility

function. Similar to Proposition 1, we obtain an approximate law of demand, but
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now with shocks:

1

2
pps ´ prq ¨ pXpi,sq

´Xpi,rq
q ď εi

`
upXpi,sq, ηpi,sqq ´ upXpi,sq, ηpi,rqq

2
`
upXpi,rq, ηpi,rqq ´ upXpi,rq, ηpi,sqq

2
.

This bound relates the data, the degree of misspecification due to misoptimization

(εi), and the unobservable shocks. We can repeat this argument with longer cycles,

similar to the statement of Theorem 1(iii). For all finite sequences ttmu
M
m“1, tm P

t1, . . . , T u and M ě 2, the inequality

1

M

M
ÿ

m“1

ptm ¨ pXpi,tmq ´Xpi,tm`1qq ď εi `
1

M

M
ÿ

m“1

upXpi,tmq, ηpi,tmqq ´ upXpi,tmq, ηpi,tm`1qq

(5)

holds, where pXpi,tM`1q, ptM`1q “ pXpi,t1q, pt1q. The sum of utility terms differences

out when ηpi,tq does not vary, but in general is nonzero.

If we place bounds on the shocks, then we can relate εi,˚ and εi.

Proposition 6. Let

sup
r,sPt1,...,T u

ˇ

ˇupXpi,rq, ηpi,rqq ´ upXpi,rq, ηpi,sqq
ˇ

ˇ ď δi.

It follows that

εi,˚ ď εi ` δi.

This is immediate from (5) and Proposition 2. If we interpret εi as misspecification

for a model allowing taste shocks, and we instead use εi,˚ to measure misspecification

(as in Proposition 2 without taste shocks), then εi,˚ can be higher than εi. However,

if δi is small then εi,˚ cannot be much higher.

Note that the bound relating the measure of misspecification and shocks in Proposi-

tion 6 holds for every realization of the shocks. If the shocks are not systematically

related to prices, we obtain another aggregation property when we take expectations.

Proposition 7. Assume pηpi,tq, εiq has the same distribution for each individual and

time period, Xpi,tq is pηpi,tq, εiq-measurable, and ErXpi,tqs exists for each t. Then

tpErXpi,tqs, ptquTt“1 is Erεis-rationalized by quasilinear utility.
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Note that Proposition 7 holds regardless of the relationship between εi and the vector

of taste shocks pηpi,1q, . . . , ηpi,T qq. In addition, we do not need to assume taste shocks

are independent across time for the result to hold.

This result provides a synthesis of a shocks and a misspecification/misoptimization

approach. It differs from the previous aggregation results, which allow arbitrary

individual heterogeneity provided it is fixed across time at the individual level. Here,

even at the individual level the values ηi,t can change with time.

To interpret this result, consider first the case εi “ 0 for each individual. We may

find that if we calculate the measure of misspecification for each individual we obtain

εi,˚ ą 0, since this measure does not accomodate shocks. However, if the distribution

of shocks is the same across time periods, the model admits a representative agent

in the sense that mean demands exactly maximize a quasilinear utility function.18

Thus, even if there are shocks that do not “cancel out” at the individual level, they

can cancel out upon aggregating to population mean demands. Proposition 7 is a

generalization allowing εi to be nonzero. It shows that misspecification cannot get

worse upon forming expectations, provided the distrubtion of taste shocks is the same

across time.

4 Statistical Inference

Proposition 5 describes a class of data generating processes in which the population

mean quantities are consistent with quasilinear utility, but it is unlikely the sample

averages are exactly consistent with the model. Thus, there can be stark differences

between deterministic and statistical tests of quasilinear utility. We note that a num-

ber of deterministic tests have been proposed in the nonparametric revealed preference

literature, beginning with the seminal work of Samuelson [1938], Houthakker [1950],

and Afriat [1967]. There has been less work on statistical inference in such settings.

Notable exceptions that study measurement error include Varian [1985], Echenique

et al. [2011], and Aguiar and Kashaev [2018]. This paper instead considers inference

when randomness occurs to sampling variability, and is thus conceptually closer to

18Related aggregation results have appeared in McFadden [1981], Hofbauer and Sandholm [2002],
and Allen and Rehbeck [2019a,b]. Here we differ because we allow misoptimization (εi ą 0).
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Kitamura and Stoye [2018].

We first describe how to test whether the representative agent is an ε-quasilinear max-

imizer. We differ conceptually from the previous literature by conducting inference

on an approximate model, without restricting attention to the exact case (ε “ 0).

Then we describe how to construct a confidence interval for the smallest ε˚ such that

the representative agent is an ε-quasilinear maximizer.

In our application we have panel data, so we provide a statistical test for such data.

It is straightforward to adapt these ideas to repeated cross-sections. Each observation

consists of the pair pXpi,tq, ptq, where i denotes the individual and t denotes the time

period. The vector pt is the price vector at time t, which is common across individuals,

and is treated as predetermined. The vector Xpi,tq encodes the quantities of K goods

for individual i at time t, which is treated as a random variable.

Sampling uncertainty arises because we interpret the particular sample of individuals

as a random draw from a population. We allow arbitrary statistical dependence across

time for each person, but require independence between individuals. We formalize

this as follows.

Assumption 1. The quantity vector for individual i, X i “
`

Xpi,1q1, . . . , Xpi,T q1
˘1

, is

independent and identically distributed across individuals.

Recall we treat prices as predetermined. To relate this to our previous setup, one may

interpret ErXpi,tqs as the demand vector for a representative agent at price vector pt.

The representative agent population-level dataset is then given by tpErXpi,tqs, ptquTt“1.

Our null hypothesis is formulated by using condition (iii) in Theorem 1, applied

to this representive agent dataset. In particular, we formalize the statement that a

representative agent is ε-rationalized by a quasilinear utility function for a given ε ě 0

by the following null hypothesis:

H0 : For all finite sequences ttmu
M
m“1 with tm P t1, . . . , T u and with M ě 2,

1

M

M
ÿ

m“1

ptm ¨
`

E
“

Xpi,tmq
‰

´ E
“

Xpi,tm`1q
‰˘

ď ε.

Our preferred interpretation of this null hypothesis is that one directly hypothesizes

that the representative agent is ε-quasilinear rationalized for a pre-specified value

18



of ε. Alternatively, one can view this as an implication of the assumption that all

individuals act consistently with ε-quasilinearity. This null hypothesis arises as an

implication due to Proposition 4.19 Another interpretation is that there are utility

shocks at the individual level as in Proposition 7. Then the inequalities in the null

arise if the mean of the individual level measures of misspecification is no greater

than ε.

Making use of the fact that individuals each face the same prices, we may test the

null hypothesis by drawing on the literature on testing finitely many unconditional

moment inequalities. To test H0, we follow the methodology of Chernozhukov et al.

[2014]. We note that our setup has more structure than general moment inequalities

problems. The reason is that the null hypothesis can be written as a set of linear

inequality restrictions on means of the quantities, ErX is “ pErXpi,1qs1, . . . ,ErXpi,T qs1q1.

We use this fact for numerical purposes, but present the testing procedure without

exploiting this structure to better connect it to the existing literature.

To describe the test, we introduce some additional notation. First, let J denote the

number of distinct sequences ttmu
M
m“1 in the sense of Theorem 1(iii). Thus, under H0

we have J moment inequalities, each of the form

E
„

1

M

M
ÿ

m“1

ptm ¨
`

Xpi,tmq ´Xpi,tm`1q
˘



ď ε,

where pXpi,tM`1q, ptM`1q “ pX i,t1 , pt1q. We index each such sequence by j P t1, . . . , Ju.

Associated with each moment condition, we form a sample average across individuals,

µ̂j “
1

n

n
ÿ

i“1

„

1

M

M
ÿ

m“1

ptm ¨
`

Xpi,tmq ´Xpi,tm`1q
˘



“

„

1

M

M
ÿ

m“1

ptm ¨
´

X
tm
´X

tm`1
¯



, (6)

where X
t
“ 1

n

řn
i“1X

pi,tq is the K-dimensional vector of average demands in period

t.

19With panel data, one can directly calculate each individual measure of misspecification and
check whether ε˚pXiq ď ε almost surely. We note that with repeated cross-sections, this is not
possible and an analyst may use the moment conditions in H0 for such a setting.
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Recall that X i “
`

Xpi,1q1, . . . , Xpi,T q1
˘1

denotes the demands for individual i. Let

X “ pX11, . . . , Xn1q1 collect the quantities across all n individuals. The test statistic

is given by

SpXq :“ max
jPt1,...,Ju

µ̂j ´ ε “ max
ttmuMm“1

„

1

M

M
ÿ

m“1

ptm ¨
´

X
tm
´X

tm`1
¯



´ ε

where each j indexes a sequence. The statistic S may thus be computed as a linear

programming problem with T 2 inequality constraints using Proposition 2.20 This is

true despite the fact that the number of cycles (J “
řT
`“2

T !
pT´`q!`

) itself grows quickly

with T . Note that the term in brackets is ε˚
ˆ

!

X
t
)T

t“1

˙

whenever it is non-negative.

We reject the null hypothesis at nominal size α if

SpXq ą c1´α,

where c1´α is the p1´αq-quantile of S from a bootstrap distribution with B draws. In

the application, we use B “ 5,000. Appendix A.1 provides intuition for the validity

of this test. The critical value c1´α is constructed in the following manner:

i. Draw an independent and identically distributed sample of size n uniformly from

the individual demands tX iuni“1. Recall X i “
`

Xpi,1q1, . . . , Xpi,T q1
˘1

denotes the

consumption vector across all time periods. Let X˚i “
`

X˚pi,1q1, . . . , X˚pi,T q1
˘1

denote quantities for individual ˚i in the bootstrap sample.21

ii. Compute the sample mean of the moment conditions from the bootstrap draw

via Equation 6, denoted µ̂˚ “ pµ̂˚1 , . . . , µ̂
˚
Jq. Specifically, each µ̂˚j is given by

µ̂˚j “
1

n

n
ÿ

i“1

„

1

M

M
ÿ

m“1

ptm ¨
`

X˚pi,tmq ´X˚pi,tm`1q
˘



.

iii. Repeat (i) and (ii) a total of B times.

20One can apply the first linear program in that proposition to the dataset
!´

X
t
, pt

¯)T

t“1
, omit-

ting the inequality constraint on the degree of misspecification, to calculate SpXq.
21Following convention, we use ˚ here but note that this usage is distinct from the measure of

rationality.
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iv. Define

c1´α “ inf

"

c | P ˚
ˆ

max
jPt1,...,Ju

pµ̂˚j ´ µ̂jq ě c

˙

ď α

*

,

where P ˚ is the simulated distribution of B bootstrap draws, described by steps

(i)-(iii).

Recall that after rearranging,

µ̂˚j ´ µ̂j “

„

1

M

M
ÿ

m“1

ptm ¨
´´

X
˚tm
´X

tm
¯

´

´

X
˚tm`1

´X
tm`1

¯¯



,

and so computation of maxjPt1,...,Jupµ̂
˚
j ´ µ̂jq in step (iv) is again facilitated by Propo-

sition 2. One simply applies the linear program in Proposition 2 to the dataset
!´

X
˚t
´X

t
, pt

¯)T

t“1
, except one drops the inequality restriction ε ě 0 in the linear

program. In addition, note that ε does not show up in the calculation of the critical

value. Thus, the critical value may be computed once, even if the analyst wishes to

test multiple values of ε or construct a confidence interval via test inversion.

Remark 1 (Studentization). An alternative procedure would consider the studentized

test statistic

S̃pXq “ max
jPt1,...,Ju

µ̂j ´ ε

σ̂j

(or a version multiplied by
?
n), where

σ̂j “

d

1

n

n
ÿ

i“1

pgjpX iq ´ µ̂jq2

and

gjpX
i
q “

1

M

M
ÿ

m“1

ptm ¨
`

Xpi,tmq ´Xpi,tm`1q
˘

.

We do not studentize the test statistic for interpretation, computational reasons, and

to direct power against certain alternatives.22 Multiplying by
?
n or dividing by σ̂j

means we can no longer interpret the statistic as measuring dollars lost. In light of

Proposition 2, the unstudentized statistic is easy to compute. In contrast, Proposi-

tion 2 cannot directly be used to simplify computation of a studentized statistic. To

22The unstudentized test statistic is not formally covered by Chernozhukov et al. [2014]. For a
general result on bootstrap validity that applies to S, see Proposition 4.2 in Chernozhukov et al.
[2017].
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understand the power differences between S and the studentized counterpart, note

that the variance of µ̂j will typically be smaller for sequences of longer length. This

is because µ̂j is formed as an average over M terms, where M is the sequence length.

Thus we anticipate that the unstudentized statistic S directs power toward violations

of the moment inequalities that occur for shorter sequences. This choice is consistent

with a common intuition in the revealed preference literature that for theories that

are characterized by acyclicity conditions, violations typically occur for sequences of

shorter length.23

Remark 2 (Moment Selection). Refinements of the test are possible by applying a

“moment selection” approach, which originates in the literature on testing moment

inequalities, e.g. Andrews and Soares [2010], Chernozhukov et al. [2014].24 This

literature has focused on models with no particular relationship between moment

conditions, and directly applying the ideas would involve dropping certain cycles j

such that µ̂j is sufficiently negative, i.e. consistent with the null hypothesis.25 An

alternative approach would be to drop values t such that X
t

is sufficiently “far” from

altering the test statistic SpXq. This would amount to dropping all cycles j with

the t-th time period in them, and thus provides an alternative methodology to the

moment inequalities literature. Thus, this alternative approach involves dropping

groups of moment conditions using the fact that there is a theoretical relationship

between these means. Dropping certain moments could lead to computational issues

since one would need to account for all J “
řT
`“2

T !
pT´`q!`

moment conditions. Note that

when all moment conditions are included as we propose, we can utilize the equivalent

linear programming condition which is only of size T 2 where T is the number of time

periods.

We leave a formal study of power refinements and potential computational issues to

future work. However, we note that since the mapping ε˚ is convex in quantities, it is

directional differentiable (see Rockafellar [2015], Section 23 for a textbook reference).

The test statistic S is thus also convex and directly differentiabile in quantities. Thus,

23Echenique et al. [2011] consider violations of the generalized axiom of revealed preference, which
is an acyclicity condition involving sequences of arbitrary length. In their empirical implementation,
the money pump they compute involves only certain sequences of short length. In the discrete choice
literature, Shi et al. [2018] study an acyclicity condition closely related to that of Browning [1989],
Brown and Calsamiglia [2007], and the present paper, but for empirical implementation Shi et al.
[2018] focus on sequences of length 2.

24See also Kitamura and Stoye [2018].
25Romano et al. [2014] present an alternative procedure that bootstraps a recentered test statistic.
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S fulfills a key requirement of Fang and Santos [forthcoming].

4.1 Inference on ε˚

The previous arguments describe how to test whether the representative agent is

ε-rationalizable by quasilinear utility. By inverting the test, one can construct a

one-sided confidence set for the representative agent’s measure of misspecification ε˚,

which is defined as

ε˚ “ max

#

0, max
ttmuTt“1

E
„

1

M

M
ÿ

m“1

ptm ¨
`

Xpi,tmq ´Xpi,tm`1q
˘



+

where the maximum is taken over all distinct sequences. Recall the second part

of Proposition 2 describes the measure of misspecification as a maximum across se-

quences. A lower one-sided confidence interval is given by

„

ε˚
ˆ

!

X
t
)T

t“1

˙

´ c1´α,8

˙

X r0,8q.

In Appendix A.1 we provide the motivation behind the confidence intervals described

in this section.

Building a confidence interval for ε˚ goes beyond just running a specification test.

Indeed, a test of exact quasilinear maximization amounts to checking whether 0 is

in the confidence interval. Here, when we reject a hypothesis that ε “ 0, we obtain

a bound on the minimal misspecification needed to explain the data holding fixed

nominal size α. By measuring violations in dollars, one can assess whether violations

of the model are economically significant, rather than only statistically significant.

It is possible to construct other confidence sets for ε˚. For example, a two-sided

confidence set for ε˚ may be constructed as

„

ε˚
ˆ

!

X
t
)T

t“1

˙

´ c̃1´α, ε
˚

ˆ

!

X
t
)T

t“1

˙

` c̃1´α



X r0,8q,

where c̃1´α is a bootstrap quantile computed the same as c1´α, except in step (iv),
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we set

c̃1´α “ inf

"

c | P ˚
ˆ

max
jPt1,...,Ju

|µ̂˚j ´ µ̂j| ě c

˙

ď α

*

.

The difference is that c̃ involves the maximum of absolute values, whereas c does not

include the absolute values.26 This confidence interval may be used both for testing

and to provide an upper bound the minimal amount of misspecification needed to

rationalize the data.

5 Empirical Application

We now apply our methodological tools to a dataset previously used in Echenique

et al. [2011]. We use the Stanford Basket Dataset, which is a household-level panel

dataset on grocery store purchases. This dataset consists of 494 households from

June 1991 to June 1993. We use the transformed dataset of Echenique et al. [2011],

which restricts attention to food purchases and aggregates to the brand level for 4

week periods. There are a total of 26 four week periods. After brand aggregation

there are 375 unique goods. For full details on this dataset, we refer the reader to

Echenique et al. [2011].

5.1 Household Data

We first study the measure of misspecification with household data. Table 1 reports

summary statistics of the measure of misspecification. None of the households can

be exactly described by a quasilinear utility model. The average of εi,˚ is $31.96 per

(four week) time period. For comparison, the average total expenditure is $213.75

per period.

Figure 2 presents the distribution of the smallest εi,˚ such that a household is εi,˚-

quasilinear rationalizable. Most of the mass lies between 20 and 60, though there

are some outliers that are larger. We note the shape of both distributions is broadly

26We thank Don Andrews for pointing out a mistake in a previous draft. Appendix A.1 provides
motivation for this confidence interval. See also Andrews et al. [2019] and references therein.

24



Table 1: Summary Statistics of εi,˚

Mean 31.96
Median 28.59
Min 5.73
Max 156.42
No. Households 494

consistent with a different measure of misspecification considered in Echenique et al.

[2011], who quantify violations of the weak axiom of revealed preference.
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Figure 2: Cumulative Distribution Function of Household εi,˚.

5.2 Aggregate Data

In contrast with the individual data, we find that the average demands are exactly

consistent with maximization of quasilinear utility. This also implies that the statis-

tical test of Section 4 fails to reject.

To further analyze the aggregate data, we construct a two-sided confidence interval

for ε˚, calculated as described in Section 4.1 with α “ .05. This interval is given by

r0, 3.17s. We can contrast these bounds with the household data, where all households

are inconsistent with quasilinear utility. The upper bound on the confidence interval,

3.17, is smaller than the smallest individual εi,˚, 5.73, which is reported in Table 1.
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This is a demonstration that the inequality of the measure ε˚ on aggregate data from

Proposition 4(ii) can greatly reduce the magnitude of misspecification relative to the

average of the individual measures. Again, we mention that the magnitude of this

gap due to aggregation depends on the particular configuration of individual choices.

There are several reasons why we may obtain a sharp contrast between the indi-

vidual level and aggregate level measures of misspecifcation. One possibility is that

individual misoptimization is not systematic, so that when we aggregate it averages

away. Another possibility is individuals exactly optimize but receive taste shocks.

Then aggregation across individuals can serve to cancel out these taste shocks as in

Proposition 7. We note that this paper does not try to separate these two stories,

though the inequalities in Section 3.2 help interpret the measure of misspecification

in the presence of shocks. Ultimately, a formal framework that attempts to separate

the stories would involve a number of subjective judgments on behavior and measure-

ment error. Finally, Proposition 5 suggests the contrast is not mechanical: individuals

whose consumption is unrelated to prices would not tend to deterministically satisfy

the restrictions of quasilinear utility upon aggregating to form sample averages.

6 Simulations

In the previous section, we obtain the contrasting result that while all households

are inconsistent with quasilinear utility, a representative agent with 494 households

is exactly consistent. We now present simulations designed to better understand how

aggregation leads to this contrast.27

These simulations also contrast quasilinear utility with the more general model of

utility maximization. We find several qualitative differences between these models

in the simulations. Overall, quasilinear utility appears to be a considerably more

restrictive model than general utility. This suggests the finding that aggregate data

are consistent with quasilinear utility is qualitatively more surprising than the finding

that the aggregate data are also consistent with general utility [Echenique et al., 2011].

27We also provide simulations to investigate how the length of the dataset affects the analysis.
Moreover, we examine whether we might obtain data consistent with a model even if choices come
from pure noise. These simulations are presented in Appendix B.
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In order to further examine the role of aggregation, we study intermediate cases

in which we do not average over all 494 households, but over a smaller number of

households. We do this by a simulation design involving different (simulated) sample

sizes nb that range from 1 to 494. In the simulations, we examine how likely a

simulated dataset can be described by quasilinear and general utility models. Keeping

with the vocabulary from the revealed preference literature, we examine the pass rate

of the simulated data. The pass rate is the percentage of simulations that can be

described by a given model.

First, we compare pass rates of quasilinear utility with the larger model of general

utility maximization. We study how pass rates depend on the sample size. For each

sample size 1 ď nb ď 494, we construct a dataset in the following manner:

1. Draw a simple random sample (with replacement) of size nb from the collection

of all individual datasets tX iuni“1. Each individual dataset describes quantities

for all goods at all time periods for individual i.

2. Form the sample average X
˚

nb
“

´

X
˚11

nb
, . . . , X

˚T 1

nb

¯1

obtained from the previous

step. Here,

X
˚t1

nb
“

1

nb

nb
ÿ

i“1

X˚pi,tq,

where X˚pi,tq is obtained from the i-th draw in the previous step.

We do this 1,000 times for each nb. With these simulated quantities datasets X
˚

nb

and the original prices, we then report the simulated probability of being consistent

with quasilinear utility. For comparison, we also report the simulated probability

that X
˚

nb
is consistent with the more general model of utility maximization subject

to a budget constraint, i.e. we check the generalized axiom of revealed preference

(GARP) [Afriat, 1967].

We report the results in Figure 3. With quasilinear utility, we find that with small

sample sizes there is almost no chance of the aggregate dataset X
˚

nb
being consistent

with the model. The first simulation in which an aggregate dataset is consistent with

quasilinear utility occurs at nb “ 11. The pass rate increases most rapidly between

about 25 and 125 individuals, and then only slow increases, reaching about 63%.28

28We note that if our simulation instead drew datasets without replacement, this probability
would peak at 100% with nb “ 494 since the average demands are exactly consistent with quasilinear
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Figure 3: Simulated Pass Rate for General Utility and Quasilinear Utility

Our simulation exhibits different behavior when checking GARP. First, we note that

Echenique et al. [2011] have previously reported that about 20% of individuals satisfy

GARP with this dataset, but that the aggregated data are consistent with GARP.

Figure 3 indicates that aggregating over a few individuals rapidly increases the prob-

ability of being consistent with GARP. While about 20% of simulations with one

household are consistent with GARP, when we simulate with 10 households this

number jumps to 70%. With 50 households it is 98%. It is important to note that

this is an empirical inverse of the fact that GARP itself does not aggregate, i.e. even

if all individuals are consistent with GARP it may not be consistent with a represen-

tative agent. In contrast, the simulation result for GARP indicates that even though

relatively few households are consistent with GARP, when we aggregate the model

admits a representative agent with high probability.

We summarize the main differences between quasilinear utility and general utility

in this simulation design. First, aggregating over only a few individuals leads to an

aggregate dataset passing GARP with high probability, while the aggregation effect

with quasilinear utility is slower and never reaches 100%.29

utility when all individuals are used to form the average.
29The probability of an aggregate dataset passing GARP is not 1 with this design at the largest

sample size nb “ 494, even though all of our 1,000 simulations pass GARP. This is because by
drawing with replacement, there is a positive probability that we could draw the same individual
who does not satisfy GARP all 494 times. An aggregate dataset constructed from these draws would
not satisfy GARP.
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Figure 4: Average of Measure of Misspecification Across Simulations

Next, we study how the average measure of misspecification for quasilinear utility

varies with the simulated sample size nb, when applied to the aggregated dataset

X
˚

nb
. Figure 4 reports the average measure of misspecification across 1,000 simulation

draws, against the simulated sample size. We find that the measure rapidly decreases

when observations are added. This suggests that while quasilinear utility may be

inappropriate for modelling a single individual, it may be appropriate for modelling a

small group. For example, with 10 draws of the average demand the average is about

$7, and with 25 draws it falls to $3. When we consider larger groups, the average

measure of misspecification becomes negligible. For example, with nb “ 494 draws,

it is $.20. This contrasts with the finding in Figure 3 that with nb “ 494, only 63%

of simulation draws lead to a representative agent that is consistent with quasilinear

utility.30

We note that some features of Figure 4 are specific to our particular dataset. For

example, if there were no heterogeneity the measure of misspecification would be

flat in the number of draws of average demand. In addition, because the original

aggregate dataset is exactly consistent with quasilinear utility, we can conclude that

as nb Ñ 8, the average measure of misspecification shrinks to 0.31

30We do not report a related result for the general model of utility maximization. The measure
of misspecification in this paper is designed for quasilinear utility, which is in units of dollars, and
does not immediately apply to general utility.

31This follows from the law of large numbers and the continuous mapping theorem since ε˚ is
convex, hence continuous.
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7 Related Literature

At a high level, this paper is related to a research agenda set out by Becker [1962],

who emphasizes assessing the useful implications of a theory, rather than all of the

implications. In particular, Becker [1962] focuses on aggregates rather than individual

behavior since aggregate behavior is often the object of interest (e.g. Hicks [1946]).

Apart from these broad conceptual points, the main conclusions of Becker [1962] are

different from ours. Becker [1962] shows that under certain assumptions on individual

heterogeneity, budget constraints may mechanically induce aggregates to satisfy a

version of the law of demand, even if individuals behave irrationally.32 Our model

of approximate quasilinearity does not have a budget constraint, so our aggregation

result (Proposition 3) does not appear to have any formal relation to the analysis of

Becker [1962].

Throughout the paper, we focus on quasilinearity due to its theoretical tractability

and use in applications. Aggregation in an exact quasilinear model is well-known

and a revealed preference characterization of quasilinear utility has been established

by Browning [1989] and Brown and Calsamiglia [2007]. We generalize these results

by allowing model approximation error and dropping the assumption of concavity.

There has been relatively little empirical work assessing the ability of nonparametric

quasilinear preferences to describe data. One exception is Castillo and Freer [2016],

who examine the extent to which quasilinear preferences can describe individual-level

data. They find evidence against quasilinear preferences at the individual level.

To assess the amount of misspecification of quasilinearity, we introduce a new additive

measure of misspecification. This is the first measure of misspecification devoted to

quasilinear utility, though several measures exist for the standard consumer problem

(e.g. Afriat [1973], Varian [1990], Echenique et al. [2011], Dziewulski [2018]).33

While the focus of this paper is on assessing the ability of quasilinear utility to

describe data at different levels of aggregation, to our knowledge this paper is the

first to provide a nonparametric statistical specification test for a representative agent

32See also Grandmont [1992].
33Other measures include Apesteguia and Ballester [2015], Echenique et al. [2018], and de Clippel

and Rozen [2018].
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with quasilinear utility when there are multiple goods.34 The approach of Aguiar

and Kashaev [2018] may be used with panel data to test certain models including

quasilinear utility, but they do not provide a test for a representative agent. To our

knowledge, the closest precedent for our statistical testing approach appears to be

Melo et al. [2017]. They test a model of strategic behavior in a game-theoretic setting.

The moment inequalities they test are related to ours, though our test statistic is a

supremum-type (without studentization) while theirs is an inverse-variance weighted

quadratic form.

Our statistical test of the hypothesis that a representative agent is an ε-quasilinear

maximizer involves linear inequality restrictions on means. There is a large literature

on testing unconditional moment inequalities, including Andrews and Soares [2010],

Chernozhukov et al. [2014], and Romano et al. [2014]. Relative to this literature,

which has focused on general models with no particular relationship between the mo-

ment conditions, our setup has more structure. This has computational implications

that we exploit, and also informs our deliberate choice not to studentize our test

statistic, as discussed in detail in Section 4. The linear inequality restrictions we test

have a similar structure to those in Kitamura and Stoye [2018], Deb et al. [2018], and

Cattaneo et al. [2017],35 though our methods are distinct.

The analysis of individual and aggregate data helps interpret Chetty [2012], who uses

a representative agent model to place bounds on certain elasticities of demand. Chetty

[2012] argues that “small” deviations from exact optimization can rationalize a variety

of elasticities. Our theoretical and empirical analysis suggest that whether deviations

are viewed as “small” depends on the level of aggregation. We note that we differ

from Chetty [2012] because our preferred measure of deviations from quasilinearity

does not divide by expenditure, whereas the measure of Chetty [2012] is a budget-

weighted average measure and is designed for parametric utility functions while ours

is nonparametric.36

34When there is a single good (plus an unobserved numeraire good), the literature on testing
regression monotonicity (e.g. Chetverikov [forthcoming]) can be applied to conduct a specification
test for a representative agent with quasilinear utility. This is because for this case, monotonicity in
own-price is the only restriction of quasilinear utility. See also Härdle et al. [1991].

35Cattaneo et al. [2017] considers a studentized max statistic when testing whether a class of
stochastic choice models is consistent with data. The unstudentized version of their statistic may
have a natural interpretation of “economic” violations of their model, much like the statistic S we
use.

36It is possible to adapt ε-rationalizability for quasilinear utility to parametric quasilinear utility.
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Our empirical analysis is most closely related to Cherchye et al. [2016], who provide a

revealed preference test of exact aggregation using the Gorman polar form [Gorman,

1953]. In contrast to the results here, Cherchye et al. [2016] find that individual-

level data from the Spanish Continuous Family Expenditure Survey (SCFES) can

be rationalized, but there is no common scale for the population of choices, which

is necessary to admit a representative agent. The SCFES aggregates data into a

small number of categories (15 goods) from disparate sources of total expenditure.

In contrast, the Stanford Basket data we use is aggregated at the level of brand (375

goods) for grocery store products. It is possible that the difference in types of goods

studied and the pre-processing of data into goods drives this difference, but more

research is required.

This paper is also related to theoretical work by Hildenbrand [1983] and Quah [1997],

who examine when the law of demand holds in the aggregate. These papers examine

conditions in which rational individual demands generate aggregate demand that

exactly [Hildenbrand, 1983] or approximately [Quah, 1997] satisfies the law of demand.

Thematically, these papers differ from our research because they study aggregation of

rational individuals. One interesting experiment looking at the role of aggregation in

markets is the work of Crockett et al. [2018]. Finally, a large literature on aggregation

of different demand systems is reviewed in Stoker [1993].

8 Discussion

This paper examines the ability of structured utility maximization to describe data at

different levels of aggregation focusing on restrictions imposed by quasilinear utility.

To conduct this analysis, we provide a measure of misspecification for quasilinear

models and establish an aggregation result for this measure. We provide a statistical

test for the hypothesis that a representative agent is ε-rationalized by quasilinear

utility for panel data. We then analyze the aggregate implications of quasilinear

utility using panel data from the Stanford Basket Dataset.

For a conjectured parametric utility function, a natural adaptation of our setup would be to label
an individual ε-rationalizable if the utility obtained is always within ε of the indirect utility of the
conjectured parametric function.
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We find that while all individuals are inconsistent with quasilinear utility, the rep-

resentative agent is consistent using a deterministic (or statistical) framework. This

shows that while there is approximation error from quasilinearity in individual data,

it is not systematic enough that the model of aggregate quasilinear behavior is inval-

idated. This is consistent with a view discussed in Becker [1962] that while certain

models may be misspecified at the individual level, they may nonetheless provide

useful information on market demand. The results here support this hypothesis for

quasilinear utility and provide a way to check this hypothesis for other panel datasets.

This paper also provides evidence against the hypothesis of Russell and Thaler [1985]

that individual errors are systematic and will not average away in markets.

It is possible that the quality of the quasilinear model may degrade as the length

of a panel dataset increases, since time may allow income effects to manifest more

strongly. We note that the number of goods we analyze in the application is 375

and it appears this test can be applied to large datasets with little difficulty.37 This

paper raises natural follow-up questions concerning welfare and prediction that we

are investigating in ongoing work.

Appendix A Proofs of Main Results

Proof of Proposition 1. Since the dataset is ε-rationalized by quasilinear utility, it

follows that there exists a function u : RK
` Ñ R such that

upxrq ´ pr ¨ xr ` ε ě upxsq ´ pr ¨ xs

upxsq ´ ps ¨ xs ` ε ě upxrq ´ ps ¨ xr.

Adding the inequalities gives

2ε´ pr ¨ xr ´ ps ¨ xs ě ´pr ¨ xs ´ ps ¨ xr.

The result follows by rearrangement.

37For the statistical test of quasilinear utility and confidence interval construction, the most time-
intensive component involved calculation of bootstrap quantiles. This took 661 seconds with 5,000
bootstrap draws with an Intel Core i7-7700 processor, without parallelizing.
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Proof of Theorem 1. The implications (i) ùñ (ii) ùñ (iii) and (iv) ùñ (i) are

straightforward. We now show that (iii) ùñ (iv).

Fix px0, p0q P tpxt, ptquTt“1 and let Σ define the set of finite sequences of t P t1, . . . , T u

with no cycles that begins at px0, p0q.38 Define

Upxq “ min
σPΣ

#

`

x´ xσpMq
˘

¨ pσpMq `
M´1
ÿ

m“1

pxσpm`1q
´ xσpmqq ¨ pσpmq `Mε

+

,

which is motivated by re-arranging (iii). Upxq is the minimum of finitely many affine

functions, and thus is continuous, monotonic increasing, and concave. We now show

that Upxq provides an ε-quasilinear rationalization of the dataset. Consider x P RK
`

such that x ‰ xt and let σt P Σ be a minimizing sequence, i.e. a sequence such that

Upxtq “ pxt ´ xσtpMtqq ¨ pσtpMtq `
řMt´1
m“1 px

σtpm`1q ´ xσtpmqq ¨ pσtpmq `Mtε where Mt is

the length of sequence σt. It follows that

Upxq ´ pt ¨ x ď px´ xtq ¨ pt ` pxt ´ xσtpMtqq ¨ pσtpMtq

`

M´1
ÿ

m“1

pxσtpm`1q
´ xσtpmqq ¨ pσtpmq ` pMt ` 1qε´ pt ¨ x

“ ´pt ¨ xt ` ε` pxt ´ xσtpMtqq ¨ pσtpMtq `

M´1
ÿ

m“1

pxσtpm`1q
´ xσtpmqq ¨ pσtpmq `Mtε

“ Upxtq ´ pt ¨ xt ` ε

where the first inequality follows since Upxq by construction is the smallest term for

all sequences, the second equality follows by rearrangement and canceling out the

money spent on x at prices from period t, and the final equality holds by invoking

the choice of σt. Thus, Upxq ε-quasilinear rationalizes the dataset.

Proof of Proposition 2. For the dataset tpxt, ptquTt“1, we first show existence of a so-

38It is without loss to consider such sequences since if there is a cycle, then
řM

m“1 p
tm ¨ pxtm`1 ´

xtmq `Mε ě 0 by assumption so that this will not be a minimizing sequence.
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lution ε˚ to the linear programming problem while dropping the restriction ε ě 0,39

min
εPR

u1,...,uT PR`

ε s.t. us ď ur ` pr ¨ pxs ´ xrq ` ε for all r, s P t1, . . . , T u

where u “ pu1, . . . , uT q P RT
` and ε P R. Let α “ maxt“1,...,T tp

t ¨ xtu and note that

u “ p0, . . . , 0q and ε “ α is feasible for the primal problem. Using standard duality

(see Boyd and Vandenberghe [2004] Chapter 5), we obtain the dual maximization

problem

max
pλs,rqs,rPRT2

`

pλsqTs“1PRT
`

´

T
ÿ

s“1

T
ÿ

r“1

λs,rp
r
¨ pxs ´ xrq

s.t.
T
ÿ

r“1

λs,r ´
T
ÿ

r“1

λr,s ´ λs “ 0

T
ÿ

s“1

T
ÿ

r“1

λs,r “ 1.

Any set of λ terms that correspond to a cycle is feasible. For example, λ1,2 “ 1{2,

λ2,1 “ 1{2, λs,r “ 0 otherwise, and λs “ 0 for all s is feasible. Since the primal and

dual problems are both feasible, we can invoke the fundamental duality theorem of

linear programming to ensure existence of a minimizer (see Gale [1989] Theorem 3.1).

This shows the existence of a minimal ε regardless of a lower bound on ε.

That the two minimization problems in the main text have the same minimum follows

from Theorem 1 (parts (ii) and (iii)). This equivalence says if ε is in the feasible set

of one program, then it is in the feasible set of the other program. Lastly, for any

ε ą ε˚, the dataset is ε-quasilinear rationalized. This follows since for all finite

sequences ttmu
M
m“1 with tm P t1, . . . , T u and with M ě 2, the inequality

1

M

M
ÿ

m“1

ptm ¨ pxtm ´ xtm`1q ď ε˚ ă ε

holds, where pxtM`1 , ptM`1q “ pxt1 , pt1q. This is equivalent to an ε-quasilinear ratio-

39This establishes existence when this bound is imposed, as a special case. We cover the case
without bound to cover our test statistic S and bootstrap, which do not impose an inequality
restriction analogous to ε ě 0.
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nalization by Theorem 1 (parts (i) and (iii)).

Proof of Proposition 3. We first prove part (i) of the proposition. For every i “

1, . . . , n, suppose that tpxpi,tq, ptquTt“1 is εi-rationalizabled by quasilinear utility. Let

the aggregate dataset tpx̄t, ptquTt“1 be defined as in the main text. Since each individual

dataset is εi-quasilinear rationalized, using Theorem 1 (parts (i) and (ii)) we see that

for every i “ 1, . . . , n there exist numbers tupi,tquTt“1 such that

upi,sq ď upi,rq ` pr ¨ pxpi,sq ´ xpi,rqq ` εi

for all s, r P t1, . . . , T u. Summing up the inequalities across individuals and dividing

by n, we obtain

1

n

n
ÿ

i“1

upi,sq ď
1

n

n
ÿ

i“1

upi,rq ` pr ¨

˜

1

n

n
ÿ

i“1

xpi,sq ´
1

n

n
ÿ

i“1

xpi,rq

¸

`
1

n

n
ÿ

i“1

εi

for all r, s P t1, . . . , T u. Letting ūt “ 1
n

řn
i“1 u

pi,tq and ε̄ “ 1
n

řn
i“1 ε

i, we see that

ūs ď ūr ` pr ¨ px̄s ´ x̄rq ` ε̄

for all s, r P t1, . . . , T u. By Theorem 1 (parts (i) and (iii)), the aggregate dataset is

ε̄-quasilinear rationalized.

Part (ii) of the proposition follows since by part (i), the aggregate dataset is
1
n

řn
i“1 ε

i,˚-quasilinear rationalized. Proposition 2 shows that a minimal ε̄˚ exists

and that it must be less than or equal to 1
n

řn
i“1 ε

i,˚.

Proof of Proposition 4. We first prove part (i). For each sequence as in Theo-

rem 1(iii), we obtain

1

M

M
ÿ

m“1

ptm ¨ pXpi,tmq ´Xpi,tm`1qq ď ε˚pX i
q.

Since ErX is exists and ε˚pX iq is non-negative and satisfies

ε˚pX i
q ď max

tPt1,...,T u

 

pt ¨Xpi,tq
(

,
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we obtain that Erε˚pX iqs exists because integrability is preserved under (finite) max-

ima and affine transformations. Taking expectations, we obtain

1

M

M
ÿ

m“1

ptm ¨ pErXpi,tmqs ´ ErXpi,tm`1qsq ď Erε˚pX i
qs.

Since this is true for every cycle, by Theorem 1 the representative agent dataset

tpErXpi,tqs, ptquTt“1 is Erε˚pX iqs-rationalized by quasilinear utility.

To prove part (ii), let x1 and x2 be arbitrary quantities datasets. We want to show

convexity, i.e. for any α P r0, 1s, ε˚pαx1`p1´αqx2q ď αε˚px1q`p1´αqε˚px2q. Recall

that
1

M

M
ÿ

m“1

ptm ¨ pxpi,tmq ´ xpi,tm`1qq ď ε˚pxiq

for each i P t1, 2u. Since this inequality is preserved under positive weighted averages

we obtain

1

M

M
ÿ

m“1

ptm ¨
´

`

αxp1,tmq ` p1´ αqxp2,tmqq ´ pαxp1,tm`1q ` p1´ αqxp2,tm`1q
˘

¯

ď αε˚px1
q ` p1´ αqε˚px2

q

Since this is true for arbitrary cycles, the aggregate dataset tpαxp1,tq ` p1 ´

αqxp2,tq, ptquTt“1 is pαε˚px1q ` p1´ αqε˚px2qq-rationalized by quasilinear utility. Thus,

ε˚pαx1 ` p1 ´ αqx2q ď αε˚px1q ` p1 ´ αqε˚px2q. Since ε˚ is convex, the inequality in

part (ii) follows by Jensen’s inequality.

Proof of Proposition 5. When ε “ 0, Theorem 1(iii) is equivalent to the statement

that for every permutation π of t1, . . . , T u,

T
ÿ

t“1

pt ¨X
t
ď

T
ÿ

t“1

pπptq ¨X
t
. (7)

In other words, there is no permutation of prices that decreases total expenditure.

We will write this in vector form. To that end, let

p “
`

p11, . . . , pT 1
˘1

X “

´

X
11
, . . . , X

T 1
¯1

.
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Write the permutation π as a KTˆKT block matrix Π. In more detail, Π is comprised

of T blocks.40 Thus, (7) in vector form reads

p ¨X ď Πp ¨X.

Let EΠ denote the event that the minimum of Π̃p¨X across block permutation matrices

Π̃ is attained at Π. The probability that Π1 and Π2 are both minimizers satisfies

P pEΠ1 X EΠ2q ď P
`

pΠ1p´ Π2pq ¨X “ 0
˘

.

Recall that pt ‰ 0 for each t, and pr ‰ ps for r ‰ s. This implies that whenever

Π1 ‰ Π2, pΠ1p ´ Π2pq is not identically zero. Because
!

X
t
)T

t“1
has a density with

Lebesgue measure, we obtain that

P
`

pΠ1p´ Π2pq ¨X “ 0
˘

“ 0

whenever Π1 ‰ Π2. Note that this is the only step in which we use the assumption of

a density. This probability can be zero even when
!

X
t
)T

t“1
does not have a density,

and thus the assumption of a density is not crucial.

Because Xpi,tq is independent and identically distributed across time and individuals,

we have that P pEΠq is the same across permutations. Thus,

1 “ P pYΠEΠq “
ÿ

Π

P pEΠq “ T !P pEΠq. (8)

Note that T ! is the cardinality of the set of block permutation matrices Π described

above; equivalently this is the cardinality of the set of permutations of t1, . . . , T u.

Note that as described in (7),

ε˚
ˆ

!

X
t
)T

t“1

˙

“ 0

if and only if the event EΠ obtains with Π equal to the identity mapping. Thus, from

40More formally, Π is generated by turning π into a T ˆ T permutation matrix. Then one takes
the Kroenecker product of this matrix with the K ˆK identity matrix. This results in a KT ˆKT
permutation matrix Π comprised of blocks.
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(8) we have

P

ˆ

ε˚
ˆ

!

X
t
)T

t“1

˙

“ 0

˙

“ P pEΠq “
1

T !
.

Proof of Proposition 6. This is proven in the text.

Proof of Proposition 7. For the proof we remove superscripts that depend on the i-th

individual since the result will hold for any individual. The demand for each time

period is assumed to be measurable with regard to the disturbances, and so there is

a function X t mapping tastes (η) and the degree of misoptimization (ε) to choices at

period t. Here, η is a period-specific shock, not the full vector of shocks across periods.

Recall that prices themselves are nonrandom in each time period and the same across

individuals. Thus, their role is absorbed into X t already because it depends on t.

From the definition of an ε-maximizer, we note that for every pη, εq that for all finite

sequences ttmu
M
m“1 with tm P t1, . . . , T u and M ě 2, the inequality

1

M

M
ÿ

m“1

ptm ¨ pX tmpη, εq ´X tm`1pη, εqq ď ε

holds, where pX tM`1pη, εq, ptM`1q “ pX t1pη, εq, pt1q as in Theorem 1. To see this, note

that fixing the value of η and ε we have for observations s, r P t1, . . . , T u

upXr
pη, εq, ηq ´ pr ¨Xr

pη, εq ` ε ě upXs
pη, εq, ηq ´ pr ¨Xs

pη, εq

upXs
pη, εq, ηq ´ ps ¨Xs

pη, εq ` ε ě upXr
pη, εq, ηq ´ ps ¨Xr

pη, εq,

which recovers the approximate law of demand

1

2
pps ´ prq ¨ pXs

pη, εq ´Xr
pη, εqq ď ε

by adding the inequalities. The cycles condition follows by similar reasoning.

Let µ denote the marginal distribution over pη, εq. Note that µ is the same each time

period. We obtain that for all finite sequences ttmu
M
m“1 with tm P t1, . . . , T u and
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M ě 2, the inequality

ż

1

M

M
ÿ

m“1

ptm ¨ pX tmpη, εq ´X tm`1pη, εqqdµ ď

ż

εdµ

holds. The inequality above is equivalent to

1

M

M
ÿ

m“1

ptm ¨ pErX tmpη, εqs ´ ErX tm`1pη, εqsq ď Erεs,

where pX tM`1pη, εq, ptM`1q “ pX t1pη, εq, pt1q. From Theorem 1, this shows that

tpErX tpη, εqs, ptquTt“1 is Erεs-quasilinear rationalized, where the expectations are over

µ. Since we assumed X t is pηt, εq-measurable (recall we supress individual superscripts

for simplicity), we have ErX ts “ ErX tpη, εqs. Note that we use the assumption that

the distribution over pη, εq is the same each time period in this last step, to link the

mean of the observable quantities to the mean of the structural function.

A.1 Motivation for Test and Confidence Intervals

This section describes the motivation for our test and confidence intervals. We in-

troduce some additional notation. Recall each j indexes a sequence. For each such

sequence define

µj “ E
„

1

M

M
ÿ

m“1

ptm ¨
`

Xpi,tmq ´Xpi,tm`1q
˘



.

We assume c1´α approximates the p1 ´ αq-quantile of the distribution of

maxjPt1,...,Jupµ̂j ´ µjq, i.e.

P

ˆ

max
jPt1,...,Ju

pµ̂j ´ µjq ě c1´α

˙

« α.

Note that c1´α is constructed as a boostrap analogue of this probability. See Cher-

nozhukov et al. [2017] for a theoretical study of this approximation.

The motivation for the test is standard in the moment inequalities literature, but

we include the intuition for completeness. Similar logic has been used in the re-

vealed preference literature [Varian, 1985, Echenique et al., 2011]. Under H0, the test
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statistic S satisfies

SpXq “ max
jPt1,...,Ju

µ̂j ´ ε

“ max
jPt1,...,Ju

pµ̂j ´ µj ` pµj ´ εqq

ď max
jPt1,...,Ju

pµ̂j ´ µjq .

The final inequality uses the fact that H0 may be written µj ď ε for each µj. With

these inequalities, we obtain

P pSpXq ą c1´αq ď P

ˆ

max
jPt1,...,Ju

pµ̂j ´ µjq ą c1´α

˙

« α.

Thus, the test (approximately) controls size.

To construct a confidence interval for the representative agent’s ε˚, we can invert this

test. First recall

SpXq “ max

"

0, ε˚
ˆ

!

X
t
)T

t“1

˙*

´ ε.

Thus, provided c1´α ě 0, SpXq ą c1´α if and only if ε˚
ˆ

!

X
t
)T

t“1

˙

ą c1´α ` ε. By

inverting this test we obtain a lower one-sided confidence interval

„

ε˚
ˆ

!

X
t
)T

t“1

˙

´ c1´α,8

˙

X r0,8q.

We now turn to the motivation for the two-sided confidence interval. To that end,

let j˚ be a value such that µj˚ “ maxjPt1,...,Ju µj, i.e. j˚ corresponds to a worst-case

cycle. We obtain

t@j, µ̂j ´ µj ě ´au Ď tµj˚ ď µ̂j˚ ` au

Ď

"

max
jPt1,...,Ju

µj ď max
jPt1,...,Ju

µ̂j ` a

*

.

The first inclusion is obvious, since the inequality holding for each j implies it holds

for j˚. The second inclusion follows from the fact that µ̂j˚ ď maxjPt1,...,Ju µ̂j. In
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addition, we obtain

t@j, µ̂j ´ µj ď bu Ď t@j, µ̂j ´ µj˚ ď bu

“

"

max
jPt1,...,Ju

µj ě max
jPt1,...,Ju

µ̂j ´ b

*

.

Thus,

P

ˆ

max
jPt1,...,Ju

µ̂j ´ b ď max
jPt1,...,Ju

µj ď max
jPt1,...,Ju

µ̂j ` a

˙

ě P p@j,´a ď µ̂j ´ µj ď bq.

Setting a “ b “ q̃1´α yields the two-sided confidence interval described in the main

text. Andrews et al. [2019] call this a profiled confidence interval and provide further

references. Note that q̃1´α is a bootstrap quantile designed so that the approximation

P p@j,´q̃1´α ď µ̂j ´ µj ď q̃1´αq « 1´ α

holds.

Appendix B Other Simulations

B.1 Rationalizing Noise

One concern with tests of nonparametric theories is that they may be too “large”

in some sense. Thus, one may wonder how surprising it is that aggregate data are

consistent with quasilinear utility. In this section, we attempt to understand how

likely certain forms of random data would either be consistent with quasilinear utility

or the more general model of utility maximization. This is usually referred to as a

power calculation in the revealed preference literature [Bronars, 1987].

To that end, we consider a new design in which quantities are completely unrelated

to prices. We present pass rates for quasilinear utility and GARP, i.e. the frac-

tion of simulations in which each theory is deterministically consistent with the data.

The design is conceptually similar to the theoretical analysis of Becker [1962]. As
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mentioned in Section 3.1, there is an important distinction between population-level

means being exactly consistent with a model, and their sample counterparts. Re-

call Proposition 5 presents an example in which the probability of a deterministic

rationalization is 1{T !, even though the mean demands are exactly consistent with

quasilinear utility.

As before, we study how the sample size alters the probability of a rationalization by

each model. This design is related to a simulation design of Andreoni et al. [2013].

For each sample size nb, we construct a dataset as follows:

1. Pick the time period t.

2. Draw a simple random sample (with replacement) of size nb from the collection

of all individual quantity tuples across all time periods
  

Xpi,tq
(n

i“1

(T

t“1
. Each

individual dataset X˚pi,tq is a K-dimensional vector of simulated quantities for

period i in time t.

3. Form the sample average

X
˚t1

nb
“

1

nb

nb
ÿ

i“1

X˚pi,tq,

where X˚pi,tq is obtained from the i-th draw in the previous step.

4. Repeat steps 1-3 for all time periods t “ 1, . . . , 26.

5. Form the average dataset across all time periods X
˚

nb
“

´

X
˚11

nb
, . . . , X

˚T 1

nb

¯1

.

After X
˚

nb
is generated, we check whether it is exactly consistent with quasilinear

utility and GARP. We construct the pass rates across 1,000 simulations. We find

that none of these datasets is exactly consistent with quasilinear utility. The pass

rate for GARP is reported in Figure 6. It is highest for nb “ 1 individual, at 3.9%

of simulations. The pass rate is small for all simulated sample sizes, and is typically

around 1.5%. Thus there is a qualitative difference between GARP and quasilinear

utility since one model passes sometimes while the other never does.41 Intuitively,

41This statement holds for our simulations, and does not mean that the probability of pass-
ing quasilinear utility is 0 for this design. In fact, it can be shown that it must be positive, i.e.

P
´

ε˚

´

X
˚

nb

¯

“ 0
¯

ą 0.
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Figure 5: Simulated Pass Rate for General Utility with Noise

the simulations show that quasilinear utility is a much “smaller” model than general

utility maximization.

B.2 Role of Number of Time Periods

The previous simulations in Section B.1 suggest that an aggregate dataset generated

from pure noise would rarely be consistent with general utility or quasilinear utility.

These simulations involved all 26 time periods, and a natural question is what would

happen if we had fewer time periods.

First recall that Proposition 5 provides the theoretical guidance that when quantities

are unrelated to prices, the probability of passing quasilinear utility rapidly decreases

as more time periods are added. In this section, we further examine this by simulation

both for quasilinear utility and GARP. We note that this simulation design is not

formally covered by the proposition and thus is not redundant given the analytical
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result.

In this section we simulate aggregate data with a different number of time periods.

The design is similar to the previous one in Section B.1, and only differs because we

only consider T ď T “ 26 time periods at a time. We simulate the pass rate of general

utility and quasilinear utility for datasets of different lengths, i.e. T P t1, . . . , T u. For

each T , we simulate data from the first T periods. The results are displayed in

Figure 6.
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Figure 6: Simulated Pass Rate by Number of Time Periods

We find that while the pass rate with quasilinear utility drops rapidly with simulated

datasets involving more time periods, the pass rate with general utility decreases at

a much slower pace.42 This provides intuition that if quantities are completely unre-

lated to prices, even with a few time periods quasilinear utility is likely to be refuted,

whereas general utility needs more time periods. This suggests that measuring mis-

specification of quasilinear utility is a sensible exercise with a few time periods (e.g.

five periods), whereas measuring misspecification or testing general utility requires a

fairly large number of time periods (e.g. greater than 25).

Finally, we plot the average measure of misspecification for quasilinear utility for each

time period. The average measure is small overall. It necessarily increases as we add

42We note that though this setup is not formally covered by Proposition 5, the pass rate of
quasilinear utility closely follows the analytical rate 1{T !.
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time periods. The increase is fastest when we go from 1 to about 5 time periods,

and then increases more slowly as additional time periods are added. The maximum

average measure of misspecification is about 2 dollars. There is a theoretical reason

this number is small. Note that since ε˚ convex, it is also continuous as a function

of the data. Applying the continuous mapping theorem we have that conditional on

the original dataset, as nb Ñ 8,

ε˚
ˆ

!

X
˚t1

nb

)T

t“1

˙

p
ÝÑ ε˚

ˆ

!

E
”

X
˚t1

nb

ı)T

t“1

˙

. (9)

This holds for each T . The limit is zero, since demands
!

E
”

X
˚t1

nb

ı)T

t“1
are constant in

time t, and therefore consistent with quasilinear utility. Thus, while the probability

of data being exactly consistent with quasilinear utility is small, the expectation of

the measure of misspecification (Erε˚s) is also small when the number of draws nb is

big.
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Figure 7: Average Measure of Misspecification by Time Periods

B.3 Role of Fraction of Noise

We have previously considered simulations in which either all demands are linked

with prices as in the original data (Section 6) or none of them are (Section B.1).
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We now study a simulation design with a mix between these two. This design helps

understand how measuring misspecification for quasilinear utility for aggregate data

can depend on the fraction of individuals who are optimizing relative to the fraction

who are choosing in ways unrelated to prices.

We now study pass rates by a simulation design in which a fraction α of indi-

vidual datasets are simulated from “noise.” Specifically, they are constructed by

randomly sampling quantities from the collection of all individual quantity tuples

ttXpi,tquni“1u
T
t“1. A fraction 1 ´ α of individual datasets are sampled from tX iuni“1

(with replacement). Here we examine when T “ 26 so we use all time periods from

the main analysis. Thus when α “ 0 the design follows Section 6, in which all choices

are generated in a manner unrelated to prices, while when α “ 1 the design is the

same as Section B.1. We study simulation results in which all time periods are in-

cluded and the number of individual datasets we simulate is the same as the original

sample, nb “ 494.

Simulated pass rates are reported in Figure 8. Quasilinear utility is qualitatively more

responsive to the introduction of noise than general utility. Indeed, as the fraction

of individual datasets simulated from noise increases, general utility passes in almost

all simulations up until about 50% of choices are generated from noise. Even with

80% of data generated from noise, about 80% of simulations still are consistent with

general utility when we aggregate. In contrast, pass rates for quasilinear utility are

more sensitive to the introduction of noise. For example, with a 50% chance of each

individual dataset being generated from noise, about 40% of simulations are consistent

with quasilinear utility when we aggregate. When each dataset has an 80% chance of

being generated from noise, less than 1% of simulations are consistent with quasilinear

utility when we aggregate.
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Figure 8: Pass Rates by Fraction of Noise

Finally, we we report how the average measure of misspecification for quasilinear

utility relates to the fraction of noise. Results are displayed in Figure 9. The average

measure of misspecification slowly rises up until about 60% of simulated datasets

are sampled from noise. Then, the average measure of misspecification increases

more rapidly. We note that this sample simulates nb “ 494 individuals to form each

aggregate dataset. If we send nb Ñ 8, from arguments similar to the discussion

around Equation 9, we would expect ε˚ to typically be close to 0.
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Figure 9: Average Measure of Misspecification by Fraction of Noise

Appendix C εV -quasilinear Rationalizability

As in Varian [1990], we could have proposed a measure εV “ pε1
V, . . . , ε

T
Vq P RT

`

that allows decision-specific misspecification from quasilinear utility. We define an

analogous notion of εV-quasilinear rational.

Definition 2. A dataset tpxt, ptquTt“1 is εV-rationalized by quasilinear utility for εV “

pε1
V, . . . , ε

T
Vq P RT

` if there exists a locally non-satiated utility function u : RK
` Ñ R

such that for all t P t1, . . . , T u and for all x P RK
` , the following inequality holds:

upxtq ´ pt ¨ xt ` εtV ě upxq ´ pt ¨ x.

We also refer to the above by saying a dataset is εV-quasilinear rationalized. When

εV equals zero, it is convenient to say the dataset is quasilinear rationalized.

In particular, the following theorem follows from the same arguments as Theorem 1.
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Theorem 2. For any dataset tpxt, ptquTt“1 and εV P RT
`, the following are equivalent:

(i) tpxt, ptquTt“1 is εV-rationalized by quasilinear utility.

(ii) There exist numbers tutuTt“1 that satisfy the following inequalities for all r, s P

t1, . . . , T u:

us ď ur ` pr ¨ pxs ´ xrq ` εrV.

(iii) For all finite sequences with ttmu
M
m“1, tm P t1, . . . , T u and M ě 2, the inequality

M
ÿ

m“1

ptm ¨ pxtm ´ xtm`1q ď

M
ÿ

m“1

εtmV

holds, where pxtM`1 , ptM`1q “ pxt1 , pt1q.

(iv) tpxt, ptquTt“1 is εV-rationalized by a quasilinear utility function that is continuous,

monotonic increasing, and concave.

Using the results from the main text, it is possible to search over εV that minimize

deviations according to some criterion function with a constraint set of weak linear

inequalities. An aggregation property analogous to Proposition 3 holds for εtV in

each time period. Moreover, if one considers the smallest εV that minimizes the

average approximation errors fpεV q “
1
T

řT
t“1 ε

t
V , then the minimum for the aggregate

dataset is weakly less than the average of the individual minimums. Following the

ideas of Proposition 3, these properties are immediate from conditions (ii) and (iii)

of Theorem 2. Other aggregator functions of εV may be considered, in the spirit of

Varian [1990] and Halevy et al. [2018].
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