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Abstract

The unique properties of the Shapley value–efficiency, equal treatment of identical input factors, and

marginality–have made it an appealing solution concept in various classes of problems. It is however

recognized that the pay schemes utilized in many real-life situations generally depart from this value. We

propose a nonparametric approach to testing the empirical content of this concept with limited datasets.

We introduce the Shapley distance, which, for a fixed monotone transferable-utility game, measures the

distance of an arbitrary pay profile to the Shapley pay profile, and show that it is additively decomposable

into the violations of the classical Shapley axioms. The analysis has several applications. In particular,

it can be used to assess the extent to which an income distribution or a cost allocation can be considered

fair or unfair, and whether any particular case of unfairness is due to the violation of one or a combination

of the Shapley axioms.
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1 Introduction

In an environment in which output is produced through the combination of several inputs, Shapley (1953)

provides an axiomatic solution to the problem of valuing the contribution of each input. The unique proper-

ties of the Shapley value–efficiency, equal treatment of identical input factors (symmetry), and marginality–

have made it an appealing solution concept in various classes of problems including wage determination, cost

allocation, centrality measurement in networks, quantification of the importance of a commercial product’s

attributes, and causal assessment in an epidemiological or a statistical context. Yet, despite the acknowledged

theoretical appeal of this concept, it is recognized that the pay schemes utilized in most real-life environ-

ments depart from it. In this paper, we provide a way to measure such departures in limited datasets.

We introduce the Shapley distance, which, for a fixed monotone transferable-utility game (or production

function), measures the distance of an arbitrary pay profile to the Shapley pay profile, and show that it is

additively decomposable into the violations of its classical axioms.

The theoretical analysis that we propose in this paper is important for at least three reasons, as explained

hereunder:

1. To the extent that the axioms characterizing the Shapley value make it a desirable concept of fairness

(or distributive justice), as is generally acknowledged in the literature (Yaari (1981), Roth (1988)),

our Shapley distance is a measure of unfairness. It can be used, for instance, to determine the extent

to which a given income distribution under a known production technology is unfair. Furthermore,

our decomposition of this distance determines whether unfairness, if it is at all present, is due to a

violation of horizontal equality (i.e. equal pay for equal work), to a lack of fair compensation for

marginal efforts, or simply to output waste. In this sense, from a methodological and axiomatic point

of view, our analysis can be regarded as contributing to the theory of distributive justice (Konow,

2003), and it can be applied to inform the current debate around the fairness or unfairness of income

inequality in most modern societies.

2. If we consider a laboratory experiment in which subjects give their opinions on how the output of a

collaborative work project should be shared among the different contributors, we might be interested

in whether the average opinion is consistent with the Shapley value, and we might quantify the source

of any discrepancy. Such an analysis might shed light on which axioms of the Shapley value are

less robust from an empirical point of view. Indeed, we can think of the dataset in de Clippel and

Rozen (2013) where we envision practitioners applying our methodology. We also hope that the small

but growing literature on testing solution concepts in transferable-utility games can benefit from our

methodological contribution. Important recent contributions in this area are Kalisch et al. (1954),

Bolton et al. (2003), and Nash et al. (2012).

3. Our methodology also provides the first non-parametric test of the Shapley axioms in limited data sets
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(which is generically the type of data that most practitioners have access to).1 In addition, our analysis

is, to our knowledge, the first non-parametric approach to measuring and decomposing departures of

any observed pay profile from the predictions of the Shapley axioms.

Two fundamental axiomatic characterizations of the Shapley value that have received wide attention in

the literature guide our decomposition analysis. The first characterization, due to Young (1985), states that

the Shapley value is the only pay scheme that satisfies efficiency and marginality, and that treats perfectly

substitutable players or production factors identically2 The other characterization, which derives from the

original work of Shapley (1953), states that the Shapley value is the only pay scheme that satisfies the

axioms of efficiency, null-player, and additivity, and that does not discriminate between identical players.3

As is explained below, these two characterizations also provide a basis for studying the formal relationships

that exists among the different violations of these appealing axioms by means of an arbitrary pay profile.

Our main contribution is to compare any arbitrary pay profile (i.e. a vector of payoffs) to the Shapley

pay profile for a fixed game, when the observer has only limited data on the production environment. Given

a monotone game and an arbitrary pay profile, we define the Shapley distance of this pay profile as its

(euclidean) distance to the Shapley pay profile of this game. We provide a unique orthogonal decomposition

of this distance into positive terms that measure violations of the above mentioned classical axioms of

the Shapley value (Theorem 1). Importantly, we assume that an observed pay profile is generated by a

pay scheme that may be unobserved (a pay scheme is a rule that maps any game into a pay profile).

However, the decomposition of the Shapley distance of a pay profile can be used to make inference about

the extent to which the possibly unobserved pay scheme generating this pay profile violates the axioms of

the Shapley value. It is particularly interesting that this exercise shows how a violation of the marginality

axiom is formally related to violations of the null-player and additivity axioms, thus further highlighting the

correlation or the dependence between these axioms (Theorem 3).

A clear advantage of our framework is that it makes it possible to carry out the proposed tests with

only limited data, a limited dataset being a finite sequence of observations, with each observation being a

pair of a game and a pay profile. In particular, we can test for departures from the main Shapley axioms

1In this regard, it is analogous to the Revealed Preference approach to testing consumer theory models (Afriat, 1973; Varian,

1983).
2Efficiency means that the entire output of a collaborative effort is shared among the contributors, implying that no portion

of it is wasted. The marginality axiom, due to Young (1985), states that a player should be valued more under a production

technology that values his input more. This axiom is related to the null-player and the additivity axioms. The null-player axiom

states that if a player’s input never affects the output of a coalition, then that player should earn nothing. The additivity axiom

states that, following an additive technological improvement, a player’s payoff should only change to the extent to which the

new technology augments the value of his input.
3A referee has drawn our attention to the fact that the axiomatic characterizations of the Shapley value on the full domain

of transferable-utility games in Young (1985) and Shapley (1953) is rather often attributed to Shubik (1962) since Shapley

combines the axioms of additivity and null player into the carrier axiom. Pintér (2015) shows that this characterization works

for the domain of monotone games, which is the class of games we analyze in this paper.
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using only one observation. For instance, despite the fact that the axioms of marginality and additivity are

stated using two transferable-utility games, which should prevent a test of their violation if one observes

only one game and one pay profile, our framework allows us to carry out such a test for the class of

monotone games and nonnegative and feasible pay schemes, only upon observing one game and one pay

profile. We (partially) overcome this difficulty on the class of monotone games, by showing that under our

non-negativity and feasibility assumptions on the pay scheme, marginality implies the null player property.4

This is interesting because, in real-life scenarios, it is very difficult to observe more than one game; it is

difficult to observe output under two different technologies, or the ways in which a pay scheme behaves

under different production functions at the same level of input factors). Without the non-negativity and

feasibility assumptions on the pay scheme, marginality may not have any testable implications in limited

datasets.

We develop one main application for our analysis. In particular, we consider the problem of inferring

unfairness from a given income distribution in a population with a known production technology. First, we

extend our results to a more general environment that involves a finite set of agents who supply inputs in

discrete units (e.g., zero, one, two, and so on) up to a maximum amount, and a production technology that

maps each input profile to an output. This environment is more flexible than the traditional transferable-

utility environment used by Shapley (1953) in that each agent may supply a different amount of his input.

In this more general setup, we define the Shapley payoff function, which we compare to two popular pay

schemes, namely the quasi-linear contract and the piece-work pay scheme, also known as the linear contract.

Unlike the Shapley value, the linear contract is appealing because it is externality-free–that is, the payoff

to an agent does not depend on the inputs supplied by the other agents. We find that, in general, these

schemes violate all of the axioms that characterize the Shapley value, the exception being that the quasi-

linear contract is efficient. This means that the level of inequality produced by these popular pay schemes is

generally unfair, as measured by the Shapley axioms. We therefore conduct a comparative-statics analysis

that reveals how the pay rate under the linear contract affects the violation of each of these axioms.

To the best of our knowledge, no other work has analyzed and quantified departures from the Shapley

value. de Clippel and Rozen (2013) propose a way to test the axioms of symmetry, null player, additivity,

and marginality under the assumption of efficiency. Unlike our paper, their main focus in not on quantifying

the departures from the Shapley value.5

4 More generally, any non-negative and feasible pay scheme satisfying the marginality axiom on the class of monotonic

games should provide a player with a payoff at least as large as the payoff obtained by a null player. This property provides a

lower bound on the players’ payoff which is essential in testing the marginality axiom. Likewise, the condition that the total

distributed payoff is not less than the worth of the grand coalition, combined with non-negativity, provides an upper bound on

the payoff, which excludes the case of constant pay schemes (except in the case where one assigns a null payoff vector in all

monotone games).
5They suggest using a regression-based methodology and restrictions over coefficients of such regressions for testing the

different axioms at the aggregate level. In particular, they assume that all heterogeneity in the sample is caused by non-

systematic (additive) errors and they limit their regression analysis for linear solution concepts. Our approach can be applied
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Another related approach to our work can be found in Gomez et al. (2003), who defines a measure of cen-

trality for networks as the difference between the Shapley value and the Myerson value. The decomposition

of a goodness-of-fit measure into components that correspond to the violations of axioms was first explored

in Aguiar and Serrano (2017) in the context of consumer theory. We study a completely different economic

environment. We add to their idea that decomposable measures of departures from classical concepts in

economic theory provide a novel way of studying empirical counterparts of such concepts that usually do not

conform to the theory. We also hope to complement the classical works of Shapley (1953), Shubik (1962)

and Young (1985) by providing an approach to the systematic comparison of any pay profile to the Shapley

value pay profile.

Our paper also contributes to the small literature that studies economic inequality using transferable-

utility games. Some works on this topic include Einy and Peleg (1991) and Nembua and Wendji (2016).

Einy and Peleg (1991) provide an axiomatic characterization of linear inequality measures for coalitional

games, obtaining measures that are generalized Gini functions of the Shapley value. Nembua and Wendji

(2016) compare linear, symmetric and efficient values in the class of weakly linear transferable-utility games

(Freixas (2010)) using the Pigou-Dalton transfers principle and the Lorenz criterion. This class of values

includes the Shapley value. We contribute to this literature by answering the question of when inequality

can be considered ”fair” or ”unfair”, and by quantifying the sources of any particular case of unfairness based

on the axioms that characterize the Shapley value.

The rest of this paper is organized as follows. In section 2, we provide preliminary definitions and

introduce the notion of a dataset in a transferable-utility environment. We also recall the two fundamental

axiomatic characterizations of the Shapley value. In section 3, we propose a local non-parametric test

for violations of the axioms characterizing the Shapley value by any observed pay profile, as well as a

decomposable measure of such violations. In section 4, we propose an extension of the analysis to the case

of full datasets. In section 5, we provide an application that illustrates the usefulness of our results. We

conclude in section 6. All proofs are collected in an appendix.

2 Preliminaries

2.1 Transferable-Utility Environment and Dataset

In this section, we introduce preliminary definitions. Let N be a non-empty and finite set of players or

factors6, with |N | = n. A coalition is a non-empty subset C of factors: C ⊆ N , C 6= ∅.

A transferable-utility environment is a pair (N, f) where f : 2N 7→ R+ is a characteristic function

at the individual/subject level and is non-parametric. Therefore, it allows for unconstrained heterogeneity in fairness attitudes

among individual games. We also provide a way of identifying the sources of any particular violation of fairness (according to

the axioms that characterize the Shapley value).
6We use the words “players”, “factors” and “inputs” interchangeably. The words “factors” and “inputs” are more general in

the context of this paper, given the application to any type of datasets.
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such that f(∅) = 0. Many strategic and non-strategic situations can be modeled using a transferable-

utility environment (e.g., transferable-utility games, firm production, voting games, risk allocation, disease

production, etc.). In what remains, we fix N , so that an environment is completely defined by a characteristic

function f . Without loss of generality, we will call a transferable-utility environment a game.We denote by

Γ0 the set of all games. Throughout this paper, we will be only concerned with monotone games, which we

define below.

Definition 1. (Monotone game) A game f is said to be monotone if for any coalitions B and C such

that B ⊆ C ⊆ N , f(C) ≥ f(B). We denote by Γ the set of all monotone games.

It is useful to observe that any game f can be written as an element of R2n
+ with each component

corresponding to the worth of a coalition in N .

A pay scheme, formally defined below, is a way to share the output produced by the grand coalition N

among the players.

Definition 2. (Pay scheme) A pay scheme is a function θ : Γ 7→ Rn+ that maps any monotone game f

to a nonnegative real vector θ = θ(f) = (θ1(f),θ2(f), ...,θn(f))′ ∈ Rn+ such that
∑

i∈N θi(f) ≤ f(N). The

vector θ is called a pay profile, and for each factor i ∈ N , θi ∈ R+ is interpreted as the payoff of i out of the

output f(N). The set of all the pay schemes is denoted Θ.7

In the definition above, the condition
∑

i∈N θi(f) ≤ f(N) is a feasibility condition which says that

the total payoff cannot exceed the worth of the grand coalition. In addition, no player can receive a negative

payoff. Obviously, these are reasonable assumptions for the domain of monotone games. The nonnegativity

assumption on a pay scheme can be justified as the impossibility to penalize productive players. Evidently, in

a monotone game, the worth of the singleton coalitions is at least equal to zero, hence individual rationality

will rules out negative payoffs.8 The feasibility assumption is very natural from an economic point of view.

The Shapley value (defined below), in particular, satisfies these two assumptions in the class of monotone

games.

We now introduce the notion of a dataset and related concepts.

An observation is a pair (f, θ) where f is a game and θ ∈ Rn+ is a pay profile (a distribution of the

output generated by the grand coalition). Note that θ here is not necessarily a function of f but only an

observed vector of Rn+ (such as the wage profile in a firm).

Let T be a non-empty indexed set of games (possibly uncountable). A dataset is a list of observations

D = (f t, θt)t∈T . A complete dataset is a list of observations D = (f t, θt)t∈T 0 where T 0 contains all

7Given a monotone game f , any pay profile in this paper is the realization of a possibly unobserved pay scheme; it follows

that any pay profile is such that the sum of the players’ payoffs is at most equal to f(N).
8The nonnegativity assumption is called the monotonicity axiom in Weber (1988) and Weak monotonicity in Malawski (2013)

for the domain of monotone games. Kalai and Samet (1987) also use the nonnegativity condition on the context of weighted

Shapley values.
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possible games f (i.e., there is a one-to-one function between T 0 and Γ). A limited dataset is a list of

observations D = (f t, θt)t∈T where T = {1, · · · , T} consists of a finite number of games f . Any given limited

dataset is a subset of the complete dataset.

Definition 3. (Data generating pay scheme) We say that θ : Γ → Rn+ is a data generating pay

scheme if it is the unique pay scheme such that θ(f t) = θt for any element (f t, θt) of the complete dataset

D = (f t, θt)t∈T 0 .

We assume that the complete dataset always has a data generating pay scheme. In the context of a

limited dataset, we do not have the details about how the data generating pay scheme θ distributes the

total output f τ (N) for a game τ that is not in the dataset T (i.e, τ /∈ T ); but we know the realized pay

profile θt for any game t ∈ T (and we know that the data generating pay scheme θ is such that θt = θ(f t) for

all t ∈ T ). However, we have full information on f t, (i.e., we know the values of f t(C) for all C ⊆ N). An

example of an observation (f, θ) for n = 2, is given as follows: f(∅) = 0, f({i}) = 1 for i = 1, 2, f({i, j}) = 2,

and θi = 1 for i = 1, 2. We have no information about how θ depends on f , but we know f for all coalitions.

In the analysis, we consider the case where the data generating pay scheme θ is fixed (i.e. the solution

concept is not changing and there is only one true solution concept) but unknown to the observer. In

practice, we can assume that we have only one observation (f, θ) in an environment such a firm, and we

only know that the data generating pay scheme θ is such that θ(f) = θ (i.e., it is very difficult to observe

two production functions in real life, or two alternative labor contracts for the same players).

Since we can never observe a complete dataset, because the set of all of the possible games is infinite in

our environment, we will focus on the idea of extending an pay scheme observed for a limited dataset to the

complete dataset.

Definition 4. (Extension of a dataset) An extension of the set of pay profiles observed in a limited dataset

D = (f t, θt)t∈T to the domain Γ is a pay scheme ϑ : Γ 7→ Rn+ such that the restriction ϑ|D : D 7→ Rn+
satisfies ϑ(f t) = θt for all t ∈ T , and for any g ∈ Γ,

∑
i∈N

ϑi(g) ≤ g(N) and ϑi(g) ≥ 0. The set of all possible

extensions of a dataset D = (f t, θt)t∈T is denoted by V (D).

Remark that for any limited dataset D, the data generating pay scheme belongs to V (D). Of course,

the observer cannot know exactly which of the extensions of a limited dataset is the data generating pay

scheme. However, we can make inference about the properties of the data generating pay scheme using a

limited dataset. In particular, when all the extensions of a limited dataset fail a property, then the data

generating pay scheme must also fail this property. We exploit this observation in our main result (Theorem

1).

2.2 The Shapley Value

In this section, we recall the definition of the Shapley value for transferable-utility environments as well

as its two fundamental axiomatic characterizations. These characterizations provide an axiomatic basis for
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analyzing the different ways in which an arbitrary pay scheme might violate basic principles of fairness. The

following definition will be needed for the statement of these characterizations.

Definition 5. Let i, j ∈ N be two players, and f be a game.

1. The marginal contribution of player i ∈ N to a coalition C ⊆ N such that i /∈ C is f(C ∪ {i})− f(C),

and is denoted by mc(i, f, C).

2. Player i is a null-player at f if for any coalition C ⊆ N such that i /∈ C, we have mc(i, f, C) = 0.

3. Players i and j are said to be symmetrical or identical at f if for any coalition C ⊆ N such that

i, j /∈ C, mc(i, f, C) = mc(j, f, C).

We now define the axioms that characterize the Shapley value.

Axiom 1. (Symmetry or Equal-treatment)

A pay scheme θ satisfies the symmetry or equal-treatment property if for any game f , and any players i and

j that are symmetrical at f , θi(f) = θj(f).

Axiom 2. (Efficiency)

A pay scheme θ is efficient if for any game f ,
∑
i∈N

θi(f) = f(N).

Axiom 3. (Marginality/Strong monotonicity)

A pay scheme θ satisfies marginality if for any games f and w, any player i ∈ N , [mc(i, f, C) ≥ mc(i, w,C);∀C ⊆

N \ {i}]⇒ [ θi(f) ≥ θi(w)].

Axiom 4. (Null player property)

A pay scheme θ satisfies the axiom of null-player if for any game f , and any null-player i ∈ N at f ,

θi(f) = 0.

Axiom 5. (Additivity)

A pay scheme θ is additive if for any games f and w, θ(f + w) = θ(f) + θ(w).

These axioms require little justification, with perhaps the exception of the additivity axiom. The equal-

treatment axiom is a no-discrimination condition (horizontal equality) that requires that players who make

the same marginal contribution in a game f receive the same pay. Efficiency requires that the output of the

grand coalition be fully shared among the various contributors. It can also be thought of in terms of Pareto

optimality because if a pay profile is feasible but not efficient, it cannot be Pareto optimal under very general

conditions (on the players’ tastes). Marginality means that a player’s pay should be greater under a game

that places a higher marginal value on his participation (or input). This is a very appealing property because

it requires that the payoff of a player depends only on his marginal contribution given other players’ inputs.

The null player property requires that those who do not contribute marginally should not receive any part
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of the realized output. The additivity axiom means that, following an additive technological improvement,

a player’s payoff should only change by the extent to which the new technology augments the value of his

input.9

Despite the appeal of these axioms, it should be noted that testing axioms that are defined using at

least two games such as marginality and additivity requires that two or more characteristic functions be

observed. This is not possible in a real-world setting, as we only have access to a limited dataset (e.g., we

typically observe only one game, which could, for example, be the production function or technology of a

firm). A distinctive feature of our work is that we are able to quantify departures of any pay scheme from

these axioms in limited datasets, which also means that our analysis has testable implications.

The results set out hereunder establish the necessary and sufficient axioms that characterize the Shapley

payoff function (defined by equation (1) below).

Claim 1. (Young (1985)) There exists a unique pay scheme, denoted ϕ, that satisfies the efficiency, equal-

treatment, and marginality axioms, and it is given, for any game f , by:

ϕi(f) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
[f(C ∪ {i})− f(C)], for all i ∈ N. (1)

Claim 2. (Shapley (1953)) The pay scheme ϕ defined by (1) is the unique pay scheme that satisfies efficiency,

the null-player axiom, equal-treatment, and additivity.

These two characterization are the most popular in the literature. In the view of many scholars, they also

provide the most important foundation of the Shapley value as a concept of distributive justice or fairness.

Pintér (2015) shows that the characterization of Shapley using the axioms in Young (1985) is valid in the

domain of monotone games (Γ), which is the class of games we consider in this paper. The axiomatization

due to Shapley (1953) is also valid for monotone games.

In order to understand the Shapley payoff function, one should recall that for coalition C, |C| is the

size of the coalition. We assume that players enter the production process in a random order and that all

of the |S|! orderings of the players supplying a positive level of effort are equally likely. Then the fraction

|C|!(n−|C|−1)!
n! represents the probability that a given player i joins a coalition C (such that i /∈ C). When a

player i joins the other players who have already chosen to join the coalition, the new coalition is C ∪ {i}

and the game’s outcome is f(C ∪ {i}); thus the marginal contribution of player i is f(C ∪ {i})− f(C). The

value ϕi is the expected marginal contribution of player i. Throughout this paper, we denote |C|!(n−|C|−1)!
n!

by ωC for fixed N , thus the Shapley value can be written as ϕi(f) =
∑

C⊆N\{i}
ωCm(i, f, C) for all i ∈ N .

We link the two characterizations of the Shapley value by means of the lemma described hereunder, which

holds for the class of monotone games, under our definition of a pay scheme (assumed to be nonnegative

and feasible).

9This interpretation is interesting in the context of the ongoing debate on how technological improvement affects income

inequality. According to the additivity axiom, if a technological improvement nullifies the value of a player’s input, then that

player should be laid off. This has recently been observed in stores where cashiers are replaced by electronic machines.
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Lemma 1. If a pay scheme θ satisfies the marginality axiom, then θ satisfies the null-player axiom.

The proof of Lemma 1 is easy. However, its implication for a direct, though partial, test of marginality

is important. In fact, the marginality axiom a priori is not easy to test because it is defined using two

games. But Lemma 1 implies that, despite this fact, this axiom can be partially tested upon observing only

one game and a pay profile because the null-player axiom is defined using only one characteristic function.

Indeed, if we want to know whether a given pay scheme satisfies the marginality axiom under a given game,

we can first determine whether it satisfies the null-player axiom. If it violates the null-player axiom, then

we can safely conclude that it violates the marginality axiom thanks to Lemma 1. Again, this is true

because we are only concerned with the class of monotone games and a pay scheme is by our definition

nonnegative and feasible. However, as acknowledged above, notice that testing the marginality axiom via

the null-player axiom only provides a partial test because if a pay scheme satisfies the null-player axiom, it

does not necessarily mean that it satisfies the marginality axiom. In the next sections, we will provide a

way to fully test the marginality axiom only upon observing one game.

We now prove the following and perhaps simple result, which is a corollary of 1.

Corollary 1. If for an observation (f, θ), there exists a null-player i ∈ N at f such that θi > 0, then

the data generating pay scheme θ fails the null-player axiom (i.e., all possible extensions of (f, θ) fail the

null-player axiom). Moreover, θ fails the marginality axiom.

If θ is the data generating pay scheme of (f, θ), then by definition θ(f) = θ. It follows that θi(f) = θi > 0

for the null-player i ∈ N at f . By Lemma 1 it must therefore be that θ fails marginality.10 Evidently, the pay

profile θ ∈ Rn+ cannot be said to fail marginality because it is not a pay scheme, but instead is an observed

distribution of the output. However, we can use a single observation (f, θ) to reject the null hypothesis

that the data generating pay scheme θ of the limited dataset satisfies the marginality axiom.

Some remarks are in order. (i) First, holds only for monotone games (it holds for Γ not for Γ0) under

the nonnegativity and feasibility restrictions imposed on the data generating pay scheme; and (ii) second,

does not exhaust all the empirical implications of marginality for the domain of monotone games (for the

complete result see Theorem 2).

We state below a similar result for the case of the symmetry and efficiency axioms.

Corollary 2. 1. If for any observation (f, θ), there are any two players i and j that are symmetrical at

f such that θi 6= θj, then the data generating pay scheme θ fails the symmetry axiom.

10Equivalently, we can establish this result using the idea of the set of extensions of a dataset, and using a proof by contradic-

tion. First, assume that there exists an extension ϑ of (f, θ) such that ϑ satisfies the null-player axiom. Because ϑ extends the

dataset it must be that ϑ(f)i = θi > 0 for a null-player i ∈ N , but this is a contradiction. We conclude that every extension in

V ((f, θ)) has to fail the null-player axiom; moreover it fails marginality. Since the data generating pay scheme is an element of

the set of extensions, the result is established.
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2. If for any observation (f, θ), it is the case that
∑

i∈N θi < f(N), then the data generating pay scheme

θ fails the efficiency axiom.

3 Quantifying the Departures from the Shapley Value

Our main goal is the comparison of any pay profile θ with the Shapley payoff function ϕ in limited datasets.

Denote the Euclidean norm defined in Rn by || · ||. Also denote the inner product associated with the

euclidean norm by < ·, · >. We have the following definition of the Shapley distance.

Definition 6. For any fixed game f , the Shapley distance of a pay profile θ ∈ Rn+, denoted ||θ − ϕ(f)||,

is the distance between θ and the Shapley pay profile ϕ(f) ∈ Rn+ at f .

We provide below a unique orthogonal decomposition of the square of the Shapley distance into

terms that measure violations of the classical axioms of the Shapley value. This approach is analogous to

that of Aguiar and Serrano (2017) who study departures of a demand function from rationality. Despite

the similarity of the two approaches, in this paper, we are tackling a completely new question in a different

environment.

Moreover we prove that in finite datasets, these terms can be used to make partial inferences about the

violations of the axioms defined for complete datasets, and to make complete inference about the violations

of the axioms defined for a fixed game. This is of interest because the observer usually does not have

information about a pay scheme under different games, thus making it practically impossible to check the

validity of the axioms that require comparisons between different games.

3.1 An Orthogonal Decomposition of the Shapley Distance with Limited Datasets

We now provide an orthogonal decomposition of the Shapley distance. Let f be a game and θ ∈ Rn+
an observed pay profile generated by a pay scheme that may not be known (to the observer). We can

always decompose it into a sum of the Shapley value at the observed game f and an error term θ =

ϕ(f) + esh, by defining esh = θ − ϕ(f) ∈ Rn. Moreover, we are going to show that the error term esh can

be further decomposed uniquely into three vectors that are orthogonal to each other, with these vectors

being respectively connected to the violation of symmetry (sym), efficiency (eff), and marginality (mrg).

Formally, this means that we can write esh = esym+eeff +emrg such that the inner product of these axioms

errors (roughly their correlation) is zero.

We find this orthogonal decomposition to be the result of the following procedure. First we find the

closest pay scheme to θ that satisfies sym (remark that there is no conceptual issue here even though the

pay scheme is a function and θ is a pay profile or a point; see below for a formalization) ; then we find the

closest pay scheme to θ that satisfies eff in addition to sym; and finally we find the closest pay scheme to θ

that satisfies mrg in addition to sym and eff , which is simply the Shapley value itself. The order in which

11



we impose these constraints is the only one that we know that produces the orthogonality of the different

error vectors. This decomposition is also meaningful as each component measures a quantity of economic

interest that completely and effectively “isolates” one of the three conditions sym, eff and mrg.

We start by fixing a pair consisting of an observed pay profile and a game (θ, f) and consider the Shapley

distance of θ at this point, which is:

||esh|| = ||θ −ϕ(f)||.

Let vsym be the closest pay scheme to θ that satisfies symmetry (pointwise under the chosen norm) (i.e.,

vsym ∈ argminv∈Θ||θ − v(f)|| s.t. v satisfies sym).11 We prove that each entry evaluated at f is given by

vsymi that corresponds to the average pay under θ among the players who are symmetrical or identical to i

under f . We then establish that θ can be written uniquely as the sum of its symmetric part vsym = vsym(f)

and a residual esym that is orthogonal to vsym under the Euclidean inner product:

θ = vsym + esym.

In a similar way, let vsym,eff be the pay scheme that is pointwise closest to the symmetric pay scheme

vsym and that satisfies efficiency (i.e. vsym,eff ∈ argminv∈Θ||vsym − v(f)|| s.t. v satisfies sym and eff).

We prove that vsym,effi = vsym,effi (f) is given by the summation of vsymi and the output wasted by θ divided

by the number of players in N . Again, we show that we can write vsym uniquely as:

vsym = vsym,eff + eeff ,

where eeff is the negative of the wasted output by θ divided by the number of players in N .

Finally, we exploit the fact that the pay scheme satisfying the axiom of marginality that is pointwise

closest to the symmetric and efficient pay scheme vsym,eff , which we denote by vsym,eff,mrg, must be

the Shapley value because of the uniqueness established in Claim 1. Thus vsym,eff,mrg = ϕ(f). We let

emrg = vsym,eff −ϕ(f). Notice that we can always decompose θ (pointwise) as:

θ = ϕ(f) + esh,

because θ and ϕ(f) belong to the same vector space. With this preview in hand, we establish the main

result of this section.

Theorem 1. For any given observation (f, θ), we have the unique pointwise decomposition:

θ = ϕ(f) + esym + eeff + emrg.

Moreover, the distance to the Shapley pay scheme can be uniquely decomposed as:

||esh||2 = ||esym||2 + ||eeff ||2 + ||emrg||2,

into its symmetric, efficiency and marginality departures, such that for any i, j ∈ {sym, eff,mrg}, i 6= j,

< ei, ej >= 0.

11Existence is easy to verify noticing that the space of symmetric pay schemes (that are also monotone) is convex and closed.
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The proposed decomposition of the Shapley distance that we just derived has economic meaning described

hereunder:

a) ||esym||2 =
∑
i∈N

[θi − vsymi ]2, where for any player i, vsymi is the average payoff within the class [i]f of

players who are symmetric or equivalent to i at f . This means that ||esym||2 is a dispersion measure

within the equivalence classes of players. In other words, this quantity measures horizontal inequality,

which is the inequality among players who are identical.

b) ||eeff ||2 = E2/n, where E = [f(N)−
∑
i∈N

θi] is the total waste produced by the pay profile. This means

that ||eeff ||2 increases solely due to the lack of efficiency.

c) ||emrg||2 =
∑
i∈N

[vsym,eff−ϕ(f)]2, where vsym,eff is the symmetrized and efficient pay profile that is closest

to the original pay profile θ. This means that ||emrg||2 is a measure of departures from the marginality

principle conditional on fulfilling horizontal equality and efficiency.

||esh||2 is the first measure of departures from the Shapley axioms. It has the unique advantage to be

a unified treatment of the three axioms in the form of a numerical and additive decomposition. Due to

its non-parametric and deterministic nature, it can be applied to individual games. In this, it differs from

existing tests based on regression analyses and using samples such as those proposed in de Clippel and

Rozen (2013). In this regard, our approach is analogous to the revealed preference methodology used to

empirically test models in consumer theory. A clear advantage of our decomposition analysis is that each

component of ||esh||2 measures a violation of a Shapley axiom, with the main result providing a formal and

unified theoretical foundation for using the three components.

In order to prove Theorem 1, we need some preliminary lemmas that are interesting in their own rights.

We define first the equivalence class of symmetric players at f : [i]f = {j ∈ N : i ∼sym j in f}, where

i ∼sym j indicates that players i and j are symmetric players in f

Lemma 2. The closest pay scheme satisfying symmetry to any pay profile θ is given by vsym, which is

a pay scheme that gives the average pay of a group of symmetrical players to each of the players at f :

vsymi (f) = 1
|[i]f |

∑
j∈[i]f

θj.

We let vsym = vsym(f) ∈ Rn+ be the pay profile generated by the closest pay scheme that satisfies

symmetry. Now, we present the solution to the closest efficient pay scheme.12 (Its proof is obvious and thus

is omitted.)

Lemma 3. The the closest pay scheme that satisfies symmetry and efficiency, to any pay profile θ and

in particular to the symmetric pay profile vsym, is given by vsym,eff , which is a pay scheme that gives

12An anonymous referee accurately pointed out that the construction of vsym,eff applies the same principle as the principle

used to construct the least square prenucleolus from the Banzhaf value (Ruiz et al. (1996)) and the efficient extension of the

Myerson value in van den Brink et al. (2012). Béal et al. (2015) remark that this efficient extension is the closest efficient payoff

vector to the Myerson value according to the Euclidean distance.
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each player i his payoff according to vsymi plus the wasted output shared equally among all the players:

vsym,effi (f) = vsymi +
[f(N)−

∑
i∈N

θi]

n .

We let vsym,eff = vsym,eff (f) ∈ Rn+ be the pay profile generated by the closest pay scheme that satisfies

symmetry and efficiency. We also need to prove a mathematical lemma that will be crucial to prove our

decomposition result. We first define a skew symmetric pay scheme.

Definition 7. A skew symmetric pay scheme is a pay scheme such that for an equivalence class defined by

i ∼sym j, where i and j are identical players in f , we have :∑
j∈[i]f

vj(f) = 0.

Notice that when there are only two players who are identical, say i ∼sym j, we have the usual notion

of skew symmetry in that vi = −vj . Moreover, for the case of a unique player k to whom no other player is

identical, we have vk = 0.

We also need to introduce the notion of orthogonal pay schemes. We say that two pay schemes θ,η are

orthogonal if for every f ∈ Γ, < θ(f),η(f) >= 0. Now, we are ready to prove the following property of

skew symmetric pay schemes.

Lemma 4. Any skew symmetric pay scheme is orthogonal to any symmetric pay scheme.

This is the appropriate moment to prove Theorem 1, which is done in the appendix. To establish the

decomposition, we prove that the different residuals esym, eeff and emrg are orthogonal to one another.

Then the main decomposition theorem follows as a consequence.

3.2 A Test of the Violations of the Shapley Axioms with Limited Data

In what follows, we provide a test of the violation of the axioms that characterize the Shapley value with

limited data. Given a game f and an observed payoff profile θ ∈ Rn (e.g., f may be the production function

of a firm and θ the wage profile of that firm), we can test not only whether its underlying data generating

pay scheme θ departs from the Shapley value, but also identify the Shapley axioms that may be violated

by θ. More importantly, we quantify the size of each violation. The test of the marginality axiom reveals

that this axiom is much stronger for the characterization of the Shapley value than needed, which requires

us to define the marginality upper bound K(f). We emphasize that we use only the limited dataset (f, θ)

to make inference about the behavior of the unobserved data generating pay scheme θ.

We first need the definitions below.

Definition 8. (Marginalist pay scheme) A pay scheme θ is said to be marginalist if it admits a repre-

sentation:

θi(f) = φi({f(C ∪ {i})− f(C)}C⊆N\{i}),∀i ∈ N,

for some non-decreasing function φi : R2n−1 7→ R such that φi(0) = 0 for any game f .
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Define (the closed and bounded set) Fmrg ⊂ Rn, such that ϑ ∈ Fmrg if ϑ = (ϑi)i∈N is a pay profile

(i.e., ϑi ∈ R, ϑi ≥ 0,
∑

i∈N ϑi ≤ f(N)) and is such that if mc(i, f, C) ≥ 0 for all C ⊆ N \ {i} then ϑi ≥ 0,

and if mc(i, f, C) ≤ 0 for all C ⊆ N \ {i} then ϑi = 0 (let mc(i, f) = (mc(i, f, C))C⊆N\{i} for all i ∈ N).

Define the (closed set) Fmrg,sym ⊂ Fmrg of symmetric pay profiles such that ϑ ∈ Fmrg,sym if ϑ ∈ Fmrg

and ϑi = ϑj whenever i ∼sym j at f . Define the (closed set) Fmrg,eff ⊂ Fmrg such that ϑ ∈ Fmrg and∑
i∈N

ϑi = f(N); when n ≥ 3, this is equivalent to saying that ϑi can be written as a random value evaluated

at f (the notion of a random value is defined below). In fact, this means that Fmrg,eff coincides with the set

of random values for a fixed f . Finally, we define the (closed set) Fmrg,sym,eff ≡ {ϕ(f)} that corresponds

to the Shapley value at f , i.e., ϑi = ϕi(f). This is the only value that satisfies marginality, symmetry, and

efficiency. With this in hand, we define the following set function that depends on f and θ:

F(θ(f)) =



{ϕ(f)} if ||esym|| = 0 and ||eeff || = 0

Fmrg,eff if ||eeff || = 0

Fmrg,sym if ||esym|| = 0

Fmrg otherwise.

We show in the appendix that F(θ(f)) is a closed and bounded set for a fixed point (θ, f). We now

define the marginality upper bound.

Definition 9. (Marginality upper bound) The marginality upper bound of any pay scheme θ is the

following non-negative constant:

K(f) =

max
ϑ∈F(θ(f))

∑
i∈N

[
f(N)

n
−ϕi(f)]− [

1

n

∑
k∈N

ϑk −
1

|[i]f |
∑
j∈[i]f

ϑj ]


2

. (2)

The intuition behind K(f) is that it is a critical value of ||emrg|| under the null hypothesis that the

data generating pay scheme θ is consistent with marginality. In an analogous way to how critical values

are derived for statistical hypothesis tests, in our deterministic framework, we test the null hypothesis of

marginality and compute ||emrg|| in the worst (upper bound) possible case. This critical value allows us to

avoid providing false positives, than can happen when ||emrg|| = 0 while at the same time, it is impossible

that the data generating pay scheme θ satisfies marginality.

In practice, this upper bound is easily computed for small to moderate size of players, such as in a

laboratory. For large number of players, if we assume efficiency and at least three players n ≥ 3, then

we can pin down a random value which helps reduce the computational complexity of the problem. We

denote by R(N) the set of all possible linear orderings defined on N , and γ ∈ ∆(R(N)) the simplex of

probabilities defined over it. Let f be a game and r ∈ R(N) be a given order of players. We define by
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C(ri) = {j ∈ N\{i}|j r i} the set of players that precede i in the order r, and we denote mc(i, f, r) =

f(C(ri) ∪ {i})− f(C(ri)) the marginal contribution of a player i ∈ N to the coalition C(ri).

Definition 10. (Random value) A pay scheme θ is a random value if it admits a representation:

θi(f) =
∑

r∈R(N)

γ(r)mc(i, f, r),

for any f .13

Under the efficiency axiom, the marginality axiom implies that θ is a random value (this is established

in Theorem 2 in Khmelnitskaya (1999)). The definition below introduces the “marginality upper bound” of

an efficient pay scheme.

Definition 11. (Marginality upper bound with efficiency) The marginality upper bound of any effi-

cient pay scheme θ is the following nonnegative constant:

Keff (f) = max
γ∈∆(R(N))

∑
i∈N

 ∑
r∈R(N)

{
γ(r)− 1

n!

}
1

|[i]f |
∑
j∈[i]f

mc(j, f, r)


2

.

The marginality upper bound is the square of the maximum possible distance from the set of symmetrized

random values at f to the corresponding Shapley value. Recall that the Shapley value is a random value

with the following uniform distribution:

ϕi(f) =
1

n!

∑
r∈R(N)

mc(i, f, r).

This quantity can be computed under limited datasets because it only requires the knowledge of f but

it is independent of θ.

The importance of this quantity is established next.

Theorem 2. For a given observation (f, θ):

(i) If ||esh|| > 0, then the data generating pay scheme θ fails either symmetry, efficiency, or marginality;

(ii) If ||esym|| > 0, then the data generating pay scheme θ fails symmetry;

(iii) If ||eeff || > 0, then the data generating pay scheme θ fails efficiency; and,

(iv) If ||emrg|| >
√
K(f), then the data generating pay scheme θ fails marginality, where K(f) is the

marginality upper bound.

(v) If n ≥ 3, with θ generated by a pay scheme θ that satisfies efficiency, it follows that: if ||emrg|| >√
Keff (f), then the data generating pay scheme θ fails marginality, where Keff (f) is the marginality

upper bound with efficiency.

13See Weber (1988) for a treatment of random values.
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(vi) If ||esym|| = 0, ||eeff || = 0, and if ||emrg|| > 0, where K(f) = 0, then the data generating pay scheme

θ fails marginality.

Notice that if θ is generated by a pay scheme θ that is efficient and symmetric, we establish that if

||emrg|| > 0, then marginality fails. Theorem 2 also deals with the case where θ is efficient but fails the

symmetry axiom, and with the case where θ fails both symmetry and efficiency simultaneously. It establishes

that if ||emrg|| is larger than a non-zero constant, we can conclude that marginality fails with certainty, even

in limited datasets.14 While it suffices for the norm of the residuals associated with the symmetry and the

efficiency axioms to be strictly positive for these axioms to be violated, this is not the case for the marginality

axiom. In fact, this axiom is much stronger for the characterization of the Shapley value than needed, and

as we will show later, it “correlates” with the symmetry axiom.15

Example 1. Let N = {1, 2, 3}, if (f, θ) is such that f(C) = α for all C ⊆ N such that 1 ∈ C and

f(C) = 0 for all C ⊆ N such that 1 /∈ C, and θi = α
3 for all i ∈ N , then ||esym|| = 0, ||eeff || = 0 and

||emrg|| =
√

2(α3 )2 > 0. Clearly, the data generating pay scheme θ fails the null-player axiom and therefore

marginality. The marginality distance ||emrg|| > 0 quantifies the intensity of this violation of marginality

as a function of the excess pay to the two null players 2 and 3. This example illustrates that Theorem 2

contains as a special case an an implication of Lemma 1 for testing the marginality axiom using only one

observation.

For cases where θ fails symmetry or efficiency, the marginality upper bound provides the maximum value

the distance ||emrg|| can take if θ is a marginalist pay scheme. The bound is obtained by direct computation.

In the case where θ is such that ||emrg|| >
√
K(f), it is impossible that θ is a marginalist value, thus we can

safely conclude, with one observation, that the data generating pay scheme fails marginality. An analogous

reasoning applies for the marginality upper bound under efficiency, which exploits the fact that if θ satisfies

marginality and efficiency, it has to be a random value.

Due to the importance of the marginality axiom in the literature, we would like to provide an additional

analysis of the violation of this axiom by exploiting its relationship with the null player and the additivity

axioms.

14The converse implication is not true in general. To see this, consider the null game w(C) = 0 for all coalition C ⊆ N . Even

if the data generating pay scheme fails symmetry or efficiency or marginality due to the nonnegativity and feasibility of the pay

scheme, every player must receive a zero payoff. Then ||esh|| = 0 for this observation (w, 0). This is common with empirical

tests with limited data (Afriat (1973); Varian (1983)), and the fact that for certain observations it may not be possible to detect

the violations of the axioms is called lack of power. This is not a defect of the test but rather an artifact of limited datasets.
15For this reason, in a former version of the paper, we provide a new axiomatic characterization of the Shapley value that

uses a new marginality axiom, and this allows us to conclude whether this new axiom is violated if ||emrg|| > 0. The formal

results are available upon request.
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3.3 Additional Decomposition of the Shapley Distance: The Case of the Null-Player

and Additivity Axioms

We can further decompose the residual term emrg into the null-player and additivity axioms to detect

violations of marginality without computing the marginality upper bound. For this reason, we exploit the

second characterization of the Shapley value which uses the axioms of additivity and null player (in addition

to efficiency and symmetry). In addition, we use the result stating that marginality implies the null-player

axiom. Our decomposition proceeds by first imposing the null-player and the additivity axioms.

Denote by vsym,eff,null the closest pointwise pay scheme approximation of a symmetric and efficient pay

profile vsym,eff = vsym,eff (f) satisfying the null-player axiom. We have the following result.

Lemma 5. The closest pay scheme satisfying the symmetry, efficiency, and null-player axiom to any pay

profile θ and in particular to the symmetric pay profile vsym,eff is given by vsym,eff,null, where vsym,eff,null(f)

is the sum of vsym,eff and the vector enulli that extracts all of the payoffs from the null players and shares it

equally among all of the remaining players, while giving zero to the null players. Formally:

enulli = −
∑

k∈N f [vsym,effk ]

[n− |N f |]
for i ∈ N\N f ,

and

enullk = −vsym,effk for k ∈ N f ,

with N f being the set of null players in f . Thus,

(i) vsym,eff,nulli (f) = vsym,effi +
∑

k∈N [vsym,eff
k ]

[n−|N f |] for all i ∈ N\N f ; and,

(ii) vsym,eff,nullk (f) = 0 for all k ∈ N f .

We also notice that vsym,eff,null,add is the Shapley value ϕ, because of Claim 2, and we define the residual

eadd = vsym,eff,null(f)−ϕ(f).

We establish this second decomposition theorem which allows us to test and quantify the violation of

marginality through the departure from the null-player axiom.

Theorem 3. For any given observation (θ, f), we have the unique pointwise decomposition:

θ = ϕ(f) + esym + eeff + enull + eadd.

Moreover, the distance to the Shapley pay scheme can be uniquely decomposed as:

||esh||2 = ||esym||2 + ||eeff ||2 + ||eadd||2 + ||enull||2 + 2〈eadd, enull〉

into its symmetry, efficiency, null-player and additivity departures (with ||emrg||2 = ||eadd||2 + ||enull||2 +

2〈eadd, enull〉, and 〈eadd, enull〉 6= 0 in general). Moreover,
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(i) If ||enull|| > 0 and θ is generated by a pay scheme θ that satisfies efficiency, then the pay scheme θ

fails the null-player and marginality axioms;

(ii) If ||eadd|| > 0 and θ is generated by a pay scheme θ that satisfies symmetry, efficiency and the null-

player property, then θ fails additivity.

(iii) If θ is generated by a pay scheme θ that also satisfies the null player axiom and ||eadd|| >
√
K(f),

then θ fails marginality and additivity.

The theorems above establish tractable and easy ways to understand measures of departures from the

properties of the Shapley value. More importantly, they work for limited datasets, which is a realistic

situation, in the sense that the observer may not observe the behavior of a pay scheme θ over all possible

technologies.

4 Converse Implications

In this section, we provide converse implications of the results shown in Theorems 1, 2, and 3. These

decomposition results are provided for limited datasets (i.e., for a given observation (θ, f)). We first consider

a situation of limited datasets where we observe more than one game. In this case, we can generalize the

Shapley distance to a summation that takes into account all the observations of a dataset. More specifically,

we have the following:

||θ −ϕ(f)||2T =
∑
t∈T
||θt −ϕ(f t)||2,

where T = {1, · · · , T} is an index set of observations.

We define ej,t : T 7→ Rn for j ∈ {sh, sym, eff,mrg, null, add} pointwise; ej,t is defined in terms of the

pair (f t, θt), following the prequel definitions. Abusing notation we denote ej(θt, f t) = ej,t. We state the

following remark.

Remark 1. For a given dataset (θt, f t)t∈T , if ||ej(θt, f t)|| > 0 for a fixed observation (θt, f t), then ||ej ||T > 0

for j ∈ {sh, sym, eff,mrg, null, add}. Moreover, Theorems 1, 2, and 3 hold for the extended data, replacing

|| · || by || · ||T .

We are going to complement the results of Theorems 2, 3, deriving partial converse results of the

“moreover statements” using the idea of extensions to full datasets. We have the following result.

Theorem 4. For any finite set of observations (θt, f t)t∈T :

(i) If ||esh||2T =
∑
t∈T
||θt − ϕ(f t)||2 = 0, then there is an extension ϑ of (f t, θt)t∈T to Γ that corresponds

exactly to the Shapley payoff function (i.e., ϑ = ϕ).

(ii) If ||esym||2T =
∑
t∈T
||esym,t||2 = 0, then there is an extension ϑ of (f t, θt)t∈T to Γ that satisfies symmetry

for each game f ∈ Γ.
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(iii) If ||eeff ||2T =
∑
t∈T
||eeff,t||2 = 0, then there is an extension ϑ of (f t, θt)t∈T to Γ that satisfies efficiency

for each game f ∈ Γ.

(iv) If ||esym||T = 0, ||eeff ||T = 0, and ||enull||2T =
∑
t∈T
||enull,t||2 = 0, then there is an extension ϑ of

(f t, θt)t∈T to Γ that satisfies efficiency and the null-player axioms for each game f ∈ Γ.

We cannot obtain corresponding converse results for ||emrg||T = 0 and ||eadd||T = 0. It is easy to find

counter-examples where these are zero and there is no extension that satisfies marginality or additivity (e.g.,

think of the value θi(f) = ϕi(f) − (−1)ic for i = 1, 2, where 1 ∼sym 2 and c > 0 is a sufficiently small

constant, with only one observation, ).

Notice that we cannot make inference about the data generating pay scheme because with a limited

dataset, even if pointwise we observe a pay profile that is numerically equivalent to the Shapley pay profile,

not all possible extensions of the dataset to the domain of monotone games are equivalent to the Shapley

value. However, we can ensure that at least one extension is equivalent to the Shapley value. Similarly to

the statistical hypothesis testing framework, when we do not reject the null hypothesis of the consistency of

the underlying data generating pay scheme with a given axiom, we cannot claim that the pay scheme will

satisfy the axiom for other unobserved games (out-of-sample).

5 Application: Measuring Unfairness

In this section, we show one application of our analysis. The application is to inequality, and it answers

the question of when income inequality can be considered unfair. This application is important because the

Shapley value is also viewed as a way to compensate workers (Shapley and Shubik, 1967). In particular,

we show how a well-known pay scheme induces a wage profile that violates the axioms characterizing the

Shapley value.

We begin by generalizing the framework of a transferable-utility environment to an environment where

agents have more than two options.16 By generalizing the Shapley value to this class of environments, our

work is related to recent studies including Freixas (2005), Hsiao and Raghavan (1993), Courtin et al. (2016),

and Pongou and Tondji (2017). However, we have a different scope, which is to test the axioms of the

Shapley value. To our knowledge, no previous study has analyzed this topic. The different options can

be the numbers of worked hours a worker can supply (e.g., 0 hours, 1 hour, two hours, and so on up to

a maximum number of hours). A production environment is modeled as a list F = (N,L, F ) where

N = {1, 2, ..., n} is a non-empty finite set of workers of cardinality n; L = {0, 1, 2, ..., l} is a non-empty finite

16This environment generalizes well-known classes of games including simple games (see, e.g., Shapley (1962), Peleg et al.

(2008), and Laruelle and Valenciano (2008)), and voting games with abstention (see, e.g., Felsenthal and Machover (1997),

Tchantcho et al. (2008), Freixas and Zwicker (2009), Guemmegne and Pongou (2014)). This environment also generalizes

the class of bi-cooperative games introduced by Bilbao (2012). Pongou et al. (2017) use this environment to study ladder

tournaments in hierarchical organizations.
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set of hours of labor or effort levels that a worker can supply, where 0 denotes a situation of inaction; and

F is a production function that maps each action profile x = (x1, ..., xn) ∈ Ln to a real number output

F (x). The function F can also be interpreted as the aggregate profit or cost function. Interpreting it as

the profit function might be useful in that it would be viewed as incorporating the production and the cost

functions. Regardless of the interpretation adopted, we assume that F (0, 0, ..., 0) = 0, which means that if

all the workers are inactive, there is no output.

Let F = (N,L, F ) be a production environment and S ∈ 2N a set of workers. We denote by L|S| the

set of the possible vectors of effort levels for the workers in S. An element x ∈ L|S| can be written as

x = (x1, ..., xs), where s = |S| is the number of workers in S and where every xi ∈ L is the effort level

supplied by the ith worker in S.

We denote by ei the ith unit vector (0, 0, ..., 0, 1, 0, ..., 0), where all the entries are zero except the ith

component which is one. We will also use the symbols E and C, which we define as explained hereunder.

Let x, x ∈ Ln be two effort profiles. We write x E x to mean that xi 6= xi ⇒ xi = 0, and we write

x C x to mean that x E x and x 6= x. For example, (1, 7, 5, 0, ..., 0) C (1, 7, 5, 1, 5, 0, ..., 0). We denote by

|x| = | {i ∈ N : xi > 0} | the number of workers who are not inactive at x. We maintain the assumption

of monotonicity in the production function environment. The analogous monotonicity property for the

production function says that F (x) ≤ F (y) whenever xE y.

A pay scheme for a production environment F is a way to redistribute the output among the workers.

Let F = (N,L, F ) be a production environment. A pay scheme for the production F maps any effort profile

x ∈ Ln to a non-null payoff profile θF (x) = (θF1 (x),θF2 (x), ...,θFn (x)), where for all i ∈ N , θFi (x) ∈ R is

interpreted as the payoff earned by i out of the output F (x). In the production environment, an observation

is a triple (x, F,θF (x)) where θ = θF (x) is an observed pay profile for any production function F and for

any effort profile x.

The corresponding Shapley value for the environment F , denoted by ϕF , is given by:

ϕFi (x) =
∑

xC x, xi=0

(|x|)!(|x| − |x| − 1)!

(|x|)!
[F (x+ xiei)− F (x)], for all i ∈ N. (3)

For simplicity, we may sometimes write ϕ(x, x) for (|x|)!(|x|−|x|−1)!
(|x|)! , and the marginal contribution F (x+

xiei)− F (x) by mc(i, F, x, x).

The lemma below shows that, for a fixed level of efforts x, all the information given by the production

environment can be equivalently expressed using a transferable-utility game. The following lemma makes it

possible to generalize all our results to the new production environment.

Lemma 6. For any set of players N , any fixed effort profile x, and any production function F , there is a

transferable-utility game (N,GFx ) such that GFx (S) = F (xS) where xS is defined as xS,i = 0 for all i ∈ N\S

and xS,i = xi for all i ∈ S.

The Shapley value ϕF for the production function F can be equivalently defined for any fixed effort

level x ∈ Ln as the Shapley value of the corresponding transferable-utility game GFx : ϕF (x) ≡ ϕTU (N,GFx )
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where ϕTU (N,GFx ) is the Shapley value of the game (N,GFx ). We now apply these notions to examine two

well-known pay schemes, namely the quasi-linear contract and the linear contract. Similarly, we can use this

lemma to require the axioms of symmetry, efficiency and marginality to the TU-game representation of the

production environment for a fixed level of effort. We define these axioms in our firm environment in the

appendix.

5.1 The Quasi-Linear Contract

Our main application is to the quasi-linear pay scheme. For simplicity, we assume two players (e.g., an

employer and an employee), with each choosing his effort level from a set that contains two levels. The

quasi-linearity of the pay scheme means that one player is paid a rate on the amount of input he contributes

and that the other player receives the residual output. So clearly, this pay scheme is efficient.

Our objective is to measure the divergence of this pay scheme from the Shapley value and to identify the

sources of this divergence. This methodology can be viewed as a way to measure unfairness in the income

distribution. The example set out below shows that the quasi-linear pay scheme violates the equal-treatment

and marginality axioms, and hence the additivity axiom.

Example 2. Consider a production environment F = (N,L, F ) where N = {1, 2} is the set of players,

L = {0, 1} is the set of effort levels, and F is the (monotone) production function defined as follows:

F (x) =

 1 if x 6= (0, 0)

0 if x = (0, 0)
(4)

Consider the quasi-linear pay scheme Qlc defined as follows:

Qlc1(x) =
3

4
x1 and Qlc2(x) = F (x)− 3

4
x1, for each x ∈ L2.

For each x ∈ L2, we have Qlc1(x) +Qlc2(x) = F (x), which means that Qlc is efficient.

We now show that Qlc does not satisfy the equal-treatment property. Consider the labor supply x =

(1, 1). The only vector x such that x < x with x1 = x2 = 0 is x = (0, 0); moreover we have mc(1, F, x, x) =

mc(2, F, x, x) = 1, which shows that the two players are identical at x = (1, 1). However, Qlc1(1, 1) 6=

Qlc2(1, 1), and therefore, Qlc does not satisfy the equal-treatment property.

In order to quantify the violations of the properties that characterize the Shapley value, let us first derive

the Shapley payoff of each player at each vector x. The Shapley payoff profile at each x is given by the

following matrices: ϕF (X) =

(0, 0) (0, 1)

(1, 0) (1
2 ,

1
2)

, where X =

(0, 0) (0, 1)

(1, 0) (1, 1)

 is the matrix that contains all

of the possible vectors of effort levels, with the first component of each cell denoting the effort level of player

1, and the second component denoting the effort level of player 2.

The quasi-linear payoff profile is given by: Qlc(X) =

(0, 0) (0, 1)

(3
4 ,

1
4) (3

4 ,
1
4)

.
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Using the difference between the two matrices, ϕF (X)−Qlc(X) =

 (0, 0) (0, 0)

(1
4 ,−

1
4) (−1

4 ,
1
4)

, we can compute

the Shapley distance ‖ϕF −Qlc‖2 =

 0 0

2
16

2
16

.

Note that Theorem 1 applies for each fixed effort level, equivalently for each entry of the matrix X. For a

fixed effort X, using Lemma 6, we define the game (N,GFx ) (for short GFx ). In addition we let θx = Qlc(x).

The limited dataset is (GFx , θ
x). Even if we study four different efforts, we are thinking of a situation where

the observer can only analyze one effort level at a time. Thus our exercise is interested in studying each

effort as a single case.

We now determine how the amount by which the violation of each property characterizing the Shapley

value contributes to the total violation of 1/4. We know that:

Qlc(x) = ϕF (x) + esym + eeff + emrg.

1. Let esym = Qlc − vsym. For all x 6= (1, 1), Qlc(x) = vsym(x). For x = (1, 1), we have vsym1 (x) =

vsym2 (x) = 1
2 [Qlc1(x) + Qlc2(x)] = 1

2 . Hence, the distribution vsym =

(0, 0) (0, 1)

(3
4 ,

1
4) (1

2 ,
1
2)

. It follows

that esym can be represented by the matrix :

(0, 0) (0, 0)

(0, 0) (1
4 ,−

1
4)

, leading to ‖esym‖2 =

0 0

0 2
16

.

2. Let eeff = vsym − vsym,eff . We have vsym,effi (x) = vsymi (x) +
F (x)−

∑
i
Qlci(xi)

2 = vsymi (x).

It follows that eeff can be represented by a null matrix and that ‖eeff‖2 =

0 0

0 0

.

3. Let emrg = vsym,eff − ϕF =

 (0, 0) (0, 0)

(−1
4 ,

1
4) (0, 0)

, so ‖emrg‖2 =

 0 0

2
16 0

.

We can see that even when the total Shapley distance is the same for some effort levels, the decomposition

may be completely different. The efforts (1, 1) and (1, 0) have a different decomposition: (i) the former effort

is associated with an unfair quasilinear contract that is explained by a failure of symmetry (or horizontal

equality); and (ii) the latter effort is associated with an unfair quasilinear contract that is explained by a

failure of marginality (see below for the formal argument). In both cases the unfairness level has a very

different explanation.

Now we compute the marginality bound for each effort vector.

1. For the effort vector (1, 1), the random value θ1 = γ(r12)1 + γ(r2,1)0 and θ2 = γ(r1,2)0 + γ(r2,1)1;

the Shapley payoff profile is (1
2 ,

1
2), and the symmetrized random value is vsym = γ(r12)1

2 + γ(r2,1)1
2 .

The bound is therefore KF ((1, 1)) = max
γ∈∆(R(N))

{2(γ(r12)1
2 + γ(r2,1)1

2 −
1
2)2} = 0, which implies that, if

||emrg,F (1, 1)|| > 0, then marginality is violated.
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2. For the effort vector (1, 0), the random value θ1 = γ(r12)1 + γ(r2,1)1 and θ2 = γ(r1,2)0 + γ(r2,1)0; the

Shapley payoff profile is (1, 0), and the symmetrized random value is the same. The marginality bound

is given by KF ((1, 0)) = max
γ∈∆(R(N))

{(0)2 + (0)2} = 0. At this effort, we reject the null hypothesis that

the Qlc pay scheme fails marginality.

3. For the effort vector (0, 1), the bound is KF ((0, 1)) = 0.

Finally, we can aggregate the different efforts into a consolidated Shapley distance as in section 4. In

that case, we let ‖esym‖2T = ‖emrg‖2T = 2
16 observe that ‖emrg‖2T + ‖eeff‖2T + ‖esym‖2T = 1

4 . We conclude

that 50% of the unfairness of the quasi-linear pay scheme in this example is explained by the violation of the

equal-treatment property, and that the other 50% is explained by the violation of the marginality property.

It is important to note that, notwithstanding the fact that the statement of the marginality axiom requires

that all of the production functions be known, in this example, we were able to quantify the violation of this

axiom knowing only one effort level (and a production function). This again shows the empirical relevance

of our approach.

5.2 Additional Applications

We provide three additional applications of our Shapley distance decomposition in the appendix. In the

second application, we analyze an arbitrary linear pay scheme in which each worker’s pay is a linear function

of his effort level, and study the effect of increasing the pay rate of a worker on the violation of the

Shapley axioms. Our third application provides an axiomatic test of ordinary least squares (OLS), which

is an estimation method of the unknown parameters in a linear regression model. We find that OLS

violates all of the axioms of the Shapley value (for decomposing the goodness-of-fit following Huettner et al.

(2012)), and may not be a good method for quantifying the relative importance of explanatory variables in

a linear regression. Finally, we study intra-firm bargaining focusing on the effects of bargaining power on

firm unfairness. For a particular example, we find that firm bargaining power monotonically increases the

violations of symmetry and marginality.

6 Conclusion

In this study, we have provided a local measure of the departures of an arbitrary pay profile from the Shapley

value in limited datasets. The local measure permits one to draw inference about violations of the classical

axioms that characterize this value (efficiency, equal treatment of identical players, and marginality). Our

measure is decomposable into these axioms. Our findings have testable implications for the different ways

in which a pay scheme may violate basic properties of fairness. We provide an application to pay schemes

widely used in real-life situations.

Theorem 2 shows that testing the marginality axiom in limited datasets can be difficult. In fact, we have
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shown that a positive distance between the symmetrized and efficient payoff and the Shapley value may not

guarantee that the data generating pay scheme fails the marginality axiom. This is in part due to the fact

that the traditional axioms that characterize the Shapley value, even when logically independent, are not

totally independent in a more subtle sense. To see that the marginality axiom and the symmetry axiom are

not completely independent, we can observe that marginality implies the null-player axiom (in the domain

of monotone games). This requires that the payoff has to be equal fo all null players (and it has to be equal

to zero). On the other hand, symmetry requires that all the null players have the same payoff. It then is

clear that marginality and symmetry have overlapping consequences. This interdependence is one reason

why testing marginality is difficult in limited datasets. To the extent that an observer or a practitioner is

interested in an easy test of the violation of each axiom, this interdependence between the classical axioms

can be viewed as a weakness. For this reason, a new axiomatic characterization of the Shapley value may

be desirable. In results not shown here, we provide such an axiomatic characterization, also obtaining an

easier test of each axiom. A distinctive feature of the current paper, however, is in providing a test of the

null hypothesis for the violation of the classical marginality axiom.
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Gomez, D., González-Arangüena, E., Manuel, C., Owen, G., del Pozo, M., and Tejada, J. (2003). Centrality

and power in social networks: a game theoretic approach. Mathematical Social Sciences, 46(1), 27–54.

Guemmegne, J. T. and Pongou, R. (2014). A policy-based rationalization of collective rules: Dimensionality,

specialized houses, and decentralized authority. Journal of Mathematical Economics, 52, 182–193.

26



Hsiao, C.-R. and Raghavan, T. (1993). Shapley value for multichoice cooperative games I. Games and

economic behavior, 5(2), 240–256.

Huettner, F., Sunder, M., et al. (2012). Axiomatic arguments for decomposing goodness of fit according to

shapley and owen values. Electronic Journal of Statistics, 6, 1239–1250.

Kalai, E. and Samet, D. (1987). On weighted shapley values. International Journal of Game Theory, 16(3),

205–222.

Kalisch, G. K., Milnor, J. W., Nash, J., and Nering, E. (1954). Some Experimental n-Person Games. In

Decision Processes, edited by RM Thrall, CH Coonmbs, and RL Davis. (pp. 301–327). New York.

Khmelnitskaya, A. B. (1999). Marginalist and efficient values for TU games. Mathematical Social Sciences,

38(1), 45–54.

Konow, J. (2003). Which is the fairest one of all? A positive analysis of justice theories. Journal of Economic

Literature, 41(4), 1188–1239.

Laruelle, A. and Valenciano, F. (2008). Voting and collective decision-making: bargaining and power. Cam-

bridge University Press.

Malawski, M. (2013). “procedural” values for cooperative games. International Journal of Game Theory,

42(1), 305–324.

Nash, J. F., Nagel, R., Ockenfels, A., and Selten, R. (2012). The agencies method for coalition formation in

experimental games. Proceedings of the National Academy of Sciences, 109(50), 20358–20363.

Nembua, C. C. and Wendji, C. M. (2016). Ordinal equivalence of values, pigou–dalton transfers and in-

equality in tu-games. Games and Economic Behavior, 99, 117 – 133.

Peleg, B. et al. (2008). Game theoretic analysis of voting in committees. Cambridge Books.

Pintér, M. (2015). Young’s axiomatization of the shapley value: a new proof. Annals of Operations Research,

235(1), 665–673.

Pongou, R., Tchantcho, B., and Tedjeugang, N. (2017). Properties of ladder tournaments. European Journal

of Operational Research.

Pongou, R. and Tondji, J.-B. (2017). Valuing inputs under supply uncertainty: The bayesian shapley value.

Games and Economic Behavior.

Roth, A. E. (1988). The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press.

27



Ruiz, L. M., Valenciano, F., and Zarzuelo, J. M. (1996). The least square prenucleolus and the least square

nucleolus. two values for tu games based on the excess vector. International Journal of Game Theory,

25(1), 113–134.

Shapley, L. (1953). A Value for n-person Games. Contributions to the Theory of Games, 2, 307–317.

Shapley, L. S. (1962). Simple games: an outline of the descriptive theory. Behavioral Science, 7(1), 59–66.

Shapley, L. S. and Shubik, M. (1967). Ownership and the production function. The Quarterly Journal of

Economics, (pp. 88–111).

Shubik, M. (1962). Incentives, decentralized control, the assignment of joint costs and internal pricing.

Management science, 8(3), 325–343.

Stole, L. A. and Zwiebel, J. (1996). Intra-firm bargaining under non-binding contracts. The Review of

Economic Studies, 63(3), 375–410.

Tchantcho, B., Lambo, L. D., Pongou, R., and Engoulou, B. M. (2008). Voters’ power in voting games with

abstention: Influence relation and ordinal equivalence of power theories. Games and Economic Behavior,

64(1), 335–350.

van den Brink, R., Khmelnitskaya, A., and van der Laan, G. (2012). An efficient and fair solution for

communication graph games. Economics letters, 117(3), 786–789.

Varian, H. R. (1983). Non-parametric Tests of Consumer Behaviour. The Review of Economic Studies,

50(1), 99–110.

Weber, R. J. (1988). Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley,

(pp. 101–119).

Yaari, M. E. (1981). Rawls, Edgeworth, Shapley, Nash: Theories of distributive justice re-examined. Journal

of Economic Theory, 24(1), 1–39.

Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory,

14(2), 65–72.

28



7 Appendix

Proof of Lemma 1. Let f be a TU game, i ∈ N be a null-player and θi be a pay scheme satisfying the

marginality axiom. Consider a coalition C ⊆ N\{i}; then mc(i, f, C) = 0 since i is a null player. Let w be a

null game (which means that the worth of any coalition is 0) (we know that w ∈ Γ because w is a monotone

game), then mc(i, w,C) = 0 for all C ⊆ N\{i} by construction. It follows that if mc(i, f, C) = mc(i, w,C);

then θi(f) = θi(w) since θ satisfies the marginality axiom. Now we prove that given that w(C) ≡ 0, for all

C ⊆ N we have θi(w) = 0 for all i ∈ N . In fact, given that, by definition 2 of a pay scheme, θi(w) ≥ 0 is

nonnegative for all i ∈ N and is feasible, such that
∑

i∈N θi(w) ≤ w(N) = 0, we have θi(w) = 0. Therefore,

θi(f) = 0, and we conclude that θi satisfies the null-player property.

Proof of Lemma 2. We fix f and omit it from the notation when possible. It should be clear that

this optimization is pointwise. We want to solve minv∈Θ||v(f) − θ||2 subject to v satisfying the equal-

treatment property. This problem pointwise solution can be obtained by solving minv∈Rn ||v − θ||2 subject

to v satisfying that vi = vj for all i, j ∈ N that are symmetrical at f . To define the problem in a tractable

way, we denote the equivalence relation i ∼sym j, when players i and j are identical or symmetrical in f .

Notice that all players are identical to themselves. With this, we recall that we defined for any player i,

the equivalence class [i]f = {j ∈ N |j ∼sym i}. We notice that imposing the restriction (vi − vj) = 0 for

i, j ∈ [i]f is equivalent to the “normalized” restriction 1
|[i]f |(vi − vj) = 0, where |[i]f | ≥ 1 is the cardinality of

the equivalence class.

Formally, solving the problem of interest can be formulated as:

minv∈Rn
1

2

∑
i∈N

(vi − θi)2 +
∑
i∈N

λi
∑
j∈[i]f

(vi − vj).

The first-order conditions (which are necessary and sufficient) are:

vi − θi + λi −
∑
j∈[i]f

λj = 0, for all i ∈ N ;

(vi − vj) = 0 for all i ∈ N and all j ∈ [i]f .

Because vi = vj for all i, j ∈ [i]f we can call v[i]f = vi (without the index). Thus:

∑
j∈[i]f

vj = |[i]f |v[i]f ,

and

λi − λj = θi − θj .

Adding up the last expression leads to:

|[i]f |λi −
∑
j∈[i]f

λj = |[i]f |θi −
∑
j∈[i]f

θj .
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Then, solving for λi gives us:

λi = θi −
1

|[i]f |
∑
j∈[i]f

θj +
∑
j∈[i]f

λj .

We replace the last expression for λi in the first order conditions for θi: vi = θi − λi +
∑

j∈[i]f λj =

0, for all i ∈ N ; and this implies that v[i]f = 1
|[i]f |

∑
j∈[i]f θj .

Since, the problem has a unique solution, it follows that this is the unique solution. We conclude that

the optimal solution is:

vsymi = v[i]f =
1

|[i]f |
∑
j∈[i]f

θj .

This means that, the optimal solution is the average payoff of the equivalence class induced by the

equivalence relation ∼sym of identical players.

Proof of Lemma 4. Take vsym to be any symmetric pay scheme and v to be a skew-symmetric pay

scheme. Notice that < vsym, v >=
∑

i∈N v
sym
i vi and notice furthermore that, for singletons equivalence

classes [i]f for the identical players equivalence relation (that is “unique players”), the skew symmetric pay

scheme must have zero payoff, i.e vi = 0 for all “unique” players. For non-unique players who are identical,

say i ∼sym j, we have that vsymi = vsymj and vi = −vj , which makes vsymi vi + vsymj vj = 0. More general

cases take the equivalence class [i]f and notice that:

< vsym, v >=
∑
j∈[i]f

vsymj vj = vsym
∑
j∈[i]f

vj = 0,

where vsym is a scalar value equal to the symmetric payoff given to any member of the equivalence class

[i]f , and because
∑

j∈[i]f vj = 0 by definition of skew symmetric payoff. This implies that < vsym, v >= 0.

Notice that this proof can be directly extended for the case of several equivalence classes.

Proof of Theorem 1.

Let ϕ = ϕ(f). First, we have to prove that θ = ϕ + esym + eeff + emrg. This is simple from the

lemmas that derive the approximations and residuals vsym, esym and vsym,eff , eeff ; and because we notice

that, emrg = vsym,eff − ϕ and esh = θ − ϕ leading to:

emrg = esh − esym − eeff .

Now, it is necessary to obtain the decomposition. Notice that:

||esh||2 = ||esym + eeff + emrg||2 = ||esym||2 + ||eeff ||2 + ||emrg||2

+ 2 < esym, eeff > +2 < esym, emrg > +2 < eeff , emrg > .

The proof amounts to checking that the residuals esym, eeff and emrg are pairwise orthogonal.
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• First we prove that < esym, eeff >= 0.

Notice that eeffi = −E/n, where E = f(N) −
∑
i∈N

θi is the wasted output, and so it is a symmetric

pay scheme. We also know that: esymi = θi − 1
|[i]f |

∑
i∈[i]f

θi, where [i]f = {j ∈ N : j ∼sym i} is the set

of symmetric players at f , and realized effort x. Thus
∑
i∈[i]f

esymi = 0 always, hence making esym a

skew-symmetric pay scheme. By Lemma 4, we conclude that < esym, eeff >= 0.

• Second we prove that < esym, emrg >= 0.

We use the identity emrg = θ − ϕ− esym − eeff and the properties of the inner product to write:

< emrg, esym >=< θ − ϕ, esym > + < −esym, esym > + < −eeff , esym > .

Here we notice that the third component is zero by the first step. Now, we have:

< emrg, esym >=< θ − ϕ, esym > + < −esym, esym > .

Notice furthermore that the Shapley pay scheme ϕ either fulfills the equal-treatment property or is a

symmetric pay scheme. Then,

< θ − ϕ, esym >=< θ, esym > + < −ϕ, esym >=< θ, esym > .

Notice also that the payoff can be decomposed into its symmetric pay scheme projection and the skew

symmetric residual θ = vsym + esym, such that:

< θ, esym >=< vsym, esym > + < esym, esym >=< esym, esym > .

Therefore:

< emrg, esym >=< esym, esym > − < esym, esym >= 0.

• The third and final step consists of checking < eeff , emrg >= 0.

First we apply the bilinearity of the inner product to expand:

< emrg, eeff >=< vsym,eff − ϕ, eeff >= −E
n
< 1, vsym,eff − ϕ >= 0,

where E = f(N)−
∑

i∈N θi. Observe that < 1, vsym,eff−ϕ >=
∑

i∈N v
sym,eff
i −

∑
i∈N ϕi = 0, because

vsym,eff and ϕ are efficient.

Proof of Theorem 2.

The moreover part of the statement follows from:

(i) If the data generating pay scheme θ satisfies the equal-treatment, efficiency, and marginality axioms,

then by Claim 1, we conclude that θ(f) = θ = ϕ(f) is the Shapley value at f . Thus, ||esh|| = 0. The

moreover statement (i) in the theorem follows from the contrapositive of the previous result (i.e., if

||esh|| > 0, then the data generating pay scheme θ is lacking equal-treatment, efficiency or marginality).
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(ii) If the data generating pay scheme θ satisfies the equal-treatment axiom, then it follows that vsym = θ

(with θ = θ(f)); thus, ||esym|| = 0. The moreover statement (ii) in the theorem follows from the

contrapositive of the previous result (i.e., if ||esym|| > 0, then the data generating pay scheme θ is not

symmetric).

(iii) Observe that if the data generating pay scheme θ is efficient, then f(N)−
∑

i∈N θi = 0 (with θ = θ(f)).

Thus:

||eeff ||2 =
[f(N)−

∑
i∈N θi]

2

n
= 0.

Hence, the moreover statement follows from the contrapositive of the previous result (i.e., if ||eeff || > 0,

then the data generating pay scheme θ is not efficient).

(iv), (v)

(a) First we prove that if the data generating process θ satisfies marginality this implies that θi(f) =

φi({mc(i, f, C)}C⊆N\{i}), ∀i ∈ N for some monotone non-decreasing mapping φi : R2n−1

+ 7→ R+, i.e., it

is a marginalist value for all i ∈ N , where θi : R2n−1

+ 7→ R+. Notice that marginality implies that for any

two games f and g and for i ∈ N , such that mc(i, f, C) = mc(i, g, C) ∀C ⊆ N\{i}, then θi(f) = θi(g);

thus θi(f) is a marginalist value (the monotone non-decreasing part follows from the property that

if mc(i, f, C) ≥ mc(i, g, C) for all C ⊆ N\{i} then marginality requires that θi(f) ≥ θi(g) this is

equivalent to saying that φi is monotone non-decreasing.

(b) Second, we prove that marginality implies that θi(f) is a monotone value. A monotone value is such

that for any two characteristic functions f and g such that g(S) ≥ f(S) when i ∈ S and g(S) = f(S)

when i /∈ S, for all S ⊆ N ; then θi(g) ≥ θi(f). If for two characteristic functions f and g, it holds that

g(S) ≥ f(S) when i ∈ S and g(S) = f(S) when i /∈ S, then mc(i, g, C) ≥ mc(i, f, C), for all C ⊆ N

such that i /∈ C. Therefore, by marginality property, we conclude that θi(g) ≥ θi(f) implying that θi

is a monotone value.

(c) Third we recall that if the data generating pay scheme θ satisfies marginality then it satisfies the null

player property by Lemma 1.

By items (a), (b) and (c) and by Theorem 2 in Khmelnitskaya (1999), together with an efficiency of θ

and the assumption of n ≥ 3, we conclude that θ is a random value:

θi(f) =
∑

r∈R(N)

γ(r)mc(i, f, r) for γ ∈ ∆(R(N)).

• Now, we prove that, if the data generating pay scheme θ is efficient and satisfies marginality, then

||emrg|| ≤
√
Keff (f). First recall that (with θ = θ(f)):
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vsymi =
1

|[i]f |
∑
j∈[i]f

θj ,

for [i]f = {j ∈ N : j ∼sym i} for the equivalence relation of symmetric players in f for all i ∈ N , now

from the fact that it is a random value:

vsymi =
∑

r∈R(N)

γ(r)
∑
j∈[i]f

mc(j, f, r).

By efficiency of the data generating pay scheme θ, we have the equation that vsym,effi = vsymi . Now

||emrg||2 = ||vsym,eff − ϕ||2. Recall that the Shapley value can be written as a random value:

ϕi(f) =
1

n!

∑
r∈R(N)

γ(r)mc(i, f, r)

with uniform probability. Now, the Shapley is symmetric. Thus:

1

|[i]f |
∑
j∈[i]f

ϕj(f) = ϕi(f).

We then notice that:

ϕi(f) =
1

n!

∑
r∈R(N)

1

|[i]f |
∑
j∈[i]f

mc(j, f, r).

Given this latter equation, we conclude that:

||emrg||2 =
∑
i∈N

 ∑
r∈R(N)

[γ(r)− 1

n!
]

1

|[i]f |
∑
j∈[i]f

mc(j, f, r)


2

.

By definition of Keff (f) = maxρ(r)∈∆(R(N))

∑
i∈N

∑
r∈R(N)([ρ(r)− 1

n! ]
1
|[i]f |

∑
j∈[i]f mc(j, f, r))

2, it follows

that ||emrg||2 ≤ Keff (f) if the data generating pay scheme θ is efficient and marginal.

By the contrapositive if ||emrg|| >
√
Keff (f) and if θ is efficient, then marginality must fail.

• Finally, we prove that if the data generating pay scheme θ satisfies marginality, hence θ is a marginalist

value, then ||emrg|| ≤
√
K(f).

• First recall that:

vsymi =
1

|[i]f |
∑
j∈[i]f

θj(f),

for [i]f = {j ∈ N : j ∼sym i} for the equivalence relation of symmetric players in f for all i ∈ N , now

from the fact that it is a marginalist value:

vsymi =
1

|[i]f |
∑
j∈[i]f

φi({mc(j, f, C)}C⊆N\{i}).

Second we recall that:
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vsym,effi = vsymi +
1

n
[f(N)−

∑
i∈N

φi({mc(j, f, C)}C⊆N\{i})].

Now ||emrg||2 = ||vsym,eff − ϕ||2. Recall that the Shapley value can be written as:

ϕi(f) =
∑

C⊆N\{i}

ωCmc(i, f, C)

with ωC a weight. Now, the Shapley is symmetric. Thus:

1

|[i]f |
∑
j∈[i]f

ϕj(f) = ϕi(f).

Given this latter equation, we conclude that :

||emrg(ϕ)||2 =
∑
i∈N


1

|[i]|
∑
j∈[i]

[φj({mc(j, f, C)}C⊆N\{j})−
∑

C⊆N\{i}

ωCmc(i, f, C)]

+
1

n
[f(N)−

∑
i∈N

φi({mc(i, f, C)}C⊆N\{i})]



2

.

By definition of K(f) = maxϑ∈F ||emrg(ϑ)||2, it follows that ||emrg||2 ≤ K(f) if θ is marginal. We have

to prove that K(f) = maxϑ∈F ||emrg(ϑ)||2 is well-defined. First, we notice that ||emrg(ϑ)||2 is continuous in

its argument, the reason is simple take a sequence (ϑki )k such that ϑk = (ϑki )i∈N ∈ F . We notice that if we

have a limit ϑ such that ϑk → ϑ then:

∑
i∈N

 1

|[i]f |
∑
j∈[i]f

[ϑkj −
∑

C⊆N\{j}

ωCmc(j, f, C)] +
1

n
[f(N)−

∑
k∈N

ϑkk)]


2

→

∑
i∈N

 1

|[i]f |
∑
j∈[i]f

[ϑj −
∑

C⊆N\{j}

ωCmc(j, f, C)] +
1

n
[f(N)−

∑
k∈N

ϑk]


2

,

by the properties of the limit operator and the fact that ||emrg(ϑ)||2 is a composition of sums, multiplica-

tions and exponentiation, we have ||emrg(ϑk)||2 → ||emrg(ϑ)||2. Notice that given that θ, f , F(θ(f)) the set is

closed and bounded, note that Fmrg is closed and bounded when endowed with the uniform norm supi|ϑi|.

The sets Fmrg,sym,Fmrg,eff , {ϕ(f)} are subsets of Fmrg thus bounded and also closed. We conclude by

Weierstrass theorem K(f) = maxϑ∈F(θ(f))||emrg(ϑ)||2 is well-defined or it exists.

By the contrapositive if ||emrg|| >
√
K(f) , then marginality must fail.

(vi) If θ is efficient and symmetric, then vsym,eff = θ; therefore, by (i) and (ii), we have ||esym|| = ||eeff || =

0 and ||esh|| = ||emrg|| > 0 implying that θ 6= ϕ(f) is not the Shapley value. Thus, it does not satisfy

marginality by the uniqueness result of Claim 1.
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Proof of Lemma 5. The solution vsym,eff,null is obtained by solving the following optimization problem:

vsym,eff,null = arg min
v∈RN

||vsym,eff − v|| subject to vk = 0 for k ∈ N f and such that
∑
i∈N

vi = f(N).

This optimization problem is equivalent to what follows:

min
v∈RN

1

2

∑
i∈N

(vsym,effi − vi)2 +
∑
k∈N f

λkvk + ν(
∑
i∈N

vi − f(N))

 .

The first-order conditions are given by:

vi = vsym,effi − ν for i ∈ N\N f ;

vk = vsym,effk − λk − ν for k ∈ N f ;

λk = vsym,effk − ν for k ∈ N f .

Replacing these conditions into the constraints, we have:

∑
i∈N−N f

[vsym,effi ]− [n− |N f |]ν = f(N),

f(x)−
∑
k∈N f

[vsym,effk ]− [n− |N f |]v = f(N),

ν = −
∑

k∈N f [vsym,effk ]

[n− |N f |]
,

vsym,eff,nulli = vsym,effi +

∑
k∈N f [vsym,effk ]

[n− |N f |]
for i ∈ N\N f ,

vsym,eff,nullk = 0 for k ∈ N f .

Proof of Theorem 3. First, we notice that, pointwise,:

θ = ϕ(f) + esym + eeff + enull + eadd.

In fact, due to Theorem 2, we have:

θ = vsym + esym

= vsym,eff + eeff + esym

= vsym,eff,null + enull + eeff + esym = vsym,eff,null,add + eadd + enull + eeff + esym

= ϕ+ eadd + enull + eeff + esym.
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By definition, we have:

||θ − ϕ||2 = ||esym + eeff + enull + eadd||2

= ||e||2 + 2 < esym, eeff > +2 < esym, enull > +2 < esym, eadd >

+ 2 < eeff , enull > +2 < eeff , eadd > +2 < enull, eadd > .

Now, we study which residuals are orthogonal among each other.

1. We already know that < esym, eeff >= 0 by Theorem 1.

2. Notice that < esym, enull >= 0, because enull is symmetric and esym is skew symmetric by Lemma 4.

3. We also know that :

< eeff , enull >=
E

n
< 1, enull >= 0, with E = −[f(N)−

∑
i∈N

θi],

because < 1, enull >= 0. In fact, by definition: enull = vsym,eff − vsym,eff,null, or entry-wise :

enulli = −

∑
k∈N f

[vsym,effk ]

|[N −N f ]|
= −

f(N)−
∑

i∈N−N f

[vsym,effi ]

|[N −N f ]|
for i ∈ N\N f ;

and enullk = vsym,effk for k ∈ N f . Therefore,

− < 1, enull > = −
∑

enulli

= f(N)−
∑

i∈N−N f

[vsym,effi ]−
∑
k∈N f

[vsym,effk ]

= f(N)−
∑
k∈N

[vsym,effk ]

= f(N)− f(N), since vsym,eff is efficient

= 0.

4. The additivity error is given by eadd = vsym,eff,null − ϕ. We have < eadd, esym >= 0, because eadd is

symmetric and esym is skew symmetric by Lemma 4.

5. We show that < eadd, eeff >= 0. Indeed:

< eadd, eeff > = < vsym,eff,null, eeff > − < ϕ, eeff >

= < vsym,eff,null,1 >
E

n
− < ϕ,1 >

E

n

=
f(N)E

n
− f(N)E

n

= 0.
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6. The remaining term < eadd, enull > is in general non-zero. Indeed, we have what follows:

< ϕ, enull >= −[

∑
i∈N f

[vsym,effi ]

|[N −N f ]|
]
∑

i∈N−N f

ϕi +
∑
k∈N f

vsym,effk ϕk.

We can decompose < vsym,eff,null, enull > as:

< vsym,eff,null, enull > = < vsym,eff , enull > + < enull, enull >

= < vsym,eff , enull > +

[
∑

k∈N f

[vsym,effk ]]2

[N −N f ]
+
∑
k∈N f

(vsym,effk )2.

In the same manner, we can rewrite < vsym,eff,null, enull > as:

< vsym,eff,null, enull > = −[

f(N)−
∑

i∈N−N
[vsym,effi ]

[N −N f ]
]
∑

i∈N−N f

vsym,effi

+
∑
k∈N f

(vsym,effk )2 +

[
∑

k∈N f

[vsym,effk ]]2

[N −N f ]
+
∑
k∈N f

(vsym,effk )2.

Given the equation that,

< vsym,eff,null, enull >= −
f(x)

∑
i∈N−N f v

sym,eff
i

|[N −N f ]|
+ 2

∑
k∈N f

(vsym,effk )2,

it follows that < eadd, enull >6= 0.

The conclusion is the following:

||θ − ϕ||2 > = ||esym + eeff + enull + eadd||2

= ||esym||2 + ||eeff ||2 + ||eadd||2 + ||enull||2 + 2〈eadd, enull〉,

and ||emrg||2 = ||enull||2 + ||eadd||2 + 2 < enull, eadd >.

The moreover part of the statement now is established: We use θ to denote the data generating pay

scheme of (f, θ).

(i) If θ satisfies the null-player and efficiency properties or if θk = 0 for all k ∈ N f null players in f ,

then vsymk = 0 for all k ∈ N f because the null players are symmetric among each other. Under

efficiency requirement, we have vsym,eff = vsym. Therefore vsym,eff already satisfies the null-player

property. Hence vsym,eff,null = vsym,eff . If θ satisfies the null-player property and efficiency, then

||enull|| = ||vsym,eff − vsym,eff,null|| = 0. Moreover if ||enull|| > 0, then θ fails the null-player property

and as a consequence marginality property must fail by Lemma 1.

(ii) If θ is additive, symmetric, and efficient and satisfies the null-player properties, then θ = ϕ(f) is the

Shapley payoff function; then ||esh|| = 0. Moreover, if ||eadd|| > 0, then θ fails at least one of the
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axioms: additivity, symmetry, efficiency or the satisfaction of the null-player property. If any error

component is zero and ||ei|| = 0 for some i ∈ {sym, eff, null}, then we know that θ fails either

additivity or {sym, eff, null}\{i}. In particular, we know with certainty that, if θ does not fail all

i ∈ {sym, eff, null}, then ||eadd|| > 0 implies that θ fails additivity.

(iii) This statement holds because, under marginality and efficiency of θ, enull = 0. Thus ||emrg|| = ||eadd||.

We conclude that, if the null-player property holds in θ and is efficient for n ≥ 3, then if ||eadd|| >

Keff (f), then we must have a violation of marginality and additivity properties.

Proof of Theorem 4.

(i) If ||esh||T = 0, then θ(f) = ϕ(f) for all f ∈ Γ. Thus, we build ϑ = ϕ which is an extension of the

data.

(ii) If ||esym||T = 0, then θ(f t) = vsym(f t); thus it is symmetric for each t ∈ T . We build ϑ(g) = ϕ(g) for

g ∈ Γ\(f t)t∈T and ϑ(f t) = θt for t ∈ T ; this is symmetric for each f ∈ Γ. An alternative construction

that is continuous, can be build as follows: First use (f t, θt)t∈T as nodes for interpolation so to build

a continuous mapping η : Γ → Rn
+ such that η(f t) = θt (with finite nodes this continuous mapping

always exists).17 Then define ϑ(f) = ηsym(f) for all f ∈ Γ where ηsym(f) is the symmetrized pay

scheme η. Notice that this guarantees that ϑ(f t) = θt for all t ∈ T and at the same time ϑ satisfies

symmetry for all f ∈ Γ.

(iii) If ||eeff ||T = 0, then vsym,t = vsym,eff,t for all t ∈ T (with vsym,t the symmetric part of θt and vsym,eff,t

is the symmetric and efficient part of vsym,t) and
∑
i∈N

vsym,ti =
∑
i∈N

θti = f(N); thus θ(f t) is efficient for

each t ∈ T . We build ϑ(g) = ϕ(g) for ∈ Γ\(f t)t∈T and ϑ(f t) = θt for t ∈ T ; this is efficient for each

f ∈ Γ. (A continuous construction can be done in an analogous way to (ii).)

(iv) If ||esym||T = 0, ||eeff ||T = 0, ||enull||T = 0, then θt = vsym,eff,null,t for all t ∈ T ; thus, θt is symmetric

and, efficient and has the null-player property, since vsym,eff,null,tk = 0 for all k ∈ N f t null-players in f t

at observation t. We build ϑ(g) = ϕ(g) for g ∈ Γ\(f t)t∈T and ϑ(f t) = θt for t ∈ T ; this is symmetric

and, efficient and has the null-player property for each f ∈ Γ.(A continuous construction can be done

in an analogous way to (ii).)

Proof of Lemma 6.

Let F = (N,L, F ) be any firm. If we fix x ∈ Ln, we can build a transferable-utility game for the fixed

effort GFx : 2N 7→ R as follows: First define the mapping c : L → 2N as c(x) = {i ∈ N |xi > 0}. The

17By continuity of η we mean that if we take a sequence of games (fn) such that fn ∈ Γ for n ≥ 1 and fn ⇒ f , then

η(f) = Limn⇒∞η(fn).

38



mapping c takes as an input a fixed effort and maps it to a coalition or a subset of N , by including a player

only if the player is providing positive effort under x. Now define the characteristic function GFx : 2N → R,

GF
x (S) = GFx (c(xS)) = F (xS), where xS is defined as xS,j = 0 for all j ∈ N\S and xS,i = xi for all i ∈ S.

We check that (N,GFx ) is a game. To do this it suffices to check that GFx is a characteristic function. We

observe that GFx (∅) = F (0) = 0 by assumption and, under the assumption of limited datasets, we observe

all xS for a given x and for any S ⊆ N . Thus GFx is a characteristic function. Also it is easy to verify that

monotonicity of F implies monotonicity of GFx . In fact, if x E y then F (x) ≤ F (y), by definition of E we

know that if xE y then c(x) ⊆ c(y), which means that GFx (c(x)) ≤ GFx (c(y)).

7.1 Axioms for the Production Environment

Here we redefine in the language of the production environment the main axioms and concepts that we are

interested in our main results.

Definition 12. Let i, j ∈ N be two workers, x be an effort profile, and F be a production function.

1. Worker i is a null-worker at (x, F ) if for any x ∈ Tn such that x < x and xi = 0, mc(i, F, x, x) = 0.

2. Workers i and j are said to be symmetrical or identical at (x, F ) if for all x ∈ Tn such that x < x and

xi = xj = 0, mc(i, F, x, x) = mc(j, F, x, x).

We now define the axioms.

Axiom 6. (Symmetry for the Production Environment)

A pay scheme θ satisfies symmetry if for any workers i and j that are symmetrical at (x, F ), θFi (x) = θfj (x).

Axiom 7. (Efficiency for the Production Environment)

A pay scheme θ is efficient if at any (x, F ), it must be that
∑
i∈N

θFi (x) = F (x).

Axiom 8. (Marginality for the Production Environment)

A pay scheme θ is marginal if for any production functions F and G, any worker i ∈ N and a given effort

profile x and x such that x < x with xi = 0, [F (x+ xiei)− F (x) ≥ G(x+ xiei)−G(x)]⇒ [θFi (x) ≥ θGi (x)].

Axiom 9. (Null worker property for the Production Environment)

A pay scheme θ satisfies the property of null-worker if for any production function F , a given effort profile

x ∈ Tn, and any null-worker i ∈ N at (x, F ), θFi (x) = 0.

Axiom 10. (Additivity for Production Environment)

A pay scheme θ is additive if for any production functions F and G and any given effort profile x ∈ Tn,

θF+G(x) = θF (x) + θG(x).
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7.2 Additional Applications

We provide three additional applications of our Shapley distance decomposition in the appendix. In the

second application, we analyze an arbitrary linear pay scheme in which each worker’s pay is a linear function

of his effort level, and study the effect of increasing the pay rate of a worker on the violation of the Shapley

fairness axioms. Our third application provides an axiomatic test of ordinary least squares (OLS), which is

an estimation method of the unknown parameters in a linear regression model. We find that OLS violates all

of the axioms of the Shapley value, and that it is not a good method for quantifying the relative importance

of explanatory variables in a linear regression. Finally, we study intra-firm bargaining in the spirit of Stole

and Zwiebel (1996), focusing on the effects of bargaining power on firm unfairness. For a particular example,

we find that firm bargaining power monotonically increases the violations of symmetry and marginality.

7.2.1 The Linear Contract: A Comparative Statics Analysis

In this second application, we analyze an arbitrary linear pay scheme in which each worker’s pay is a linear

function of his effort level, and study the effect of increasing the pay rate of a worker on the violation of the

Shapley fairness axioms.

Consider a production environment F = (N,L, F ) and an effort profile x. The payoff of each worker i

at x is vlci = αixi, where αi > 0 is the pay rate of i. The closest pay scheme that is symmetric is given by:

vsymi =
1

|[i]|
∑
j∈[i]

αjxj

for all j ∈ [i] in the equivalence class of workers.

The closest pay scheme that is both symmetric and efficient is given by:

vsym,effi = vsymi +
1

n
[F (x)−

∑
i∈N

αixi].

Finally the pay scheme that is symmetric and efficient and that satisfies the marginality axiom is evidently

the corresponding Shapley value of the firm given by ϕFi (x).

The residuals are computed as follows:

esymi = αixi −
1

|[i]|
∑
j∈[i]

αjxj ;

eeffi = − 1

n
[F (x)−

∑
i∈N

αixi].

Finally, the marginality residual is emrg = vsym,eff − ϕF .

Intuitively, observe that the marginality residual is the weighted average of the difference between the

corrected linear pay scheme and the marginal contribution under the firm’s different configurations. The total

residual is a weighted average of the difference between the linear pay scheme and the marginal contribution:
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eshi =
∑

xCx, xi=0

(|x|)!(|x| − |x| − 1)!

(|x|)!
[αixi − (F (x+ xiei)− F (x))].

The distance of the linear pay scheme to the Shapley payoff at x is therefore:

||esh(α)||2 =
∑
i∈N
{

∑
xCx, xi=0

(|x|)!(|x| − |x| − 1)!

(|x|)!
[αixi − (F (x+ xiei)− F (x))]}2,

which is a function of the vector (αi)i of pay rates.

We now analyze the effect of increasing a worker i’s pay rate αi on the Shapley distance. We have:

∂

∂αi
||esh||2(α) = 2elci xi.

This shows that the sign of the effect of a change in αi entirely depends on the sign of eshi . Furthermore,

the magnitude of this effect depends on the effort level xi and the residual eshi . A necessary and sufficient

condition for the residual eshi to be positive is when the linear payoff that worker i is receiving is greater

than what the worker would have received under the Shapley payoff: αixi > ϕFi (x). Therefore, increasing

the effort unit rate αi increases the level of unfairness only if worker i is getting more than his fair pay.

We now determine how each component of the distance between the linear pay scheme and the Shapley

payoff at x is affected by a change in αi.

First of all, notice that the violation of the equal-treatment axiom is the variance of the average pay of

symmetric workers:

||esym(α)||2 =
∑
i∈N

[αixi −
1

|[i]f |
∑
j∈[i]f

αjxj ]
2.

The derivative of this measure with respect to αi is:

∂

∂αi
||esym(α)||2 = 2esymi

|[i]f | − 1

|[i]f |
xi −

1

|[i]f |
∑

j∈[i],j 6=i

2esymj xi.

We note that the latter derivative depends on two components. One component is the additional lack of

the equal-treatment property of worker i which is positive when vlci > vsymi (that is, when worker i receives

under the linear pay scheme a payoff greater than the average payoff of the group of symmetric workers to

which i belongs). The second component measures discrimination due to the payoff of the other workers

symmetric to i which is smaller than the average: vlcj < vsymj for j 6= i. It is clear, that an increase in αi has

a direct effect and an externality effect that depend on the relative position of the people within the group

of workers who are symmetric to i.

The violation of efficiency is simply the square of the wasted output divided by the number of workers:

||eeff (α)||2 =
∑
i∈N

[
1

n
[
∑
i∈N

αixi − F (x)]]2 =

[
∑
i∈N

αixi − F (x)]2

n
.

The effect of increasing the pay rate αi of worker i on the efficiency violation is:

∂

∂αi
||eeff (α)||2 =

2[
∑
i∈N

αixi − F (x)]

n
xi.
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This effect is always nonpositive due to the fact that
∑
i∈N

αixi ≤ F (x). It follows that increasing a worker’s

pay rate always increases efficiency. Together with the findings on the effect of increasing a worker’s pay rate

on the symmetry violation, this finding suggests that the linear pay scheme trades off horizontal fairness

and efficiency under certain configurations.

The marginality violation is equal to:

||emrg(α)||2 =
∑
i∈N

 ∑
xCx, xi=0

ϕ(x, x)

 1

|[i]|
∑
j∈[i]

αjxj +
1

n
[F (x)−

∑
i∈N

αixi]−mc(i, F, x, x)

2

.

Taking the derivative of ||emrg(α)||2 with respect to αi yields:

∂
∂αi
||emrg(α)||2 = 2emrgi ( 1

|[i]|xi −
1
nxi) +

∑
j∈[i]f ,j 6=i

2emrgj ( 1
|[i]f |xi −

1
nxi)+∑

k∈N,k/∈[i]

emrgk (− 1
nxi).

A sufficient condition for this derivative to be positive in the first two components is that the symmetry

and efficiency payoffs are greater for i and for j ∈ [i] than their fair share: vsym,effi > ϕFi (x) for i ∈ [i]; this

means that increasing the effort rate of worker i increases unfairness. The final component is positive if the

workers outside the equivalence class of worker i have symmetry and efficiency payoffs that are below their

fair payoffs, that is, vsym,effk < ϕFk (x).

In summary, increasing a worker i’s payoff increases the violation of marginality when the worker himself

or workers who are symmetric to him are receiving more than they should receive under the Shapley pay

scheme and when other workers who are different from i receive less than their Shapley wage.

By a simple rule of derivation, we note that the total effect of a change in the effort rate αi is also

additively decomposable into the terms that we have presented:

∂

∂αi
||elc(α)||2 =

∂

∂αi
||esym(α)||2 +

∂

∂αi
||eeff (α)||2 +

∂

∂αi
||emrg(α)||2.

7.2.2 Ordinary Least Squares: Shapley Relative Importance of Explanatory Variables for the

Goodness-of-Fit

In this application, we provide an axiomatic test of ordinary least squares, viewed as a method for estimating

the relative importance of a finite set of input variables in the production of an output variable. Consider a

scalar dependent random variable y, a set of independent random variables K, and an unobserved random

scalar variable ε. The dependent variable is related to the other variables by the following linear equation:

y = β0 +
∑
xj∈K

βjxj + ε.

The statistician is usually interested in the total explanatory power of the variables in K, captured by

the goodness-of-fit R2.
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The (population) R2(K) = SSR
SST

= V ar(ŷ)
V ar(y) , where ŷ = β0 +

∑
xj∈K βjxj . We are interested in finding an

assignment of the goodness-of-fit index among the independent variables in K.

The traditional approach to this problem is to use the standardized ordinary least squares (OLS) coeffi-

cients to measure the relative importance of each xj ∈ K. Let σxj =
√
V ar(xj) be the squared root of the

variance of xj , σy =
√
V ar(y), and σxjxk = Cov(xj , xk). We define the standardized β coefficient by:

βxj = βj
σxj
σy

.

The quantity β
2
xj is a measure of the relative importance of variable xj ∈ K in the goodness-of-fit R2(K).

The R2(K) is given by:

R2(K) =
∑
xj∈K

β
2
xj +

∑
xi,xk∈K,xi 6=xk

2βxiβxkσxixk .

For simplicity, assume that the independent variables are pairwise independent (or non-redundant).

Thus:

R2(K) =
∑
xj∈K

β
2
xj .

We now present the Shapley assignment of the goodness-of-fit index to each of the independent variables

in K. We want to quantify the departures from the axioms of symmetry and marginality. The axiom of

marginality here is very natural as we want to assign a higher relative importance to variables that have a

higher marginal contribution to the goodness-of-fit. The equal treatment requires that if two variables are

perfect substitutes in terms of marginal explanatory power, they should receive the same weight. This is

a natural requirement if the practitioner is trying to not introduce her subjective beliefs about the relative

importance of variables in the measure. Under the independence assumption we have made, efficiency is

always satisfied.

To define the Shapley assignment of R2(K), we define the constrained model:

y = β0 +
∑
xj∈T

βjxj + ε,

for T ⊆ K (we abuse notation and keep the unobserved random variable ε the same across the different

models).

Each of these models has an associated goodness-of-fit index R2(T ). We identify the characteristic

function f : 2K 7→ R, T 7→ f(T ) for all T ⊆ K, such that f(T ) is numerically equivalent to R2(T ). (Note

that the R2 is monotone in the number of random explanatory variables. Hence our results apply.)

The Shapley assignment is given by:

ϕxj (f) =
1

|K|!
∑

r∈R(K)

mc(xj , f, r), mc(xj , f, r) = f(T (rxj ) ∪ {xj})− f(T (rxj )),
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where T (rxj ) = {xk ∈ K|xkrxj} where r ∈ R(K) is a linear order of introduction in the restricted model

of the independent variables in K.

The Shapley distance is given by:

||esh||2 =
∑
xj∈K

(ϕxj (f)− β2
xj )

2.

The result of finding the symmetrized assignment is vsymxj = 1
|[xk]|

∑
xk∈[xj ] β

2
xj for the equivalence class

[xj ] of variables that are symmetric in their marginal contributions. The first component of the orthogonal

decomposition is:

||esym||2 =
∑
xj∈K

(
1

|[xk]|
∑

xk∈[xj ]

β
2
xj − β

2
xj )

2.

This quantity is the within-variance of the squared of the standardized β coefficients among those vari-

ables that are perfect substitutes according to their marginal contributions to the goodness-of-fit. This

quantity tells us the extend to which the “label” of the variable matters. To fix ideas, we assume |K| = 2

and consider that both variables are symmetric (i.e., x1 ∼ x2) and independent. Also let σxj = 1, so that

βxj =
cov(y,xj)

σy
for j = 1, 2. Then:

||esym||2 =
1

2
(
cov(y, x1)2 − cov(y, x2)2

σ2
y

)2

is roughly the difference between the squared covariances of the independent variables and y. This means

that in most cases, the equal treatment axiom is going to fail as two covariances are rarely the same.

The second component is zero because efficiency holds under the independence assumption. The third

component is the difference between the symmetrized assignment and the Shapley assignment:

||emrg||2 =
∑
xj∈K

(
1

|[xk]|
∑

xk∈[xj ]

β
2
xj − ϕxj )

2.

With |K| = 2 independent variables that are symmetric, we have:

||emrg||2 =
1

4
(
cov(y, x1)2 + cov(y, x2)2

σ2
y

−R2(K))2 = 0.

We cannot reject marginality in this case.

If we relax the symmetry assumption such that x1 and x2 are not symmetric, then ||esym||2 = 0, and we

find a marginality violation:

||emrg||2 =
1

2
(
cov(y, x1)2 − cov(y, x2)2

σ2
y

)2 > 0,

where R2(K) is the goodness-of-fit of the model. The Shapley assignment, under the symmetry assump-

tion, is just the equal split of this index. We can observe now that marginality is violated. In fact, the
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random assignments weighted by γ ∈ ∆(R), for θx1 = γ(r12)(R2({x1})) + γ(r2,1)(R2(K) − R2({x1})) and

θx2 = γ(r1,2)(R2(K)−R2({x2})) + γ(r2,1)(R2({x2})). The Shapley value is: ϕ({xi}) = 1
2R

2(K).

This means that the assignment θxi = 1
2
cov(y,xi)

2

σ2
y

cannot be extended to an assignment that satisfies

marginality (under the asymmetry assumption between x1 and x2).

We conclude that, in general, the standardized ordinary least squares violates symmetry and marginality,

and the magnitude of these violations for a fixed model are determined by the level of substitutability among

the different independent variables.

7.2.3 Intra-firm Bargaining and Firm Unfairness

We consider an at-will firm with two identical players. The firm and the players bargain over payoffs using a

Rodolex procedure in the spirit of Stole and Zwiebel (1996). The bargaining is done bilaterally and p ∈ [0, 1]

is the probability that if the firm rejects an offer from a player, the negotiation breaks down and 1 − p is

the probability that the negotiation proceeds to the next stage. Thus, p is a proxy for the firm’s negotiating

power. When p → 0, the firm has no negotiating power at all. We let the firm be indexed as 0 and the

players be indexed as 1, 2. We spare the details of the bargaining protocol and redirect the reader to the

work of Brugemann et al. (2015).

In this example, the negotiation finishes with the following pay vector:

w1(p) = b+
1

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b],

w2(p) = b+
1− p

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b],

and with the firm receiving:

w0(p) = π(p) = π0(p) +
(1− p)2

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b].

With π0(p) = y0 + 1−p
2−p [y1 − y0 − b], b is the outside option of both players and, yi the production of the

firm with i ∈ {0, 1, 2} players being active.

The result of letting p→ 0 is that the pay scheme converges to the Shapley value. In particular:

ϕ1 = w1(0) = b+
1

3
[y2 − π0(0)− 2b],

ϕ2 = w2(0) = b+
1

3
[y2 − π0(0)− 2b],

and

ϕ0 = w0(0) = π(0) = π0(0) +
1

3
[y2 − π0(0)− 2b].

We observe that players are symmetric and different from the firm in general. We compute:

vsym0 (p) = w0(p) = π0 +
(1− p)2

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b],

and:
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vsym1 (p) = vsym2 (p) =
1

2
[w1(p) + w2(p)] = b+

(1− 1
2p)

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b].

The corresponding error terms are:

esym1 (p) =
1
2p

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b],

and

esym2 (p) =
−1

2p

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b],

(with esym0 (p) = 0).

The error of marginality is :

emrg1 (p) = vsym1 (p)− ϕ = [
p(1

2 −
1
3p)

(1 + (1− p) + (1− p)2)
][y2 − 2b] +

1

3
π0(0)−

(1− 1
2p)

1 + (1− p) + (1− p)2
π0(p),

and

emrg2 (p) = emrg1 (p).

Note that:

emrg0 (p) = π0(p)− π0(0) +
(1− p)2

1 + (1− p) + (1− p)2
[y2 − π0(p)− 2b]− 1

3
[y2 − π0(0)− 2b].

Without loss of generality, we fix y1 − y0 − b = 0 such that π0(p) = π0(0) = y0. Then:

emrg0 (p) = emrg1 (p) = emrg2 (p) = [
p(1

2 −
1
3p)

(1 + (1− p) + (1− p)2)
][y2 − y0 − 2b].

We also fix b = 0 and y0 = 0 (with no consequence for the insights that we derive but with gains in

tractability) where the outside options of the firm and the players are zero and we compute the goodness of

fit index.

The distances to each property are:

||esym||2 =
1
2p

2

(1 + (1− p) + (1− p)2)2
y2

2,

and

||emrg||2 =
3p2(1

2 −
1
3p)

2

(1 + (1− p) + (1− p)2)2
.

We compute a relative goodness-of-fit measure by dividing this distances by the norm of the given pay

profile:

||θ||2 =
1 + (1− p)2 + (1− p)4

(1 + (1− p) + (1− p)2)2
y2

2.

We then have:

||esh(p)||2

||θ(p)||2
=
||esym(p)||2

||θ(p)||2
+
||emrg(p)||2

||θ(p)||2

=
1
2p

2

1 + (1− p)2 + (1− p)4
+

3p2(1
2 −

1
3p)

2

1 + (1− p)2 + (1− p)4
.
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Observe that:
||esh(p)||2

||θ(p)||2
→ 0 as p→ 0.

We notice that the errors of symmetry are more important than the errors of marginality depending on the

value of p (the bargaining power of the firm). For lower values of p, a violation of symmetry is worse than

a violation of marginality, but, for high enough values of p, the inverse is true. In fact:

||esym(p)||2

||θ(p)||2
>
||emrg(p)||2

||θ(p)||2
,

for p ∈ [0, 1
2(3−

√
6)).

Also
||esym(p)||2

||θ(p)||2
=
||emrg(p)||2

||θ(p)||2
,

at p = 1
2(3−

√
6),

and
||esym(p)||2

||θ(p)||2
<
||emrg(p)||2

||θ(p)||2
,

for p ∈ (1
2(3−

√
6), 1].

More importantly, the derivative of the distance to the Shapley value with respect to p is always positive.

This means that the higher the bargaining power of the firm, the more the pay scheme differs from the

Shapley payoffs. For p ∈ (0, 1], we have:

∂

∂p

||esh(p)||2

||θ(p)||2
=

∂

∂p

||esym(p)||2

||θ(p)||2
+

∂

∂p

||emrg(p)||2

||θ(p)||2

= p+
1

6
p(9 + 2p(−9 + 4p)) > 0.

Note that each term is positive in its specified domain.

These findings show that a sufficiently powerful firm can induce its players to increase their contributions

to profits but only at the cost of creating inequality among identical players, and, even more importantly, at

the cost of marginality. It remains to be seen if these insights into the effects of the firm’s bargaining power

on Shapley unfairness can be extended to the case of n players. Nonetheless, the analysis of a two-player

firm provided above is very suggestive.
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