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ABSTRACT

The pfeSent work deals with the asymptotic joint

distrgbution of several quantiles from each cbmponents

of a multivariate continuous random variable. It is shown

that the joint distribution of the sample quantiles tends

-

to a multivariate normal distribution. . '
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e T , _ CHAPTER 1 ~

e INTRODUCTION

n

1.1 GENERAL INTRODUCTION

The present thesis is primarily concerned.with the
asymptotic joint distribution of quantiles from componénts
¢ - of a multivariate continuous population. o

-

“

Quantiles in univariate population have received a

-

great deal of attention:in the ,currént literature. The

dtion of a¥sd#inple quantile and limiting

v YL e 3~=‘="$’f:

joint distribution of two sample quantiles are given by ":.
[ ]

Cramer [6]. Mosteller .[‘13] .gave the limit-ing joint dis- ' ,

tribpt;ion of several ‘sample -quantiles.

The asymptotic joint distribution of the sample :

quantiles.has beeq used in the éstimation of location and-

ek
.

scale parameters. Work in this area has been done by

‘Mosteller [13], Ogawa [14], Ali [1] and others.

o Quantiles in higher dimension have received relatively

less attention. Mood [12] gave the asymptotic Yoint dis-’

) tribution of medians-of'components ¥rom bivariate population
and gave the ;symptotic joint dést'r!ibution of _mediané of |

. general dimension." éiddiqui (171 obtained thenasymp{t%o,tic

'. joint d,istributiop of quang:ileé one fr‘or'n each of th:a compo-

P -

nents of a bivariate population and some applications
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connected with the confidence limit on quantiles and.

e,

confidence limit of p the correlation coefficient of the
asymptotic distribution of quaftiles from each component,

were presentéd. Weiss [19] using a different method gave

the asymptotic joint distribution of quantiles one from
each component of a multivariate random variable. The

present work may be thought of as exténding the work of

o

Mood, 5iddiqui and Weiss.. .

9

SOME PRELIMINARIES
1.2 THE SAMPLE QUANTILES

Let (xl,‘xz,‘..., X&); be”a continuous m~variate
1 . . o
random variakble (m = 2) with strictly increasing known

9 ) .
cumulative distributian function F(xl, X .oy xm)-andvﬂ

s

2’

e

"pProbability density function f(xl{ Xor seny xm).i Let

Fi(xi), fi(ii),denote réspectively the marginal c.d.f.

and p.d.f. of X;0i=1, 2, couym .

P . - -
The equation *

g f‘Fi(xi) = 8, 'i =1, 2, ..., mj .0 < B <1

has a unique solution in each X, <82y X, = EB‘, EB is

the population B, -quantile of X; .

\ . 4§_
Let (leaizgj..., mj)', 3=1,2,..% ? be a sgmp}e

. of size y from thg m-variate variable (gl,xz,..J,xm).

-
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L ~

_The order statistics of the ith component are denoted by

.

. ) . -
X(ill) ~< X(i’2) < LI ) < X(i’N) ,‘1-1,2,..-' me.

’ b G
For positive real 8 such that 0 < g < 1, the sample g-
. - . ;

anntlle of theflth'component Xi is x(i,[N8]+l)' whefe

[a] denotés the largest integer in a. Let aij

r

=1, 2, ..., ry i=1,2, ..., m be set of real

numbers such that

<

0 < a, < o
1ri 1(ri 1)

see Sagy < l, i=1,2,..., m

‘Corresponding to these real numbers, denote the ri/pOpu-'

lation quant}les of Xi by giri' Ei(ri—l)’ .oy gfl with o

Eiri'< gi(ri-l) .:.2 < gil" i=1,2,..., m .

The corresponding sample quantiles of Xi are ZE%X,
.- . \- :

\ zi(r.-l)' ey Zil with . ~
i , - . » ~
Zi_r' < Zi(r.-l) « e 00 s, < Zil ’ l=1'2,;--,’m -
i i
]
For the case r, = r, = r, ..... =r =1 there. is one
o . 1 2 3 m :
- quantile from each component. Wewill call ‘ '

( -
(2 Z,,7,+.0+,2_.)' the sample quantiles of order
1177217 " ""mt’ ‘

@« ~

(all’aﬁ;""'aml) or simply the sample (alljazl}...,aml)~“

quantiles, apd we write (211,221,...,Zm1)=(§l,22;...,zm).

\

'\




1.3  THE_SYMBOL O ‘,
As usual, f£(x) = O(g(x)) will/mean that f(x)/g(x)

remains bounded as x tends to its limit. This may be read

hf(x) is at most of the order of g(x)". YThus A =.O(l/Vﬁr

-
as N + » means that lim VN A remains bounded.
- 2 N-’w - )
- N ~ é-,_.

As a simple notation, the expressjon

u=v (1l+0(1//N) ) . E

b

will be abbreviated to read -

o g .
where the dot after the equality signifies the omission

-
]

of the factor ( 1 + O(1/VN) ).

i ' 4 .
o

1.4 MULTINOMIAL DIéfRIBUTION
' A'certain-fandom experiment, has r mutually exclusive

~ Rl

events EI,\EZ, ey Er’ The probabiiity of the eveht Ei is
4 . . B 'r co
‘ /A

In a series of N independent trials, let n, represents the

numLer of times that the event Ei occurs, i =1, 2, ..., r.

- t

Then the probability of this od%uqrenpe is
' 9

4

. .
N! nl n nr

By P

... (1.4)

nllnzl...nr!'

4 N ¢ .




The distribution having’probébility function (1-.4) fis

9

knewn as the multinomial distribution.

We shall use the fqlvwing well-known normal '

approximation to the muitinomial distribution [12],

\
3

?

n n : n
1 "2

Py Py "'prr

:nl ?nz 1‘. . ..nr!

- . .
- .
r=1,172 . r-t
=~ [|a]/(2m) 717 “exp{-5 Z'Aiﬁtitj}TTldti
. { 1=

and A is.the matrix A c=
i | M 7

¢ .

s =

) St ; r
The matrix has deferminant value . ']T,(l/pi) .
. - . i=1 :




‘ ‘g{:: < £ 6
* Pz R
. - C ﬁ < ﬂ‘ N A'J
, Since, if ¢ . _
< : . N! n n,” ° n ' *
’ 1 r . :
P=r~n T —m Pl Pp e+ P °
nyinyte..n ! 1 02 r N
' T DT .
‘then, by using Stirling's approximation
t h ) -~ r ° D o . o
NG » 1In P = 1n N' QT'Z 1n ni!‘ +.2 nilmpi ; 52
i=1 i=1 L.
* » . * ! 3 -
° = %-ln 27 + (N'i%-) In N - N + 0(:—‘)
’ . 2
. ~ l . 1 . bl 1
= Zlfln 2n + (ni+-2-)]:n n; - n; ¢+ of H.) 1
- ’ ' J . s & Lo
‘+:] n;1ln P, 3 o
n ) 3 o
’ . yr=1 1 1
= -(337)1n 21 + (N+3) lon N -} (n;+3)1n ng
C emql 1 ‘
+ Jen;ln p; +°0(5) + ] Of 5) -
«? 9 . -
& . @
.- . Let . :’ ni/N = pi + ei y . i = l, 2, cees r' H N

-

4
2
- &

%N ¥s, by Chebyshev's in:q:taiity, Qf order¢ 1//N , and®

= "5 o~
ng = NUp;y +ey) .. Nowg,
a
.1 . s .
°(ni+7) in ni . . ‘ .
= [N(p;+e )+§_-] ln Np (1:1) 7 ‘
‘ | . 17py
- L\ .. ” ! . A
. -( - e . '
. ' . ’ - 2
- ’ n R - )
‘ - ° . 2:) ’ ‘ » - @




o3

and 1
) (n; + 2) }n n,

(4
= EON(pi+ei)1n N + Z N(p;+e;)1ln p,
2
Z In np; “+ g ) —% + 0(1//N)

‘ : L& '
with e, + e, + ey P \T) oo

Thus r I
in P =-(5%)1n 27 +31n N -% Iih g, -3 7 Loy
- =1 . 1=

; ) "

RS

o r-1 1 1
—-(—5—)1n 2T + 3 In N - 5 1n N,rplpz....pr
r-1 -1
N 21 1 i
- =[] e (=+=) + ; e e, /p ] + 0Of )
H i=1 * Pj Pr i#)j N
-
where we used the fact that e, = - e, —... e __,
Therefore r-1 172 -
T po.p(2m) .Y
N P=- [—25 | exp{ 2[ Aijeiej}

N "PyPp-- Py

- Al
--[——;Ill/z exp{-z-z Agytits) T TT at,

P~ ‘(21")
v '\t-co;tnoo-...'(]--‘ol)
where dt, = 1//WN , i="1, 2, ..., r-1-.

© f

We note that the expression (1.4.1). implies that the

‘multinomial probability converges ﬁhiformly to the multi-~

normal density. ' . , 7




7/

»

1.5 A CONVERGENCE THEOREM IN DISTRIBUTION

The following lemma is well-known -[4], [18]),

‘ Lemma 1.5

Let X, X(l), X(z), ...bé k—dimensionéi random

(n) converges in distribution to X. Let

+

variables and X

¢1(X), ¢2(X), ce ey ¢m(x); m £ k be real continuous
. ® .
r
function on_Ek then [¢1(X(n)), ¢2(X(n)), ooy ¢h(x(“?)]'
converges in distribution to [¢l(¥), ¢2(X), ooy ¢m(x)]'.

Proof:

L )

The function T: Ek — Em‘

definc3 by '
< T(X) = [6(X), 0,(X), ..oy & (X)]°
@ .

is a continuous fgnction since each ¢i is, let t =
\ (tl, t2' ceos tm) be a point in'Eﬁ, : |
N . ' . /

Elexp{i(t, T(x™)}]

= I .."J exp{i(t,T(Z))dFX(n)(Z) ‘

by Helly-Bray Theorem, ‘ ¢

as N»+o I .o J exp{i(t,T(Z))de(Z) \

therefore [¢l(x(n)), ¢2(x‘")), ey ¢m(x(n))]' converges™

A . y

: § . ol ‘ ‘c' .
to [¢,(X), ¢2(x),- <ees ¢, (X)) in distribution. ' y
k) ., v ) /

. ﬂ | //' ,




Corollary 1.5 . ' SN

tet X, X(l), X(z)

(n)

+ ++. be k-dimensional random

variables anmd X converges in distribution to X then

(xén), x;n))' converges in distribution to (X, xj)'

(n)
h

where X is the hth component of X(n) énd X

h is the hth

component of X, h =1, 2, ..., k. .
. : ' . {
Our problem is to determine the asymptotic joint .

distribution of several quantiles from each component of.

a

a multivariate population.. .




CHAPTER 2
; ' THE ASYMPTOTIC DISTRIBUTION OF QUANTILES ONE
FROM EACH COMPONENT OF A MULTIVARIATE

POPULATION

Y

2.1  INTRODUCTION *

This chapter deals with the asymptotic joint’
distribution of quantiles one from each compénent of a
m-variate populat}on. This problem has been dealt witﬁ'by
wéggs [19]. ihe method we use in provi;g this result is
es?entially an extgnsion of the geométrical argument of
Craig0[5]. In Chapter 3 we will see that this method allows
us to solve the more general problem of joint asymptotic

- distribution of several quantilés from each component of a

multivariate population.

Assumption 2.1 .
‘£ xad) = (1
flx+g) = £(x) + O(g)
if f(x)‘Is a continuous function with bounded first derivat-

ive the condition is satisfied. , .

We will prove the following theorem: °

10




11 .
3 .
Theorem 2.1

.t

> ,
Let (Z,,.2,, ..., 2)' be the sample quantiles of

a

-

- .
order (aI,_az, sy am), 0 < a, <1, of a m-variate

continuous variable (Xl, Xor wees xm)' with strictly

]
“

known c.d.f. F(xl, Kot eees xm) and p.d;f. f{xl,xz,.f,x3)

» . ‘ & []
.thh miig}nal p.d.f.'s fl(xl), fz(xz), ey fm(xm) ,
satisfying Assumption. 2.1. Then the joint distribution

Jof W, = YN £.(60(2; - €, 1 =1, 2, ..., m; where
(El, 52, caes £m)' is the corresponding population quan-

tiles of (X, X,, ...,'Xm)', tends to da m-variate normal

1
[

distribution with means 0, 0, ..., 0 and variances and

»

covariances ) .

) Var.wi ai( 1 -‘ai ), i=1l, 2, ..., m

>

Fis(ii,.ij)—aiaj for i # j

Cov(wi,wj)

yhere Fij(xi' xj) is the ji}nt marginal of Xi and Xj.

Wityodt loss of generality, we assume that

(Eyr &gp vvey )" = (0, o, e 0)'. We follow

- Y
essentially a method due to Mood [12] which consists of

dividing the space into appropriate mutuglly disjoint

regions. Multinomial consideration is Eheﬂ used to

obtain appropriate probabilities and normal approximation

»

S



»

is made. We use the lsame notations as in Mood [123.3

Before proving the theorem, we first prove a -
<

special case of the theorem namely the case m £ 2.

2.2 THE ASYMPTOTIC DISTRIBUTiON OF QUANTIEES ONE FROM

EACH COMPONENT OF A MULTIVARIATE POPULATION

m = 2. Given a sample of size N from (xl, Xz),

let (Zl' Zz) be the sample quantiles of order (al, az).
L}

Consider the probability that (zl, 22) falls in the

‘rectangle R" . . ' v
1 1
z) - 392) < xy < zy + 3dz,
2. - Yz < x. <z + ldz
. 2 T 39%, < X, <z, + 3dz,
[
R . R
L ) ' 2 R; 3
i -
1 ;
z,+3dz,
' + " -
Ry z,] R \ R}
+
‘ St s
17 2
] i
R, R R,

"




-

\:JK

> oA

t

The remaining of the plane is divided by lines
: 1

X, =z *3dz;, X,°

*1 it D)

’ l ]
4, R', R! and R4

2' 3

v + l

as indicated in Figure l./

= 22>_ idz2 into regions R1"R2' R3,

Let pfj)

denotes the probablllty that an element of the sample

will fall in the regIon R

a
-

¢ 9

-]

(J)

f(xl, xz)dxzdxl

R
1

(0)

where R

reallzeé‘as Py~

it is seen that

e
I

R

P

N

N
-

o)
W
i

>

I f(xl, xz)dx dxl

ra)
f(xl, X )dx dx

‘2

"2

rm

29x

f(gl.iz) dx
2

2 .
I_g(xl, xz)dxzdx

l; 1

z

1

f(x, zz)dxll dz
N

2

r
2

w

1

A

LI

should be tealized as region R, and piP)

is

Neglecting terms involving differentiak;ef-higher order

.(2.1.1)




o

N -

[}
AR
N g

Fzyr. xy) dxpl dzy S

Py = [I £xy, 2,) dx,) dziu» e ‘
~ ) . ) .

-~

2
Py = ff £(z,,.x%,) dx,] dz,

and : p" dz

1

f(zl, zz) dz 2

. With this set-up, we may consider that the sample

is drawn from a multinomial population with probabilities

. '!

(3) ¢

% ‘

terms which give rise to the. sample quantile (Zl, zz).
« .\ ¢ .

o) alling in the region Rij). We will pick up those °

 There are two distinét cases namely Case (1):
(2,, 2,) is determined by;q;e element of the<saﬁple;
Case (2); (Zi,'iz) is'determinéd by two different
elements of the, sample. ;Wé ihvést;gate the two cases

° separately.

“ .

Case (1). 1In this case, the samplé guantile (zl, 22) is
o an element of the sample. It falls in region R" and the
, remaining of the elements of the sample fall in the

/




.7 . .. \ i
reglons‘Rl, R2, R3 andiR4 with n, elements ;p Ri such .

that

~—

=N -{[Nay) + 1)

,[Nazl'

N f([Nal] + 1)

[Na, ]
with ~ + n. | : v

The .probability that N observations can be divided

these groups is

’ \
N! ni “ﬁ n3 n

" 4
P"Py P, P3Py

’ nl!n2!n3!n4!

-

- where the summation sign means sum over all such
Il .

» - - &

possibilities. & .

¢

Case (2). The sample quantiles (Zl, 22) is determined

" by two different elements of the sample. There are four |
different situations which give rise to this case; the.

two different elements of the sample are such that
(a) One in R; and one in RS

{b) One in’Ri and one in R& .

{(c) Orne in Ri and one in‘éi S

+




and {d) ° One in R!

3 and one in R! .

4

»

1

For (a), the remaining of the elements of "the sample must

fall in regions Rl' R2, R3 and R4 with ni~eLements in Ri'

f =1, 2, 3,’4 in-such a manner that

~

N - ([Na2] +1) -1

(Na,]
N - ﬂ[Nal] + 1) -1

-

The probability such an occurrence is
nj n, ny n

[} [ ] . 4
P1PoP; Py P3 Py

: ,
where the summation means sum over all such possible
combinations of hi . .

Note that the n; in this case should be differen-

tiated from that of the former case. We use the same

4

notations throughout for different cases, and when the

normal approximations are made, the ng 's'are all
~ . =
immaterial. The corresponding probabilities associated

B 4

with fb), (c) and (d) are ;espeétiveiy B

<

and B

2’ T35

' with




N ™ 4., n. n., n
B, = ] p!pip, L b, pa> Py
— 2 2 nl!n21n3'n4' 1¥4%1- 2 ° 73 4
with nl + n2 + n3 + n4 = N-2 ; (3
) N! n n n n
= v 1 3 "4
) 836 23 n,!n.!n. !n,! p2p3pl pz p3 p4
1°72°7°3°7°4 1
with n1 + n2 + n3 + n4 = N-2 ;
N! n n n n
= [} 1 3 4
and . B4 & n,!n,!n,!n,! p3p4pl pz p3 pﬁ
17277374
w;th nl + n2 + n3 + n, = N-2 .

If g(z;; z,) is the density that gives the

distribution 6f the sample glantiles (Zl' Z2), then
4
glzy, 2,)dz,dz, = C + £ B, .f..(2.1.2)

The asymptotic distribution of the sample

quantiles (Zl, 22)

Examine C, B B '84 closely, we note that

ll 321 30
the multinomial coefficient in C immediately after the
summation sign, has one factor less in numerator than

7




those of Bl,uBz, B .and B

3

4 since inC, I n; = N-1' while .

in Bi's, z n, = N=2. Thus the term C éan be n%ﬂlécted
in the asymptotic form as it is of qrder 1/N when *

compared to the Bi' i=1; 2, 3, 4. kq

We shall use the nprmal approximation to approxi-
mate the multinomial/distributipn. Since they cannot be
written in the finite form, we compute thensum§ Zlf Zj,

Ly and Ly by integrations.

Consider the term B1

‘ 3, ' \ \ ' 3

N! n1 n2 n n4‘
= [ |
"' Zl pJ.Pzpl pz .P3° P4

nllnzlnj!n4!

. (N-Z)! " n n n n

| I ) 2 4

N(N-1)pip, } .1 p.% p? bt
172 %1 nl!n21n31n4! 1 2 3 4

since n, +—h2:+ ns + ﬂ; = N-2, the expression after the

summation sign is a multinomial coefficient and thus the

e .
normal approximation can be made. With r = 4, o
-~ - I\_;_/\J".

B, == N(N-1)pjpy [ [|al/(2mF 1)2/2

. ;o l Jl ‘\& ,r__14 B \\;
. exp{ -3 ) Aijtitj } IIldti 3

N

after\omitting a term of order /N,




"‘. ! .
" — 2 [ RIAE / 33 1/2
, Bl =+ N P1p2 Zl [IAI/.(ZTT) ;]
© H .l . 3. ’
. expl-5 ] Aijtifj} 1i1='ldti ce..(2.1.3)
4 ‘u - '
where ) /. :
ny - g Y
C ke b‘l = = ’ i=1, Z: ’ ’
5 VN i
2 2 ‘ ) .
and A is the matrix A = [A;’J.J with P
Aii = i + 1 for 1 =1, 2, 3 e;gd
7 o
g A, == for i # 3 '
aijﬁ p4 . ’
. or i ‘ 13
. Let n1+“3.' N . "
. u, =N ( —— - (B,+p,;) )
1l 173
) ' N ' '
n,+n., - N
_ 2 73
o u, = /N { — (Py*Py) ) ‘
| ) th v |
en
o , n.+n 4 n,-Np \
a 1 t=/ﬁ(gl3-'(p+p)) 22 )
1 1 %3
< N P f
‘3&3
= ul - t3 ! . ¢
n;+n n.,—Np
b, = /N (2= - (pytpy)) - 2—2=u, -t .
o . i N VN
%
Substltuse t]' = ‘fl - t3, t_2° =u,.- t”3 in the quadratic
- form of the exponential in (2.1°;3) v .
» ’
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. . , 20
I' . 4 S ¢ L ] - .
e -
{ A, .
1] 1 3|
= (tye £y B3R (5 Ep €)'
I D - .
> 1] ' °
_ ” = (u 3r )‘2 “3\_4 t ) A- (u 30 uz £3l t ) .
" u,tu, " u a, ’
. 2 &+ sLlal,1,,0 2t, 12+ 1+ 2
y Py pz P3 P4 Py Py p2
2¢ 2
(‘u +u ) u u
. + L T2l 1, 2 .

expression (2.1.3) becomes ) S

. . . . \

“ By = iy I lialzemt/?

. u,+Hu u u -]
p{ {t§(1 1.1 .1 )-2¢, 1 172 % Y2
Py P; P3.Py Py Py Py
(ul+u2)‘ ui u%
: + =% 4+ 2 4 _%£ j}at,dt.dt
- P . 1772773 )
. Fa 1 2 . : ‘ -,
(R . R ’

ceeresseceeesea(2.1.4)

We note that in the normal 'approximation to the multi-" '~

<

» . nomial distribution, the factor dti corresponds to the
" factor -1//N , thus wéimay'cancel a factor N with dtldtz,‘ “
and B, in (2.1%4) becomes ) : . ) '
» . v - 3 »
8 - R -
7
4
[ ; Q; -
. _ . . ) . .




Npipy I [lal/m3)t/2

1,.2,1

2
{(u,+u.)
+__.}.__g_.'+
p4 -

In order to get rid of the summation sign Zl we integrate
@

t3 through the range.of entire real line. To within

terms of order 1//N , this gives

-

[

vy | 2

NpiPj |a]+/

am+ Lyl 1,172
Py P P3 Py

(u1+u2)2 ui ug
exp{ -7[f7-sz—— + 5; + 5;

e
Py

1 .1
P, p4)]}

0-00000(2.1-5)

Replace z, and zz'by zero in the‘integrals in

(2.1.1) and

4

qQ = f(xl, xz)dxzdx1

f(xl, ?cz)dxzdx1




ver

oo ® .
q; = [0 ~I f(xl, xz)dxzdx1

0 o - .
d f J_m f-m f(xi, xz)dxzdx1

0 0
[-m ﬁ(xl,O)dx1 v Qg = I-Q f(O,xz)dx2

{o]
) =-
]

) A

q, = F(0, 0) . .

it is seen that |

92 9q T

qp * 93 = 1-a; , 9 *+ q3 = l-a, -

' 9 + 93 = £500) . gy + q; = £,¢0) .

o and

ceeeee.(2.1.6)

[
"
-

-
w

°{ = ajdz, .
" -, ' P o=
P; = qidzl e 1 =2, 4 .,
Also we have

+
nln

- uy = /N ( R 3 =(p; + py) )




[--]
f-w f(xl, xz)dxzd)fl

J;m £x;, x,)dx,dx,; ]

[;w f(xl, xz)dxzdx1

%

¢

fl(xl)dxl

similarly,

Uy

=+ VN z f2(0) =- w‘

2 2

Substitute (2.1.6),(2.1.7) and (2.1.8) in (2.1.5),

Najay |a|l/? {
z=eXpPl1-~-

2m(2 4% 42 41 172

q) 33 93 94

1 .1 1l 1
(z += ) (5 +=
(L oo _ G4 9 ng)
2" q, 1,1 .1 .}
2 1 1 (§k+%2)2
+w, (= + =~
2 9 q} 1,1 248
9 q, 93 4 o .
3 =~ 00-0000-010(2-.109)
. »,f

] .

+ ZWIM

) ] ]délézi




The quadratic form in the exponent of the. above

expression is (w,, w.) R (w,, w,)', where
O 1 2 1l 2

2 .
_ _f(d+a)‘. . _ (d+a) (d+b)
d +a a+b+c+d d a+b+c+d

(d+a) (d+b) 4, _ _ (d+b)?
a+b+c+d a+b+c+d

with a = 1/q,, b = 1/q,, ¢ = 1/q5, d = 1/q,

">

det R = |R| =

2
| __(d+b) (d+a) (d+b) _
d+b a+b+c4d . a+b+c+d 4

(d+a) (d+b) _ 4 g,. . _(a+a)?
a+b+c+d - a+b+cHd

(d+b) (a+btc+d) - yd+b)>2

- a+b+c+d
abc + abd +acd +bcd

‘ a+b+c+d

°

(d+b) (a+c)
abc +aﬁ; +acd+bcd

(lfay + 1/q,) (1/q; + 1/q,)

1/(aquqIQ4)

\




(ql + q3)(q2 + q,)

ul( 1 - oy )

td+a) (d+b) - (a+b+c+d)d
a+b+c+d
‘12 abc+abd+acd +bcd
' a+b+c+d

ab - cd
abc +abd +acd +bdd

1/(q9,9,939,)
- ? —
= 939 T 919
.~ N «
= q4 - (-q4+q2) (q4+ql) .
. ® ‘“ ' - .
. -
= F(0, 0) - a,a . )
. i - 172 a ‘\
since q; + g, + a3 + 9, = 1l . Similar calculation
‘yields -~ L
022=a2(1-02)‘:
r
also ‘

1/2,,, 1,151 1 .1/2
[lA] 1/C& + =+ =+ = )
TR e 3y ey g

q1q2q3+q1q2q4fqlq3q4+q2q3q4
99,939

1/2

.
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- 1/2
= [ l/(qu2q3+qlq2Q4+qlq3q4+q2q3q4) ] /

’

11/2
= |r|Y

the ore\the expression for B, in (2.1.9) -becomes -

1

]

exp{-%(wl,wz)z_l(wl,wz)'}dzldz2

Nq!q! '
<7212 -1/2
Bl = == [Zl /

e (2.1.10)

Following the same procedure of approXimation as

for B,, the other terms B,, By, and B, give rise to

identical expressions as (2.1.10) except the factor

4,95, they are respectively

2 27 2

expl-3(w) ,w,) J# (w) ,w,) "}z, dz

_. Nax93 NR%
3 2m

exp{-%(wl,wz)f-l(wl,wz)'}dzldiz'

3 .. Nq.'Q'
. 374 -1/2
- ) B4 =- T 'Z' /

exp{.-%-(wl,wz)z.l(wl,wz)'}dzldz2 ,
and expression (2.1.2) becomes

Najagrajagraiaiaiay) g
g(z,2z,)dz dz,=- £ 3 17] /

exp{-%(wl,wz)):"l(wl,wz)'}dzldz2




27 .

. | -

NEL(OVE, (0 T2 -1 o |
=. T cxp{-i(wl,wz)z (wy W) }dzldz2
|5171/2

~
exp{-%(wl,wz)z-l(wl,wz)'}dwldw2,
2n - :

since

939

q;d; + 979, + 9,93
= (gy+q3) (ay*qy)

= £,(0) £y (0) .

T
-

That is, the joint distribu of Wl, W, tends to a

2
bivariate normal distribution with means 0, 0 and

variances and cowvariance

Var W, =a;, (1 -a, ), i=1, 2

gnd . Cov(ﬁl,wz) =‘F(070) -ka;az

PR 1

yhere“?(xl,.gz)ais the distribution function bf'(kl,xz).

-For general'm.(m > 2), we will derive the form of

-,

the joint gensitf of the variables rather than actually

calculating it. Given a sample of size N from the

>

variable (X;, X, -.<, X )' let (2, Zyr.seer Ty)ibe

the saﬁble qugntiles of order (al, Ugr «ves uﬁ).

-




Without ioss of generality, we assume that the population

quantiles (Eys Epr wees EJ' = (0, 0, ..., 0)°.

Consider the probability that the sample quantiles

(m) ,

(217 2y eees Zm)'lies in the hyperparallopiped R

1" 72’

= 1,2,000,M .

The m-dimensional space is divided into 3™ regions by

means of hyperplanes

= 1,2,---'m H

which are perpendicular to the xi—axis. These regions

m
are illustrated in Figure 2 for m = 3. There are 2

Erimary regions Rl’ R2, ..+, wWhich co:réspdhd to the-

,

octants of 3-dimensional space as iq Figure 2; (T)Zm
3

- redgions with one differential dimension, i, R, +v.o
which correspond to the slabs of Figure 2; (';)Zm-2
regions with two differential dimensions, Ri, R%, ...;‘

(I:!;)Zm-3 regions with three differential dimensions and

m=(m-1) regions with (m-1)

e

, m
solforth, TS (m_l)z

differential dlmen51ons and ( )zm-m reglon with m

dlfferentlal dlmen31ons, the last region’ being R( )




1 \

Total number of regions is

J

LN
m ,m,.m-1.,m, .,m-2_ m,. . m-3 m
2 +(l)2 +(2)2 +(3)2 +...+(m_1)2 + 'l

C

= (2+ 1) =3".




PR

1 30
Let pij)'be the probability thht an element falls in

(3)

‘the region Ri

r

b ( f(xl,xz,...,xm)dxldxz...dxm o
R.J)
i

*‘Neglecﬁing terms invplving differentials of higher order,

it is seen that 4

/

L 1
p; = I RO xg e A X, Xy
R, * .
1
' *
P; =[J f(xl,xz,...,xm)TT dxi]dzB

R!¥*
i

where Ri# is the region R, with its possible boundaries

[4

z. +
l—

NA:—'

z; replaced by z, and Ri* is one-dimension-less

region obtained from Ri by omitting the differential
*

dimension. T[] indicates that one of dx;'s is omitted.
Ifithe differential dimension is dzB, then Xg is replacéd
by zg 1n‘f(xl,’x2, ceer x) .

With these set-ups, we may consider that the
sample is drawn from a multinomial'population with
érobabilities pLJ) falling in the region R{J). We wild

pick up those terms which give rise to the sample

quantiles i?l, 12, ..;, zm).




There are two distinct cases namely case (a):

the sample quantiles (Zl, Zoy eees Zm)' is determined by

2

m different elements of the sample; case (b): the

~

sample quantiles (Zl, Zgyy ...,‘Zm)' is determined by less
than m elements of fhe sample. We study the two cases
separately.

2

Case (a): the sample quantiles (Zl, 22, ey zm)' is
N

determined by m different elements of the samélé, then

there is one of these m elements in each of m regions

[ ]
R&'s‘whose-differéntial dimensgons are mutually perpen-

dicular, and the remaining of the elements of the sample

R with n,
m i
2

elements respectively. The ni's are subjected to the

fall in the primary regions, Rl' R2, ceey

indepeqdent restrictions of the following type,

(2.1.11)

| .
where N 1is one of N—([Nai]+l), [Nai], it= 1, 2, ...,m

t
o

' s .
and 0 < C <m as in the case for m = 2, depending on

]
on which side of which hyperplane X; =24 . X indicates

that the sum is to be taken over all n;'s on the same
. "
side of a hyperplane. 1In addition to these .restrictions,




The probability of this occurence for a particular

[ 4
. °

of m regions Ri's is . »

~

q

m m
m 2 2 ni
I pi YINY/CT] ni!)] [T P
y=1 "y i=1 i=1

P ) n.
N(N-1)...(N-m+1) TT p} pr ARl T e*
- Y It ni!

. . < 6 .,

where the summation means sum over all such possible
8 - “ }

combinations. Note that the term after the summation

sign is a multinomial probability since I n, = N-m .

m(m-1)

There are altogether 2 such B's. 1In order to

include all ways in which the sample quantiies are
determined by m different elements of the sample, we

. )
add together those'B's.

. Case (b): if the sample quantiles are determined by less

<

than m elements, say m-h elements, 0 < h' < m, the

probability of this occurrence for a particular choice

is of the form

. P
-y i
- T — TIp;

6 § T n,21 i=1
i

)
(y-m+h) !

N(N-1)... (N—m+h-1)p' p{d)
' 8

I n,!
i




H
¢

(3)

ig

(=

with those b "such that I j =m. But now I no =N-m+h

and C is of lower power in N as compared to B, and thus
£ may be omitted in obtaining the asymptotic expression
and we aré thus left to find only the asymptotic form

©
for those B's.
% . .
T g(zl, Zyr ey zm) is. the 'density that gives

the distribution of Zl, sz ...,'Zm , then*

'/\> g(zl,gg,...fzm)dzi dzm

1°°

»

‘ = 21 C + 22 B cesecsnsceas(2.1.12).
‘;Q ’

where Zl means sum of all such C's which arise from the. -

1]

case whgge (Zl' zz, i zm)t is determined by m-h

A

elements of the sample and Zzpmeans sum of all such B's

which arise from the case where (Zl, &2, e, Z;)' is

d . -
determined by m different elements of the sample.

0
Consider the term‘B. Neglecting terms of lower power

in N ( .

m o A n,

N TT N-m) ! TT

B = Pi - ‘72 I(I n.)! ) pil v
y=1 7y i ‘

. using the normal approximation with r = 2m, the above

B becomes ‘7 |




4

B = N T e ) HAI/(Zw)r -1

.

1/2

Y-l Yy .

0 r-1

exp{ -% A sttt )T at;

R 31

© ni -Np:s ¢
! ti - m 2 1 =-.1' 2' - e o g r-lp
and A is the matrix A = (A..) with
L =1 1 ci = -
Pt Ty R Bl
o ) - L
and e , .
A.. = = for i .
ij = B, #3
Now we .define ' - .
21 n
. i -
[ ul = v/ﬁ c[ . o= ):1 pi ]

)

where the summatlon is taken over all- n

a 2N

positive 51de of the coordinate hyperpla

with n, being one of.the n, 's.
Similarly, .-we define .
- ~ . 2

1, n,
. 2 1
‘u,.= /N | - I, p
} “ 2 ~ N 2, 1
. . i, 0 4
- . Em 1
. um = /ﬁ [ - zm pi
' o 7 N .

KN
a

's-on the

ane X, =2
1

P
» .

<

1l

t‘. 00--(2.1.13)

34



where the summation Zm . means sum over all ni's on the

positive side of the coordinate hyperblane X =20

with n being one of the n;'s . .o "
&

4

It is seen that

ny - Np1
1 /R

~

=u) - 1)t

where ]_, sums qver the same indices as, !,except the
A3 % R

index 1 , and

- 2= "l %

.

b bm = Ym T z--m b |

”

where ] _— sums over the same indices as ] . except the
Co. Nt %]

index m . o

- The primary regions Ri’ i=1, 2, ceuy 2m, can

elled that it will result in each Z—l £

-es I_p t; Dbeing a sum of certain subsets

. of t t m

m+l’ m+2’ °°°!

27-1

accomplish this:

G fh 2
-

of.positive side of x; = z;mlabel the region
where X, < zy k ¥ i as Ri',‘i =1, 2, eee, W™ .
LY

.,

t . The following is a way to

35




. . . J LI . *
-‘Label arbitrarily‘the rest of the reg{?ns as Rm+l R Rm+2'

..lI’R

2m

.1 reserving the region where x, < z; for all

i to be labelled as R n + For examples, the lébellings

3 i - .} 2 ) - .

are shown in Ffqure 3 for m = 2 and in Figure 4 for m=3.

E S

1
X2 1 | 21%39%
e ‘ - Xl - R4: Rl .
. ! . Figure 3. o
o /3 - ’ < ¢
N According to Figure 3, o
-ny+n o
= 1 3 _
\ u, = N[ = (py+ Py)]
¢ s h )
. " nytn, - ¢ .
a— L -
u, = /ﬁ ['—=R (py+ P;)]
and ' ' - o -
1 t1 i u1 - t3 . .
L 4 g L]
ty=uy ~ty @ .
Q
) - oy ’

36



R1 ?4 ) X

X1

o — . ) Figure ¢
According to Figure 4 , R
» -
s n,+n.+n.+n . :
- 1¥Rgtngtng

u; = /AN [ N (Py+ Pyt Pt Pg)l

-~

n.+n,+n_+n, #
o 2 4 57
vk 112 N [ N N - (p2+ p4+ p5+ p7)]

Th.+n.+n_.+n

3thgtngtn,
ug = R [ — ~(P3* Pg* Pgt Pqy)l

N

37




L 4

=u, - (t4+ t5 + t6)

]

u, - (t4+ tg + t7)

u3 - (t5+ t6 + t7)

v

Substitute ti'= u, - Z-i tj s 1=1, 2, «.., m in the

expression for B in (2.1.13), the quadratic form_inAthe

exponential in L k=1, 2, ..., Zm-l, will Pecome

quadratig form in ul, Uyyr ey Uy tm+1' tm+2’ I

I 2

Since t,, k =1, 2, ..., 2™-1, are joint normal and .

™3

u,, i=1, 2, ..., m, are certain linear combinations

of the t ceest
: 2™

are joint normal. - . ‘ .

k' hence ul, uZ} eses U, t

N n’ tm+1’ Tme2”

Recall that dt; corresponds to 1//’, thus

cancelling Nm/2 with dtldtz.:.dtm . (2.1.13) becomes

m/2 -
71 & /(2mT 1 1/2

.

2™-1
)} TT dat,

1
exp{-- Q(u ,...,!J
2 -1 2™-1" i=m+l

m, m+1,oo"t

where Q is quadratic form in u,, cees u_, t gevest ' »
. . 1 m’ "m+l 271

Q will be used generically to denote quadratic formVénd

is not the same from equation to equation.
R i




In order to gét‘rid of the summation sign, we
g

eeeys t each from -« to «. This is
2™-1 :

equivalent to finding the joint marginal of Uy Ugyene U,
' [ > -

integrate tm+l'

We get

B=- K|A|*/? (3=

[

().1.14)

where the rémainingmconstant of integration-is absorbed
( . -

4
in K, and Uyr Uy, o.., u are joint normal.

)

-

Define

m
f(xl,xz,...,xm) glldxj

*
f(xl,xz,...fxm) T dxj

Ri corresponds to Ri and are regions bounded by the
coor&ieate hy;erplanés xs =0, s =1, 2, ..., mj and
§i corresponds to R} and'are-regioqs into which the
coordinate hyperplanes are divi@ed by the remaining
coordinate hyperplanes; for example, yhen m = §,Ithe
four paris of the plane’ x3w= 0 , which is resulted
when the plane Xy = 0 is divided bybthe planes X, = 0,

| aom x2 = 0 . - : . . :




It.is seen that .

~

-

Py =t gy . i=1,2,..., 2"
T?
= q; dz_ .
=1ty Y

Substitute (2.1.15) in (2.1.14), B becomes

-

. . m
exp{—%Q(ul,uz,..;,um)} TTldzi
- . oy 1=

Nf]m/z

B=t Kl

ceneess(2.1.16)

s

where the rest of the constant is absorbed in K . .

But we have

my
'fﬁ[Zj_'X
) N

-t

. (3) -
wf(xl,...,xp)TT dx;)dx

v

® . (3)
I_m f(xl,...,fm)TT:“ :ixi)dxj ]

3

9 ( .
where T means dxj is missing ;

® o

= A gegang - [ gjgang
]

= f- . . é' . l' .c.-\.co.o.oc sdo
N fJ(O) z4 wi oo “eee (2.1.17)

0 z

j=1, 2, ..., m as in the case for m = 2 .




-

.

Substitute (2.1.17) in «{2.1.16), .

1}
“ m/zexp{-é (wl,wz,...,w )} TT dz,

B.=* K [2]
v ) ‘2 ) i=1l
, . . . - .
) : T cecerssesseansee (2.1.18)
" The other B 's will give the'same expression as

’ . in (2 1.18) except that the coénstant’ K wild be dlfferent._‘

Ne .
R - Thus SPEWEBQ up all thoSe B 's (2 1.12) becomes
. T glzy,2 ,...,z-)dz dzye.ndz . vl
. : 1772 277" e | T
ot N 200 Lod w ) I TT dz.
. L RN TR bt - L he U LNt I
.. ) ) : T ) .
S h ~ | m/2 )
-y, = . * amtp— -
] u‘ K [2."] exP{ —Q(wllw21~--:w )}ITld,w o
E . K* can be determined by integrating the right—hahd—side i

and equate it to one. Wir Wou oooy W, are joint normal

_§1nce ?1' “2' seer U are joint normaln

! In view of Lemma 1.4 , to specify the asymptotic

fqrm of Wi, Wz, ceei W only asymptotic means, variances

and covariances of the LA 's are needed. However, that

¢ . o ' ]
.can be done by considering the marginal distribution of ;

the bivariate (Wi. Wj) i#3, and this has been done.

This establishes Theorem 2.1 .. | ) 1




-t

- Denote the marginal-ctd.f. of xi by'Fi(xi) and the

CHAPTER 3
THE ASYMPTOTIC DISTRIBUTION OF SEVERAL
QUﬁrsihES FROM EACH COMPONENT OF A

- MULTIVARIATE POPULATION

-+3.1- INTRODUCTION

The technique used in the last chapter can be
extended to the case where one or more quantiles are

taken from each component:

-

. w -
LeF F(xl, xz, .oy xm), f(xl, x2, ooy xm) be

respectively the known c.d.f. and p.d.f¢"of the m-

variate continuous.random variable (xl"x2'~°"' Xm)'.

marginal p.d.f. by £,(x;). Let a7 3 =1, 2, [EETI PR

i=1xl, 2, ..., m be set of real numbers such that

-
1
>

. <(!. < o'oo—< . < i= LI ] .
ir, 1(ri-1); @5 < 1 1.2, ..

1

'Corrgspondipg to these real numbers, denote the r,
‘pogulatlon quantiles of Xi by Eiri' Ei(ri-lr’ R Eil

with- ' N



! A

A sample of size N is taken from (X;, X5, ..., X )'.

2'
i
Denote- the co'rresponding_,ri sample quantiles of X by

s
A

. zir" .Zi(r.-l) r ey Zil wlth >
o 'l 1
. ] . zir. < Zi1r.—1) < t.. < ?il , 1=1,2,..., m .
\( 1 'l N
- ? -
-~

wé will establish the following theorem:
' 4

- Theorem 3.1
Let { Z3 5 | j=1,2}...,ri; i=1,2,...,m } be set of

sever%} quantiles from each component df the m-variate

continuous vériable (Xl, X2, .oy Xm)J with’strictly
increasing known c.d.f.'F(xl, Koy weey xm) and p.d.f.

f(xI; Xy ,..,_?m). Let fi(xi) be the marginal p.d.f.

of‘xi i=1,2,..., m; satisfying Assumption 2.1~ Then
the- joint distribution of wij = N fi(Eij) (zij,_ gij)'

»

J=1,2,.0., r;; i=l,2,..., m; tends to a Zri—dimensional i

-

normaP distribution/with means 0, 0, ..., 0 and variances
- . - h‘
and covariances ‘ -

- Var wij~=’éij(1_“ij) . j=l,2,..,ri; is1,2,.., m

a4 .

-

co'v.(wijv'wil) =' aij( 1 - uil) wlth Gij< ail .

. N

S wherg'Pik, Py are Tespectively the c.d.f. of (X;.X), Xg.

3
—~
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3.2 . THE ASYMPTOTIC JOINT DISTRIBUTION OF SEVERAL

QUANTILES FROM EACH COMPONENT OF A m—-VARIATE

v

POPULATION

Consider the probability of the following event

-

zZ,.-

1 .
13 2.. < 2.. < z.., + idz. ¢ J=1,2,..., r.

ij ij ij i
i=1,2,..., m .

n%r

Divid the m-dimensional space into different regions by

hyperplanes ’ /
X, = = l-dz j=1, 2 r
i ij 2 ij (A |
X = 2Z.. + 1 dz i=1, 2 m
i ij 2 ij !’ roer sy ‘

. . m - . .
Let R.;, i=1, 2, ...,. 1 (r,+1), denote the primary
1 i=1 1( .‘x—" ’

regions without differential dimension; let Ri.'s denote -

~ P ’ -

the regions with one differential dimension and let Py
p; be the probabilities that an element falls in R, and

Ri respectively.

We label the primary regions Ri as follow: Label

the region where x; < 2,4

ir, for.all i, i=1,2,..., m,

as RH(ri+1) .. On the positive skde'of Xy = Zyq9 label

the region where xi < zir‘ i'# l; as Rl’ and label the
Ui

- . - * . [ M ‘ /
(r1 1) regions on the negative side of Xy =29, wherif

X. < z, i#1 as R

R
14
i 1ri 27 7

¥ LI Y 4 R .
3 r1

[ ] .



. ')

On the positive 'side of x, = 2z

2 label the region

21

where x. < z, i # 2 as Rr and label the (rz-l)

1 ir

g !

regions on the negative side of x2~= _21 where

L 2

i # 2 as Rr R .

+2' Rr +37 *° 07 +r2

1 1 T

On the positive side of Xn = Zn1 label the region

where x5 < Zir. i# m as Rn-1 and label the
i I r, +1
i=1 L

rm-l regions on the negative side of X

xi< Z. 1#“\ ?.S Rm_l .
I r

ir,
i +2

. i
i=1l

remaining of the Ri 's are arbitrarily labelled .
/

-

Let

m
f(xl'x2"'°’xm),111dxf

m
£ Xy 1 XgpeeerX ) Illéxi

Neglecting terms involving differentials of higher order

it is<seen that,
~4




. 0 |
f(xl,xz,.:.,xm) Illdxi

PN * ‘
I £(X]¥Xp0reeeeXp) T dx; dzg.
R!* ’
i

B

where R} 'is the regioani with its possible boundaries
1 . va e
zij T 3 dzij ‘replaFed by ?ij' and Ri - is one-dimension
less region obtained fram Ri by omitting the differential
- . *Il A « - '
dihension. TJ] indicates that one of the dx, 's is

omitted. If the differential dimension is dzBY ,-and 1is

Zgy

¢

parallel to the X axis, then X is replace by in

f(xl, Xor eens xm) .

Cd =

If { Zij | j?l,Z,.;,ri; i=1,2,..,m } is determined

)
by less than D ( D =_¥lri ) elements of the sample, the
i=1 . :

.

terms arised from this case can be neglected in the

asymptotic expressian ‘as in two-dimensional situation.

—

We are only concerned with terms which arise from
[ . '
the case where { 255 | i=1,2,.. £y i=1,2,.., m} |is

determined by D different elements of the sample. If N

_this is so, then there is one®element in each of the r,

slides ., i =1, 2, ..., m




<

<

o

Y
1 1
i ~ f_dzij <% < zij ¢ 7 i_lj '

j=l,2r..,ri.
S '

Consider one of these possibilities where one element is

. N . N B l \ - l
in each ef those sllde§ zij idzij < x5 < zij+-2-dzij v

P ]
W

w1thc_ xkb > 2z

k1 * k # i; the probability of this occurrence

m }
Ais, with. r = ] (xr;+1) .~ ,
Tt . D Nt . f n,
B=71[p! > T py" eeevenane (3.2.1)
y=1 “y H<EL! i=1
- o N r
where n. are number of elements in R. and I n, = N-D .
’ i=1
If g(2zy3s Zypr ooe zmrm) is Ehe density that gives the
dlstr;butlon of le, le' ceey Zml’ ceey Zmrm v
i‘ (
IR ‘
9(2 ¢ 2 vt ecey 2 ) ° dz., .
;11 12 ’ mr o’ o1 j=1 ij
J N

cereeeness(3.2.2)

where Zl means sum of all such C which arises from
?
the case where { zif | j=1,2,..,r;; i=1,2,.., m } is

determined by D-h (D > h > 0) elements of the sample

and' 22 means sum of all such B whlch arises from the
D

case that it is determzned by D distlnct elements.

- o
©
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Consider the term B in (3.2.1),

n

AP
L)

, . D _ r, n,
B'= N(N-1) ... (N-D+1) T] py 1 D)L 7 ;"

=1 "y i ni! i=1

‘9 - - ‘ . o~
’ e . !.
néglecting terms of lower power in N and applying the

normal approximation,
S~

D D . _
B="-N T[p; ] [lal/(2m* 1,172
Y=1 Y ‘ , ‘

<

< . ° _1
1 r
+ exp{-5 ] Aijtn:itj} ]1'1 dt/i/.

and

- .
" Define

n.. .
& u = /ﬁ [ Z -‘. 1 .
! _ 1ﬂ ,J

where 21 indicates gum over thé-féqions R; on the

* . . S ‘ ’
1 . [}
pos the’?ldQ of 7x1 211.5 ‘ | 7
6' 2




. n.
u, = /N [] —=-
1 1 N
v ‘ ..
where Zr "indicates sum.over thé regions R, on the
. -

positive side of 3

°

.
a

- n. '
C e i
“D = VN [ ZD N - ZD’pi 1

: . R
1

" where 'ZD indicates sum over the regions R, on the
. @ -

mr

positive side of x =z .. .
. ' m .

v

.4

We sée,;hat
. ul - 2_1 tj LY

’

»

ceeesss(3.2.4)




where Z—i indicates sum over the same indices as in

//Zi éxcept the index i .

‘

It is seen that by the way we label the primary

regions R, 's , t,, tys «<.s t; are linear functions
of“ul, Uyy -ew, U

.

D’ EP+1, cevr tr._l - Since t,, ...,ftr._1

¢

are joint normal, Ups eeer u r
: 4

°

D’ tD+l; -eer E )\ are

joint normal .

D
B=-N TTp l'llal/e2n™ /2
| Yo

[y

r-1
l -
exp{-io(u’l’-.,uD’tD+l'-o'tr_'l)} ;[.Ildti

‘\
D/2 _
=8 TTp I (al/m™ /2
.Y °

.
i« . 1'-'1 )
exp{—i Q(ul'..'uD'tD+l'..'tr'1)zill;1 dFi
.

yhege Q is quadratic form in Ugreper Upogr tpoqreer o 4.
Q is used generigally to denote quadratic form and is

not the same from equation t¢ equation. - . R

In order to get rid of the summation sign, we

integrate ti s, 1i=D+1, ..., -1 each from -» to « .

2




This is equivalent to finding the joint marginal of u, .,
u2, cesy uD ; Wwe get

1/2, ' | »
B=- K |a| / N D/2 I p exp{—% Q(ul,uz,..., uD)}
, Y L

ﬁ.;jlf.......;:.(3.2.5)

-,

where the rest of the constant of integration is absorbed

in K. ‘ .
- : ¢

Define

i

f(xl’72"'°'x ) TT dx.

i=1

. *
a; I f(xr'XZ""’fm) I dx,
R'** ¥
i - ‘

+
where R;*, Ri** are respectively R;\; Ri* with

possible boundaries zij repléced,by Eij

We see . that

-

o e (3.2.6)

. D
e =17 q TT TT az,
v=1

y vy=1 1y i=1 j=1 *J

Substitute {%.2.6) in (3.2.5), we get
k]

-r




r.

m i
1
exp{-5Q(u;,uyr.., up)} Ill glldzij

N ,D/2

B =+ K [—]]

(3.2.&)

with the rest of the constant absorbed in K .

- f

But we have
. ni
U OIS el SO O

'
[~}

- .o m
YN [ J ( J ...J £(Xy,..,x )T dx,)dx
Ell o —e 1 m Lo, 17 1

dxi)dxl]

=) 1 m
- ( I J f(x,,..,x.)
Iz e —o 1 m II

=2

>

11

/N [ I £, (xy)ax, - T £, (x7)dx; ]
f11 .

w

11

similarly,

P BN )




Substitute (3.2.8) in (3.2.7), B becomes °’

- m i.

N exp{—EQ(w 17Wpore e W )} TT TT dzij

D/2.

B=" K [5= =)

>

......;.....ﬂ.....(3.2.9)

’ Other B 's will give rise the identical asymptotic
expression as -in (3.2.9) except that the factor K will

be different; it is clear then that

| g
o g(z 2 1o«12 ) dz. .
11’712 me ooy j=1 ij
‘ moTi.
= k* [ N D/zekp{——o(w 1,wlz,...,wmr VT TT'dzij
S 'm  i=1 j=1

r ‘
" .. K* > ..
o= —-—————-exp{ FQ(Wy 3 Wyoreea W )] TT TT 4dw,.

(ZN)D/Z | m i=1" j=1
m ) o
where D = I r. , the constant K* can be determined by :
i=1 ‘ :

integrating the right-hand-side and equate to one.

15 ° j = 1,‘2; eer Lo i=1, 2, ..., m are joint

L]

normal since Uys Uy, s.., Uy are joint- normal and each -

W, s is a linear function of the u. 's.
] ' s 1-

In view of lemma 2.4 , to specify the asymptotic

?

. i distribution of Wy, Wi,s ---» W@rm?only the asyﬁptptic




means and variances and covariances between the variables

_ are needed. However that can be done by’considering the
3
as in the last chapter if i # k ; if i = k ,

bivariate distribution of any two of the wi 's, say

Wisr Wge

~

then the sample quantiles tomes from the same compénent
LY 4

- and this is welIl-known. Therefore the joint distribution

. m .
of Wy;, Wy, "",Wﬁrm tends to a iZIri -dimensional

normal distribution with means and variances. and"

covariances as mentioned in the theorem. This

-0

establishes Theorem 3.1 .
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