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" ABSTRACT .

. b d 3
The stability of two of the short time scale

solitions obtained in the filament model for a stationary
field electron ring accelerator is studied by means of a
linearized perturbation.on the electron and ion distribu-

tion functions. The Vlasov equations for the electrons

and ions are coupled. The coupling of these equafioné

E

reswlts in a Frgdholm integral equation which can be con-

verted into an infinite system of linear equatiens. A 7

- 2

stability criterion is thep obtained from the zeros of the

*

truncated determinants of the coefficients of the infinmite
’ ’ . ‘ .
system. . 6ne of the equilibrium solutions, characterized

by the dimensionless paramet%r e=0, is entirely stable.

The other solution, characterized, by €>0, is stable provided

that both e'and the ratio of the square of the ion ‘period

to that of the electrons agé not too large.
/ »
.
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1. Intrcducticn.

—
Id

— X "
The electrcn ring accelerator (EFRAN is one of the

many newly proposed ideas of accelerating protcns or other
heavy ions. 1Its basic difference from the conventional
accelerators is in the cdriving and the guiding fields on
the particlés,being accelerated. 1In the latter, theée

’fields are provided for frcm scre external sources; whereaé,

in an ERA a large part of these fields are provided by the

particles themselves. a

The underiying principle in an ERA is to form a
stable nonneutral cluét%; cf electrcns and.positive ions,

. with the rrumber cf iors being much less than that of the
electrons. In such a cluster the electrons provide most of
the charge, while the ions prcevide nost oﬁ the mass, so
that the gain in energy from the eéternal fields by the ions
is much kigher than if the ions alone were being accele-
rated. Thié is one of twé basic advantages of an ERA has
over the convention‘ accelerators. A second advantage
follows frcrm the fadét that the effective density and current
of the cluster are no longer zero. This lifts the rfequire>
ment of curl E = 0, and div E = 0 from Maxweil's equations,
with the consgquence'Qf widening the variety of external

acceleration fields, and providing'an 'ultra-strong-focusing'

for the cluster.



‘ Although the advantages are great, this theo-

retical conjecture also has many difficulties. One cobvious
- »

)

difficultf_is the possible unstable nature of the non-

neutral cluster. For example, a spherical 'blob' of electrons

and ions, is known to be unstable. In the 1956 CERN

Symposium on High Energy Accelerators at Geneva, Budker(l)

proposed to stabilize the cluster by forming a ring of
-~

electrons circulating at relativistic speeds. Thée mutual

3
repulsions between the electrons are reduced by a factor

2

of y 2, where v is the relativistic factor. He believed that

with the introduction of a small fraction of positive ions,
/, A Y
the residual repulsion can not only be overcome, but also

resulted in a net overall attraction stabilizing the electron

ring. _ ‘ : ’

”

(2-4)

Early in the 1950's several-authors suggested

-

the possibility of incorporating the self-fields into the

accelerating mechanism. A more widespread interest in unconventional

{

accelerators arose after the above mentioned Symposium. >At

this meeting two important papers were presented: 'Reiajg;istic

Stabilized electron .Beam' by Buakersl) in which the field

associated with an intense relativistic electron ring was
suggested as a possible high intensity guide field; and

'Coherent Principles of Acceleration‘of Charged Particles'

by Vekslerfs) in which the coherent principle was first described

and three methods of acceleration were suggested.

-»




In the years immediately following ;his reetirg,
a number of physicists in the Soviet Uﬁionq Eurgpe, and
this Contirent explcred these ?ossibilit@es_in some detail.
Among others: Levin, Askaryanﬂ'Rabinovisb(6’7)_investiﬁ :
gated the rtf acceleration as suhqesgﬁc by Veksler.:; de-
Packh‘8'9) riodified Budker's design, 'and his modificaticn
was_furtheg gtuaied by Codlove and dePackh {10) ang

Lhrr*anrll £>)

pz Meaﬁwhile, Veksler ané his group at Dubna continued
on the feasibility studies cf the ERA ( of dp their termi-
nolcgy, the collective linear icn acceleratcr). Tbelr
report(]4) in September, 1967 at the Internaticnal “Cdnfe-.

' rence cnhAccelerators: Carbridge, Mass., was fecéivad with‘\‘\“

enthusiasm. Their ®experiments were imm%diately put to test ,

by mapy agceleratcr grcups. The Lawrence Radiation Labo-

ratory at Berkeley, the birth pla e\Qf the cyclotron,
has one of the most actite group in Festing the new ERA

conceptfls)

: )
These early efforts dealt mainly with the problem
of ring formation., One of the methods used in Dubna ‘14)

(15) was compressicn of an electron rlng ?1th

and Berkeley
\\é iarge radius hy pulsed magnetic field into that of a
srall one. ® this method, a large ring of electr%ps with
radius of the order of 20 cm is formed by injecting electrons
ihto an axisymhetric magnetic field in ; direction at right

v '
s
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Fig. 1. Pulsed field compressor.
- ',‘ . .’)

° ’ o oo
angles to the field(fig. l).§ Then hydrogen gas is injected;

it becomes ionjized by the intense girculating jyoeam of
electrons, and the protons formed become trapped by¢the

potential well of the electron.sp&ce.charge. A£ this :
L point“the'mégnetic field-is increased from orders df}lO'IkG-

to 10kG, wherebypthe ring radiu; §h;;nks déwn~%?_qbdut écm.
o’ - 0Acceleration'éf Fhe:fing is achieved by‘rf cavities or ?y

passing the ring through a decreasing magnetic- field so

3

that rotat%pnal energy is transferred into lbﬂﬁitudinal‘
v . »

energy. s -

—_
- . L]
,D . .
- L
4

There had been so rmuch work done on the ERA
b , - .
after the 1967 meétihg that it was found necessary to hold
. o . N , . o ENS
another one in thgqfollowinggyear at Berkeley to discuss

"new findings by the various groups. In this mgeting com-

’

a3




electron
trajectory,

@
ok

Q'Fig. 2. Solenoidal’f;eld compressor.
b ’ ‘ - o -

gression by statxc fleld was proposed by Lew;s(l6) Siﬁilar

~
e »

. methods were also»put forward by Berg et al(fa) and Laskett

(18

et a The essential feature 1n these proposals is

1njectloﬁ of a stralght electron béam 1nto a solen01dal

magnetic f}eld(flgf 2). If 1njectlon is at an angle to ,

the’ axis and without a radial component of velocity, the ~
-

orbit is a conical helix of decrea51ng pltch7 and accumu-

late into a denge rnng conflguratlon with small radlus at
(£
a sultably high field point along the solen01d‘
= ¥ 5.:})

. -
e

These static field methods #¥e simpler than the

. v t 4 » : » v
puised ones in that no time programming 1is gequlred.
However they-have a commoﬁ-disadvantage of“havinq~to use,

a solenoidal field which has unstable mifror type curver

(19) ’

tures A second dlsadvantage ¥s in the requlrement of

injection from a single p01nt into tbe‘fleld with thé
Y q-
, :
) 4 § _ .

o ! . ) ’

subsequent foEPatioh of 'a rlnii‘t the high.field end. This

-6

o

¢

5 a .




— - ' 6
requirement makes considerable demand on the angle-energy
tolerance of the be;m. The fact that only one point in
azimuth is axailable'for injection means that all the

%gurreﬁt must come érom thfs poiﬁt, and this introduces  °
;pace-qharge problems if tﬁg beam\is to have sufficient

: current for the formation of a ring.

»

»
4 ¥
z

X ® ) .0
Fig. 3. Cusped field compressor.

-

L

An alternative approach to single point injection

wis first érOposed by'dePackhSZO) A -hollow electrbn beam

-

is injected from an annular cathode within a region of

- strong longitudinal magnetic field, and accelerated to. an he
éhergy of -between ‘10 to 25Mev. The magnetic figld is

. , . _ - y

strong enough to make radial and azimutha) motion negligi-

ble. The electron beam is then passed
A -8t

rough a cusped - )

field in which the direction of the ngitudinal magnetic
. :

field is reversed in sign, changing from -B, to +B, in a

0
[ .

2




4

‘shoft distance(fig. 3), and thus acquiring some azimuthal

velocity at the expense of longitudinal velocity. If the
transition of B, from'-B, to B, could take place ideally

in zero distance, then viftually all of the kinetic energy ™

N
could bg changed frow Rongitudinal to azimuthal-while the

beam is'passing through the cusp. In practice, a shorgrbut
: ) ™
finite length wusp must exist. Hence only partial conver-

sion is possible, if excessive radial motion is to be

avolded in the post-cusp region.

t r

After passing through the EuSp, the eléctron
velocify is still Enpdominantly<1ongitudina1,»and the
electron beam has” not yet been :squashed' into a ring.
By letting the magnetic fielg strength to increase very
slowly after‘the cusp region, further conversion takes
place gradually. Since the front portion of the beam
undergoés this conversion first, its forward velocity ,
starts to be slowed down first, with the consequénce of

the beam being gguashed intg a ring.

Neutral éas atoms are introduced into the path
of the‘electrons in the post-cusp region. They are easily
ionized by the répidly circulating electrons. Since the
forward velocity is still appreciable riéht after passing
through the éhsp, any ion formed at this stage is left

behind. When the longitudinaf velocity of the beam is

R

[
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sufficiently small, it will pick up these ions. The entire

éystem is E:ady for acceleration when encugh ions have been

picked up. ;

A

An injector has been built at the University of
Marylaﬂdle) It was designed to inject a hollow electron
beam of energy 5Mev, with peak éurrent SkQ. The initial
tests feporteé'in reference 21 achieved a 2Mev, 6kA beam.

Theoretical investigatfbn of the cusp-rggion
had been done by Kalnins et'al.{22) where a single particle
appranh was used. They fou;drtﬁat an iron plate with an
annulaf slit for the passage of the electron beam reduces
the length of the cusp, and hence reduces the shift of the
centre of ﬁhe ring off the axis. Radial loss of electrons
at the symmetryﬂplane of the cusp poées a seriogs problem
" in this regidn.' Striffler et al.(?3) gtudied the 'etfect
of applying a negative voitage on a gection of the sur-
roqnding cylindrical conductor in the region of the cusp.
‘They calculated the limits of the allowable applied
voltage. It must not be too low so that effective radial
confinement is possible, and must not bé?tob'high go that
\electrons can pass through the cusp. They alss gave a plotﬁ
of’ the distribution of electroné in the cusp feéion for

various lengths of appiied voltage. When this lenggp is

equal "to the radius of the cylindrical conductor, the
. o . ]




electrons cannot pass through.
Most of the papers(24'26) dealing with the post-
. . 2
cusp regibn; considered a stationary electron ring confined
in a constant magnetic field g;Bog. The ions were treated

as a background which either neutralizes the electron

ring524) or provides a space charge electric field 0n1&525,26)

Equilibrium properties éonperning the major radius R, the
ring envelope,>and the inclusioﬁ of a conéubtiné wall héd
been obtained. The motion of the ions, andjthé longitu-
dinal motion Jof lhe ring along a space dependent magneéic
field on top of the m&tions in the rest frame of"the_fing
have been considered analy£ically by Ehrman (27) dnly
recently. According to the validity of ‘the various appro-
ximations that  can be ma@e, he deécribed the develapment '

of the electron beam after passing through the cusp in

terms of -5 stages, and considered the third stage in

detail. ' . . /

This is the stage‘wqgn the forward motiop is
the slowest, and includes much of the ion pick-up region.
The chaF:cteristics of this'stage are the adiabatil
invariance of the longitudinal and radial action integtals,
fP,dz and ¢P,dr, for both kinds of particles in the ring
frame. The existence of these invariants impl;es the

use of two time scales in the solution of the Broblem.

In the long time scale(LTS), the only invariants are the

-



) J
g
o

action integrals, ho@ever, in thﬁ/éhort time scale(STS) nyv 27
there exist othqi,physical'quantit@vs whose time dependence

’ - .

is slow enough so that they are not changed appreciably

over many electron or ion bounce times. ,

" In referen;é 27, Ehrman first obtaiped quasi- .
equilibrium distributions by neglecting the time dependence
of the STS Vlasov equations; LTS time dependence was obtained
by matchihg'différent STS solutions. The present thégis \\;fﬂ

considers the fast time dependence of two of the STS

equilibria. A brief discussion of the equilibrium problem

is presented in section 2. It must be emphasized that  the.
discussion is confined to those matters that are ré&evant

to the présent thesis only; no attempt is made to_gummarize

the entire of reference 27. In section 3 linear perturbation .
theéry is applied to the equiljpbrium equations given

in section 2 with the inclusioé of the fast time dependence. ¢

It turns out that all information on stability is contained -
in a Fredholm~integra1 equation. Séciion 3 dqgls with the deri-
vation of this eduation, while section 4 simplifies the kernel
to a more tractable form. With the aid of this Fredholm
equaﬁion we é%nsider the stability of the system inrsectioﬁ

5. Since r dependence has been neglected, the stability 0
analysis applies tp‘f:ﬁ'e; g.‘o&:ion only. While it J:.S foreseé-,
able that there are iLgtabilities due to the radial and
azimuthal perturbatiopé, they will not show up in the present

J
- o

analysis.
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2. STS Equilibria.

o .

In the‘third stage the foéward velocity Bz=€i/c
of the electron beam has been slowed down considerbly, so
that 82 may be neglectéﬁ compared to 1, ;nd Y, may be
replaced by 1. In the rest frame of the ring Yy is related
to y by

Yo = Y/Ygr | I (2.1)
where“the y's have their usualcmeaning in the‘special.
theory of relativity, the priméd variables refer to the
ring frame, .and the subscripts.refer to thé/cylindiical
coordinates (r,6,z), with z being in the direction of the'
external magnetic field. Since y, may be replaced by 1,

yé and y can be used interchangeably in this stage.

-

e assume that the ratio of Budker's parameter
v={(linedr~electron density along ring circumference)x
(e?/mc?), to*y is negligible coﬁpared to 1, that is

v/y €1. , | (2.2)

dhis sumption has its basis in existing experimentsfzs)'

Kegel(zg) and Schmiét(3o)'showed that it implies the self-:
" -
fields are sufficiently weak that the equilibrium ring

r
radius R is equal, in a first approximation, to the Ldmor

‘radius of a single electron with energy y mc?. Since the

ring travels in a very slowly increasing magnetic field

in stage three, we may consider R as a STS invariant.

&
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+

% the beam slows down gragually after passing
through the!cusp, ions are beiné‘piéked up. ﬁp/éonsider
'the third stage is reached whenéthere have been enough
iohs picked up, so that, in the ring frame, the z-action
1ntegral and the r-action 1ntegral of an electron are - .

4

good adiabatlc 1nvar1ant? aqg,fhat the following inequa- .

~

. wllty holds

¥

y 2 <<f << 1,° . ‘ @.3)
where f=Ni/Ne1 N;j, Ng beiﬁgthe\lofel number of ions and
nelectfons in the ring. ‘This‘inequality implies ehat eéch
species in the rlng 'sees’' the 1d produced by the other

t

spe01es only. 'Fer the ions, since £<<}, there are not

many of them in the ring, hene? the fieldﬁproduced~by them
,, are overwhelmed by thbse'di_the electrons. Op the other
| hend. the electrons expérience a Y‘zcehcellation of their
putual repulsion(3l) due to their relatjivistic motion,
'Zga sinee Yé—f=7‘2<<f the résidual repulsive field is
x\e_gligible as .coméared with the attractive field of the
¥6ﬁs Besides the fleld Que to the ions, the electrons
are affected by the extqrnii magrietic field also, whereas

the ions, having a negligible 8 velocity, are insensitive

to it.

- " ""In the ring frame, each particle thus oscillates
within the ring in a fjield produced by the particles of
the other kind only(and, for electronéf_in the’ external

field). If the bounce times of the particles trapped in

/" >



. C : * o B 13
the wells are short compafed'wgéh the avgrage times characteri-
zing the wel}s; we- can cbnsidei the longitydinal and raqial
action integrais as good adiapatic invariants. Thesex

invariants are essential to'the LTS eqliilibrium analysis.

For the present STS stability problem, we take the osci-
) . . ' .
lation perjods as a standard of time, since any change in !

the field’'quantities must effect a change in .these periods.

-

In order to make the mathematical analysis a

A}

little aimpler the filament model assumes that

r, << z_ << R, - (2.4)

where 2r_ and 2z _ are the ring extensions in r and z. .In

RA'(28)

an actual E zo<<R should be a good assumption in

stage ?hree, but ro<<zo may well be violated, and r, may A

Land

bé comé¥rable to zo.‘BThg latte; assumption was made to

simplify the mathematics of the actual s%stem,‘so that
‘ y _ N -

the: solutiions_ to this simplified problem can be Used as

input into a.proéram which drops this assumption.
1 ) . . *
Eﬁﬁatign (2.4) means that the electron-ion ring

;

is considered to consist of almost straight filaments. of

. A

~

charge and current having a length 27R, and .all being located -at

=R, with/a distribution in density and z-momentum along z.
Fd
The condition z_<<R means-that curvature effects are being

neglect#d, though the value of R does appear as constant in
1 ‘ .

the equations that we shall be dealing with. We also assuge

- * -

that all STS equilibrium distributigns are independent of 6,

and that the ions are considered to have no 6velocity, while

(]




written as !/ o . v )

the electrons all have a ring frame g velocity Bé which-'is

invariant on STS,. . : C \\
1

>

.The above assumptions mean tha% the single parti-

' o e, .
cle distributich fupctions of.electrons and ions can be

6 (x-R)§(PL)6 (P ~Ra) £, (2,P ,t),

’ N L]

- G(r-R)G(Pr)G(P-e)fi .zlert) r

where the §'s are Dirac dgrta functiqQns, the subscripts 'e'

. . M
.and 'i' refer to electron and ion respectively, Ra is the con-

stant g canonical momehtum, and (r,e,z, P P ,P ) are space

6'
varlables and their corresponding canonlcal momenta in the ring
frame. Sinde we wiii'not be using the laboratory frame any
more, the primes iﬁ the ring frame variables have been dropped.
After integrating over the appropriate phase-space variables,

all we have to consider are the functionsrfe(z,Pz,t) and

fi(z,PZ,t),,and the Vlasov equations for each species are

¢

g{e +-ﬁ$g-fe-e(E eB) e—o (2.5)
351+ Pl 4 eEzgé 0. | (2.6)

N ) - 3
The coeff1c1ent of —eB? /ap may bé/rewrltten thus

g

ext

B,mBgBy= Bpy + (BpemBoBre) - BeBﬁ. !
> T ext |
R BQBr'

_ ' ext
= a¢i/3z * BeBr

‘ 2
where E_., E_e are the ‘electric fields due to ions and




electrons respectively, B . is the internal Br due to

re
electrons, while B§Xt is the external r component of mag-
netic field. Furthermore 88 is considered a constant on

STS. The neglect of Ez 'BeBre compared to Ezi requires

e
the Yy %<< f condition of equation (2.3)."Similar1y, the

coefficient of egfi may be rewritten
oP
z

sSince f<<1.

The term BGB}'in equation (2.5) accounts for the
effect of the external magnetic field on the electrons.
In the course of -the equilibrium analysis given in reference

27, it became- apparent that the inclusion of this term

hereduces small ‘odd terms in the potential¥ and charge
] 5

density function. These non-even functions give rise to

a problem of single—valuednes§ to one of the gquatioﬁs:
equation 31 of reference 27 (In order to avoid. the repetitive
phrase 'of reference 27', all equations frem that reference

<
will be quoted without brackets and without decimal ‘to

¢

distingyish them from the,eqﬁatiohs of the present tbesis).
LWhile it is possible to resolve this problem, the self-
consistent solut;on obtained in section 5 of reference 27 isg
‘far from Leing trivial. On the other hand, some of'the
sélutions obtained by leaving out the odd termé’are simple

delta and step functions. Since the object of the present

thesis is to analyse the stability of”the latter solutions,
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we shall drop the magnetic term, and rewrite equations
(2.5) and (2(6) as
| s 55'256 * e%%i'%gg =0, L@
R - e 7%%2 = 0. (2.8)

éince the potential function in the'electron
Vlasov equation is the potential Que tc the ibdns, 'and the
1other way round for the ion Vlasov equa£ion, they represent
a pair of coupled eguations. The boupliné is more appareﬂt

if we write down thexexpfessions for the potentials and surface

charge densities

a0

belz,t) = 2/ dz'og(z',thlog (8R/[2-2' ), (2.9)
¢, (z,t) = E? Qz'oi(z',t)log(;R/I;-z'|),(2.10)
oe(z,t)‘= - %Z dP,f_(2,P,,t), (2.11)
o;(z,t) = %? dp,f. (z,P,,t), ] -(2.1%)‘ //’

" - OO
where the ¢!s are obtained from elementary electrostatics,
and are valid for WZ—Z'|<<HR, which is.within the limits
of the present congsideration. It must be noted that the
time ﬁependence'of these functions were dropped in the

¥

edquilibrium analysis. . a

The method employed by reference 27 b solve the
equilibrium problem’was to assume an electron distribution,

-~ &
an electron charge density, an ion potential outside of the
. ¢ - g

’




N

.«)and is zero outside. Mathematically, i} can be expressed

ring, and an untrapped ion'dist%ibmtiqp. From these
assumed quantitigs, equationg (2.7-12) can be solved with
the time dependence dropped. While it is not ;eees§ary

to repeat the equilibrium analysis all over‘again, we will
write down the equilibrium functions for ease of reference.
All these fq?cttons will have a superscript (o), to dis-
tinguish them from.gae peftﬂfbea quantitiesﬂﬁith suber*
script 81). The functions given below are not identical
to those of reference 27 in the sense that theré Ehez were
made as general as possible, carrxigg as many terms Qs.

possible in the Tchebjcheff expansions used;‘whereas here

only zeroth order quantities are included.

The assumed electron distribution is a 51ngle dePackh

{9,13,32)

water bag Refering to fig. 4, this distribution

has a constant positive value, Cor

J

as ' ’
. [‘

5 my) = c o[V (ComHg) +0, (1 ~Cy) =11,

»>

where U(x) is the unit $&tep functlon, He is the electron

Hamlltonlan, and Cl, Cz are constants w;}h

0 >¢€y > Cy =min (e, (z))
z in ring

Fig. 4. A water bag distribution.

17

inside the shaded region,

sl
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This is the form used in reference 27. However for the

" stability analysig, it iq‘more convenient to express it
in terms of the equilibrium velocity :w(z) of the most

]
energetic electrons,
A

-

féO)'(Jz"V) = CO[U(V"'W) _"U(V_w)é ) (2.13)

3 .
L]

- .The usefulneds of the water bag arises from‘.be

LY

» fact that we can neglect collisions in the elecfron Vlasov

]

eqdaEibn, so that by Liouville's theorem, the phase space

encIoseduby the water bag is incompressible, and a per-
4 4

. . b}

turéation.can,only change its shape,’ thus simplifying the - \
solution of the time dependent Vlasov equation.

-

‘.
pe s &
5 4

- The equilibrium eléctronrsurface charge density,
the electron pdtential,'and the ion potential are‘given by

equations 22, 6lb and 26a. They aré.rewritten for ease

of reference as the following : . T B .s
. \
(O) . _.2.—e ) - — . o
0g  (x) =] -=/2myc_z b /T xZT(1 + nlenUn(x)),
e S 2 |x|< 1 ‘
0, |x{> 1
r\;' ko -~ ¢ ’ “

sty » -

esf0) x) =\e§e(0) + %ige(x?/2 +V32(xk—3x2/?)),¢;

. N A
I ‘ o PR [x|< 1 .

A

where Ne=2w2/7ﬁ790C6z; is the total number of é}ectrons in the
‘ £ - v

ring, and we have normaFized the z coordinate by setting

x=z/26, and bo is a constant defined byneqyation.ZZa. It

. " _
, turns out mthat the potentials outside of the ring do not ’

e
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come into the stability analysis,,pencelthey are left out c

from the above equations. Setting Bn=Oq for all n3l, we get

eN . ) )
0! (x) = rﬁzgﬁz, - (=< 1, (2.14)
0 a K |x[>1, -
. e?N ! - o
e¢‘°)(xf}= e¢(0)(OT + . x?, |x|< 1 (2.15)
e e -
TR
€09 (x) = —c. + 22b?(1-x?) [x]< 1 (2.16)
i 2 o o ’ ’ a

<
. L}
[ 4

R Depending on whether or not we want to assume

there are ions piled up at the ends tzo, the ion distribution®

function given by equation 65a reduces to

(0)ve v _ max_ )

£5°) ) = BUMT H,) B (2.17)
(o) - max_ max_

fi (Hi) »’AG(Hi Hi) + BU(Hi Hi), (2,18},

where Hiis the ion Hamiltonian, and

1P CR ﬂb;zé e%Ni . '
A = a—— '2mY. .( - l)‘ . (2-19)
v 2m ™ e - qb;zgR ‘ '

16 CR mb2z2 TR ‘ A :
B = ——’—3—2-/2mv.)bo °, , " (2.20)
2m 1™ & e?N ‘
‘ ) e
With Ni being the tot;:\humgsf of 'ions. Equation (2.17)

s
gives the soltion for no pile up at the ends, and for this

solution to be valjd equation 44 must hold, that is

nﬁzzzR L : '
s = °° . 5 (2.21)
e? e
4 | . | ©

o

N

If this is not true, then the iontﬂistribution’ﬁunction is
given by equation (2.18)." Since A must be non-negdtive as

o .
required b,y the definition of a distribution funttion, we




2
must have
\ 3
nbézéR-
N. > ———_, : -{(2.22)
1 2
e
[ ] ) .
In general we do not wish to impose equation3(2.21).
. :
"a
‘h‘\\\\ From equations (2.17,18), the corresponding ion
surface charge densities are found to be
’
! eN, R
oi® (x) = 2L /%2,
1 2
m°Rz
, o
and, 2 )
2,2 .e°N, '
| ‘ o£°) (x) = 39_"‘_0.[(_2_: -1) - 2x2/f—1-x2. :
27eR nbozoR
d The schematic behaviour of these density functions are shown
in thec%ollowing figures.
ag
-3, z.
/ no pile up of ions. Y
/
. h
\ ’ . R o N
\ -20 . 2. /
! pile up of ions \
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3. tinearized Perturbation.

<

The time dependence of the solutions of equations
(2.7) and (2.8) can be obtained by d®ing an exercise in
mathematical merry-go—round wifh the aid of equations
(2.9-12). First of. all we“follon the tradition of water
bag users$9'13) by considering perturbations that distort

the contour of the water bag in fig. 4, and write the o

' perturbed distribution function as

£_=Co [U (viu=y_ (¥, £)) -U (vow-u, (x,¢)) ] (3.1)
where u, are the pertjurbations on the upperkvg>0) and

lower (v,<0)contour gf fig. 4. By defining a new quantity
T,;iym:nutwhieh is proportional to the perturbed kinetie
energy of the electrons, we obtain an equation for each of
the T,. Since they have the same form, we drop the’ sub-
scripts t, After taklnéTE%place transform, it can be solved

formally, in the sense that the rhs contains an unknown $£1),

\ ch can be expressed in terms of another unknown f(l)
4,,»/§:i;h can be expressed in terms of another unknown ¢(1)
which can be expressed in terms of the original T we.
started with, and by substituting in the reversed order we
obtain an inhomogeneous Fredholm equation of thebseconq&ind»in .
T. The head in each of the functionk denotes its Laplace

transform.

-

. 1 -

The linearized form of equation (2.7) for first

<y

order gquantities, oﬁtained by substitutigé equation (3.1)

’

h & |
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’

for fe and dropping the second order quantities, is

9 _ymu,, 15 (ymwu,) . ed ¢i(l) (x,t) (3.2)

ot zoax . zoax

where thegvariéble X is used instead of z, and we have
assumed that eac; of the perturbed quantities % e’ J4i,e
and f£; can be broken .into a sum oéﬁéquilibrium quantity
plus a first order perturbed term

gix,t) = g ) + ¢ (x,t).

By defining

2

T.(x,t) = zymwu;(x,t), ‘ . (3.3)
and

2 X dx' .

o wix') - Vz>0’ (3.4)

-1
$(x) = Y

' X ax h
¢o - ZOJ w(xl)' Vz<0'
-1

¢° = 2¢(1)I

-
i

oscillation period of the most energetic
electrons,

equation (3.2) can be transformed into

3 ar, _ a6l (e,
tg%t + g%i = 4e 136(¢ t).

Since each of these equations has the same form, we drop

I

the subscripts t, and write n

(1) ., ' .
.g%_ + .g% = ei?i.ﬁ_(_'ﬁ)' ' (3.5)

with the understanding that



Ty o 0<<d,/2
T(¢,t) ={
T- , $o/28¢<d,

®
»
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(3.6)

It can_be solved formally by the standard- Laplace transformn>

method .

T(¢,s)= e”5¢{

[
-

K

o gy TRV
J a9’ e3¢ T(¢,0) + J de’ e5? T(4’,0)

K eSto-1 ] - !l
1 4y ... 80f V) , ae{l)
+ - 53 J od¢'es¢ e : + J d¢‘es¢ e — = },
e "0-1 ¢ | 3y’ . o ~ 3¢’
- (3.7)

where the head denotes a Laplace.transformed function

-

é(y,s) = J ir e St gly,t), "
o\‘

(3.8)

T($,0) is the initial perturbation, and the continuity of

T at the ends, that is T(0,8)=T(¢,,s), is assumed. The

letter 'e' was used to mean both the basic unit of electronic

charge and the exponential symbol; their mean}ng can be

understpod from context.

-
The unknown Q{l)

on the rhs can be found in terms

of £{1) with the aid of equations (2.10) and (2.12). We

first change the integration variable of (2.12) into Hj

instead of P, by the ;elation szathi//a/M(Hi-eGéO’(i%)

(1) (1)
A1) ,p _ e ® (fij_ + fi.. )
ReQe(O) é*i 2/M(7Hi-e¢e. ( ))

where f(l)‘

Substituting this into equation (2.10), we get

| *, .

!

iy are perturbed distribution functiong for szg;\
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' \ A(,l) 2 (1)

. 2ez, 8R/z © (£, + £577)
¢£1)(*,S) - oJTldi log — & f Hy i+ i- '

"R 3 | %-%| 2/M (H;-e93°7 (£))

e@éO)(i)
(3.9)

We have assumed that the icns do not-éo over the ends :tz,

even in the perturbed state, hence, the x integral takes the
limits *1. If we define a new quantity 71, similar to ¢ of

the electrons by

1
~ X dx
. z, J

/2 /M (H;-e0l0) (%))
T =4 *o e (3.10)
Ix dx
Ty = Zo O
i, /2/M(Hi-e8.°) (%))

v, <0,
L 2z

= period of the ions of normalized extension [-x,,x,],
and take
" £(1)
A(l) _ fi+ ’ 0‘T<To/2'
£ =Y 21 : ¢ (3.11)
f{_) ' To/2€4T<T, :

5

then equation (3.9) can be written as

3{1)(xﬂs) = (2e/R)ITOdT/QHTax-e¢é9)(T))logaﬁ/fo
, A | -]
- 2(1)
) I dH to)\ ’
e¢é°)(x) 'lHi-eée ,(X))/ *

)

where_r=1(l,H?ax). “/Since this is the only occasion where

ok
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2
we have used 1 corresponding to the maximum energy, all

-

future reference to it shall be taken asT =T1(x,,H{).

Taking derivative with respect to ¢, and changing the order

of integration we get

38-(1) (ts,so) 2e © LT ” f.(l)('r,H-,s)
- = - sgn($)w(6)J aH }'odr -
3¢ Rz . x(¢)-x(7)
‘ Hpin © (3.12)
where

+1, 0<¢<d /27

sgnl¢) = { (3.13)
'lf ¢o/2‘¢<¢o (

CUIPI

/ .
and the bar in the T integral means Cauchy's Principal

- value.

While it is possible to solve the linearized form

if'

of'equg%ion,(z.a) formally as we did with that of equation
(2.7), the solution will lead to a very unpleasant integra-
tion in the }redholm kernel.whicq Wikl be developed.

To avoid this integration, we do not‘usé?f%place'transform
method here, but rather, we dqia Fourier expansion of E{l),

afid solve it in terms of its Fourier components. This

procedure immediatély raises two questions. The f;rst

being why not the other way round, that ng?xpand T and ‘
solve for f‘l)? And, second, why not treat them equally,
that is expand both in terms of Fourier seljes? fhe

answer 'to the former is easy, because by doi €9 we cannot
avoid.-the anticipated difficult integration in T. The |

. t * .
. answer to the latter is less obvious, but we will show in

.7




Appendix A that it is equivalent to the present method.

As will be seen in the appendix that there is no obvious
advantage of one methced over the other, the method we.

presented here just happens to be the first one we sttempted.

Let us return from our digression, and transform
the variables (x,P,,t) of equation (2.8) into (7,H;,t)
with the aid of equation (3.11) and the relation Hi=P§/2M

+e®é°)(x). In terms of (1,H;,t), equation (2.8) become

- ~

S . 3 3 3 5 3
+ (e—4>‘°)‘h)———- +—)E; - e—0(N— £, =0,
3t 31 BHi oT . oT BHi

that is,

3. Of, 3 | ' 3 _
—2 =2 4 e—(0{0 (1) - o (x, t))—£, =0,
st a1 31 | o,

%

-

where f, takes the same meaning as f{l) in equation (3.12).
Dropping the second order terms from the above equation, .

0

we get

26 (1) - g1, 4
i o4 _i -e—-o‘“(r,t)-——-fi(")(ﬂi)-

ot 3T ot € . aH;

D)

and its Laplace transform is . e

i £(D 38 (r,00a
sfl) 4 3 . f(l)('p,ﬁ 0) +e—2— @ (g
9 Ta R dHi
PR | S (3.15)

PO T

where fél)(T,Hi,O) is the -initial perturbation: Here we

‘depart ,from the method‘iollo@ed in soluing fo;}f, and




expand f;_ 1)

N EM e = [l Tof (my,e),  (3.16)

N==.

where Ty=T,/27m. It will be showr in the following section

that 1, is independent of H, (¢his is true for the present
class of solutions only; in qenéral, it is not necessary so.),

“and hence f n(H;i,8) contain all the Hj dependence of f(l)

f!l) can be easily obtained from equation (3. 15) by the
. orthoqonal;ty property of the ?ourler expansion ~"

3
a ]

P .
k]

R - 0 einT/TO ' -
f{l)(T,Hi,s) = Z I gfe-ln{/fo(f(llf 1,4,

T ir
n=-=1 (in/T,+s)

0)

(1) 3¢ (0)

2¢ df.

+ e 'e __A-__,) .
T dHl ,‘«

-

L9
1

-3
.The last of the unknowns in our merry-go-round

can be obtained by dlfferentlatlng the first order quantlty

’ ’ . R L] ‘
of equation (2.9) - o o’

BR/z .
¢él‘(x,t) = 2z, } ax c(]{) (£, t)log-——————- (3.18)

-0 x-‘x

and the charge density is given by equation (2.11), after

substituting fejx,Pz,t) from'e&ﬁation (3.1)

" , 2emyC, , en;ycO
- o_(x,t) = - wix) - (uy-u_ ). (3.19)
e " R R h

Q

The first term is recognized as the equilibrium charge

density, anmd the second is the first order perturbed density

-

¢

4
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which can be expréssed in terms of T+ defined in equation (3., 3)

-

eC

(1) \ - © '
O'e (x,t} = - -;2—; (T+ + T_). \ ;'

Substituting this into (3.18) and differentiating with

>

respect to 1T we get

s¢él). . 2eC_ | = 6, T(4,s)
—_ = — sgn(T)/Z/ﬁ(Hi-e¢év’(T)) J d¢p ———— , (3.20)
9T Rzo : x(1)~-x(9)

where sgn{t) denotes thg similar sign changes as its counter

‘part sgn(¢), e

+1, O<1<1t /2,
O v

sgn(t) =4.

-1, TO/2<T<TO ’
and we have used the Laplace transformed functions. The x
integration in (3.18) has been changed into ¢, ggsulting in

~ A f
T(¢,8) of equation (3.7) instead of T, in the numerator.

Finally we substfitute equation (3.20) into (3.17),
then the resulting expression into (3f12), and next the .
expression resulting from the previous operétion into (3.7),
aﬁd hence obtain tﬁe following inhomogeneous Fredholm equation

of the second kind 7

o 4

A ' ¢‘o w A ", . ’
T(¢,s) = I[T:f,1 + d¢ K(¢,¢,8)T(d,s), (3.21)
0 .

where the inhomogeneous term is given by
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" In(d,,s) I.(¢,,s)
cg(L)y _ o-s¢, T To'77 . £l ®or
I[Tlfi ] = e [ es¢o-l + IT(¢15) + SS¢O-1 + If(¢’rs)]l
(3.22)
with . i y e
¢ /
Ip(o,s) = [ °a¢ eS¢r(4,0), — (3.23)
5 _
N 2e2 ¢ ' , , oo T dT'
If(¢,s) = - J d¢'es¢sgn(¢)w(¢)J dHi{ 07_7_“____
Rz, 7, min 0 x(¢)=-x(1)
SO\ i

inT/:fo , .
by e \ TO /=1 r/ T ’
ar e PV Toe (1) (¢ 5,0y,

n=—o To(ln/10+s)O

(3.24)
and themkernel is N
T(dys b,8) y - _
© K(¢,8,s) = e”59 ° + J(¢,0,8) 1, (3.25)
e%%0_3
with -
‘ie“Co o ’ ) o dfj(_o)
3(6,8,8) = - [Tag es sgn(¢)W('$)J aH,
Rzzéé in dHi
I« g9,(®h_ (3}, (3.26)
- | < einr/fo
gn(¢) = J ST;'"'__—I (3.27)
o X($)-x(1) )
) 1 (1, emin®/Toggn (1) /Mg -e 0l (4))
hn(&) = - J dt — —
Tolin/Tg+s) ) X&g) - X(§)

(3.28)



4, The Fredholm Kernel.

> [

N

All the integrals in equation (3:26—28) are
rather straightféryard to evaluate, although some of the
intermediate steps are quite tedious. We wiil start from-
the integration of equations (3.27,28) first. Their inté:
gratea forms allow the double infinite sum in (3.26) to be
reduced to a single infinite sum. It ;s the: derivative of
the delta function in dfij)(Hi)/dHi that causges most of
the trouble in equation (3.26). After sorting .out the
various terms 4in the Hi integration the }emaining'gteps‘
involve only manipulation of trigonoﬁetric functions. -It
turns out that in simplifying the derivative with respect
to Hj, the odd and even térms reduce to different but

I3

similar forms. The derivation of the n=odd= (2p+1)th term

L

will be presented, and the result of the n=even term will

be quoted at the end of this section.

o
©“ ' .

s
As the integrals of (3.27,28) are in terms of T,

we have to find x (1) and sgn(r)/&/M(Hi-e¢é°)(T)) in terms
of 1 first. Since Hi;e¢é°)(xo)'for ions of normalized
extension F—xo,fo], we 6btéin (ﬁi-e¢é°5{x)) in terms of x
by equation (2.15)

¥ e2N

. _ e 2
Hi-e¢é°)(x) =

(xg-xz). (4.1)

7R

Y -3
/“/J Substituting this into equation (3.10) we gef
4 .

h d

i3
2

N, o +

30
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‘integrand can be converted into a standard airfoil equation

Lad ) . 3 1

; C ox(q) = -x gost/ T, ‘ 0<tety, (4.2)

b %o‘ =,zo ’ - , (4.3)
Fohem; :

The rhs of (403) .shows that T, is independent of Hi. This

is true the.present class of solutions only; in geﬂeral,
we expect T, to depend on Hi' It must be obsefved that
(4.2) applies to ;ll r in the interval [O,To], because
the cosine takes care of the sign changes. Substituting

(4.2) into {4.1l) we get

SN

sgn(w)yQ/M(H--e¢(°i(x)) =x.4z /3 )sid(T/fo), (4.4)
i"Cve 0%’ To

Y 4
Here again, the sign change is being.taken care of by the

. . ¢
sine. &

nr,

g T

Taking the expxession £SY x{¢) and sgn(r)/E/M(Hi-é¢éb3

ki

from equations (4.2) and (4.4), and substitut' into (3.28)

we get

" 24 " To i m
o) = - ' dt v
~ 2ntg(in/iy+s)g cos#/t,+x(§) /%,

. "/-0
e 10T Tosin{/1,

The integrand here is made up of the sum of an even and an
odd part about t,/2 of wﬁ}ch the odd part gives zero contri-

bution; hence for n>0,

iz,  2n sinnt.sint
M’: ) } dr, ‘ W 4
14in/z,+s8)] cost+¥($)/x,

o

>

®
where the interval has been normalized to [0,27]. The -
E) %

a
¢ b

(33

et
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9]
by the substitution of y=cost

", ) iZzo \(‘l VE'Y Un_l(Y)
h (¢) = dy ; '
ro(in/io+s)i1 y+4/x
izO %(&3

= - —— T (-

)I: (4.5)
(in+ts) ™ x,

. 4 . !
where T and U are the Tchebycheff polynomials of the first y,

and second kind. For -n<0, h_,(¢) can be obtained similarly

104, 1A

m iz x(¢)

¢ h (¢) = —2L— T (- ). (4.6) -
-n (—in+%os) X,

&} In the integration in g,(¢), the odd part vanishes

agégg: and the even part can be converted into the other

airfdil eqhationf§3) by the %oéﬁne substitution.

1, eV, - (To  cosnt/fT, i
} de~ " = (1/x,) dr- ) =
x+x,co81/ 1, " x/x +cost/%,
21, 1 i
= f ‘T (y)
X dy .
1T 1oy ks ty)
T, x4 - | /
=2y (-—), (4.7).
X, Xo

«

with n>0 and y=cost/%,. Since the even part comes from the

. cosine of the exponentigl function, for -n<0,

9. (9) = gn ().




Equations (4.5-7) afe valid for nqﬁ.- When néo,
both goland h, are zero. 1In the airfoil equations, the
'arguments of the Tchebycheff polynoﬁials must be less than
1. That is these equations are valid if |#/yx,|and [£/x|<L.
This condition is clearly not always satisﬁizé, as x and ¥
are .the normalized electron position coordinates, and can

be Iarger in magnitude than x,. To take account of all %

o and ¥ values we must replace the airfoil equations by the

set

.l dz T_(2) ( ¥ o(y)T,(y) (
—_— =T(U__q(y) - ————), « - (4.8a)
_I z-y Vi-z7 n-1

) /y 2_1
jl dz

vl- zEU {z) = -m(T ., (¥y) - o(y)fy!—lUn(y)), (4.8b)°
-1 2°Y ) .

with - et
_.l'. y <_l'

d(y).= 0, Ly < 1,

Al

S o +1, . |y >+1.

"\,

S

-~ - w
The second term on the rhs of equation (4.8a) is discontin-
/ .

uous at y=11l. If we use these equations instead of (4.5)
and (4.7), then after dozng the Hy integratlon we flnd
the second term in (4. Bb) gives zero- contrlbutlon, but
— the second term in (4 8a) blows up at the ends x=:1. A
remedy to this..problem is to aseﬁme the ions to 'slop
over' by a first order small qmouﬁt £ at both®ends. 1In
the eqdilibrium'%olution.this merely pushf%he 8 funption

in f{O)(HiS to the ende -l-¢, 1+E, In the present p%oblem,
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it has the effect of bringing x, -to 1+E instead of 1 after
integrating over H;. Since |x|<1+E, it é;ullséall the |
troubles causéd by the singular point y=1 in tﬁe second
term of equaﬁion‘(4.8a), and reduces its contribution to
’zéfo. Since £ is of the first order, its effect will not
bé felt'f; the subsequent analysié. :In what follows we
shail taﬁe {4.5) and (4.%) as they are,ewith the under-
standing that the above proceduré must be takeﬂ for a

Ll

rigorous treatment. &

Phe symmetry of g, and h  allows us to cé‘lﬁ?!e the

double infinite sum‘in equation (3.26) by the following

’ - [4
o . [ - B &
i EET) s
nz_m?n(¢’hn(¢’ = ngl(gnhn + g_ph i)y
ped 220“ ¢+ .
i Avrerara A L L (4.9)

n=1 n2+tos

where *

£ (8, 8) = (1o/x)Up_1 (-x(§) fx )T (-X($)/x). < (4.10)

{

Therefore, ’
de*Cy b - . , o ag () (u;)
J(6,8,8) =—— :] ad es"sgn(qa)w(é)I an, —% -
. i . ‘
® 2z.n | . 7
2 E (élé)t I
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Changing the order of integration and summation -
4e l'C o 2z .n ¢ '
D o} ’ ] [
J(,¢,s) = 2 fd¢ eS%sgn (¢)w(4)
R?z2 n=]1 n2+72g?2 .
o) 0
o df(o)(H )
J‘\dH E(o, ). (4.11)
ST . : i «
. HTln_
For the Hy integration~we need the derivative
©0f equation (2.18) )
affo) (my). . Lo
——— = AS§' (H]@X-H,) - BS(W@X-H.),
ah. - i i i
1 " - .
with the prime ih the delta function meaning d/dH;. Sub- >

; !
stituting this into the Hj integral, of the nth terﬂ@n (4.11),

~ 7

! dH; (AS' (H]@X-H;)-B§ (H]aX-H, Ve,

Hml n , ' .
- (Ad/dH; + B)an($;$)| (4.12)
H.=pnax
- : S
From equation (4.10), the derivative with respeét to H; is
; , - .4
d d L X 4 'T X d X
—&n = [— (-Un 1(--—))]T (-=)+-— Un 1(--—)-— T,(-—1].
dHy dHi Xq Xg - xo' X0 xo dH; . %o
(4.13)

Since x, 1€;ihe only Hy dependent factor, in €4 (¢ ¢), the
dertvatlves an be en with the aid of equation (4 1).

For the fir perm of the above equatlon, we have

<
|

a T X TRT X % X
- (""U (-_)) = =- (Un 1(_—) - _U. l(— ))r
dHi Xo Xq 2x0e "Ng Xo Xo Xo - g
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where the prime in the Tchebycheff polynomial mearis deri-
vative with respect to its afgument. From the identities
of Tchebycheff polynomial given in reférence 33, we can

transform the second factor into a linear sum of the U's.

Since this involves nothing but tedious algebraic manipu-

lations, we leave the detailed derivation in Appendix B.

»

%QF:n=odd;2p+l, p>0, the abové&*derivative can be reduced to -

w

d To X mRT %
——-(—-Uzp(——-)) = = ", [(2p+l)02p(-")
dHi Xq X4 2x e Ne ' X,
p-1 X
+ 2 ] (2i+1)U,, (== )1, (4.14)
i=0 X X .

where equation (B6) of Appendix B has been used, and for

"p=0, the summation convention of equation (B2) must be

taken.

- For the derivative in the second term of equation

(4.13) we have
d X R 4 4 g

— T (=) m——— ()T ().

24 2 -

_Again, we leave the evaluation of xTﬁ(x) in Appendix B,

and obtain the derivative for the n=(2p+1l)th term from

. equation (B9) as -
d if TR® o ! pil . X ,
— Topyq (~— )= ——— [(2p+1) ) Tp;,4q (=)
ang- P % 2xtenn, =1 23T

i




~
* X

+ (2pHLIT, ) (-0 | (4.15)

%o

¥
» - Collecting terms from (4.15), (4.14), (4.13) and

’ in i
substitutg'gnto (4.12) we get for n=odd=2p+l, p:0,

' max max
J dHl (A(S (Hi —Hi) ~B6 (Hi —Hi) ) £2p+1

gD |
. N ’ 27,
1 =‘[‘o(§2p+l)A-B)U2p(”X)T2P+1("'X)
- * 'A p_l . , »
+ [(izo(21+1)Uzi(-x))'r2p+l(—x)
i , Pl "
+(2p+l)Uzp(—x)i§1T2i+l(-x)], (4.16)
where . : <
./r\' 2 -
A = (TR/e’Ng)A, - (4.17)

and :at H;=HT?¥, xo,=1. Since the arguments of the Tche-
bycheff polynomials are —x(é) and -x($), we must find x in
terms of ¢. From equation (3.19) we see that w(x), the
equilibrjum electron velocity, is proportional to the '

equilibrium charge density, and from equation (2.14) we get
w(x) = (Ng/T22mYCqzo) Y1-x7.

o ‘ ) in .
Substituting this into (3.4) andtlntegrats,gwe obtain

' x($) = -cost/Fo,. . 0$4<d,, (4.18)
$o = m22mYCoz3/Ng, (4.19)
sgn($)w(e) = (zo/8,)8ind/By,  0€6<H,. (4.20)




b
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Substituting equation (4.18) into the arguments of the
Tchebycheff polynomials in‘*eguation (4.16) reduces it to
a sum and product of trigdnometric functions only

= v (axX_i Vo ax
J dH; (A§" (H]AX-H,) B@(H?q

min
Hy

Hi) Eap+1

siﬁ(2p+l)$/$o

= TO{((2p+1)RLB) cos(2p+l)$2$o

.. sind/ 3§, e
+AT( T (2i+1) - Jcos (2p+1) ¢/8
=0 sin¢/$,

sin(2p+1) §/F, p-1 L w .
; —( ] cos(2i+1)¢/§ )1},
sind/$, i=1 - ‘

+(2p+1)

© (4.21)

a

Each term on the rhs contaips a factor l/siq§/$o which

cancels the term sgﬁ(i)w($)=(zo/5o)siné/$o in the numeratér -

when we substitute the above equation into~equation- (4s11).

This cancellation reduces the evaluagioniof ] integ;al td
9 N “

the simple form of

L (ssinkd¢/P - (k/& )cosi¢/$ )
Jd¢ es¢sink¢/$o = $ges¢ - 2 2 o,
T (k2+32s?)

-

.

Substituting (4.20) and (4.21) into (4.11) and integrating

according to the above equation we get

L]

. ge'C, 1§ * . n , )
J{(¢,0¢,8) = o OaOz e (%(¢,$:S)-nn(0:$rs))
R? n=1 (n?+%3s?)"
} _ ) . (4.22)
where for n=odd=2p+l, pzo,- ) i

)
H
\a
’
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lep_i_l (¢I 513) = es ¢{(-(_2P+l)£l-3) sC (_({p-{-l) " qJ) cos (2p+l) ’6’/60

p—!l - - sit -
+K[( 7 (2i+1)§c((2i+l),¢))cos(2p+l)¢/$o
i=0
A . . T : " p-l .
L +(2p+1)sc ((2p+1),¢) (] cos(2i+1)§/F )1},
i=0
Y. ‘ c - (4.23)
with = - - - S
. ssink¢/6o-(k/6o)cosk¢/§o : .
sc(K,¢) = e A (4.24)
(k +§os‘ ) Co
and a similar expreséipn‘fdr the even n's. )
v e - ) i:' . - oL :‘
Due to the sum,
S .. P ® \ -
o IO 1) B
/ ) ( SO + J(¢r¢rs) )r
e ¢O—\]_\‘ o

E I

- -

“in eq%?tion (3.25), a great deéi‘of ;implificat;on can bé\
.achieved in the final form of the kernel. We illustrate .
this by considering a rqpresentativ§ term in each af the
nni¢,$,s)-nn(0,$}s) in equation (4,22). Since ¢ stays
u;changed'in tﬁe’two terms of the above Sum, we want to

_consider sums of the form

es¢os?(k,¢ﬂ)—sc}k,0$

[ + (e3%sc(k, $)-sc(k,0)) 1.

es?o—l

-,

From the definition of sg¢(k,¢)} in equation (4.24) we see .

that sc(k,$¢)=sc(k,0); and the above sum is contracted into

———
8



eS%c(k, ¢).

1\-

“
A

With this simplification in mind, the ébmpletely integrated

form of the Fredholm kernel is then

| ) i |
K($,8,8) = [ ———— ¢ (¢,8,s), (4.25)

n=1l n(n?+72s?)
where for n=odd=2p+l, p30,

c2p+1(¢ ,$,5) = ((2p+1) e-1)sc((2p+1),¢)cos (2p+1) §/3F,

p-1
+e[( ] (2i+1)sc((2i+1),¢))cos (2p+1) $/§,
i=0
-1
1 +(2p+1)sc((2p+1),¢)( Z cos(21+1)$/$ ).
o i=0
o “ . ’ (4 26)

In this final expression we’ have collected the constants
from 'W.22), (4.23), (4.17), (2.19) and (2.20), with one

of them being

L) 4
. 8e CoroiﬁoX 8e'C,1,9, TR

= - = oA ’ '
R? JRZ O e’Ng
" ‘ 2, 2
- 8e"C,Tod, 7R _E_F C R/ vb o , e.ﬁi__l)
R L ey 2 M e  mhiz2R’
) e?N - :
mblz 2
. \
and the other
8e"C 106 Beézoro 1[b C RVZmy mb? 7R
, e TJ g T
R R . 2 e“Ng

"
[
~
3

1
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- -

where equations (4.3) and (4.19) for the periods of the ions

and electrons and the expression for N, following equation

v

(2.16) had been used in the simplificatien. The symbol ¢

>
in .equation (4.2¢) is short for

\ 2
- e°N,
\ i

- ) e = (——~-1). (4.27)

2,2
nbozoR.

Since the derivation for n=even=2p+2 is exactly
sjmilar to the foregoing, we will omit it and just write

down the final form of C2p+2 for p>0,

Czp+£(¢i$38)=((2p+2)e—l)sc((2p+2)’¢)COS(2P+2)$750
p-1

)’ ' F7
+el ( § (2i+2)sc((2i+2),¢))cos (2p+2)§/F,
i=0

+(2p+2)sc ((2p+2) ,4) ( % cosZi$/6o -'1/2)].
. i=0
(4.28)

The ¢ of -equation (4.27) was called € in reference 27; and
e=0 corresponds to equatioﬁ (2.21) which is the condition of
no pile‘up of ions at the ends tz while €>0 corresponds

to equation (2.22) which is the condition of pile up’ of

jons*at ‘the-ends. - . /o




o

5. Stability Analysis.

)

a There are standard methods in solving general

Fredholm equations$34) but the aciual solution of a parti-

cular problem is possible only if one is lucky enough to

}

have a simple kernel. In the present case, the kernel as

shown in equations (4.25-28) is degenerate which means the

for a
standard solution degenerate kernel is applicable here.

But, it is also made up of an infinite sum with no obvious
diminishing in the magnitudewof the coefficients. This
means that we have to deal with sum 0f n x n determinants,
with n going to infinity, which is no; easy to handle in
general). However the difficult task of solving this

equation‘can be avoided by making two simqlifying observations.

o
) AN

™

First of all we rewrite the Fredholm (3.21) and

its kernel aé given by equations (4.25-28) for ease Sf

reference ) »
~ ¢O " ) ~ .
T(¢,5) = I[T;fi] + J dé K(¢I¢IS)T(¢IS)I (5-1)
: 0
with - ! }
w ® r‘l " ’ B /
K(¢'¢'S) = z Cn(¢l¢ls)l . ¢ - &

n=1 ﬂ(n2+fész)

for n=2p+1, p30,

42 - 4
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a

Cap+1 (9r $rs)=((2p+1) e—l){?c ((2p+1), ¢)cos (2p+1) §/ 5,

p=l "
tel( ] (2i+1)sc((2i+1),¢))cos (2p+1) 4/5,
i=0

t

p_l L 3 ]
+(2p+1)sc((2p+1), ¢) ( ) cos(2i+1)&/$o)]:
i=0

for n=2p+2, p>0, N

) N .
C2p+2 (80 §:5)=((2p+2) e-1)sc ((2p+2) , $) cos (2p+2) B/

p-1
+el( ] (2i+2)sc((2i+2),9))cos (2p+2) §/ 5.
i=0 A
. +(2p+2)sc((2p+2),¢)(.§ cosZi%/@o - 1/25].‘

i=0

*

We notice that § comes into the kernel through a cosine only.
When these cosines get integrated over the interval [0,¢O]
with f($,s) we get the cosine coefficiegts of the Fourier
expansion of T over the saié intervai, and no more §
dependence on the rhs of equation (5.1). Thus, if we

write the ktB cosine coefficient of T as

Cy (s) = °d¢ cosk¢/¢of(¢,s), (5.2)

O e,
-

" equation (5.1) is then

A » n .

T(¢,8) = I[T,£;) + ] ——m——— 3 (4,8), (5.3)

oM m(n2+73g%) " '
<

where for n=2p+l, p20,

-



Lo

3ppa1 (9:8)=((2p+1) e-1)sc ((2p+1) , $)Cppy ) (5)

bl

=1
rel( 2’(31+1>sc((21+1),¢))c +l(s)
i=
+(2p+1)sc ((2p+1) , ¢) ( go 2341 (811, | (5.4)

and for n=2p+2, p>0,

j2p+2 (CP,S): ( (2p+2) e-l)sc( (;2p+2) r ¢).C
Y

2p+2(8) o

pzl h
+&TT ] (2i+2)sc((2i+2),¢))C

(s)
. i=0 . 2p+2

+{2p+2)sc((2p+2),¢) ( % C2 (s), - 1/2C,(s))].
1— -
(5.5)
Each®* element in the sum on the rhs of (5.3) consists of

terms proportional to

sink¢/¢?ci(s), coskd/d,Cy (s),

which means that by integrating (cosk4¢/$,) x (5.3) over
[0,¢,] we pick up only the coefficients of cosk¢/%, on the
right, and‘get Ck(s) on the Jdeft. By doing this for all

k=1,2,3,... we get two uncoupled systemsof linear equations
o N 5
in the odd and even cosine coefficients of FT. It turns
&

out that. the two systems are exactly equivalent in form,
we will considey the odd system for illust?ation purpose,
and quote the results from the even system when necessary.

-

Hence, for the odd system we have

[
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]
£ [ ol (12 f1e-1) 3.1%¢ 5.1%¢ ( #
C = I - + c
1 1 J T 1
g ulvl UBVl usvl
- 33¢ 32(3e-1) 5.32¢
C3 I3 L Cj .
‘UBV3 u3v3 u5v3
o
- 53¢ 53¢ 52(5¢-1)
CS IS u.v u_v ua_v CS
5°5 v 55 5°5
F *
B (5.6)°

where Igp+l came from integrating gge inhomogeneous term
. 3 e

over [O,&o], and

u = k? + ?;sz, — S (5.7)

vie = k% + §is?. (5.8)

Q

Th? dié@onal elements in the above matrix were obtained
from the (2p+1l)th terms inf%he sum of (5.3). Each one of
‘them came from integrating the first term in (5.4) over

[Or‘po]r ’ .

- >

(2p+1) ((2p+1) e-1)

A ‘
["°as sc((zp+1), ¢)cos (2p+1) /7,

ke

LEPI ) o
(2p+1) 2((2p+1) e-1) ¢, .
= - . J d¢ cos?(2p+1)¢/F,, : ”
, T8oUspe1V2p+l o

2
|

(2p+1) 2 ((2p+1)e-1)-

Y2p+1V2p+1




Y
L@ a

The (2p+1l)th below row elements came from the same (2p+l)th

 term in the sum of (5.3). They were obtained by iﬁtegratinq

[}

* the third term in (5.4)

(2p+1) %€ (9q - (2ptl) e
—————| d¢ sc((2pHl),p)cos (2p+1)¢/F = - ————.
o Tptl 0 ‘ Bop+1V2p+

) : ed
And, finally, the above diagonal elements werepickaup by
cos (2p+1) /T, from the (a+l)th, @>p, term in the sum of

(5.3)

[N

(2g+l)e gq-1 ¢, ¢
_ (2i+1)j, a4 sc((2i+1),4)cos (2p+1) ¢/,

vu2q+l i=0 o N

(2q+1) (2p+1) *e ¢,

W M8oUog+1V2p+lo
(2g+1) (2p+1) %¢

d¢ cosz(£§}1)¢/5o

U2g+1V2p+l
L

.

!

The Fourier sine coefficients of f%¢,s),

<&

; be A s '
s, (s) = J ap T (g,sTsinke/F,, (5.9)
. ) | ,

are readily obtained from the .cosine coefficients. Por, if
. ‘ .: ‘- N

we integrate (gin12p+l)§/¢é) X (5.3)_ovér E0;¢O], we get




P ‘
s (2p+l) e p-1 .
Sop+1(8)= Iope1 ¥ 88,1 = .§0C21+1‘S)
o Uzp+1V2p+1 10 .
(2p+1) ((2p+1) e-1)
- - . C2p+1 (s)
Uzp+1V2p+1 : N
(2p+l)e =  (2i+1)

—C .
. _ . 2141
Vop+l 1TPHL Upi4

+

+ (s)1,

which is'just_a sum of the Fourier cosine coefficients and
the inhomogeneous term. °‘Hence, if we can'soLve the system
(5.6) and a similar system in the even cosine coefficients,

. A
we know all about T in terms of its Fourier components.

Solving lifear equations is always easier than
- that of Fredholm equations. " Howev@r we do not even have
to do this easier problem. Because, as was observed by
<. L . ." '\.

Ehrman {12) ‘the quantity of direct physical interest is not

f(¢,s)abut i}&its inverse baplace trahsform

17 atie
I ds e3tT(4,s),

R T(¢,t) =

, ,ZM.WEW

4 N , ®

where the iﬂtegrgl runs parallel to the iﬁaginary axis, and
a30 .is large énough.sohthat no singularity of.f(¢4s) has
realfpart greatér than a. " In applying thisg ihversion
‘formulaﬁfor t30, we have’tp &isplace thg contour leftQérds,
indenting it so as €b capture any sipgularities of §(¢is).

. If théy ére all poles, then T(¢,t{'will be a sum of'terms

' ) L3
proportional to~exp(skt), where sj,s85,... are the poles of.




T(4,s).

/

zero, then our system is unstable; if otherwise, it is

stable.

48

If there is an skrwith a‘real part greater than

/

Since a}l the informations,of f(¢,s) is - contained

in its Fourier sine and.cosine coefficdients, all we have

to do is to consider the.singularities of these quantities.

From equationsy (5.10), the singularitieé of the sine

coefficients ar® those of the cosine coefficients and the

eigenfrequencies

Since the cosine coefficients

0.

”

(5.11)
(5.12)

are obtained by solving the

linear system (5.6) and a similar system for the even

coefficients, their singularities are the zeros of the

determinant of the coeffieients,’which is given by
=4 -

<5

(1+

12(le-1)

Wvi

33¢

u3Vvsy

3.3 %
hic)b 1

(1+
u3vi

5%

B

32(3e-1

)
)

5.12%¢ - 7.12%¢
UgVy usvy
§.3% 7.3%
. UgVg uqvi
52(5¢e-1). #.52¢ ’
(14 ——)  — .. .
“5Z§ ot M0 :
7% 72(7e-1)
(1+——————) ...
u7v7 u7v7
‘ -
- (5 ul3)

)
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and a similar one for the even system.
<
We consider the easy case first, that is when
equation (2.21) holds, and from .equation (4.27) this is
the case when e=0. The determinant in (5.13) is then
just an infinite product
® n?
n (1- ),
n=1 u v ;
where we have included factors from the even coefficients
also. The zeros of this infinite product is just the
zeros of each factor
(upvp- n?) =0,
From equation (5.7,8), this is ’
(n%+T2s?) (n?+32s?) - n® =0,
OI'; ’ »
. n? 1 1 1 1 4 1
s? = ———[(15+-:).i g—;+-;az-:;L;(1-—;)1. (5.14) "
2 T, 9%, To 8o Todo 1) '
Since we require Re(s)<0 for stability, the only way for
(5.14) to satisfy this condition is to have s? real and
negative, so that Re(s)=0. JTranslating,this,requirement ’

into (5.14) we want the discriminant to lie in between

, . . . J
the limits ‘

N

£y
'

o

-




A

11 4 1 1 1,
0 s (—+=—)? - (1-—) ¢ (=+—)2.

=2 2 =222 2 =2 2
T, | T n
0 §() oéo TO 5O

»
The left hand inequality guarantees the radical is real,

and the right hand one guarantees the square bracket in

’(5.14) is positive., To ?ee that both of these inequalities

are satisfied is triv or the left hand one, we

rewrite the discriminant as

¢

11, 4

e L
o % Toon®

which is positive for all n. For the right hand one, we

rewrite the inequality as

4 1
-—(1 -—) < 0.
-2r2 2
1060 n
This is always satigfied as the factor \

(1 - 1/n2) 3 0,

for all n>0. Hence for fhe case when equation (2.21)
holds our system is always stable.
et - ) . - ] . '

For the case when equation (2.22) holds, we have ¥

’ / 1]
>0, and all the elements in (5.13) must be reckoned with.

"A necessary and sufficient condition for an infinite linear o

system of equations to have a solution. was given by Bocher

and Brand{35) but its application requires a known inhomo-




geneous term 4n equation (5.6). We assume that for physi-

cally possible perturbations a solution does exist, and
can be found by the method of reduction. That is we

truncate. (5.6) at a finite N ,nd form determinants
by = determinant of coefficients of Cy s

Aék) = determinant formed from AN with the kth column

replaced by the inhomogeneous term.

| .

By taking suéceeding larger N's, if both of them tend to a

limit

1im ) A
N+ B :

lim A}gk) = 2,

Noow . L "

]
(e

the solution is given by

_ aK) ’ ~
Ck = A ./A.

Since we are only interegsted in the zeros of A, we will

apply the method of reduction to (5.13) only.

’
°

. -
For the purpose of numenieal calculation which

" we will be using, we apply the usyal rules in finite

determinants to transform (5.13f into . >




4 y " . ’ :
1 8.3_8.5 € d1 Uy uy u, REE (5.15)
U1V1D§V3H§V5 1 ° djuy u3/3 uy/3 cen
1 : u3/3 d5u5 u5/5 e -
1 u3/3 u5/5 d.,u7 .o e
] "
where
. =» .
=" 20y s . .
dk = ‘ukvk + k*(ke-1))/k¢C. N ‘ (5.16)

There -are three parameters, fg, 53 and € in (5.15), and

- »
they can be reduced to two if we define

We can now proceed to find the zeros of (5.15) in the

complex r?-plane for parameters €, y>0.:

-

Truncating the infinite determinant in (5.15)
at N=3, 5,...,2n-1,... we get determinants of order
213,4,...;n+1,.;. Expanding these truncated detérminants
in the usual manner we obtéin polynomials of degree ‘
5,8,11,...,3n+2,... in.r?. For ekamplé,-truncating at N=3-
we get d1d3u3-ul,.a polyncmial of degree 5 in r?. Of the
two terms in thisypolynomial, tﬁe first is 4 degrees

higher than the second one. This is true for all higher

orders of truncation , that is the term consisting of the
]



b

4

4
Lo

the product of thg diagonal elements in (5.15) is of 4-

degrees higher than the rest. It would be nice if we could

take the diagonal product as an approximation for our

_ determinant. Unfortunately it is the roots that we are

lookiﬁg for, and tﬁey can depend quite sensitively on the

" lower order terms. However, after detailed numerical

calculation we find that in the region.we are most interested
in, the roots from the diagonal product agree quité well

with those of the full determinant; and where they disagree.

" the diagonal roots servg as an indicator as to the pehaviour of

n., the roots of the full determinén;s,would behave as
, - ~ 4 o
higher orders of truncation are taken.

-

Y Because.of their importance as an indicator, we
take a look’ at the rdots of the diagonal product,
- . 2 ° i - .

dl(d3u3)ld5u5).f. fif;f} “They are the eigehfrequeﬁcieé
J - ,

sfé-kz/fé;Aand the f?éts of dk' k=odd. .Siﬁce each of the.

. d's is a-quadratic in r?, the roots for r? are easily

found to be .
r. = -(k?/2) [(1+y)-/D, (e,¥) 1, . (5.17)
rpe = = {k?/2) [ (L+y)+v/Dy (e,y) 1, (5.18)
i’u .
where »
’ ~ke-1
D, (€,y) = (1+y) 2-4y (1+ ), (5.19)
k2

/

4

and the subscripts k1, ks stand for the algebraic larger



"c)and smaller roots whenever they real. The. region of :

- 'S
. .- 1s of .course bounded by the curve Dy (¢,y)=0. For each k

-

It has the form shown in fig. 5 below.

.this curve they are real. A detailed plot for k=1,3,5,7

- are numerical plots, and are placed at the end of this
7 -

¥4

1

parameter space (€,y) where rki také non-real values

we solve for g, : B ' .
_ L3

. ’ o s ’

.« . ‘ (l_y/z 1 ’ ' ’ v o _
T eT= Kk +—, S ‘ (5.20)

N

¢

y ~

A &

€
. fig. 5 Region of (¢,y) plane where d, has non-
real roots in r°.

Since we are qnly interested in the positive values of &

and y, the plot only spowsthis parévof D,=0. The hatched
region to the righé of the curve has D <0, and hencé gives
rise to ﬁon-ze;o imaéinary'part to, Iy1,s" To the left of

A

and 9 is shown in fig. 6 (From this number on, all figures




e
wr

section). There, the D) curves displayed,a tendency to
approaches the line y=1 as k increases. This can be
seen analytically by calculating the width of each Dy
curve at e=e;(eo?l, to inc;ude‘all the curves D, =0).
Setting £=¢, in equation (5.20) we‘get

- - o * -

1 1 1 1
\ (width of D, curve at e=e,)=4[—(e -=)+— (¢ -—) 2]k,
. . k °k k2 Ok
. -
which is a decreasing function of k for k»>1, so>l.5(Thié
value is obtained from fig. 6, rather than considering the
derivative of the above equation). The tip of each Dy
curve lies on t line y=1, and approaches the y axis as
1/k, as/;an/ e seen from the same equation (5.20) by putting
£
y=1. °

i

We also find it useful to sh%r graphically the

«

variation of the roots Iyl s with reqpect'to y for fixed
‘ 14 .

values of €. This is shown in~fig. 7 for k=5. It is /\
\\\\\\‘_ﬁ?bseryed that when 0<e<l/k(=.2 for the present cife), ryl,s

are real; when e>1/k, they are complex('complex' shall be

taken to mean 'having a non-zero imagipary gart') for a ‘ﬁ.

? certain range in the neiqhborhﬂbd of y=1; and for all >0,

Re(rkl S)<0. since € must be positive fig. 7 shows that
[4 .

all values of Re(rkl g) are bounded by the curves with e=0.
’ .

This is shown in fig. 8, for k=1,3,5,7 and 9.

-




Let us now consider the roots of the full deter-
minants. Numerical cglculaticns show that starting from
the 5 roots for r? at N=3, each higher order of truncation
contains all the roots of the ézpce ding one, and brings

in three more roots. Table 1 shows the roots for each

- e’
order cf truncation/gigg;gfi.ZS and y=.3.
3 5 7 9
-.37 -.36 -.36 -.36
-.88 -.89 - 489 -.89
-4.47 -3.92 -1!%6 -3.84
-7.12 -7.68 ~-7.69 -7.69
-9.15 -9.15 -9.15 -9.15
) -10.52 -9.45 -9,33
-21.26 | -20.68 -18.75
+i2.28 | ~21.19
-25.71 -25.71 -25,71
-32.57
-43.22 -41,98
@ -%0.51 -5@.51
-73.02
-83.51

. Table 1. Roots of determinants truncated
,at N=3,5,7 and 9. The 7th and
8th roots of N=7 are complex,

-
A}

The roots in most of the rows show a clear trend of
7. convergence as hjgher orders of truncation are taken. The

.éeal parts of all roots of r? are negative.

If we order the rcots according to the size of

<
their real parts, then there appear to be sonw!fégular
pattern in the region y<l. It should be noted that, since
the polynomials we are dealing with have real coefficients,

complex roots appear as pairs of complex conjugates only.
» :

The ordering within each pair of conjugates is not important,

N




Sy
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the&essential thing is to have them placed in the jth

and (j+l)th position as their real part dictates.

»

This method of ordering delineates the complex

roots in this region into two groups. Roughly speaking,

AN

the distinction between them lies in the complexity of

A

the diagonal roots. JIn the first group the complex rogots.

can be considered as approximate values of the diagonal

Joots which are complex; whereas, in group 2, the diagonal
roots are actually real. There are exceptions to the rules
]ust stated for ¢ suff1c1ently r1arge, but we shall give

better methods of deflnlng these two groups ih what follows.

®

' .
L} . (13

The group 1 complex roots &dre showf in fig. 9a,
b, ¢ and @ for determinants truncated at N=3,5,7 and 9

respectively. fhe curves shown in theseg figures mark off

P

{e,y) values where the Jth and (3+1)th roots are complex,

that is, any point to the left of the (j,J+1) curve has
real jth and (j+1)throots; if,o;ﬁbrwiseh-they are complex.
These flgurei show ‘that startlng from N*3 .with only (1,2)

L4

and (3,4) curves, one new curve is added onta the previous

"X . . ° .
one for each higher order of truncation, and that the region .

defined by any (j,j+l) curve do not differ by an appre-
ciable amount in.the fegion y<l, ° .

»
v

Comparing the y<l part of fig. Gf%ith that of

i;g.l9d for the case of N=9, it was observed that the Dy’
- x -

«
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curves match closely with the (j,j+1l) curves. Thus, we

L
«can ideﬁiify the complex roots from dq of the diagonal as

o the 'source' of the (1,2) complex pair in the full deter-

N

minant. Likewise, the complex foots for d5, dg, d?_and dg
of the c’;iagona‘l can be identified as iﬁ:h-e "source\c';f the
(3,4), (6,7), (9,10) and (12,13) pairs in the full deter-
minant. A comparison of the diagoéal roots and the roots
of the full determinant for the following values of (e,y)
in table 2 shows that thé aingnal roots are quite good an

.
approximation here.

roots of the determinant truncated at N=9,

14

e=1. y=.6 e=.6 . y=.8 =4 y=1.
=9 diag =9 Aiag N=9 ’diéé
~.52 | -.60| =-.30| ‘-.32| -.21| -.22 ( '
-1.00 | -1.00 | -1.45 | -1.47 | -1.75 1,77
-6.89 | -7.20 1 -7.80 | -8.10 | -8.57 | -9.00 E
+12.59| %i2.75| +i2.23| #i2.23| +31.50| .*il.34
-9.28 |--9.00 | -9.34 | -9.00 | -9.65 |. -9.00 °
-19.26 | -20.00 | =21.64 | -22,50 |-23,91 |-25.00
+15.76| *i5.92| *i6.02| #i5.81| *i5.32| #i5.00
-26.35 | -25.00 |-26.45 |-25.00 | -26.87 [£25.00
~38.37 | -39.20 |-42.66 | -44.10 | -46.97 |-49.00
£i8.85| +18.96| £i10.68| £i10.07) £i10.07| *19.39
-51.92 | -49.00 |-52.12 49,00 |-52.93 |-49.00"
-62.00 | -64.80 |-70.44 | -72.904-77.99 |-81.00
+116.49] #i11.24| +i17.95| +i14.82| #i16.71| +i14.51
-85.90 | -81.00 |-86.26 | -81.00 -81.70 |-81.00
Table 2. Comparison of the diagonal roots and the t
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a

Since-thié group cf conplex roots ijis due to the
fact that the-diagonal roots are complex, then from what
was said on the diagonal rdd%s, we expect that as higher
orders "of truncation are taken, the full determinant will
have complex roots right up to e=0 at y=1. On the other
hand, the lowest y value in theoregion e>l where group 1
complex roots can appear is defined bf the (1,2) curve, as

.all other curves obtained from the higher orders of trunca-

tion lie above it.

~

The roots given in the above tabfg are actually

in the complex plane r?=T2s?, therefore the growth rate

. is obtained by taking the imaginary part of the sguare root

c¢f each unstable mode and divide by 7T

of that-is,

]

—~

° growth rate = Re/fés?7fb.
Since fo and ¢, are the characteristic times here we want

to compare the growth ratg with one‘of these periods.

L%

I hce T, is the sho;téf period in this region y<l, we
AN ; L
compare the growth rate with t1,. That is we want the

ré&tio
(growth ;z:{:lte)"1 1 .

p = ¥ =
2,2
To : 2T ReVT (S

. (5.21)

7 . C oL, .
and consider the unstghble mode to, harmless if p>10. Thig
ratio is calculated for all;the unstable modes in table 2,

1 - p -
and listed in the following table.

.
it !




!

.33 41 .63

'.25' .?? . .30
.?ﬂ » 7,20 .22 -
. I5

‘ 15 17 LY

: : ] Table 3. p of the unstable *

: - N modes in table 2. if :
-Clearly: none of these modes is‘tolerab;e. Furthermore,

for a fixed y, the groﬁth rate in this group increases 3gs

¢ increases, hence, this-'region must be avoided.

~ -

<.

If we look at the- a$¥mptote as e>='of the lower
o~ A 3 y
branch of each curve ‘in fig. 6 and 9 more closely, we find
‘ i ¥
that the dj j+1) curves are squeezed together as compared

with those of the Dk=0 curves. In fact ﬁf the Dk curves

- o

were continued on, each one of them would approach‘the
. axis as k?/4(ke-1). However, for the "(§,j+1) curves they

become parallel to the e axis at some flnlte Yy values

4

above it. Below these ‘curves, this ‘group of complex pairs

. give ﬁay.to the group 3 complex pai?é we had mentioned o -~
. . - - .-‘ R ; > 1, .

., before. ' o e ¢ ‘ O
\ - ‘ :

. r Y ‘ '
. ' ’L This second groﬁp ie'shoen ﬂn fig. 10a, b, c and
| d. As in the previou§ case, any higher o}aer of trunoation
contalns all the complex pairs of itsg predecessors whlle
addiny some new ones of its own. We have chosen the_cut

{ f ’

. off of the curves at e=2 for clarity of presenta

.- - .the curves in fig.,10d were to continue-beyond e=2,\they ’
» ¢ ) - - he ‘, N\ ) ‘

: 'WQuld(;tiss—cross'each other making—identiffegtioq,pf"the

2~
»

- . PR
‘. ) .
i} . . - a *
. .
. f .
o -
. .




boundary of each complex pair very difficult. On the

other hand, the trend as how each curve wil]l go begond
- €=2 is clear: they will all touch the” ¢ axis at some large
values-of e¢. This is shown for the (2;3% curve of N=3 o
at ghe upper right of fig. 10a. ‘
%le ? a2 Pl ¥ -
7th & 8th roots, *?:‘ 71 & T S ‘
1 € |7 of the fmll det.// of the alag r
& 7th . 81“:1'1 ryy, rsg
.05 | -21.99 ~24.98 | -21.99 -25.61 |,
.10 -22.29 -24.91 -22.729 -25.41
+15 -22.60 -24.76 -22.58 -25.21
.20 -22.92 -24.54 -22.89 -25.00
- .25 | -23.30 -24.24 -23.19 -24.78
L .« 30 "=-23.81 i.31 1 -23.51 -24.56
: .35 -23.84 *i,53 -23.84 -24.33
.40 + -23.86" ti.57 1 -24.17 -24.09
.45 -23.89 *i.45 -24.52 % -23.83
= .50 -23.63 .=24.19 -24.88, -23.57
.55 -23.19 -24.67 -25.24 ~23.29¢
. .60 -22.85 -25.04 ~25.63 -23.00
.65 —22.52 -25.52 -26.02 - ' -22.69

) Table 4. A comparison of the 7th and 8th °
’ roots of the determinant truncated
at N=9 to ry; and rSs of the
diagonal roots

Y -
A .

L4

In order to understand the beha@1our of Epls

group, we compare the 7th and 8th roets of the determlnant

tr&hégtad—af“N-9 w1th the roots r+y and Teg of the dlagonaba -

-

for y- 46 and t as specified in: table 4, We observe that
; rsy starts out at a valué less negative than r53, then it
;f becomes 1ncrea51ng1y ﬂhgatlve while r5$ goes the other way

.« a

as € 1ncreases, soO that flnally one passes the other ats some

Aso,l 35<e < 40 In‘the full determlnant the 6th ag? 8th




- B
'

" roots start out with approximately the values of r and

. 71
' rgg when €<e, and when they gré&ﬁot close to each other.

3

' 1
Near €, !r7l-nss|sl, the'relativeiémaller values of the

off diagonal terms in thé full determinané are big enough

-

to push this neighbbring pair of roots away from the real

axis. When e>e, the diagonal.roots are far apart, and
"the corresponding roots of the full determinant are fgml

&

again. ' v

s

S -
a. when rqy (r31,rls) (2,3) 1.5 08 -
ng;takes -
st, k<3. . .
b. when rg; | (r5y,rig) (4,5) .2 .36 2.24
overtakes (r51/,rpg) -—- 3.3 .02 B
rrgs k<5, ) ’
ﬁ (7,8)
¢. when r (r reao 7 .1 .52 83
! 71 1 ’
overtakes (r;1'rgz) (5,6) .2 .16 9.
* Trgr k<7. (r71,rls) --- (>5.) .| =-- -—-
d. when r (rq+.r+.), | (10,11) .1 J62 .37
9 11 ’7 ’ ’
overtakes d (rgl,rsz) (8,9) .2 .30 1.60
g, k<9. (rgl,r3s) (6,7) .7 | .10 | 20.
> : (r9l’rls) ¢ === (>5.) —~- v -—-

///?égle 5. Group 2 complex pairs in the region y<l. The
values of the rightmost three columns are all
¢ obtained from the determinant truncated at
N=9. 1In the typewriter used for the above
‘table, both the letter 'l' and the number '1'
are from the same key, but one should be able
to distinguish them from context.
* TJ , ¢
= | 4

N By doing(tlte same thing with the other pairs in
SN .

this group, we find that they follow the similar pattern as
" the (7,8) pair. Depending on which two of the diagonal

roots are passing each other th?‘cqmplex pairs’'in this group

R )

~

N
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can be divided into the subgroups shown in table 5. Hence,
if it is possible to locaEé all téé places where a r;, root
overtakes a rjs(i>j) root as e -increases, we can account
for all the complex pairs of this group. This can be done
Aby looiing at fig. 8. T;e region bounded by r;,, rjs(a=0,
i>j) curves and the vertical axis is where overtaking of '
-one.root by the other is possible. The correspondence of
this region to the grdup 2 complex pairs in the full deter-
minant is further confirmed by the fact that the y values
of each intersection id.fig. 8 are approximately the y
values in fig. 104 where their corresponding complex pairs
séart. The latter is given by the 5th column in table 5.
The®slight discrepancy is consistent in these two sets of

y values,[in that those y values of column 5 in ‘t#ble 5

are a little less than that of fig. 8. If we look at the
imaginary parts of the roots in any of the’subgroups,c;e
find that they increase as y deereases. It is possible
<:that 4g§;gb the limitation on the accuracy of qp;)computer
program we gRight have missed some of the vefy small complex
parts. . However this is not going to affect ou; main
aréument, because the program used can pick up complex ;
parts as small as 10~ ? in r?, which, depending on the size

of the real bart of r?, give rise to-a.g of the order at

least 10°. We can neglect these modes. ’

i

1

€; of column 4 is the €'value when a complex pair
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first occur. We have tried to find the complex pairs cause
by the crdssing of (rg;.ryg) and (rgy,ry.) up to ETS" but
" have not been able to do so. We may have missed%hg? they
may have started at beyond €=5. In any case their non-
appearance do not affect our argument,’because it will~b9
shown later that if they do exist at all they must have

A~ Y

very, small grov&th rates. The £y values of' tolumn 4 are

»
.

obtained froﬁvfig. 10d. We see that within each subgroup
e; of each pair moves to the right as we go down the sub-
group. This means-that if higher orders of truncation are
taken, the new complex pairs they contribute Qill start
from either higher y or e values, leaving the patch y<.1,
£<.g stable.

-~ - -

[}

- . .

If we look at column 6 iﬁ taﬂle’S, we can be more
optimistic in choosing the stable patch. For, hé®e we ha;e
calculated pp, the p for maximum obserwved growth rate for
each cémplex pair with' €<l. As we go down each of éhe
subgroup ¢ and d, py increasés. The last observed pp in
d is élready 20,'which can be considered hgfm;eés. Sincé
the complex pairs from (r71,r3g)4and (rgjvrig) have pp=9,
and 20 respectively, if the éairs (r71,ris) and (rgl,rls)‘\
mentioneg in tfe preceéding paragraph do exist, they can
have only larger pm.‘ As for the higher orders of t%uncation,

we expect the first few pairs in the new subgfbup.they

introduce will have large growth rates, but they also have

«

IRy

[\
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higher y values. The rest of these new pairs will -have

either very small growth rates or are pushed to the right.

HY

Thus, for thé odd system, we can consider the hatched

»

corner in fig. 104 to be stable; as any of the new complex

pairs due to higher orders of truncation will not intrude

into this region.- N .

L \\\
|
.The relative simple pattené'of the region y<1 is
3 ‘
almost completely lost when we go over to y>1: First of

all the (1,2), (3,4), (6,7), (9,10) and (12,13) complex:

I
ot P

pairs are nbt confined to approximately the same position

in (e,y).plane when d;, d3, dg, d; and dg of the diagorfal
have complex roots. In fact, as can Qe seen from .fig. 9d
they cover a much wider regign in the {e,y) plane. Secondly,
the other group gf.complex paifs do not have similar beha-
viour as their counter parts'in y<l. >There, it was%gasy
matter to recognize a correspondence of the Ggrossing of
(ril,rjs) diagonal roots to the complex pair in the full.
determinant. Whereas heée, no such clear cut corresp;ﬁdence'

can be made.

3

o .
The only pattern remaining seems to be the

contaihment of the complex pairs in a lower order of trun-
cation by ‘that of a higher order. #1t may be possible to
find some recognizable pattern in this fegion, but it is

. -

v a
not necessary to do so. For, as we increase y only a few

complex pairs emerge beyond y=190, They are shown in fig. 11.

\
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-

In this figuré we have plotted each curve up to y=200,

but investigation up to y=400 show they run almost parailel
to the axis.: Since the ratio of ion to-electron period |
cannot be too big, calculation beyond y=400(?o/50=20)

was discontinued.

T T T ——

It is rather interesting to observe that as y
becomes large, the redl parts of fhese complex pairs
approaches the even eigenfrequeﬁ%ies, that is -42, -62%,and
~82, As the truncation at N=5 produces only one (3,4) pair,
truncation at N=7 produces (3,4) and (5,6) pairs, and that
of N=9 adds (7,8) on top of the previous pairs; one is forced
to conclude that if higher orders are included, more complex
pairs with their real parts -102, -12%, ... will appear.
From fig. 11, they will finally crowd down to e€=0 making
this region completely unstable.l *

Consideration of the g;owth ratés of the unstable
modes contributed by these complex pairs is not going to be
of help. Since ¢; is the shorter period in:thié region,
we want the watio : . |

(growth ratejy” '
pe = ~ . = p('/l;r
\ ¢O . .

instead of p. Tables6a and b show some of the pgs at %=60

and‘300.' Only the growth rate of the (3,4) pair at ¢=.90

y=380 is small enough to give ape>l10. "And for the same *

t

v




value of ¢, the (7,8) pair has the lafgéi growth rate,

-~ . -~ '
diminishing down to the (3,4) pair. This shows that if

w

new pairs are obtained from an higher order of truncation,

ltheir growth rates will be even more dangerous.

/

L ¥

a. y=60

€ (3:4) (516) (718)

.30 } 4.57

« 40 2.94

.50 2.33

+60 7.36 2.02

.70 2.94 1.78

.80 2.25 1.63

.90 6.45 1.86 1.47

1.00 3.26 1.63 1.40

. b. y=300

.80 7.80 4.85 |

.90 5.54 4.16

1.00 | 11.70 4, 50 .3.64

Table 6. Some p values of the

e pairs %hat extend
beyond y=100.
4
4
The even system corresponding to
by

(5.6) is given

[4
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! / f ( \
) ‘W 22(2e-1)  4.2% 6.2%¢ \(

Cy| = I‘i - | — C,

; \.12V2 U.4V2 U6V2
| . 43¢ 42 (4¢-1) 6.42%¢

' . C4 I4 .- e 0 C‘

. | ‘U4V4 \J4V4 U6V4
% c 6% 63¢ 62(6e-1) .

Ce I¢ - NP

UgVe U6Ve UsVe
[ ] - g ) L] . [ ] -

Due to the fact that the zeroth term of (4.9) is zero

- £6 = 9ohg = Oy i

-

the zeroth: Fourier coefficient must be zero also. If we *

. !

follow through'the derivatibns in sections 4 to 5, £ =0
implies that ny=g,=jo=0, which in turn implies that C_=I,

o when we take the Fourier coefficients of equation (5.2), '

“

This mea Ithatqdo(The zeroth Fdurier coefficient, not the
constan(

in f, of equation (2.13)\ depends on the initial
perturbation only. Siﬁce a non-zero C, implies a uniform

- : stretching or compregsing of the water bag which is contrary
to the incompressibility conclusion of Liouville's theorem,

we must fave I =0 for a physical perturbation. Hehce,

|
v

C,=0. .

Exactly similar behaviour is shown by the above
@

even system as the odd system (5.6). To avoid repetition

we merely include all the corresponding curves #or the
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even system. The curve corresponding to fig. 7 was omitted
4
as it serves is equally useful for both the odd

and the even diagonal roots. The stable patch for the even
system is showh in fig. 15d, therefore the entire system

is stable in the intersection of the two patches in fig. 10d

and fig. 15d. ’

/'
-
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Fig. 7. Variatien of rgq o
w.r.t., y for ¢=.1,.2 and™’

1. For any-0<eg<.2, the‘r'5l S
curves lie on the opposite™’
sides of the e€=.2 curves. For
dny e€>.2, rgy starts from 0 and
rgg starts from -52. They meet
at a certain point y<l, then
become complex until another
point y>1, where they are real J

* again. ' :
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Fig.- 8. Boundary

of Re(ry;,6g). Each ~
pair of curves shown
has’ s=0. The number
at each, intersection
is its y value.
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6. Conclusion: ’ < 4 -
—._-—_—.—T__ » N L2 * - o
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1] . '0 B

L <

¢ : In this thesis we have studied the stability of

L

& . "
. s ﬁ\\eome of the zeroth ordex STS equillbrla obtained in reference

L1 «-

27. A\mlxed Laglace- Fourier method was used tﬁbcdnvert

« e
L 1

- the coupled'equations (2.7) and (2.8) into a Fredholm

v

- integral equatlon irt T(¢ s) glven by equations (3.21-28).

The complicated kernel (equatlons (3.25—28)) was reduced

' M A
orm' ofOequations (4. 25—26 . . Instead -

,to a remarkably sim

of solV1ng thls\Fredho equatlon welreduced it to systeme

- of linear eguations 11’s;n" nd cosine coeff1c1ehts of. -
n\ . \ -
(¢ s), and obtalned a qifte n for stability ﬁ;om the c.

¥ - zeros of the determlnant of the coefficients of the ‘system

Y

of linear equatlonsln the cosine coef{/paents. fn the"

>

limit when €=0, the matrlx of coefflclents is d:Iggnal, and

. - 1its determinantgis ea31;¥ evalgatédz ’Ln'thls mple case

we found that our system is stable. For any‘e>0f the off
. L '-',‘ ‘
dlagonal terms are non-zero, and/we.had to use numer1cal

methods to find the zeros of thls determlnant. gnllke

the £=0 case, a non- zefb*a conflnes us to the 1nterSegt10n

r

of ‘the hat¢hed corners in fig. 10d and flg. 15d in order”

\ : to haVe'stability for, dur‘system.’

- - -
- . N » -
. . . . i -
* . - . 1 Yy -~ /( .‘
. ! - .
; . 1 I '

o If the present methed were Qpllowed to. analyse

4 E]

e, " the stability of the equ111br1um solution 1nclud1ng the

///*iirst order term 82#Q, but 8246 1n»reference 27, then o ' N

* trouble develops rlght after we obtaln the p031t10n

s o

. R
. re . k]
- . b v -
¢ —_ e, - 86 -
. n KN N >




*,

>

W=

g




N . . - )
’ RN A .
.

coordinates in tefhs Qf ¢ and 1. Fqr after doing thew

-

-

integrations in-equations (3.4) and (3.10)_ we obtain -
x(¢) = 21/ (3§ (1+k i) tan®¢/5,) 22, .
x(1) = xoen(t/Ty ko), . ¢
, where . . e
k(; = 4821
* —/k% = 2821 ) . * )

&

and cn is the elliptic function. In using these quantities.

for further integrations in g, -and hn we encounter with

<+

\\v/i?tegrals of the form

T, el 1t/ Togn(t/t Yan(1/7 ) <
I dz : o 2

’

e x(¢) + cn(1/%,) S
and - s ’ . i a !
o Te e~int/To
Do J' dr. . - — )
\ = ° - x(¢) + Cn(T{TO) .

a
.

both of which are quite impossible to have in closed forms.

" Even if there exist some method of obtaining-a closed

P -

. . . " ~
closed form for these integraﬁs, we expect them te be as
formidable as the usual integrals havingtelliptic functions
in the integrand. This makes the other integration even
! ot . ‘
more difficult. . -
A Ehermodynamic approach to this problem is

being investlgated by Mr. A.B. Tailor at present. His -

idea is to calculate the entropy S for the electron-ion

' - .
ring, and-obtain a 'yes' or 'no' answer for stability
GA "/ o

~




[

. - . LY
from the time derivétive of S.
4 ]
i - .

As it was mentioned in reference 27, the eguili-

2

brium solution has neglec¢ted the r dependence which is

not permissible in an actual experimental set up, its

4

usefulness is in serving as an input to a numerical program

that contains the r dependence as well. Thus there is no
point in comparing the present analysis with experimental

data which }sﬂvery crude aE pfeéent any way$36) What - we

- N .
have done justifies the use of a water bag model for the
: [4 D .

class of equiljbrium solutions considered, provided no

N

nonlinear effeéf has set iﬁ..

t a4
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‘Appendix A

-

If we take the Laplace tragsform of. (3.5)

. 8T 30{1) (9,8) .
sT N — = T(4,0) + e ——mm, _(Al) .
9o 3¢
4 , -
then instead of solving tHis first order differential
equation, we expand T ) S
T(¢,8) = ) e1k¢/¢ggk(s),} (A2)

== CO
-
-

and obtain the kI component from equation (Al)

. 1 oo . D) _
T, (s) =, [ag w0 +e=L ). = @3
K ¢o(ikéfo+3)o,. I 3¢ ’

-

" After going through the same ‘series of substituting as
we diQ:}n obtaining equations (3.21-28), weﬂget

” Tk(s)'= [inhomogeneous terms] -,
de"C_ ¢ . 1 S0 . _ivu ' .o,
) OJ oa$ T(§,s) 3 J od¢ e-lk¢/6bsén(¢)W(¢)
R?z2 | 2n(ik+F o | : '
'oo d%]‘-O) - ’// ) . .
.| aH, —— 7 g h_ 1, (a4)
J 1 dHi ny-® pono ' ' ' 3

 gmin
]
The terms gp.and h_ in the infinite sum are identical to -
N ,‘” B -

those of equations (3.27) and (3.28),"and they caﬂ'be reduced

in the same manner as given in section. % to .
. . ' ' -~

o A o " ,
/ sy '
. k]

Ll

1

»



2z .n ' ' - p
0 1o . .
- En(¢,¢)»
(n2+72%s2?)

° )

The H, integration runs into si%ilan difficulty as in

section 4, and it can be resolved by the same argument
. glven there. The é integration .differs from the main

£ )
: test 1n~that there the exponential factor‘ﬁad sé as its

argument, whereas here, we have —1k$/$o. This dlfference
has the effect of plcklng up only those terms that contain
éfactor 51nk<5/¢0/51n<£/60 from ‘the infinite sum, by Jthe
following integral

$o . : ’ i¢ ‘
J aé e‘lk4/¢031nn$/¢o = -—8, (A5)
o 2 ‘
where 5kn is the Kronecker delta. Beafﬁng this in mind, ~

and for k=odd=2b+l, equation (A4) can be riépced to .
, _ ? by

. : i (2p+1) 2ep-1
?2p+1—[1nhomo] i(2p+1)+§os[ uzrt izo Coi+1 ,
(2p+1) ((2p+1)e-1) o 2i%1
| + u2pd;l C2p+i + (2p+1) =g+1—1_1_2{;lczi+l].
© -
' (A6)

r

* A similar eguation can be developed ‘for k=-(2p+l) <0

rd

13 < .
S | ~ (2p+1)i§p—l _
- ogrn” = linhamo] +*i(29+1)+¢°s[ uzp+;\i=0?21+l (
. (2p+1) ((2p+1) e-1) et 2141 )
+ o Cop+1 * (2p+1)1=g+1-;;;:;C2i+1]"

. (A7)

°




9
-

4

where the difference iﬁ‘sign from those of{ (A6) arises il
from the exponential factor of equatibn {A5). @'The lhs ’

of these two equations are related to C2p+l,by '
; . k]
®

T

L ptl) T T-(2prn)

c:2p+1 - 2

Substituting the rhs of equations (A6) and (A7) into the ,

above we get ’ BN

A

\ ‘- (2p+I) 35, p-1

Uop+1V2p+1 i=0

(2p+1) 2 ((2p+1) e-1) | (2p+1)2e = (2i+1)
- C 4 ———— —_— C

2p+1l i _

u2p+lv2p+l P‘+ * y2p+.‘l. l=p+‘1 Uoisl
vt ‘ ‘ T : (A8)

- ) K4

* 2i

oo

/which is just the (2p+1)th row of equation (5.6).- Hence

the equivalence of the two methods is proven.




‘derivation of xT} (x).

Appendix B

) ‘ \

" All the identities used in this appendix are

taken from section (10.11) of Higher Transcendental Functions

1

by the Staff of Bateman Manuscript Project(.,”since-.tpe
- Y

enumeration of equations uséd there age Arabic numeralé,‘t

we shall quote them without ?dding the phrase 'of Bateman
> - . . ’

Manuscript'.” There is no cbnfusion with those equations

from reference 27 éither, because we will not be using

any of them in this appendix. ®* In order to save some time

in typing we do not include the arguments of the Tchebycheff

N g ®
polynomials, since they all have the same argument x=-X/x,,

for the derivation of xUp_q (x); and x=-§7xo for -the

-

From the derivative formula (21) we get

) 2
. X [nUn_z - (n-1) XUn_l ]
xunfl ) 1 - x? oo
1
mxU__, - (n~1)U__7 ”
; ) l - x .
- . . s (B1)

6 ..
Our task now is to transform the square bracket into a
linear combination of the U,'s. It turns out that the%f‘

are two forms of linear combination depending on whethef'

. ]

n is odd or even.

.
¥
IX

93 I




v ()/—~~r\\\j ' ,
7/ .

o / 94
~ ; .
: For an even indexed U, say U%p, equation (40)
gives : ?
- . /
C U, = 2 % T 4 +1/2), - ... p>0, .
' m=1 :

‘and T, can be obtained from equation (41)

3
il

1 -2(1-x% YuUu,., m>0,
) =0 21.

2m
~ J
which means _
( 1) 4(1-x?) g- fh‘f.) 0
U = 2p+ - -X U >0,
. zp ( P ' m_l 1—0 21 L4 p
. & b p_l ¢
& = ((2p+1) ¥l (1-x?) ) (p-i)Uy;), p>0.
. 1=04 '
4
Similarly, using equationl(40) and (42), the odd indexed
U2p—l cap-be expressed as. . .
. : ] '
. p-1" )
. - . L = 4 + ’ * ‘p>1
5 “Uopoi = zmlez““.*l ~2x o p ]
[} » p—l m"'l A
= 2px - 4(1-x?*) ] ] U21+1, p>1
m=1 i=0

P,
. TR
L - . . -

) _ . . = 2px - 4¢1 x‘) Zl(p-l)U -1 '.p>l.
= T LT E i= :

1 s - 3 . - -
Y . : %

If we' accept the cbnvention that whenever the upper limit

"

of a summatlon 15 1ess than the lower limit then the sum

is zero. that is : . J%‘w .




: { g; = 0, 'if k<, ' (B2)
[y . l""'j . A

. )
tThen the restriction on p in U2p and U2p-l can be extended

“ -
T

. p-1.
= - - 2 -1
Upyp = (2p+1) - 201 x,)igo(p 1)Uy, g>0,‘ (B3)
p-1
Uzp-1 = 2P - 4(1-xz)i£l(p-i)uzi_l. o p3l.  (B4)

.
- \ .

These two equations can be used to consider the

odd and even cases of (Bl). For n=odd=2p+l, the square,

A Y

bracket of (Bl) become

((2p+1)xUy,_; = 2pUp,)/ (1-x7)

-1 -1 o
- : -4[2p Y (p=i)U -(2p+l)x } (p-i)u. 1
iso 2i i=1 - 21 l
. .- 2p(2p+l). ) ' (B5)
o -

+

If e recognile x—Tl, then the second term can be expressed

as a sum of the U,'s by éequation (3@)

Loy A

- © XUy = TiUaione

= (Uzi + Uzi_z)/z. ! . ’ | C /'

Spbstiﬁdking‘this‘intﬁ the square bracket of (B5), we get
’ ’ ’

)

p-1- ) -1
2p } (p-l)U -(2p41)x Z (p-l)U
120 24 =1 2i-1 - )
- pzl p-1
=, Z (p=1)Uy;- (2p+1) Z (p-1)(U2i+U21_2)/2,
: irl



p-1 p-i p-i
2Pi=2_0 (poi)Upy (2p+l)‘i=zl _:a—Uzi
o pr2 (p-i-1)

- (?p+l)i£0 -—;———U2i,

p+l p-1-~2i+1
 +—)u_+ § —u p>1
o i=1 2 21

o — g

where the second line was obta%ned by putting i=i-1, and

~

-

the third line was straightforward collecting like terms.

Substituting this into (B5) we obtain

p-1 2i+l

(2p+1) xU +-2pU :
2pml " 2p - 4 e B3
1 - x? - i=0 2 <

: , . &
"where p=1 was obtained by direct verification. Thus

-

xUp_,, for n=2p+l, can be expressed*'}a linear combination

of the U'g '

, Jo=1
) P :
. xU! "= 4 ] (i+1/2)U,, + 2pU,., - (B6)
/\ . 2p i=0 . 2i i 2p R

and this is valid for pzo.j Sincé the derivation for the

1]

L

even case is exactly similar, we just, quote the result -

 for n=even=2p+2

.

1 . : L

p - »
Xy = 4'20 (141U, 44 + (;p+1)uzp+l, p20.
1= ‘ S
(B7)

'




' : From the derivative formula (20) we get -

- * T - >
xT! = ax n-i %Eé) : N
¢ n ) '
l - x
nxT_ 3 - nT
n—
¢ = ! % 4T,

1 - x2 . n

s \ ,

1

by equation (4) the first term is just nU,_,, therefore

> hd ‘ |
o |  xTy =nU,_, + nT,. _ (B8)

bl

We find it useful for the finQ} results if U _, were
;exPressed in terms of T's only." From equation (40) for

n=2p+l, n-2=2p-1,

Pil" /
U = 2% T,. .

- +
2p-1 550 2i+1

]

.

‘Hence }BS) reduces to a linear sum of the T's
. p—l
. 1) e -
i XT)oe1™ 2(2p+l)i§0T2i+l + (2p+1)Ty . (B9)

. »
© For n=even=2p+2,

-

. , XT5p32= 2(2p+2)[i§0T21 - 1/72] + (ZP+2)T2P+2“

(B10)
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