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Editorial

NFATs are good for your cartilage!
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While osteoarthritis is now considered a whole joint disease1,
breakdown of articular cartilage remains one of its hallmarks.
Thus, there is continuing need for a better understanding of the
mechanisms responsible for maintaining cartilage homeostasis
during natural aging. Greenblatt and colleagues now expand on
earlier studies2,3 by demonstrating essential functions of NFAT (nu-
clear factor of activated T cells) transcription factors in articular
cartilage health4.

NFATs are a family of highly regulated transcription factors that
have the potential to link many extracellular signals to the nuclear
transcriptional machinery5. Most notably, subcellular localization
of the four calcium-regulated NFAT proteins (NFATc1-4) is regu-
lated by multiple pathways. Phosphorylation of the proteins by a
number of different kinases such as GSK-3 leads to retention in
the cytosol, whereas activation of the phosphatase calcineurin by
Ca2þ ions results in nuclear translocalization and regulation of tran-
scription by NFATs. Of note, a fifth family member (NFAT5) is not
regulated by calcium signaling but by osmotic mechanisms instead;
NFAT5 will not be discussed here.

The first NFAT to be implicated in cartilage biology was NFATc2
(also called NFAT1 and NFATp). Conventional knockout mice for
this gene develop extra-articular cartilage nodules that undergo
endochondral ossification2. This study also showed that NFATc2
deficiency increases chondrocyte proliferation and concluded that
this particular NFAT is a suppressor of chondrogenesis. Interest-
ingly, a subsequent publication showed many signs of osteoar-
thritis, including cartilage degeneration, osteophyte formation
and subchondral bone changes, in Nfatc2 KO mice, due to altered
expression of catabolic and anabolic genes in chondrocytes3. These
authors argue that the ectopic cartilage masses formed outside the
joints are a result of attempts to repair the damage to articular carti-
lage. It is difficult to decipher (at least in the conventional KOmodel)
whether this model is correct or whether the two phenotypes are
independent of one another. Nevertheless, the fact that the same
mutation causes loss of articular cartilage on one hand and ectopic
formation of cartilage in the joint periphery on the other hand is
intriguing. Together with the expression patterns of NFAT family
members in cartilage discussed below (especially NFATc1), these
data suggest that the NFAT pathway might be involved in distin-
guishing articular from growth plate chondrocytes, an important

process in joint biology that is notwell understood6. Further indica-
tion that this might be the case came from a follow-up study7

demonstrating that lentiviral shRNA-mediated knockdown of
Nfatc2 in articular chondrocytes in vitro results in reduced expres-
sion of articular chondrocyte markers (aggrecan, collagen II etc.),
but increased expression of hypertrophic markers such as collagen
X, along with matrix-digesting enzymes and pro-inflammatory
cytokines7.

Since the original study by Glimcher’s group had shown that all
four calcium-regulated NFAT proteins are expressed in cartilage2,
Greenblatt and colleagues now expanded these studies to include
NFATc1 (also called NFAT2) and NFATc3 (or NFAT4)4. Intriguingly,
NFATc1 protein expression is restricted to the superficial zone of
the articular cartilage, somewhat resembling the pattern of lubricin
expression. Equally interesting,NFATc1mRNAexpression is reduced
in lesional osteoarthritic cartilage in human patients. Because of the
lethality of total Nfatc1 KO mice, the authors then generated
cartilage-specific KO mice for this gene, as well as for Nfatc3. Nfatc1
mutantmice did not display any differences towild typemice either
during normal development or in the DMM (destabilization of the
medial meniscus) model of post-traumatic osteoarthritis. However,
in the context of the Nfatc2 KO described above2,3, cartilage-specific
loss of NFATc1 greatly accelerated the onset of cartilage degenera-
tion and other markers of osteoarthritis, such as joint subluxations,
osteophyte formation and subchondral bone sclerosis. At the mo-
lecular level, these double mutant mice exhibited increased expres-
sion of genes encoding many proteases involved in degradation of
the cartilage extracellular matrix, such as MMP13, ADAMTS-5 and
HTRA1, along with the hypertrophic chondrocyte marker collagen
X. At the same time, expression of Sox9 and lubricin were reduced
in mutants (although collagen II transcript levels were slightly
increased). Collectively, these data provide very strong evidence
that loss of NFAT signaling in chondrocytes promotes a catabolic
and hypertrophic phenotype. Of note, the severe cartilage degener-
ation in these double KO mice appears to be caused largely by
abnormal joint development (rather than defects in adult articular
cartilage per se), but nevertheless these studies point to an essential
role of NFAT signaling in cartilage and joints.

While the double mutants showed accelerated cartilage degen-
eration compared to the Nfatc2 KO mice, the aforementioned
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formation of ectopic cartilage in the joint periphery was not
different from the Nfatc2 KO mice. This might be simply due to
the tissue-specificity of the Col2-Cre driver line used to inactivate
Nfatc1, but could also be interpreted as evidence that articular carti-
lage degeneration and formation of ectopic cartilage are indepen-
dent events. Further studies are required to resolve this question.
In addition, the current study also demonstrates that cartilage-
specific deletion of Nfatc3 does not cause skeletal phenotypes by it-
self or enhance the phenotype of Nfatc2 KO mice (the later in
contrast to Nfatc1)4. This suggests that NFATc3 is less important
than its cousins in cartilage homeostasis, but other recent studies
suggest that it might have some roles in chondrogenesis8. Analyses
of triple mutant mice, or even quadruple when considering Nfatc4
(NFAT3) which has been implicated in the control of chondrocyte
gene expression9, might be required to reveal minor roles of these
additional family members. The basis for the differences in pheno-
types between the various mutant lines will be important to deci-
pher e are these differences simply due to different expression
patterns in the joint, or do they reflect different molecular mecha-
nisms, interacting partners and/or target genes?

The current manuscript clearly provides compelling evidence
for an important protective role of NFAT signaling in cartilage. How-
ever, a number of earlier in vitro studies suggest that NFAT signaling
can induce catabolic genes (e.g., ADAMTS4 and 9) in chondrogenic
cells10,11, which is opposite to the protective roles in vivo discussed
here. This discrepancy needs to be resolved, although the results
from the more physiological in vivo models appear more relevant
to cartilage health in patients. Moreover, the paper by Greenblatt
and colleagues, and the earlier in vivo studies discussed here, also
raise many novel and exciting questions. For example, NFAT pro-
teins have been shown to be key regulators of both osteoblast
and osteoclast physiology5. Given the ever increasing evidence for
a fundamental role of bone remodeling in osteoarthritis pathogen-
esis1,12, roles of NFAT proteins in these cells need to be considered
in the context of osteoarthritis, especially when using conventional
KOmice as in the case of Nfatc2. Additional joint tissues such as the
synovium also need to be included in future studies on NFATcontri-
bution to osteoarthritis.

Since NFAT activity is so tightly regulated by upstream signaling
pathways, the phenotypes described in the discussed studies also
raise questions onwhich extracellular signals connect to these tran-
scription factors. Both activators (calcineurin) and inhibitors (for
example GSK-3) of NFAT can link to a large number of mechanical
and biochemical stimuli that could all act through this protein fam-
ily, but few of the extracellular regulators of NFAT activity in chon-
drocytes have been identified. Recent studies suggest that NFAT
activity and expression in chondrocytes is regulated by both Notch
signaling and Wnt5a, but these results were largely obtained using
in vitromodels of growth plate chondrocytes and it is not clear how
much they apply to articular cartilage in vivo13,14. With regards to
intracellular regulators of NFAT signaling, cartilage-specific KO
mice for Gsk3b (encoding GSK-3b) do not show a major skeletal
phenotype during development15 or aging (Gillespie and Beier, un-
published), likely because of compensation by GSK-3a. However,
pharmacological inhibition of GSK-3 signaling causes increased
cartilage degeneration in rats16. This would be at oddswith the pro-
tective role of NFAT discussed here, since GSK-3 inhibition should
result in increased NFAT activity. However, GSK-3 signaling controls
many intracellular signaling pathways, including canonical Wnt
signaling, which might be responsible for the effects observed by
Miclea and colleagues16. Moreover, contribution of other pathways,
such as casein kinases and DYRK kinases, to NFAT inactivation
might compensate for the effects of GSK-3 inhibition on NFAT local-
ization. Inhibition of calcineurin by cyclosporine A has been shown
to decrease the severity of osteoarthritis in mouse models17, again

not in line with the expected decreased NFAT activity under these
conditions. But, as discussed for the GSK-3 inhibitors, it is not clear
whether these effects are due to altered NFATactivity or other path-
ways affected by cyclosporine A. Clearly, lots of work remains to be
done to link NFAT activity to specific intra- and extracellular up-
stream pathways.

A related, similarly important question is the regulation of NFAT
gene and protein expression in chondrocytes. As discussed above,
NFATc1 shows a very specific expression in the superficial zone of
cartilage. Among the few transcription factors with a similar
restricted expression is the Ets family member Erg18,19 e it will
be interesting to see whether a regulator relationship exists be-
tween NFATc1 and Erg. NFATc2 does not show the same restricted
expression pattern as NFATc1 in the joint, but its expression in artic-
ular cartilage increases in young adult mice (compared to develop-
mental stages)7. A recent abstract demonstrated reduced
expression of NFATc2 in articular cartilage after mice reached 1
year of age, in parallel to reductions in proteoglycan staining and
cartilage ECM gene expression20. Overall, these expression data
suggest dynamic control of NFATc2 expression in articular cartilage
that is closely associated with cartilage health. Rodova and col-
leagues identified a number of histone modifications associated
with Nfatc2 transcription, as well as candidate histone demethy-
lases responsible for these modifications7. These data provide a
strong basis for future studies into the epigenetic control of NFAT
gene expression in articular cartilage.

Finally, since NFAT proteins are transcription factors, identifica-
tion of their direct target genes in cartilage is crucial for a better
understanding of their role in cartilage homeostasis and osteoar-
thritis. Genome-wide approaches such as ChIP sequencing and
RNA sequencing will be required to obtain a comprehensive view
of both protein-coding genes and non-coding RNAs regulated by
this pathway.

In conclusion, in vivo and in vitro data from both mice and
humans make a compelling case for a crucial role of NFAT family
members in maintaining cartilage and joint health. However,
muchmorework is required to elucidate both upstream and down-
stream components of this pathway and to determine whether it is
a potential therapeutic target in osteoarthritis.
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