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Abstract 

An evaluation of single-stage and two-stage anaerobic digestion processes for 

biomethane and biohydrogen production using thin stillage was performed to assess the 

viability of biohydrogen production from thin stillage and the impact of separating the 

acidogenic and methanogenic stages on anaerobic digestion with hydrogen production in 

the first stage. A comparative evaluation of anaerobic digester sludge (ADS) and 

acclimatized anaerobic digester sludge (AADS) for biohydrogen production was 

performed at various S°/X° ratios. The optimum range of S°/X° ratio for hydrogen 

production was found to be 1 to 2 gCOD/gVSS using conventional ADS and 3 to 6 

gCOD/gVSS using AADS. Maximum methane yields of 0.33 L CH4/gCODadded and 0.26 

L CH4/gCODadded were achieved in the two-stage and the single-stage processes, 

respectively. An artificial neural network model was developed to estimate the hydrogen 

production profile with time in batch studies and successfully predicted it with a 

correlation coefficient of 0.965. 

Keywords 

Hydrogen, Dark fermentation, Substrate-to-Biomass ratio, Anaerobic digestion, Methane, 

Two-stage anaerobic digestion, Thin stillage, Artificial neural network 
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CHAPTER 1 

Introduction 

1.1. Introduction 

Some processes employed in the production of renewable biofuels, such as, 

bioethanol can result in significant amounts of wastewater with high chemical oxygen 

demand (COD). Disposal of this wastewater can represent significant pollution problems. 

One of such wastewater streams is thin stillage, the main by-product of the fermentation 

process in a conventional ethanol plant, which can be a strong candidate for biological 

hydrogen production as well as anaerobic digestion. Usually, less than 50% of thin stillage is 

recycled as fermentation broth (called backset in the corn-to-ethanol industry) [Egg et al., 

1985; Shojaosadati et al., 1996; Julian et al., 1990]. The main concern with thin stillage 

recirculation without any treatment is the accumulation of fermentation inhibitors (acetate, 

lactate, glycerol and ethanol) in the fermentation tank [Pejin et al., 2009; Julian et al., 1990]. 

The recirculation of thin stillage reduces water intake and subsequently waste disposal, 

increases corn processing capacity, and reduces nutrient and buffer requirements [Ahn et al., 

2011]. Therefore, using thin stillage in anaerobic digestion could facilitate maximizing 

recirculation rates by improving its characteristics. 

Anaerobic dark fermentation is an attractive biological process for hydrogen 

production because of its higher rate of hydrogen production relative to photo-fermentative 

processes as well as its potential for using waste streams [Levin et al., 2004; Wang and Wan, 

2009]. A major problem in the process of biological hydrogen production is the existence of 

hydrogen consuming bacteria such as methanogens and hemoacetogens in mixed cultures 

[Adams and Stiefel, 1998]. To suppress the hydrogen consuming bacteria, different types of 
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pretreatment were investigated such as heat treatment [Chang et al., 2002; Baghchehsaraee et 

al., 2008], acid treatment [Chen et al., 2002], base treatment [Cai et al., 2004; Chen et al, 

2002], and chemical inhibition [Park et al., 2004; Sparling et al., 1997]. 

In a single-stage anaerobic digestion process, a variety of higher organic acids, such 

as propionic, butyric, and lactic, as well as alcohols and ketones, are formed during the 

breakdown of the organic substrates by acidogens. However, in a well operated process, 

these products are mostly converted to acetic acid and hydrogen, which, in turn, are 

converted to methane gas [Cooney et al., 2007]. On the other hand, in a two-stage anaerobic 

digestion process, the acidogenic and the methanogenic steps are separated. This provides 

enhanced stability to the different groups of microorganisms that are responsible for both 

steps and better process control [Demirel and Yenigun, 2002]. The end products of volatile 

fatty acids breakdown from the acidification stage are ideal for anaerobic treatment and 

methane production [Pavan et al., 2000]. The purpose of a two-stage anaerobic digestion 

system is not only to further degrade waste, but also to extract more net energy [Thompson, 

2008]. 

 

1.2. Problem Statement 

The impact of microbial cultures on biohydrogen production from soluble substrates 

as glucose is well documented in the literature [Ling et al., 2009; Zhu and Beland, 2006; 

Wang and Wan, 2008]. In addition, many studies used conventional anaerobic digester 

sludge in order to assess biohydrogen production from different wastes. For example, Chen 

et al. [2006] and Yu et al. [2002] used it to process food wastes. Most of these studies used 

different sludge treatment methods to enrich hydrogen producers [Elbeshbishy et al., 2010]. 

Other studies used pure cultures for biohydrogen production [Lin et al., 2007; Chen et al., 
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2005; Ahn et al., 2011]. However, hydrogen production using mixed cultures is more 

practical since they are simpler to operate, easier to control, and applicable for a broader 

range of feedstocks [Li and Fang, 2007]. Due to lack of data on specific populations, 

hydrogen yields vary considerably even for a specific substrate which results in a misleading 

assessment of the potential of hydrogen production from different wastes. 

Separating the acidogenic and methanogenic stages in a two-stage anaerobic digestion 

process has been usually investigated in order to maximize the acidification process, 

regardless of the acidification pathways and the hydrogen produced in the first stage [Vinas 

et al., 1993; Pavan et al., 2000; Demirel and Yenigun, 2002]. A few studies investigated the 

effect of hydrogen production in the first stage on the methane production in the second 

stage. Chu et al. [2008] investigated two-stage process comprising thermophilic hydrogen 

production and mesophilic methane production for the treatment of organic fraction of 

municipal solid waste (OFMSW), and achieved stable performance for simultaneous 

hydrogen and methane production for over 150 days with average hydrogen and methane 

yields of 0.25 m3/KgVSadded and 0.464 m3/KgVSadded, respectively. Han and Shin [2004] 

treated food waste in a leaching-bed reactor for hydrogen production and an up-flow 

anaerobic sludge blanket (UASB) reactor for methane production under mesophilic 

conditions, and achieved hydrogen and methane yields of 0.31 m3/KgVSadded and 0.21 

m3/KgVSadded. 

The complexity of modeling fermentative biohydrogen production process is due to 

the numerous interdependent factors that affect the process such as temperature, pH, type and 

concentration of wastes and cultures, and bioreactor configuration [Wang and Wan, 2009]. 

Many studies investigated these factors using the conventional “one factor at a time” method 

with models such as Gompertz and the Logistic models and some of them studied the 



4 
 

combined effect of two or three factors only on the biohydrogen production process [Ginkel 

and Sung, 2001; Li et al., 2008; Hwang et al., 2009]. These methods are ineffective, since 

they do not take into consideration the interaction between the various factors. 

 

1.3. Research Objectives 

In the present research, hydrogen and methane production using thin stillage is 

investigated. In addition, modeling the fermentative hydrogen production process using 

artificial neural network method is undertaken. The specific objectives of this study are: 

1. Assessment of the viability of biohydrogen production from thin stillage in batch 

studies, and determination of the optimal substrate to biomass (So/Xo) ratio and the 

maximum hydrogen production potential 

2. Comparative evaluation of anaerobic digester sludge and acclimatized anaerobic 

digester sludge for biohydrogen production 

3. Comparative evaluation of single and two-stage anaerobic digestion processes using 

thin stillage 

4. Development of an Artificial Neural Network model for the prediction of biological 

hydrogen production in batch tests using glucose 

 

1.4. Research Contributions 

 Hydrogen production potentials of different waste streams have been investigated in 

the literature using conventional anaerobic digester sludge [Wang and Wan, 2009]. In 

addition, a two-stage anaerobic digestion process was proven to be more stable than single-
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stage digestion with higher methane production rates and yields in the second stage [Demirel 

and Yenigun, 2002]. The main contributions of this research are: 

1. Demonstrating for the first time the advantages of two-stage anaerobic digestion over 

single-stage for thin stillage treatment from bioethanol plants i.e. increased biogas 

production and enhanced biosolids destruction efficiency, as a result of improved 

acidification 

2. Emphasization of the need to conduct batch biohydrogen studies using enriched 

cultures of hydrogen producers derived from short-term continuous-flow systems as 

opposed to simply useing pre-treated anaerobic digester sludges from existing 

methanogenic digesters 

 

1.5. Thesis Organization 

This thesis includes six chapters and conforms to the “integrated-article” format as 

outlined in the Thesis Regulation Guide by the School of Graduate and Postdoctoral Studies 

(SGPS) of Western University. A literature review including background on dark 

fermentative hydrogen production and its modeling, and two-stage anaerobic digestion 

process is presented in Chapter 2. 

Chapter 3 introduces the idea of using acclimatized anaerobic digester sludge instead 

of conventional anaerobic digester sludge in biohydrogen production assessment of new 

wastes. Chapter 4 presents a comparative assessment of single and two-stage anaerobic 

digestion of thin stillage. Chapter 5 presents an Artificial Neural Network model developed 

for the analysis of fermentative biohydrogen production in batch studies. Chapter 6 
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summarizes the major conclusions of this research and provides future work 

recommendations based on the findings of this study. 
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CHAPTER 2 

Literature Review 

2.1. Introduction 

 Even though hydrogen is not commercialized as an energy source till now, it is 

widely used as a chemical reactant in fertilizers production, for diesel refinement, and in 

ammonia synthesis [Guo et al., 2010]. Hydrogen usage as an energy source has been limited 

due to high production costs, technical storage requirements, and distribution systems [Dunn 

2002]. Biological hydrogen production has the potential to alleviate some of these 

limitations, since it requires much less energy. Bio-hydrogen can be produced in direct water 

biophotolysis by green algae, indirect water biophotolysis by cyanobacteria, 

photofermentation by photosynthetic bacteria, and dark fermentation by strict or facultative 

anaerobic bacteria [Levin et al., 2004]. Considering that many types of wastes are made up of 

complex substrates that can be degraded biologically by complex microbial ecosystems, dark 

fermentation is a key process for the production of hydrogen from food wastes, crop residues, 

and agricultural wastes [Guo et al., 2010]. 

 

2.2. Ethanol Production 

Ethanol is a renewable fuel source that can be obtained from a variety of biomass 

sources. It has been produced from three major groups of feedstocks: sugary feedstocks, such 

as sugar cane, sugar beet, and sweet sorghum; starchy materials such as corn, wheat, cassava, 

and sweet potatoes; and lignocellulosic biomass such as wood, straw, and grasses [Balat and 

Balat, 2009]. Ethanol production via the fermentation route using sugars or starch involves 

microorganisms such as Saccharomyces cerevisiae that ferments the C6 sugars into ethanol 
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and other by-products, such as acetic acid [Miller 2010]. Theoretically, 1 kg of glucose 

produces approximately 514 g (650 mL) of ethanol and 488 g of carbon dioxide, and a bushel 

of corn (25.3 kg at 15% moisture) can produce from 9.4 to 10.9 L (2.5 to 2.9 gallons) of 

ethanol [Badger 2002]. From an environmental perspective, ethanol from corn starch 

biomass presents numerous advantages over petroleum. Corn starch ethanol has high 

renewable energy content, displacing fossil fuel consumption by almost 26% and reducing 

greenhouse gas (GHG) emissions by 13% [Vincent 2010]. 

Ethanol derived from biomass has the potential to be a sustainable transportation fuel, 

as well as a fuel oxygenate that can replace gasoline [Wu et al., 2006]. Among the different 

types of feedstock, corn grain is the main feedstock for ethanol production in North America 

[Kim and Dale, 2004]. Figure 2.1 shows a simplified diagram for a conventional bioethanol 

process. Milled corn first enters a slurry tank where it is mixed with process water to produce 

corn slurry. The slurry is then gelatinized in a jet cooker in a process called liquefaction. 

During liquefaction, the resulting corn mash is typically diluted with addition of thin stillage 

(backset) prior to fermentation. Fresh water and process water streams such as hot 

condensate from the evaporator and thin stillage are added to the corn slurry tank or to the 

mash in the liquefaction to give approximately 80% moisture content [Dale and Tyner, 

2006]. The gelatinized mash from the liquefaction process is further hydrolyzed to glucose in 

a saccharification tank. The glucose-rich stream is then transferred to a fermentation vessel 

for ethanol fermentation by yeast. Beer from the fermentation tank is distilled and further 

dehydrated into a fuel grade ethanol. 
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Figure 2.1 – Schematic diagram for a conventional ethanol plant [Kim et al., 2008] 

 

The fermentation process produces highly nutritional co-products which are 

composed of unhydrolyzed and unfermented components as well as yeasts [Kim et al., 2008]. 

After fermentation and removal of the ethanol with fractional distillation, the remaining 

slurry, called whole stillage, is centrifuged to separate solid and liquid streams. The solid part 

is called wet cake or distillers’ grains (DG), while thin stillage which is the liquid stream, is 

concentrated in evaporators to make condensed distillers’ solubles (CDS), commonly known 

as syrup. The centrifuged solids can be dried alone in rotary drums to produce distillers dried 

grains (DDG), but are typically added back to the CDS and this mixture is then dried to make 

distillers’ dried grains with solubles (DDGS) [Cassidy et al., 2008]. The DG and DDGS are 

composed mainly of seed hull, germ, proteins, and oil, and are marketed as animal feed due 

to their high nutritional value [Mustafa et al., 2000]. 
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2.2.1. Thin Stillage 

The production and characteristics of stillage are highly variable and dependent on 

feedstocks and different aspects of the ethanol production process. However, while the 

volume and COD concentration of stillage may vary considerably, the total amount of COD 

produced can be expected to be more consistent with the amounts of feedstock processed and 

ethanol produced [Wilkie et al., 2000]. Up to 20 litres of stillage may be generated for every 

litre of ethanol produced, thus necessitating effective solutions for stillage management 

[Wilkie et al., 2000]. Thin stillage characteristics are influenced by the type of cereal grain 

that is used in the fermentation process [Mustafa et al., 2000]. Table 2.1 shows the 

characteristics of corn thin stillage with chemical oxygen demand (COD) that can range from 

64,500 mg/L [Ganapathi 1984] up to 100,000 mg/L [Schaefer and Sung, 2008]. The high 

variance in thin stillage characteristics depends on the efficiency of starch conversion to 

alcohol in the fermentation process. In the context of biohydrogen, the high COD and 

carbohydrates concentrations of thin stillage, makes it a strong candidate for biological 

hydrogen production. 

Thin stillage from centrifugation of whole stillage is partially recycled as backset to 

produce slurry in the liquefaction and makes up 20%-40% of the total water input in the 

liquefaction [Dale and Tyner, 2006]. Some plants recycle up to 25% of thin stillage to reduce 

the waste load, conserve energy and water, and ferment residual sugars [Egg et al., 1985]. 

Therefore, the recirculation of thin stillage reduces water intake and subsequently waste 

disposal, increases corn processing capacity, and reduces nutrient and buffer requirements 

[Ahn et al., 2011]. Also, in ethanol plants where stillage must be evaporated before disposal, 

recycling is employed to reduce evaporation costs [Shojaosadati et al., 1996]. 
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Table 2.1 – Corn thin stillage characteristics 
 

Parameter Thin Stillage Quality 
(mg/L) Reference 

TS  90300 Schaefer and Sung, 2008 
VS 83500 Schaefer and Sung, 2008 
TSS 34200 Schaefer and Sung, 2008 
VSS 32900 Schaefer and Sung, 2008 
TCOD 64500 Ganapathi 1984 
SCOD 30800 Ganapathi 1984 
TBOD 26900 Ganapathi 1984 
SBOD 19000 Ganapathi 1984 
TVFAs as HAc 1310 Khanal et al., 2005 
Acetic acid 1000 Ahn et al., 2011 
2,3 Butanediol 400 Ahn et al., 2011 
Ethanol 300 Ahn et al., 2011 
Glycerol 5100 Ahn et al., 2011 
Lactic acid 5700 Ahn et al., 2011 
Glucose 750 Ganapathi 1984 
S-Carb. As glucose 13600 Khanal et al., 2005 
Total Protein 4590 Ganapathi 1984 
TOC 9850 Ganapathi 1984 
TKN as N 755 Ganapathi 1984 
NH3-N 130 Ganapathi 1984 
Total P 1170 Wilkie et al., 2000 
Total S as SO4 299 Wilkie et al., 2000 
pH  3.7 Ahn et al., 2011 

 TS: Total solids, VS: Volatile solids, TSS: Total suspended solids, VSS: Volatile suspended solids, 
 TCOD: Total chemical oxygen demand, SCOD: Soluble chemical oxygen demand, TBOD: Total 
 biological oxygen demand, SBOD: Soluble biological oxygen demand, TVFAs: Total volatile fatty 
 acids, S-Carb.: Soluble carbohydrates, TOC: Total organic carbons, TKN: Total Kjehldahl nitrogen 

 

The main concern with thin stillage recirculation without any treatment is the 

accumulation of fermentation inhibitors such as acetate, lactate, glycerol, and ethanol in the 

fermentation tank [Julian et al., 1990]. Shojaosadati et al. [1996] studied the effect of stillage 

recycling on ethanol yields in batches. They observed that the use of up to 50% (v/v) stillage 

in fermentation media did not greatly affect the alcohol yield. On the other hand, when the 

volume of stillage used was greater than 50% (v/v), alcohol yield was adversely affected 

after the third cycle. 
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2.3. Value of Hydrogen  

Bio-hydrogen offers a clean renewable energy source. It does not evolve green house 

gases, is easily converted to electricity by fuel cells [St-Pierre and Wilkinson, 2001; Cheng et 

al., 2007], and upon combustion it produces only water [Ginkel and Sung, 2001]. It has a 

high energy yield of 142.35 kJ/g, which is triple that of any hydrocarbon fuel [Das and 

Veziroglu, 2001]. However, there are major challenges that hinder the commercialization of 

biohydrogen production processes including lower hydrogen yields and rates of hydrogen 

production. 

To date, hydrogen is not commercialized as an energy source but it is widely used as 

a chemical reactant in the production of fertilizers, for refining diesel and for the industrial 

synthesis of ammonia [Guo et al., 2010].  

 

2.4. Hydrogen Production  

 Hydrogen production can be classified into chemical-physical and biological methods 

[Cai et al., 2004]. The chemical-physical methods (e.g., through fossil fuel processing, water 

electrolysis using solar power) are energy-intensive and expensive [Mizuno et al., 2000]. On 

the other hand, biological hydrogen production are environmentally favourable and consume 

less energy. 

 

2.4.1. Bio-Hydrogen Production Processes 

Bio-hydrogen can produced following a number of processes including: 

• Direct Biophotolysis 

• Indirect Biophotolysis 

• Photofermentation 
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• Dark Fermentation 

In the following sections, the general description of these methods is provided with their 

main advantages and disadvantages. 

 

2.4.1.1. Direct BioPhotolysis 

Certain green algae can produce hydrogen gas using solar energy to convert water 

[Ghirardi et al., 2000], which is a readily available substrate into oxygen and hydrogen by the 

following reaction: 

 

2H2O + light energy → 2H2 + O2       (2.1) 

 

The main advantage of this process is its carbon-free nature, where water is split by 

solar energy producing hydrogen and oxygen [Resnick 2004]. On the other hand, providing 

solar energy itself is a disadvantage for the process [Das and Veziroglu, 2001] and the main 

challenge with direct biophotolysis is the need for separation of hydrogen and oxygen which 

makes the process impractical.  Simultaneous hydrogen and oxygen production with this 

process has achieved very low concentrations of hydrogen due to the need for an inert 

sparger gas [Hallenbeck and Benemann, 2002]. Maximum hydrogen production rate of 0.07 

mmol/L-h [Levin et al., 2004] and solar conversion efficiency of 10% [Melis et al., 2000] 

were reported using this process.  
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2.4.1.2. Indirect Biophotolysis 

In an indirect biophotolysis process, a certain class of autotrophic microalgae known 

as cyanobacteria synthesise hydrogen by splitting water in a two step process [Resnick 

2004]: 

 

 6H2O + 6CO2 + light energy → C6H12O6 + 6O2    (2.2) 

 C6H12O6 + 6H2O → 12H2 + 6CO2      (2.3) 

 

In the first step, cyanobacteria convert water and carbon dioxide into glucose and oxygen 

through a complex process of photosynthesis. In the second step, glucose is broken down into 

hydrogen and carbon dioxide. The advantage of the indirect biophotolysis over the direct 

biophotolysis process is that cyanobacteria can utilize nitrogen from the atmosphere to meet 

its nutritional requirements. One of the disadvantages for this process is the presence of 

carbon dioxide in the produced gas mixture with oxygen and hydrogen [Das and Veziroglu, 

2001]. Maximum hydrogen production rate of 0.36 mmol/L-h was reported using this process 

which is five times that reported for direct biophotolysis [Kotay and Das, 2008]. Solar 

efficiency of 10% has been reported using indirect biophotolysis in open ponds [Benemann 

1998]. 

 

2.4.1.3. Photofermentation 

A class of purple non-sulfur bacteria can produce hydrogen in the absence of nitrogen 

[Levin et al., 2004] by directing the flow of electrons to the reduction of hydrogen instead of 

fixing nitrogen when growing on poor nitrogen source [Brentner et al., 2010]. They convert 

glucose and water into hydrogen and carbon dioxide under the following chemical Equation: 
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C6H12O6 + 6H2O + light energy → 12H2 + 6CO2    (2.4) 

 

Several microalgae have been tested for hydrogen production by photofermentation such as 

Rhodopseuodomonas capsulate [Jouanneau et al., 1984, Levin et al., 2004], Rhodobacter 

spheroids [Resnick 2004], and Rhodospirillum rubrum [Resnick 2004]. Different types of 

wastes such as whey and distillery effluents can be used as a source of glucose in 

photofermentation. The main disadvantages are the presence of carbon dioxide in the gas 

mixture and the water pollution caused by the fermented broth that should be wasted after 

fermentation [Das and Veziroglu, 2001]. A maximum hydrogen production rate of 0.16 

mmol/L-h using Rhodobacter spheroids was reported by Kotay and Das [2008], and a 

substrate conversion efficiency of up to  91% using Rhodopseudomonas palustris [Brentner 

et al., 2010].   

 

2.4.1.4. Anaerobic Dark Fermentation 

Dark fermentation offers a huge potential for hydrogen production, involving a wide 

variety of anaerobic bacteria species such as Clostridium [Lin et al., 2007], Enterobacter 

[Yokoi et al., 2001], or Bacillus [Kalia et al., 1994], activated at different reaction 

temperatures. It can be divided into mesophilic (25-40°C), thermophilic (40-65°C), extreme 

thermophilic (65-80°C), or hyperthermophilic (>80°C) [Levin et al., 2004]. Dark 

fermentative hydrogen production also depends on the type of carbohydrates source, such as 

glucose, hexose, starch, or cellulose [Guo et al., 2010] and on the process conditions such as 

the pH [Ginkel and Sung, 2001]. Furthermore, the end products can vary widely, including 

acetate, butyrate, propionate, lactic acid, and ethanol [Guo et al., 2010]. 
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Among the large range of end products generated by the various microbial 

metabolisms, acetate and butyrate are the only end products with theoretical yields of four 

and two moles of hydrogen per each mole of glucose as shown [Batstone et al., 2002]: 

 

C6H12O6 + 2H2O → 2CH3COOH + 2CO2 + 4H2    (2.5) 

C6H12O6 → CH3CH2CH2COOH + 2CO2 + 2H2    (2.6) 

 

However, the accumulation of acetate in the medium does not necessarily imply higher 

biohydrogen production since several microbial species can convert hydrogen and carbon 

dioxide to acetate in a hydrogen consuming pathway [Guo et al., 2010]: 

 

 2CO2 + 4H2 → CH3COOH + 2H2O      (2.7) 

 

The by-products of the fermentation process include propionate, ethanol, and lactic 

acid. Propionate is a metabolite of a hydrogen-consuming pathway (Equation 2.8), while 

ethanol and lactic acid are involved in a zero-hydrogen balance pathway (Equations 2.9 - 

2.10) [Batstone et al., 2002]: 

 

C6H12O6 + 2H2 → 2CH3CH2COOH + 2H2O     (2.8) 

C6H12O6 → 2CH3CH2OH + 2CO2      (2.9) 

C6H12O6 → 2CH3CHOHCOOH + 2CO2     (2.10) 

 

Nandi and Sengupta [1998] classified the major hydrogen producing and consuming bacteria 

into: anaerobes (Clostridia, Methylotrophs, Methanogenic bacteria, Rumen Bacteria, 
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Archaea) and facultative anaerobes (Escherichia coli, Enterobacter). In a mixed culture, both 

facultative and anaerobic hydrogen-producing and hydrogen-consuming microorganisms can 

exist. 

 Operational conditions highly affect the bacterial metabolism and consequently 

hydrogen yields. Low hydrogen yields have been achieved in fermentation processes, 

optimized for biomass instead of hydrogen production [Hallenbeck and Benemann, 2002]. In 

order to maximize the hydrogen yield, substrate metabolism should be directed towards the 

production of volatile fatty acids (VFAs) instead of alcohols or lactic acid. The following 

sections will review the main parameters that affect fermentative biohydrogen production. 

 

2.4.2. Factors Affecting Dark Fermentative Bio-Hydrogen Production 

2.4.2.1. pH 

It is important to regulate pH during a biohydrogen production process, because it 

affects the hydrogen production yields and the by-products and microbial community 

structure [Ye et al., 2007; Temudo et al., 2007; Ginkel and Sung, 2001]. Table 2.2 shows the 

optimum initial pH values for various substrates.  

Generally, batch and continuous-flow experiment studies have shown that the initial 

pH has a significant effect on hydrogen yields, hydrogen production rates, and VFAs 

concentrations. However, the trends are not consistent. Optimal hydrogen production was 

achieved at a pH range of 5.0-6.0 for food wastes [Shin and Youn, 2005; Kim et al., 2004], 

while a neutral pH was recommended for crop residues and animal manure [Li and Chen, 

2007; Yokoyama et al., 2007].  

Li and Chen [2007] investigated a wide range of initial pH values varying from 4 to 8 

in batch tests, where optimum conversion of corn straw to biohydrogen with maximum 
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hydrogen production yields occurred at pH of 7.0-7.5. In continuous-flow reactors, pH is 

usually controlled. Shin and Youn [2005] tested pH values in the range of 5.0 to 6.0 using 

food waste in a continuous stirred tank reactor (CSTR) operated at an organic loading rate 

(OLR) of 8 gVS/L-d, HRT of 5 days, and under thermophilic conditions of 55°C and found 

that a pH of 5.5 was optimum for hydrogen production. A similar value was proposed in 

another study using brewery waste in a CSTR operated at an OLR of 70 gCOD/L-d, HRT of 

18 hours, and under mesophilic conditions of 37°C with a pH ranging from 5.0 to 6.5 [Fan et 

al., 2006a]. Using synthetic waste as glucose, sucrose, and starch, most experiments found an 

optimum range for pH of 5.0-6.0 [Lay 2000; Masset et al., 2010; Hwang et al., 2009; Jun et 

al., 2008; Wang et al., 2005], while Lee et al. [2008] found an optimum pH of 7.0 using 

starch in batch experiments. The disagreement on the optimal initial pH is due to differences 

in the inoculums used, substrate type and concentration, and operational temperature. 
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Table 2.2 – Optimal pH for Biohydrogen production 

Substrate Inoculum Reactor 
(So/Xo)1 

Temp. 
°C H2 Yield2 pH 

range 
Optimum 

pHi
Ref. 

Cattle 
wastewater 

Sewage 
sludge 

Batch 
(1.24) 45 12.3 

mmol/gCODconsumed
4.5-7.5 5.5 Tang et al., 

2008 

Food 
waste ADS4 CSTR (8)3 55 

1.83 
mol/molhexose 5-6 5.5 

Shin and 
Youn, 
2005 

Corn 
straw 

Clostridium 
butyricum Batch 35 2.55 

mmol/gsubstrate 
4-8 7-7.5 Li and Chen, 

2007 
Vegetable 
kitchen waste Compost Batch (10) 55 0.4 

mmol/gCOD 5.5-7 6-7 Lee et al., 
2008 

Glucose ADS Batch 
(1.5) 25 0.89 mol/molglucose 6.2-7.5 6.2 Oh et al., 

2003 

Glucose Clostridium 
butyricum Batch 30 1.53 

mol/molglucose 
4.5-7.5 5.2 Masset et al., 

2010 

Glucose ADS Chemostat 
(15)5 35 1.51 

mol/molglucose 
5.5-6.2 5.8 Hwang et al., 

2009 

Glucose River 
sludge Batch (8)5 37 1.63 

mol/molglucose 
5-7 7 Li et al., 

2008 

Starch Clostridium 
butyricum Batch 30 1.8 

mol/molhexose 
4.5-7.5 5.6 Masset et al., 

2010 

Sucrose Sewage 
sludge 

Batch 
(10.7)5 30 4.73 

mmol/gCOD 3-10 5 Jun et al., 
2008 

Sucrose ADS Batch 
(25.9)5 35 3.19 

mol/molsucrose 
4.7-6.0 5.5 Wang et al., 

2005 
1 substrate to biomass ratio (gCOD/gVSS) for batches 
2 H2 Yield*: at standard temperature and pressure (STP) conditions of 0°C and 1 atm 
3 OLR (gVS/L-d) 
4 ADS: Anaerobic digester sludge 
5 Substrate concentration (gCOD/L) 
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In addition, the concentrations of different VFAs vary with pH. Butyrate and acetate 

are the two main by-products of biohydrogen production, and they are favourably produced 

at pH ranging between 4.5 and 6.0 and found that the lower the pH, the greater is the 

butyrate/acetate ratio [Guo et al., 2010]. At neutral or higher pH conditions, ethanol and 

propionate, both of which are not conducive to hydrogen production, were found to 

accumulate [Kim et al., 2004]. Fan et al. [2006a] also found that acetate and butyrate were 

predominant at pH lower than 6.0, while other by-products as propionate and ethanol were 

found at higher pH using brewery as the substrate. This was confirmed by Fang et al. [2006] 

in a study investigating the effect of pH from 4.0 to 7.0 on by-product formation. At low pH, 

butyrate and acetate were dominant products while ethanol, lactate, and propionate appeared 

at higher pHs. In the aforementioned study, the optimal pH was found to be 5.5 with a 

hydrogen yield of 346 mL/gcarbohydrates using rice waste as the substrate. Temudo et al. [2008] 

studied the impact of the pH on metabolic activity and microbial diversity in fermentation 

processes with glucose, xylose, and glycerol at 30°C. The experiments showed that at pH less 

than 6, the by-products consisted mainly of butyrate and acetate while at higher pH above 6, 

the products shifted to acetate and ethanol. It was also noticed in the DGGE analysis that 

under both high and low pH conditions, the fermentation pattern was clearly associated with 

the dominance of Clostridium species, whereas at intermediate pHs, metabolic shifts 

involved higher microbial diversity [Temudo et al., 2008]. Thus, pH not only affects the 

metabolic pathway but also the microbial community. 
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2.4.2.2. Temperature 

 Temperature is one of the most important factors that affect both biohydrogen 

production yields and microbial metabolism [Guo et al., 2010]. Fermentation reactions can 

be operated at mesophilic [Wang and Wan, 2008a], thermophilic [Shin and Youn, 2005], 

extreme thermophilic [van Niel et al., 2002], or hyper-thermophilic conditions [Nakashimada 

and Nishio, 1999]. Within the optimum temperature ranges, hydrogen production increases 

as the temperature increases, but the activity of hydrogen producing bacteria rapidly decrease 

outside the optimum range [Wang and Wan, 2008a]. 

 Table 2.3 summarizes several studies that investigated the optimum temperature for 

biohydrogen production. No specific optimum temperature has been determined for 

biohydrogen production because of the complexity of the wastes as well as the variable 

operating conditions, though most fermentative hydrogen production studies have been 

operated at mesophilic conditions [Guo et al., 2010]. 
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Table 2.3 – Optimal temperature for Biohydrogen production 

Substrate Inoculum Reactor 
(So/Xo)1 pHi H2 Yield2 Temperature 

range (°C) 
Optimum 

(°C) Ref. 

Cow waste 
slurry 

Cow 
waste 
slurry 

Batch - 14.4 
mmol/Lslurry 

37-85 60 Yokoyama et 
al., 2007 

Cattle 
wastewater 

Sewage 
sludge Batch (1.24) 5.5 12.3 

mmol/gCODconsumed 
30-55 45 Tang et al., 

2008 
Rice 
slurry ADS4 Batch 4.5 13.7 mmol/gcarbohydrates 37-55 37 Fang et al., 

2006 

Organic 
waste ADS 

Semi-
continuous 

(11)3 
6.4 13.5 

mmol/gVS 37-55 55 
Valdez-

Vazquez et al., 
2005 

Glucose ADS Batch (0.91) 7.0 10.8 
mmol/gglucose 

20-55 40 Wang and 
Wan, 2008a 

Glucose ADS Batch (10.7)5 5.5 1.45 mol/molglucose 33-41 41 Mu et al., 
2006a 

Sucrose Sewage 
sludge 

Granular 
sludge bed 

reactor (19)5 
6.7 3.38 mol/molsucrose 30-45 40 Lee et al., 

2006 

Sucrose ADS Batch (25.9)5 5.5 3.19 
mol/molsucrose 

25-45 35.1 Wang et al., 
2005 

Xylose Sewage 
sludge 

Chemostat 
(40)5 7.1 1.18 

mol/molxylose 
30-55 50 Lin et al., 

2008 

Starch Sewage 
sludge Batch (10) 6.0 8.34 

mmol/gstarch 
37-55 37 Lee et al., 

2008 
1 substrate- to-biomass ratio (gCOD/gVSS) for batches 
2 H2 Yield*: at standard temperature and pressure (STP) conditions 
3 gVS/Kg-d 
4 ADS: Anaerobic dugester sludge; pHi: Initial pH 
5 Substrate concentration (gCOD/L) 
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 As shown in Table 2.3, although different optimum temperatures were investigated 

for different substrates, most of them were in the range of mesophilic and thermophilic 

conditions between 35 and 60°C [Wang et al., 2005; Yokoyama et al., 2007]. Wang and Wan 

[2008a] investigated a wide range of temperature (20-55°C) for batch glucose fermentation 

using ADS and observed an increase in the volumetric hydrogen production and rate, as well 

as a decrease in the lag phase with the increase in temperature from 20 to 40°C. In the same 

study, the authors reported an increase in the acetate concentration with increasing the 

temperature from 20 to 35°C, and then a decrease with further increase in the temperature till 

55°C. Tang et al. [2008] reported that the optimum temperature for biohydrogen production 

using cattle wastewater to be 45°C, at which they observed higher butyrate and acetate 

concentrations and minimum propionate and ethanol concentrations. These findings were 

consistent with Mu et al. [2006a] who observed the lowest propionate and ethanol 

concentrations with highest acetate and butyrate concentrations at the reported optimum 

temperature of 41°C using glucose as the substrate. 

 Agricultural wastes usually achieve higher yields at thermophilic conditions due to 

the better hydrolysis for the lignocellulosic compounds. Pakarinen et al. [2008] used grass as 

the substrate and achieved maximum hydrogen yield of 16 mL/gVS at 70°C. A wide 

temperature range from 37 to 85°C was investigated by Yokoyama et al. [2007] using cow 

waste slurry as both substrate and inoculum. A maximum hydrogen yield of 392 mL/Lslurry 

was achieved at a temperature of 60°C. DGGE analysis showed that the predominant bacteria 

at 60°C were Clostridium stercorarium and Clostridium thermocellum [Yokoyama et al., 

2007]. The main disadvantage of thermophilic fermentative hydrogen production processes is 

the energy requirement for heating and maintenance [Guo et al., 2010]. 
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2.4.2.3. Inoculum 

 Many studies investigated the use of mixed cultures for fermentative hydrogen 

production. Mixed cultures (can be obtained from many sources such as anaerobic sludge 

digesters [Morimoto et al., 2004; Zhu and Beland, 2006], natural microflora [Ling et al., 

2009; Li et al., 2008] and composts [Ginkel and Sung, 2001; Fan et al., 2004]) for the 

degradation of either simple sugars as glucose and sucrose [Mu et al., 2006a; Zhang et al., 

2005], or complex substrates such as food wastes and brewery mixtures [Chen et al., 2006a; 

Fan and Chen, 2004]. On the other hand, many studies have explored the use of known pure 

cultures for hydrogen production [Lin et al., 2007]. The main advantage of using pure 

cultures is preventing microbial shifts which are problematic in mixed cultures. 

 Many pure cultures have been tested for hydrogen production from different 

substrates. Table 2.4 summarizes selected experiments that used pure cultures for 

fermentative hydrogen production. It was found that Clostridium and Enterobacter genus 

were most widely used than any other genus. Species of genus Clostridium such as C. 

beijerinckii, C. butyricum, C. acetobutylicum, C. pasteurianum are gram-positive, rod-

shaped, strict anaerobes and endospore formers, while Enterobacter species as E. Cloacae 

and E. Aerogenes are gram-negative, rod-shaped, and facultative anaerobes [Li and Fang, 

2007]. Most studies use Clostridium bacteria for its high hydrogen yields [Lin et al., 2007; 

Yokoi et al., 2001]. It is noteworthy that in a DGGE analysis of a mixed culture producing 

hydrogen yield of 1.22 mol/mol hexoseconsumed from sucrose at mesophilic conditions in a 

CSTR revealed the predominance of Clostridium bacteria [Ogino et al., 2005]. 

 Enterobacter cloacae and aerogenes are facultative bacteria that can produce 

hydrogen anaerobically with high hydrogen yields of 2.2 mol/molglucose [Kumar and Das, 

1999] but usually lower than that produced by Clostridium species of 2.81 mol/molglucose [Lin 
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et al., 2007]. The main disadvantage of using pure cultures is the strict sterilization and 

anaerobic media that should be maintained during the process which is impractical on a large 

industrial scale [Hawkes et al., 2002]. Also, to avoid microbial contamination from real 

wastes, most of the studies were done on synthetic wastewater. 
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Table 2.4 – Pure cultures for fermentative hydrogen production 

Inoculum Substrate Reactor H2 Yield 
mol/molsubstrate

Temperature 
(°C) Ref. 

Clostridium beijerinckii Glucose Batch 2.81 35 Lin et al., 2007 
Clostridium beijerinckii Starch Batch 1.80 36 Taguchi et al., 1992 
Clostridium butyricum Glucose Batch 2.29 35 Lin et al., 2007 
Clostridium butyricum Starch Batch 2.40 37 Yokoi et al., 2001 

Clostridium butyricum Glucose Continuous 2.22 37 Heyndrickx et al., 
1990 

Clostridium butyricum Sucrose Batch 2.91 37 Chen et al., 2005 
Clostridium butyricum Xylose Batch 0.73  Lo et al., 2008 
Clostridium acetobutylicum Glucose Batch 1.80 35 Lin et al., 2007 
Clostridium tyrobutyricum Glucose Batch 1.47 35 Lin et al., 2007 

Clostridium pasteurianum Glucose Continuous 2.16 37 Heyndrickx et al., 
1990 

Clostridium thermocellum Lactose Continuous 3.00  Collet et al., 2004 
Clostridium thermocellum Cellulose Batch 0.80 60 Liu et al., 2008 
Clostridium sp. No. 2 Glucose Batch 2.00 36 Taguchi et al., 1993 
Clostridium sp. No. 2 Glucose Continuous 2.36 36 Taguchi et al., 1995 
Clostridium sp. No. 2 Arabinose Batch 2.20 36 Taguchi et al., 1993 
Clostridium sp. No. 2 Xylose Batch 2.10 36 Taguchi et al., 1993 
Clostridium sp. No. 2 Xylose Continuous 2.06 36 Taguchi et al., 1995 
Enterobacter cloacae Glucose Batch 2.20 36 Kumar and Das, 1999 
Enterobacter cloacae Sucrose Batch 6.00 36 Kumar and Das, 1999 
Enterobacter cloacae Cellobiose Batch 5.40 36 Kumar and Das, 1999 
Enterbacter aerogenes Glucose Batch 1.00 35 Yokoi et al., 1995 
Enterbacter aerogenes Sucrose Batch 1.89 35 Yokoi et al., 1995 

Enterbacter aerogenes Glycerol Batch 0.60  Nakashimada et al., 
2002 
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Table 2.4 (cont.) – Pure cultures for fermentative hydrogen production 

Inoculum Substrate Reactor H2 Yield 
mol/molsubstrate

Temperature 
(°C) Ref. 

Enterbacter aerogenes Starch Batch 1.09  Fabiano and Perego, 
2002 

Enterbacter aerogenes Glycerol Batch 0.60  Nakashimada et al., 
2002 

Enterbacter aerogenes Starch Batch 1.09  Fabiano and Perego, 
2002 

Escherichia coli Glucose Batch 2.00  Bisaillon et al.,  2006 
Escherichia coli Glucose Continuous 2.00  Turcot et al., 2008 
Thermotoga elfii Glucose Batch 2.80 65 van Niel et al., 2002 
Thermoanaerobacterium 
thermosaccharolyticum Glucose Batch 2.43 60 O-Thong et al., 2008 

Thermoanaerobacterium 
thermosaccharolyticum Sucrose Batch 5.06 60 O-Thong et al., 2008 

Thermoanaerobacterium 
thermosaccharolyticum Starch Batch 2.80 60 O-Thong et al., 2008 

Enterobacter aerogenes + 
Clostridium butyricum Starch Batch 1.7 37 Yokoi et al., 2001 

Enterobacter aerogenes + 
Clostridium butyricum Starch Batch 540* 36 Yokoi et al., 1998 

Enterobacter aerogenes + 
Clostridium butyricum 

Sweet 
potato Batch   Yokoi et al., 2002 

Clostridium thermocellum 
+ Thermoanaerobacterium 
thermosaccharolyticum 

Cellulose Batch 1.8 60 Liu et al., 2008 

Clostridium acetobutylicum 
+ Ethanoigenes harbinense Cellulose Batch 16.2** 37 Wang et al., 2008 

* Volumetric hydrogen (mL) 
** mmol/gcellulose  
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Mixed cultures have been widely used for biohydrogen production experiments since 

they are simpler to operate, easier to control, and can utilize more varieties of real wastes, 

which makes them more practical [Li and Fang, 2007]. A wide range of microbial sources 

has been used as inocula for biohydrogen production, including anaerobic sludge from 

municipal wastewater plants and cow dung composts [Chu et al., 2008; O-Thong et al., 2008; 

Tang et al., 2008], cattle or dairy residue composts [Fan et al., 2006a; Fan et al., 2004], 

sludge from palm oil mill effluent [Vijayaraghavan and Ahmad, 2006; Chong et al., 2009a], 

soil, rice straw compost, and fermented soy bean meal [Noike and Mizuno, 2000]. 

Biohydrogen production is impacted by the inoculums origin [Akutsu et al., 2008]. Tang et 

al., [2008] compared four different natural mixed microflora of sludge from sewage 

treatment, cow dung compost, chicken manure compost, and river sludge for fermentative 

hydrogen production from cattle wastewater, and concluded that sewage sludge achieved the 

highest hydrogen production. 

In order to increase the hydrogen yield, some studies used mixed pure cultures. Yokoi 

et al., [1998, 2001, 2002] used a mixture of Clostridium and Enterobacter species to avoid 

using L-cysteine, which is an expensive reducing agent used to assure completely anaerobic 

conditions for Clostridium bacteria. Liu et al., 2008] used two thermophilic anaerobic 

bacteria to produce hydrogen from cellulose. Clostridium thermocellum cannot completely 

utilize the cellobiose and glucose produced by the degradation of cellulose with a hydrogen 

yield of 0.8 mol/molglucose in a monoculture batch, with lactate as the main by-product. 

However, when Clostridium thermocellum was co-cultured with Thermoanaerobacterium 

thermosaccharolyticum, hydrogen yield increased to 1.8 mol/molglucose and butyrate was the 

main by-product while lactate was not detected. Wang et al., [2008] observed no lag phase in 

hydrogen production batches when using a co-culture of Clostridium acetobutylicum and 
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Ethanoigenes harbinense. Ethanoigenes harbinense rapidly removed the reduced sugar 

produced by cellulose hydrolysis by Clostridium acetobutylicum, hence improved cellulose 

hydrolysis and hydrogen production rates.  

 

2.5. Laboratory Bioreactors Used for Bio-Hydrogen Production 

In laboratory scale, most studies for biohydrogen production are conducted in batch 

reactors Pakarinen et al., 2008, Fan et al., 2006b], since they are easily operated and 

efficiently controled. However, from an industrial perspective, continuous-flow bioreactors 

should be more investigated for practical and economic considerations. Continuous-flow 

hydrogen production reactors include completely mixed, packed-bed, fluidized-bed, 

sequencing batch reactor, trickling biofilter, and membrane bioreactors. Table 2.5 shows 

different bioreactors configurations for biohydrogen production using various substrates. 
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Table 2.5 – Reactors configuration for Biohydrogen production 

Reactor Substrate Inoculum
OLR 

(gCOD/L-
d) 

HRT 
(h) H2 Yield* Temperature 

(°C) Ref. 

Batch Molasses Soil - - 4.18 
mmol/gCOD 26 Logan et al., 

2002 

SBR Sucrose WAS 88  1.15 
mol/molhexose

35 Lin and Jo, 
2003 

ASBR Food waste ADS 27 24 2.51 
mmol/gVS 35 Kim and Shin, 

2008 

CSTR Sugar factory 
wastewater Compost - 12 11.8 

mmol/gCOD 60 Ueno et al., 
1996 

CSTR Noodle 
wastewater ADS - 18 7.44 

mmol/gCOD 35 Noike 2002 

CSTR Sugar beet 
wastewater ADS - 15 8.68 

mmol/gCOD 32 Hussy et al., 
2005 

PBR 
Sugar & ethyl 

alcohol 
wastewater 

ADS - 8 - 37 Kim 2002 

UASB Sucrose WAS 52  1.95 
mol/molhexose

 Fang et al., 
2002 

SCRD Food waste 
Anaerobic 
granular 
sludge 

- - 2.54 
mmol/gVS 40 Wang and 

Zhao, 2009 

Biohydrogenator Corn syrup ADS 81 8 17 
mmol/gCOD 37 Hafez et al., 

2009b 

SBHR Glucose ADS 46 12 1.85 mol/mol 37 
Elbeshbishy 
and Nakhla, 

2011 
CSTR: continuous stirred tank reactor; PBR: packed-bed reactor; ADS: anaerobic digester sludge; SBR: sequencing batch 
reactor; UASB: up-flow anaerobic sludge blanket reactor; WAS: waste activated sludge; SCRD: semi-continuous rotating 
drum; SBHR: sonicated biological hydrogen reactor 
*H2 Yield at STP conditions 
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Guo et al. [2010] indicated that no biohydrogen industrial scale reactor has been set 

up, but expected to be similar in design and system configuration to methane plants 

bioreactors. However, biohydrogen production reactors will differ in the operational 

conditions. CSTRs are the most common design for anaerobic hydrogen production studies 

[Kotsopoulos et al., 2009; Lay 2001]. Other studies reported successful hydrogen production 

in anaerobic sequencing batch reactors [Lin and Jo, 2003; Kim and Shin, 2008]. Jayalakshmi 

et al. [2009] set up a 0.15 m3 inclined plug-flow pilot scale bioreactor fed kitchen waste at 7 

Kg/day using heat treated biogas-plant slurry as inoculum.  The plant achieved a 40% VS 

destruction efficiency and a hydrogen yield of 72 mL/gVSadded. 

In a conventional CSTR, biomass is well suspended in the liquid and therefore the 

solid retention time (SRT) is the same as the hydraulic retention time (HRT). At short HRTs 

of 3-8 hours, biomass washout can occur due to high dilution rates [Hafez et al., 2009a]. To 

overcome this problem, decoupling of SRT from HRT has been achieved by using biofilms 

on different media such as activated carbon, glass beeds [Zhang et al., 2006], and by using 

membranes [Vallero et al., 2005]. Fang et al. [2002] achieved a hydrogen yield of 2.2 

mol/molhexose in an up-flow anaerobic sludge blanket reactor (UASB), using sucrose as the 

substrate at an HRT of 6 hours. The problem with UASBs is its long start-up time, as well as 

problems with particle granulation. Hafez et al. [2009b] introduced a novel system for 

biohydrogen production that included a gravity settler with a completely-mixed biohydrogen 

reactor for decoupling of SRT from HRT. Using corn syrup as the substrate, the 

aforementioned authors achieved a maximum hydrogen yield of 430 mL/gCOD at a loading 

rate of 81 gCOD/L.d and HRT of 8 days. Another novel system was introduced by 

Elbeshbishy and Nakhla [2011] by integrating an ultrasonic probe in a CSTR and was called 

sonicated biological hydrogen reactor (SBHR). The authors compared biohydrogen 
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production from glucose at a loading rate of 46 gCOD/L.d and HRT of 2 days using a 

conventional CSTR with the SBHR and found that hydrogen yield was enhanced from 1.2 to 

2.1 mol/molglucose in the CSTR and the SBHR, respectively. 

 

2.6. Bio-Hydrogen Production Challenges 

Biological hydrogen production processes are increasing in popularity because they 

can utilize renewable energy resources, and can usually be operated at ambient temperature 

and atmospheric pressure [Cai et al., 2004]. However, the reported biohydrogen production 

rates, stabilities and efficiency of these processes are still insufficient to make them 

commercially viable. Major challenges need to be overcome so as to transfer hydrogen 

production process from laboratory to industrial scale [Kotay and Das, 2008; Das et al., 

2008]. These challenges are: 

• Insufficient knowledge on the metabolism of hydrogen producing bacteria 

• Low yields obtained using renewable biomass 

• Sensitivity of hydrogenase to oxygen and hydrogen partial pressure that leads to low 

hydrogen yields 

• High cost of suitable feedstock (glucose) or processing biomass feed stocks 

• Hydrogen separation, purification, and storage 

• A lack of understanding on the improvement of economics of the process by 

integration of hydrogen production with other processes 
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2.7. Two-Stage Anaerobic Digestion Process 

Separating the acidogenic and methanogenic steps in the anaerobic digestion process, 

provides enhanced stability to the different groups of microorganisms and better process 

control [Demirel and Yenigun, 2002]. The purpose of a two-stage anaerobic digestion system 

is not only to further degrade waste, but also to extract more net energy from the system 

[Thompson 2008]. In a single-stage anaerobic digestion process, a variety of higher organic 

acids, such as propionic, butyric, and lactic, as well as alcohols and ketones, are formed 

during the breakdown of the organic substrates by acidogens. However, in a well operated 

process, these products are mostly converted to acetic acid and hydrogen, which, in turn, are 

converted to methane gas [Cooney et al., 2007]. On the other hand, in a two-stage anaerobic 

digestion process, the end products from acidification stage are usually ideal for anaerobic 

treatment with high VFAs concentrations [Pavan et al., 2000]. 

Vinas et al. [1993] used a two-stage process and achieved an increase in the methane 

production yield of 13% over the single-stage process using a cellulosic material as the 

substrate. Similarly, Rincon et al. [2009] achieved an increase of 10% by employing a two-

stage process in methane yield using olive mill solid residue as the substrate over the single-

stage process. Although acidification stage was used in many studies as a pretreatment for 

anaerobic digestion, biohydrogen production was not considered in the first stage. 

 Despite their higher loading rates, improved process stability and flexibility, there are 

relatively few commercial two-stage anaerobic digestion units. The added complexity and 

expense of building and operating commercial two-stage systems have so far counteracted 

the yield and rate enhancements [Rapport et al., 2008]. The theoretical higher biogas yields 

have also been questioned since the acidogenic phase separation prevents the hydrogen to 

methane pathway [Reith et al., 2003]. 
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 In the acidification stage, a variety of VFAs by-products are produced. In a 

biohydrogen production process, the larger the acetate to butyrate ratio the higher the 

hydrogen yield [Hafez et al., 2010a], which indicates that the hydrogen-producing acetate 

and butyrate pathways were favoured rather hydrogen consuming pathways. It is well known 

that in a methane reactor, 67% of the methane is produced by acetate-utilizing methanogens 

and 33% is produced by hydrogenophilic methanogens [Kotsyurbenko et al., 2004]. Many 

studies investigated the effect of pH and HRT on hydrogen production and concluded that the 

optimum pH is 5.5 and optimal HRT is in the range of 3-8 hours [Hafez et al., 2009b]. In 

addition, the by-products were primarily acetic, which is favourable for acetate-utilizing 

methanogens [Kotsyurbenko et al., 2004], and butyric acids [Hafez et al., 2010b], On the 

other hand, a wide range of pH (4.5-7) and HRT (2-5 days) was reported for the acidification 

stage with negligible hydrogen production and presence of by-products such as lactic acid, 

propionic acid, or ethanol that are not as favourable as acetate for methane production 

[Elbeshbishy and Nakhla, 2011; Takashima and Tanaka, 2010]. Therefore, the more acetate 

produced in the first stage (i.e. more hydrogen produced), the more methane produced in the 

second stage, which emphasises the importance of maximizing the first stage for hydrogen 

production and not for acidification only, which will subsequently maximize the methane 

production in the second stage.   

 In a two-stage anaerobic digestion, Elbeshbishy and Nakhla [2011] studied the impact 

of food waste treatment by sonication in the first stage of hydrogen production on the second 

stage methane production. For the first stage of hydrogen production, the aforementioned 

authors observed an increase in the hydrogen yield by 27% for the sonicated feed over the 

unsonicated one, accompanied with an increase of 28% and 53% in the acetate and butyrate 

concentrations, respectively. In the second stage, they observed an increase of 17% in the 
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methane yield as a result of sonication. The aforementioned authors also compared the 

performance of a conventional single and two-stage anaerobic digestion processes with 

unsonicated substrate. They observed a 39% increase in the methane production rate in the 

two-stage over the single-stage process. 

Cooney et al. [2007] also studied the effect of different dilution rates in the first stage 

of hydrogen production on both hydrogen and methane yields in the first and second stage 

respectively. The authors used glucose as the substrate and conventional anaerobic digester 

sludge as the inoculums. By increasing the dilution rate from 2 to 2.5 d-1, they observed an 

increase in the hydrogen production rate by 53% in the first stage, followed by an increase in 

the methane production rate by 60% in the second stage. A further increase in the dilution 

rate to 3 d-1 lead to a sharp decrease in both hydrogen and methane production rates by 29% 

and 11% , respectively, which emphasizes the impact of the first stage on the second stage in 

a two-stage anaerobic digestion process. 

Anaerobic hydrogen production achieves low COD removal efficiencies [Mohan 

2009; Chong et al., 2009b], however when followed by a second stage methane production, 

the overall COD reduction efficiency increases over that in a single stage anaerobic digestion 

process [Park et al., 2010]. Elbeshbishy and Nakhla [2011] achieved an increase of 16% in 

the overall COD reduction efficiency from food wastes using a two-stage anaerobic digestion 

process over a single-stage operating at an HRT of 2 days for a hydrogen production CSTR 

and 7 days for the methane digester.  

 

2.8. Bio-Hydrogen Production Modeling 

Mathematical models are very important to provide information such as the type and 

concentration of substrate and VFAs, headspace pressure release methods, pH, and 



39 
 

temperature; i.e, how the different factors affecting biohydrogen production processes impact 

system performance. For the design and optimization of bioreactors the conventional “one 

factor at-a-time” experimental optimization method is ineffective, since it does not take into 

consideration the interaction between these factors. Some studies investigated the combined 

effect of two variables such as pH and substrate concentrations [Ginkel and Sung, 2001; Li et 

al., 2008], temperature and pressure release methods [Gadhamshetty et al., 2009], and pH 

and sulphate concentration [Hwang et al., 2009] on the biohydrogen production process. 

However, it is very difficult to conduct studies with more than three variables [Gadhamshetty 

et al., 2010]. 

Most studies on biohydrogen production modeling used modified Gompertz equation 

for batch experiments (Equation 2.11) [Elbeshbishy et al., 2010; Wang and Wan, 2009a; 

Gadhamshetty et al., 2010]. The modified Gompertz equation is an empirical formula, which 

includes three parameters that are used to fit the equation: lag time, hydrogen production 

potential, and hydrogen production rate as shown below: 

 

 P ൌ P୫ୟ୶ exp ቄെexp ቂୖౣ౮ୣ
ౣ౮

ሺλ െ tሻ  1ቃቅ    (2.11) 

 

where P is the cumulative hydrogen production, Pmax is the maximum cumulative hydrogen 

production, Rmax is the maximum hydrogen production rate, λ is the lag time, and t is the 

fermentation time. 

Although high correlation coefficients are obtained between observed and predicted 

data [Ginkel and Sung, 2001], the model has limited predictive ability. In addition, due to the 

empirical nature of the model, it does not take into consideration the effect of many 



40 
 

important parameters such as the substrate concentration, pH, and temperature. Some studies 

used the modified Gompertz model to describe the progress of the biomass growth, VFAs 

concentration and substrate degradation, where P denoted the cumulative degraded substrate, 

cumulative biomass growth value, or cumulative VFA concentration, and Pmax denoted the 

maximum cumulative degraded substrate, maximum cumulative HPB growth value, or 

maximum cumulative VFA concentration [Mu et al., 2006b]. 

Some studies used the modified Logistic model (Equation 2.12), which has a very 

similar curve to that of Gompertz model to describe hydrogen production in batch tests 

[Wang and Wan, 2008b; Nath et al., 2008]. Mu et al. [2007a] compared the ability of the 

modified Gompertz model, modified Logistic model, and modified Richards  to describe the 

biomass growth in batch tests and concluded that the modified Gompertz was the most 

suitable model. Other studies used the conventional Monod kinetics to describe the 

biohydrogen production rates [Lee et al., 2008; Zheng and Yu, 2005] or the biomass growth 

[Kumar et al., 2000; Nath et al., 2008]. 

 

  H ൌ  ୌౣ౮
ଵାୣ୶୮ሾସୖౣ౮ሺି୲ሻ/ୌౣ౮ାଶሿ     (2.12) 

 

where H is the cumulative hydrogen value, Hmax is the maximum cumulative hydrogen value, 

Rmax is the maximum rate of hydrogen production, λ is the lag time, and t is the fermentation 

time. 

The Anaerobic Digestion Model 1 (ADM1) is a mechanistic model that integrates biokinetics 

with association-dissociation, gas-liquid transfer, and cellular processes involving hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis [Batstone et al., 2002]. ADM1 was 
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successfully used for describing methane production in many studies [Jeong et al., 2005; 

Antonopoulou et al., 2012]. Peiris et al. [2006] modified the ADM1 to describe biohydrogen 

production by adding two intermediate products (lactate and ethanol) that were excluded 

from the model due to their low impact on the methanogenic process. The modified model 

was able to predict the bioreactor pH well but failed to predict the hydrogen and biomass 

yields accurately. The problems with the aforementioned empirical models include: 

• Inability to predict the process with various input parameters 

• Limited number of parameters taken into consideration when studying the 

interactive effects among them 

Furthermore, the main criticism of the complex mechanistic ADM model is its extensive 

input of kinetic and stoichiometric parameters. 

 

2.8.1. Artificial Neural Network for Bio-Hydrogen Production Modeling 

Artificial Neural Network (ANN) is a mathematical representation of the neurological 

functioning of a brain. It simulates the brain’s learning process by mathematically modeling 

the network structure of interconnected nerve cells [Nagata and Chu, 2003]. ANN is a 

powerful modeling tool for problems where the parameters that govern the results are either 

not defined properly or too complex [Flood and Kartam, 1994]. It is able to describe the 

interactive effects among these different parameters in a complicated bioprocess [Wang and 

Wan, 2009b]. ANN is capable of modeling these complex relationships between input and 

output parameters without requiring a detailed mechanistic description of the phenomena that 

is governing the process [Shi et al., 2010].  

A typical neural network has an input layer, one or more hidden layer, and an output 

layer. The neurons in the hidden layer, which are linked to the neurons in the input and 
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output layers by adjustable weights, enable the network to compute complex associations 

between the input and output variables [Nagata and Chu, 2003]. Training the model is the 

process of determining the adjustable weights and it is similar to the process of determining 

the coefficients of a polynomial by regression. The weights are initially selected in random 

and an iterative algorithm is then used to find the weights that minimize the differences 

between the model-calculated and the actual outputs. 

The most commonly used algorithm in ANN is the back propagation [Nagata and 

Chu, 2003]. In this training algorithm, the error between the model results of the output 

neurons and the actual outputs is calculated and propagated backward through the network. 

The algorithm adjusts the weights in each successive layer to reduce the error. This 

procedure is repeated until the error between the actual and network-calculated outputs 

satisfies a pre-specified error criterion [Nagata and Chu, 2003]. 

 ANN has gained an increasing consideration in wastewater treatment and biogas 

production [Cinar et al., 2006; Choi and Park, 2001; Chen et al., 2008; Lemoine et al., 2003; 

Wang et al., 2009]. Hamed et al., [2004] used ANNs to model the effluent biochemical 

oxygen demand (BOD) and suspended solids (SS) concentration at a major wastewater 

treatment plant. Another use for the ANN was to predict the effluent wastewater quality 

parameters such as effluent COD or total Kjehldahl nitrogen (TKN) concentrations [Aguado 

et al., 2006]. 

A few studies in the literature investigated the modeling of biohydrogen production in 

batch studies using ANN. Wang and Wan [2009b] studied the effects of temperature, initial 

pH, and glucose concentration on fermentative hydrogen production by mixed cultures in 

batch tests. The ANN model successfully described the effects of these parameters on the 

substrate degradation efficiency, hydrogen yield, and average hydrogen production rate. 
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Shi et al. [2010] presented a back propagation neural network (BPNN) that accurately 

predicted the steady-state performance of bioreactors for biohydrogen production using sugar 

refinery wastewater in an integrative biological reactor (IBR), which is the integration of a 

CSTR and a UASB reactor. The model consisted of 4 neurons in the input layer of volume 

loading rate (VLR), oxidation-reduction potential (ORP), alkalinity, and pH, three neurons in 

a single hidden layer, and hydrogen production rate as the output of the model. 

Another continuous flow system performance was simulated using ANN by Mu and 

Yu 2007b]. A model was designed, trained and validated to predict the steady-state 

performance of a granular-based hydrogen-producing UASB reactor. OLR, HRT, and 

influent bicarbonate alkalinity were the model inputs, while the output variable was either 

hydrogen concentration, hydrogen production rate, hydrogen yield, effluent total organic 

carbon, or effluent aqueous products including acetate, propionate, butyrate, valerate, and 

caporate. The model effectively described the daily variations of the UASB reactor 

performance and predicted the steady-state performance at various substrate concentrations 

and HRTs. 
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CHAPTER 3 

Bio-Hydrogen Production from Thin Stillage using Conventional and Acclimatized 

Anaerobic Digester Sludge 

3.1. Introduction 

Hydrogen production from renewable substrates is rapidly emerging as an alternative 

to fossil fuels, since it has triple the energy yield of hydrocarbon fuels [Rifkin 2002] and 

produces only water with no CO, CO2, hydrocarbons, or fine particles when combusted [Liu 

2008]. Hydrogen can be produced in many ways: electrolysis, photolysis, bio-photolysis, 

photo-fermentation, or dark fermentation. Fermentative technology is well established, and 

the co-products in dark fermentative hydrogen production are valuable (e.g. organic acids). 

Hence, dark fermentation is the most commonly used method in biological hydrogen 

production, especially when combined with waste treatment [Mizuno et al., 2000]. 

Thin stillage, the main by-product of the fermentation process in a conventional 

ethanol plant, is a strong candidate for biological hydrogen production. It is characterized by 

high chemical oxygen demand (COD) of up to 100 g/L, volatile solids (VS) of 60 g/L 

[Schaefer and Sung, 2008], volatile suspended solids (VSS) of 21 g/L, volatile fatty acids 

(VFAs) of 1.31 g/L [Khanal et al., 2005], and total carbohydrates of 65% (based on dry 

mass) [Mustafa et al., 2000]. In a conventional ethanol plant, a portion of the thin stillage is 

re-circulated back to fermentation tanks in order to minimize waste discharge. The 

recirculation of thin stillage reduces water intake and subsequently waste disposal, increases 

corn processing capacity, and reduces nutrient and buffer requirements [Ahn et al., 2011]. 

The main concern with thin stillage recirculation without any treatment is the accumulation 

of fermentation inhibitors (acetate, lactate, glycerol and ethanol) in the fermentation tank 
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[Julian et al., 1990]. Therefore, treating thin stillage could facilitate the maximization of 

recirculation rates by improving its characteristics. 

In the context of biohydrogen, the high suspended solids concentration of thin stillage 

is problematic, as it may necessitate long contact times to hydrolyze particulate 

carbohydrates. The optimum hydraulic retention time (HRT) for biohydrogen production 

ranges from 4 to 8 hours [Wu et al., 2008; Hafez et al., 2010a]. Furthermore, the food-to-

microorganisms (F/M) ratio is a critical parameter that affects hydrogen production with 

hydrogen yield increasing linearly at F/M ratios of 4 to 6.6 gCOD/gVSS.d [Hafez et al., 

2010a]. For particulate wastes, the computation of F/M ratio is complicated as the VSS 

impacts both the food and microorganisms calculations. It is thus not surprising that given 

the challenges of biohydrogen production from thin stillage, searches on Google Scholar, 

Scifinder, and Engineering Village data bases with keywords “thin stillage, biohydrogen 

production, and particulate waste” revealed that no previous work has been conducted on 

hydrogen production from thin stillage. Furthermore, as apparent from Table 3.1 there are 

only a handful of studies on biohydrogen production from particulate wastes [Pan et al., 

2008; Chen et al., 2006a; Yu et al., 2002; Lay et al., 2010]. 

For batch experiments, the initial substrate concentration (So) represents the carbon 

and energy source for biosynthesis requirements and other energy purposes, while the initial 

biomass concentration (X°) is the microorganisms responsible for substrate utilization [Liu 

1996]. The So/Xo ratio reflects the initial energy level of batch cultivation. There is strong 

evidence that this ratio directly affects the growth patterns of microorganisms [Speece et al., 

1973]. As apparent from Table 3.1, the extensive work by Pan et al. [2008] indicated that as 

the value of So/Xo ratio increases from 1 to 6 gVSsubstrate/gVSseed, hydrogen production 

potential increases then decreases beyond an So/Xo ratio of 6. 
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Table 3.1 - Hydrogen production potentials and yields for different So/Xo ratios using different substrates and biomass in batch 
experiments 

Substrate Seed So/Xo
a

H2 
Production 
Potential 

(mL) 

Max. Hydrogen Yield Ref. 

mol/molsubst L/Lsubstrate mL/gCODadded  

Food waste ADSb 1c 10    Pan et al., 2008 
  2 25     
  3 55     
  4 163     
  5 250     
  6 360     
  7 175     
  8 30     
  9 10     
  10 5     

Food waste ADS 7.8 70   101 Chen et al., 2006a 

Rice Winery ADS   2.14   Yu et al., 2002 

PFSSd ADS 0.09  2.64   Lay et al., 2010 

Brewery 
mixture Grass compost 0.62    10.2 Morimoto et al., 2004 

  1.08    12.8  
  2.12    19.3  
  4    24.9  
  6.4    19.8  

a So/Xo ratio calculated based on gTCODsubstrate/gVSSsludge 
b ADS: Anaerobic digester sludge 
c So/Xo ratio was calculated based on gVSsubstrate/gVSsludge in Pan et al. [2008] 
d PFSS: Preserved fruits soaking solution 



65 
 

 
Table 3.1 (cont.) - Hydrogen production potentials and yields for different So/Xo ratios using different substrates and biomass in 

batch experiments 

Substrate Seed So/Xo
a

H2 
Production 
Potential 

(mL) 

Max. Hydrogen Yield Ref. 

mol/molsubst L/Lsubstrate mL/gCODadded  

Sucrose ADSb    1.23  Wang & Wan, 2008 
 ADS   3.18   Kumar & Das, 2000 
 ADS   2.59   Kumar & Das, 2000 
 ADS   2.73   Oh et al., 2003 
 Compost      Ueno et al., 2001 

Glucose ADS 1  3.09   Zhang et al., 2005 
 Sludge   1.6   Zhu & Beland, 2006 
 Sludge compost   2.1   Zhu & Beland, 2006 
 Clostridium sp.   2.8   Liu 1996 

 Enterobacter 
cloacae IIT-BT 08   2.2   Speece et al., 1973 

 Actinomyces spp.   1.21   Elbeshbishy et al., 2010 
 Clostridium st.   1.17   Elbeshbishy et al., 2010 
 Porphyromonas sp.   1.08   Elbeshbishy et al., 2010 

Arabinose Clostridium sp. Strain   2.3   Liu 1996 
Xylose Clostridium sp. Strain   2.3   Liu 1996 

Cellobiose Enterobacter cloacae 
IIT-BT 08   5.4   Speece et al., 1973 

Fructose Enterobacter cloacae 
IIT-BT 08   1.6   Speece et al., 1973 

Cellulose Sludge compost   2c   Ozkan et al., 2010 
a So/Xo ratio calculated based on gTCODsubstrate/gVSSsludge 
b ADS: Anaerobic digester sludge 
c mol/mol hexose 



66 
 

The impact of microbial cultures on biohydrogen production from soluble substrates 

is well documented in the literature is evidenced in Table 3.1. For example, biohydrogen 

production from glucose varied from 1.08 mol H2/mol glucose [Oh et al., 2003] to 3.09 mol 

H2/mol glucose [Wang and Wan, 2008]. As expected, and due to lack of data on specific 

populations, hydrogen yields varied considerably even for a specific substrate/microorganism 

system, as demonstrated in Table 3.1. The hydrogen yields from glucose using Clostridium 

species varied from 1.17 mol H2/mol glucose [Oh et al., 2003] to 2.8 mol H2/mol glucose 

[Taguchi et al., 2000]. 

Typically, the design of biological treatment systems is predicated on batch and 

continuous flow studies. For biohydrogen processes, the focus has been predominantly on 

batch studies due to concerns with long-term stability of continuous-flow systems associated 

with contamination due to methanogens in the feed. In such cases, batch studies are biased 

because they are conducted on pre-treated seed biomass as opposed to the enriched cultures 

that prevail in sustained continuous-flow systems. Pretreatment of anaerobic digester sludge 

is required primarily to restrain the hydrogen consuming bacteria and enrich the hydrogen 

producing bacteria, and this can be done by several methods such as heat, acid, base, 

aeration, or ultrasonication pretreatment [Elbeshbishy et al., 2010]. Acclimatization of 

anaerobic digester sludge to enrich the hydrogen producers in a hydrogen bioreactor, where 

methanogens are washed out and hydrogen producers become the predominant community in 

the sludge in continuous-flow systems [Hafez et al., 2010a; Ozkan et al., 2010], is the most 

representative microbial culture for assessment of biohydrogen production potential from 

various substrates. An extensive search in Google Scholar, Scifinder, and Engineering 

Village data bases using keywords “biohydrogen production, acclimated sludge, acclimatized 

sludge, anaerobic digester sludge, fermentative hydrogen batches” revealed that no previous 
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work has been conducted on hydrogen production in batch experiments using acclimatized 

anaerobic digester sludge from a continuous-flow biohydrogen system. 

The main objectives of this study are threefold: assessment of the viability of 

biohydrogen production from thin stillage, comparative evaluation of anaerobic digester 

sludge (ADS) and acclimatized anaerobic digester sludge (AADS) for biohydrogen 

production, and determination of the optimal So/Xo ratio and maximum hydrogen production 

potential. 

 

3.2. Materials and methods  

3.2.1. Seed sludge 

ADS was collected from the primary anaerobic methane digester at Guelph’s 

wastewater treatment plants (Guelph, Ontario, Canada) and used as seed sludge for the first 

run (sludge from methane reactor). The total suspended solids (TSS) and volatile suspended 

solids (VSS) concentrations of the ADS were 22.9 and 13.2 g/L respectively. Heat 

pretreatment for the ADS was conducted by heating the sludge at 70˚C for 30 minutes [Hafez 

et al., 2010a]. AADS was collected from a continuous flow biohydrogen system with 

aforementioned ADS seed. The continuous system ran for 10 days with a flow of 15 L/d, 

using glucose as a substrate with a concentration of 30 g/L and anaerobic digester sludge as a 

seed at hydraulic retention time (HRT) of 8 hrs and solids retention time (SRT) of 42 hrs. 

The TSS and VSS concentrations of the AADS were 10.9 and 9.4 g/L respectively.  

 

Microbial community analysis 

Biomass samples for the AADS were collected from the continuous flow system at 

the end of the acclimatization period for microbial community analysis. The total genomic 
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community DNA was extracted using UltraClean Soil DNA Isolation Kit (MO BIO 

Laboratories, Carlsbad, CA, USA) and after PCR amplification were analyzed by denaturing 

gradient gel electrophoresis (DGGE). For further details refer to Hafez et al. [2010a]. 

 

3.2.2. Raw thin stillage (substrate) 

Raw thin stillage was used as the substrate to assess the hydrogen production rates. 

Table 3.2 lists the different characteristics of the raw thin stillage measured in quadruplicates.   

 

Table 3.2 - Raw thin stillage characteristics 
Parameter 
(mg/L) 

Raw Thin Stillage Quality 
(Av. ± SD) 

TS  71500 ± 724 
VS 64800 ± 595 
TSS 36900 ± 486 
VSS 35300 ± 437 
TCOD 122000 ± 1400 
SCOD 60600 ± 450 
TBOD 68600 ± 800 
SBOD   20800 ± 3300 
TVFAs 12320 ± 860 
Glucose   285 ± 10 
Soluble Carbohydrates   35200 ± 1200 
Total Carbohydrates   41200 ± 1600 
NH3-N    202 ± 6.7 
NO3 -N      16 ± 1.5 
pH  3.46 
Alkalinity (CaCO3) Not measured (pH < 4.3) 

 

3.2.3. Batch experiments 

Batch anaerobic studies were conducted in serum bottles with a liquid volume of 250 

mL and head space volume of 60 mL. Experiments were conducted in triplicates for initial 
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substrate-to-biomass (So/Xo) ratios of 0.5, 1, 2, 4, 6 and 8 gCODsubstrate/gVSSseed. Volumes of 

thin stillage and sludge used in batches were calculated using the following Equation: 

 

 So/Xoൌ
౪ሺሻכ୦୧୬ ୗ୲୧୪୪ୟୣ େୈ ሺౝ

ైሻ

౩ሺሻכୗ୪୳ୢୣ ୗୗ ሺౝ
ైሻ

     (3.1) 

 

where Vt is the volume of thin stillage and Vs is the volume of sludge, and Table 3.3 shows 

the volumes used in bottles for each So/Xo ratio. The initial pH value for the mixed solution 

in each bottle was adjusted using HCl and measured to be 5.47±0.04 for both runs. A 5 g/L 

buffer solution (NaHCO3) was also added for pH control. 

 

Table 3.3 - Volumes of seed and substrate used in bottles 
So/Xo ADS AADS 

(gCOD/gVSS) Vt (mL) Vs (mL) Vt (mL) Vs (mL) 
0.5 15 235 9 241 
1 30 220 16 234 
2 50 200 30 220 
4 80 170 54 196 
6 100 150 73 177 
8 120 130 89 161 

 

Ten milliliter samples of the mixtures were collected initially. The head space was 

flushed with oxygen-free nitrogen gas for a period of 2 min and capped tightly with rubber 

stoppers. The bottles were then placed in a swirling-action shaker (Max Q4000, Incubated 

and Refrigerated Shaker, Thermo Scientific, CA) operating at 180 rpm and maintained at a 

temperature of 37°C. Two control bottles were prepared using ADS and AADS without thin 

stillage for both runs respectively. Final samples were taken at the end of the batch 

experiment. The final pHs for the mixed solution in each bottle were measured to be 

5.05±0.15 for both runs. 
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3.2.4. Analytical methods  

The biogas production was measured using suitable sized glass syringes in the range 

of 5-100 mL where the gas was released from headspace of the serum bottles to equilibrate 

with the ambient pressure [Owen et al., 1979]. The biogas composition including hydrogen, 

methane, and nitrogen was determined by a gas chromatograph (Model 310, SRI 

Instruments, Torrance, CA) equipped with a thermal conductivity detector (TCD) and a 

molecular sieve column (Mole sieve 5A, mesh 80/100, 6 ft × 1/8 in). . Argon was used as the 

carrier gas at a flow rate of 30 mL/min and the temperatures of the column and the TCD 

detector were 90°C and 105°C, respectively. Total volatile fatty acids (TVFAs), as well as 

total and soluble chemical oxygen demand (TCOD, SCOD) were measured using HACH 

methods and test kits (HACH Odyssey DR/2500 spectrophotometer manual) [Hafez et al., 

2010b]. TSS and VSS concentrations were analyzed using standard methods [APHA 1995]. 

Soluble parameters were determined after filtering the samples through 0.45 µm filter paper. 

 

3.2.5. Data analysis 

Hydrogen gas production was calculated from head space measurements of gas 

composition and the total volume of biogas produced at each time interval, using the mass 

balance Equation: 

VH,i = VH,i-1 + CH,i * VG,i     (3.2) 

where VH,i and VH,i-1 are cumulative hydrogen gas volumes at the current (i) and previous (i-

1) time intervals, VG,i is the total biogas volume in the current time intervals, CH,i is the 

fraction of hydrogen gas in the headspace of the bottle measured using gas chromatography 

in the current time interval. 
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3.3. Results and Discussion 

3.3.1. Hydrogen Production 

Figures 3.1 and 3.2 show the cumulative hydrogen production at different So/Xo ratios 

for both runs using ADS and AADS, respectively. Standard deviation values were not shown 

on the curve since the coefficients of variation (calculated as standard deviation divided by 

the average) in both runs were approximately less that 10%. In the ADS batches as the So/Xo 

ratio increased from 0.5 to 2 gCOD/gVSS, hydrogen production rapidly increased from 49 

mL at So/Xo ratio of 0.5 gCOD/gVSS to a maximum of 386 mL at So/Xo ratio of 2 

gCOD/gVSS after which it decreased to 163 mL with further increase in So/Xo ratio. This 

behavior is consistent with another study [Pan et al., 2008] that used food waste as a substrate 

and anerobic digester sludge as the seed, where a wide range of So/Xo ratios from 1 to 10 

gVSfeed/gVSseed was studied in mesophilic batch fermentation tests. In the aforementioned 

study, hydrogen production initially increased at high So/Xo ratios and reached a maximum of 

357 mL at an So/Xo ratio of 6 gVSfeed/gVSseed, then decreased at So/Xo ratios greater than 6 

gVSfeed/gVSseed. In the AADS batches, the same behavior was observed and a maximum 

hydrogen production of 1974 mL (5 times the ADS batches) was achieved at an So/Xo ratio 

of 6 gCOD/gVSS. The type of sludge also affected the biogas composition, with the 

maximum hydrogen content of the headspace in batches using ADS and AADS reaching 

54% and 69%, respectively. 
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3.3.2. Hydrogen Yields 

Figure 3.3 shows the hydrogen yield based on the total carbohydrates converted for 

batches using both ADS and AADS. As depicted in Figure 3.3, for the ADS batches, a low 

hydrogen yield of 130 mL H2/gT-carb.converted was obtained at So/Xo ratio of 0.5 gCOD/gVSS 

which is due to insufficient feed, after which hydrogen yield stabilized at an average of 248 

mL H2/gT-carb.converted within the So/Xo ratio of 1 - 2 gCOD/gVSS before declining to an 

average of 90 mL H2/ gT-carb.converted at So/Xo ratios of 4 - 8 gCOD/gVSS. On the other hand, 

the hydrogen yields for the AADS batches followed the same aforementioned trend but the 

optimum range of So/Xo ratio was 3 - 6 gCOD/gVSS and a maximum yield of 470 mL 

H2/gT-carb.converted was achieved. However, considering the 5% standard deviation of 

hydrogen gas production, it is likely that the optimum So/Xo range is between 3 - 6 

gCOD/gVSS. This trend is similar to that observed by Pan et al. [2008] who used food waste 

as the substrate and anaerobic digester sludge as the seed, where the hydrogen yield 

increased slowly to a maximum of 39 mL H2/gVS at So/Xo ratio of 6 gVSfeed/gVSseed prior to 

decreasing to almost zero at So/Xo ratio of 8 gVSfeed/gVSseed and higher. In addition, in 

another study [Chen et al., 2006a], the same trend was observed in batches using seed sludge 

from a local anaerobic digester and food waste as the substrate, with a maximum yield of 101 

mL H2/gCOD at So/Xo ratio of 7.68 gCOD/gVSS. The differences in the optimum So/Xo 

ratios in the literature can be attributed to the differences in the waste type and characteristics 

as well as the anaerobic digester sludges. 
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Table 3.4 - Summary of initial and final batches data 
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ADS 

0.5 2.5 1.0 60 0.38 0.7 2.7 8.6 130 3.3 
1 5.0 1.3 74 0.94 1.5 6.4 20.3 235 7.3 
2 8.4 2.5 70 1.47 2.5 11.8 31.6 260 7.6 
4 13.4 7.4 45 1.51 3.9 12.9 26.8 110 2.1 
6 16.8 10.1 40 1.68 4.9 16.2 27.9 90 1.5 
8 20.2 12.1 40 2.02 5.9 14.5 23.3 80 1.3 

AADS 

0.5 4.4 2.2 50 0.55 0.4 3.6 9.8 220 8.1 
1 6.4 2.2 65 1.04 0.8 6.8 17.5 300 11.3 
2 10.0 2.2 78 1.95 1.5 11.8 27.6 360 14.0 
4 15.4 1.5 90 3.47 2.7 24.0 47.1 470 19.5 
6 19.2 2.3 88 4.22 3.6 29.5 53.6 450 17.7 
8 22.0 11.0 50 2.75 4.4 21.4 31.5 200 4.4 

a Initial total carbohydrates   c Initial total volatile fatty acids 
b Final total carbohydrates   d Final total volatile fatty acids 
 

To assess the acidification efficiency, total volatile fatty acids (TVFAs) were 

measured for both sets of batches. The maximum final TVFAs concentrations were 16.2 

gCOD/L and 29.5 gCOD/L for the ADS and the AADS, respectively corresponding to the 

maximum hydrogen yield and carbohydrates conversion efficiency at an So/Xo ratio of 6 

gCOD/gVSS. On the other hand, TVFAs constituted 10% of the TCOD of the raw thin 

stillage, (Table 3.2). However, the percentage of TVFAs increased to 27.9% and 53.6% of 

the TCOD at the end of the batches for ADS and AADS, respectively, at So/Xo ratio of 6 

gCOD/gVSS (Table 3.4).   
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Table 3.5 shows the kinetics from the Gompertz model [Lay et al., 1999] for both 

batches using ADS and AADS. The coefficient of determination R2 was 0.999 for all 

Gompertz data. It is apparent that the lag phase in the AADS batches with an average of 2.3 

hours is much lower than that in the ADS batches with an average of 4.4 hours and this also 

can be related to the increase in the percentage of hydrogen producers in the AADS relative 

to the ADS. The maximum hydrogen production rate in batches using ADS was 18.4 mL/hr 

at So/Xo ratio of 1 gCOD/gVSS which is one third the 57.9 mL/hr in batches using AADS at 

So/Xo ratio of 4 gCOD/gVSS. The trend of an increase to the maximum followed by a decline 

at higher So/Xo ratio is consistent with the findings of Pan et al. [2008] who observed an 

increase in the hydrogen production rate with the increase of So/Xo ratio to a maximum of 

19.5 mL/hr at an So/Xo ratio of 5 gVSfeed/gVSseed, followed by a decrease with further 

increase in the So/Xo ratio. A correlation (not shown) of the biomass specific production rate 

for ADS and AADS (R2 of 0.72) revealed that over the range of So/Xo ratios that was studied, 

the active biomass (hydrogen producers) in the AADS is 3.5 times than that of the ADS 

calculated based on the specific hydrogen production rates for both sludges. 

 

Table 3.5 - Gompertz data for both ADS and AADS batches 
ADS AADS 

So/Xo 
(gCOD/gVSS) 

Pa 
(mL) 

Rm
b 

(mL/hr) 
λc 

(hr) 
SHPRd

(mL/gVSS.d) 
P 

(mL) 
Rm 

(mL/hr) 
λ 

(hr) 
SHPR 

(mL/gVSS.d) 
0.5 49 4.8 4.5 37 121 11.5 1.7 78 
1 220 18.4 3.3 152 311 28.9 2.2 208 
2 386 16.8 2.8 153 704 38.9 2.3 311 
4 159 16.9 3.6 181 1676 57.9 2.4 538 
6 150 6.6 6.1 80 1974 52.1 2.5 585 
8 163 6.1 6.1 85 550 33.8 2.6 433 

a P: Ultimate hydrogen production 
b Rm: Rate of hydrogen production 
c λ: Lag phase duration 
d SHPR: Specific hydrogen production rate 
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3.3.4. COD Balance 

COD mass balance data is presented in Table 3.6. The closure of COD balances at 

88±4 % verifies the reliability of the data.  The percentage average COD reduction was 12±4 

% for the ADS batches and 16±7 % for the AADS batches. COD reduction increased at So/Xo 

ratios from 0.5 to 2 gCOD/gVSS and reached a maximum of 16 % at So/Xo ratio of 2-4 

gCOD/gVSS in batches using ADS, and 24 % at So/Xo ratio of 4 gCOD/gVSS in batches 

using AADS after which it decreased at higher So/Xo ratios. As apparent from Table 3.6, in 

batches using ADS, although at an So/Xo ratio of 8 gCOD/gVSS, the COD removed was 10.5 

g/L (14%), at an So/Xo ratio of 4 gCOD/gVSS the COD removed was 9.2 g/L (16 %). 
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Table 3.6 - Summary of COD balance 
So/Xo CODinitial CODfinal COD removed cumulative H2 H2 COD balancea

(gCOD/gVSS) g/L g/L g/L mL gCOD/L % 

ADS 

0.5 32.7 30.7 2.0 49 0.14 94 
1 38.4 31.5 6.9 220 0.63 84 
2 46.0 37.3 8.7 386 1.10 84 
4 57.4 48.2 9.2 159 0.48 85 
6 65.0 58.1 6.9 150 0.43 90 
8 72.6 62.1 10.5 163 0.46 86 

AADS 

0.5 39.0 36.6 2.4 121 0.35 95 
1 43.3 38.8 4.4 311 0.90 92 
2 51.0 42.7 8.3 704 2.02 88 
4 62.7 51.0 11.7 1676 4.68 89 
6 70.9 55.0 14.1 1974 5.46 85 
8 76.9 68.0 8.9 550 1.58 90 

a COD balance (%) = [H2 (gCOD) + CODfinal (gCOD)] / [CODinitial (gCOD)] 
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3.3.5. Microbial Community 

Hafez et al. [2010a] conducted DGGE analysis for the AADS  and the profiles of the 

16S rDNA gene fragments are demonstrated in Figure 3.6. Table 3.7 shows the results of the 

sequence affiliation. The results revealed that Clostridium acetobutyricum (band A), 

Klebsiella pneumonia (band B), uncultured bacteria (DQ464539.1) and (DQ414811.1) for 

bands F and G, respectively, were the main identified bands for the AADS. Clostridium 

acetobutyricum and Klebsiella pneumonia are frequently reported as candidates for hydrogen 

production [Hafez et al., 2010a; Liu and Fang, 2007; Kim et al., 2006a,b; Chen et al., 2006b]. 

In addition, another hydrogen producers including Clostridium butyricum (band C), a 

Clostridium acetobutyricum affiliated strain (band D) and Clostridium pasteurianum (band 

E) were detected. In a continuous system for biohydrogen production, Hafez et al. [2010a] 

have shown that high hydrogen yields can be achieved using Clostridium butyricum and 

Clostridium pasteurianum. 
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Figure 3.6 - DGGE profile of the 16S rDNA gene fragments for the AADS [Hafez et al., 

2010a] 
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Table 3.7 - Affiliation of denaturing gradient gel electrophoresis (DGGE) fragments 

determined by their 16S rDNA sequence 

Affiliation (accession no.) Bands Similarity (%) AADS

Clostridium acetobutyricum (FM994940.1) A 99 × 

Klebsiella pneumonia (GQ214541.1) B 100 × 

Clostridium butyricum (DQ831124.1) C 99 × 

Clostridium acetobutyricum (FM994940.1) D 95 × 

Clostridium pasteurianum (GQ214541.1) E 99 × 

Uncultured bacterium (DQ464539.1) F 96 × 

Uncultured bacterium (DQ414811.1) G 97 × 

 

3.4. Conclusions 

 The outcome of this study revealed the importance of using AADS over the 

conventional ADS in hydrogen batches. It is highly recommended to use acclimatized 

sludges from a continuous-flow system to assess biohydrogen production from a particular 

waste as opposed to the most widely used technique of batch studies with pretreated 

anaerobic digester sludge. Based on the findings of this study, the following conclusions can 

be drawn: 

• Thin stillage has a potential for hydrogen production with a yield of 19.5 L H2/L thin 

stillage with AADS while tests with ADS only revealed a maximum potential of 7.5 

L H2/L thin stillage. 

• The optimum experimental range of So/Xo ratio for hydrogen production is 1 to 2 

gCODsubstrate/gVSSseed using conventional ADS. 

• The optimum experimental range of So/Xo ratio for hydrogen production within the 

investigated range is 3 to 6 gCODsubstrate/gVSSseed using AADS. 
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• The biomass specific hydrogen production rate for the AADS was 3.5 times higher 

than that of the ADS throughout the range of So/Xo ratio that was studied. 

• The DGGE profiles of the 16S rDNA gene fragments for the AADS confirmed its 

superior performance over the ADS where, hydrogen producers such as Clostridium 

acetobutyricum, Klebsiella pneumonia, Clostridium butyricum and Clostridium 

pasteurianum were the predominant species that were detected. 
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CHAPTER 4 

Comparative Assessment of Single-Stage and Two-Stage Anaerobic Digestion for the 

Treatment of Thin Stillage 

4.1. Introduction 

Some processes employed in the production of renewable biofuels, such as, 

bioethanol can result in significant pollution problems. In a typical bioethanol plant process, 

up to 20 liters of stillage can be generated during fermentation for each liter of ethanol 

produced [van Haandel and Catunda, 1994]. Thin stillage is characterized by high total 

chemical oxygen demand (TCOD) of up to 122 g/L, biological oxygen demand (BOD) of up 

to 70 g/L, volatile solids (VS) of 60 g/L [Schaefer and Sung, 2008; Nasr et al., 2011] and 

total carbohydrates of 65% (based on dry mass) [Mustafa et al., 2000]. Therefore, it is a 

strong candidate for anaerobic digestion. Usually, due to solids build up and toxicity to yeast 

by lactic acid, acetic acid, glycerol and sodium, less than 50% of thin stillage is recycled as 

fermentation broth (called backset in the corn-to-ethanol industry) [Egg et al., 1985; 

Shojaosadati et al., 1996; Julian et al., 1990; Pejin et al., 2009]. 

In a single-stage anaerobic digestion, Stover et al. [1984] observed promising 

performances from mesophilic digestion of thin corn stillage (64.5 gTCOD/L; 32.2 gTS/L) in 

both suspended growth and fixed-film systems with a methane yield ranging from 0.22 to 

0.33 m3/kg TCODremoved (STP) that could replace 60% of the daily energy requirement of the 

bioethanol plant. One pilot scale upflow anaerobic sludge blanket (UASB) reactor achieved 

76% TCOD removal with 0.33 m3 CH4/kgTCOD removed. It was also used for a corn 

ethanol plant as a stillage pretreatment step before aerobic trickling filters; however influent 

wastewater TCOD was only 3.6 g/L [Lanting and Gross, 1985]. 
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Separating the acidogenic and methanogenic steps in the anaerobic digestion process, 

provides enhanced stability to the different groups of microorganisms and better process 

control [Demirel and Yenigun, 2002]. The purpose of a two-stage anaerobic digestion system 

is not only to further degrade waste, but also to extract more net energy from the system 

[Thompson, 2008]. In a single-stage anaerobic digestion process, a variety of higher organic 

acids, such as propionic, butyric, and lactic, as well as alcohols and ketones, are also formed 

during the breakdown of the organic substrates by acidogens. However, in a well operated 

process, these products are mostly converted to acetic acid and hydrogen, which, in turn, are 

converted to methane gas [Cooney et al., 2007]. On the other hand, in a two-stage anaerobic 

digestion process, the end products from acidification stage using thin stillage are ideal for 

anaerobic treatment with total volatile fatty acids (TVFAs) that can reach 29.5 gCOD/L 

[Pavan et al., 2000; Nasr et al., 2011]. 

Vinas et al. [1993] achieved a methane production yield of 0.31 L/gCODremoved (STP) 

in a two-stage process with an increase of 13% over the single-stage process using a 

cellulosic material as the substrate. Also, Rincon et al. [2009] achieved an increase of 10% 

using olive mill solid residue as the substrate. Although both studies used acidification stage 

as a pretreatment for anaerobic digestion, they did not consider biohydrogen production. 

 Despite of their higher loading rates, improved process stability and flexibility, there 

are relatively few commercial two-stage anaerobic digestion units. The added complexity and 

expense of building and operating commercial two-stage systems have so far counteracted 

the yield and rate enhancements [Rapport et al., 2008]. The theoretical higher biogas yields 

have also been questioned since the acidogenic phase separation prevents the hydrogen to 

methane pathway [Reith et al., 2003]. 
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The main objective of this research is to compare and evaluate the methane 

production from thin stillage in single-stage and two-stage anaerobic digestion processes, by 

investigating the effect of the acidogenic stage with hydrogen production on the methane 

production in batch studies under mesophilic conditions, and to determine if there is a 

significant difference in potential energy yields between single-stage and two-stage anaerobic 

digestion systems. 

 

4.2. Materials and methods  

4.2.1. Seed sludge 

Anaerobic digester sludge (ADS) was collected from the primary methane digester at 

Guelph’s wastewater treatment plant (Guelph, Ontario, Canada) and was used as seed sludge 

for the single-stage anaerobic digestion and the second stage of the two-stage anaerobic 

digestion for methane production. The total suspended solids (TSS) and volatile suspended 

solids (VSS) concentrations of the ADS were 22.9 and 13.2 g/L, respectively. Acclimatized 

anaerobic digester sludge (AADS) was collected from a continuous-flow biohydrogen system 

[Nasr et al., 2011]. The 15 L/d continuous-flow system was run for 10 days, using 30 g/L 

glucose as a substrate and heat pretreated ADS as a seed at a hydraulic retention time (HRT) 

of 8 h and solids retention time (SRT) of 42 h. The TSS and VSS concentrations of the 

AADS were 10.9 and 9.4 g/L, respectively. 

 

4.2.2. Feed (substrate) 

Raw thin stillage was used as the substrate to assess its hydrogen and methane 

production potentials. For the single-stage methane production and the first stage hydrogen 

production, raw thin stillage was used as the substrate with TCOD, TVFAs, TSS, and VSS of 
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122, 12.3, 36.9, and 35.3 g/L, respectively. Detailed characteristics of the raw thin stillage 

have been reported elsewhere [Nasr et al., 2011]. Hydrogen batch tests were tested at an 

initial substrate-to-biomass ratio (So/Xo) of 4, 6, and 8 gCOD/gVSS based on the TCOD of 

the thin stillage and seed sludge VSS concentration [Nasr et al., 2011]. After the hydrogen 

production stage, the bottles of the three different So/Xo ratios were left for three hours to 

settle and the supernatant was then used as substrate for the second stage methane 

production. TCOD of the supernatants from So/Xo ratios of 4, 6, and 8 gCOD/gVSS 

described below were 49.6, 51.5, and 53.3 g/L, respectively.  

 

4.2.3. Batch experiments  

Hydrogen and methane batch anaerobic experiments were conducted in serum bottles 

with a liquid volume of 250 mL and head space volume of 60 mL. Table 4.1 shows the 

volumes of substrates and sludges used in bottles and initial pH for each stage. For hydrogen 

production as a first stage, the experiments were conducted in triplicates for initial (So/Xo) 

ratios of 4, 6 and 8 gTCODsubstrate/gVSSseed using AADS as the seed and raw thin stillage as 

the substrate [Nasr et al., 2011]. For methane production, the experiments were conducted in 

triplicates for an initial So/Xo ratio of 2 gCOD/gVSS using ADS as the seed and the 

supernatant from the hydrogen production stage as the substrate. The volumes of thin stillage 

and supernatant as substrates and ADS and AADS as seeds used in batches were calculated 

using the following Equation: 

 

So/Xo = [Vsubstrate (L) * TCODsubstrate (g/L)] / [ Vsludge (L) * VSSsludge (g/L)]  (4.1) 
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where Vsubstrate is the volume of substrate and Vsludge is the volume of sludge. Buffer 

(NaHCO3) with concentrations of 5 g/L and 12 g/L were added for pH control in both 

hydrogen and methane batches, respectively. The initial pH for the mixed solution in each 

bottle was subsequently adjusted using HCl or NaOH and measured to be 5.47±0.04 for 

hydrogen batches and 7.17±0.07 for methane batches.  

Initially, 10 mL samples of the mixtures were collected. The head space was flushed 

with oxygen-free nitrogen gas for a period of 2 min and capped tightly with rubber stoppers. 

The bottles were then placed in a swirling-action shaker (Max Q4000, Incubated and 

Refrigerated Shaker, Thermo Scientific, CA) operating at 180 rpm and maintained at a 

temperature of 37°C. Two control bottles of seed material only, without substrate, were 

prepared using ADS for methane production runs and one control bottle using AADS for 

hydrogen production run. Final samples were taken at the end of the batch experiment.  
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Table 4.1 - Volumes of substrate and sludge used in batches 

 So/Xo 
(gCOD/gVSS) 

Vsubstrate 
(mL) 

Vsludge 
(mL) 

 
pHinitial 

 
Single-stage CH4 

production 
(using ADS) 

 2 45 205 7.17±0.05

Two-stage 
CH4 

production 

1st stage H2 production 
(Run A) 

(using AADS) 

A1 
A2 
A3 

4 
6 
8 

54 
73 
89 

196 
177 
161 

5.47±0.05 
5.48±0.02 
5.50±0.01

2nd stage CH4 production 
(Run B) 

(using ADS) 

B1 
B2 
B3 

2  from 
4 
6 
8 

67 
65 
64 

183 
185 
186 

7.18±0.06 
7.16±0.08 
7.18±0.05
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4.2.4. Analytical methods  

The biogas production was measured by releasing the gas pressure in the vials using 

appropriately sized glass syringes (Perfektum; Popper & Sons Inc., NY, USA) in the 5-100 

mL range to equilibrate with the ambient pressure [Owen et al., 1979]. The composition of 

biogas including hydrogen, methane, and nitrogen was determined by employing a gas 

chromatograph (Model 310, SRI Instruments, Torrance, CA) equipped with a thermal 

conductivity detector (TCD) and a molecular sieve column (Mole sieve 5A, mesh 80/100, 6 

ft × 1/8 in). The temperatures of the column and the TCD detector were 90°C and 105°C, 

respectively. Argon was used as the carrier gas at a flow rate of 30 mL/min. TVFAs, TCOD, 

and SCOD were measured using HACH methods. TSS and VSS concentrations were 

analyzed using standard methods [APHA, 1995]. Soluble parameters were determined after 

filtering the samples through 0.45 µm filter paper. 

 

4.2.5. Data analysis 

Hydrogen and methane gas productions were calculated from head space 

measurements of gas composition and the total volume of biogas produced at each time 

interval, using the mass balance Equation: 

 

VX,i = VX,i-1 + CX,i * VG,i     (4.2) 

 

where VX,i and VX,i-1 are cumulative hydrogen or methane gas volumes at the current (i) and 

previous (i-1) time intervals, VG,i is the total biogas volume in the current and previous time 

intervals, CX,i is the fraction of hydrogen or methane gas in the headspace of the bottle 

measured using gas chromatography in the current time interval. 
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4.3. Results and Discussion 

4.3.1. Biogas production 

The first stage (i.e. acidogenic stage) was carried out with three different So/Xo ratios 

of 4, 6, and 8 gCOD/gVSS (runs: A1, A2, and A3) as described in detail by Nasr et al. 

[2011]. Figure 4.1 shows the hydrogen production rates achieved for runs A1, A2, and A3 

with ultimate hydrogen production potentials of 1676, 1974, and 550 mL, respectively. It can 

be inferred from the Figure that as the So/Xo ratio increased from 4 to 6 gCOD/gVSS, 

hydrogen production rate increased from 47 mL/hr to 62 mL/hr, respectively, after which it 

decreased significantly to 28 mL/hr at So/Xo ratio of 8 gCOD/gVSS. This trend is consistent 

with another study that observed the same pattern of maximum hydrogen production at food 

to microorganism (F/M) ratio of 6 gCOD/gVSS-d followed by a sharp decline at higher F/M 

ratios [Hafez et al., 2010a].   

It is noteworthy that in the single-stage anaerobic digestion process, there was no 

hydrogen gas detected with methane gas production. The COD degradation was 80% 

complete in the single-stage experiments (A runs) after 28 days while in the two-stage 

experiments (B runs), it took only 17.5, 17.8, and 16.7 days to reach 80% degradation for the 

three runs B1, B2, and B3, respectively. Therefore, a shorter SRT can be attained in the two-

stage anaerobic digestion process leading to improvement in the overall performance of the 

anaerobic digestion. The final pHs for the mixed solution in each bottle were measured and 

found to be 7.56±0.01 for methane runs and 5.05±0.15 for the hydrogen runs. 
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Figure 4.1 - H2 production rates for the acidogenic step in the two-stage batches 

 

4.3.2. Hydrogen and methane yields 

Tables 4.2 and 4.3 show the summary for initial and final batches data in both single-

stage and two-stage anaerobic digestion experiments. Figure 4.2 shows the methane yield 

during the single-stage and two-stage anaerobic digestion of thin stillage. Standard deviation 

values were less than 10% for all experimental data. In the two-stage anaerobic digestion, the 

methane yields based on COD removed were 321, 333, and 317 mL CH4/gCODremoved (STP) 

for the methanogenic batches of runs B1, B2, and B3, respectively. On the other hand, a 

methane yield of only 268 mL CH4/gCODremoved (STP) was achieved in the single-stage 

experiment. The maximum methane yield of 333 mL/gCODremoved (STP) was 24% higher 

than the yield achieved in the single-stage experiment compared to an increase of 9.8% 

achieved by Rincon et al. [2009] and 13.3% by Vinas et al. [1993]. 
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Table 4.2 - Samples characteristics for the single-stage anaerobic digestion batches at So/Xo 
ratio of 2 gCOD/gVSS 

CH4 pHfinal 
TCODi CH4 Yield 

(mL) (mg/L) (LCH4/gCODsubstrate-initial) (LCH4/Lthin stillage) 
1299 5.05±0.15 35483 0.3 29 

 

Table 4.3 - Samples characteristics for the two-stage anaerobic digestion batches 
(methanogenic step) at So/Xo ratio of 2 gCOD/gVSS 

From pHfinal 
CH4 TCODi CH4 Yield 

So/Xo
a (mL) (mg/L) (LCH4/gCODsubstrate-initial) 

4 7.57±0.01 1020 27060 0.37 
6 7.55±0.01 1073 27780 0.38 
8 7.54±0.02 1035 26853 0.36 
a from the acidogenic stage (hydrogen production) 

 

 
Figure 4.2 - CH4 yield for single and two-stage batches 

 

 Figure 4.3 shows the maximum methane production rates for the single and two-

stage anaerobic digestion processes. The methane production rate in the two-stage anaerobic 

digestion was higher than that in the single-stage process. Maximum methane production 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 500 1000 1500 2000 2500

C
H

4
Y

ie
ld

 (L
C

H
4/g

C
O

D
su

bs
tr

at
e-

in
iti

al
)

Time (hr)

4

6

8

Single‐Stage

from S°/X°
gCOD/gVSS

Two‐
Stage



99 
 

rates of 3.67, 3.88, and 3.78 mL CH4/hr were achieved in the three runs B1, B2, and B3, 

respectively, which were 38% higher than the 2.82 mL CH4/hr in the single-stage 

experiment. 

 

 
Figure 4.3 - CH4 production rates for single and two-stage batches 

 

In the single-stage anaerobic digestion, the methane yield based on the thin stillage 

COD added was 0.26 L/gCODadded (STP) as compared to 0.33 L/gCODadded (STP) in the two-

stage anaerobic digestion process. Lee et al. [2011] reported a methane yield of 0.22 

L/gCODadded (STP) using corn thin stillage of TCOD 131 g/L in a single-stage anaerobic 

digestion process. After correcting for the methane produced from the blank (inoculum only), 

the volumetric yield of thin stillage used was 26 L CH4/Lthin stillage (STP) in the single-stage 

experiment. Yields based on thin stillage used were not calculated for the two-stage 

anaerobic digestion since the substrate used was the supernatant from the acidogenic step and 

not raw thin stillage.  
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In the first step of the two-stage anaerobic digestion process, hydrogen yields of 557, 

478, and 247 mL/gCODremoved were achieved in the acidogenic step for runs A1, A2, and A3, 

respectively [Nasr et al., 2011].  

 

4.3.3. Volatile fatty acids 

After the hydrolysis stage, the acid forming bacteria ferment glucose to produce a 

mixture of VFAs of acetic, butyric, and propionic acids [Batstone et al., 2002] according to 

the reactions: 

 

C6H12O6 + 2H2O → 2CH3COOH (acetic) + 4H2 + 2CO2    (4.3) 

C6H12O6 → CH3(CH2)2COOH (butyric) + 2H2 + 2CO2    (4.4) 

C6H12O6 + 2H2 → 2CH3CH2COOH (propionic) + 2H2O    (4.5) 

3C6H12O6 → 4CH3CH2COOH (propionic) + 2CH3COOH (acetic) + 2CO2 + + 2H2O  

           (4.6) 

 

The TVFAs measured for the final samples after the acidogenic step were 24, 29.5, 

and 21.4 gCOD/L for So/Xo ratios of 4, 6, and 8 gCOD/gVSS, respectively. The hydrogen 

potential from So/Xo ratio of 8 gCOD/gVSS (run A3) was around one third for the other two 

So/Xo ratios (runs A1 and A2), and the hydrogen yield based on COD removed was less than 

half the hydrogen yields in runs A1 and A2. However, the final TVFAs for run A3 were 

87.5% and 72.4% of the final TVFAs for runs A1 and A2, respectively.  

It is noteworthy that in the methanogenic phase of the two-stage anaerobic digestion 

process, the concentration of TVFAs in the influent accounted for 53.6% of the TCOD, while 

TVFAs in the single-stage anaerobic digestion influent was only 10% of the TCOD. Since it 
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is widely known that in methanogenesis 67% of the methane is produced by acetate-utilizing 

methanogens and 33% is by hydrogenophilic methanogens [Kotsyurbenko et al., 2004], the 

importance of separating the acidification phase in a two-stage anaerobic digestion process, 

is emphasized. 

 

4.3.4. Anaerobic biodegradability 

 The extent of anaerobic biodegradability (BDCH4) of thin stillage can be calculated 

from the experimental methane yield, taking into consideration the theoretical methane yield 

of 0.35 L/gCOD  (STP) [Raposo et al., 2011], i.e.: 

 

  BDCH4 (%) = (Bo exp/ Bo th) * 100     (4.7) 

 

where Bo exp is the experimental methane potential (L) and Bo th is the theoretical methane 

potential (L) based on the initial TCOD of thin stillage. The anaerobic biodegradability of 

thin stillage was 88.2% in the single-stage anaerobic digestion and 99% in case of the two-

stage anaerobic digestion. This emphasizes that indeed the acidogenic step enhanced the 

anaerobic biodegradability of thin stillage. 

Anaerobic digestion is commonly described as a first-order reaction, and can be 

expressed as: 

 

ln [(Bo-B)/Bo] = - k t       (4.8) 

 

where t is the digestion time (d), k is the first order kinetic constant (d-1), Bo is the methane 

potential at the end of the experiment, and B is the methane production at time t [Chen and 
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Hashimoto, 1978]. In the single-stage anaerobic digestion, the value of the kinetic constant k 

was 0.05 d-1, while in the two-stage anaerobic digestion a kinetic constant of 0.07 d-1 was 

achieved. 

 

4.3.5. Hydrogen and methane energy yields 

COD destruction efficiencies during the methanogenic stage were relatively low at 

43-53% due to the high initial So/Xo value of 2 gCOD/gVSS, and accordingly are not 

representative of continuous flow digestion which operates at SRTs of 15 days and loadings 

of 0.15-0.30 gCOD/gVSS-d. To compare the performance of single-stage vs. two-stage 

digestion, energy outcome from both systems was calculated using the following 

assumptions: theoretical methane yield of 0.35 L CH4/gCODconsumed  (STP), energy content of 

hydrogen and methane of 142 kJ/ghydrogen (equivalent to 12.8 kJ/Lhydrogen) [Cai et al., 2004] 

and 50 kJ/gmethane (equivalent to 35.8 kJ/Lmethane) [Ogden, 2002], respectively, and COD 

destruction efficiency of 80% in the single stage anaerobic digestion process [Elbeshbishy 

and Nakhla, 2011] and an overall COD destruction efficiency of 90% in the two-stage 

process [Blonskaja et al., 2003; Vinas et al., 1993; Hafez et al., 2010b]. One liter of thin 

stillage in a single-stage continuous-flow anaerobic digestion process generates 38.5 liters of 

methane which is equivalent to 1380 kJ. On the other hand, one liter of thin stillage in a two-

stage continuous-flow anaerobic digestion process generates 19.5 liters of hydrogen in the 

first stage and 38.7 liters of methane in the second stage which is equivalent to a total of 

1635 kJ with an 18.5% increase in the energy yield. Similarly, Luo et al. [2011] observed an 

11% increase in overall energy yield in a thermophilic two-stage hydrogenic and 

methanogenic digestion of thin stillage as compared to a single-stage thermophilic system.  
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The advantages of two-stage over single-stage mesophilic digestion of waste 

activated sludge (i.e. higher organic stabilization and gasification rates and efficiencies, 

enhanced net energy production, and greater pathogen kills) have been known for decades 

[Ghosh et al., 1995]. The fundamental difference between the conventional two-stage 

anaerobic digestion process with acidification as a first stage and a two-stage process with 

hydrogen production in the first stage is the optimization of hydrogen production with 

respect to environmental and operational conditions in the latter one. Many studies 

investigated the pH and HRT effect on hydrogen production and concluded that the optimal 

pH is 5.5 and optimal HRT is in the range of 3-8 hours [Li and Fang, 2007]. Recently, 

Kvesitadze et al. [2012] has confirmed that thermophilic hydrogen production from the 

organic fraction of municipal solid wastes in batches at pH 5.5 peaked at 8 hours. On the 

other hand, A wide range of HRT (2-5 days) was reported for the acidification stage with 

negligible hydrogen production [Elbeshbishy and Nakhla, 2011; Takashima and Tanaka, 

2010]. 

 

4.4. Conclusions 

The use of two-stage digestion for the treatment of thin stillage led to an increase in 

the TVFAs to TCOD ratio from 10% to 56.8% due to the acidification process during 

hydrogen production in the first stage. The methane yield in the anaerobic digestion stage 

increased from 0.26 L CH4 / g CODadded to 0.33 L CH4 / g CODadded. Comparison of energy 

outcome from both digestion scenarios revealed that an overall increase of 18.5% in energy 

yield can be achieved in the two-stage digestion due to the enhancement in methane yield 

and the additional energy produced from hydrogen gas.  
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CHAPTER 5 

Application of Artificial Neural Networks for Modeling of Bio-Hydrogen Production  

5.1. Introduction 

Dark fermentative hydrogen production is a promising method for biohydrogen 

production since it has higher production rates than other processes, and utilizes a wide range 

of renewable feedstock [Mizuno et al., 2000]. Many factors can influence the fermentative 

process such as the inoculum type and concentration, substrate type and concentration, 

reactor configuration, temperature, and pH because they affect the activity and type of the 

hydrogen producing bacteria [Wang and Wan, 2009a].  

To date, hydrogen is not commercialized as an energy source but it is widely used as 

a chemical reactant in the production of fertilizers, diesel refining, and industrial synthesis of 

ammonia [Guo et al., 2010]. It has been well documented that modeling fermentative 

hydrogen production process is one of the most critical requirement for improving our ability 

to predict the biohydrogen yield [Prakasham et al., 2011]. Modeling the biohydrogen process 

is very important so as to provide information on the different factors affecting biohydrogen 

production processes. 

Experimental optimization methods such as the “One-factor-at-a-time” are 

ineffective, time and materials consuming and they do not take into consideration the 

interaction between these factors. Some studies investigated the combined effect of two 

variables such as pH and substrate concentrations [Ginkel and Sung, 2001; Li et al., 2008], 

temperature and pressure release methods [Gadhamshetty et al., 2009], and pH and sulphate 

concentration [Hwang et al., 2009] on the biohydrogen production process. Ginkel and Sung 

[2001] tested the effect of varying pH (4.5 – 7.5) and substrate concentration (1.5 – 44.8 
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gCOD/L) and their interaction on hydrogen production in batch tests using compost as the 

seed microflora and sucrose as the substrate. The aforementioned authors achieved maximum 

hydrogen production of 74.7 mL/L-h at pH 5.5 and substrate concentration of 7.5 gCOD/L. 

These findings were consistent with Li et al. [2008] who observed optimum conditions of pH 

6.0 and substrate concentration of 8 gCOD/L to achieve a hydrogen yield of 1.83 

mol/molglucose using seed sludge from a river bed and glucose as the substrate. Gadhamshetty 

et al. [2009] investigated two different pressure release methods for hydrogen batches, 

intermittent pressure release (IPR) and continuous pressure release (CPR), each at 

temperatures of 22°C and 37°C. The IPR method at 22°C gave the maximum hydrogen yield 

of 4.3 mol/molsucrose. The effect of varying sulphate concentration (0-20 g/L) with pH (5.5-

6.2) on continuous fermentative hydrogen production were investigated using anaerobic 

digester sludge (ADS) growing on glucose in a chemostat reactor [Hwang et al., 2009]. The 

aforementioned authors found optimum conditions of pH 5.5 and sulphate concentration of 3 

g/L to produce maximum hydrogen production rate of 2.8 L/d. 

Mathematical models can be empirical as the modified Gompertz equation, which has 

been widely used for batch fermentative biohydrogen production  [Elbeshbishy et al., 2010; 

Wang and Wan, 2009b; Gadhamshetty et al., 2010]. The modified Gompertz equation 

includes three parameters that are used to fit the equation; lag time, hydrogen production 

potential, and hydrogen production rate. Due to the empirical nature of the model, it does not 

take into consideration the effect of many important parameters such as the substrate 

concentration, pH, and temperature. Other mathematical models were derived from the 

conventional kinetic equations of Monod to describe the biohydrogen production rates [Lee 

et al., 2008; Zheng and Yu, 2005] or the biomass growth [Kumar et al., 2000; Nath et al., 

2008]. 
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Artificial Neural Network (ANN) is a mathematical representation of the neurological 

functioning of a brain. It simulates the brain’s learning process by mathematically modeling 

the network structure of interconnected nerve cells [Nagata and Chu, 2003]. ANN is a 

powerful modeling tool for problems where the parameters that govern the results are either 

not defined properly or too complex [Flood and Kartam, 1994]. It is able to describe the 

interactive effects among these different parameters in a complicated bioprocess [Wang and 

Wan, 2009c]. ANN is capable of modeling these complex relationships between input and 

output parameters without requiring a detailed mechanistic description of the phenomena that 

is governing the process [Shi et al., 2010].  

A typical neural network has an input layer, one or more hidden layers, and an output 

layer. The neurons in the hidden layer, which are linked to the neurons in the input and 

output layers by adjustable weights, enable the network to compute complex associations 

between the input and output variables [Nagata and Chu, 2003]. Training the model is the 

process of determining the adjustable weights and it is similar to the process of determining 

the coefficients of a polynomial by regression. The weights are initially selected in random 

and an iterative algorithm is then used to find the weights that minimize the differences 

between the model-calculated and the actual outputs. 

The most commonly used algorithm in ANN is the back propagation (BPNN) [Nagata 

and Chu, 2003]. In this training algorithm, the error between the model results of the output 

neurons and the actual outputs is calculated and propagated backward through the network. 

The algorithm adjusts the weights in each successive layer to reduce the error. This 

procedure is repeated until the error between the actual experimental and network-calculated 

outputs satisfies a pre-specified error criterion [Nagata and Chu, 2003]. 
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 ANN has gained an increasing interest in wastewater treatment and biogas 

production applications due to the complex microbial and physiochemical processes [Cinar et 

al., 2006; Chen et al., 2008]. Cinar et al. [2006] succeeded in developing an ANN model for 

the modeling of a submerged membrane bioreactor processing cheese whey wastewater. 

They used SRT, HRT, flux, influent COD, influent ammonia, influent nitrate, influent 

phosphate, and pressure in membrane as the input parameters and the effluent concentration 

of COD, ammonia, nitrate, and phosphate as the output parameters. In another study, Chen et 

al. [2008] used the ANN in simulating a two-phase anaerobic digestion (TPAD) system 

comprised of a continuous stirred tank reactor (CSTR) for acidogenic phase and an up-flow 

anaerobic sludge blanket-anaerobic filter (UASBAF) for methanogenic phase followed by a 

subsequential membrane bioreactor (MBR). The TPAD-MBR system treated chemical 

synthesis-based pharmaceutical wastewater and the ANN model was able to simulate the 

removal of COD. Hamed et al., [2004] used ANNs to model the effluent biochemical oxygen 

demand (BOD) and suspended solids (SS) concentration at a major wastewater treatment 

plant. Aguado et al. [2006] used the ANN to estimate the effluent wastewater quality 

parameters such as effluent chemical oxygen demand (COD) or total Kjehldahl nitrogen 

(TKN) concentrations. 

Few studies in the literature investigated the modeling of biohydrogen production in 

batch studies using ANN. Table 5.1 shows a summary for different biohydrogen production 

studies that used ANN as a modeling tool. Wang and Wan [2009c] studied the effects of 

temperature, initial pH and glucose concentration on fermentative hydrogen production by 

mixed cultures in batch tests. The ANN model successfully described the effects of these 

parameters on the substrate degradation efficiency, hydrogen yield, and average hydrogen 

production rate. 
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Shi et al. [2010] presented a BPNN model that accurately predicted the steady-state 

performance of bioreactors for the biohydrogen production process using sugar refinery 

wastewater in an integrative biological reactor (IBR) which is the integration of a CSTR and 

a UASB reactor. The model consisted of 4 neurons in the input layer of volume loading rate 

(VLR), oxidation-reduction potential (ORP), alkalinity, and pH, three neurons in a single 

hidden layer, and hydrogen production rate as the output of the model. 

Another continuous flow system performance was simulated using ANN by Mu and 

Yu [2007]. A model was designed, trained and validated to predict the steady-state 

performance of a granular-based hydrogen-producing upflow anaerobic sludge blanket 

(UASB) reactor. Organic loading rate (OLR), hydraulic retention time (HRT), and influent 

bicarbonate alkalinity were the inputs of the model, while the output variable was either 

hydrogen concentration, hydrogen production rate, hydrogen yield, effluent total organic 

carbon, or effluent aqueous products including acetate, propionate, butyrate, valerate, and 

caporate. The model effectively described the daily variations of the UASB reactor 

performance and predicted the steady-state performance at various substrate concentrations 

and HRTs. 
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Table 5.1 – Experimental data used for BPNN model 

Input Output Reactor Substrate Inoculum ANN 
structure

Number 
of data 
points

Ref. 

ORP, pH, dissolved 
CO2 

HP with time Batch Cheese 
whey E.coli - 102 Rosales-Colunga et 

al., 2010 
HRT, So, Xo, ethanol, 
organic acids conc., 
ORP, pH, recycle ratio, 
alkalinity  

HPR CSTR Sucrose Sewage 
Sludge 12-20-1 - Nikhil et al., 2008 

OLR, ORP, pH, 
alkalinity HP CSTR Kitchen 

wastes 

Anaerobic 
Activated 

Sludgs 
4-3-1 - Shi et al., 2010 

OLR, HRT, influent 
alkalinity 

H2%, HPR, 
HY, TOCeff, 

products 
conc. 

UASB Sucrose ADS - 140 Mu and Yu, 2007 

pH, Glucose:Xylose, 
Inoculum size, 
Inoculum age 

Cumulative 
H2 

Batch Glucose + 
Xylose Compost 4-10-1 16 Prakasham et al., 

2011 

T°C, pHi, So HY Batch Glucose ADS 3-4-1 20 Wang and Wan, 
2009a 

T°C, pHi, So 

Substrate 
degradation 

efficiency %, 
HPR, HY 

Batch Glucose ADS 3-5-1 29 Wang and Wan, 
2009c 

ORP: Oxidation reduction potential, HP: Hydrogen production, HRT: Hydraulic retention time, So: initial substrate concentration, Xo: initial biomass 

concentration, HPR: Hydrogen production rate, CSTR: Continuous stirred tank reactor, OLR: Organic loading rate, HY: Hydrogen yield, TOCeff: Effluent 

total organic carbons, UASB: Up-flow anaerobic sequencing batch reactor. 
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ANN models may be successfully applied in biohydrogen production systems and can 

capture effectively the nonlinear relationships existing between variables in complex systems 

like fermentative biohydrogen production. However, one of the main limitations of ANN is 

the uncertainty of outputs prediction outside the data range, used in establishing the model 

[Chai et al., 2010; Cunge, 2003]. In addition, the network functions known as the "Black 

boxes" with largely unkown rules of operation, do not provide direct equations relating input 

and output parameters or any kinetic coefficients such as the maximum rate of substrate 

utilization (k) or the biomass decay coefficient (kd) [Cunge 2003].  

The few studies that investigated hydrogen production modeling using ANN not only 

varied widely in terms of input parameters and there was no explicit agreement on the most 

crucial input parameters, but also focussed on the maximum hydrogen production rates and 

yields. The aim of this study is to use the capabilities of ANN to predict hydrogen production  

profile with time in a batch system. 

 

5.2. Methodology  

5.2.1. Experimental data 

Data was collected from the literature in order to establish the BPNN model. Table 

5.2 shows the experimental data sources, as well as the minimum and maximum values for 

the input and output parameters. Initial pH ranged from 5.5 to 7.5, initial substrate (glucose 

or sucrose) concentration ranged from 0.3 to 58.56 gCOD/L, initial biomass concentration 

ranged from 0.86 to 17.62 gCOD/L, temperature ranges from 20 to 55 °C ( mesophilic and 

thermophilic conditions), maximum fermentation time for batches was 97 hours, and 

maximum volumetric hydrogen production was 382 mL. All experiments were in batch 

studies and were using glucose or sucrose as the substrate and mixed cultures as the seed 



116 
 

microflora. Three hundred and thirteen data points from 26 different batch experiments were 

collected from 7 different studies as shown in Table 5.2. Ranges for the input and output data 

used in establishing the BPNN model are shown in Table 5.3. Input variables were 

normalized in the range of (-1, 1) to avoid any numerical overflow prior to training, as well 

as reducing the errors and decreasing the training time [Sola and Sevilla, 1997]. The ANN 

divided the data set randomly for training (60%), validation (20%), and testing (20%) the 

model. 

 

Table 5.2 – Data base sources and experimental conditions 

Source No. of 
batches

No. of 
data 

points
pHi T°C So 

gCOD/L 
Xo 

gCOD/L 

1 Wang and Wan 2008b 8 72 7 20-55 10.7 1.68 
2 Zheng and Yu 2005 1 6 6 37 10.7 3.12 
3 Baghchehsaraee  et al. 2008 1 6 6.7 37 10.7 2.84 
4 Elbeshbishy et al. 2010 1 9 6.5 37 8.6 2.27 
5 Chen et al. 2006 6 56 5.5 36 0.3-9.0 1.15-0.87 
6 Oh et al. 2003 2 10 5.5 25 3.0 2.84 
7 Nasr et al. 2011 7 154 5.5 37 4.4-58.6 9.74-17.62 
 

 

Table 5.3 – Range for input and output parameters used in BPNN model 
Parameter Minimum Maximum Unit 

pHi 5.5 7.5 - 
So 0.3 58.56 gCOD/L 
Xo 0.86 17.62 gCOD/L 
T 20 55 °C 
t 0 97 hr 

H2 0 382 mL 
Xo: biomass initial concentration,T: temperature, t: time 
pHi: initial pH, So: substrate initial concentration 
H2: volumetric hydrogen production 
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5.2.2. ANN structure 

To predict hydrogen production with time, a BPNN was considered and the chosen 

input parameters were initial pH, initial substrate concentration (So), initial biomass 

concentration (Xo), temperature (T), and time (t). The input layer consisted of five neurons 

(pH, So, Xo, T, t), while the output layer had one neuron which is the hydrogen production 

with time. A one layer configuration with different numbers of neurons was tested but 

showed high errors. Therefore, a double layer configuration was selected for the hidden 

layer. In order to determine the number of neurons in the hidden layers, different trials were 

investigated. Figure 5.1 shows the mean square error (MSE) between the experimental and 

predicted data calculated by the following Equation for different number of neurons in both 

hidden layers.  

    MSE ൌ
∑ ሺଢ଼,ି ଢ଼,౦ሻమ

సభ
୬

     (5.1) 

 

where Yi,e is the experimental data, Yi,p is the corresponding predicted data, and n is the 

number of experimental data points. 

Figure 5.1 indicates that the minimum MSE occurred at 6 neurons and 4 neurons in 

the first and second hidden layers, respectively. It has been reported that when the number of 

neurons in the hidden layer is higher than the optimum, the neural network becomes very 

complex and will take longer time to train [Wang and Wan, 2009c].  
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Figure 5.1 – Error calculated at different number of neurons in first and second 

hidden layers 

 

5.2.3. BPNN training 

All the neurons in the hidden layer were non-linear with sigmoid transfer function. 

Figure 5.2 shows the structure of the BPNN and the type of transfer functions between the 

input and hidden layer 1, hidden layer 1 and hidden layer 2, and that between hidden layer 2 

and the output layer. The BPNN was trained on a Matlab platform R2009 (MathWorks, Inc.). 

A feed forward neural network with back propagation algorithm was used in this 

study. In the BPNN training process, the calculated error between the experimental data and 

the corresponding predicted data MSE was calculated and then propagated backward through 

the network in each cycle. The algorithm adjusts the weights between the input, hidden layer, 

and output neurons in order to reduce the error and the procedure is repeated until the error 

between the experimental and predicted data satisfies certain error criterion.  
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where Yi,p is the predicted value, Yi,e is the corresponding experimental value, and n is the 

number of experimental data points. 

Figure 5.3 shows the correlation between the experimental hydrogen production data 

and the hydrogen production predicted by the BPNN for data points used for training, 

validating, and testing the model (Table 5.2). Correlation coefficients of 0.988, 0.987, and 

0.996 and MAE of 1.89 mL, 6.16 mL, and 4.89 mL were achieved for the training, 

validating, and testing data points, respectively. 

The BPNN model was then used to estimate the hydrogen evolution with time for 

three new data sets adopted from Chen et al. [2006], Nasr et al. [2011], and Wang and Wan 

[2008a] that were not used in the training process. Chen et al. [2006] investigated 

biohydrogen production from sucrose in batch studies using ADS at 36°C and initial pH of 

5.5. Nasr et al. [2011] investigated biohydrogen production from thin stillage as the substrate 

using ADS as the seed microflora at 37°C and initial pH of 5.5. Wang and Wan [2008a] 

investigated biohydrogen production from glucose in batch studies at 35°C using preheated 

anaerobic digester sludge at an initial pH of 7. Figure 5.4 shows the correlation between the 

predicted and experimental data points from the aforementioned sets of data, where a 

correlation coefficient of 0.965 and an MAE of 11.2 mL were obtained. Average percentage 

error (APE), defined as the summation of the absolute difference between the experimental 

and predicted values divided by the experimental values, averaged over the number of data 

points were 1.4% and 9.6% for the data sets adopted from Nasr et al. [2011] and Chen et al. 

[2006], respectively. Figure 5.5 shows the experimental and predicted hydrogen production 

profile using the two sets of data. Although Nasr et al. [2011] used a real waste as a substrate 

as opposed to glucose or sucrose that were mostly used in establishing the model, the model 
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was able to predict the hydrogen production profile accurately. The reason is that the 

substrate concentration was expressed in gCOD/L for all data points. 

 

 

Figure 5.3 – Correlation between experimental and predicted data used in BPNN 

model 
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Figure 5.4 – Correlation between experimental and predicted data adopted from Chen 

et al. [2006], Nasr et al. [2011], and Wang and Wan [2008a] 

 

 

Figure 5.5 – Experimental and predicted hydrogen production profile using data from 

Chen et al. [2006], Nasr et al. [2011], and Wang and Wan [2008a] 
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5.4. Conclusion 

Dark fermentative hydrogen production is a highly complex process that is difficult to 

model. This study is aimed at demonstrating the possibility of adapting artificial neural 

networks to predict the hydrogen production profile with time as a function of initial pH, 

initial substrate and biomass concentrations, temperature and time in batch experiments. A 

database for the hydrogen production tests was adopted from the literature and used for 

training, validating and testing the ANN model. The results support the following 

conclusions: 

• The developed ANN model is a viable method for predicating hydrogen production 

profile with time. It showed an excellent ability to capture the interrelationships 

between the process parameters 

• Correlation coefficients of 0.988, 0.987, and 0.996 and MAE of 1.89 mL, 6.16 mL, 

and 4.89 mL were achieved for the training, validating, and testing data points, 

respectively 

• A correlation coefficient of 0.965 and an MAE of 11.2 mL were obtained when 

testing the proposed model using a new data set 
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CHAPTER 6 

Conclusions and Recommendations 

6.1. Conclusions 

The following findings summarize the major outcomes of this research according to 

the major objectives as follows: 

 

• Biohydrogen Production: 

1. Thin stillage has a potential for hydrogen production with a yield of 19.5 L H2/Lthin 

stillage with acclimatized anaerobic digester sludge (AADS) while tests with anaerobic 

digester sludge (ADS) only revealed a maximum potential of 7.5 L H2/Lthin stillage. 

2. The optimum experimental range of So/Xo ratio for hydrogen production is 1-2 

gCODsubstrate/gVSSseed using conventional ADS. 

3. The optimum experimental range of So/Xo ratio for hydrogen production within the 

investigated range is 3-6 gCODsubstrate/gVSSseed using AADS. 

4. The biomass specific hydrogen production rate for the AADS was 3.5 times higher 

than that of the ADS throughout the range of So/Xo ratio that was studied. 

5. The DGGE profiles of the 16S rDNA gene fragments for the AADS confirmed its 

superior performance over the ADS due to the predominance of high hydrogen 

producers such as C. acetobutyricum, K. pneumonia, C. butyricum and C. 

pasteurianum. 
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• Two-Stage Anaerobic Digestion: 

1. The use of two-stage digestion for thin stillage led to an increase in the TVFAs to 

TCOD ratio from 10% to 56.8% due to the acidification process during hydrogen 

production in the first stage. 

2. The methane yield in the anaerobic digestion stage increased from 0.26 L CH4 / g 

CODadded in the single-stage process to 0.33 L CH4 / g CODadded in the two-stage 

process. 

3. Comparison of energy outcome from both digestion scenarios revealed that an overall 

increase of 18.5% in energy yield can be achieved in the two-stage digestion due to 

the enhancement in methane yield and the additional energy produced from hydrogen 

gas. 

 

• Artificial Neural Network Model: 

1. The ANN model developed is a viable method for predicting fermentative 

biohydrogen production in batch studies 

2. At a given initial pH, substrate and biomass initial concentrations, temperature and 

time, hydrogen production potential can be predicted 

3. The proposed model is not capable of predicting beyond the range of the data used 

which is 

a. initial pH (5.5-7.5) 

b. initial substrate concentration (0.30-58.56 gCOD/L) 

c. initial biomass concentration (0.86-17.62 gCOD/L) 

d. temperature (20-55 °C) 

e. time (0-97 hr) 
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6.2. Recommendations 

Based on the findings of this research, the recommended future research should 

include: 

1. Assessment of different waste streams such as food wastes, brewery wastes, kitchen 

wastes, and starch for biohydrogen production using acclimatized anaerobic digester 

sludge 

2. Investigation of the impact of optimizing the operational conditions for biohydrogen 

production in the first stage such as the HRT, SRT, and OLR on methane production 

in the second stage of an anaerobic digestion process in a continuous flow system 

3. Extension of the proposed Artificial Neural Network model beyond the current data 

range as well as including more parameters as inputs to the model such as the reactor 

volume, the substrate to biomass ratio, and the buffer concentration. 
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