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ABSTRACT

The Wilets and Gallaher (1966) formulation of W - H
collision has been generalized to the case of the heavy
jon-atomic hydrogen collision. The resulting coupled
differential equations have been solved and a computer
program has been constructed to extract numerical results.

Calculations for the specific example of He2+

- H
collision have been carried out using both eigenfunction
and pseudo-state expansion bases. Charge transfer,
excitation and ionization cross sections are presented
and compared with other theoretical calculations and
experimental measurements where these are available.

It is further shown that an eigenfunction expansion
basis is unlikely to reproduce the 1.2° experiments of

Keever et al. (1966) in a calculation involving a four-

state approximation.
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CHAPTER |
INTRODUCTION

In recent years extensive theoretical investigations
of the collision between protons and hydrogen atoms have
been carried out using coupled channel calculations
{see for example Wilets and Gallaher 1966, Gallaher and
Wilets 1968, Cheshire 1968, Cheshire et al 1970 and
Gaussorgues and Salin 1971). It is the purpose of this
thesis to obtain a mathematical formulation, numerical
methods and a computer program for the general case of the
collision between a heavy ion with a hydrogen atom. Numerical
results are sought for the specific case of an o-particle
scattered from a hydrogen atom.

We have chosen a heavy ion as our projectile to study
both charge transfer and direct excitation of the hydrogen
atom using the non-relativistic semi-classical impact
Parameter model of Bates (1958). The model assumes the
heavy ion and the proton move in straight line trajectories
with constant relative velocity. 1In this thesis the
incident ion is assumed to retain its structure throughout
the encounter. Hereafter, the heavy ion will be referred

to as "unstructured". Thus we are dealing with only three
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bodies; the ion, the proton and the electron. The hydrogen
atom is initially in the ground state or in any one of its
excited states.

The collision between a heavy ion and a hydrogen atom
yields in general charge transfer, excitation of the atom
and ionization. Cross sections for these processes can
be calculated in principle and measured experimentally in
some cases. In charge transfer the final state consists
of an electron bound to the ion plus a proton. Excitation
of the atom arises when the final state is composed of an
excited hydrogen atom and the ion. For the computation
of cross sections for these processes, the electronic wave
function is therefore expanded about the ion and the
proton. These then constitute the two centres.

In order to assess the validity of a particular
theoretical model it is essential to have as few variables
in the model as possible. Then any disagreement between
the calculated cross sections and the experimentally
determined cross sections must reflect the inadequacy of
the particular model., The hydrogen atom is the simplest
atomic system, consisting only of one electron bound to
a proton. The bound-state wave functions are well known
and the system is mathematically simple to handle.
Consequently, the hydrogen atom can be utilized as a
convenient target for testing theoretical models which
deal with charge transfer and direct excitation of an atom.

Any uncertainty in the calculated cross sections can be
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attributed to the inadequacy of the approximation employed,
assuming all numerical computations have been performed
correctly.

2+

The specific case of He - H collision yields the

following possible results:

HeZt & H(1s) - Y + Het(is, 25, ...) (a)
He2* + H(1s) - He?t + H(2s, 2p, ...) (b)
He2+ + H(1s) = He2++ TR (c)

These processes are respectively described as charge
.transfer, direct excitation and ionization; the initial
state of the hydrogen atom need not necessarily be the
garound state. Elastic scattering is a special case of
direct excitation in which no energy is transferred to the
active electron.

Throughout the thesis multi-state wili ﬁean inclusion
of two or more states on either or both centres in the
expansion of the electronic wave function. Theoretical
calculations in a multi-state approximation for process (a)
are few and, to our knowledge, none for reactions (b) and
(c) in the energy range under consideration. Computing
difficulties are mainly responsible for the lack of both
a large number of and more extensive calculations in ion-
atom collisions; these difficulties arise chiefly from
matrix elements involving oscillatory momentum transfer
terms and also from the large number of coupled differential

equations which result when the expansion of the total
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electronic wave function contains many eigenstates. In
what follows we merely state without details what has been
accomplished so far in the calculation of the charge

transfer process for the He2+

- H collision.

The development of detailed charge transfer computations
began with Oppenheimer (1928) and Brinkman and Kramers(1930),
who employed the first Born approximation to evaluate
charge transfer cross sections by assuming the relevant
interaction potential to be that between the incident ion
and the atomic electron. The theory of non-resonance charge
transfer for a-particles colliding with atomic hydrogen
was almost non-existent until Schiff (1954) used the first
Born approximation in the energy range 100 keV - 1 Mev of
the incident a-particie to evaluate charge exchange cross
sections for reaction (a), taking the projectile-electronic
interaction as the effective interaction. Using a two-
state calculation, McCarroll and McElroy (1962) evaluated
charge transfer cross sections for the non-resonance reaction

He2+

+ H(1s) » T + HeT(19)
and McElroy (1963) obtained capture cross sections for the
asymmetric accidental resonance process

He2+

+ H(1s) » HT + He+(25 or 2Pp).
McElroy took into consideration momentum transfer to the
active electron, partially included distortion and neglected
back-coupling from the final to the initial state.

Basu et al (1967) calculated charge transfer to the

n=1 and n=2 levels of He' in a multi-state approximation
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but neglected the important momentum transfer terms.
Macomber and Webb (1967) pointed out the importance of
back-coupling and the full distortion term in a two-state
calculation of charge transfer cross sections. Coleman

and Trelease (1968) evaluated charge exchange in the
impulse approximation. They included only continuum states
in the expansion of the total electronic wave function.

The most extensive calculation of charge transfer
reported to date in a multi-state approximation taking
into consideration momentum transfer, back-coupling and
the full distortion term but neglecting rotational coupling
has been carried out by Malaviya (1969).

The number of experiments available on charge exchange,
direct excitation and jonization to focus the course of
theoretical development is very small, in fact almost non-
existent in some cases. The measurement of the total
capture cross section for the accidental resonance reaction

we2t + H(1s) » HY + HeT(2s or 2p)
has been performed by Fite et al (1962), who covered the
energy range 0.1 - 36 keV for the incident a-particle.
Keever and Everhart (1966) measured the capture probability
in the collision process

2+ et + 0t

3He + H »
jn the energy region 2 - 100 keV of the projectile.
Now that we have presented briefly the state of

theoretical treatment on the subject of charge exchange
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from the collision of a-particles with hydrogen atoms

and none on direct excitation and ionization, let us state

unambiguously what, in our opinion, are some of the

remaining problems which require consideration. The sequence

does not necessarily represent the order of importance

nor urgency.

(i)

(ii)

(i)

Calculation of ionization and direct excitation of
the active electron to various states of the target
atom still remains.

According to Bates and McCarroll (1962) rotational-
coupling effects which cause transitions among
states with different m-values but the same 2# O
become important at low velocity of the a-particle
and therefore should be considered in a multi-state
calculation.

McETroy has predicted that for sufficiently high
velocities of the incident a-particle, capture
should occur more readily into the ground state of
the He' jon, that is the He+(ls) state is more
highly populated than the other states of He .
Consequently, the transition to the ground state

of He' should be considered in the calculation.
Expanding the total electronic wave function in
terms of eigenstates is valid as long as the
nuclear-nuclear separation distance R(t) is large.
However, as R(t) = 0 the adequacy of this expansion

deteriorates. To fix our minds, consider a heavy
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jon at infinity approaching atomic hydroéén. When
R(t) is large enough the charge densities of the
jons centred about each nucleus are well defined
and distinct. Therefore the electron which is
initially associated with the proton sees or feels
two well defined charge distributions. As the ions
approach each other and R(t) becomes smaller, the
charge distributions associated with each nucleus
begin to overlap. Consequently, the electron no
longer sees the two distinct jons. When R(t) -+ O
and if there were enough binding energy to bind

the two ions together, then the a-particle (the
particular incident heavy ion in which we are
interested) plus the proton would form the nucleus
of 5Li. The resulting atom would be doubly

jonized SLi. This progression from one extreme

to the other, reflects our ideas embodied in the
solution of the collision problem under examination.
The ion could still collide with the hydrogen

atom with the electron perceiving the charge distri-
butions about the distinct nuclei. This will
depend upon the impact parameter. Following
Cheshire et al. (1970) and incorporating the ideas
already presented, we shall employ pseudo-states in
an attempt to simulate the collision problem in a
more realistic manner. These pseudo-states are

unphysical and are chosen such that they have a

sp, .
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strong overlap with the intermediate states of
Lit* only if the projectile is an a-particle and
thus simulate the molecular features at small
separations.

In the following chapters we shall attempt to take into
account the preceding effects when we solve the scattering
problem. At this juncture it may be worth-while to present
the outline of the thesis. Chapters II and IV respectively
entail mathematical development of and numerical methods
for the solution of the general case of the scattering
between a heavy ion and atomic hydrogen. In Chapter III,
the general collision equations are reduced to the two-state
expressions of McElroy (1963); some of the effects already
mentioned are elucidated and deficiencies in previous
theories for the specific case of a-particles colliding with
atomic hydrogen are brought out. Numerical results are
presented and compared with those of available experiments
and previous theories in Chapter V. Finally, Chapter VI is

devoted to the conclusion.
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CHAPTER 11
THEORY AND_FORMALISM
2.2. The Coordinate System

The coupled differential equations for the scattering
amplitudes to be derived shortly represent the general case
of the collision of an unstructured heavy ion of charge Z
and mass M with atomic hydrogen in a multi-state approx-
imation using a double-centred expansion for the total
electronic wave function. Atomic units (a.u.) will be
employed throughout the thesis unless otherwise specified.
In this system of units T = 1, the electron mass, m = 1
and the electron charge, € = 1. The unit of length is
the Bohr radius of the hydrogen atom a, = ’ﬁ2/me2 = 0.529f

and the unit of energy js twice the Rydberg defined by
2

%; = 27.2 eV.

The frame of reference for the scattering probiem is
shown in Figure 2.1 and is 1abelled in anticipation of
numerical calculations in which an a-particle is substituted
for the heavy ion. In Figure 2.1, A represents the position
of the ion and P that of the proton whose mass is mp. The
vector R, the internuclear separation between the nuclei,
js related to the vector p, the impact parameter by

R=759 + vt (2.1)
where v is the velocity of the projectile in the laboratory

coordinate system, and t is the collision time such that at

t = 0, A and P are closest to each other.

i¢
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The position vector of the electron (e ) relative to
the centre-of-mass (CM) of the jon-proton system is denoted
by Y. The vectors 7a and ;p represent respectively the

positions of the electron from A and P, and are given by

Y, = Y * PR

(2.2)
-~ . T . a}
Yp Y q
where m
p = P
M+m
p
- M
q M+m
and
p+aq-=1

The coordinate system xyz, fixed at the CM of the nuclei,
consists of x and z in the collision plane while y 1is
perpendicular to the plane. x&y&z& and xéyéza, two rotating
coordinate systems centred respectively on A and P, are
chosen with y& = yé =y, z& and 26 along the internuclear
line. The angle between the z-axis and R is determined by

p =R sin 8 (2.3)
and ¢ denotes the corresponding azimuthal angle of the
electron relative to the collision plane. e&, ¢& are the
polar and azimuthal angles of the electron relative to A
and 0!, ¢6 the same angles relative to P.

P
2.2 The Coupled Differential Equations

Having defined the reference frame for the collision
problem, we now proceed with the derivation of the coupled
differential equations for the scattering amplitudes. For

convenience let us adopt at once Einstein's summation convention
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in which summation over repeated indices is implied.
Following Bates (1958) the electronic wave function
which allows for the energy and momentum associated with
the translational motion of the active electron relative
to the projectile and is variationally ce:rect (Geltman, 1965,
page 203) can be written in a two-centred expansion. The
true g]ectronic wave function which can be represented by
an expansion over a denumerably infinite number of discrete
states and a non denumerably infinite number of continuum
states will in practice be represented by a variational trial
function because of the truncation of this expansion after
a finite number of terms. Thus one writes for the electronic
wave function
¥(y,t) = a (W (Y t) + b (£)U, (Y ,t) (2.4)

In this expansion

ivpz _-iEft

Uk(—Y-a’t) = Uk(Va) e e

W (Ypst) = w(v,) e7V92 e 1Ek
and the total energies E% and EP are given by
E* = e + (pv)?

gP

e? + H(qv)? |
where uk(§&) and wk(Vp) the eigenfunctions with eigenenergies

2
a p . a .V Z
€ and €k of the respective operators H™ = il 7; and

2
HP = '%T - %— » satisfy the equations
p
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V2 Z - o -
T, ue(Yy) = e uklyg)
L, W (2.5)
v 1 =y = P =)
L-T - ?; wk(Yp) = ek Wk(Yp
with € ° -—17 and the set of quantum numbers(ngm) are
2n

represented by k. The expansion coefficients a, and bk are
time dependent and in the 1imit t » += determine the
probabilities of excitation of the target atom and charge
transfer to the projectile. The terms éiqu and éiva
(momentum transfer terms) take account of the translational
motion of the electron when associated with the target
proton or with the projectile ion respectively.

In general, the expansion (2f4) should include a
summation over discrete statés and integration over the
continuum. According to Coleman and Trelease (1968), a
good wave function for the electron should include the most
jmportant bound states together with the continuum. This
remark coupled with the observed slow convergence of the
expansion (2.4) when applied to protons scattering from
hydrogen atoms (Wilets and Gallaher 1966) has prompted us
to employ pseudo-states to achijeve a more realistic represen-
tation of the collision problem at both large and small
separation distances of the nuclei.

Our interest lies in the solution of the time dependent
Schrodinger equation,

3

HE(Y, t) = i3 ¥(Y, ) (2.6)
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with the complete Hamiltonian given by

2
= Y 1 _Z
H(t) = -T - Yp 'Ya +

| N

H depends parametrically upon the time through R [equations
(2.1) and (2.2)]. The Coulomb term é which describes the
interaction between the nuclei may be included or omitted
without affecting the final probabilities (Gallaher,

Ph.D. thesis). In this calculation we have omitted it.

Hence H will be taken without the é term as

H(t) = -5 - 7 - 7 (2.7)

Therefore, the immediate task is the solution of (2.6)

with the Hamiltonian (2.7) for the amplitudes ap and by, and
thence to determine the probabilities of excitation of the
target atom and charge exchange to the projectile as

t » +o. To accomplish this purpose, 1et us write for
conciseness and convenience,

~ = o = p
€45 s € = Eg

and

(0) = (Fot)s (P) 2 (¥pst)
so that

U la) = U (Tyot)s W(p) = W (Fpst)
and

u (@) = up(y,)s w(p) = W (¥p)



Operating upon wk(p) with H, we obtain

4 2 W , . .
S A =y o-ivaz| -iERt
W, (p) = |-5 - == = | |{w(P) e ]e
¥ { 2 YP YU.J \ k
[ v2 W , :
R 7 -ivaz -iERt
= |-z - 1 "~y Wk(P)] e e
! Yo Yojl
i ; 2 . .
A Ve-qu] e'1EEt - (——Z e“"qz).wk(b‘)quEt ’

which after some manipulation reduces to

i (p) = () - ZH,(p) + favigy wk(b')]e"'que'"Bt (2.8).
o

e g s . 0 . 0 .
In order to evaluate the quantities 13F wk(p) and ist Uk(a),

let us represent ig%-in terms of the rotating coordinate

systems for each centre.
For the centre P one can write:
xé = x cos 6 + z sin @
‘=
Yp =Y (2.9a)
26 =z cos 6 - x sin & - gR
so that
ié = (-x sin ® + z cos 8) &
= (zé + qR) 8 (2.9b)
i& = (-z sin 8 - x cos 8) & - qR
__I._é
xp 9 q
and consequently
9 . 0 . 9
-a-?'-=x'——x-1p—-+2 -Z)—;-;—' (2.9c)

15
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Similar expressions can be obtained for the centre A:

x& = x cos & + z sin ®
Yo =Y (2.9d)
z& = z cos 6 - x sin 8 + pR
with
i& = (-x sin 6 + z cos 8) 6
- (z, - pR) B (2.9€)
20 = (-z sin 8- x cos 8) 6 + pR

- - l . *
= =X, 6 + pR

and therefore we may also write

9 _ ¢ 9 *a 9
3T x' X" + Z, 327 ° (2.9f)
) o
The operation 13% wk(p) 1§§ds to
2 (p) = 12 D (B)e™ V92 o7 1ERE)
= P Sy sror _9 ' -1qu -iEEt
Eka(P) + 1[Xp -5-)(—; + Zp 5-';] Wk(P) e

where 5%-has been represented in terms'of the rotating
coordinate system for the centre P. Employing expressions

(2.9b), we obtain for the precedjng equation

i=2 W (p) = ERN(p) + il(zp + qR) & 5or
P

e (ox! 8 - aR) sl w (e TV o-iEkt
p Z5

_ P "-31
= Ekwk(p) + 19[2p g;; - X aZp]wk(p)

-1qu iEEt

e

+ iq[Réger - & gorlw () » &7V e~ iEkE (2.10)
p

P



1%
By exploiting the relations

R = -y cos 6

§ = v sin 6/R
which may easily be derived from (2.1) and (2.3), one
reorganizes (2.10) to the form

. . c s )
1§%Mk(p) = Eﬁwk(p) - ezpwk(p) + iq[v sin 6 3;;

-ivqz -iEﬁt

+ v cos © F%T] wk(E)- e e

The orbital angular momentum operator zy' denoted by Lp

and given by

Voo L A IV -
zy 1 [Zp X xp 9zZ" ]

p
operates here only upon wk(ﬁ).

From (2.9a)

1 |
y azp 3 axp 3

+
9z 9z 0JZ. 9Z OX.
p p p

= co0S O —ﬁr + sin e-Jir .
azp Bxp

Therefore,
. B — _' - p
20, () = EM(p)= B2l (p) + Tav(ghu (M) 7TV e EE (z.11)

A combination of (2.8) and (2.11) with some further manipulation
leads to the more convenient form
[H - iz2] W (p) = [-=Z& + 621 W (p) (2.12)
ot k Yo P k\P *

When H is applied to the function Uk(a) we obtain the

expression
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o 1 \ oivpz -iEzt
which, following exactly the same procedure that led to
(2.12) and employing the appropriate expression in (2.9)
for the centre A, can be reduced to
. 3 _ 1 .
[H - 13€] Uk(a) = [-7; + eza] Uk(a) (2.13)
We note that in (2.13) L, operates only upon uk(E), where

in this case

= _3 3_.3
2a ’[Za = X 3;;] .

The terms ézp and ela give rise to what is known as
“rotational coupling" which is caused by the rotation of
the internuclear line about the centre P or A and these
terms have been neglected by previous investigators studying
2+ . .
He - H collisions.
To obtain the desired coupled differential equations,

we differentiate (2.4) with respect to the time and find

igg T(Tot) = i a0, (p) + 2y is2 W, (p)

+ 4 Bk Ula) + b, ’at Uy (a)

]

H ¥(y,t).
Utilizing (2.12) and (2.13), and remembering that summation
over k is implied, we recover the more meaningful and con-

venient form of the coupled differential equations for the

amplitudes
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i 4, W (p) +ib Ula)
= ak[-;i + élp] Wk(P)
1

+ bk[-?; + 62,1 U (a) (2.14)

2.3 The Matrix Elements and the Coupled Differential Equations

In order to obtain the matrix elements of the operators
appearing in (2.14) and, hence the coupled differential
equations which are amenable to solution, let us write the |

complex conjugate of wk(p) and Uk(a):
ok ivqz iEEt
wk(p) e e

Wk(E)

. e O
U:(a) - u:(a) s Vp2z e1Ekt .

Multiplying (2.14) from the left by w:.(p) and integrating

over all space we obtain for the left hand side of (2.14)

-l

| O i (R VazeTE't y (pyenivaz ooiEkE

-+

. — _ o - . _ - _4 Q
i b, JdY w;.(p)e1que1EEt uk(a)e1vPZe TELt

2
. . v
<k'P|e1vz|ak>e1(q'p)z_ t

i 4, <k'PIPk> e'Sk'kP o+ i b,
1ék'ﬂt

X e (2.15)

where €k|k = €k| - Ek, Ek'E v €k| - €k

and €y = eﬁ , p+tq-=1, Ek = aﬁ .

After similar multiplication and integration, each term on

the right hand side of (2.14) can be written separately in
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a more compact and obvious notation as

 [&7 g (0) [-g7 + 2,1 W ()

oy [0 L () (- + 82w (7] ¥ (oot
o

n

a, [<k'PI(82 - Z)|Pk>] e Ck'kt (2.16)
k P Yy
and
— * ] -
by Idy W (p) [-7; + 02,7 Uy (a)
. . V2 . A
= by L<k pleiVE(be, - 1) [ak>] eila-p)=zt iegrkt (2.17)
P
where we have used
2 2

(q)2/2 - (pv)2/2 = Y [q? - 0?1 = 45 (a - ).
Finally, from expressions (2.15), (2.16) and (2.17) we
obtain

2
N N . . v . 'A
i ék<k'P|Pk>e‘€k'kt + i bk<k'P|e‘Vz|ak>e‘(q'p)“2* el€k'kt
= ' : Z iekrkt
= a,[<k'P|(82 - Ya)lPk>] e

2
. . \') . ‘A
+ b [<k' Plet V2 (g - ) ak>] eila-p)=zt ekt (5 1)
p

Similarly by multiplying (2.14) by Ui.(u) and proceeding

exactly as before we obtain

2
. . v . AN
i ék<k'a|e'wz|Pk>e1(p'q)_?t elek'kt

+1i by < k'alak> elek 'kt
2
i s v . A
= a, < k'a|e'1vz[egp - 5L]|pk>e1(p'Q)—2¢ ciekikt
o

. ~

+ by<k'al[62 -1 ak> efek'kt (2.19)
@Y,
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Equations (2.18) and (2.19) represent the forms of
(2.14) we wanted and they will be solved for the amplitudes
ay and bk as t » », These equations are cumbersome to
handle as they stand. We shall therefore express (2.18)
and (2.19) in a more compact and easy to manipulate form as

T Pea @ + 1 Sy b= Qo ap + Rewy by

(2.20)
or identically
iPa+iSh-=0Qa+Rb
(2.21)
iTa+ilLb=mMa+Nb

where the time dependent matrix elements are given by

Pklk = <k'P|Pk> eiEk'kt
= 147 wE (7)) wy(F,) elk'kt
k P k''p
. . V2 . ~
Seip = <k'PlelVZak> i (a-PITZ Qiekrkt
3 . V2 . A~
= rdy wii (7,) eVE u (7)) ef(a-P)T2t oileke ekt
P k'Ta
= <k'P|[8 L Tek 'kt
lek = <k Pl[elp - Ya]lpk> e
= fd7 w* (T )[6e - £ vs iek'kt
sy wia (v )62, Ya] w(¥,) e
i . V2 .
Rk = <k‘P|ewz[ég,a - 1] ak> e1(Q'p)—z-t elek'kt

Yp

2
- — ivzp; 1 v i(q-p)ipt _iek gt
= Sy wio(vp) e L6 - Yp] u (v,) e ZF e ck k
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2
. - v s A
<k'ale V2 pr> e~ T(a-P)zt Sicfrt

k'k
i i ( )"Zt iefrkt
- s - -ivz — -i(q-p iefik
sdy ug.(y,) e wk(vp) e Z" e
Lklk = <k'alak> e1€E'Et
o= sdy ur i (y) u () elek'kt
. . . v2 .
Mk'k = <k'a|e'1vz[ez - —zilPk> e'l(q'p)_zt e‘eﬁ'kt
P Y,
Z ( )v2
- - - -ivzp: _ L - -i(q-p)—t _ief'yt
rdy ug.(y,)e [ezp Ya] Wk(Yp) e e
N, o, = <k'al[8 11ak> ei€k'kt
k'k = a[ ela - 7;]'& > e
= rdv = 3\rge - b = Tefrit
fdy ug (v, )les, - Tu y,) e (2.22)

p

For convenience we factorize the matrix elements in (2.22)

and write them as

- o iekl*t
Perk = Prrg & K
. V2 .
Sk = Sprk eila-p)=t  iek'kt
Qk'k = aklk eiek.kt
. V2 .
Rklk = Rklk eI(q-p)—Zt e1€k'kt
. v2 .
Terk = Tevk e-i(a-p)=pt  iefoyt
_ T iepipt
L = Ly &K'k



. v2 N
e-1(q—p)—2¢ e‘ek'kt

Mok = Mok

ieg 'kt

Nklk klk e

where the spatial elements are given by

Skrk

Qury = <k‘PIlBL, - e
o

Sklk = <k.P|eivz‘Gk>
5 - ' ivzps 1
R = <k Ple’"“[es, - 3 1} ak>
p (2.22a)
?klk = <klale-ivz‘Pk>
Lk = Sk

= oSV _
Mg = <k'ale [ezp Ya]|Pk>

: 1
N = <k'a|[ela - 7;]|ak>

The two matrix equations in (2.21) can be combined into a

single coupled matrix equation. Thus

L0-E 0
LT

and finally;

or

e

i = WA (2.25

or i Ak = Wkk. Ak'

23
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where A = (g) is a column matrix and W is a 2n x 2n time
dependent matrix with n being the dimension of either ay
or bk. Extreme care must be exercised when handling the
coupled differential equations (2.25). In order to obtain
a solution to these equations for the amplitudes Ak, we
write the wkk' as a product of two quantities: one in
which the time does not appear explicitly and another with
explicit time dependence. With this separation of the wkk.
the integration scheme designed by Wilets and Gallaher (1966)
may then be applied in principle to effect the solution of
(2.25). A number of authors have attempted to solve the
coupled equations (2.25) or variations thereof in various

approximations, which we shall discuss in Chapter III.

2.4 Time Dependence of the wkk.

We want to express the coupled differential equations
(2.25) such that the Wepr are written in the manner of
the equations preceding (2.22a). Thus

i A=A
where W, = ﬁkk' . Ekk;(t). The explicit time dependence
of the Wy .. is now carried by Ekkf-(t)° The W,y are
implicit function of time through R(t). We shall encounter
tﬁfs time dependence when we consider numerical solutions
to (2.25). To write the W, 1in the form W . = Akk.- Ep g (t)
we make use of (2.21).

Operating upon the first of those equations from the
left with p-] (the inverse of the matrix P) and upon the

1

second equation with T~ ', we eliminate ék from the resulting

equations and obtain:
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i Ys - 11 = p g - TTMIa 4 [PTTR - TTINDD
or

ib=p'Ba+0DlCh

and finally,
ib=Xa+VYb (2.26)
where

-1

x =0 'B, V=0

c
p=pls -1, 8=pTg-1"n
and
c=pTR-1"n.
The elimination of Bk from (2.21) leads to the following

expression for ay

ia=07" Bya+ ;' ¢y b
or

ia=Xya+¥ob (2.27)
with

Xy = D7' By . ¥y = 07! ¢,

p, = s7'P - L1M7, By = 7l - L™
and

¢y = SR - L.

Equations (2.26) and (2.27) can be brought together and

written thus

-

The form of the coupled differential equations represented

by (2.28) is convenient as long as one is interested in
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extracting the explicit time dependence of W. However, for
numerical computation (2.24) is preferred over (2.28) because
the latter entails more matrices that require numerical
inversion than the former.

We have expressed the matrix D as

-1 -1

D=P 'S -T 'L

so that from the definitions of P and S

2
A . A . ~ . \']
I = AT TRREE

~ s ~ - Vv
(Ps)ak' e"ectk't e‘(Q'P)—z't .
Similarly from the definitions of T and L

-1 o ie g1t _i(q-p)int
(T L)ak' = (TL)ak' e “ak'" e -z

Therefore

N s s v
Dyt = Dy e Skk't eila-p)—7t (2.29)

1 1 1

Now B = P~1q - T-"M and ¢ = PR - T"'N and by choice of
normalization P is merely 5kk' so that the time dependence

of B is the same as that of Q. C has the same time dependence
carried by R. One can easily show that the time dependence

of T-'M is the same as that of P"Q and the time dependence

of T !

N is the same as that of P~ 'R.

Consequently, By, = By elekk't and

= C iex k't ,i(q-p)—t so that
Ckkt = Ckkr e z



_ -1
Kokt = (D77B)
A s A . v2 ~ .
= D;;'( e'leakt e-'l(q-p)—z't Bkkl e1€kk|t
or ) . . v2
Xet = Xkpe elekk't o-i(a-pj=7t
and ] (2.30)
S, eleRRE
where
~ _ l\-1 A
Kkt = Do Boke
Y -0l ¢
kk' ka “ok'

and summation over repeated indices is implied.

From the definition of D] = S

1o - 1717 and the

relationship Tl L(ka. = Skk")’ we obtain

(D])kk' = (D])kk'

. . V2
ofegkrt, o-ila-p)—7t ,

which has the same time dependence as (P'ls)'1. The time

dependence of C] is the

Thus
(Coleer = (C9dpp

Similarly M carries the

(Bligr = Byl

same as that of N.

elckk't
same time dependence as By so that

: A . \I2
oiekk't o-i(q-p)—7t

2%
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Therefore. 2
-1 _ -1 ieyft Ji(q-p)st (2 iefjrt
(D) By)ypr = (D) & 72K e 70 (By)yr e Kk
2
. v
x e-i(a-p)=t
-1 v iepk't
(D7 "By)pgr = (X @7k
and
-1 ] ie it _i(g-p)Yst, iefl it
(D77Cq) e = (D7) e Bok™ e TZHC) e e oKk
2
~ s AI 3 - \
(ﬂ;lc])kkl = (Y1)kk' e1€kk t e1(q p)—zt .

X] and Y] can now be expressed as
s i K
(X gr = () e EkkE
and o (2.31)
~ . . v
(Y])kk' = (Y])kk| eTEkE‘t e](q p)—z't .

The use of (2.30) and (2.31) enables us to extract the explicit

time dependence of the matrices in (2.28). Thus

2
~ : A O l . - \
3, (X1)kk' olekkt (Yl)kk'e1€kE te1(q pl—t Ay
i ~ . . v .
o 1€Eklt -1(q-p) t o iepp it
by Xeko © e 2 Yere kk by s
(2.32)

and consequently the expression for W becomes

wkk.- = Wkk. ¢ Ekkl‘(t)

where

kk'

=>
n
—> >
| i W
——
]
—ad
p———
= O
2> x>
[
~
=
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and ‘ (2.33)
ieggrt iegfrt oi(a-p)ipt
e e e 2
Epg:(t) = _ ‘ \2 o
Jekkrt  o-ila-p)=pt olekk't

The results in (2.33) are general and exact; they
represent a cunvenient form for the wkk. which will be
used in the numerical solution for the amplitudes to
determine the probabilities for excitation of the target
H atom and charge transfer to the projectile and, hence the
respective cross sections. It should be noted that equations
(2.33) have no other connotation except that represented

by (2.32).

2.5 Unitarity

The preservation of the normalization (unitarity)
of the electronic wave funstion represented in (2.4) fulfils
a useful purpose. In our calculation conservation of
probability serves as an invaluable check upon both programming
errors and incsrrect numerical integration of the coupled
differential equations for the amplitudes. To establish
the unitarity condition one requires the explicit evaluation
of the normalization integral, Sfdy ¥* ¥ which should
equal unity.

Using the definition of ¥ in (2.4) one obtains

rdy ¥*(y,t) ¥(y,t)

= fd?[a:.wz,(p) + b;nU*u(a)][akwk(p) + bk Uk(a)] (2.34)
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(the explicit summation over k and k' here has been suppressed.)

We have expressed the functions wk(p) and Uk(a) as

W (p) = W (B') e"‘iqu e-iEEt
k k
. .- O
Uk(“) - uk(a) e1vpz e-1Ekt
so that

£dY WX (p) W (p) = sdy Upi(a) Upla) = 8puy

and
_ - _ -3 PR, A - -.
rdy U:.(a) Nk(p) = [fdy ulf.(a) e~ 1VPZ eﬂzk't wk(p)e 1vaz,
. . V2 .
- <krale V2 s emilamP)TZt Glekrit (2.35)
where g8 =g, - E and 2 | o% = -(q-p)
kk* k k! p HE q-p} .

The expression on the right hand side of (2.35) is nothing
but Ty [see equations (2.22)]. Therefore, equation (2.35)

may be rewritten as
rdy Upa(a) W (p) = Ty -
Similarly the relationship 2
. . v . ~
fd?w:.(p) U (a) = <k.p|e1vz|ak>e1(q-p)—2¢ elck'k®
can be established and further expressed as
fd? w:l(p) Uk(a) = Sk'k = T;k'
The unitarity condition [equation (2.34)] now reduces to

— =y = — — N L r. % *
[dy ?*(Yat) ¥ (y,t) = Lak'ak + bk'bk] Gk'k

* *
+ apa by Sy by Ty

-iERt
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Introducing the summation sign explicitly, one finally writes

— Ga(= ) T (T 4) = 2 2
de W*(Y:t) ¥ (Y’t) = E['akl + |bk| ] + k|z(' ai’(‘lbk Sklk

+ T b¥.a, Ty (2.36)
Kk " k'“k "k'k

Equation (2.36) represents the unitarity condition to be
satisfied by the electronic wave function and we employ
it extensively in numerical computations for checking the
acceptability of the calculated amplitudes a and bk‘ Ideally,
the summation represented by equation (2.36) should equal
to unity before and after a computation.

One may also express the unitarity preservation
condition by differentiating the preceding relation fdy ¥* ¥ = 1
with respect to time. This finally gives a matrix equation
expressing a relationship which must hold among various matrix
elements whiéh in other contexts has proven useful. It was
not employed, however, in this thesis.

It may be pointed out that, because of time reversal
invariance and detailed balance holding for this process
an interesting check of the calculations could be made by
“running the computer program backwards"; that is, starting
at t = -Tmax with the amplitudes ay and bk appropriate to
a given process one could ascertain whether the proper

initial conditions a, (- Tmax) = 8y and bk (- Tm ) =0

aXx

are recoverable at t = This would impose a very

* Tmax'
stringent criterion on the calculation.



CHAPTER III

PREVIOUS SOLUTIONS

3.1 Introduction

In the previous chapter, we presented in general terms
the mathematical formulation of the collision between an
unstructured massive ion and atomic hydrogen. For the
discussion of previous theoretical calculations and comparison
with experimental results, we have selected explicitly an
a-particle for the projectile. This chapter is therefore
concerned mainly with the scattering of an a-particle by a
hydrogen atom. Some of the calculations we shall consider
do not necessarily involve a direct solution or manipulation
of (2.25) in which Z is set equal to 2(the charge of the He2+
jon) and M equals 4; they, however, entail a solution of

some kind for the He2+

- H collision problem.

To facilitate the discussion of previous theoretical
solutions of the collision between an a-particle and a
hydrogen atom and to avoid unnecessary reproduction of some
expressions, let us rewrite (2.25)

i A=WA (3.7a)
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with

F LG o
W = 3.
kk'

T L ko M N ak!

a
b
k

where the time dependent matrices on the right hand side

and

of (3.1b) are defined in (2.22). Several caiculations
jnvolving the collision of mainly protons with hydrogen

atoms in various approximations to evaluate cross sections
have been carried out using a differential equation resembling
(3.1) or variants of it. Wilets and Gallaher (1966) were

the first to apply (3.1) in a slightly different formulation
to protons.incident upon hydrogen atoms using a multi-state
approximation to evaluate among other things charge transfer
and direct excitation cross sections. Cheshire et al. (1970)
applied the Wilets and Gallaher version of (3.1) to protons
colliding with hydrogen atoms by replacing the eigenstates

in (2.22) with pseudo-states. Recently, Gaussorgues and

salin (1971) have employed the Wilets and Gallaher formulation
without the momentum transfer terms to the scattering of
protons by hydrogen atoms to determine charge transfer
differential cross sections. These are but a few examples

of studies which involve the direct sotlution of (3.1) or
variations of it for the specific case of proton-hydrogen
collisions. They are intended to show that (3.1) is indeed
general and therefore applicable in principle to the collision

of an unstructured heavy ion with atomic hydrogen. The



availability of some experimental measurements and theoretical
computations resulted in the selection of the a-particle

as projectile for obtaining numerical results from the

general formulation.

Dealing with proton-hydrogen scattering has the
additional advantage of symmetry which is absent in the
general case. In fact, Wilets and Gallaher ingeniously
exploited symmetry arguments to reduce considerably the
complexity of the problem, thereby reducing the cost of
computing which remains a stumbling block towards a complete
theoretical analysis of problems of this nature. In what
follows we discuss previous solutions to (3.1) or variants
of it as well as other approaches relevant to He2+ - H

scattering to establish how much has been accomplished thus

far and to what extent these results are reliable.

3.2 Previous Solutions of He2+ - H Collision

(a) McElroy (1963)

He solved the collision problem between an incident
a-particlie and a hydrogen atom which is initially in the
ground state in a two-state approximation. While taking
account partially of distortion he neglected back-coupling
from the final to the initial state, which according to
Macomber and Webb (1967) is not important at a-energies
above about 100keVprovided the correct distortion term is
used. The inclusion of only the ground state of H in the

expansion of the total electronic wave function limited

34
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McElroy to the calculation of charge transfer to any one
of the Het states considered.

With the necessary approximations we shall extract
the equations of McElroy from (3.1) and, in the process,
the meaning of distortion and back-coupling both of which
are fully accounted for in our formulation will follow
naturally. Towards this end, it is convenient to employ
(2.21) rather than (3.1). Therefore, remembering that the
matrix elements Pkkl and ka. are each merely Gkk' and that
s = T* in (2.22), we reduce (2.21) to McElroy's equations
with the additional approximation that all é-dependent terms
in (2.22) are set equal to zero and that all terms not
involving the initial or final states are omitted. Consequently,
setting P = L = I and premultiplying the second equation

in (2.21) by T"], one obtains

i a+isSbh=Qa+RD

(3.2)

1 1 1

ia+iT 'b=T'Ma+T 'Nb
The elimination of ék from (3.2) and some manipulation
leads to

i(1 - TS)b = (M - TQ)a + (N - TR)b (3.3)
Similarly, by eliminating b, from (2.21) one obtains

i(1 - sT)a = (Q - sMm)a + (R - SN)b (3.4)

It must be stressed that the two-state approximation
of McElroy does not ijnvolve intermediate states; it contains
only the initial and final states concerned. Therefore,

jdentifying (3.3) and (3.4) with McElroy's equations and
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denoting the initial state by i and the final state by J,

(3.3) and (3.4) become in his notation

. 2.5
-i(e%-eP
< e 1(ej ej)t
and (3.5)
. 2y% =

« e-i(e?-e%)t

where the matrix elements in (3.5) do not depend upon the

time directly and are identified as

Sij = Jetlry) oyly,) e''F dr

Si5 = Fe3(vg) 45(r,) TV dr

hyg = -e3(vy) o5vg vy e'V? dr (3.6)
ngs = 2083(vg) oy (ypdv;! eV de

Cyp = -208(v,) 65y vy dr
- - -1
Ci5 = -Fo%v,) ¢5(yvy)yy dr

The absence of the terms containing 5 in (3.6) is a
manifestation of the neglect of rotational coupling. To
what extent rotational coupling effects influence both
charge transfer and excitation cross sections has not
previously been investigated for this problem in a multi-

state expansion of the total electronic wave function.
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McElroy solved (3.5) with the initial boundary conditions

ai(-w) 1

(3.7)
bj('w)

0

which represent the binding of the active electron to the
proton initially. In the final state the electron is bound
to the a-particle to form He+(25 or 2p). Equations (3.5)

are reduced further by making the following substitutions:

a; = a; L (3.8)
by = by -irt 8ydt

so that
a; = ag; e'iIEmaidt - i ajay

and (3.9)
b, = b, it idt _ g xY

Substituting (3.8) and (3.9) into (3.5) and simplifying,

one obtains

) (h;:=S::C..) s (%ol 1643
PSR F it Rt F LA o-ileg-ey)t 184 (3.10)
01 ]_lS..‘z 0J
1]
. (h..-S..C..) _i(P_.0 iR s
PSRN i . ok L i(efj-e5)t -84 (3.11)
0j 2 o1

and, after integration of (3.11) over time from - to +=,



o (h;s=S::Css) _s o Cisa
i by (=) = J J1v_J1 ‘; o-i(eB-ef)t -1845 gt (3.12)
J -o  1-]S.s|
1]
where
[t
)
ft (Css-Css=S;shss+S.:h.:)dt
- ii Y33 “13 31y gt 13 (3.14)
J=® 1"lsijl
[t
J—oo
with
IR RArE
s f
i3l
and
C S..h

S F Rt L
3 -
1-1545]1

McElroy integrated (3.11) with the approximation that
aoi(t) = 1 throughout the encounter which amohnts to neglect
of back-coupling. The distortion term Gij which is absent
in the symmetric resonance process describes the distortion
of the eigenenergies (Bates 1958) and this arises from the
fact that the initial state consists of a neutral and a
positive ion while the final state involves two positive

jons moving in a repulsive Coulomb field. Adopting the

expression (3.14) for Gij is equivalent to taking full

account of distortion, whereas the approximation (3.15)
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to § results in only partial consideration of distortion.

13
For a discussion of the consequences of using both (3.14)

and (3.15) on the charge transfer cross sections see Macomber
and Webb (1967).

The probability of capture into state j occurring at

some impact parameter p is

. 2
P(p:3) = [by;(=)] (3.16)
with boj(w) given by (3.12) and the cross section for charge

transfer is
21.3) = 2n[ Plo.3) ndo . (3.17)
It is of interest tg observe that if aij
both set equal to zero in (3.12) one recovers the Brinkman

and Sij are

and Kramers (1930) approximation in which they used the incident
ion -electronic interaction as the interaction potential
responsible for the charge transfer.
Both McCarroll and McElroy (1962) and McElroy (1963)
employed (3.12) to study the non-resonance and the accidental
resonance reactions given respectively by

2+

He®  + H(1s) » He+(1s) + HF (3.17a)

and

2% + H(1s) » Het(2s, 2p) + WY (3.17b)

He
Reactions (3.17a) and (3.17b) have been studied for the
range of a-particle energies (50-1600keV) and (25-800keV)
respectively. As can be seen from both (3.17a) and (3.17b)
the computation of McElroy is an extension of the calculation

of McCarroll and McElroy.
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(b) Basu et al (1967)

They solved the collision problem for the range of
a-particle energies (1 - 100keV) by using a variational
method. The trial electronic wave function is expanded in
terms of the ground state of H and the He+ states under
consideration enabling one to calculate only charge transfer
to the different states of Het included in the expansion of
the total electronic wave function. A serious objection
to their calculation is the omission of momentum trénsfer
terms at all energies of the incident a-particle considered.
According to Malaviya (1969) momentum transfer terms remain
important down to a-particle speeds o about 0.1 a.u.

(see also Bates and McCarroll 1962). Therefore, the
calculation though a multi-state one does not represent

a significant improvement over the previous attempts.

(c) Coleman and Trelease (1968)

Coleman and Trelease employed the high energy impulse
approximation in which they took account only of intermediate
continuum states which, they claim, are 1ikely to be important
at high energies. The authors admit, however, that their
results for the capture cCross sections are unlikely to be
correct at low energies because they neglected Coulomb
repulsion in the final state. Consequently their results for the
capture cross sections to the n = 2 level of He+ are much
lower than the experimental values of Fite et al. (1962) and
of Pivovar et al. (1962). In fact any theory which neglects

back-coupling and/or distortion is not expected to give
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reliable results below impact energies of He2+

less than
about 100keV (see Macomber and Webb 1967). According to
Malaviya (1969) the capture cross sections to the n = 2
level of He® calculated in the impulse approximation are
less than his two-state or five-state results by a factor

of approximately 3 (see results in Chapter V).

(d) Malaviya (1969)

The calculation by Malaviya of electron capture represents
the first multi-state attempt towards the solution of the
He2+ - H collision problem which takes complete account of
the important effects of distortion and back-coupling as
well as momentum transfer. Malaviya expanded the total
e]ectronic wave function in terms of travelling atomic
orbitals representing H(1s), He+(25), He+(2pz) and He+(2px)
states and called this a five-state approximation. This
nomenclature is different from that employed here; in the
four-state approximation used in most of the results of
this thesis the four states 1s, 2s, 2p0, and 2p] are
included on each of the centres. In Malaviya's labelling,
this would be called a ten-state approximation. Malaviya
utilized energy difference arguments to neglect coupling
to other states of H and to the He+(1s) state.

By comparing his two-state with his five-state results
he concluded that for projectile energies greater than
25keV the inclusion of intermediate channels arising in
part from the rotation of the internuclear line is not

important. The results of Malaviya for electron capture
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are in fair agreement with experiments (see Chapter V for
results) except at low energies where the theoretical curves
fall faster towards zero than the experimental curves. He
attributed this deviation from experimental results as

due partly to the use of atomic rather than molecular
eigenfunctions.

As will be shown in the results our calculations
contradict the conclusion that one can omit the transition
to the ground state of Het in the computation of charge
transfer without specifying the energy limit. Actually,
as the energy of the incident a-particle approaches and
exceeds about 800keV, the He+(1s) state tends to receive
a greater population compared to the other states of He® in
keeping with the theoretical predictions of McElroy (1963).

Further, we do not agree with Malaviya's observation
that one can neglect rotational coupling. Our capture cross
sections to the n = 2 level of He' tend to rise above Malaviya's
at a-particle energies less than about 25keV, where Malaviya's
results fall faster than the experimental findings.

One observes from the preceding presentation that no
previous calculations exist on either excitation or ionization
of the target atom or of resulting polarization of the
target using a-particles as projectiles. It is therefore
also a purpose of this thesis to estimate target polarizations
and jonization cross sections, and to evaluate excitation

cross sections.



PTER IV
NUMERICAL METHODS

4.1 Introduction

For the complete integration of the coupled differential
equations (2.25) we shall employ the method of Wilets and
Gallaher (1966) (hereafter called W-G) but with major
modifications. The scheme of integrating the coupled
differential equations for the amplitudes from t » -
to t + +» may be broken into three main sections.

First, the spatial matrix elements represented by
equations (2.22a) are all integrated in a prolate elliptic
coordinate system. The particular matrix elements akk' and
ﬁkk' may then be integrated either analyticaily or numerically
as desired while the remaining spatial matrix elements
(gkk" ﬁkk!’ %kk‘ and ﬁkk') are of necessity evaluated
numerically; for this the Gauss-Laguerre and the Gauss-
Legendre quadrature methods have been adopted. Subsequently,
by (2.33), the ﬁkk' are then determined and stored at each
point of a coarse mesh.

Next, utilizing these ﬁkk' and a five point Lagrange
interpolation formula, the time integration over a fine

mesh with limits ('Tmax’ +T ) is effected via a fourth

max
order Adams-Moulton predictor-corrector method using the

Runge-Kutta formula of the same order as starter.
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Finally, the resulting amplitudes are extrapolated

from t = +T .. to t + += by Cheshire's procedure (1968).

4.2 Choice of Method for Integration of Coupled Equations

The overall integration scheme of W-G having been
applied successfully for the solution of the H+ - H collision
problem was a natural choice for evaluating the matrix
elements in (2.22a) as well as for time integrating the
coupled differential equations for the amplitudes from
t = -Tmax to t = +Tmax over the fine mesh. Unfortunately
the application of that scheme in all its details has
proven unsuitable for this problem. We, however, retained
its underlying overall basis.

Before providing an explanation in detail of why the
W-G method as it stood was unsuccessful in this work, we
must emphasize that it is not the intention of‘the author
to examine critically the conditions and range of validity
of the total W-G integration scheme; we are mevrely stating
an observation and attempt to provide a reasoned explanation
for the failure of that approach when applied without
modifications to the present problem. In fact, the purpose
of this section is to guide future workers against the blind
use of the W-G method as it stands if their problem should
be similar to this one.

In general, the formulation employed by W-G for
numerically integrating the spatial matrix elements which

enter into the expression for the wkk. js not recommended
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especially when one deals with wave functions that are
generally more compact than hydrogenic wave functions (such
as pseudo-state wave functions). The validity of the results
obtained by their approach will depend upon, among other
things, the magnitude of the coefficients of R(t) appearing
in the exponentially decaying terms in the wave functions.

In general, a large R(t) will diminish the reliability of
these results.

To apply the time integration scheme of W-G to the
differential equation for the amplitudes, let us recast
(2.25) into a second order differential equation involving
only one amplitude, say b(t). For the reduction of (2.25)
to this second order equation, we utilize (2.21). Without
much labour, (2.21) can be transformed into

b - iwb - ivb = 0 (4.1)
a = pb + gb
or replacing b(t) by X(t)

X+ nX +mX =0
. (4.2)
a = pX + BX
where, in this section only, the time dependent matrices
W, vV, p, and B are defined as
. o
w="p,'[iP, +T, - L,]
2 2 2 2 (4.3)
_ p=Tps .
v = P2 [TZ + 1 Nz]
n = -iw p =1 P

m= =iv B =T



with
-1 -
Py = Py 5y To =P Ty
L, = MITL \ N, = MIIN
2 = MLy o = MMy
and
pp= P lg - T n Ty = T - P7IR
s, = P7ls - L My = Q7P - mT7 (4.4)
Ly = m=TL - g7 Ts Ny = Q'R - My

The matrices without subscripts in (4.4) are identified as
those appearing in (2.22). To obtain the matrices w and v,
one therefore has to invert numerically (it should be noted
that the matrices containing the momentum transfer terms
etivz have not yet been obtained in closed form) a rather
large number of matrices. This process of numerical
jnversion is in general long and time consuming and should
be avoided where possible. Consequently this introduces
an argument against the procedure we are outlining.

To solve (4.2) for X(t) and thence a(t), let us expand
both X(t) and i(t) in a Taylor series. Thus

46

. 2 3...
X(t+At) = X(t) + At X(t) + i%%l— X(t) + (gf) X (t) + ...
and ) (4.5)
. L] *eo 3 ae e
X(t+at) = X(t) +aeX(t) + (A'f X(t) + Lg-‘!:-)-—'x (t) + ...

The Taylor series is truncated after the (At)3 term; making
the scheme correct to order (At)4.
From (4.2)
X = -ni - mX
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and by differentiation with respect to time one obtains

= (-n - m+ n2)X + (-m + nm)X
and (4.6)
X = (-f - 2m + ni + 2fin + mn - n3 + nm)k
+ (m2 - nlm - 1+ 2nm + nm)X
It must be borne in mind that the matrices n and m as well
as their time derivatives are evaluated at time t and they
do not commute. Both n and m and their derivatives are

also expanded in Taylor series
At/2)2
a(t + B8 xn(t) + (GRR(E) + (812) i(t)

A(t+AE) & A(t) + (Bhn(e)

(t+At N T(E)

2
n(t+bf) v om(t) + (GPIale) + (at/2) 5i(+)
(t+“) A w(t) + (BRI(E)
m(eeBE) o Wit)

Solving for n(t), m(t) and their respective time

derivatives we obtain

2
a(t) & n(esdh) - (BB (esbE) AR T(re )

() o on(ersh) - (BB (t+5) (4.7a)
Rt) n B(eehE
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and

m(t) o m(e+dE) - (BBym(e+SE) +§ét_)_ (St

e

At)

m(t) ﬁ(t+ ) - ( )+

e

(4.7b)
m(t) v w(t+Eh)

(4.7a) and (4.7b) are then substituted into (4.6) and the
resulting expressions are used in (4.5). After a lengthy
but straightforward calculation one obtains the amplitude X
and its first derivative at time t + At in terms of X(t)

and i(t). Thus we find

2
X(t+at) = { (At) —A%L— [" m+n?]
+ _Ail— [-—-nn+mn n3+nm]} X(t)
t+—2—
2 3
+ {1 (gf) m + (éf) [Z+nm]
4 .
+ LA%%— [-%—nh+m2-n2m]} At X(t) (4.8)
° t+-§—
and
X(t+at) = {1 Atn+ifr—— [- m+n2]+(At) C- :-2 ~§+7r+mn n®+nn]
+ (At) [- 2+" mn+n n+7r+mn nn -mn2+n4-nmn+m2-n2m

2 3
+nm]} At X(t) + {-Atm+L%%l— nm+ L%%l—
t+5= ’ )
2
[-%-%¥+ m2-n2 m+—— +i§31— 17—mm+n m+%¥+mm nnm

3 2
-mnm+n> m-nm ]}t+At/2 X(t)
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Both the matrices and their time derivatives in (4.8) are
now evaluated at time (t + At/2). Thus, knowing X and i
at time t, one calculates the matrices and their time
derivatives at time (t + At/2) and consequently obtains

X(t + At) and i(t + At) through the stepping formula (4.8).

The boundary conditions are

so that from (4.2)

Be(-=) = piel-=) ay, ()

= ppi(==)
These boundary conditions have the effect of placing the
active electron in the 1s-state of the target hydrogen atom
at t = -o. The charge transfer probability at this time
is thus effectively zero.
Without much difficulty the matrices n and m can be

expressed in the form [see for example equation (2.32)]

n(t) = 7 ¥t
(4.10)

m(t) = m e Wt
The time dependence of i and M arises parametrically
through R(t), the internuclear separation.

Differentiating (4.10) with respect to time we obtain

A(t) = (A + imn) e Wt
(4.1]a)
m(t) = (A + inm) eVt

and



W) = (8 + 216h - a%h) '™

(4.11b)
o0 _ /4 AN A2 iwt
m(t) = (m + 2iwm - W°m) e

The scheme of W-G can now be applied to (4.8) to obtain

X(t =T ), with the matrices given in (4.10) and their

max
derivatives in (4.11a) and (4.11b). Thence, in principle,
a(t = Tmax) could be calculated from the second equation in
(4.2). A major practical difficulty with this method of
solution occurs when one attempts to calculate the time
derivatives of the matrices n and m numerically. In this
calculation the variation in the matrix elements akk! and
akk' as the internuclear separation R(t) changes is not
necessarily smooth. In fact for some energies and impact
parameters (especially small ones) these variations are

quite rapid, in particular as R(t) -~ 0. This makes numerical
differentiation very difficult and therefore unreliable.
Accurate values of é(t), é(t), ﬁ(t) and E(t) are essential
for dependable results. For the nt - H collision problem,
the wave functions are not as compact as in this case.
Therefore one might expect the scheme to work quite well

in the H" - H collision problem.

Since our aim is to obtain, among other things, both
excitation and charge transfer cross sections within a
reasonable computing time, we were unable to employ (4.2)
to evaluate the amplitude a(t) at either t =T _ or t - +=
(assymptotically) for the following simple reason. Some

elements of the matrices p and B were quite Targe (m108) at

50
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either t = Tmax or t - +®; now we know from probability
conservation requirements that no single element of either
ak(t) or bk(t) may exceed unity. Consequently, the computer
must be capable of handling numbers to about twelve signifi-
cant figures if, for example, one requires that the amplitudes
be calculated correctly to four significant figures. When
these calculations are effected, one has always to bear in
mind the cost of computing (in terms of time or dollars).
Even with as good a machine as the CDC 6600 we could not
get reliable results at reasonable costs! Consequently,
we abandoned the method as being quite impracticable.

One was able to avoid numerical differentiation by
expressing the time derivatives of the matrices in terms
of the matrices n and m. The only objection to this method
of solution is that one winds up with long and complicated
expressions for the time derivatives of the matrices.
Consequently, accuracy improves but computer time rises
considerably. For the type of calculation we are pursuing,
one would only be content with great accuracy for the least
computer time! The failure to realize this ideal forced

us to abandon the procedure outlined.

4.3 Evaluation of the Matrix Elements

The evaluation of thd matrix elements in (2.22a) and
the subsequent determination from (2.32) of the Wy, which
are required for the time integration of the coupled

differential equations represent the necessary steps towards



the solution of (2.25) for the amplitudes and, consequently,

the calculation of charge transfer and excitation cross

sections of the target atom. Let us rewrite for convenience

the matrix elements in (2.22a)

Pekt = Lk = Skk!

o - 2 1 __z_ )
Qg = <kP|82p|Pk'> - <kPlYa Pk

" A ' 1 1
N = <ka|8 ak’> - <ka|§;|uk >

. , (4.12)
Skt = <kP|e1VZ|uk'>

Tepr = <kale”VZ|pkt>

Repr = <kPle’VZ8n Jok'> - <kple'V? V%lak'>

M =

-ivze ) -ivz 1 .
Kk <ka|e elp|Pk > - <kale 7;|Pk >,
The matrix elements akk' and Nkk' are of the standard mole-
cular structure integrals and can be obtained in closed

analytical form. The others that involve the momentum

o
fata]

tranfer terms ef'VZ pave to be calculated numerically because

we have not yet discovered analytic expressions for them.

Fortunately, the existence of an interdependence among them

reduces their actual computation to only the four matrices:

ﬁ(or a), S (or f), R and M. The remaining two a and T are

A ~

deduced from N and § respectively. Since N is expressible
in terms of R(t), the nuclear separation, the substitution
R(t) ~» B%El leads to a correct expression for the second
term in the expression for a. ? may be extracted from §
by making use of the relation

S, ., =T

o = TEe (4.13)
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which follows directly from (4.12).

The preparation of the four matrices ﬁ, §, R and M
for numerical integration is achieved by following the
integration procedure of Gallaher (Ph.D. thesis) in which
integration over the azimuthal angle ¢' is performed first
and summation over the magnetic quantum number m is reduced
to only positive (including zero) values, leaving two |
dimensional integrals which may then be evaluated numerically.
To exploit the method, one first expresses the terms

containing the operators za and &_ in the expressions for

p
R and M in terms of S and T.

Writing L, = (zy.)a
ot
=
and
lp = (zy;)p, and remembering that the operation

of 2 is upon only |ak'> and of &_ is confined to only

p
|Pk'>, one obtains the following expressions for the elements
<kP[§ e'VZ p_Jak'> and <ka]d e”1VZ 1, IPk'>:

<kp|§ e'V? 2, lak'>

. ivz [g'f-g'" '
G)<kP|e ——2—_'-—— ' ok'>

f%{/(z'-m')(z'+m'+1) <kP|eiVZ|ak'+1>

- ) (L -m +1) <kP!eivz|ak'-1>}



——{ ST TTFRFTY Sppoyq-/EFm (L =m0+ S i ]}

and

<ka|8 e

(4.14)

-ivz
k'>
zpln

. o+ -
é<ka‘e-1VZ [%_7%&_%]| Pk'>

%T{/Tz'-m')(2'+m'+1) Tegreq-/EF (T =R 1) ?kk._]}

where (k'+1) means (n', 2', m‘ii).

Similarly, one also wwites

5S4

A ] _é L L) Ll Ll Ll ) 1] L]
<kp|ezplpk >_§T{/(g SRR FM FT) Sy ey -y (RTHM J{27-m +1)6kk._]}

and

(4.15)

<ka‘é2a‘akl>=%T{/(1|_mn)(2|+mc+])6kkl+]_/(2l+ml)(2'-m'+1)6kk|_1}

. s + — -
The use of the abbreviations Ck‘+1 = %T /(o' -m')(2'+m +1)

and Ck._1

= %T YT Fm ) (& -m' +1) leads to the four matrix

elements being expressed more compactly as

Ngk
Skk*

Rek!

~

Mk

where the

. + A= .I '
6[Ck|+]6kku+-‘ Ckn_]Gkk._]] - <ka|?—|ak >

p

= <kP|e' V¥ ak'> (4.16)
4.16

T A - 2 ivz 1 '

- e[ck'+1skk'+1'ck‘-lskk'-1] -<kPle ?;luk >

- -iVZ Z ]

a
matrix T is not 1ndependent of S the dependence
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being given by (4.13). One immediately observes that the
evaluation of the matrix elements in (4.12) has been
reduced to the calculation of essentially the four sets of

matrix elements: <ka|71|ak'>, <kP|eiVZ|ak'>,
p

<kp|e'VZ #Llak'> and <kale 1VZ Lipk's>.
p Yo

Therefore the integration over ' can now be performed
and the Gallaher (Ph.D. thesis) scheme followed to reduce
the above four sets of matrix elements to two dimensional
integrals in preparation for numerical integration.

We first consider the elements <ka|;%|ak'> which may
be integrated analytically. Nevertheless, we shall illustrate
how they may be computed numerically; they might as well
be evaluated in a similar manner to the rest which can be
calculated only by numerical methods at the present time.
Therefore integration over the angle ¢' reduces <ka|7§|ak'> to

<ka|?%|ak'> = MV S (4.17)
where the elements Nka. are two dimensional integrals which
will be evaluated by transforming over to confocal elliptic

coordinates. From Appendix A

ER(t) = v, + vp» nR(E) = v, - vy
so that
Y, = (& +n) EL%l > vy = (& - n) Rgt)

where the coordinate & is analogous to a radial coordinate

and n to the cosine of an angular coordinate. The Jacobian
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of the transformation from (p', ¢', 2') to(g, ¢', n)

coordinates is

3

Jp'ao'az' > £ 0'u ) = (3 (2n?) .
Thus

3
p'dp'dg'dz’ = (%) (£2-n%)dEdnds’
= (§) v, v, dgdndo’
2’ Ta 'p

where

p' = Jx'z + y'2 and R £ R(t).

To utilize computer time more efficiently, we construct
a general integration scheme which will be employed to
calculate numerically all the matrix elements needed. To
this end, a transformation of the integration variable
£ (the limits on £, n and ¢' are: 1 < & <=, -1 < n < +1
and 0 < ¢' < 2m) to another variable with limits (0,») is
effected so as to avail ourselves of the Gauss-Laguerre
quadrature method. To change the limits of integration of
£ from (1, ») to 0, =) , one sets

x = ER = Yo + Yp

and defines the new variable y in terms of x as

y = x - R
= ER - R

so that
dy = R dg .

@

Therefore I] dg F(¢) =f dy/R F(y)
0



where F is some unspecified function and

g =y/R+ 1.

Consequently,

® J+] FA(K)FA(K')

iok's=
<ka|Y lak'> Gmm'fo g Y,

R dy
; (Z)vaYp 7 90 (4.18)
where the FA(k) are properly normalized bound state
eigenfunctions of He+. In this thesis the bound state
eigenfunctions for both Het and H are normalized to 4w
for m = 0 and to 2m for m # O.

The Gauss-Laguerre (for the variable y) and the Gauss-
Legendre (for the variable n) formulas may now be applied
to (4.18). The form (4.18) is easy to program since it
entails merely reading in the correct wave functions and
the rest involves only simple calculations for the computer.

However, the computation of the exchange type elements:
<kale'YZ|PK'>, <ka|eivz/yp|Pk'> and <kp|e”'V? §Z4ak'>

o

is not straightforward. To calculate these elements, one

exploits the invariance of H = ==~ - — - —+t3 with

respect to reflection through the collision plane (6 » -¢)
to obtain the following correspondence for the total
electronic wave function

F(y, 6, 6, t) = ¥y, 8, -¢, t).
Consequently, retaining only the angular part of T(y, t)»

one obtains

L Apn(t) Yon(0.0) = I Apgn(t) Ypp(6,-¢) (4.19)
m m

5%
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where the sum is over values of m ranging from -2 to Q.
However, the symmation over k in (2.4) allows only positive
values of K. Following Gallaher (Ph.D. Thesis) the sum
over m may be reduced to only values of m > 0.

The spherical harmonics satisfy the relation
v (0,0) = (1" Yo, (0s0)
Lm es(b) = - e -m 8,9

or v, (8,0) = ()" Y(0:0)
so that

mZAnzm(t) Vom(:0) = 1 Agn(t) ()7 Yop (850D

Therefore
Agmit) = ()" Apemlt) - (4.20)

Thus the modified spherical harmonicsjjzm(e',¢') can now

be defined as
Yzo(e"¢') , M=0
Y, (8'.00) = | (4.21)

7-2_: E{R’m(e. ,¢")+(-)mY2’_m(6' ,¢')] , M>0

and have the proper normalization

JH;m(e"‘b')”z'm' (6',0') d@ = 8pp¢ S~
Further, a representation of eivz in terms of the rotating
coordinate system is necessary for the reduction of the
exchange type matrices to two dimensional integrals.
Expressing z in terms of z*' and p' as

2z = z' cos 6 + p' cos ¢' sin @

we obtain the following expression for e'VZ:
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oivz eivz'cose eiv x'“+y'" cos¢' sinod

Therefore; the exchange matrix elements involve an

integration over ¢' of the form

2 . 1 . 1 tasd
I "d¢' Ji(m-m')e'  ivp'cose'sine
)

= 21'\' ilm-m I J|m_m|l(vp'5'in e)

where Jm(x) is the ordinary Bessel function of the first
kind of order m and argument Xx. A series expansion of Jm(x)
which converges for all finite values of x exists and is
given by

_oxym T ()3 (xy2]
Iym(x) = (7) .Z JIT(J+m+l) (7)

Asymptotic forms of Jm(x) for small and large arguments are

given by (see Jackson 1962)

Jm(X) m ﬂﬁ]—}r)' (é—)m for X << 1,
and
Jm(x) =3 /F% cos(x-m%-% for x >> 1.

J_m(x) and Jm(x) are related by
3_p(x) = ()7 9p(x)

Consequentliy, we are now faced essentially with
the evaluation of the two dimensional integrals for the

exchange matrix elements of the types



Ska'(;) = (kP|e ivz'coso |m+m Iﬂ l(vp sine)|ak')
Rka'(;) = (kP|e ivz'cose ;lm m llJW* ,|(Vp sing)|ak')
kak'(;) - (kale'1vz ‘coso mFm'| Z_ J|m+m |(Vp'sine)lPk')
where (;) indicates the m, m' combinations (m+m.)
for m=o0

for m>o0 .

1
and lkB)<=>Rn2(YB) @zm(eé) X 2=1/2

in which the ®2m(eé) are the normalized associated Legendre

functions Pz(eé). From the definition of the modified
spherical harmonics}ékm(e',¢') (equations 4.21) and the
fact that summation is now only over m > o, a typical

matrix element will contain angular integrals of the form:

* m * m'
fdQ[Y2m+(') Yg_m][yzlml+(-) Ygl_ml]’ mTO
m'>0
v ¥ m,* m>0
fdQ[IYZm+(-) Y,Q,"m]Yl'O’ m'=0
(4.22)
m m=0
Jjda Ymo[yz m' +(-) Yz'-m']’ m'>0
rde Yoy 0
1 ’ m=
20 2'0 o0

Introducing the notation O vhere

0 , m=20
Op = , one recognizes
1 , m>20

that the ¢' integration in (4.22) can be represented for
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all m and m' combinations as

S RN S LR LD e
LT CRLLLAETLLU I 0,
fdgt[ei™ 9 pemimiety m=0
fae mi=o

Consequently, the two dimensional integrals of interest

are expressible in the more general form:

(kPle'VZ|ak') = (1+omcm.)Ska-(1)+(om+cm-)Ska-(2)

(kPIEiVZ/Yplak') = (]+°m°m')Rvkk'(])+(°m+°m')Rvkk'(z)

(kale V2 ?flPk') = (Mopop MV (D4 (o ko MY 4 (2)
(4.23)

These expressions can now be integrated numerically with
care over the variables y and n after the manner of equation
(4.18) and the resultant expressions used in (4.16) to
obtain all the spatial matrix elements required in the
calculation of the ﬁkk" The n integration was effected

by means of the Gauss-lLegendre method with the number of
pivots and weights being allowed to vary with R(t) because
there is no difficulty in obtaining sufficient accuracy

with only a few points for small R(t) than for large R(t).

A ten point Gauss-Laguerre method gives acceptable results
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for the y integration. Consequently Gallaher (not yet
published) has developed a method whereby the n integration
can be performed analytically thereby reducing numerical
integration to only over the y variable. This will,

without doubt, reduce computing time considerably.

4.4 Time Integration of the Coupled Differential Equation

It should be remembered that the integration of the
coupled differential equations (2.25) for the amplitudes
proceeds from some large negative time (-Tmax) to a large
positive time (+Tmax) such that the boundary conditions are

~ ~ A

valid there. The elements Ny, . Qkk" Skk" Tkk" Rkk"

~

Mkk' as well as ﬁkk' have been evaluated for some R(t).
Therefore, by implication (see derivation of the coupled
differential equations in Chapter I1I) the calculation of
the ﬁkk' was for negative time only. However, the ﬁkk'

are needed for t > o also. We therefore establish a
relationship between the ﬁkk‘ (t > o) and the ﬁkk' (t < o).

To accomplish this the spatial matrices which determine the

wkk. for t > o have to be known.
We have seen that R cos 6 = -Vt and R sin 8 = p,

where R = /p2+(vt)2 . For negative times 6 varies from

- T - Ces .
near zero (t = 'Tmax) to near » (t 0). Positive times
corresponding to 6 values ranging from % (t = o) to near
w(t = +Tmax) so that for positive times cos(w-8) = %} and

sin(n-6) =

oo
L]

Therefore cos® is the only quantity that changes
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as the time progresses from negative to positive values.
Consequently, the only matrix elements affected by the

: t
transition fromt < o to t > o are those containing glV2 COSO

Thus it is necessary to determine the correspondence between

ivz ' ivz
(kP|e | ak )t<o and (kP|e |ak')t>0.

We have previously shown that
(kPle'V % ak" o= Xy iSVi (1) + ¥ sV 4 (2)

. - + S + .
with Xmm" 1 L and xmm' Ontope

Denoting by 6~ the angle corresponding to t < o and considering
only Ska.(l) (the use of svkk.(z) will give the same results)
we have

SVp i (1) = (kp[eiVZ'COSO j|m-m lJlm_m.l(vp'sine‘)lak')t<0

s ' - m! -
- (kP|€1vz co0s®6 ilm m IJIm-m'l(vp.Sine )lak')
t>o

But (kp|e~1VZ'COSe y[m-m IJIm_m.I(Vp'sine')lak')(t>o)
- | m-m’ | ivz'coso . [m-m'| b eing™ 1y *
= (-) (kPIe 1 Jlm‘m'l(Vp sTneg )Iak %t>0)
Therefore
SV o (1)[t>0T = (=)™ ™ Tsy* (1) [teo]
kk kk

and in general

. -m! : *
(kPle™VZ|akr),, = (<)Imem L(kpye?VZ 1ok,

(4.25)

Thus, it immediately follows that all the elements containing

the momentum transfer terms will transform according to (4.25).
The corresponding expression for the ﬁkk.(t>o) is

obtained by exploiting equation 2.32). Thence the trans-
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formation of (Y )kk' to positive times shall be deduced.

The reflection of the spatial matrix elements ka., (X )kk'

and Ykk' from t<o to t>o will follow the same procedure as
for (? )kk" For this section only, the substitutions
Fkk‘ = (Y )kk' and Gkk' = (X )kk‘ will minimize confusion

in the notation. The (Y )kk' were defined as (see equat1ons

preceding (2.31) ).

~ _ A-'IA

] l\ A-]I\ A_ ~
(57 1p-L71717 ) [57IR-LTINT gy

The matrices P, E and N are independent of cose® and from (4.25)

8- 1(ts0) = (=)™ ™| 57 1*(t<0)

so that

Teso) = (o)™™' 1T (t<o)
and

R(t>0) = (™™ R (<o)
Thus

Frper (8500 = (1™ ™ D

- t A
-)|m m |Fkk. (t<o)

Let us now consider carefully the spatial matrix i] which

has been defined as

~Altn
Dy Cy

X1

(575 - Ml - U M)

and writing G for X1, we obtain
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* A A_'I

By (t>0) = [(ST1P-0717%) 151 Q-L-10)

ak']t<o

From the expression for ﬁkk' [see equations (4.16)], one

may represent Nkk' as

ﬂkk' = )lm L Npgs and also write
A _ylm=m*[g*

Therefore the expression for Gkk.(t>o) now becomes

~ _l ALTA AT o AT AT -
Bpr (t20) = ()M IEE1p-01) 2 (571007 g, 15 e

() Im ™G L (t<o).

Similarly, it can be shown without difficulty that

~

X

e (£50) = (1™ (2<o)

and

Voo (850) = ()™ ™IFE L (<o)

Therefore, it follows from (2.32) that

Age A%
. o | Gkk! Fr:
1 1,
kk kk t<o
- 1 ~d
= (I (<o) (4.26)

It should be noted that one could obtain (4.26) directly

from the ﬁkk' given in (2.33). Thus if one considers the

relationship
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R
M NJt>o (-)'“"“‘|M N Jico

with 0 = ()™ 1" and N = (-yIm-m*Ig*
so that

~ ~ A~k

R R
[‘3 } )lmml[ ] ,
M N t<o M N :

one immediately obtains (4.26) from the first equation
in (2.33).
The elements ﬁkk' are evaluated and stored at constant

ijntervals over a coarse trajectory time mesh determined by

AT = Trlm%$r— , where JAY runs from 1 at t = -T to J

max-.¥. max max
_ AT _ AT . . o
at t = -—»» where At = -E——-——-(Lmax being arbitrary) specifies
max

the fine mesh. Thus knowing the Nkk' at each coarse mesh
point JAY along the trajectory by means of a five point
Lagrange interpolation formula, the values of the wkk.
corresponding to each At on the fine mesh can be calculated.
To be consistent with our purpose, we shall endeavour
to make the time integration of the differential equation
i Ak = wkk'Ak' as general as possible. Necessary details
will be provided in Chapter V in which results are presented

for the specific case of the He2+

- H collision. The time
ijntegration of the differential equations for the amplitudes

Ak(t) from -T .. to +T ., over the fine mesh proceeds via
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a fourth order Adams-Moulton formula with the Runge-Kutta
method (Ralston, 1962) as starter. The Cheshire (1968)
procedure is suitable for the extrapolation of the amplitudes
from t = +Tmax tot » », This extrapolation method is more
accurate than the previous approximate formulation used by

W - G. Preservation of unitarity plays an essential role

in determining the acceptability of calculated results and
may be maintained within some predetermined value throughout
the calculation; the check upon unitarity preservation being
made at t = meax and at t » », In this way spurious
results may be checked and eliminated. A further more
stringent check on unitarity preservation may be carried

out by utilizing detailed balance and time reversal
invariance arguments, however, these additional means of

checking the results have not been implemented here (see

Green (1965) and also McDowell and Coleman p. 192).

Defining the excitation cross section as QDE and the
charge transfer cross section as QEX and remembering that
3, (t)
Ak(t) = ,» we obtain
bk(t))
P 2
QDE - ZWJ pla(w)l dp
0
and (4.28)
Qey = ZWJ olb(w)lzdo
(s

It might be worthwhile to add here that for the case
of the He2+-H collision, it was observed that at large R(t)

the spatial matrix elements wkk. varied smoothly with JAY or
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R(t). However, as R(t) became smaller the ﬁkk' began to
vary rapidly; the extent of the variation being dependent
upon the impact parameter and the energy of the incident
a-particle. This, therefore, necessitated the introduction
of a variable parameter FNJ which divided the coarse
interval between J1 and J1 + J2 according to the value of:
FNJ, where J1 + J2 = JMAX and J1 (or J2) is arbitrary.
Gallaher and Wilets (1968) observed this same behaviour
for the case of the H -H collision. Therefore there is
no reason to believe the contrary for this general case.
Anyway the computer program takes care of the rapid
behaviour of the ﬁkk' and .FNJ may be set accordingly,

depending on the value of the impact parameter p.



CHAPTER V
RESULTS AND DISCUSSION

5.1. Introduction

In this chapter we present numerical calculations for
the collision between an o-particle and atomic hydrogen
which is initially in the ground state. Computations
have been carried out coupling the four eigenstates
1s, 2s, 2p, and 2p, (2p,q H Zpi) and in some cases the
four pseudo-states 1s, 2s, ?Eo, and fﬁ;. In this chapter
a pseudo-state will be represented as nm or |nm>, where n
denotes the principa1'quantum number and m is either s or
p and stands for either an s or p state. These calculations
were obtained for kinetic energies of the incident a-particle
in the laboratory reference frame from 6.3 keV to 4 Mev.

For each of these energies considered, the direct and

charge exchange probabilities Pk(p, E) to each applicable
state as well as the pseudo-direct and pseudo-exchange
probabilities Ek(p, E) were calculated over the range of
impact parameters necessary for numerical determination

of the various cross sections. For a four-state calculation
the Pk results consist of a set of eight numbers — the

first four yield excitation results and the last four
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correspond to charge transfer results. Therefore k ranges
from 1 to ZKmax‘

Plots were obtained representing probabilities times
impact parameter against impact parameter p for the range
of energies under consideration. Initially rather arbitrary
values of p were selected and thesé plots constructed.

More values of p were introduced as deemed necessary to
precisely determine the structure of these curves. Thus
unnecessary computations were avoided. In general, some

of the individual probabilities exhibited considerable
structure at low energies and small impact parameters.
However, at low energies the main contribution to the

cross sections arises from relatively large values of p.
Consequently, the rqpid variations of the plots of

Pk(p, E)p against p were not too closely followed for

small values of p where the contribution to the cross
section is in any case small in this energy region. The
high-energy behaviour of the variation of Pk(p, E)p versus
p necessitated more careful determination of the quantities
Pk(p, E) even at small impact parameters; small p values
account for the major contribution to the cross section here.

The Pk(p, E) and the Fk(p, E) were obtained from the
amplitudes Ak(t = + o) using the relationship

Plos E) = A (t = + =)|2.
The Ak(t = + «) are the asymptotic solutions of the coupled

70

differential equations represented by (2.25). The substitution
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of eigenstates or pseudo-states into the expansion of the
electronic wave function determines the Pk(p, E) or the
Fk(p, E). The required asymptotic amplitudes Ak(t = +o)
were calculated by means of our computer program and the
quantities Pk(p, E) constructed as above. In most of the
calculations performed, P(p, E) was determined to an
accuracy better than one per cent. However for energies

of the projectile around 800 keV and greater charge

transfer and excitation cross sections are small. Therefore
the accuracy of P(p, E) here depended upon the magnitude

of the cross section for the particular charge transfer

or excitation process concerned. At 4 Mev, for example,
where both charge exchange and excitation of the target

atom are small, P(p, E) was evaluated to better than 0.1

per cent. Like Wilets and Gallaher (1966) and Gaussorgues
and Salin (1971) we found that Zmax need not be unnecessarily
large; a value of Zmax around 30 Bohr radii was more than
adequate. Typical low energy numerical integration values
were Zmax = 32 Bohr radii, FNJ = 2, J1 = 20, J2 = 15 for
values of p > 3. For p <3, J1 and J2 had to be adjusted
accordingly. For some calculations, FNJ was set equal to

3 or even 4, A consistency check was carried out when

p became very small (< 0.1) depending upon the energy. Thk's
is necessary because of the general difficulty of obtaining

good unitarity checks at small p values.



Charge transfer cross sections and direct excitation
cross sections were obtained from the Pk(p, E)p versus p plots
by numerical integration using Bode's rule (see Abramowitz
and Stegun 1970, p. 889 and Hildebrand 1956). Where the
plots displayed considerable structure, the interval of
integration Ap = Py = Pj_q was reduced and the curves
divided into suitable segments each with a maximum of
eight or ten equidistant p values. For some of the curves
that displayed logarithmic tails which diminished monotonically,

the formula
Yn-1
Yn

8A = yoloy = ep_q)/en [—]

where yn = Pn(p, E)pn was employed to estimate the additional

area beyond Pn (pn being the final impact parameter in the

integration). ”
The 2p polarization fractions ng(E) were computed

from both charge transfer and direct excitation cross

sections from the formula due to Percival and Seaton (1958):

2p _ o
Po =

where % and o4 represent the 2po and 2p] cross sections and
the constants a and b are given for p states by a = 2.375 and
b = 3.749.

The estimation of ionization cross sections is
applicable to only those energies at which calculations of
the cross sections (excitation and charge transfer) involved

the utilization of pseudo-states. The implementation of
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these pseudo-states is an artifice to try to allow for

the continuum in the expansion; an estimate of ionization
may consequently be extracted from such a calculation (for
explicit form of the pseudo-states see 5.4.) One would
reduce considerably the amount of labour in calculating
cross sections for the three processes of charge transfer,
excitation of the target atom and ionization if they could
somehow be obtained simultaneously. If the pseudo-states
include both bound and continuum portions then it should

be possible to calculate ionization after excitation and
charge transfer have been obtained. We would extract
ionization cross sections as follows. Let |n9,>H be an
eigenstate for the hydrogen atom and |FI>H the corresponding
pseudo-state. Similarly, let |n2>He+ denote a He™ eigen-
state and lﬁf>He+ the corresponding pseudo-state with n
being the principal quantum number and & standing for

either an s or p state. Then the ionization cross section

in this approximation is given by
o 2

= exct - ; :
°ion(E) © 91s-Ts [ nZ] ; Ts |ns>H ]
+ oSXCt_ 19 f < Zs |ns> ? ]
exct b = 2
+ o-.ls_'é—p [] nzz ; 2p I l'lp>H ]
exch_ rq _ E < Ts | ns> ? ]
91s-Ts L1 pet He*t

n
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o 2
exch | 5=
+ 0 [1 <, 2s|ns>, 4 ‘ ]
1s-2s nZ] | He¥ l He
+ oexcg_ 0 E <, 2plns> ? ]
1s-2p & et P THet
+ ... (5.1)

The term involving the cross section o?ﬁf%; has no meaning

because excitation of the hydrogen atom to its ground state
makes no physical sense. One immediately sees that
jonization cross sections can be calculated from the knowledge

exch and excitation cross

of the exchange cross sections o
sections oexct when pseudo-states are employed. The problem
here is how to choose the most advantageous pseudo-states.
The lack of experimental observations on ijonization cross

sections leaves us without guidance.

5.2. Probability times impact parameter versus impact

parameter plots.

In figures 5.1 to 5.16 we present plots of probability
times impact parameter against impact parameter for the
following energies of the incident a-particle: 6.3, 10,
15.81, 25, 40, 50, 100, 200, 400, 800, 3000, and 4000 keV.
The impact parameter is measured in units of a4 and the
energies are measured in the laboratory reference frame.
These impact energies were selected to facilitate comparison
with other available theoretical calculations, in particular
those of Malaviya (1969). Figures 5.1 to 5.4 inclusive
represent calculations coupling pseudo-states whereas the

rest of the plots, figures 5.5 to 5.16, are the results for



75

eigenstates. Both the pseudo-state results and the eigenstate
results for an incident a-particle energy of 25 keV have
already been presented at the 25th Annual Gaseous Electronic
Conference (1972) and are included here for completeness.
The evolution with energy of the magnitudes and shape of
these figures represents the general behaviour in energy
of the cross sections since the areas under the curves
are a direct measure of the cross sections. Consequently
we shall make a detailed analysis of these probability
times impact parameter versus impact parameter plots.

In general, the pseudo-state results display more
structure than the eigenstate calculations. The shapes of
the pseudo-state results differ significantly from the
eigenstate results at the same energies; however they have
the same p-spread. An examination of the plots in figures
5.5 to 5.16 reveals certain general features. At low
energies of the projectile the charge transfer process
predominates over excitation of the H atom, the plots
revealing structure and having an effective p spread of
about 10 Bohr radii. The main contribution to charge transfer
cross sections comes from values of p > 1 Bohr radius,
mostly around 4 Bohr radii. Excitation of the H atom to
individual states (2s, 2p) is small and displays rapid
oscillations. Consequently the combined effect to the
n=2 quantum level of H has been evaluated. To obtain reliable
values for the cross sections to the different states of

H for n=2, one would require to know the Pk(p, E) for many
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values of p. This general behaviour in the plots continues
through 25 keV to about 200 keV where all the curves
display a single preponderant peak. The excitation graphs
reveal their maxima at approximately p = 4 Bohr radii for

p states and at p somewhat less than 4 Bohr radii for the

s state. The range of the charge transfer curves has
diminished to abodt p = 5 Bohr radii. Meanwhile the p spread
for the excitation curves has increased to about 10 Bohr
radii. Therefore, in general, as the energy of the a-
particle increases the charge exchange plots shrink in

p spread and diminish in magnitude. The excitation plots,
however, increase both in range and in magnitude.

At 800 keV, charge transfer to the He+(25) jon still
displays two distinct peaks; the dominant peak now having
switched over to the smaller value of p. The 1s - 1s charge
transfer process has become predominant over the rest of
the exchange plots; most of the charge transfer probability
now going to the ground state of the He* ion. This
observation is consistent with the theoretical prediction
of Bates and McCarroll (1962) who prognosticated that at
high energies charge transfer to s states should dominate.
The behaviour of the charge transfer plots at high energies
contradicts the argument by Malaviya (1969) that charge
transfer to the ground state can be omitted without
specifying the energy range. At 800 keV the p spread of
all the charge transfer plots has diminished to about p = 3

Bohr radii. On the other hand the excitation curve areas,
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the 2p in particular, have increased in magnitude over
those for the exchange plots while their range goes well
beyond p = 10 Bohr radii. 1In fact these curves display
the same behaviour as the radial probability density versus
the distance from the nucleus plots given in Richtmyer et al.
(1955) p. 211, Fig. 57. These curves reflect the strong
coupling between the 2s and 2p states.

The behaviour at very high energy (4 Mev for example)
of the plots for both charge transfer and excitation processes
is anomalous. Charge transfer to the 2p level has become
very small and therefore has not been plotted. The 1s - 2s
charge exchange plot reveals two strong and distinct peaks
with maxima at p ~ 0.5 and p ~ 3.5 Bohr radii. The magnitude and
p spread of this curve exceed that of the same plot at
800 keV. The 1s-2p excitation plot has now acquired three
peaks and has diminished in range. The 1s - 2s excitation
curve, though maintaining the simgle peak it displayed at
400 keV through 800 keV with approximately the same p
spread of about 2 Bohr radii, has decreased in range. This
very high energy behaviour of the plots may reflect a
deterioration of the impact parameter approximation at

these energies.

5.3. Charge transfer cross sections and excitation cross

sections.

Tables 5.1 and 5.2 represent both excitation cross

sections and charge transfer cross sections when pseudo-states
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and eigenstates were coupled. The 2p polarization fractions
pgp are also included in each of these tables. The pseudo-
state results for the total capture cross sections are very
similar to the corresponding eigenstate total capture cross
section results. Quite generally the use of pseudo-states in
the particular form chosen in this thesis cause a redistribu-
tion of the probability populations of the individual 2p
sublevels (m=o and m=#1). The total cross sections to the
n=2 quantum level appear to be independent of whether pseudo-
states or eigenstates have been employed in the expansion.

For the process of excitation, both individual and
total excitation cross sections turn out to be sensitive to
whether eigenstates or pseudo-states are used. A comparison
at corresponding energies of the excitation cross sections
represented in tables 5.1 and 5.2 supports this claim.

From Rapp's calculation one sees that the inciusion of
the He+(1s) in the expansion of the total electronic wave
function depresses the H(2) cross section. One may then
explain the dominance of the H(2) pseudo-state cross section
over the H(2) eigenstate cross section at 800 keV. A good
simulation of the collision at close encounters is essential
at high energies because change transfer is confined to small
values of impact parameters. Therefore if excitation is
achieved also through coupling open channels of the H atom
with the states of the He fon in particular the ground state,
then the use of pseudo-states should decrease the cross
section further because the criterion for their choice was to

5

give strong overlap with the states of the L1'++ ion which
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for small impact parameters may be thought in some sense to
be temporarily "formed" during the collision. We also note
that the Pk(p,E)p versus pplots for excitation at high
energies are spread over broad regions of impact parameter.
At low energies, however, the transition takes place via
compound transitional states which may be some of the inter-

5Li++ jon. The main contribution to

mediate states of the
these low energy cross sections comes from values of p > 1.
Perhaps a revealing way to assess with delicacy the
effects of a particular pseudo-state basis choice upon the
calculated cross sections would be to retain the first
four hydrogenic eigenstates 1s, 2S, 2po and 2p1 and represent
the 3s and 3p states in pseudo form.
In table 5.3, we have compared our present calculated
results Qp with the four-state results of Malaviya (1969) QM
and the eight-state calculations of Rapp QR for charge trans-
fer cross sections. The latter's prepublication results
became available to us after we had completed our investigation.
This explains the difference in some of the energies at which
the calculations have been carried out. For some energies,
Malaviya has not evaluated capture cross sections to the ground
state; hence the blanks. 1In general the 1s-1s charge transfer
cross section is small at low and moderate energies. Consequent-
1y charge transfer to the ground state of the He+ ion is
sensitive to the extent to which unitarity is conserved. There-
fore cross sections to the He+(1s) jon have not been computed
where unitarity was poorly preserved. There is generally fair

agreement among the
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three calculations for cross sections to He+(2$) except at
energies of the projectile less than about 16 keV where Rapp's
calculations exceed ours and Malaviya's in that order. For
He2+ energies in excess of 25 keV, the results of Rapp exceed
ours whereas Malaviya's are smaller and begin to rise above
ours at 200 keV. For capture cross sections to the 2p level,
the three calculations are in fair agreement except at 25 keV
where our calculations are lower than QM or QR. At energies
less than about 15 keV, Malaviya's capture cross sections to
the 2p level fall faster than ours with decreasing energy.
Above about 50 keV his total capture cross sections to the

n =2 level dominate ours persistently with agreement becom-
ing closer as the energy increases. However, at 10 keV there
is better agreement between Rapp's resu]té and ours with the
former's remaining above ours as the energy decreases.

In figure 5.17 we make a comparison between the results
on capture cross sections to the second quantum level of the
He+ ion obtained in the present calculations and Malaviya's
corresponding cross section results, the experimental meas-
urements by Fite et al. (1962) and by Pivovar et al. (1962).
As mentioned by Malaviya, the measurements by Fite et al.

4

were carried out utilizing ions and therefore, they

were scaled to correspond to 2+

He ions. The cross sections
presented by Pivovar et al. were experimentally for capture
from H2 molecules; the raw data being halved for the present
case. The latter adjustment introduces an uncertainty and
according to Tuan and Gerjuoy (1960) is not strictly

Justified. Also



81

included are the theoretical results of Coleman and Trelease
(1968) using the impulse approximation, which are denoted by
CT. At low energy, there is good agreement between our cal-
culations and experiment. Between about 16 and 100 keV
disagreement between theoretical results and experimental
measurements persists. The high energy behavior of our
calculations exhibits the same trend as Malaviya's. It must
be noted that for readily visualizable comparison we merely
plotted our results over those of Malaviya.

To facilitate comparison with the calculated total capture
cross sections by Rapp and with the experimental measurements
by Fite et al., we have plotted our results over the former's
in figure 5.18. The extent of agreement between theory and
experiment is obvious from the plots. Again here the measure-

+ . .
2 jons. There is

ments by Fite et al. were for the 3He
relatively good agreement between our calculation and Rapp's
cross sections except between 15 and 25 keV where Rapp's
results surpass ours. At high energies our results tend to
agree with the seven-state calculation by Rapp. The apparent
predominance of the experimentally determined total capture
cross sections over the calculated total capture cross
sections is to be expected. As one adds more and more states,
the calculated cross sections would be expected to converge to
some 1imit - perhaps (hopefully) the experimentally measured
results! Around 20 keV the experimental points are rather
scattered. Comparison with theoretical calculations would

be facilitated if a curve with error bars was drawn through

the experimental points.
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In figure 5.19 we present plots of excitation cross
sections against impact energy. For impact energies less
than 25 keV we omitted the calculation of excitation cross
sections to the individual states for the quantum level n=2.
This is due to the difficulty of obtaining reliable computa-
tions for the cross sections for small energies. The
calculation could be done if required, however. Qur
calculations for the excitation cross sections exceed
those of Rapp considerably. MWe have found one possible
explanation for this discrepancy: one of the time factors
in the expansion for the electronic wave function employed
by Rapp is erroneous (see for example McDowell and Coleman
1970, p. 157 equations 4.10.5 or Bates 1958 for the correct
time factors). The time factor exp[i(q-p)%;t] appearing
in our equation (2.32) becomes incorrect in Rapp's
formulation; so does the Ekk.(t) given by the second
equation in (2.33). To what extent this error affects the
excitation cross sections we do not know. The error does
not seem to be of any consequence for charge transfer
calculations; there is reasonable agreement between ou¥
results and Rapp's. The only major difference is in the
distribution of the probability populations of the individual
2p sublevels. There are unfortunately no experiments avai]éb1e
with which to compare our polarization results.

An examination of Rapp's seven-state and eight-state

calculations is quite revealing; the excitation cross sections
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are sensitive to the inclusion or omission of the ground

state of the Het jon. We have already pointed out that the
choice of our pseudo-states affected excitation cross sections
extensively even in cases where the main contribution to

the cross sections came from relatively large values of p.

1f the impact energy is not too high, one can picture the
excitation of the H atom as involving also the charge

transfer process and thus coupling the states of the He+

jon. Therefore in the manner of Cheshire (1968) we "see"

the electron "hopping" to and from the He2+

jon as the
o-particle passes the H atom with the electron eventually
ending up in one of the higher states of the H atom — the
hydrogen atom is now excited. Consequently one sees that
the processes of charge transfer and direct excitation
are coupled in an intricate manner so that calculating the
one process without the other could lead to incorrect results.
To see how reliable are our calculated excitation cross
sections we have compared them with those of Bates (see
Bates 1962 pp. 589 and 590, figures 19 and 20) obtained by
both the distortion approximation and the first Born
approximation. For the 1s - 2p excitation cross sections
our results agree well with the distortion approximation
cross sections at 40, 50 and 800 keV. Beyond 50 keV our
1s - 2p cross sections fall below those of Bates reaching

a maximum at about 200 keV. The 1s - 2p distortion cross

sections of Bates also display a maximum at around 200 keV.
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Beyond 200 keV our 1s - 2p excitation cross sections gradually
approach from below those of Bates until 800 keV where good
agreement 1is achieved again.

The case of the 1s - 2s excitation cross sections is
different. Bates has remarked that 1s - 2s transitions are
more likely to be affected by distortion than 1s - 2p transitions.
The reason for this being that close encounters, where
distortion is more effective, contribute relatively more
to the 1s - 2s transitions than to the 1s - 2p transitions.
It is therefore not surprising that our 1s - 2s excitation
cross sections are much higher than those by Bates obtained
using both the distortion approximation and the first Born
approximation and tend to display the same behaviour as the
Born approximation results at high energies.

Our 1s - 2s excitation cross sections show better
agreement with Rapp's 1s - 2s results. For example:
400(8.05, 8.58); 200(11.98, 15.00); 50(5.31, 7.30);

25(1.79, 6.50) where the number outside the bracket indicates
the energy in keV and the two numbers inside the bracket
respectively represent the 1s - 2s excitation cross sections
in units of 10'”cm2 by Rapp and of this thesis. What
conclusion can one draw from the picture we have depicted

on the state of theoretically evaluated excitation cross
sections? Not much indeed! The reader as an "external
observer" is allowed some freedom of opinion for a change.

However, it is imperative to point out that our calculations
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including those by Rapp and more sophisticated than either
the first Born approximation or the distortion approximation

employed by Bates.

5.4, _Ionization cross sections

In order to calculate ionization cross sections, a
knowledge of continuum states is required. However, we do
not know the continuum states in this case. Consequently we
extract ionization cross sections from the knowledge of
charge transfer cross sections and excitation cross sections
obtained from coupling pseudo-states. We now illustrate
the basis of the method. 1In the united atom limit
(R>0, Y, = yp) Wilets and Gallaher (1966) have shown that

+

for the H - H collision 7z | +<1s|ns> 12 = 0.76 where
n=1 He H

|1s > . and |ns> represent the bound states of the united
He H

atom and the hydrogen atom respectively. Therefore they
concluded that there is little hope of simulating the collision
process with a hydrogenic basis. Cheshire et al. (1970) then
concluded that the remaining fraction comes from the hydro-
genic continuum.

Pseudo-states are an approximation to the flux into all
the open channels. 1In this case the open channels are charge
transfer, excitation and ionization. Therefore we may
calculate the total probability by coupling pseudo-states
and eigenstates; the difference should give the fraction
which goes into the continuum so that ionization cross sactions

may be estimated by using (5.1). The reasoning that
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jonization may take place in the united atom limit R - 0 and
still be observed at R > is consistent with the experimental
measurements by Keever and Everhart (1966) who have attributed
the oscillations in the total charge transfer probability
versus inmpact evergy not to the accidentally resonant reaction
H(1s) + He2+ xs He+(25 or 2p) + HY but to the 2po - 1so0

transition where 1s0 and 2po refer to the HHe2+

states (united
atom). The experimental measurements are carried out at
R > =,

In figure 5.20 we have plotted the 2p polarization
fraction PO calculated from eigenstates, and the estimated
jonization cross sections as a function of impact energy. The
jnner scale refers to polarization fractions and the outer to
jonization cross sections. There are no experiments nor calcu-
lations available on either the 2p polarization fractions or
jonization cross sections using a-particles as projectiles with
which to compare our results. An explanatory note on the
jonization cross sections is necessary.

The presentation of a graph with only four points on it
should not be misconstrued. It should rather be considered as
an attempt to obtain some jdea about the behavior of jonization
cross sections with impact energy, which follows from this
hitherto untried concept of pseudo-states in the case of the
He2+ - H collision. The main contribution to the ionization
cross sections comes frgm the fraction

1 -

~18

<Zp | np > | =0.8927, followed by
n=2 |H H



8%

00

1- 3 | <25 | np>,|%=0.2572. The coefficient of
n=2 !He He
Oexch "is small and therefore makes its contribution to the

1s-1s
total ionization cross section quite small too. Below we
present our estimate of ionization cross sections as a

function of impact energy.

Impact energy (keV) %Son (X]O']7 cm2)
6.3 16.86
25 37.30
50 30.87
800 16.16

From the points on the graph in figure 5.20 one enter-
tains the idea that ionization cross sections display a
maximum around 20 keV and decay gradually as the impact energy
increases beyond 1 Mev. Indeed the plot exhibits the same
general behaviour as the ionization cross sections of the H
atom by proton impact (see for example McDowell and Coleman
1970, p. 324, Fig. 7.2.1). Although there is no experiment
nor calculation on ionization cross sections of the H atom by
a-particle impact to contradict our estimated cross sections,
nevertheless we are not satisfied with this calculation.

We have selected the radial part of our pseudo-states
for the He+ ion to have the following form (there are
similar expressions for the H atom)
= 243/2 -ay

R10 e

EZO (A - By) e Y



where A and B are given in terms of the parameter a as

B = 2 :
9 9 2
- + 3
[(]+a)2 'l+u. ]
and
_ 3B
A = 1T + a
— 5/2 -
R21 = 28 / Yy e By

The parameters a and g are different from each other and
are chosen as follows

(2.7 - 2) e BR(E) 4o

o
and

(1.4 - 1) e SR(E) 4 g

B

In principle this choice 1is good since as R(t) » « the
pseudo-states reduce to the ordinary atomic orbitals and
as R(t) - 0, they represent the intermediate states of
5L1++ adequately. There are two main objections against
the choice.

First, R(t), the internuclear separation, is a function
of time. Therefore, there should be time derivatives
arising from the e'sR(t) term in our coupled differential
equations. However, noting that e'6R(t) js effective mainly
at small R(t) whereas the contribution to both charge
transfer and excitation cross sections comes from values of

p > 2 Bohr radii in most cases, the terms arising from

88
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e'GR(t) will always be small for all practical purposes.
Difficulties arise however, when one attempts to compute
the points for the Everhart curve which correspond at
higher energies to very small values of p.

second, according to Cheshire et al. (1970) the 2s
state of hydrogen "... has a strong degeneracy coupling
with the 2p state at moderate and large internuclear sep-
arations which affects the 2s and 2p excitation and exchange
cross sections." Consequently these states (that is the
2s and 2p) ought to be included explicitly as eigenstates
and the higher states selected as pseudo-states in our
expansion of the electronic wave function. Therefore, the
next step in our future calculations will be the retention
of the 1s, 2s, and 2p hydrogenic states and the conversion
of the 3s and/or 3p to pseudo-states.

The extraction of ionization cross sections in this
fashion is a beautiful concept and ought to be pursued
further. This is one way of calculating the three processes:
charge transfer, excitation and ionization simultaneously;

physically they are coupled channels.

5.5. Keever et al. curve

We have tried to obtain the points for the Keever
et al. curve of total charge transfer probabil .ty as a
function of impact energy without success. The curve is
obtained by making use of the relationship connecting the

kinetic energy of the incident a-particle with impact
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parameter as well as with the angle of scattering . From

Richtmyer et al. p. 145, equation (73a, b) we write

2
0 = 22 e ;01’.(9/2) (5.]0)
Mv

where in this case Z =1, e =1 and E is the kinetic energy
of the incident a-particle (E = %Mvz). The impact parameter

may be written in terms of E thus

_ cot(e/2)
E

where E is in units of 27.2 eV. Therefore, the impact
parameter may be obtained as a function of impact energy

and hence of the incident a-particile velocity. Keever

et al. have measured the total charge transfer probability
for kinetic energies varying from 2keV to 100 keV at 6 = 1.2°
and 1.7°. Due to the difficulty of working with 4He2+ beams,

Keever et al. employed 3He2+

jons for the experiment.
The desired kinetic energy can then be obtained by scaling.
Our interest lies in obtaining the Keever et al. curve at

6 = 1.2° to show how good or bad the atomic eigenfunction

basis is in representing the collision at such small impact
parameters. One sees from the above equation that as E
increases from 2keV to 100 keV, p decreases proportionately
(for example for E = 2 keV, p = 1.299 Bohr radii and for

E = 100 keV, p = 0.026 Bohr radii). Consequently, from the

nature of eigenfunctions, one does not expect good results

from such a calculation.



91

Coupling four eigenstates, we obtained a few points
and plotted them over the experimental points of Keever
et al. Figure 5.21 shows our calculated values and the
experimentally determined curve. For the results at
25 keV, and at 3 keV, unitarity preservation was satisfied
to high accuracy (better than .1 per cent) and for the
other points unitarity was conserved to better than 3 per
cent. In fact, for energies greater than or less than about
25 keV it was not necessary to strive for high accuracy
in the computation of the total charge exchange probability
because it was obvious what we were up against. We obtained
more points to prove our case beyond reasonable doubt.
At 25 keV there is better agreement between our calculation
and the experimental point. However, above and below 25 keV,
our calculation drops far below the experimental points.
This is not hard to explain. We have seen that charge
transfer cross sections exhibit a maximum at around 25 keV.
At high and low velocities charge transfer is confined to
small values of the impact parameters. At small values of
impact parameters, the atomic eigenfunction expansion basis
we have employed is not adequate; it does not simulate
accurately the collision at close encounters.

We then employed a pseudo-state expansion basis with
an e'sR(t) dependence. For small impact energies (2 and
5 keV) where p is around one Bohr radius, we obtained values

of the total charge transfer probability that were much
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greater than the corresponding values obtained from the
eigenstate basis and, therefore were closer to experimental
values. As the energy increased, it became almost impossible
to obtain a reasonable value for the total charge transfer
probability without violating unitarity preservation
considerably. This follows from the fact that pC"% and

-6R(t) is not sound

as pointed out before our choice of e
at small values of p.

In the Tight of the preceding calculation on total
charge transfer probability one ought to be careful about
the conclusion one draws. The same eigenfunction expansion
basis gave reasonable agreement with the experiments of
Fite et al. on both total charge transfer cross sections
and capture cross sections to the n=2 quantum level of the
He® jon. Here the same basis gives hopeless Eesults; there
is no contradiction in terms, however. The expansion basis
performed according to what it was designed to do. Therefore,
a judicious choice of pseudo-states should bring better
agreement with the experiments of Keever et al. This
may be put in slightly different form as: a good agreement
between the calculated results and the experiments of
Keever . et al. will reflect a good simulation of the

collision process at close encounters.



Energy of

ne* (keV) 6.3 25 50 800
State of
Capture
He* (15) 0.59 3.14  6.38 0.41
et (25) 22.87 24.03  33.03 0.02
He* (2P, ) 23.50 48.40  28.16 0.17
He' (2P,) 19.93 36.60  26.68 0.20
et (2p) 43,42 84.99  54.84 0.37
et (2) 66.29 109.03  87.87 0.39
Het (1+2) 66.87 112.16  94.25 0.80
pZP 0.0274 0.047 0.0089 -0.028
State of
Excitation
H(2S) 3.18 10.92  11.14 5.03
H(2P ) 5.69 14.41  14.47 7.88
H(2Py) 0.65 2.73 3.99 10.10
H(2P) 6.34 17.14  18.46 17.98
H(2) 9.52 28.06  29.61 23.02
pZP 0.315 0.263  0.044 -0.039

Table 5.1. Capture and excitation cross sections (in units
of 10”17 cmz) computed in the TS, 25, 2P close
coupling approximation.POZP represent the 2P
polarization fractions; H(2): excitation to the
n=2 level; He* (2): capture to the n=2 level;
et (1+42): total capture to the n=1 and n=2 levels.
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0.0 "3 - A 8 A 2 A [ 4 1 1 3
/"?'. t 5 25 - T

Incident 3He2+ energy (keV)

Fig. 5.21. Total charge transfer probability at e = 1.2°
and 6 = 1.7° from the 1s state for the process 3He2+-H
collision. O and X represent the experimental measure-
ments by Keever et al. (referred to as Everhart curve).
Calculated points for 6 = 1.2°: 4 eigenstates,¥ pseudo-

states.



C STON AND SUGGESTIO

6.1. Conclusion

We have generalized the Wilets and Gallaher (1966)
formulation for the collision between protons and hydrogen
atoms to.the collision of a heavy unstructured ion with
atomic hydrogen which may be in the ground state or in any
of its excited levels. We have then solved the resulting
coupled differential equations and constructed a computer
program to extract numerical results. Using this computer
program, the theory has been tested by substituting an
a-particle for the heavy ion to calculate both charge
transfer and excitation cross sections. We also computed
polarization fractions for 2p states and estimated ionization
cross sections for the cases in which pseudo-states were
employed.

In the first venture, that is the mathematical
development we think we have succeeded, whereas in the second,
only partly. [If the mathematical treatment were incorrect,
it would be virtually impossible to obtain any sensible
results. In the application of the theory to the coilision

of an a-particle with atomic hydrogen we have established
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that for a-particle energies less than about 15 keV the
neglect of rotational coupling effects arising from the
rotation of the internuclear line leads to incorrect
results for charge transfer cross sections. The conclusion
is supported by the calculation of Rapp (In the press) whose
results are in good agreement with the experiments of Fite
et al. (1962) in this energy range. For high energies of
the incident a-particle we have shown that charge transfer
cross sections to the Het(1s) level predominates over those
to He+(25) or He+(2p) and is further confined to a range

of small values of the impact parameter. Again here our
calculated conclusions are supported by those of Rapp. The
high energy behaviour of the charge transfer cross sections
follows the same trend as those of Malaviya (1969) except
for some small differences in the numerical results.

The calculation of charge transfer at moderate energies
of the o-particle is not that rosy. Although the theoretical
calculations of total charge transfer do not differ that
much, there is a discrepancy between theory and the experimental
results of Fite et al. around 25 keV. This disagreement
between the calculated and measured charge transfer cross
sections is puzzliné. Even the use of pseudo-states which
tends to increase the cross sections at low and high energies
does not bridge this gap. Before carrying out Tengthy and

costly computations on the charge transfer process coupling
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more and more eigenstates or pseudo-states one ought perhaps
to pause to question the accuracy of experimental measurements
in this region of discrepancy.

The absence of experimental observations on excitation
cross sections for the process He2+ - H collision leaves
us with nothing to assess our success or failure. Charge
transfer and excitation cross sections are calculated
simul taneously in our method of computation. The sensitivity
of excitation probabilities to variations in the unitarity
condition is mo more than that for the corresponding charge
transfer probabilities. As pointed out before, our total
charge transfer calculations compare well with those of
Rapp at low energies and relatively high energies. The
only available results on excitation of the H atom by
o-particle impact are those by Rapp and by Bates (1962).
There are no experimentalily measured excitation cross sections
on He2+ - H collisions. Our 1s - 2p excitation cross
sections give good agreement with the distorted approximation-
results by Bates at 40, 50 and 800 keV. The closest
agreement with Rapp's results on 1s - 2p excitation cross
section is 34.39 compared with Rapp's 26.88 in units of
10']7 em®. Our 1s - 2s excitation cross sections give
better agreement with thosé of Rapp and are much higher
than those calculated by Bates.

Maybe our calculation of excitation and ionization cross

sections together with the discrepancy between experiment and
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the results of both Rapp and this calculation on charge
transfer cross sections around 25 keV will stimulate more
experimentation and theoretical computation on both charge
transfer and excitation of the hydrogen atom by a-particle
impact.

Finally, it ought not to be expected of us to have
calculated every theoretical number conceivable pertaining
to the He2+ - H collision. The limitations imposed by
the availability of computing funds have curtailed our

ambitions to investigate He2+

- H collisions more extensively.
From the attempt to reproduce the 1.2° Keever et al. curve
of total charge transfer probability versus impact energy,
we have discovered that it is almost impossible to achieve
agreement with the experimentally measured points in a
calculation employing a four-state approximation. We there-
fore believe that the hope of agreement between experimental
measurements and theoretical calculations at very small
impact parameters which are inherent in the experimental
measurements of Keever et al. lies in a pseudo-state
expansion basis.
The fact that we have generalized the Wilets and
Gallaher (1966) formulation, devised numerical methods and
constructed a corresponding computer program, as well as
applied the program to the expiicit case of an a-particle
colliding with a hydrogen atom in our first attempt makes

us feel more successful than defeated. Discrepancies in

calculated results only attest to the difficulties inherent
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in making this type of complex calculation.

6.2. Suggestions for future work

Future calculations on charge transfer and excitation
might be carried out by abandoning the artifice of assuming
a linear trajectory for the heavy ions in favour of more
realistic hyperbolic trajectories. The major problem,
however, in the calculation we have undertaken involves the
computation of the momentum transfer terms. Their evaluation
requires the use of both the Gauss-Legendre and Gauss-
Laguerre quadrature methods. The Gauss-Legendre method
is in general the more time consuming of the two. Consequently
Gallaher (not yet tested) has devised an analytical scheme
for the evaluation of the exchange matrix elements involving
momentum transfer factors which eliminates the Gauss-
Legendre method. If this scheme proves feasible the computa-
tion of the exchange type matrix elements should proceed
very rapidly. The Bulirsch and Stoer formula employed by
Gaussorgues and Salin (1971) for time integrating the
amplitudes is supposed to be faster than the Adams-Moulton
method employed in this thesis. Consequently, to speed up
the calculations, these changes would have to be incorporated
into our computer program. With these modifications we
entertain the possibility of retaining the hydrogen 1s, 2s, 2p
states and the He* 1s, 2s and 2p states and augmenting these
with the 3s and 3p pseudo-states in the manner of Cheshire

et al. (1970). Thus we should be able to carry out further
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heavy ion-hydrogen atom collisions and obtain the Keever et al.
curves at 1.2° and 1.7°.

In the near future we intend to carry out calculations
involving the collisions of ions such as u+, ﬂ+, d and LY
with atomic hydrogen, study rotational coupling effects
upon charge transfer cross sections in a multi-state
approximation and calculate differential cross sections for

the He2+ - H collision.
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APPENDIX A

In this appendix we shall derive expressions for

', p' = /12 y'2 and the Jacobian

z', cose&, cosep

J(p', ¢'s 2" > E, ¢', n) in terms of prolate elliptic
coordinates. These quantities are required in the integ-
ration of the spatial matrix elements in (2.22a).

Let z be measured from CM (the centre of mass) to 0,
v from A to CM, u from P to CM and p from 0 to e~. The
rest of the symbols retain the same meaning as in Chapter II.

Thus one writes

m
= B =
VS fem_ ROF PR
P
- M -
u Mm R = qR
with q+p=1.

From the figure

pz = Yi - (v + 2)?

Y§ - (u - 2)?

so that

2
a

Y (pR + Z)2 = Y§ - (qR - 2)?

which reduces to

28z2(q + p) = RZ(a? - pP) + YA - vp -

Expressing Yo and Yp in terms of prolate elliptic coordinates



as v, = %(g + n) and Yp = % (¢ - n), we obtain

2R2

R2(q - p) + % (£ + M2 - I§ (g - M1
R%(q - p) + (5)?

which immediately leads to

4gn

z=8 (a-p)+ (G &

Again from the figure, one writes

| = +
Y, COS8y = V.* Z

so that R R
. PR+ 35 (a-p) + 3&n
cosea = R (c +
2'5 n)
=1+t é&n
g +n
and
cosg':-g.R_:._z—

B e - n)
_En -1
E-n

Using p2 = yi - (v + 2)2, one obtains

2
P

(R)2(5 + m? - [k + § (a - p) + Zenl?

E)2(g + m? - [§ + Fenl®

)22 - N - 0?)
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Therefore, identifying p with p', we have

Now

Thus

= B A2 (1-n?) (R.4)
tan ¢' = %; and p'2 = x'2 4 y'2 so that
y' = p'sin ¢' and x' = p' cos ¢'
one can write
x' = 5 JeZ-1)(1-n")  cos o
y' =5 Aef-1)(1-0") sin ¢ (A.5)
2' =5 &n (=2 - (-—-pR) =z- (qR-%))
To obtain the Jacobian of the transformation, we have

to calculate:

and

From

2 _ ‘42 '\2 '\2
- B G e G
e R
n3 = (BEn? + (B2 v (32
(A.5)

LR £(-12) _  cos o

Hg2-1)(1-n%)
' 2
%_ - R __n(g°-1) cos ¢

A e2-1) (1-n2)

wlo
x
1

¢

= -% /(52-1)(1-n2) sin ¢'
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Similar expressions may be obtained for the variables'
2 .2 2

y' and z' from (A.5). h]’ h2 and h3 can now be calculated
and they are found to be

2 _ (R)2 (e2n?)
2! T2

o0
—t
1

2 - (&2 (Ehon)
2 2

1-n

and

b=~
|

2= B2 (&2 - 10 -nd)
Therefore, the Jacobian, J which is given by

J = h-l h, h

2 3
becomes in terms of £ and n

J(p's o', 2'y > E, ¢', 1)

= 33 (g% - %) (A.6)
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