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Abstract 

The mammalian brain is composed of functional networks operating at different 

spatial and temporal scales — characterized by patterns of interconnections linking 

sensory, motor, and cognitive systems. Assessment of brain connectivity has revealed 

that the structure and dynamics of large-scale network organization are altered in multiple 

disease states suggesting their use as diagnostic or prognostic indicators. Further 

investigation into the underlying mechanisms, organization, and alteration of large-scale 

brain networks requires homologous animal models that would allow neurophysiological 

recordings and experimental manipulations. My current dissertation presents a 

comprehensive assessment and comparison of rat, macaque, and human brain networks 

based on evaluation of intrinsic low-frequency fluctuations of the blood oxygen-level-

dependent (BOLD) fMRI signal. The signal fluctuations, recorded in the absence of any 

task paradigm, have been shown to reflect anatomical connectivity and are presumed to 

be a hemodynamic manifestation of slow fluctuations in neuronal activity. Importantly, 

the technique circumvents many practical limitations of other methodologies and can be 

compared directly between multiple species. Networks of all species were found 

underlying multiple levels of sensory, motor, and cognitive processing. Remarkable 

homologous functional connectivity was found across all species, however network 

complexity was dramatically increased in primate compared to rodent species. 

Spontaneous temporal dynamics of the resting-state networks were also preserved across 

species. The results demonstrate that rats and macaques share remarkable homologous 

network organization with humans, thereby providing strong support for their use as an 

animal model in the study of normal and abnormal brain connectivity as well as aiding 

the interpretation of electrophysiological recordings within the context of large-scale 

brain networks.  

Keywords: functional connectivity, resting-state, fMRI, animal models, networks, 

macaque, rat, homology, network dynamics. 
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functional roles of each network are discussed in the text. Reprinted with 

permission from Hutchison, Leung, Mirsattari, Gati, Menon, & Everling (2011).
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Figure 3.3. The eleven resting-state networks (RSNs) presented in Fig. 3.2 projected onto a 

flattened brain. RSNs were identified by group independent component analysis 

of fMRI data from six isoflurane-anesthetized macaque monkeys. Overlaid color 

maps represent thresholded z-scores. All images have been normalized to the 

space of the F99 template (Van Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 
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and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant. as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ........................................... 98	
  

Figure 3.4. Cortical coverage of eleven resting-state networks (RSNs) identified by group 

independent component analysis of fMRI data from six isoflurane-anesthetized 

macaque monkeys. All images have been normalized to the space of the F99 

template (Van Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). (A) 

The left images depict lateral and medial views of left hemisphere, the center 

images depict the dorsal view of both hemispheres, and the right images depict 

the lateral and medial views of right hemisphere. (B) Cortical coverage of (A) 

projected onto a flattened brain. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 103	
  

Figure 3.5. Resting-state networks (RSN) of all monkeys (M1–M6) following single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified RSN B (fronto-parietal). Overlaid color maps represent 

thresholded z-scores. All images have been normalized to the space of the F99 

template (Van Essen, 2004; see http://sumsdb.wustl.edu/sums/macaquemore.do). 

For each RSN, the left images depict lateral and medial views of left hemisphere, 

the center images depict the dorsal view of both hemispheres, and the right 

images depict the lateral and medial views of right hemisphere. Reprinted with 

permission from Hutchison, Leung, Mirsattari, Gati, Menon, & Everling (2011).
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Figure 3.6. Resting-state networks (RSN) of monkey M1 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 
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projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 106	
  

Figure 3.7. Resting-state networks (RSN) of monkey M2 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 

projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 107	
  

Figure 3.8. Resting-state networks (RSN) of monkey M3 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 

projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 
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http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 108	
  

Figure 3.9. Resting-state networks (RSN) of monkey M4 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 

projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 109	
  

Figure 3.10. Resting-state networks (RSN) of monkey M5 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 

projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 
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calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 110	
  

Figure 3.11. Resting-state networks (RSN) of monkey M6 identified by single-subject 

independent component analysis (ICA) that were most spatially correlated to 

group-ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are 

projected onto a flattened brain. Overlaid color maps represent thresholded z-

scores. All images have been normalized to the space of the F99 template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left 

and right images correspond to the left and right hemispheres, respectively. Sulci 

and color bar are shown in the bottom right quadrant; as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, occipito-

temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-

occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, 

Leung, Mirsattari, Gati, Menon, & Everling (2011). ......................................... 111	
  

Figure 3.12. Average functional network connectivity of macaque resting-state networks 

(RSNs). Lines and numerical values indicate functional connectivity between two 

RSNs in which there was a significant temporal correlation of their respective 

time-courses (one-sample Student t-test, p < 0.05, corrected for multiple 

comparisons between 55 pairs, with a time lead/lag of +/−3 s). Network letters 

refer to spatial representations shown in Fig. 1. Reprinted with permission from 

Hutchison, Leung, Mirsattari, Gati, Menon, & Everling (2011). ....................... 114	
  

Figure 4.1. Monkey Seed locations. Spherical seeds (r = 1.5 mm) are displayed to scale on 

coronal slices of the F99 atlas (Van Essen, 2004) overlaid with the group-

averaged “oculomotor” network. Coordinates in F99 atlas space are indicated 

above below the brain area label. Abbreviations are indicated in the text. 
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Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 

Menon (2012). .................................................................................................... 135	
  

Figure 4.2. Human Seed locations. Spherical seeds (r = 5 mm) are displayed to scale on 

coronal slices of the MNI template atlas overlaid with the group-averaged 

“oculomotor” network. Coordinates in MNI atlas space are indicated above 

below the brain area label. Abbreviations are indicated in the text. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 139	
  

Figure 4.3. Group-averaged “oculomotor” network following correlation analysis of 

isoflurane-anesthetized macaques (N = 6) with a seed placed in the anterior bank 

of the arcuate sulcus corresponding to the left frontal eye fields (FEF; black 

asterisks). The lateral, medial, and flattened cortical views of the left (column 1) 

and right (column 3) hemisphere in addition to the dorsal and ventral views 

(column 2) are overlaid with thresholded correlation maps normalized to the 

space of the F99 template (Van Essen, 2004). No negative correlations were 

present at r < -0.2. Labels indicate prominent sulci. as, arcuate sulcus; cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 

ios, inferior occipital sulcus; ips, intraparietal sulcus; ls, lateral sulcus, lus, lunate 

sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal 

sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 142	
  

Figure 4.4. Single-subject (averaged across both scans) “oculomotor” networks of all 

isoflurane-anesthetized macaques (M1-M6). The lateral medial, and flattened 

cortical views of the left (column 1) and right (column 3) hemisphere in addition 

to the dorsal and ventral views (column 2) are overlaid with thresholded 

correlation maps normalized to the space of the F99 template (Van Essen, 2004). 

Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 

Menon (2012). .................................................................................................... 143	
  

Figure 4.5. Group-averaged ventral premotor network following correlation analysis of 

isoflurane-anesthetized macaques (N = 6) with a seed placed in the ventral motor 

area (area 1/F1; black asterisks). The lateral medial, and flattened cortical views 
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of the left (column 1) and right (column 3) hemisphere in addition to the dorsal 

and ventral views (column 2) are overlaid with thresholded correlation maps 

normalized to the space of the F99 template (Van Essen, 2004). No negative 

correlations were present at r < -0.2. Labels indicate prominent sulci. as, arcuate 

sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, 

hippocampal sulcus; ios, inferior occipital sulcus; ips, intraparietal sulcus; ls, 

lateral sulcus, lus, lunate sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; 

sts, superior temporal sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. 

Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 
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Figure 4.6.Average pair-wise correlation matrix of resting-state BOLD time-courses from 16 

“oculomotor” (OCM) network, 10 ventral premotor (vPM) network, and 8 white 

matter (WM) seeds for isoflurane-anesthetized macaques (N = 6). Abbreviations 

are indicated in the text. Reprinted with permission from Hutchison, 

Womelsdorf, Gati, Everling & Menon (2012). .................................................. 147	
  

Figure 4.7. Group-averaged “oculomotor” network following correlation analysis of awake 

human subjects (N = 12) with a seed placed in the left frontal eye fields (black 

asterisks). The lateral, medial, and flattened cortical views of the left (column 1) 

and right (column 3) hemisphere in addition to the dorsal and ventral views 

(column 2) are overlaid with thresholded correlation maps normalized to the 

space of the PALS-B12 template (Van Essen, 2005). No negative correlations 

were present at r < -0.3. Labels indicate prominent sulci. Note that the correlation 

threshold differs between human and monkey maps shown in Fig 4.3. cas, 

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; ifs, inferior frontal 

sulcus; ls, lateral sulcus; lus, lunate sulcus; mfs, middle frontal sulcus; pos, 

parieto-occipital sulcus; pocs, posterior central sulcus; prcs, precentral sulcus; sfs, 

superior frontal sulcus; sts, superior temporal sulcus. Reprinted with permission 

from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ....................... 149	
  

Figure 4.8. Single-subject “oculomotor” networks of all awake human subjects (S-S12). The 

flattened cortical views of the both hemispheres are overlaid with thresholded 



 

xxvi 

 

correlation maps normalized to the space of the PALS-B12 template (Van Essen, 

2005). Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 

Menon (2012). .................................................................................................... 150	
  

Figure 4.9. Average pair-wise correlation matrix of resting-state BOLD time-courses from 16 

“oculomotor” (OCM) network and 8 white matter (WM) seeds for awake human 

subjects (N = 12). Abbreviations are indicated in the text. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 151	
  

Figure 4.10. Network changes across time with a sliding-window correlation size of 60s for a 

representative isoflurane-anesthetized monkey (M2, scan 2). The top five rows 

represent a single windowed correlation between the times. The bottom row 

displays the average for the entire run. Column 1 shows the pairwise correlation 

matrix of “oculomotor” network seeds in the same fashion as the blue bounded 

box in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 

and right hemisphere, respectively, overlaid with voxel-wise correlation maps for 

the left FEF seed normalized to the space of the F99 template (Van Essen, 2004). 

Column 4 displays the graph representation of the functional “oculomotor” 

network connectivity in which each seed represents a node and pair-wise 

correlation r < 0.4 represented by an edge. The size of the node represents its 

degree centrality. For window sizes of 30, 120, and 240, see Supplementary Figs. 

4.11, 4.12, and 4.13 respectively. For all time points of pair-wise correlations, see 

Supplementary Movie 1. For all time points of voxel-wise left FEF correlation 

see Supplementary Movie 2. Reprinted with permission from Hutchison, 

Womelsdorf, Gati, Everling & Menon (2012). .................................................. 154	
  

Figure 4.11. Network changes across time with a sliding-window correlation size of 30s for a 

representative isoflurane-anesthetized monkey (M2, scan 2). The top five rows 

represent a single windowed correlation between the times. The bottom row 

displays the average for the entire run. Column 1 shows the pairwise correlation 

matrix of “oculomotor” network seeds in the same fashion as the blue bounded 

box in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 

and right hemisphere, respectively, overlaid with voxel-wise correlation maps for 
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the left FEF seed normalized to the space of the F99 template (Van Essen, 2004). 

Column 4 displays the graph representation of the functional “oculomotor” 

network connectivity in which each seed represents a node and pair-wise 

correlation r < 0.4 represented by an edge. The size of the node represents its 

degree centrality. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 156	
  

Figure 4.12. Network changes across time with a sliding-window correlation size of 120s for 

a representative isoflurane-anesthetized monkey (M2, scan 2). The top five rows 

represent a single windowed correlation between the times. The bottom row 

displays the average for the entire run. Column 1 shows the pairwise correlation 

matrix of “oculomotor” network seeds in the same fashion as the blue bounded 

box in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 

and right hemisphere, respectively, overlaid with voxel-wise correlation maps for 

the left FEF seed normalized to the space of the F99 template (Van Essen, 2004). 

Column 4 displays the graph representation of the functional “oculomotor” 

network connectivity in which each seed represents a node and pair-wise 

correlation r < 0.4 represented by an edge. The size of the node represents its 

degree centrality. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 158	
  

Figure 4.13. Network changes across time with a sliding-window correlation size of 240s for 

a representative isoflurane-anesthetized monkey (M2, scan 2). The top five rows 

represent a single windowed correlation between the times. The bottom row 

displays the average for the entire run. Column 1 shows the pairwise correlation 

matrix of “oculomotor” network seeds in the same fashion as the blue bounded 

box in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 

and right hemisphere, respectively, overlaid with voxel-wise correlation maps for 

the left FEF seed normalized to the space of the F99 template (Van Essen, 2004). 

Column 4 displays the graph representation of the functional “oculomotor” 

network connectivity in which each seed represents a node and pair-wise 

correlation r < 0.4 represented by an edge. The size of the node represents its 
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degree centrality. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 160	
  

Figure 4.14. Network changes across time with a sliding-window correlation size of 60s for a 

representative awake human subject (S7). The top five rows represent a single 

windowed correlation between the times. The bottom row displays the average 

for the entire run. Column 1 shows the pairwise correlation matrix of 

“oculomotor” network seeds in the same fashion as the blue bounded box in Fig. 

4.9. Column 2 and 3 display the flattened cortical views of the left and right 

hemisphere, respectively, overlaid with voxel-wise correlation maps for the left 

FEF seed normalized to the space of the PALS-B12 template (Van Essen, 2005). 

Column 4 displays the graph representation of the functional “oculomotor” 

network connectivity in which each seed represents a node and pair-wise 

correlation r < 0.4 represented by an edge. The size of the node represents its 

degree centrality. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 162	
  

Figure 4.15. Time-series and sliding-window correlation coefficients between the left frontal 

eye fields (FEF) and “oculomotor” network seeds (A) left intraparietal cortex 

(IP), (B) left middle superior temporal cortex (MST), (C) right FEF, and (D) left 

posterior cingulate cortex (PCC) shown for one representative isoflurane-

anesthetized monkey (M2, scan 2). The top panel shows the BOLD time series of 

the left FEF seed (blue) and the comparative seed (red). The middle panel shows 

the sliding-window coefficients for 30s (cyan), 60s (pink), 120s (green), and 240s 

(orange) windows. For each of the correlation time courses the bottom panel 

shows the Fast-Fourier transform (right side) and the percentage of time of above 

and below 0. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 164	
  

Figure 4.16. Confidence intervals for sliding-window correlation coefficients shown in Fig. 

4.15 between the left frontal eye fields (FEF) and “oculomotor” network seeds 

(A) left intraparietal cortex (IP), (B) left middle superior temporal cortex (MST), 

(C) right FEF, and (D) left posterior cingulate cortex (PCC) shown for one 
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representative isoflurane-anesthetized monkey (M2, scan 2). Sliding-window 

coefficients are shown for 30s (cyan), 60s (pink), 120s (green), and 240s (orange) 

windows and shaded bars represent the lower and upper bounds for a 95% 

confidence interval for each coefficient. Reprinted with permission from 

Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ................................ 165	
  

Figure 4.17. Time-series and sliding-window correlation coefficients between the left frontal 

eye fields (FEF) and “oculomotor” network seeds (A) left intraparietal cortex 

(IP), (B) left middle superior temporal cortex (MST), (C) right FEF, and (D) left 

posterior cingulate cortex (PCC) shown for one representative awake human 

subject (S7). The top panel shows the BOLD time series of the left FEF seed 

(blue) and the comparative seed (red). The middle panel shows the sliding-

window coefficients for 30s (cyan), 60s (pink), 120s (green), and 240s (orange) 

windows. For each of the correlation time courses the bottom panel shows the 

Fast-Fourier transform (right side) and the percentage of time of above and below 

0. Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 
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Figure 4.18. Sliding-window pair-wise correlations of “oculomotor” network (OCM), ventral 

premotor network (vPM), and white matter (WM) seeds over time for a 

representative isoflurane-anesthetized macaques (M2, scan 2). Every vertical line 

of each image represents the unfolded pair-wise correlation matrix as seen in Fig 

4.6 averaged across 30s (row 1), 60s (row 2), 120s (row 3), and 240s (row 4) 

windows for the entire scan. Plots for all monkeys and both scans are shown in 

Fig. 4.20. Reprinted with permission from Hutchison, Womelsdorf, Gati, 

Everling & Menon (2012). ................................................................................. 169	
  

Figure 4.19. Sliding-window pair-wise correlations of “oculomotor” network (OCM), ventral 

premotor network (vPM), and white matter (WM) seeds over time for all 

monkeys (M1-M6) for both scans. Every vertical line of each image represents 

the unfolded pair-wise correlation matrix as seen in Fig. 4.6 averaged across 60s 

windows for the entire scan. Reprinted with permission from Hutchison, 

Womelsdorf, Gati, Everling & Menon (2012). .................................................. 170	
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Figure 4.20. Average pairwise correlation values across all “oculomotor” network (OCM, 

red), ventral premotor network (vPM, blue), and white matter (WM, cyan) seeds 

over time for all monkeys (M1-M6, scan 2) with a sliding window of 60s. To the 

right of each plot shows the frequency distribution of the correlation coefficients 

for each of the three time series. For scan 1, see Fig. 4.21. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 172	
  

Figure 4.21. Average pairwise correlation values across all “oculomotor” network (OCM, 

red), ventral premotor network (vPM, blue), and white matter (WM, cyan) seeds 

over time for all monkeys (M1-M6, scan 1) with a sliding window of 60s. To the 

right of each plot shows the frequency distribution of the correlation coefficients 

for each of the three time series. For scan 2, see Fig. 4.20. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 173	
  

Figure 4.22. Sliding-window pair-wise correlations of “oculomotor” network seeds over time 

for a representative awake human subject (S7). Every vertical line of each image 

represents the unfolded pair-wise correlation matrix as seen in Fig. 4.09 averaged 

across 30s (row 1), 60s (row 2), 120s (row 3), and 240s (row 4) windows for the 

entire scan. Plots for all subjects are shown in Supplementary Fig. 4.23. 

Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 
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Figure 4.23. Sliding-window pair-wise correlations of “oculomotor” network (OCM) and 

white matter (WM) seeds over time for all human subjects (S1-S12). Every 

vertical line of each image represents the unfolded pair-wise correlation matrix as 

seen in Fig. 4.09 averaged across 60s windows for the entire scan. Reprinted with 

permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). ..... 176	
  

Figure 5.1. Simplified cladogram of mammals, indicating the divergence times of selected 

groups. Time scale in millions of years before the present. The encephalization 

quotient indicates the deviation of the brain size of a species from brain size 

expected on the basis of a ‘standard’ species of the same taxon, in this case of the 

cat. Modified with permission from Wise, 2008. The bottom panel displays the 

cortial surfaces of the highlighted species. ......................................................... 203	
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Figure 5.2. Brain weight, encephalization quotient and number of cortical neurons in selected 

mammals. Modified with permission from Roth & Dicke, 2005. Data calculated 

from Jerison, 1973; Russell, 1979; Haug, 1987. ................................................ 204	
  

Figure 5.3. Resting-state networks of the awake (left column) and medetomidine-

anesthetized (right column) rat. Both studies utilized ICA to show bilaterally 

homologous networks through cortical and subcortical structures. Reproduced 

with permission from Liang et al., 2011; Jonckers et al., 2011. ......................... 206	
  

Figure 5.4.  Sensory and motor resting-state networks of the macaque (left column) and 

human (right column) showing connectivity between bilateral homologues.  

Macaque networks reproduced with permission from Hutchison et al., 2011a. 

Human connectivity maps (N = 12) derived from ICA of Chapter 4 data. ........ 207	
  

Figure 5.5. Segregation of the whole-brain network of the awake rat brain. a, The global 

functional network constructed based on significant intercomponent connections. 

Each colored box represents an ICA component labeled with its corresponding 
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Chapter 1 1 

1 General Introduction 

1.1 Preamble 

1.1.1 Why study the brain? 

We often gaze into the vastness of the night sky believing outer space represents 

the final frontier for human discovery. However, as we contemplate the exploration of far 

off galaxies and distant planets, we are often unaware of the ongoing activity occurring 

several millimeters from your eyes that is making this thought possible. Indeed, the three-

pound, organic computing-machine remains a black box to the very mind that is the 

manifestation of its complex interactions. The brain is responsible for behaviour, 

cognition, and all aspects of what it means to be human. Our understanding of its 

structure and function, though limited, has hinted at the potential for understanding 

consciousness, unlocking the cures for psychiatric and developmental diseases, and 

explaining human interactions. It has been said that if the brain were simple enough for 

us to understand it, we would be too simple to understand it2, but the progress of 

neuroscientists around the world would disagree. It is with small and thorough steps, 

increased computing power, comparative studies, cross discipline work, and multimodal 

approaches that will allow us to truly elucidate all that is human.  

1.1.2 Focus and scale 

During my undergraduate studies, the focus of many neuroscience courses was 

primarily concerned with teaching fundamentals related to the activity of single neurons - 

mechanisms of action potentials, neurotransmitter release, and other topics of this sort. I 

always felt that there was a disconnection between these lessons and the complex 

                                                
1
 Potions of this chapter have been published in Hutchison, R.M., & Everling, S. (2012). Monkey in the 

middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in 
Neuroanatomy. Under review. 
2
 Ken Hill quoted by Buzsaki, 2006.  
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behaviours that were discussed in my cognitive psychology courses. Of course, to 

understand the functions of microcircuits in cortical columns or peripheral pain pathways, 

the role of individual neurons and their interconnections are invaluable. But how does the 

depolarization of a single neuron result in memories, language, or emotion? Something 

was missing and during my first year as a graduate student, I read a phrase that best 

encapsulated the problem. In a review article, Nikos Logothetis (2008) quoted the 

neuroanatomist Valentino Braitenberg who stated, “it makes no sense to read a 

newspaper with a microscope.” The issue was a matter of the appropriate focus of 

investigation. The human cerebral cortex contains approximately 8.3 x 109 neurons 

coupled through 6.7 x 1013 connections that span between 1 x 105 and 1 x 107 km (Murre 

& Sturdy, 1995) forming an expansive and intricately connected system. So in the same 

way that examining individual letter features would fail to capture the message of a 

newspaper article, characterizing the behaviour of a single neuron cannot adequately 

explain the complex interactions of the brain. This phrase would inspire my research and 

shape my approach to neuroscience.  

As I will discuss frequently throughout my thesis, the brain represents a network 

of interconnected components whose architecture supports the emergence of behavior 

and cognition. Due to the hierarchical nature of the brain’s organization, there are 

multiple levels of connectivity beyond the single cell that may be explored (Fig. 1.1) and 

a choice has to be made about the spatial scale at which the analysis is to be performed. I 

examine large-scale brain networks linking segregated functional subunits. It is important 

to note that this by no means underrates the contributions of smaller scale investigations. 

This meticulous work has provided a framework for all ongoing neuroscience 

experimentation. I contend however, that by examining brain activity on a larger scale, it 

will be possible to bridge the gap between electrical impulses and cognition, local field 

potentials and behaviour, or receptive fields and perception. 
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Figure 1.1. The multiple levels of brain organization. 
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1.2 Networks 

A network represents a group or system of interconnected things, taking a variety 

of forms across multiple disciplines and scales (See Fig 1.2). Many biological, social, and 

technological systems can be represented as networks. For example, networks can 

characterize population interactions such as food webs (Cohen, Briand, & Newman, 

1990; Williams & Martinez, 2000) or social relationships (Backstrom, Boldi, Rosa, 

Ugander, & Vigna, 2011), physiological systems including cellular and metabolic 

pathway interactions (Bhalla & Iyengar, 1999; Hartwell, Hopfield, Leibler, & Murray, 

1999; Jeong, Tombor, Albert, Oltvai, & Barabási, 2000; Kohn, 1999) and brain 

organization (Achacoso & Yamamoto, 1992; Hagmann et al., 2008), utility architecture 

like electrical power grids (Watts & Strogatz, 1998), the World-Wide Web (Broder et al., 

2000), and the Internet backbone (Faloutsos, Faloutsos, & Faloutsos, 1990), and even 

more abstract relationships such as co-authorship and citation networks of scientists 

(Newman, 2001). A network viewpoint shifts the focus from treating individual elements 

of the system as discrete units of analysis to examining the structure of connections, 

organization, and emergent properties of the elements interacting with each other. This is 

critical to the understanding of complex systems as their topology and dynamics are not 

evident at the element level and the network architecture can directly affect the 

functioning of the system (Strogatz, 2001).  
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Figure 1.2. Wiring diagrams for complex networks across multiple 
disciplines. A. Food web of Little Rock Lake, Wisconsin, currently the 
largest food web in the primary literature. Nodes are functionally distinct 
‘trophic species’ containing all taxa that share the same set of predators and 
prey. Height indicates trophic level with mostly phytoplankton at the bottom 
and fishes at the top. Cannibalism is shown with self-loops, and omnivory 
(feeding on more than one trophic level) is shown by different coloured links 
to consumers. B. New York State electric power grid. Generators and 
substations are shown as small blue bars. The lines connecting them are 
transmission lines and transformers. Line thickness and colour indicate the 
voltage level: red, 765 kV and 500 kV; brown, 345 kV; green, 230 kV; grey, 
138 kV and below. Pink dashed lines are transformers. C. Connectivity 
backbone of human brain. Kamada-Kawai force-spring layout of the 
connectivity backbone. Labels indicating anatomical subregions are placed at 
their respective centers of mass. Nodes (individual ROIs) are coded 
according to strength and edges are coded according to connection weight. D. 
A portion of the molecular interaction map for the regulatory network that 
controls the mammalian cell cycle. Colours indicate different types of 
interactions: black, binding interactions and stoichiometric conversions; red, 
covalent modifications and gene expression; green, enzyme actions; blue, 
stimulations and inhibitions. Modified with permission from Kohn, 1999; 
Strogatz, 2001; Hagmann et al., 2008. 
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Research on complex networks can offer invaluable information in real world 

settings beyond simple academic interest. The topology of social networks affects the 

spread of both information and disease through the population; the topology of a power 

grid affects the robustness and stability of power transmission; and as I will discuss 

throughout the thesis, the topology of the brain affects our understanding of normal and 

abnormal brain function. Many complex systems — be they societies, power grids, or 

brains — possess the same characteristic network properties despite the considerable 

differences in the type of individual elements or their mechanisms of interaction. The 

shared topological features offer the possibility of quantifying systems of a very different 

nature within a single unifying mathematical framework. 

 

1.2.1 Graph theory 

Within the framework of graph theory, a graph (network) is a mathematical 

representation of a complex system. The graph is composed of nodes denoting the 

individual elements (people, computers, websites, neurons, etc.) that are connected by 

edges representing a pairwise connection or interaction (friendships, wires, hyper-links, 

synapses, etc.) between the elements. Edges can also be used to convey information 

concerning direction (a directed graph) or connection strength (a weighted graph). 

Essentially, the graph models the real system, providing a comprehensive and compact 

description about how the system’s elements are linked or associated with each other. 

Fundamental organization characteristics of graphs can then be explored by quantitatively 

assessing their topology - the arrangement or configuration of the network elements – 

using various metrics (See Table 1 for a selection of metrics and Fig. 1.3 for illustrative 

example).  
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Table 1.1. Network Measures. 
Measure Definition 

Assortativity The correlation between the degrees of connected nodes. Positive assortativity indicates 
that high-degree nodes tend to connect to each other 

Centrality How many of the shortest paths between all other node pairs in the network pass 
through a node 

Clustering 
coefficient 

Quantifies the number of connections that exist between the nearest neighbours of a 
node as a proportion of the maximum number of possible connections (Watts & 
Strogatz, 1998) 

Connection 
density/cost The number of edges in the graph as a proportion of the total number of possible edges   

Degree The number of connections that link a node to the rest of the network  

Degree 
distribution 

The distribution of the degree values for all of the network’s nodes (Amaral, Scala, 
Barthelemy, & Stanley, 2000)  

Efficiency Efficiency is inversely related to path length but is numerically easier to use to estimate 
topological distances between elements of disconnected graphs 

Hub Hubs are nodes with high degree, or high centrality.  

Modularity 

Nodes that are highly interconnected and that overlap in their external connection 
patterns. Modules may also be functionally defined on the basis of the pattern of 
functional or effective connections. A given network can be decomposed into a set of 
non-overlapping, overlapping, or hierarchical arranged modules (Sporns, 2010, p. 328) 

Motifs 
A small subset of network nodes and edges forming a subgraph (Sporns, 2010, p. 328). 
The distribution of different motif classes in a network provides information about the 
types of local interactions that the network can support (Sporns & Kötter, 2004) 

Path length The minimum number of edges that must be traversed to go from one node to another.  

Robustness Robustness refers either to the structural integrity of the network following deletion of 
nodes or edges or to the effects of perturbations on local or global network states. 

Triangle The number of triagles around a node. 

Notes: Modified with permission from Bullmore & Sporns, 2009.  
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Figure 1.3. Features of a graph upon which network topology is assessed. 
Measures of integration are based on shortest path lengths (green), while measures 
of segregation are often based on triangle counts (blue) but also include more 
sophisticated decomposition into modules (ovals). Measures of centrality may be 
based on node degree (red) or on the length and number of shortest paths between 
nodes. Hub nodes (black) often lie on a high number of shortest paths and 
consequently often have high betweenness centrality. Patterns of local connectivity 
are quantified by network motifs (yellow). An example three-node and four-link 
anatomical motif contains six possible functional motifs, of which two are shown—
one motif containing dashed links, and one motif containing crossed links. Modified 
with permission from Rubinov & Sporns, 2010. 
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1.2.2 Complex networks 

Real-world network architectures tend to fall between two discrete classes of 

graphs, regular and random (Sporns, 2010, p. 23). The regular (or lattice) graph has an 

ordered pattern between nodes in which connected nodes tend to have the same neigbours 

resulting in high local clustering and long characteristic path lengths (Watts & Strogatz, 

1998; Fig 1.4A left). Random graphs show the opposite pattern; all connections are 

equally probable resulting in a Gaussian and symmetrically centered degree distribution 

and few shared neighbours between nodes. The consequence of this organization is low 

local clustering and short characteristic path lengths (Watts & Strogatz, 1998; Fig 1.4A 

right). Both of these topologies are not ideal as both high clustering and short path length 

are essential for high local efficiency of information transfer and maintaining low cost, 

respectively. An eloquent balance between the two graphs was first described by Watts 

and Stogatz (1998). They showed that by increasing the rewiring probability (or 

randomness) of a regular graph, the clustering remained high, but the new random “long-

range” connections significantly decreased the average path length (Fig 1.4B). This has 

now become known as small-world topology (Fig. 1.4A middle).  
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Figure 1.4. The emergence of small world networks. (A) A random rewiring 
procedure starts with a regular ring lattice with edges connecting node with 
probability p. As p increases, the graph becomes increasingly disordered until for p = 
1, all edges are rewired randomly. For intermediate values of p, the graph is a small-
world network: highly clustered like a regular graph, yet with small characteristic 
path length, like a random graph. (B) The characteristic path length L(p) and 
clustering coefficient C(p) for the family of randomly rewired graphs described in A. 
Note that a logarithmic horizontal scale has been used to resolve the rapid drop in 
L(p), corresponding to the onset of the small-world phenomenon. During this drop, 
C(p) remains almost constant at its value for the regular lattice, indicating that the 
transition to a small world is almost undetectable at the local level. Modified with 
permission from Watts & Strogatz, 1998. 
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In addition to small-world properties, most complex networks have non-Gaussian 

degree distributions, often with a long tail towards high degrees that follow a power law 

(Barabasi & Albert, 1999). This implies that “the probability of finding a node with a 

degree that is twice as large as an arbitrary number decreases by a constant factor” and 

indicates a scale-free organization in which “zooming in on any segment of the 

distribution does not change its shape” (Sporns, 2010, p. 20). Nodes with a 

disproportionately high number of connections are referred to as hubs and serve to 

integrate diverse informational sources enabling globally efficient information flow 

(Sporns, Honey, & Kötter, 2007). Hubs also facilitate small-world network organization, 

minimizing wiring and metabolic costs by providing long-distance connections that 

integrate local networks (Bassett & Bullmore, 2006). Lastly, complex networks tend to 

exhibit modularity where the modules contain several densely interconnected nodes with 

relatively few connections between nodes in different modules (Meunier, Lambiotte, & 

Bullmore, 2010).  

Discovering some of the overarching principles of complex networks is only the 

first step towards a comprehensive understanding of how these networks are structurally 

organized and generate complex dynamics. Extending beyond topological 

quantifications, research must focus on their development and evolution, linking network 

topology to network dynamics, and exploring network robustness and vulnerability — 

topics that are directly relevant in the study of brain organization. 
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1.3 Brain networks  

Most early work in neuroscience emphasized the specialization of brain areas, 

parcellating grey matter into ever smaller functional subdivisions based on an assortment 

of experimental techniques (Finger, 1994). The assignment of mental faculties to distinct 

regions can be traced to the work of Joseph Gall in the early 19th century (Fig. 1.5A). 

Gall was the original proponent of phrenology, a premise that attributed bumps or 

indentations in a patient's skull to respective expansion or shrinkage of underlying brain 

areas that corresponded to psychological and personality traits. Although much of his 

work is now forsaken as pseudoscience, his ideas left a lasting impression in the field and 

shaped the thinking of neuroscientists for over a century. Investigations during the first 

half of the 20th century continued to segment the brain, albeit with scientifically valid and 

rigorous cytoarchitecture investigations (Zilles & Amunts, 2010) (Fig. 1.5B-D). The 

trend is still pervasive today, perpetuated by extensive human imaging investigations 

assigning functional labels to those brain areas eliciting “activation” in response to a 

specific task (van Eijsden, Hyder, Rothman, & Shulman, 2009).  
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Figure 1.5. Parcellation of the human cortex. Lateral views of (A) Gall’s 
phrenology map and cytoarchitecture cortical maps of (B) Brodmann, (C) von 
Economo and Koskinas, and (D) Sarkisov. Modified with permission from Zilles 
& Amunts, 2010. Original images from Phillips & Hunt 1879; Brodmann, 1910; 
von Economo & Koskinas, 1925; Sarkisov, Filimonoff & Preobrashenskaya, 
1949.  
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Despite these ongoing modular investigations of brain function postulating the 

independent processing of specific cognitive functions, focus has been gradually shifting 

away from the notion of functional specialization towards one of functional integration 

(Breakspear & McIntosh, 2011; Bressler & Menon, 2010; Bullmore & Sporns, 2009; 

Sporns, 2002). Across multiple modalities and levels of investigation, evidence has 

suggested that specialization cannot account for the complex manifestations of brain 

function such as perception, cognition, and behaviour. Even the roles of primary sensory 

areas, typically viewed as the “pinnacles of modularity” (Bressler & Menon, 2010, p. 

227), are being redefined by recent evidence of complex cross-modal and cross-module 

interactions (Ghazanfar & Schroeder, 2006). The new framework emphasizes instead the 

conjoint function of brain areas working together as large-scale networks. Both localized 

and distributed aspects of brain function can be incorporated under this network 

perspective when viewing the “local specialization as the result of patterned distributed 

interactions that confer different functional attributes to individual network elements” 

(Sporns, 2010, p. 72). Interest in the dynamics of large-scale neuronal populations has 

emerged in parallel, in which the examination of the temporal properties and network 

dependencies of brain regions extends and offers better predictive ability than traditional 

models (Buzsaki, 2006; Deco, Buehlmann, Masquelier, & Hugues, 2011; Engel, Fries, & 

Singer, 2001; Varela, Lachaux, Rodriguez, & Martinerie, 2001). In essence, the brain is 

being reconceptualized as a complex, distributed system (McIntosh, 2004), in which the 

organization and activity within this system underlies all human perception and cognition 

(Bressler & Menon, 2010; Bullmore & Sporns, 2009; Sporns, 2002; Sporns, 2010). 
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1.4 Brain Connectivity 

Brain networks are not random, but form highly specific patterns that may be 

defined based on functional or structural (anatomical) connectivity. Functional 

connectivity refers to the “joint activity in different brain structures that is co-dependent 

under variation of a functional or behavioral parameter” (Bressler & Menon, 2010, p. 

278). In practice, this is quantified through the evaluation of patterns of temporal 

correlations that exists between distinct neuronal units. The time-scale and classification 

of which are determined by the scale and type of investigation (Bressler & Menon, 2010; 

Bullmore & Sporns, 2009; Sporns, 2002; Sporns, 2010). Effective connectivity, a related 

measure, involves estimation of the direction and strength of connections between the 

regions (Büchel & Friston, 2001) and can facilitate the analysis of directed graphs.  

Structural connectivity refers to the set of physical or structural connections 

linking neuronal units at a given time (Sporns, 2002). Structural networks often provide 

the architecture that promotes the dynamic interactions between nodes that give rise to 

the functional networks. As with functional connectivity, the properties are dependent 

upon the level of the spatial scale at which the analysis is being performed (Bressler & 

Menon, 2010; Bullmore & Sporns, 2009; Sporns, 2002; Sporns, 2010). At the local 

circuit level, the pattern of connections between individual neurons that occur via axons, 

dendrites, and gap junctions would be considered. Analyses of connections within a 

neural module (e.g., primary visual area) would model “connection bundles” that link the 

local neuronal populations (e.g., ocular columns). Representations of large-scale 

structural patterns focus on white matter tract connection pathways linking segregated 

brain areas. These tracts comprise- thousands or millions of individual axons that directly 

interconnect large groups of spatially separated regions. The structure of the large-scale 

pathways provides the framework that facilitates signaling along preferred pathways to 

achieve specific cognitive functions. While functional connectivity is the focus of the 

analyses in the current work, diffusion imaging techniques and tracing-studies have 

derived large-scale structural networks of the human (Gong et al., 2009; Hagmann et al., 

2008; Iturria-Medina et al., 2007) and macaque (Hilgetag, Burns, O’Neill, Scannell, & 

Young, 2000; Modha & Singh, 2010) brains, respectively (Fig. 1.6). 
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Figure 1.6. Structural connectivity of human (A) and monkey (B) brain. A. Dorsal and 
lateral views of the human connectivity backbone. Labels indicating anatomical subregions 
are placed at their respective centers of mass. Nodes (individual ROIs) are coded according 
to strength and edges are coded according to connection weight. B. Macaque brain long-
distance network in which each vertex of the network corresponds to a brain region in the 
hierarchical brainmap and each edge encodes the presence of long-distanceconnection 
between corresponding brain regions. A colorwheel is used for better discrimination 
amongst brain regions. Modified with permission from Hagmann et al., 2008 and Modha & 
Singh, 2010. 
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The brain’s structural and functional networks both have features expected of 

complex networks including small-world topology, hierarchy, centrality, hubs, and 

modularity that enable efficient information integration and processing (for reviews see 

(Bressler & Menon, 2010; Bullmore & Sporns, 2009). The relationship between the 

connectivity types is both mutual and reciprocal; structural connectivity constrains the 

patterns of functional connectivity that can be generated and functional interactions can 

contribute to the shaping of the underlying anatomical structure through activity 

dependent modification. Therefore, investigation of both dimensions of brain 

connectivity and their interaction are essential for a complete understanding of brain 

organization and the complex network dynamics that emerge. 

 

1.5 Network communication: Oscillations and synchrony 

Functional communication of the collective behaviour of neurons in different 

brain areas occurs via coherent oscillatory activity (Buzsaki, 2006; Buzsáki & Draguhn, 

2004).  The oscillations provide a mechanism of synchronization between individual and 

groups of neurons that provide an energy-efficient physical mechanism for temporal 

coordination (Buzsáki & Draguhn, 2004). The occurrence of synchronized electrical 

activity across multiple bands (delta, theta, alpha, gamma, etc.) change as function of 

behavioural-state and task demands (Engel et al., 2001). These distributed oscillatory 

systems act as resonant communication networks through which large populations of 

neurons are synchronized, providing a temporal frame for the timing of discharges and 

the encoding of information (Buzaki, 2006). Synchronization can enhance the salience of 

signals, bias input selection, facilitate signal propagation across sparsely connected 

networks, regulate synaptic plasticity, support temporal representations, as well as allow 

long-term consolidation of information (Buzsaki, 2006; Buzsáki & Draguhn, 2004). In 

addition, systematic phase shifts between the discharges of individual neurons and 

population oscillations appear to be exploited for cortical computations (Lisman & 

Buzsáki, 2008; Womelsdorf, Vinck, Leung, & Everling, 2010). High frequency-band 

oscillations are typically confined to a relatively small area, linking local populations of 

neurons, whereas distributed brain regions are recruited during slow oscillations to form 
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large-scale networks (Buzsáki & Draguhn, 2004; Csicsvari, Jamieson, Wise, & Buzsáki, 

2003; Steriade, 2001). Importantly, the relationship between neural oscillations and the 

brain’s anatomical architecture permit processing to be carried out independently or in 

parallel at multiple temporal and spatial scales (Buzsáki & Draguhn, 2004; Buzsáki, 

Geisler, Henze, & Wang, 2004).  

 

1.6 Methodologies 

There are a number of methodological techniques for exploring brain function 

(Fig. 1.7). Neuronal communication via oscillation is primarily examined with the use of 

electroencephalography (EEG) recorded at the scalp surface, electrocorticography 

(ECoG) recorded at the cortical surface, or depth electrodes recorded at specific locations 

within the brain. The techniques allow measurement of extracellular field potentials 

generated by a population of neurons referred to as local field potentials (LFP). LFPs 

reflect the weighted average of input signals of neurons and change with cognitive 

processing, allowing quantification of changes in endogenous brain states and events 

(Womelsdorf & Fries, 2006). Electrophysiological methodologies, however, have a 

number of disadvantages that prevent adequate exploration and understanding of the 

activity and functional connectivity of complex networks. EEG, despite its excellent 

temporal resolution (milliseconds), is unable to accurately discern or record all cortical 

and subcortical activity (Gloor, 1985). This is due to biophysical challenges related to 

convolution of the cortical surface, distortion from cerebral spinal fluid, neuron 

orientation, synchronization, skull conduction, and other sources of attenuation or loss 

(Ritter & Villringer, 2006). ECoG circumvents several of these limitations, but is 

extremely invasive. Source localization is limited in both of the techniques because of the 

inverse problem; there are an infinite number of possible locations and magnitudes of the 

intracranial current sources within the brain making a unique mathematical solution 

impossible (Niedermeyer & Lopes da Silva, 2004). Depth electrodes offer precise spatial 

localization, but only record activity in the immediate vicinity of the known electrode tip 

locations, thereby offering an incomplete view of brain activity. Further, they represent 

an invasive procedure only feasible in certain patient populations. Motivated by the 
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shortcoming of electrophysiological methods, various imaging methodologies have been 

developed. 
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Figure 1.7. Neuroscience techniques differ in their spatial and temporal resolution. 
Functional MRI provides a good balance of spatial and temporal resolution and thus is 
appropriate for a wide range of experimental questions. Other approaches, including 
electrophysiology, lesion studies, and drug manipulations, can provide complementary 
information. Reprinted with permission from Huettel, Song, & McCarthy, 2004.  
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Neuroimaging techniques provide non-invasive methods capable of exploring the 

structural and functional connectivity of brain networks while providing precise spatial 

localization. The most widely used technique is blood-oxygenation-level-dependent 

(BOLD) fMRI. This technique exploits the paramagnetic properties of deoxygenated 

hemoglobin (dHb) that disrupt the local magnetic field to reveal changes in functional 

brain activity with high spatial resolution and whole brain coverage across multiple levels 

(Menon, Ogawa, Strupp, & Uğurbil, 1997; Ogawa et al., 1993). The BOLD response has 

been shown to reflect input and intracortical processing, in which LFPs are better 

predictors of the BOLD response than multiple-unit or single-unit spiking (Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001; Logothetis & Wandell, 2004).  

Tracking the activity of an assembly of neurons responding to a stimulus, there is 

first an increase in the integration of and signaling of neurons. Excitatory and inhibitory 

post-synaptic potentials demand a great deal of energy resources for maintaining their 

electrochemical gradients and following the stimulus-induced activity these need to be 

restored. Neurons utilize available energy resources (oxygen, ATP, glucose) to 

accomplish this and in the process further deplete available energy supplies as well as 

increasing the concentration of metabolic by-products (CO2). Neurovascular coupling 

(potentially facilitated by astrocytes (Iadecola & Nedergaard, 2007)) allows the 

vasculature to respond to changes in energy demands leading to dilation of local arteriols 

and upstream vessels. The increase in vessel diameter decreases resistance and increases 

blood flow to the capillary bed. Increased blood flow brings an increase of oxygenated 

hemoglobin (HbO). HbO thereby reduces the deoxyHb concentration and causes an 

increase in the coherent spin of hydrogen atoms of diffusing water molecules mitigating 

the disruptive effects of dHB. The result is an increase of the local BOLD signal (Attwell 

& Iadecola, 2002). Therefore, although the fMRI BOLD signal arises from changes in 

blood flow and metabolism, it is intimately related to ongoing dendrtic potentials within 

neurons. The technique has afforded unparalleled access in the exploration of the 

topology of brain systems and been used to explore changes in neuronal activity related 

to sensory, motor, cognitive, and integrative functions (Logothetis, 2008).  
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1.7 Resting-state fMRI (RS-fMRI) 

Task-based paradigms are ubiquitous in the fMRI literature. Depending upon the 

hypothesis, these can take a variety of forms in which participants can perform overt or 

covert behaviours. The timing and modeling of the task can also vary considerably, but 

many follow a simple subtraction method in which participants alternate between the task 

(e.g. visual stimulation) and a baseline period (e.g. no stimulation) in a block design. The 

states are then subtracted and areas where modulation of the BOLD signal is observed 

(e.g. visual cortex) are attributed to the experimental paradigm, thereby allowing 

researchers to relate brain topography to function (Fig. 1.8). The technique has also 

revealed that neural processing relies on the dynamic integration of cortical and 

subcortical areas within large-scale and distributed brain networks (Guye, Bartolomei, & 

Ranjeva, 2008; Sporns, Tononi, & Kötter, 2005).  
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Figure 1.8. Traditional fMRI analysis and BOLD noise. Unaveraged blood oxygen 
level dependent (BOLD) time course (magenta) from a region in the primary visual 
cortex during a simple task paradigm that requires subjects to open and close their eyes. 
The paradigm is shown in blue (delayed to account for the hemodynamic response). 
Traditional functional magnetic resonance imaging (fMRI) analysis involves correlating 
BOLD data with a stimulation time-course across multiple blocks. This in effect averages 
across each condition and performs a subtraction, minimizing ‘noise’ in the BOLD signal 
and highlighting regions that are modulated by the task paradigm. In this case, 
subtraction of the eyes-closed condition from the eyes-open condition identifies a BOLD 
signal intensity difference in the primary visual cortex (shown below). Modified with 
permission from Fox & Raichle, 2007. 



26 

 

A block or event related paradigm of this type is problematic in several regards. 

When the brain is “at rest,” it consumes 20% of the body’s energy despite only 

representing 2% of the total body mass, dedicating the majority of this energy 

expenditure to support ongoing neuronal signaling (Raichle & Mintun, 2006; Shulman, 

Rothman, Behar, & Hyder, 2004). This large metabolic cost implies that the baseline 

periods do not actually reflect an absence of cognitive processing implicit in the 

theoretical design of the experiments (Raichle et al., 2001; Raichle, 2010; Stark & Squire, 

2001). During the task portion of the paradigm, the reported neuronal metabolism 

measured using BOLD-fMRI typically only increases 1-2%, very rarely exceeding 5% in 

typical studies. The finding is not isolated to imaging studies and supported by an 

extensive number of electrophysiological studies also reporting spontaneous time-

varying, network dynamics and ongoing brain activity over a wide range of temporal and 

spatial scales (for review see Raichle, 2010; Ringach, 2009; Sadaghiani, Hesselmann, 

Friston, & Kleinschmidt, 2010; Vogels, Rajan, & Abbott, 2005). The relatively small 

fraction of energy usage when compared to the large resting energy consumption 

suggests that task-related paradigms only study a minor component of total brain activity. 

The point is further highlighted when examining a timecourse of the BOLD signal from 

all brain areas, including those eliciting activation during the task (Fig. 1.8); depending 

on the task, large amplitude fluctuations can be observed during both task and rest 

conditions that have magnitudes matching task-evoked activity. The low frequency signal 

changes are not attributable to the experimental paradigm or any other explicit input or 

output. Ongoing brain activity changes in the absence of stimuli or behaviour of this type 

was historically characterized as background “noise” in both electrophysiological and 

imaging fields- believed to be a manifestation of cardiac, breathing, motion, and scanner 

artifacts. The contribution of these signals were then minimized through averaging.  

A significant paradigm shift occurred following the discovery that spontaneous 

BOLD fluctuations measured in the left somatomotor cortex were correlated with the 

spontaneous fluctuations in the right somatomotor cortex as well as supplementary motor 

areas (Biswal, Yetkin, Haughton, & Hyde, 1995). The group of regions closely matched 

the task-evoked dorsal motor network, though in this case, the network was revealed 

from data acquired in the absence of any overt motor task (Fig. 1.9). The results indicated 
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that a component of the spontaneous BOLD activity is not solely random noise or a 

consequence of physiological or scanner artifact, but specifically organized in the resting 

human brain and thus could be mapped non-invasively without any task requirement. 

These findings were the catalyst for a new avenue of network research called resting-state 

fMRI (RS-fMRI) 
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Figure 1.9. The first comparison of task-based and resting-state functional maps. A. 
fMRI task-activation response to bilateral left and right finger movement, superimposed 
on an anatomical image. B. Correlation map derived using a resting-state scan. Red is 
positive correlation, and yellow is negative. Reprinted with permission from Biswal, 
Yetkin, Haughton, & Hyde, 1995. 
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1.7.1 Resting-state signal 

Spontaneous BOLD fluctuations follow a 1/f distribution, meaning that there is 

increasing power at lower frequencies (Zarahn, Aguirre, & D’Esposito, 1997). When 

plotted on a log-log plot, the slope of the power spectral density function will be close to 

-1. This distinguishes the fluctuations from random (white) noise that would be 

characterized by a flat power spectral density function that contains equal power across 

all frequencies.  A 1/f distribution has also been observed across a range of other 

neuroscience methodologies examining spontaneous brain activity such as EEG 

(Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001; Cornelis Jan Stam & de 

Bruin, 2004), magnetoencephalography (MEG) (Linkenkaer-Hansen et al., 2001), and 

LFP recordings (Leopold, Murayama, & Logothetis, 2003). Across this distribution, it 

has been shown that frequencies below 0.1 Hz primarily contribute to the regionally 

specific BOLD fluctuations (Cordes et al., 2001). Physiological signals relating to 

respiratory (0.1 - 0.5 Hz) and cardiovascular (0.6 - 1.2 Hz) factors are above this range 

(the values are higher in rats and monkeys) though aliasing is still a concern (Birn, 

Murphy, & Bandettini, 2008). Based on this finding, the majority of spontaneous BOLD 

studies low-pass filter data at a cut-off of 0.1 Hz and refer to the fluctuations as “low-

frequency.” It should be noted that due to the sluggishness of the hemodynamic response 

and low sampling rate used in fMRI acquisitions (on the order of seconds) analysis of 

higher frequency contributions is limited and contributions from broadband neural 

activity (possibly) underlying the hemodynamic dynamics cannot be excluded (Cole, 

Smith, & Beckmann, 2010). Other temporal properties of the hemodynamic fluctuations 

such as frequency profiles, magnitude, and transient events - attributes typically studied 

in other methodologies - require further examination though have been shown to possess 

valuable information (Baria, Baliki, Parrish, & Apkarian, 2011; Li et al., 2000). Greater 

emphasis has been placed on the spatial patterns of correlations. 
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1.7.1.1 Correlate 

As mentioned earlier, the BOLD signal is not a direct measure of neural activity 

as would be recorded in electrophysiological experiments. Instead, it represents a 

surrogate signal reflecting local variations in deoxyhemoglobin concentration determined 

by a combination of blood flow, blood volume, and oxygen metabolism that are then 

partially coupled to the underlying neural activity (Raichle & Mintun, 2006). Task-

evoked activity has been best linked to changes in LFPs (Logothetis et al., 2001), but the 

same correlation has not been confirmed for spontaneous hemodynamic fluctuations. A 

growing body of studies does support the notion that resting-state BOLD fluctuations of 

cortical and sub-cortical regions originate from the coupling of spontaneous neuronal 

activity to a hemodynamic response function. Early multi-modal evidence in anesthetized 

rats demonstrated tight coupling between spontaneous cerebrovascular fluctuations and 

bursts of electrocortical activity (Golanov, Yamamoto, & Reis, 1994). This has been 

expanded in future work attempting to more precisely determine the underlying 

electrophysiological correlate. Two related approaches have emerged, one attempting to 

determine the correlation of the two signals at a single site and a second focusing instead 

on overlapping spatial correlation patterns of each of the signals (discussed in Chapter 4).  

A leading candidate for the neural correlate of spontaneous BOLD fluctuations is 

the slow fluctuation of power in the gamma frequency range. Electrical activity in the 

gamma frequency band fluctuates at 60-100 Hz, however, Leopold and colleagues (2003) 

showed in nonhuman primates that the power of gamma at a particular moment also 

fluctuates, albeit at a much slower rate (<0.1 Hz). Besides sharing a similar frequency as 

the hemodynamic changes, the slow power fluctuations also exhibit 1/f behaviour and are 

correlated across large regions of cortex (Leopold et al., 2003). Later, it was showed 

using simultaneous fMRI and LFP recordings that the power fluctuations are in fact 

correlated with spontaneous BOLD fluctuations (Shmuel & Leopold, 2008).  

First proposed by Fox and Raichle, (2007), infraslow oscillations represent 

another potential candidate not completely independent of the gamma power changes. 

Using direct current‑coupled EEG, which circumvents the limited recording bandwidth 

of most EEG systems (>0.5 Hz), large-scale infraslow oscillations (0.02 - 0.2 Hz) can be 
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recorded across widespread regions in the human cortex (Vanhatalo et al., 2004). The 

oscillations are themselves correlated with changes in the power of higher frequency 

bands including gamma, leading to the notion of a causal role between the two processes 

in which infraslow oscillations modulate the power of higher frequency activity. In this 

model, the rapid fluctuations coordinate the neuronal activity at small spatial scales, 

whereas the much slower power fluctuations allow for long-range coordination. This is 

supported by empirical evidence (Buzsáki & Draguhn, 2004), however its relation to 

BOLD flutuations remains to be determined.  

Beyond the electrophysiological correlates, a number of other hemodynamic and 

metabolic variables have been put forth by Fox and Raichle (2007) and need to be 

considered. Oxygen availability, nicotinamide adenine dinucleotide levels, spontaneous 

neurotransmitter release, cytochrome oxidase activity, blood volume, and blood flow 

demonstrate spontaneous low-frequency fluctuations that can have 1/f distributions and 

similar spatial patterns to those seen with BOLD (Fox & Raichle, 2007). Taken together, 

it is clear that further work is needed using invasive recordings to determine the origin of 

hemodynamic, metabolic, and electrophysiologcal fluctuations. 

 

1.7.2 Methodology 

Most studies utilizing RS-fMRI follow a similar experimental paradigm as was 

first proposed by Biswal and colleagues (1995). Efforts are made to minimize any 

changes in sensory input over time and subjects are required to refrain from making 

responses or performing specific cognitive tasks. The subject simply lies still in the 

scanner and refrains from falling asleep with their eyes closed or open and fixating. After 

data acquisition, there are two primary methods used to identify spatial patterns of 

spontaneous activity: hypothesis-dependent and hypothesis-independent analyses.  
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1.7.2.1 Seed-region analysis 

Seed-based analysis for connectivity mapping is a widely used approach for RS-

fMRI investigations and the most popular hypothesis-dependent method. It offers 

simplicity, sensitivity, and ease of interpretation, revealing the network of regions most 

strongly connected with the a priori defined seed-region (Cole et al., 2010; Fox & 

Raichle, 2007). The seed can be a voxel, cluster, or brain region – selected from 

previously published coordinates or functional activation maps from a localizer task. The 

average of all included voxels are calculated for each time point to create a timeseries to 

be used as a regressor in a linear correlation or multiple regression analysis across all 

other voxels. The result is a whole-brain, voxel-wise functional connectivity map of 

covariance with the specified seed-region. Seed-based approaches have been employed 

by many research groups and proven invaluable for revealing reliable connectivity 

properties of many seed areas (Shehzad et al., 2009) – providing a direct answer to a 

direct question.   

The approach, however, suffers from several inherent limitations. The resulting 

maps are dependent upon an a priori defined seed size, shape, and location. Difficulties 

with the technique are also apparent when attempting to design a stimulation task to elicit 

robust and localized hemodynamic changes in specialized brain areas. Spatial smoothing 

and misalignment of functional areas during inter-subject registration can further 

compound the errors in seed selection. Multiple systems cannot be studied 

simultaneously and the extracted waveform may not be a true independent variable when 

assessing statistical significance. Owing to the constraints of seed-region analysis, 

exploratory techniques that do not require defining seed regions are now frequently 

applied to spontaneous BOLD data that circumvent some of these limitations. 

  

1.7.2.2 Independent component analysis (ICA) 

There are a variety of popular data-driven methods. These fall within two broad 

categories: decomposition through such techniques as principal component analysis 

(PCA) (Friston, Frith, Liddle, & Frackowiak, 1993), singular value decomposition, and 
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independent component analysis (ICA) (Beckmann, DeLuca, Devlin, & Smith, 2005) or 

clustering using such techniques as hierarchical (Dietmar Cordes, Haughton, Carew, 

Arfanakis, & Maravilla, 2002), fuzzy (Baumgartner et al., 2000), and normalized cut 

clustering (van den Heuvel, Mandl, & Hulshoff Pol, 2008). ICA represents the most 

prevalent of these approaches that have been successfully applied to resting-state data. 

ICA is a statistical technique that uses a linear model to decompose independent, 

uncorrelated, and non-Gaussian datasets into distinct subparts that represent underlying 

“hidden” sources (Vigário, Särelä, Jousmäki, Hämäläinen, & Oja, 2000). The type of 

signals can vary and could for example represent audio recordings of microphones placed 

throughout a room during a party. ICA could then be used to decompose the mixed 

conversations into the individual voice patterns of people in the room. Within the field of 

neuroscience, the technique was first applied to EEG data (Onton, Westerfield, 

Townsend, & Makeig, 2006) and later to task-based fMRI investigations (McKeown et 

al., 1998). Its use in the analysis of resting-state data began in the early 2000s (Kiviniemi, 

Kantola, Jauhiainen, Hyvärinen, & Tervonen, 2003). In terms of examining the resting-

state BOLD signal, ICA is able to identify signal fluctuations by virtue of their spatial 

and temporal profiles without the need to specify an explicit model or voxel. Multiple 

temporally coherent functional networks are extracted without constraining the temporal 

domain and are a priori independent (McKeown et al., 1998). It does this by first 

concatenating all voxel time points across the duration of the scan into a two-dimensional 

data matrix. By optimizing a measure of non-Gaussianity, the algorithm identifies sets of 

voxels whose activity both varies together over time and is maximally different from the 

activity in other sets. The voxels contributing to each component need not be contiguous 

and spatial overlap between components is possible. Apart from identifying networks of 

coherent voxels, ICA is able to reveal the integrative and dissociative relationships within 

and between networks capturing the functional hierarchy of the human brain (Abou-

Elseoud et al., 2010; Kiviniemi et al., 2009; Smith et al., 2009). The approach is also less 

prone to artifactual sources from physiologic and scanner noise than seed-based analysis 

due to the ability of the method to account for the existence of such structured noise 

effects within additional components. 
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There are several limitations of ICA. When implementing the analysis, 

dimensionality reduction through PCA is typically performed and then an a priori 

prediction about the number of underlying sources in the data is required (the model 

order). Choices at both of these steps can be somewhat arbitrary, but result in dramatic 

changes in the resulting components. Most relevant to brain networks, increasing the 

model order fractures networks into smaller sub-networks. While this can underlie real 

hierarchical relationships within the network (Abou-Elseoud et al., 2010; Kiviniemi et al., 

2009; Smith et al., 2009), it is then difficult to determine the best level of analysis and the 

point at which the “full” network is represented. Approaches have been developed to 

optimally select the number of independent components for a given dataset according to 

statistical criteria (Jafri, Pearlson, Stevens, & Calhoun, 2008; Li, Adali, & Calhoun, 

2007) though their validity needs further testing (Zuo et al., 2010) – particularly across 

different groups and species. Interpretation of the resulting component maps, whereby 

biologically relevant components are distinguished from noise and artifacts, is also non-

trivial. ICA does not rank or order components and the maps must be sorted manually, 

matched to predefined spatial or temporal templates, or characterized with various 

assessment algorithms (De Martino et al., 2007; Moritz, Rogers, & Meyerand, 2003; 

Zeng, Qiu, Chodkowski, & Pekar, 2009).  

In summary, there are several approaches for identifying patterns of coherent 

activity from resting-state fMRI data, but the field is currently dominated by the use of 

seed-based analysis and ICA. Although the different techniques each have strengths and 

weaknesses, and differ in the types of questions they can answer, they converge on a 

similar finding: network architecture can be reliably and reproducibly detected at 

individual subject and group levels from spontaneous BOLD activity. 

  

1.7.3 Resting-state networks (RSNs)  

RS-fMRI can identify large-scale spatial patterns of coherent signals representing 

integrated networks of information processing and accordingly, has been shown to 

provide reliable connectivity maps in humans (Beckmann et al., 2005; Biswal et al., 
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1995; Damoiseaux et al., 2006), nonhuman primates (Hutchison et al., 2011a; Hutchison 

et al., 2011b; Vincent et al., 2007), and rodents (Hutchison, Mirsattari, Jones, Gati, & 

Leung, 2010; Jonckers, Van Audekerke, De Visscher, Van der Linden, & Verhoye, 2011; 

Pawela et al., 2008). The anatomically separated, but functionally linked brain regions 

showing a high level of ongoing functional connectivity during rest are referred to as 

resting-state networks (RSNs). The most consistent and commonly reported human RSNs 

(Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca, Beckmann, De Stefano, 

Matthews, & Smith, 2006; Smith et al., 2009) are shown in Fig. 1.10. These eight RSNs 

reflect functional systems supporting core perceptual and cognitive processes. They 

include: (A) a primary visual network encompassing primary visual cortex; (B) an 

extrastriate visual network; (C) a network encompassing auditory and other sensory 

association cortices; (D) a somatomotor network as was first shown by Biswal et al. 

(1995); (E) the “default-mode” network (DMN), deactivated during demanding cognitive 

tasks and involved in episodic memory processes and self-referential mental 

representations (Buckner & Vincent, 2007; Fox et al., 2005; Raichle & Snyder, 2007); 

(F) a frontal network implicated in executive control and salience processing; and (G, H) 

two right- and left-lateralized fronto-parietal networks spatially similar to the bilateral 

dorsal attention network and implicated in working memory and cognitive attentional 

processes (Maurizio Corbetta & Shulman, 2002). Note that the intra-network connectivity 

is not restricted to cortical areas and RSNs display functional connectivity patterns with 

specific thalamic (Dongyang Zhang, Snyder, Shimony, Fox, & Raichle, 2010) and 

cerebellar nuclei (Krienen & Buckner, 2009).  
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Figure 1.10. Eight of the most common and consistent RSNs identified by ICA. Saggital, 
coronal, and axial views of different spatial maps associated with low-frequency resting 
patterns estimated from a group of 10 subjects. All images have been coregistered into 
the space of the MNI template. The coordinates refer to mm distances from the anterior 
commissure and images are shown in radiological convention.  Reprinted with 
permission from Beckmann, DeLuca, Devlin, & Smith, 2005. 
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The aforementioned RSNs have been reported across subjects, studies, scanners, 

field strengths, and analysis techniques demonstrating characteristic systems of functional 

integration at rest (Cole et al., 2010; van den Heuvel & Hulshoff Pol, 2010).  Resting-

state networks manifest highly organized patterns of coherence across stages of cognitive 

development (Fair et al., 2007; Fransson et al., 2007), degrees of consciousness (Boly et 

al., 2008; Norton et al., 2012), under multiple types of general anesthesia (Boveroux et 

al., 2010; Deshpande, Kerssens, Sebel, & Hu, 2010; Greicius et al., 2008), and across 

mammalian species (see proceeding chapters). That is not to say, however, that the 

patterns are identical across all subjects or conditions. RSN activity and within-network 

connection properties have been previously demonstrated to be both state-dependent 

(Bianciardi et al., 2009; Horovitz et al., 2009, 2008), task-modulated (Esposito et al., 

2006; Fransson, 2006; Smith et al., 2009; Sun, Miller, Rao, & D’Esposito, 2007), and 

indicative of individual variability (Fox, Snyder, Zacks, & Raichle, 2006; Kelly, Uddin, 

Biswal, Castellanos, & Milham, 2008). Further, RSNs are sensitive to pharmacological 

manipulations (Anand et al., 2005; Kelly et al., 2009), and as will be discussed in section 

1.7.6, disease (Greicius, 2008).  

The patterns of intrinsic functional connectivity are consistent with stimulus-

evoked maps supporting their functional relevance, but also suggesting that the overlap 

may in fact be reflective of a common underlying system. Indeed, RSNs are activated or 

deactivated during specific cognitive and motor tasks (Calhoun et al., 2002; Jiang, He, 

Zang, & Weng, 2004; Moussa et al., 2011). Investigations have also continued to reveal 

new RSNs or sub-networks such as those related to memory, language, or self-referential 

systems (Li et al., 2011; Liao et al., 2009; Mantini, Perrucci, Del Gratta, Romani, & 

Corbetta, 2007; Vincent, Kahn, Van Essen, & Buckner, 2009) that link resting and task- 

state patterns. In this regard, it has been suggested that RSNs could be better classified as 

intrinsic connectivity networks (Seeley et al., 2007) to more accurately reflect the true 

nature of the networks - that despite being studied during “rest” the systems are actively 

involved in all aspects of cognition and behaviour and represent the functional 

topography of the mammalian brain.  
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1.7.4 The relationship between function and structure 

By definition, RSNs are composed of anatomically separated brain regions. These 

can include contralateral homologues or more distributed patterns within and between 

hemispheres. Given the growing evidence supporting a neural origin of resting-state 

fluctuations and their synchronization, many have hypothesized that the functional 

connectivity is supported by direct structural connections via white matter fiber tracts 

(Damoiseaux & Greicius, 2009). While direct evidence is limited in human subjects, 

there have been a number of studies that support this claim. Studies of functional 

connectivity in patients with agenesis (Quigley et al., 2003) or resection (Johnston et al., 

2008) of the corpus callosum have shown significantly decreased functional connectivity 

between the neocortices. The reduced interhemispheric correlations do suggest that the 

commissure fibers are necessary for communication, though new evidence has 

questioned this claim (Tyszka, Kennedy, Adolphs, & Paul, 2011) leading to some 

ambiguity. The majority of other studies have examined the relationship between 

spontaneous BOLD correlations and anatomical connectivity using diffusion imaging 

techniques such as diffusion tensor imaging (DTI) and diffusion spectrum imaging (DSI). 

At a local level, Koch and coworkers found that regions on either side of a sulcus 

showing high functionally connectivity were also structurally connected by short-range 

fibers (Koch, Norris, & Hund-Georgiadis, 2002). This has since been shown at the whole 

brain level, in which regions with a higher level of structural connectivity showed higher 

levels of functional connectivity (Hagmann et al., 2008; Honey, Kötter, Breakspear, & 

Sporns, 2007; Honey et al., 2009). Indeed, almost all functionally linked regions of the 

most commonly reported RSNs appear to be constrained by known white matter tracts 

(Greicius, Supekar, Menon, & Dougherty, 2009; Honey et al., 2007; van den Heuvel, 

Mandl, Kahn, & Hulshoff Pol, 2009; Vincent et al., 2007).  

The relationship between structural and functional connections is not, however, 

one-to-one and there are a number of discrepancies. Studies have reported areas that 

share no direct connections (Habas, 2009; Honey et al., 2009; Krienen & Buckner, 2009). 

For example, primary visual cortex has been found to be robustly connected to its 

contralateral homologue, though no direct connections exist (Van Essen, Newsome, & 
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Bixby, 1982). This implies that some of reported functional connectivity is driven by 

polysynaptic pathways. The opposite pattern has also been reported in which areas 

known to have structural connections do not show functional connectivity (Hutchison et 

al., 2011b). To summarize, the results point towards the existence of a general structural 

core of white matter connections supporting the functional connectivity observed 

between RSNs, but the precise relationship is unknown. The results are not necessarily 

surprising given that the structural brain network needs to facilitate a vast array of 

functional configurations to achieve different states (van den Heuvel & Hulshoff Pol, 

2010). Further insight into the relationship between the two connectivity types is needed 

and will likely come from an experimental system in which anatomical connectivity can 

be more easily assessed and manipulated — that is, in an animal model.  

 

1.7.5 Applying graph analysis to resting-state fMRI 

As stated previously, the use of graph theory metrics allows for a theoretical 

framework conducive to the exploration of network topology. Graph theory can be 

applied directly to RS-fMRI data as it provides whole brain assessment of functional 

connectivity and therefore can reveal important information about the organization of 

functional brain networks. Though the application of established metrics to resting-state 

data is in its infancy, studies have supported findings from other methodologies (Bassett 

& Bullmore, 2006; Fallani et al., 2010; Micheloyannis et al., 2006; Stam, 2004) reporting 

efficient modular and small-world organization at rest when examining the regional bran 

area (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; He et al., 2009; Y. Liu et 

al., 2008; Meunier et al., 2010; Salvador et al., 2005) or individual voxel (van den 

Heuvel, Stam, Boersma, & Hulshoff Pol, 2008) levels. The human brain was also shown 

to possess a core of highly connected hubs with an exponentially truncated power law 

degree distribution (Achard et al., 2006; Buckner et al., 2009; Liu et al., 2008; Salvador 

et al., 2005). These properties reflect a robust complex network organization that is 

resilient against random attacks or disruption (Bullmore & Sporns, 2009). Although, 

disruption of hub nodes can result in a catastrophic breakdown of connectivity (see 

below). Taken together, graph analysis of resting-state data has shown the human brain is 
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not just a random network, but one with an organization optimized towards a high level 

of local and global efficiency. 

 

1.7.6 Resting-state networks and disease 

In the summer of 2003, the tripping of a generation unit in Ohio led, through a 

cascading series of failures, to blackouts in eight US states and Ontario, leaving 

approximately 55 million people without power for up to 17 hours in the second worst 

blackout in history3. Networks emerge or are created across disciplines because they 

facilitate efficient information transfer and allow the emergence of properties not possible 

when the nodes are in isolation. These could include, for example, increased processing 

capabilities, stability, or resource sharing. However, alteration or breakdown of the 

network, especially of hub nodes, can create detrimental dynamics and catastrophic 

failure across the entire system as was observed in the breakdown of a single node in the 

complex northeastern power grid network resulting in 508 off-line units and near 

complete system failure. In a similar manner, the brain is sensitive to manipulations that 

alter its functional and structural organization.  

A growing and promising avenue of research is exploring the use of RS-fMRI 

measures in assessing clinical disorders; the overarching hypothesis across many of these 

studies being that alteration of brain networks are the cause or consequence of the 

abnormal manifestations characteristic of the disease. The technique is particularly well 

suited for investigations of non-normal populations, such as subjects with severe 

cognitive or physical impairments compared to other methodologies, including task-

based fMRI. This is because resting-state investigations require minimal task compliance 

and therefore allow for accurate comparisons of brain connectivity and dynamics. For 

example, a task requiring memory encoding can be of particular concern when evaluating 

patients suffering from neurodegenerative diseases. 

                                                
3
 U.S.-Canada Power System Outage Task Force, August 14th Blackout: Causes and Recommendations 
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Although their meaning is not fully understood, changes in functional RSNs have 

been reported in multiple psychiatric and neurologic disorders including depression 

(Greicius et al., 2007; Kühn & Gallinat, 2011; Lui et al., 2011), attention deficit-

hyperactivity disorder (Castellanos et al., 2008; Fair et al., 2010), schizophrenia (Bassett, 

Nelson, Mueller, Camchong, & Lim, 2011; Kühn & Gallinat, 2011; Whitfield-Gabrieli et 

al., 2009), Alzheimer's disease (Chen et al., 2011; Greicius, Srivastava, Reiss, & Menon, 

2004), epilepsy (Waites, Briellmann, Saling, Abbott, & Jackson, 2006; Zhang et al., 

2011), coma (Norton et al., 2012), multiple sclerosis (Lowe et al., 2008, 2002), and 

amyotrophic lateral sclerosis (Mohammadi et al., 2009) (for review see Greicius, 2008; 

van den Heuvel & Hulshoff Pol, 2010). Many early studies focused on the default-mode 

RSN, as the network seems particularly sensitive to disruption in disease states, but more 

recent work has now started to examine other networks as well as changes in the overall 

organization of functional brain network using graph analysis techniques (Jafri et al., 

2008). For example, through graph analysis of resting-state data it was revealed that the 

locations of high concentrations of amyloid deposits in Alzheimer's disease patients were 

highly correlated with the location of highly connected hub-regions in the human brain 

suggesting that disruption of integrative hubs may result in the decreased functional brain 

efficiency in these patients (Buckner et al., 2009). Taken together, the extensive 

documentation of altered RSN topology suggests that brain diseases are targeting 

interconnected cortical networks, rather than a single region and may help explain some 

of the complex manifestations seen in these patient populations. 

Given that the examination of spatiotemporal properties of RSNs studied with 

RS-fMRI can delineate abnormal neural functional architecture, the natural extension of 

the methodology would be using RSN-related metrics as potential screening devices for 

disease. However, many of the robust changes across the range of aforementioned 

disorders have been derived and significance-tested for “proof of concept” at the group 

level. These represent valuable contributions towards understanding abnormal brain 

activity and connectivity, but characterizing patterns of functional variability between 

normal and patient groups is far from providing clinical diagnostics at the single-subject 

level. The correlative results also present a directionality problem, in that the relationship 

between the disease and altered connectivity are unclear. The functional disruptions could 
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represent a consequence of the disease or be the underlying cause and this could vary 

across disease types. Despite these concerns, evidence is emerging to suggest that the 

obstacles can be overcome and changes can be robust enough to detect for the single 

subject (Fleisher et al., 2009). Given the extraordinary potential for RSNs as possible 

diagnostic or prognostic markers, it is crucial to understand the physiological 

mechanisms of fluctuation, regulation, and entrainment of LFFs and the RSNs that are 

revealed through their synchronization. 

 

1.8 Resting-state investigations of animal models 

Owing to the non-invasive nature of the technique, RS-fMRI is able to study the 

human brain and assess brain topology in both normal and disease subject groups. 

Consequently, the vast majority of studies on intrinsic brain activity and resting-state 

functional connectivity have been conducted on human subjects. There is, however, a 

requisite for the examination of the brain functional organization in other animals. At the 

most basic level, the study of other species can significantly enhance our understanding 

of mammalian brain organization and evolution through cross-species evaluation of 

homologies. RS-fMRI is particularly well suited for this task as the same methodology 

can be used across species. Animals also allow experimental manipulations to be carried 

out that are not practical in human subjects. Many of these species are used as research 

models across multiple branches of science to elucidate features of normal and abnormal 

human conditions; resting-state fMRI can provide valuable information on the altered 

brain changes that are occurring in these models. This is particularly useful in lesion and 

drug manipulation studies that cause widespread effects that cannot be captured using 

standard methodologies. Importantly, with the use of animal models it will be possible to 

investigate unanswered questions concerning RS-fMRI itself.  Functional maps can be 

directly compared to structural connectivity maps derived from anatomical tracing studies 

(even in the same animal) to reveal what the correlations in the signals are reflecting. The 

origin and potential function of the resting-state signal and the synchronization across 

distributed areas can be directly assessed with depth recording, high-field studies, and 

pharmacological investigations. In the same vein, the relationship between disease and 
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alterations of connectivity can be assessed through experimental manipulations –

revealing a causal role not possible in human work. Future work in animal RS-fMRI is a 

promising avenue, though in all of these applications it is critical to first assess the 

“baseline” or normal functional networks. 

 

1.9 Summary and current projects 

The human brain is a complex system composed of multiple levels organized into 

integrative network configurations. At a gross topological scale, spatially distributed, 

interconnected brain areas interact to perform circumscribed functions – communicating 

via oscillatory patterns of synchronization supported by long-range white matter fiber 

tracts. RS-fMRI has become an important tool for characterizing these functional brain 

networks in normal and disease states by analyzing the coherence in low-frequency 

fluctuations of the BOLD signal that are presumably overlying ongoing neural activity. 

Open questions regarding the origin, function, and direction of disease-related changes of 

the signal correlations, as well as knowledge concerning the homology and evolution of 

the networks are necessary for basic and applied applications. These highlight the need 

for animal investigations using RS-fMRI.  

In Chapter 2 of this thesis, I examined the spatiotemporal characteristics of 

anesthetized rats at rest with two different anesthetic regimes (Hutchison et al., 2010). 

Previous reports using RS-fMRI were primarily limited to seed region analysis in the 

somatosensory cortex and caudate-putamen. Using ICA, I was able to probe the entire 

brain without the need for predefined regions or functional localizer tasks allowing a 

more complete understanding of the rat’s functional brain topology. I found independent, 

synchronous LFFs of BOLD signals existed in clustered, bilaterally symmetric regions of 

both cortical and subcortical structures. Similar independent network components were 

found under both types of anesthesia and showed homologous organization with 

previously reported patterns observed in anesthetized monkeys and awake humans. The 

results represent an essential step in the understanding of rat brain networks necessary for 

homology comparisons and framing changes induced by experimental manipulations.  
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In Chapter 3 of this thesis, I extend the methodology used in Chapter 2 to non-

human primates and present a comprehensive assessment of macaque RSNs using group-

ICA (Hutchison et al., 2011a). Nonhuman primates and in particular macaque monkeys 

have been used as surrogates for the study of human brain function for several decades 

and might therefore represent an ideal animal model for the study of RSNs. Similar to the 

investigation of RS-fMRI in the rat, previously published reports were limited by seed-

region analysis of specific brain areas. In the present work, ICA revealed RSNs 

underlying multiple levels of sensory, motor, and cognitive processing. The results 

demonstrated that macaques share remarkable homologous network organization with 

humans, thereby providing strong support for their use as an animal model of human 

brain function.  

Finally, in Chapter 4 of this thesis I investigated the assumption of network 

stationarity implicit in most RS-fMRI investigations by characterizing RSN dynamics of 

anesthetized macaques and awake human subjects using a sliding-window correlation 

analysis (Hutchison, Womelsdorf, Gati, Everling, & Menon, 2012a). I found that 

functional connectivity among nodes comprising RSNs strongly fluctuated over time 

during awake as well as anaesthetized states. For time dependent correlational analysis 

with short windows (<60s), periods of positive functional correlations alternated with 

prominent anti-correlations that were missed when assessed with longer time windows. 

Similarly, time varying analysis identified network nodes that transiently link to the core 

RSN that did not emerge in average RSN analysis. Furthermore, time-dependent analysis 

reliably revealed transient states of large-scale synchronization that spanned all seeds. 

The results illustrated that resting-state functional connectivity is not static and that RSNs 

can exhibit non-stationary, spontaneous relationships irrespective of conscious, cognitive 

processing. The findings imply that mechanistically important network information can 

be missed when using average functional connectivity as the single network measure and 

that ongoing RSN dynamics represent an evolutionarily preserved aspect of brain 

function. 

Taken together, these experiments provide a more complete understanding of the 

network organization, homologies, and dynamics across three species: rats, monkeys, and 
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humans. The findings are essential for establishing the normal baseline condition for 

subsequent work examining experimental manipulations of all three species. 
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Chapter 2  

2 Functional Networks in the Anesthetized Rat Brain 
Revealed by Independent Component Analysis of 
Resting-State fMRI4 

2.1 Introduction 

Resting-state functional magnetic resonance imaging (fMRI) examines temporal 

correlations in the blood-oxygen-level-dependent (BOLD) signal in the absence of a 

specific task. It is believed that the coherence in low-frequency baseline fluctuations 

(LFFs; 0.01–0.1 Hz) arises from neurovascular mechanisms regulating blood flow and is 

presumed to reflect intrinsic functional connectivity of the brain (Biswal, Yetkin, 

Haughton, & Hyde, 1995). The widely separated brain regions identified with resting-

state analysis have also been shown to reveal structural connectivity (Greicius, Supekar, 

Menon, & Dougherty, 2009). Distinct networks serving vision, motor, auditory, 

language, cognitive, and default-mode functions (Beckmann, DeLuca, Devlin, & Smith, 

2005; Hampson, Peterson, Skudlarski, Gatenby, & Gore, 2002; Raichle et al. 2001) have 

been identified in humans. The networks manifest highly organized patterns of coherence 

across mammalian species (Pawela et al. 2008; Vincent et al. 2006, 2007) and persist 

regardless of the depth or type of general anesthetic (Kannurpatti, Biswal, Kim, & Rosen, 

2008; Lu et al. 2007; Vincent et al. 2007; Zhao, Zhao, Zhou, Wu, & Hu, 2008). 

Although the precise physiological origin and mechanism of regulation of LFFs 

have not been fully explained, studies have demonstrated changes in functional networks 

in a variety of human disease states including Alzheimer's disease (Greicius, Srivastava, 

Reiss, & Menon, 2004), autism (Cherkassky, Kana, Keller, & Just, 2006), depression 

(Greicius et al. 2007), epilepsy (Waites, Briellmann. Saling. Abbott, & Jackson, 2006), 

multiple sclerosis (Lowe, Phillips, Lurito, Mattson, Dzemidzic, & Mathews, 2002), and 

                                                
4
 A version of this chapter has been published. Hutchison, R.M., Mirsattari, S.M., Jones, C.K., Gati, J.S., & 

Leung, L.S. (2010). Functional networks in the anesthetized rat brain revealed by independent component 
analysis of resting-state fMRI. J Neurophys, 103, 3398-3406. 



61 

 

schizophrenia (Bluhm et al. 2007). As disruptions in functional connectivity have been 

suggested as possible causes or consequences of pathological states, there is increased 

interest to extend the study of resting-state networks to animal models. Genetic, physical, 

and chemical models exist for a variety of disease states and afford experimental 

manipulations not possible in humans. Through this avenue, we will gain a better 

understanding of the physiological mechanisms of entrainment, regulation, and 

fluctuation of the synchronous hemodynamic signals. 

Initial examinations of physiological fluctuations in BOLD signals of rats have 

revealed substantial inter-hemispheric synchrony across multiple brain areas with 

reproducible, independent, homologous networks observed for the primary 

somatosensory cortex, primary visual cortex, and caudate-putamen (Kannurpatti, Biswal, 

Kim, & Rosen, 2008; Lu et al. 2007; Pawela et al. 2008, 2010; Zhao, Zhao, Zhou, Wu, & 

Hu, 2008). This is in accordance with network connectivity patterns seen in human 

(Cordes et al. 2001) and monkey (Vincent et al. 2007) studies that demonstrated bilateral 

motor, auditory, and visual networks. In humans, these networks have been shown to be 

present at birth (Fransson et al. 2009; Lin et al. 2008). Higher order resting-state 

networks also exhibit high degrees of synchronization between cortical and subcortical 

inter-hemispheric homologues (Beckmann, DeLuca, Devlin, & Smith, 2005). 

Spatial functional connectivity maps of the rat are typically inferred by a cross-

correlation analysis of the voxel-wise fMRI recordings against a reference time course. 

The seed voxel or region is typically chosen from an area found to be active during a 

stimulation paradigm and believed to be of functional relevance (Beckmann, DeLuca, 

Devlin, & Smith, 2005). The technique fundamentally tests a specific hypothesis and the 

functional connectivity map greatly depends on the choice of the seed region and on the 

correlational value used to threshold each map (Cole, Smith, Beckmann, 2010). 

Difficulties with the technique are also apparent when attempting to design a stimulation 

task to elicit robust and localized hemodynamic changes in specialized brain areas. The 

matter is further complicated by the use of anesthesia, typical of most fMRI experiments 

with rodents, which may prevent the necessary motor, visual, or auditory responses. It is 

for these reasons that most investigations have primarily focused on the connectivity of 
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the somatosensory cortices because the latter could be easily identified by the BOLD 

signal increase following electrical paw stimulation in the rat (Zhao, Zhao, Zhou, Wu, & 

Hu, 2008). 

To avoid the constraints of these analytical techniques in the estimation of LFFs, 

hypothesis-independent, exploratory techniques such as ICA have been applied to 

functional data sets (Beckmann, DeLuca, Devlin, & Smith, 2005; Correa, Adali, & 

Calhoun, 2007; Greicius Srivastava, Reiss, & Menon, 2004). ICA is a statistical 

technique that uses a linear model to decompose independent, uncorrelated, and non-

Gaussian datasets into distinct subparts (Vigário, Särelä, Jousmäki, Hämäläinen, & Oja, 

2000). In terms of examining the BOLD signal, ICA is able to identify signal fluctuations 

by virtue of their spatial and temporal profiles without the need to specify an explicit 

model or voxel. The nonoverlapping, temporally coherent functional networks are 

extracted without constraining the temporal domain and are a priori independent 

(McKeown et al. 1998). In the present study, we used ICA to examine the spatiotemporal 

characteristics of the LFFs of anesthetized rats at rest with two different anesthetic 

regimes. Similar to network patterns observed in monkeys and humans, it is hypothesized 

that multiple independent, bilaterally synchronous resting-state networks exist in cortical 

and subcortical areas of the rat brain.  

 

2.2 Methods 

2.2.1 Animal usage and preparation 

A total of 20 male Long-Evans rats (250–350 g body weight) were used. Animals 

were provided with normal food and water ad libitum and subjected to a 12:12 h 

light/dark cycle. All experiments were carried out in accordance with the guidelines 

established by the Canadian Council on Animal Care and approved by the Animal Use 

Committee of the University of Western Ontario. 

In isoflurane animals (n = 10), general anesthesia was induced with 5% isoflurane mixed 

with oxygen, using a calibrated vaporizer (Harvard Apparatus, Holliston, MA). Isoflurane 
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was then maintained at 2% while the animal was being prepared in the stereotaxic frame 

and then lowered to 1% following insertion into the magnet for image acquisition. At 

least 30 min was allowed for the isoflurane level and global hemodynamics to stabilize at 

the 1% concentration, during which shimming and image localization were performed. 

The gaseous mixture was delivered to a nosecone for spontaneous respiration throughout 

the experiment. Ketamine/xylazine animals (n = 10) were initially anesthetized with a 

dose of 80 mg/kg ip ketamine and 10 mg/kg ip xylazine and then maintained with a 

continuous infusion of ketamine (50 mg · kg−1 · h−1 ip) xylazine (6 mg · kg−1 · h−1 ip), 

and saline (0.8 ml · kg−1 · h−1 ip) using a syringe pump (PHD2000, Harvard Apparatus, 

Holliston, MA). Once anesthetized, the rats were secured in a custom-built nylon 

stereotaxic frame (Mirsattari et al. 2005) using ear and bite bars to prevent head motion. 

The rectal temperature was measured with a fiber-optic probe and maintained at ∼37°C 

via a feedback-controlled warm air system (MR compatible small animal monitoring and 

gating system, SA Instruments, Stoney Brook, NY) along with a heated feedback-

controlled, water-circulated heating pad (TP500, Gaymar Industries, Orchard Park, NY). 

Respiration was monitored using a pneumatic pillow (SA Instruments) taped to the chest 

wall of the rat. Heart rate and blood oxygen saturation were measured using an MR 

compatible pulse oximeter (8600V, Nonin Medical, Plymouth, MN) positioned on the 

hindpaw. Physiological parameters were in the normal range (temperature: 36.5–37°C, 

heart rate: 250–370 beat/min, breathing: 60–90 breath/min, oxygen saturation: >95%) 

throughout the duration of the experiment. 

 

2.2.2 MRI acquisition 

All experiments were performed using a Varian DirectDrive imaging console 

(Palo Alto, CA) with a Magnex 31 cm actively shielded 9.4 T horizontal bore magnet 

equipped with an actively shielded gradient set (12 cm ID, SR = 3,000 mT · m−1 · s−1; 

Yarnton, UK). An optimized home-built 1.5 × 2.0 cm linear transmit-receive surface coil 

was positioned proximally to the anterior aspect of the rat's head for imaging. An 

automated shimming algorithm was used to optimize the magnetic field over our imaging 
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volume of interest using RASTAMAP (Klassen & Menon, 2004). Ten or 13 1-mm-thick 

coronal or horizontal slices covering the brain were selected. A fast spin echo (FSE) 

anatomical (effective echo train (TE) = 40 ms, reception time (TR) = 5 s, echo train 

length (ETL) = 4) was acquired with a 256 × 256 matrix and a field of view (FOV) of 

25.6 × 25.6 mm. Functional images were acquired using an echo planar imaging 

sequence (TE = 15 ms, volume acquisition (Vol Acq) time = 1,000 ms, flip angle = 40°), 

with a 64 × 64 matrix, and a FOV of 25.6 × 25.6 mm, corresponding to an in-plane 

spatial resolution of 400 × 400 µm2. For each fMRI run, 300 (1 isoflurane anesthetized 

rat, 3 ketamine/xylazine anesthetized rats) or 600 (9 isoflurane anesthetized rats, 7 

ketamine/xylazine anesthetized rats) images were acquired over 5 or 10 min, 

respectively, while the rat was resting in the scanner. 

 

2.2.3 Image analysis 

Preprocessing steps were carried out in BrainVoyager QX 

(www.BrainVoyager.com). Trilinear three-dimensional (3D) motion correction and 

spatial smoothing using a Gaussian filter (full-width at half-maximum = 1.2 mm) was 

applied to each data set. An eighth-order Butterworth low-pass filter with a cutoff at 0.1 

Hz was implemented in MATLAB (Mathworks, Natick, MA) and applied to all voxel 

time courses on a voxel by voxel basis covering the entire brain (Hampson, Peterson, 

Skudlarski, Gatenby, & Gore, 2002). Following data reduction using principal component 

analysis (PCA) in which >99.5% of the variability in the data were retained, the images 

were subjected to spatial independent component analysis (ICA) using the infomax 

algorithm (Bell & Sejnowski 1995) implemented in the GIFT software package (GIFT, 

2008). Currently, there are no established criteria to guide the selection of an optimal 

number of components for a given data set. Using a similar strategy employed by 

Calhoun et al. (2001), 40 components were chosen for each rat as this preserves most of 

the variance in the data and gives a manageable number of components. The independent 

components were then scaled to empirically derived z-scores by dividing by the SD of the 

original time sequence. The z-scores approximate the temporal correlation between each 

voxel and the associated component where the magnitude of the z-score specifies the 
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strength of the linear relationship (Mannell, Franco, Calhoun, Cañive, Thoma, & Mayer, 

2009). A z-score value of 1 was used as the lower limit threshold of functional 

connectivity. The ICA derived components of each rat were then visually inspected and 

labeled based on the spatial patterns in reference to known anatomical and functional 

locations (Paxinos & Watson, 1986). Components were not regressed against a 

previously defined template, a common technique performed in human ICA 

investigations (Greicius, Srivastava, Reiss, & Menon, 2004). There are currently no 

standardized rat templates available and the creation of the template would require the 

acquisition of a separate dataset that would then have to be manually labeled, negating 

the benefit of the template. 

Functional connectivity was also examined using seed-region analysis in four rats 

(2 from each anesthetic group) to demonstrate that ICA results corroborated traditional 

analysis strategies. Data were preprocessed in the same manner used for ICA. Spherical 

seed regions (0.5 mm radius) were selected in the right medial frontal cortex, parietal 

cortex, hippocampus, caudate-putamen, thalamus, and hypothalamus using a rat atlas 

(Paxinos & Watson 1986) without the use of a functional localizer as no functional 

paradigms were performed. The extracted BOLD time course of each seed region was 

averaged and then cross-correlated with all voxels within the brain to derive a 

corresponding connectivity map, displayed using different thresholds. The analysis was 

implemented using the resting-state fMRI data analysis toolkit (Rest, 2007). 

 

2.3 Results 

Without a priori defined templates or constrained modeling, clearly identifiable 

regions were apparent from visual inspection alone. ICA was able to extract bilateral 

synchronous activity of multiple brain structures in all 20 rats of which 10 rats 

anesthetized with isoflurane and the remaining 10 rats with ketamine/xylazine (methods). 

The neocortex was separated into eight components corresponding to functional brain 

areas. These were the medial and lateral frontal cortex (primary and secondary motor 

areas), parietal cortex (primary somatosensory area), temporoparietal cortex (secondary 
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somatosensory area), medial (visual area) and lateral occipital (auditory) cortex, and the 

posterior and anterior cingulate cortex (Fig. 2.1). The most clearly identifiable subcortical 

areas were the caudate-putamen, hippocampus, thalamus, and hypothalamus (Fig. 2.1). 

The thalamus and hypothalamus were not separated into individual nuclei as the 

resolution, smoothing, and lowered signal-to-noise ratio distal to the position of the 

surface coil prevented accurate identification. Five rats also showed a distinctive 

cerebellar component; however, in 15 rats, the field of view did not encompass a large 

enough proportion of the cerebellum to allow objective comparison or grouping. 
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Figure 2.1. Homologous resting-state networks of representative isoflurane and 
ketamine/xylazine (Ket/Xy) anesthetized rats derived using independent component 
analysis (ICA) of blood-oxygen-level-dependent (BOLD) functional time courses 
overlaid on the respective anatomical images (Paxinos and Watson 1986). Except for 
the hypothalamus, horizontal slices were obtained from 1 rat, anesthetized with isoflurane 
or Ket/Xy, with distance (mm) ventral to bregma shown in the left lower corner. The 
hypothalamus component map was derived from a different rat for each anesthetic, and is 
displayed in a coronal orientation referenced posterior to bregma (mm), to allow better 
anatomical localization. Reprinted with permission from Hutchison, Mirsattari, Jones, 
Gati, & Leung (2010). 
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Table 2.1. Number of rats in isoflurane and ketamine/xylazine anesthesia groups 

that had independent spatial components corresponding to anatomical locations 

(Paxinos & Watson, 1986) in both hemispheres (bilaterally synchronous), or in the 

left or right hemisphere. 

 

Anatomical brain area 
(Functional representation) 
 
 
 

Isoflurane 
(N=10) 

Ketamine/xylazine 
(N=10) 

 Bilat. Left Right Bilat. Left Right 
Medial frontal cortex  
(primary motor area) 10 3 4 10 1 3 

Lateral frontal cortex 
(secondary motor area) 7 3 8 10 3 2 

Parietal cortex  
(primary somatosensory area) 9 9 8 10 6 5 

Temporoparietal cortex  
(secondary somatosensory area) 3 7 9 7 3 3 

Medial occipital cortex  
(primary visual area) 10 8 6 10 5 4 

Lateral occipital cortex 
(primary auditory area) 6 3 4 6 4 4 

Posterior cingulate cortex 10 - - 10 - - 

Anterior cingulate cortex 9 - - 10 - - 

Caudate-Putamen 7 2 2 10 2 2 

Hippocampus 10 4 2 10 2 2 

Thalamus 8 - - 7 - - 

Hypothalamus 5 - - 6 - - 

 

Notes: A single rat may have both bilateral and unilateral components corresponding to a functional 
area. See Table 2 for distribution of components. The posterior cingulate cortex, anterior cingulate 
cortex, thalamus, and hypothalamus were not grouped into left and right hemisphere components 
due to restrictions imposed by the resolution 
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Table 2.2. Distribution of rats (N=20, combining 10 rats under isoflurane and 10 

under ketamine/xylazine anesthetic) that had unilateral and bilateral components 

corresponding to anatomical locations (Paxinos & Watson, 1986).  

Anatomical brain area 

(Functional representation) 

Bilateral and 

no unilateral 

components 

Bilateral  

and one 

unilateral 

component 

Bilateral and 

two 

unilateral 

components 

Two 

unilateral 

components 

One 

unilateral 

component 

No 
component 

 

Medial frontal cortex  

(primary motor area) 
12 (60%) 5 (25%) 3 (15%) 0 (0%) 0 (0%) 0 (0%) 

Lateral frontal cortex  

(secondary motor area) 
7 (35%) 7 (35%) 3 (15%) 1 (5%) 2 (10%) 0 (0%) 

Parietal cortex  

(primary somatosensory area) 
1 (5%) 10 (50%) 8 (40%) 1 (5%) 0 (0%) 0 (0%) 

Temporoparietal cortex  

(secondary somatosensory area) 
4 (20%) 4 (20%) 2 (10%) 3 (15%) 7 (35%) 0 (0%) 

Medial occipital cortex  

(primary visual area) 
6 (30%) 5 (25%) 9 (45%) 0 (0%) 0 (0%) 0 (0%) 

Lateral occipital cortex 

(primary auditory area) 
5 (25%) 6 (30%) 1 (5%) 4 (20%) 1 (5%) 3 (15%) 

Caudate-Putamen 13 (65%) 2 (10%) 2 (10%) 1 (5%) 1 (5%) 1 (5%) 

Hippocampus 11 (55%) 7 (35%) 2 (10%) 0 (0%) 0 (0%) 0 (0%) 

 

 

Notes: n = 20, combining 10 rats under isoflurane and 10 under Ketamine/xylazine anesthetic. Data 
are from Paxinos & Watson (1986). Values in parentheses are percentages. 



70 

 

As presented in Table 2.1, the majority of rats were found to have a corresponding 

bilateral component for each of the identified brain areas. It was also found that some rats 

had one or two separate components for the analogous structure in addition to or in the 

place of the bilateral component (Table 2.2). Network connectivity was present 

regardless of the type of anesthetic and a χ2 test for independence showed there was no 

significant difference between the two groups in terms of the number of rats 

demonstrating each particular anatomically relevant bilateral component [χ2(11) = 2.21, 

P = 0.998]. 

Frequency analysis of the BOLD time courses of components of individual rats 

(Fig. 2.2B) showed power at low frequencies of <0.1 Hz. Time-spectral analysis showed 

frequency peaks and distribution that varied over time (Fig. 2.2C). While the power 

spectrum (and corresponding time function) of each ICA component was distinct in each 

individual rat, averaging the ICA components of the same structure across rats did not 

reveal consistent frequency peaks. The latter may be expected because ICA does not 

separate components based on the frequency of the time course. 

Seed-region analysis revealed synchronized LFFs of the BOLD signal between 

the seed-region and analogous area in the contralateral hemisphere for both cortical and 

subcortical areas in all four rats examined. Functional connectivity maps of the two 

representative rats from each anesthetic group are shown in Fig. 2.3 in which a spherical 

seed was placed in the right medial frontal cortex (MFC; primary motor cortex; Fig. 

2.3A), parietal cortex (primary somatosensory area; SSI; B), hippocampus (Hp; C), 

caudate-putamen (CPu; D), thalamus (Th; E), or hypothalamus (Ht; F). LFF 

synchronization was apparent under ketamine/xylazine (Fig. 2.3, rats 1 and 2) and 

isoflurane (Fig. 2.3, rats 3 and 4) anesthesia. The functional maps showed a variable 

degree of synchronization with other structures and different thresholds were needed to 

display the bilateral hemispheric connectivity. One rat did not have a prominent network 

in the caudate-putamen (Fig. 2.3D, rat 4). 
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Figure 2.2. Frequency analysis of the hippocampus component isolated by 
independent component analysis in a representative rat under isoflurane anesthesia, 
showing spatial connectivity map (A), time course (B), time-frequency analysis of 
the time course (C), and amplitude spectrum in arbitrary units (a.u.) of the entire 
time course (D). Reprinted with permission from Hutchison, Mirsattari, Jones, Gati, & 
Leung (2010). 
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Figure 2.3. Resting-state connectivity of representative ketamine/xylazine (Ket/Xy; 
rats 1 and 2) and isoflurane (rats 3 and 4) anesthetized rats derived using seed-
region analysis. Cross-correlation coefficient (CCC) maps were calculated by correlating 
the time course of all voxels with the average time course of a spherical seed region (0.5 
mm radius) in the medial frontal cortex (MFC; A), primary somatosensory cortex (SSI; 
B), hippocampus (Hp; C), caudate-putamen (CPu; D), thalamus (Th; E), or hypothalamus 
(Ht; F). Different CCC thresholds were used for each image, as indicated by the color bar 
below each image. Coronal images are displayed and distance (mm) from bregma is 
shown at the right lower corner of each image (positive anterior, negative posterior to 
bregma). Reprinted with permission from Hutchison, Mirsattari, Jones, Gati, & Leung 
(2010). 
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2.4 Discussion 

Functional resting-state networks in the rodent brain have been inferred based on 

synchronous fluctuations of the hemodynamic signals investigated using ICA. With this 

technique, the entire brain was probed for functional network connectivity without 

requiring seed regions or the stimulus tasks necessary to activate brain areas. 

Spontaneous BOLD resting-state fluctuations were found to be bilaterally synchronous 

across multiple brain structures including the hippocampus, hypothalamus, thalamus, 

cingulate cortices, auditory cortices, and sensorimotor cortical areas. Such a large number 

of independent networks (≤12 coexisting in a particular animal) have not been reported 

before, and in particular, specific, homologous functional networks have not been 

reported for the auditory cortices, secondary somatosensory and motor cortices, posterior 

and anterior cortices, hippocampus, thalamus and hypothalamus, as shown in a summary 

of the literature (Table 2.3). Connectivity between some of these areas has been observed 

in more diffuse, possibly higher-order visual and sensorimotor networks (Pawela et al. 

2008) although these do not represent independent networks. 
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Table 2.3. Previously identified resting-state networks of the rat corresponding to 

anatomical locations (Paxinos & Watson, 1986).  

 

Reference Anesthesia 
Seed-region 

selection 
Identified networks Other findings 

Kannurpatti 

et al., 2008 

Isoflurane 

1.2% Stereotaxic atlas bilateral SI (sparse) 

Blood extraction ↑ 

bilateral connectivity in 

cortex and Th 

Zhao et al., 

2007 

Medetomidine 

0.1 mg/kg/h Paw stimulation 

bilateral SI 

bilateral CPu 

Magnitude of LFFs 

similar to humans 

Lu et al., 

2007 

α-chloralose 

30, 70, 100 

mg/kg/h 
Paw stimulation bilateral SI 

↓ bilateral connectivity  

with ↑ dose 

Pawela et al., 

2008 

Medetomidine 

0.1 mg/kg/h 
Nerve stimulation 
Light stimulation 

bilateral MI/MII, SI/SII, & Th 

bilateral VI/VII, SC, & Th  

RPCC matrices show 

high correlations 

between many sensory/ 

motor areas 

Majeed et al., 

2009 

α-chloralose 

27 mg/kg/h Paw stimulation 

bilateral SI/SII 

bilateral CPu 

2 frequency peaks 

Dynamic LFFs 

Pawela et al., 

2010 

Medetomidine 

0.1 mg/kg/h 
Nerve stimulation 
Light stimulation 

bilateral MI/MII, SI/SII, & Th 

bilateral VI/VII, SC, & Th 

Network changes 

following limb 

deafferentation 

Notes: Individual thalamic nuclei have been grouped into the term thalamus as there is diffuse functional 

connectivity between these regions. CPu, caudate-putamen; LFFs, Low frequency fluctuations; MI, Primary motor 

cortex; MII, Secondary motor cortex; RPCC, Regional pair-wise correlation coefficient; SC, Superior colliculus; SI, 

Primary Somatosensory cortex; SII, Secondary somatosensory cortex; Th, Thalamus; VI, Primary visual cortex; 

VII, Secondary visual cortex. 
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The functional connectivity revealed by ICA could also be shown using seed-

region analysis. However, the size and placement of the seed within a brain structure was 

subjective, and the resulting functional connectivity maps were much more diffuse 

despite the use of variable thresholds. ICA was better able to identify bilateral networks 

among the noise without the assumption of seed regions or functional paradigms. 

 

2.4.1 Connectivity patterns 

The brain relies on constant inter-hemispheric communication for coherent 

integration of cognition and behavior (Compton, 2002). It has been shown that 

hemispheric interaction is critical for a unified representation of world (Houzel, 

Carvalho, & Lent, 2002), coordinating movement (Gerloff & Andres, 2002), attentional 

processing (Banich, 1998), pooling processing resources (Liederman, 1998), and parallel 

processing (Compton, 2002) among others. Bilaterally synchronous BOLD fluctuations 

have been previously observed in the motor cortex (Cordes et al. 2000), visual cortex, 

thalamus, and hippocampus of humans (Stein, Moritz, Quigley, Cordes, Haughton, & 

Meyerand, 2000) and in the oculomotor and somatomotor areas of monkeys (Vincent et 

al. 2007). We report that the analogous brain areas of the rat also show bilaterally 

synchronous hemodynamic fluctuations. This suggests that interhemispheric 

synchronization of LFFs is phylogenetically preserved across all mammalian species and 

may underlie rudimentary brain functioning. 

The observed bilateral synchrony of cortical and subcortical BOLD signals 

suggests inter-hemispheric neuronal connections. In the neocortex, the corpus callosum 

serves to interconnect most areas, while the smaller anterior commissure serves to 

connect the temporal neocortex. Studies of functional connectivity in patients with 

agenesis (Quigley et al. 2003) or resection (Johnston et al. 2008) of the corpus callosum 

have shown significantly decreased functional connectivity between the neocortices. It is 

therefore plausible that the observed bilateral synchrony of BOLD signals is a result of 

commissural connections between the two brain regions, but it remains to be confirmed 
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for subcortical structures with weak commissural connections (e.g., caudate-putamen, 

hypothalamus). 

Bilateral as well as unilateral components for the same functional area were 

observed in a number of rats from both anesthesia groups (Table 2). Using a model order 

of 40 components could have overestimated the number of networks in some rats, 

dividing the bilateral network of a functional area into two unilateral components. 

Previous human studies using ICA have also reported that functionally connected regions 

can split into separate components at high model order dimensionalities (Abou-Elseoud, 

Starck, Remes, Nikkinen, Tervonen, Kiviniemi, 2010; Smith et al. 2009; van de Ven, 

Formisano, Prvulovic, Roeder, Linden, 2004). It has been proposed that the stable 

components represent less connected nodes, while branching ones function as network 

connector hubs (Abou-Elseoud, Starck, Remes, Nikkinen, Tervonen, Kiviniemi, 2010) 

though there is currently little quantitative evidence to support this. 

The typical result in the present study was the presence of both bi- and unilateral 

components in the same animal. We believe that unilateral components represent the 

local connectivity, which is both independent and concurrent with the interhemispheric 

connectivity of each functional area. The ability of homologous brain areas to operate 

both uni- and bilaterally has been documented in behavioral and electrophysiological 

literature (Banich & Belger 1990; MacDonald, Brett, & Barth, 1996; Nikouline, 

Linkenkaer-Hansen, Huttunen, & Ilmoniemi, 2001). As an example, the left paw of the 

rat can operate independently of the right; however, both paws may also act in unison 

during a coordinated movement. Interestingly, Pawela and colleagues (2010) have shown 

significant disruption of sensorimotor inter-hemispheric LFFs following limb 

deafferentation while unilateral (intra-hemispheric) connectivity was preserved. 

Unilateral components may not be observed in animals with only a bilateral network 

component as a result of ICA underestimation or a high degree of temporal pattern 

similarity between local and inter-hemispheric networks. ICA would then be extracting a 

composite of both underlying processes within the same network component (Seifritz et 

al. 2002). 
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Most networks for both groups were spatially symmetric as seen in Fig. 2.1. There 

are, however, networks in which the spatial extent of the clusters can be larger in one 

hemisphere (Fig. 2.1, lateral occipital cortex, isoflurane anesthesia). The “dominant” 

(increased ipsilateral cluster size) hemisphere varied within anesthesia groups and within 

the same rat for different networks (see Fig 2.4.). This is commonly reported in seed-

region investigations of humans, monkeys, and rats (Cordes et al. 2001; Lu et al. 2007; 

Vincent et al. 2007) in which placement of the seed predicts the larger cluster in that 

hemisphere. Previous investigations of resting-state networks using single-subject ICA 

have also extracted asymmetric functional networks (Fransson et al. 2009). This effect 

may not be as apparent in human studies using group ICA as individual hemispheric 

differences may be averaged out. Currently, the functional significance of this property is 

unknown but may reflect hemispheric dominance. 
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Figure 2.4. Spatially asymmetrical cortical resting-state networks derived using 
independent component analysis of BOLD functional time courses overlaid on the 
respective anatomical images (Paxinos and Watson, 1986). Left or right network 
dominance (defined as the hemisphere with the greater voxel spatial extent) in four rats is 
shown to vary within animals (columns), within networks (rows), and within anesthesia 
groups (isoflurane anesthetized animal in the two left columns; ketamine/xylazine 
anesthetized animals in the two right columns). The distance of the slice (mm) ventral to 
bregma is shown in the left lower corner. Reprinted with permission from Hutchison, 
Mirsattari, Jones, Gati, & Leung (2010). 
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2.4.2 Anesthesia 

The present study represents the first report of LFFs and resting-state network 

connectivity in the rat under ketamine/xylazine anesthesia. Ketamine, a noncompetitive 

N-methyl-d-aspartate (NMDA) receptor antagonist (Duncan, Miyamoto, Leipzig, & 

Lieberman, 1999) and xylazine, an α-2-adrenergic receptor agonist (Greene & Thurmon, 

1998), are commonly used for animal anesthesia and have been increasingly used for 

imaging experiments (Hildebrandt, Su, & Weber, 2008; Wood, Klide, Pickup, & Kundel, 

2001). Use of this anesthetic regime in BOLD-fMRI has been limited to the study of 

nociceptive stimuli (Shih et al. 2008), electrically induced partial limbic seizures (Englot 

Modi, Mishra, DeSalvo, Hyder, & Blumenfeld, 2009), and spinal cord investigations of 

the cat (Cohen-Adad et al. 2009). The present study confirms that the ketamine/xylazine 

combination is useful for the study of resting networks as substantial inter-hemispheric 

communication persisted over extended periods of time (e.g., during the 10-min scan). Its 

usefulness in task-elicited BOLD responses remains to be evaluated. 

Isoflurane is a vasodilator (Farber, Harkin, Niedfeldt, Hudetz, Kampine, & 

Schmeling, 1997) that can alter cerebrovascular activity and has been shown to have 

dose-dependent effects on task-elicited BOLD responses in the rat cortex (Masamoto, 

Fukuda, Vazquez, & Kim, 2009). However, Vincent et al. (2007) reported that task-

independent, coherent spontaneous BOLD fluctuations persisted in the monkey under 

increasing levels of isoflurane anesthesia though connectivity was decreased. A similar 

observation was also made in rats under α-chloralose (Lu et al. 2007). Using an 

isoflurane dose (1%) that approached the minimum required for maintaining immobility 

(Masamoto, Fukuda, Vazquez, & Kim, 2009), the present study revealed more robust 

network activity than a previous report on isoflurane-anesthetized rats (Kannurpatti, 

Biswal, Kim, & Rosen, 2008). However, there was no apparent difference in the resting-

state LFFs under ketamine/xylazine and isoflurane anesthesia. Thus we extend the notion 

that resting-state LFFs persist under general anesthetics with different mechanisms of 

action, such as medetomidine (Pawela et al. 2008; Zhao, Zhao, Zhou, Wu, & Hu, 2008), 

α-chloralose (Lu et al. 2007; Majeed, Magnuson, & Keilholz, 2009), isoflurane 
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(Kannurpatti, Biswal, Kim, & Rosen, 2008), and now ketamine/xylazine. Taken together, 

we believe that resting hemodynamic fluctuations represent a ubiquitous intrinsic 

property of functional brain organization. 

 

2.4.3 Physiological fluctuations 

Physiological fluctuations due to respiration and cardiac movements can alias into 

the low-frequency range, which is used for connectivity mapping (Biswal et al. 1996; 

Fukunaga et al. 2006). Our BOLD signal sampling rate of 1 Hz could allow aliasing of 

the rat breathing (∼1 Hz) and heart (4–6 Hz) rate. A higher sampling rate could prevent 

aliasing, but it would greatly reduce image resolution and the number of slices acquired. 

The result that ICA components were found in localized areas, or selectively in 

homologous areas of both hemispheres, cannot be attributed to physiological fluctuations. 

The temporal patterns and power spectra of the different network components were 

distinct and not indicative of a common source. In addition, signals that share a single 

source, such as respiration will be isolated following the ICA processing. As shown by 

De Luca and colleagues (2006) in human studies and argued by Zhao et al. (2008) for 

rats, a substantial contribution of autoregulation of the cerebral vasculature to the 

observed network connectivity is unlikely. 

 

2.5 Conclusions 

Using ICA of the BOLD signals, we inferred that the rat brain is composed of 

multiple, independent functional networks that involve cortical and subcortical structures. 

The functional connectivity among multiple structures was revealed in a single scanning 

session without the use of a motor task or a sensory stimulus. This will facilitate future 

studies of the mechanisms and function of the resting-state under physiological and 

pathological conditions. 
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Chapter 3  

3 Resting-state networks in the macaque at 7 T5 

3.1 Introduction 

The mammalian brain is composed of functional networks operating at different 

spatial and temporal scales — characterized by patterns of interconnections linking 

sensory, motor, and cognitive systems (Felleman & Van Essen, 1991; Young, 1993; 

Friston, 2002). Neuroimaging has afforded unparalleled access in the exploration of the 

topology of these systems, and has revealed that neural processing relies on the dynamic 

integration of cortical and subcortical areas within large-scale and distributed brain 

networks (Sporns, Tononi, & Kötter, 2005; Guye, Bartolomei, & Ranjeva, 2008). 

Network activity is typically assessed using functional connectivity measures. This is an 

examination of temporal correlations that exist between distinct brain areas (Friston, 

1994) connected directly or indirectly by long-range cortical and subcortical polysynaptic 

pathways (Hagmann et al., 2008). Using this definition, functional connectivity has been 

derived using spontaneous blood oxygenation-level-dependent (BOLD) fluctuations 

measured by functional magnetic resonance imaging (fMRI; Biswal, Yetkin, Haughton, 

& Hyde, 1995). Correlation of low frequency fluctuations (LFFs; 0.01–0.1 Hz) of the 

BOLD signal acquired in the absence of a task has been shown to reflect anatomical 

connectivity (Vincent et al., 2007; Honey et al., 2009; Greicius, Supekar, Menon, & 

Dougherty, 2009) and presumed to be a hemodynamic manifestation of functional 

connectivity between slow fluctuations in neuronal activity (Fox & Raichle, 2007; 

Shmuel & Leopold, 2008). 

Investigations of functional connectivity through the evaluation of LFF synchrony 

during rest have demonstrated that the human brain is spatially organized into coherent 

patterns characterized as networks. These robust and reproducible resting-state networks 

                                                
5
 A version of this chapter has been published. Hutchison, R.M., Leung, L.S., Mirsattari, S.M., Gati, J.S., 

Menon, R.S., & Everling S. (2011a). Resting-state networks in the macaque at 7 T. NeuroImage 56, 1546-
1555.  
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(RSNs) have been reported for visual, motor, auditory, language, memory, executive, and 

attention systems, as well as the default-mode network (Cordes et al., 2000; Raichle, 

MacLeod, Snyder, Powers, Gusnard, & Shulman; Hampson, Peterson, Skudlarski, 

Gatenby, & Gore, 2002; Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 

2006). RSNs parallel previously identified task-based networks and spatio-temporal 

network synchronization is preserved during sedation and anesthesia in humans, 

monkeys, and rats (Kiviniemi et al., 2005; Vincent et al., 2007; Hutchison, Mirsattari, 

Jones, Gati, & Leung, 2010). RSNs can be identified through a seed-region analysis in 

which spatial functional connectivity maps are inferred by a cross-correlation analysis of 

the voxel-wise fMRI recordings against a reference time-course. The shortcoming of this 

technique is that it tests a specific hypothesis and is limited to those areas that are 

selected as seed-regions (Cole, Smith, & Beckmann, 2010). Owing to the constraints of 

seed-region analysis, exploratory techniques such as independent component analysis 

(ICA) are now frequently applied to human functional data sets, where they have 

revealed RSNs that had not been previously shown with seed-region techniques 

(Beckmann, DeLuca, Devlin, & Smith, 2005; Smith et al., 2009). 

Although their meaning is not fully understood, changes in functional RSNs have 

been recently reported in several psychiatric and developmental disorders including 

depression, attention deficit-hyperactivity disorder, schizophrenia, Alzheimer's disease, 

epilepsy, and multiple sclerosis (Auer, 2008; Greicius, 2008). Given the extraordinary 

potential for RSNs as possible diagnostic or prognostic markers, it is crucial to 

understand the physiological mechanisms of fluctuation, regulation, and entrainment of 

LFFs and the RSNs that are revealed through their synchronization. 

Nonhuman primates and in particular macaque monkeys have been used as 

surrogates for the study of human brain function for several decades and might therefore 

represent an ideal animal model for the study of RSNs. Although macaque and human 

brains share a high degree of similarity in terms of cytoarchitecture (Petrides & Pandya; 

Petrides & Pandya, 2002a; Ongür, Ferry, & Price, 2003), functional organization (Rees, 

Friston, & Koch, 2000; Koyama, Hasegawa, Osada, Adachi, Nakahara, & Miyashita, 

2004; Petrides, Cadoret, & Mackey, 2005; Nakahara, Adachi, Osada, & Miyashita, 
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 2007), and anatomical connections (Croxson et al., 2005; Kelly et al., 2010), there 

also exist structural (Preuss, 2000; Rilling, 2006), morphological (Buxhoeveden, Switala, 

Roy, Litaker, & Casanova, 2001), and functional (Orban, Van Essen, & Vanduffel, 2004; 

Preuss, 2004) differences between the brains of these two primate species (Passingham, 

2009). 

While a few recent studies have revealed homologous RSNs between human and 

nonhuman primates, these studies either utilized seed-region analysis (Vincent et al., 

2007; Vincent, Kahn, Van Essen, & Buckner, 2010; Margulies et al., 2009) or ICA in 

only two animals (Moeller, Nallasamy, Tsao, & Freiwald, 2009). Here, we present a 

comprehensive evaluation of macaque RSNs at 7 T using group ICA and an analysis 

methodology that is very similar to what has been used in humans. The results show 

striking similarity of macaque RSNs to previously described human RSNs. 

 

3.2 Methods 

3.2.1 Animal preparation 

Data was obtained from 6 macaque monkeys (Macaca fascicularis; 2 male, 4 

female) whose weights ranged from 3.6 kg to 5.3 kg (mean +/− SD = 4.58 +/− 1.4 kg). 

Surgical and experimental procedures were carried out in accordance with the Canadian 

Council of Animal Care policy on the use of laboratory animals and approved by the 

Animal Use Subcommittee of the University of Western Ontario Council on Animal 

Care. 

Animals were initially prepared for imaging by undergoing a surgical procedure 

to place an MRI-compatible, custom-built acrylic head post that served to restrain the 

head during image acquisition. The post was anchored to the skull with 6 mm ceramic 

bone screws (Thomas Recording, Giessen, Germany) and dental acrylic. 

On the day of scanning, anesthesia was first induced by intramuscular injections 

of atropine (0.4 mg/kg), ipratropium (0.025 mg/kg), and ketamine hydrochloride (7.5 
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mg/kg). Animals were then administered 3 ml of propofol (10 mg/ml) intravenously via 

the saphenous vein. Following oral intubation with an endotracheal tube, anesthesia was 

maintained using 1.5% isoflurane mixed with oxygen. Animals were spontaneously 

breathing throughout the duration of the experiment. The animal was placed in a custom-

built primate chair containing fixation for head immobilization and an integrated custom 

RF coil, and inserted into the bore for image acquisition. The isoflurane level was then 

lowered to 1% for imaging experiments. Rectal temperature via a fiber-optic temperature 

probe (FISO, Quebec City, QC), respiration via bellows (Siemens Corp., Union, NJ), and 

end-tidal CO2 via capnometer (Covidien-Nellcor, Boulder, CO) were continuously 

monitored. Physiological parameters were in the normal range (temperature: 36.5 °C; 

breathing: 25–30 breaths/min; end-tidal CO2: 24–28 mm Hg) throughout the duration of 

the experiment. Warmth was maintained using a heating disk (Snugglesafe, 

Littlehampton, West Sussex, UK) and thermal insulation. 

Anesthesia was utilized in this study to eliminate motion effects, physiological 

stress, and training requirements. Although isoflurane has been shown to have vasodilator 

properties (Farber, Harkin, Niedfeldt, Hudetz, Kampine, & Schmeling, 1997) altering 

cerebrovascular activity in a dose-dependent manner (Vincent et al., 2007), synchronous 

spontaneous BOLD fluctuations have been previously reported using an isoflurane 

regime in both monkeys (Vincent et al., 2007) and rats (Hutchison, Mirsattari, Jones, 

Gati, & Leung, 2010). However, it is still likely that anesthesia can affect RSNs. 

 

3.2.2 Data acquisition 

All data were acquired on an actively shielded 7 Tesla 68 cm horizontal bore 

human head scanner with a DirectDrive console (Varian, Yarnton, UK; Walnut Creek, 

CA) and a Siemens AC84 gradient sub-system (Erlangen, Germany) operating at a slew 

rate of 350 mT/m/s. An in-house designed and manufactured conformal 5 channel 

transceive primate head RF coil was used for all experiments. Magnetic field 

optimization (B0 shimming) was performed using an automated, three-dimensional 

mapping procedure over the specific imaging volume of interest. For each monkey, 2 
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runs of 300 continuous EPI functional volumes (TR = 2000 ms; TE = 16 ms; flip angle = 

70°, slices = 30, matrix = 72 × 72; FOV = 96 × 96 mm; acquisition voxel size = 1.3 × 1.3 

× 1.5 mm) were acquired. The total acquisition time of each scan was 10 min. EPI images 

were acquired with GRAPPA at an acceleration factor of 2. Every image was corrected 

for physiological fluctuations using navigator-echo-correction. A high-resolution T2-

weighted anatomical reference volume was acquired along the same orientation as the 

functional images using a fast spin echo acquisition scheme (TR = 5000 ms; TE = 38.6 

ms; echo train length = 5, effective echo = 3, slices = 30, matrix = 256 × 250; FOV = 96 

× 96 mm; acquisition voxel size = 375 µm × 384 µm × 1.5 mm). T2 imaging using fast 

spin echo, as compared to gradient echo based imaging such as T1-weighted MP-RAGE, 

reduced the amount of image distortion caused by skull implants such as the ceramic 

bone screws and plastic head post. 

 

3.2.3 Image preprocessing 

All preprocessing was implemented using the FSL software package 

(http://www.fmrib.ox.ac.uk) and included motion correction (six parameter affine 

transformation), brain extraction, spatial smoothing (FWHM = 3 mm), high-pass 

temporal filtering (Gaussian-weighted least-squares straight line fitting with sigma = 100 

s), low-pass temporal filtering (HWHM = 2.8 s, Gaussian filter), and normalization (12 

DOF linear affine transformation implemented in FLIRT) to the F99 atlas template (Van 

Essen, 2004; see 

http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). 

 

3.2.4 Group independent component analysis 

Group ICA, unlike single-subject ICA, allows inferences to be made at the group 

level. When examining subjects individually, it is difficult to compare components since 

they are not ordered and different components may be revealed in each subject. Entering 

all subjects into an ICA analysis and estimating one set of components has the advantage 
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of ordering the components of different subjects in the same way. This produces a single 

set of “group” components that can then be interpreted. Additionally, weak sources with 

different characteristics across subjects (i.e., noise) will be suppressed allowing a more 

accurate reflection of population dynamics. 

Group ICA was conducted using the GIFT software package (Calhoun, Adali, 

Pearlson, Pekar, 2001; http://icatb.sourceforge.net). Data from both runs of all animals 

were concatenated, and the temporal dimension of this aggregated data set was reduced 

by means of principal component analysis (PCA). This was followed by spatial 

component estimation using the Infomax algorithm. Component time-courses and spatial 

maps for each animal were then back-reconstructed, using the aggregated components 

and the results from the data reduction step (Jafri, Pearlson, Stevens, & Calhoun, 2008; 

Calhoun, Adali, Pearlson, Pekar, 2001). Because ICA is a stochastic estimation process, 

the final component maps can vary depending on the initial algorithm conditions. To 

quantify the reliability of the decomposition, ICA was reiterated 20 times using the 

ICASSO toolbox (Himberg, Hyvarinen, Esposito, 2004). ICASSO represents each of the 

estimated components for each iteration as a point in the signal space. It then returns a 

stability index of the estimate cluster computed as the difference between the average 

intra- and inter-cluster similarities. In the ideal case, the repeated estimates are 

concentrated in compact and close-to-orthogonal clusters resulting in an index of all 

estimate-clusters that approaches one. 

There are currently no well-established criteria to guide the selection of an 

optimal number of independent components (ICs) for a given data set (Cole, Smith, & 

Beckmann, 2010). The model order or dimension estimate defines the number of 

components that the algorithm will extract and in that regard represents a prediction 

about the number of underlying sources in the data. If the model order is increased, a 

greater number of networks will be found accounting for the data in a more detailed way, 

albeit causing networks to branch into smaller sub-networks (Smith et al., 2009; Abou-

Elseoud, Starck, Remes, Nikkinen, Tervonen, & Kiviniemi, 2010). One proposed method 

uses the minimum description length criterion for dimension estimation (Jafri, Pearlson, 

Stevens, & Calhoun, 2008; Li, Adali, & Calhoun, 2007); however when applied to our 
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data set, this technique resulted in an estimation of 253 ICs. Instead, 20 components were 

chosen, as this gave a manageable number of components and approximated model 

orders commonly used in human studies large-scale brain networks (Smith et al., 2009; 

Abou-Elseoud, Starck, Remes, Nikkinen, Tervonen, & Kiviniemi, 2010; Calhoun, Adali, 

Pearlson, & Pekar, 2001; Demirci et al., 2009). 

The mean group ICs were then scaled to empirically derived z-scores by dividing 

by the standard deviation of the original time-course. The z-scores approximate the 

temporal correlation between each voxel and the associated component where the 

magnitude of the z-score specifies the strength of the linear relationship. A negative z-

score indicates voxels in which the BOLD signals are modulated opposite to that of the 

IC time-course. A z-score value of +/−1 was used as the lower limit threshold of 

functional connectivity. 

 

3.2.5 RSN identification and visualization 

The ICA derived components were visually inspected and labeled based on the 

activation patterns in reference to known anatomical and functional locations. 

Classification of the components in terms of RSNs was performed by comparison with 

known macaque functional networks and previously identified RSNs from ICA studies in 

humans (Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Smith et 

al., 2009). In addition to identifying spatially independent networks, ICA is able to parse 

out noise due to physiological fluctuations, motion, and hardware artifacts from the 

original source data (Thomas, Harshman, & Menon, 2002; Liao, McKeown, & Krolik, 

2006; Perlbarg, Bellec, Anton, Pélégrini-Issac, Doyon, & Benali, 2007). Components 

with high spatial correspondence to cerebrospinal spinal fluid (see Fig. 3.1) or with low 

correlation to gray matter, were discarded. 

Group data were projected from volume data to the F99 cortical surface using the 

CARET (http://www.nitrc.org/projects/caret) enclosed-voxel method. 
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Figure 3.1. Cerebrospinal fluid related artifact decomposed from resting-
state functional data using independent component analysis. Overlaid color 
maps represent thresholded z-scores displayed on the MR image of the F99 atlas 
(Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). 
Numerical values indicate the distance (mm) from the anterior commissure. 
Reprinted with permission from Hutchison, Leung, Mirsattari, Gati, Menon, & 
Everling (2011). 
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3.2.6 Single-subject ICA 

Single-subject ICA is better suited to reveal individual features of resting-state 

connectivity as subtle differences between subjects may get lost in an ICA of a group 

data set. To examine individual subject maps and allow comparison with a previously 

published report (Moeller, Nallasamy, Tsao, & Freiwald, 2009), single subject-ICA was 

conducted using the same parameters as the group-ICA. The unthresholded group-ICA 

derived networks were then used as templates to order the component maps from the 

individual ICA by calculating the spatial correlation coefficient of the unthresholded 

individual maps. 

 

3.2.7 Functional network connectivity 

Spatial ICA maximizes the statistical independence in the spatial domain, though 

the components are not temporally constrained and ICs can exhibit considerable temporal 

correlations (Calhoun, Adali, Pekar, & Pearlson, 2003). The temporal dependencies are 

significant, albeit not as high as those between regions within an IC (Jafri et al., 2008). 

Functional network connectivity (FNC) analysis examines these temporal dependencies 

among ICs to establish the functional connectivity among the large-scale networks and 

has been shown to provide additional information regarding macroscopic brain 

organization (Jafri, Pearlson, Stevens, & Calhoun, 2008; Demirci et al., 2009) FNC 

analysis was conducted using the FNC software package 

(http://mialab.mrn.org/software/) using analysis steps described previously (Jafri et al., 

2008). One-sample Student's t-tests were used to test statistically significant maximal 

lagged correlation (+/−3 s) combinations from the 55 possible combinations (p < 0.05, 

corrected for multiple comparisons). 

 

3.3 Results 

3.3.1 Resting-state networks 
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Group-ICA successfully decomposed the resting-state functional data of 6 

monkeys into 20 independent components. ICASSO returned a stability index for each 

estimate-cluster that approached 1 (mean +/− SD = 0.980 +/− 0.006), indicating that the 

components are concentrated in compact and close-to-orthogonal clusters and highly 

consistent across multiple ICA runs. Eleven components were found to have a high 

correspondence with gray matter as well as showing network characteristics (i.e. spatial 

maps containing more than one functional area) and were thereby deemed to be 

physiologically relevant. The spatial maps of the RSNs obtained with ICA analysis are 

illustrated in Fig. 3.2 (for RSN maps displayed on a flattened cortex see Fig. 3.3). The 

components accounted for 59.81% of the data's variance. The degree of cortical coverage 

is illustrated in Fig. 3.4. Despite inclusion of the entire brain, components were primarily 

restricted to cortical areas. Therefore we focus on cortical connectivity in this study. On 

the basis of our classification results, the 11 RSNs can be described as follows: 
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Figure 3.2. Cortical representation of eleven resting-state networks (RSNs) 
identified by independent component analysis of fMRI data acquired from 
isoflurane-anesthetized macaque monkeys (N=6). Overlaid color maps represent 
thresholded z-scores. All images have been normalized to the space of the F99 
template (Van Essen, 2004; see http://sumsdb.wustl.edu/sums/macaquemore.do). For 
each RSN, the left images depict lateral and medial views of left hemisphere, the 
center images depict the dorsal view of both hemispheres, and the right images depict 
the lateral and medial views of right hemisphere. Potential functional roles of each 
network are discussed in the text. Reprinted with permission from Hutchison, Leung, 
Mirsattari, Gati, Menon, & Everling (2011). 
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Figure 3.3. The eleven resting-state networks (RSNs) presented in Fig. 3.2 projected 
onto a flattened brain. RSNs were identified by group independent component 
analysis of fMRI data from six isoflurane-anesthetized macaque monkeys. Overlaid 
color maps represent thresholded z-scores. All images have been normalized to the space 
of the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and 
right images correspond to the left and right hemispheres, respectively. Sulci and color bar 
are shown in the bottom right quadrant. as, arcuate sulcus; cas, calcarine sulcus; cis, 
cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, 
lateral orbital sulcus; ls, lingual sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; 
sts, superior temporal sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. Reprinted 
with permission from Hutchison, Leung, Mirsattari, Gati, Menon, & Everling (2011). 
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• RSN A (precentral–temporal): The RSN included extended bilateral areas of the ventral 

precentral gyrus, corresponding to ventral premotor areas F4 and F5, activation in the 

inferior ramus of the arcuate sulcus, the precentral opercular cortex, primary and 

secondary somatosensory cortex, and insular cortex. In addition, connectivity was 

observed with the auditory cortex. The network included areas that correspond to the 

ventral motor system thought to play an important role in understanding action and 

visuomotor control of grasping and also included areas underlying the control of mouth 

and tongue ([Nelissen et al., 2005], [Joly et al., 2009] and [Phillips and Porter, 1977]). 

 

• RSN B (fronto-parietal): Bilateral connectivity was found in the anterior bank, fundus, 

and posterior bank of the inferior arm of the arcuate sulcus. The anterior extent of this 

region corresponds to the location of the frontal eye fields (Bruce and Goldberg, 1985). 

Connectivity was found in the ventral prefrontal cortex and dorsal premotor cortex. 

Further network connectivity was found in area 3B in the dorsal central sulcus fundus and 

in both banks of the intraparietal sulcus. In addition, the right hemisphere showed 

positive correlation of area 6, corresponding to the supplementary motor area or possibly 

the supplementary eye fields (Schlag and Schlag-Rey, 1987). The network includes brain 

areas associated with the oculomotor system (also referred to as the dorsal attention 

network) responsible for goal-oriented saccadic eye movements (Johnston and Everling, 

2008) and mediating goal-directed top-down processing (Noudoost et al., 2010). The 

functional network has been previously reported in eye movement tasks ([Baker et al., 

2006] and Ford et al., 2009]) and resting-state analysis (Vincent et al., 2007) of the 

macaque. 

 

• RSN C (posterior-parietal): The network encompassed the posterior cingulate/precuneus 

cortex, bilateral areas PG and PE of the parietal cortex, and visual areas V2 and V3. In 

addition, this network contained connectivity patterns in the dorsolateral prefrontal cortex 

and in the dorsal premotor cortex in the left hemisphere. The brain areas include areas 

found in the default-mode network (DMN) areas that are deactivated during attention-
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demanding cognitive tasks and in humans has been suggested to support higher-order 

mental faculties (Raichle et al., 2001). 

 

• RSN D (occipito-temporal): Network areas included bilateral area TO, V4, TEO, and 

the arcuate sulcus. Bilateral area 29 and Brodmann area 10 (left hemisphere) were also 

functionally connected. Previous studies have shown these temporal lobe areas are 

critical for higher-order visual processing (Tsao et al., 2003). 

 

• RSN E (frontal): This RSN encompassed bilateral regions in several prefrontal areas, 

including the anterior bank of the arcuate sulcus, corresponding to the frontal eye fields, 

the upper ramus of the arcuate sulcus, the posterior portion of the principal sulcus, as well 

as the dorsal bank of the principal sulcus. In addition, LFF synchronization was also 

found in area 9, the premotor cortex and the anterior cingulate cortex. These 

frontal/prefrontal areas have been shown to be components of the executive system 

suggested to provide bias signals to other areas of the brain in order to implement 

cognitive control (Miller and Cohen, 2001). 

 

• RSN F (superior-temporal): A network encompassing the auditory belt, parabelt, and 

bilateral area 22 on the superior temporal gyrus. Anti-correlated areas were found in the 

left principal sulcus and in the left arcuate sulcus. The network pattern resembles the 

mean functional activity resulting from the presentation of multiple sounds categories in a 

previous task-based fMRI study of the awake monkey (Petkov et al., 2008) and is likely 

responsible for acoustic processing and interpretation (Rauschecker and Scott, 2009). 

 

• RSN G (cingulo-insular): A network of areas including bilateral regions in the insular 

cortex, the anterior cingulate cortex area 24a/b, and the orbitofrontal cortex, area 14. 
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These areas have been associated with the reward system involved in the regulation and 

control of behavior (Kringelbach, 2005). 

 

• RSN H (paracentral): A network reflective of the dorsal motor system involved in the 

control of limb movements (Dum and Strick, 2002). Network connectivity included 

bilateral primary motor cortex dorsally and also in the central sulcus, area F2, and the 

dorsal bank of the superior ramus of the arcuate sulcus. In addition, widespread 

connectivity was found in the medial wall, including the cingulate motor area, 

supplementary motor area, and medial parietal cortex. The network pattern closely 

resembles the “somatomotor” network previously described in the anesthetized macaque 

using a seed-region based approach (Vincent et al., 2007). 

 

• RSN I (parieto-occipital): A network consisting of regions involved in visual processing 

including bilateral areas V1, V2, V2, V3, area PO, and area MT/MST. Connectivity was 

also observed unilaterally in area 8A (left hemisphere) and 46d (right hemisphere). 

Similar network patterns have been observed in the macaque in both resting-state 

(Vincent et al., 2007) and awake fMRI studies (Stefanacci et al., 1998). 

 

• RSN J (postcentral): A network including the postcentral and precentral gyrus, areas 

dedicated to somatosensory processing (Kaas, 1993). Opposite modulation was found to 

occur in area PO and in the anterior cingulate cortex area 24 a/b. 

 

• RSN K (hippocampal): A medial temporal network corresponding to areas associated 

with the macaque declarative memory system (Squire and Zola-Morgan, 1991). The RSN 

bilaterally encompassed the hippocampus, entorhinal, perirhinal, and parahippocampal 

cortical areas. Anti-correlated bilateral connectivity of anterior cingulate cortex area 25 

was also observed. The network, although partially explored in several previous 
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electrophysiological studies (e.g. [Rolls et al., 1993] and [Wirth et al., 2003]) has not 

been shown with monkey fMRI possibly due to the difficult task demands required of the 

animals in order to elicit activations in these areas. 
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Figure 3.4. Cortical coverage of eleven resting-state networks 
(RSNs) identified by group independent component analysis of 
fMRI data from six isoflurane-anesthetized macaque monkeys. All 
images have been normalized to the space of the F99 template (Van 
Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do
). (A) The left images depict lateral and medial views of left 
hemisphere, the center images depict the dorsal view of both 
hemispheres, and the right images depict the lateral and medial views of 
right hemisphere. (B) Cortical coverage of (A) projected onto a 
flattened brain. Reprinted with permission from Hutchison, Leung, 
Mirsattari, Gati, Menon, & Everling (2011). 
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3.3.2 Single subject ICA 

To compare single subject ICA with group ICA components, we spatially 

correlated unthresholded single subject IC maps with the unthresholded group IC maps. 

The correlation coefficients for all maps and all animals was significant (p < 10−20, p 

value corrected for multiple comparisons using Bonferroni correction). Table 1 shows the 

mean correlation coefficients between the single-subject ICA components and the group-

ICA networks. Mean correlation values were found to be significantly different from 0 

(one sample t-test, p < 0.01). A representative network (RSN B — fronto-parietal) is 

shown for all monkeys in Fig. 3.5. Networks for all animals are shown in Figs 3.6-3.11. 

In some animals, the same single subject component was best correlated to two or more 

of the group ICA networks (for example, Fig. 3.7: components corresponding to 

networks D and I are the same). 
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Figure 3.5. Resting-state networks (RSN) of all monkeys (M1–M6) following single-
subject independent component analysis (ICA) that were most spatially correlated 
to group-ICA identified RSN B (fronto-parietal). Overlaid color maps represent 
thresholded z-scores. All images have been normalized to the space of the F99 template 
(Van Essen, 2004; see http://sumsdb.wustl.edu/sums/macaquemore.do). For each RSN, 
the left images depict lateral and medial views of left hemisphere, the center images 
depict the dorsal view of both hemispheres, and the right images depict the lateral and 
medial views of right hemisphere. Reprinted with permission from Hutchison, Leung, 
Mirsattari, Gati, Menon, & Everling (2011). 
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Figure 3.6. Resting-state networks (RSN) of monkey M1 identified by single-subject 
independent component analysis (ICA) that were most spatially correlated to group-ICA 
identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a flattened 
brain. Overlaid color maps represent thresholded z-scores. All images have been normalized to the 
space of the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and right images 
correspond to the left and right hemispheres, respectively. Sulci and color bar are shown in the 
bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central 
sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual 
sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-
occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, Leung, Mirsattari, 
Gati, Menon, & Everling (2011). 
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Figure 3.7. Resting-state networks (RSN) of monkey M2 identified by single-subject 
independent component analysis (ICA) that were most spatially correlated to group-
ICA identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a 
flattened brain. Overlaid color maps represent thresholded z-scores. All images have been 
normalized to the space of the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and right 
images correspond to the left and right hemispheres, respectively. Sulci and color bar are 
shown in the bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate 
sulcus; cs, central sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital 
sulcus; ls, lingual sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior 
temporal sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. Reprinted with 
permission from Hutchison, Leung, Mirsattari, Gati, Menon, & Everling (2011). 
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Figure 3.8. Resting-state networks (RSN) of monkey M3 identified by single-subject 
independent component analysis (ICA) that were most spatially correlated to group-ICA 
identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a flattened 
brain. Overlaid color maps represent thresholded z-scores. All images have been normalized to the 
space of the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and right images 
correspond to the left and right hemispheres, respectively. Sulci and color bar are shown in the 
bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central 
sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual 
sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-
occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, Leung, Mirsattari, 
Gati, Menon, & Everling (2011). 
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Figure 3.9. Resting-state networks (RSN) of monkey M4 identified by single-subject 
independent component analysis (ICA) that were most spatially correlated to group-ICA 
identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a flattened brain. 
Overlaid color maps represent thresholded z-scores. All images have been normalized to the space of 
the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and right images 
correspond to the left and right hemispheres, respectively. Sulci and color bar are shown in the 
bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central 
sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; 
ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-occipital 
sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, Leung, Mirsattari, Gati, 
Menon, & Everling (2011). 



110 

 

 

 

 

 

 

 

 

 

- 

 

 

 

 

Figure 3.10. Resting-state networks (RSN) of monkey M5 identified by single-subject independent 
component analysis (ICA) that were most spatially correlated to group-ICA identified networks 
seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a flattened brain. Overlaid color maps 
represent thresholded z-scores. All images have been normalized to the space of the F99 template (Van 
Essen, 2004; see http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and 
right images correspond to the left and right hemispheres, respectively. Sulci and color bar are shown in 
the bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central 
sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual sulcus; ots, 
occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-occipital sulcus; 
ps, principal sulcus. Reprinted with permission from Hutchison, Leung, Mirsattari, Gati, Menon, & 
Everling (2011). 
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Figure 3.11. Resting-state networks (RSN) of monkey M6 identified by single-subject 
independent component analysis (ICA) that were most spatially correlated to group-ICA 
identified networks seen in Fig. 3.2 and Fig. 3.3. The networks are projected onto a flattened 
brain. Overlaid color maps represent thresholded z-scores. All images have been normalized to the 
space of the F99 template (Van Essen, 2004; see 
http://sumsdb.wustl.edu.proxy1.lib.uwo.ca:2048/sums/macaquemore.do). The left and right images 
correspond to the left and right hemispheres, respectively. Sulci and color bar are shown in the 
bottom right quadrant; as, arcuate sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central 
sulcus; hs, hippocampal sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lingual 
sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos, parieto-
occipital sulcus; ps, principal sulcus. Reprinted with permission from Hutchison, Leung, Mirsattari, 
Gati, Menon, & Everling (2011). 
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Table 3.1. Spatial correlations of single subject ICA derived networks to group-ICA 

derived networks 

 

 

 

 

 

 

 

 

 

Note: Mean correlation values are significantly different from 0 (one sample t-test, p < 0.01). 

 

 

 

 

 

 

 

Network Mean STD ERR Range 

    
A 0.691 0.068 0.383 - 0.841 
B 0.560 0.082 0.176 - 0.750 
C 0.463 0.062 0.227 - 0.649 
D 0.501 0.078 0.215 - 0.743 
E 0.373 0.046 0.275 - 0.584 
F 0.459 0.073 0.184 - 0.623 
G 0.372 0.060 0.200 - 0.586 
H 0.559 0.059 0.272 - 0.661 
I 0.501 0.065 0.199 - 0.655 
J 0.375 0.045 0.207 - 0.546 
K 0.264 0.017 0.186 - 0.302 
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3.3.3 Functional network connectivity 

Fig. 3.12 shows a FNC diagram for the 11 identified RSNs. RSNs are represented 

by circular nodes and significantly correlated RSNs are represented by connecting lines. 

For example, a line connects networks I and J, representing significant functional 

connectivity between those two networks. RSN C (posterior-parietal) and RSN I (parieto-

occipital) represent the most connected nodes. RSN D (occipito-temporal) and RSN E 

(frontal) also show a high degree of FNC. The other sensory networks show little or no 

connectivity with other RSNs. 
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Figure 3.12. Average functional network connectivity of macaque resting-state networks 
(RSNs). Lines and numerical values indicate functional connectivity between two RSNs 
in which there was a significant temporal correlation of their respective time-courses 
(one-sample Student t-test, p < 0.05, corrected for multiple comparisons between 55 
pairs, with a time lead/lag of +/−3 s). Network letters refer to spatial representations 
shown in Fig. 1. Reprinted with permission from Hutchison, Leung, Mirsattari, Gati, 
Menon, & Everling (2011). 



115 

 

3.4 Discussion 

Alterations in functional connectivity recorded using spontaneous BOLD 

fluctuations have been suggested as the origin or product of multiple disease states (Auer, 

2008; Greicius, 2008). Assessing their electrophysiological correlate(s) and establishing 

the relationship between large-scale functional network connectivity and disease require a 

suitable animal model. Here, to the best of our knowledge, we report the first 

comprehensive application of group independent component analysis (ICA) to monkey 

fMRI data and the first resting-state examination of the macaque at 7 T. ICA successfully 

identified 11 prominent macaque RSNs representing multiple levels of neural processing. 

Networks encompassing sensory and motor areas, including the visual, auditory, motor, 

and somato-sensory regions, can be considered to be lower-order in a cognitive 

processing hierarchy. The RSNs comprising areas known to be involved in executive 

control, attention, reward evaluation, and default-mode activity may represent higher-

order processing, with temporal networks putatively responsible for visual processing and 

memory providing intermediate processing. In cases where the system has been explored 

with fMRI, the patterns of intrinsic functional connectivity are consistent with stimulus-

evoked patterns found in task-based studies (see Results). The functional RSNs reported 

in the current study revealed highly similar, possibly homologous macroscopic brain 

organization between macaques and humans. RSNs B (fronto-parietal), C (posterior-

parietal), D (occipito-temporal), E (frontal), F (superior-temporal), H (paracentral), and I 

(parieto-occipital) have been commonly reported following ICA of human resting-state 

data (Beckmann, DeLuca, Devlin, & Smith, 2005; Jafri, Pearlson, Stevens, & Calhoun, 

2008; Smith et al., 2009). These have been labeled oculomotor/dorsal attention (see Figs. 

6g, h of Beckmann, DeLuca, Devlin, & Smith, 2005), default-mode (see Fig. 6e of 

Beckmann, DeLuca, Devlin, & Smith, 2005), higher-order visual (see Fig. 6b of 

Beckmann, DeLuca, Devlin, & Smith, 2005), executive (see Fig. 6f of Beckmann, 

DeLuca, Devlin, & Smith, 2005), auditory (see Fig. 6c of Beckmann, DeLuca, Devlin, & 

Smith, 2005), somatomotor (see Fig. 6d of Beckmann, DeLuca, Devlin, & Smith, 2005), 

and primary visual (see Fig. 6a of Beckmann, DeLuca, Devlin, & Smith,  2005) networks 

respectively. Further, RSNs G (cingulo-insular), J (postcentral), and K (hippocampal) 

though not consistently reported in studies utilizing ICA, have homologous networks that 



116 

 

can be found when comparing task-based or seed-region analysis of human fMRI data 

(Kringelbach, 2005, Blatow, Nennig, Durst, Sartor, & Stippich, 2007; Burton, Dixit, 

Litkowski, & Wingert, 2009; Vincent et al., 2006). 

Two recent studies have examined resting-state connectivity with hypotheses 

derived from experimental anterograde tracer studies of the macaque monkey (Margulies 

et al., 2009; Kelly et al., 2010). Kelly et al. (2010) examined the connectivity of 

ventrolateral frontal areas with parietal and temporal cortex in the human cortex. They 

found that the human brain maintains the same basic patterns observed in nonhuman 

primates (Petrides & Pandya, 2009). In the same way, Margulies et al. (2009) found 

functional subdivisions of the precuneus to be preserved between both species and also 

consistent with tracer studies (Pandya & Seltzer, 1982). These findings suggest that 

resting-state functional connectivity reflects the underlying structural anatomy (discussed 

below) and taken together with our current results, support the role of the macaque as a 

suitable animal model in the study of human brain organization and cross-species 

comparisons of functional neuroanatomy. 

Despite the strong similarities in many of the macaque RSNs to human RSNs, our 

study also revealed a number of notable differences in RSNs between the two species. 

There was an absence of two commonly reported, lateralized fronto-parietal RSNs 

implicated in cognitive attentional processes as well as memory and language functions 

(Beckmann, DeLuca, Devlin, & Smith, 2005; Jafri, Pearlson, Stevens, & Calhoun, 2008; 

Smith et al., 2009). The homologous macaque network, RSN B (frontoparietal), though 

encompassing the same brain regions as the human networks, was relatively symmetrical 

and did not suggest lateralization of function. Given that the macaque brain appears to be 

less lateralized than the human brain (Kagan, Iyer, Lindner, & Andersenet, 2010), it is 

possible that the network represents the evolutionary predecessor to the lateralized human 

networks. Another functional connectivity difference was the lack of the dorsal medial 

prefrontal cortical (dmPFC) component of the DMN (Raichle, MacLeod, Snyder, Powers, 

Gusnard, & Shulman, 2001). A relatively weak network connection has been previously 

reported (Vincent, Kahn, Van Essen, Buckner, 2010), though it was absent in two other 

studies (Vincent et al., 2007; Teichert, Grinband, Hirsch, & Ferrera, 2010). It is difficult 
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to determine whether the dmPFC represents a less connected/weakly synchronized area 

of the DMN in the macaque, a brain area more vulnerable to BOLD fMRI artifactual 

sources (possibly due to the proximity to the eyes), an area highly sensitive to anesthesia 

level, or physiological variability in connectivity between animals. Finally, RSN K 

(hippocampal) shares a similar network pattern to the human memory RSN, however, 

there is an absence of parietal connectivity within the network that is found in the human 

brain (Vincent et al., 2006). RSN A (precentral–temporal) has not been reported as a 

separate network in resting-state or task-based studies of humans though the brain areas 

are implicated in more diffuse network patterns (Peeters et al., 2009). The ventral motor 

areas are critical for goal directed movements – particularly of the hand – in both species 

(Joly, Vanduffel, Orban, 2009; Callaert et al., in press]). In humans, however, there is a 

lateralization of motor function in which there is increased involvement of left motor 

areas resulting in functional asymmetries (Callaert et al., 2007). Monkeys show a weaker 

motor dominance than humans (Leca, Gunst, & Huffman, 2010) and the interhemispheric 

connectivity of the ventral motor system is supported by strong callosal connections 

between the homotopic functional areas. These factors could explain why a bilateral 

ventral motor RSN may not be found in the human at lower ICA model orders (20–40 

ICs) as the synchronization between the systems might not be as tightly coupled. 

RSNs are inferred from endogenous neural activity and their organization is likely 

shaped by structural connections (Sporns, 2010). There is increasing evidence to suggest 

that patterns of synchronous LFFs track underlying anatomical connectivity (Vincent et 

al., 2007; Hagmann et al., 2008; Skudlarski, Jagannathan, Calhoun, Hampson, 

Skudlarska, Pearlson, 2008; Honey et al., 2009; Margulies et al., 2009; Kelly et al., 

2010). Anatomical connectivity may underlie some of the RSNs that we identified in the 

present study. In some cases, the observed RSNs are in good agreement with the known 

major bundles of fibers that connect sensory association areas of posterior cortex to 

frontal cortex. RSN B (fronto-parietal) contains areas in frontal and parietal cortex that 

are connected by subcomponents II and III of the superior longitudinal fasciculus and 

RSN C (posterior-parietal) is comprised of areas that are connected by the fronto-

occipital fasciculus (Petrides & Pandya, 2002b). Structural connectivity via the uncinate 

fasciculus may underlie RSN G (cingulo-insular) (Petrides & Pandya, 2002b). At least 
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some of the areas in RSN D (occipito-temporal) are anatomically connected though the 

inferior longitudinal fasciculus (Petrides & Pandya, 2002b). Some of the other RSNs may 

reflect known connectivity by intrinsic connections (RSN E (Barbas & Pandya, 1989), 

RSN F (Pandya, 1995), RSN H (Vogt & Pandya, 1978)). 

We also observed the opposite pattern in which little to no functional connectivity 

between hippocampal and parietal areas was observed whereas tracer methodology has 

revealed substantial connectivity between parietal and parahippocampal regions 

(Rockland & Van Hoesen, 1999). Similarly, RSN F (auditory) did not contain any 

prefrontal areas, despite the known connections of this area with ventral and dorsal areas 

through the extreme capsule (Petrides & Pandya, 2002b). It is important to note, 

however, the limitations of the data analysis when discussing the possible conclusions 

that are being drawn in terms of lateralization, connectivity, and absent homologous 

networks. Despite the link to structural organization, resting-state connectivity is not 

anatomical connectivity. The patterns of functional networks have been shown to capture 

polysynaptic connections (Vincent et al., 2007; O'Reilly, Beckmann, Tomassini, 

Ramnani, & Johansen-Berg, 2009) and functional connections have been shown where 

no direct structural connections exist (Uddin et al., 2008; Vincent, Kahn, Snyder, Raichle, 

& Buckner, 2008; Honey et al., 2009). The discrepancies further highlight the need for an 

animal model as a method to constrain and interpret the false presence and absence of 

known connectivity in the human brain found using diffusion tensor imaging and resting-

state methods. Only tracer studies can address direct connections and these are not 

typically feasible in human investigations. 

A previous report examining changes in functional connectivity of the macaque 

during various visual stimulus contexts also examined two monkeys at rest under 

ketamine anesthesia using single-subject ICA (Moeller, Nallasamy, Tsao, & Freiwald, 

2009). Similar to the present study, networks encompassing primary sensory areas 

including auditory and visual systems were identified. These and other networks were 

typically bilateral, only comprising hemispheric functional homologous, a property also 

shown in rats (Hutchison, Mirsattari, Jones, Gati, & Leung, 2010). Our group data more 

closely resemble RSN organization of humans in which multiple subdivisions of a system 
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are functionally connected. Functionally connected regions can split into separate 

components at higher model orders (Abou-Elseoud, Starck, Remes, Nikkinen, Tervonen, 

& Kiviniemi, 2010), a property that reflects the hierarchical functional organization of the 

brain (Cole, Smith, & Beckmann, 2010). Moeller and colleagues (2009) used a model 

order of 300–1000 ICs whereas in the current study we used a model order of 20. The 

relatively large estimate could overestimate the number of networks and the use of an 

automated sorting algorithm specifying bilateralism could bias the results towards those 

reported in the study. 

To delineate the effects of single-subject ICA and model order, single-subject 

ICA was conducted on our same data set using a model order of 20. The individual 

component maps varied in their spatial correlation to the group RSNs within and between 

animals. The differences could reflect individual differences in morphology, structural 

connectivity, or functional connectivity as well as an exacerbation of weaker spatial 

dependencies causing the ICA to decompose the data differently. Variability could also 

arise from noise sources unique to each animal that were not extracted as a unique 

component using group-ICA. The results also highlighted intersubject variability in 

regards to network decomposition as often single subject networks comprised areas 

encompassed by two (or more) group RSNs. Overall, the individual networks had more 

diffuse functionally connectivity patterns than group-ICA and considerably more 

connectivity than the small-scale networks previously identified (Moeller, Nallasamy, 

Tsao, & Freiwald, 2009). Therefore, the differences between our study and the work of 

Moeller et al. (2009) are more likely the result of a lower model order than group-level 

analysis. It is important to note however, that given the methodological differences 

including model order and anesthetic regime, a direct comparison between these studies 

is not possible. 

 

Various network analysis strategies examining human and non-human primate 

brain connectivity have revealed that the cortex contains a small number of nodes having 

a disproportionately high number of connections (Sporns, Honey, & Kötter, 2007; 
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Hagmann et al., 2008; Buckner et al., 2009). These highly connected nodes are referred 

to as hubs and serve to integrate diverse informational sources enabling globally efficient 

information flow (Sporns, Honey, & Kötter, 2007). Hubs also facilitate small-world 

network organization, minimizing wiring and metabolic costs by providing long-distance 

connections that integrate local networks (Bassett & Bullmore, 2006). The locations of 

high functional centrality have a close correspondence with structural hubs (Honey et al., 

2007; Hagmann et al., 2008; Buckner et al., 2009). The present study revealed substantial 

inter-network functional connectivity with RSN C (posterior-parietal) and RSN I 

(parieto-occipital). The precuneous/posterior cingulate cortex areas encompassed by RSN 

C have been previously shown to possess both structural and functional hub properties in 

the human brain (Hagmann et al., 2008; Buckner et al., 2009) and could play a substantial 

role in integrating or regulating activity of other RSNs particularly at rest (Greicius, 

Krasnow, Reiss, & Menon, 2003). A detailed analysis of the structural connectivity of the 

macaque cortex based on tracer studies suggested several structural hubs including 

frontal area 46 and visual area V4 (Honey et al., 2007; Sporns, Honey, Kötter, 2007) — 

areas encompassed by RSN I. These areas have been classified as association or 

integrative areas again reflecting their hub like properties. Thus, the results of the 

functional network connectivity analysis fit the current framework of known functional 

organization and further support the use of resting-state data in the evaluation of large-

scale network dynamics and the use of FNC measures. It is important to note that like 

other functional connections, hubs have been shown to engage and disengage across time 

— dynamically altering their centrality (Honey et al., 2007). Evaluation of resting-state 

functional connectivity could provide an appropriate method to characterize the process 

by which the topology of functional networks changes over time. 

 

3.5 Conclusions 

In summary, our results demonstrate that ICA can identify RSNs in macaque 

monkeys that are likely homologous to those found in humans, thereby strongly 

supporting the use of monkeys as an ideal animal model for human brain function 
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(Passingham, 2009) while also reinforcing the use of resting-state functional connectivity 

in delineating complex neural circuits in vivo. 
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Chapter 4  

4 Resting-state networks show dynamic functional 
connectivity in awake humans and anesthetized 
macaques6 

4.1 Introduction 

Since the first observation that task-independent fluctuations of the blood-

oxygenation-level-dependent (BOLD) time series between different areas was correlated 

(Ogawa et al., 1993) and the demonstration of the first maps based on these spatio-

temporal coherences (Biswal, Yetkin, Haughton, & Hyde, 1995), resting-state functional 

magnetic resonance imaging (RS-fMRI) has become an important tool for characterizing 

functional brain networks. These analyses have shown that the hemodynamic signals 

recorded from cortical and subcortical areas are synchronized, forming characteristic 

resting-state networks (RSN) in the absence of external input or stimulus-evoked 

cognitive processing (Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 

2006). RSNs are shaped by structural connectivity (Vincent et al., 2007; Greicius, 

Supekar, Menon, & Dougherty, 2009; Honey et al., 2009; Margulies et al., 2009; Kelly et 

al., 2010), closely resemble task-based activation networks (Biswal, Yetkin, Haughton, & 

Hyde, 1995; Fox, Corbetta, Snyder, Vincent JL, & Raichle, 2006a; Vincent et al., 2007; 

Smith et al., 2009), and are believed to be of neuronal origin (Mantini, Perrucci, Del 

Gratta, Romani, & Corbetta, 2007; Laufs, 2008; Shmuel & Leopold, 2008; Nir et al., 

2008; Britz, Van De Ville, Michel, 2010; Musso, Brinkmeyer, Mobascher, Warbrick, & 

Winterer, 2010), though their physiological origin remains uncertain (Buckner & 

Vincent, 2007; Fox & Raichle, 2007). Coherence of the slow hemodynamic fluctuations 

have been shown in all mammals studied to date including both awake and anesthetized 

states in mice, rats, monkeys, and humans (Kiviniemi et al., 2005; Vincent et al., 2007; 

Greicius et al., 2008; Hutchison, Mirsattari, Jones, Gati, Leung, 2010; Hutchison, 

                                                
6
 A version of this chapter has been published. Hutchison, R.M., Womelsdorf, T, Gati, J.S., Everling, S., 

Menon, R.S. (2012a) Resting-state networks show dynamic functional connectivity in awake humans and 
anesthetized macaques. Hum. Brain Mapp, in press. 
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Mirsattari, Gati, Menon, & Everling, 2011a; Jonckers et al., 2011). The conservation of 

this phenomenon across species suggests that it is a fundamental mammalian brain 

property. 

RSN activity and within-network connection properties have been previously 

demonstrated to be both state-dependent (Greicius et al., 2008; Horovitz et al., 2009; 

Bianciardi, Fukunaga, van Gelderen, Horovitz, de Zwart, & Duyn, 2009) and task-

modulated (Fransson, 2006; Esposito et al., 2006; Sun, Miller, Rao, & D’Esposito, 2007). 

Recent work has now drawn into question the stability of RSNs in the absence of altered 

cognitive states or overt behavioral shifts (Sato et al., 2006; Majeed et al., 2009; Chang 

and Glover, 2010; Britz et al., 2010; Musso et al., 2010). Notably, Chang and Glover 

(2010) demonstrated that the coherence, phase, and strength of functional connections 

between the posterior cingulate cortex and other areas of the default-mode network in 

awake human subjects varied on the scale of seconds to minutes over the duration of a 

standard resting-state scan. Resting-state simulation (Honey et al., 2007; Sporns, 2010 

p.174) and magnetoencephalography (MEG) investigations have also shown time-

varying RSN topology. The later revealing transient formation of more complete and 

characteristic RSNs when taking into account the nonstationarity of the MEG signal 

correlations (de Pasquale et al., 2010). Taken together, these results cast doubt on the 

underlying assumptions of temporal stationarity implicit in common RSN analyses.  

An extensive number of electrophysiological studies have reported spontaneous 

(stimulus-independent) time-varying, network dynamics and ongoing brain activity over 

a wide range of temporal and spatial scales (for review see Vogels, Rajan, & Abbott, 

2005; Ringach, 2009; Sadaghiani, Hesselmann, Friston, & Kleinschmidt, 2010; Raichle, 

2010). These electrophysiological signatures are possibly related to the aforementioned 

dynamic variations of RSN connectivity. To identify possible links, it is necessary to 

quantify and characterize the ongoing dynamic shifts in functional network architecture 

as they become apparent in RS-fMRI. One limitation in the characterization of the 

dynamics of RS-fMRI that has been pointed out by Chang and Glover (2010) and others 

(Sato et al., 2006; Mantini et al., 2007; Britz et al., 2010; Musso et al., 2010), is the 

inability to ensure an absence of conscious processes during image acquisition. When 
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given unconstrained cognitive periods, awake human subjects engage in a diverse range 

of mental activities that can alter the brain’s functional organization (Shirer, Ryali, 

Rykhlevskaia, Menon, & Greicius, 2012). These can include a spectrum of stimulus-

independent activities such as mind wandering (Mason et al., 2007; Christoff, Gordon, 

Smallwood, Smith, & Schooler, 2009) or more active, stimulus-oriented processing such 

as monitoring the internal or external environment (Gilbert, Dumontheil, Simons, Frith, 

& Burgess, 2007). Over periods of several minutes, there are also changes related to 

vigilance, attention, and arousal (Paus et al., 1997), in addition to memory formation 

(Squire & Zola-Morgan, 1991). Recent evidence has also shown that sub-millimeter head 

motion during scanning can have significant effects on RS-fMRI network measures (Van 

Dijk, Sabuncu, Buckner, 2012). These can occur even when preprocessing corrects for 

motion, because correction algorithms account for gross voxel shifting, not for the 

disruptions of the field homogeneity.  

To examine the role of these issues in the determination of RSN connectivity 

maps, the present study examined the resting-state dynamics of the nonhuman primate 

(Macca fascicularis) under anesthesia and compared them to the same networks in awake 

human subjects. Isoflurane anesthesia induces a controlled state of central nervous system 

suppression characterized by a loss of consciousness, amnesia, analgesia, ablation of 

autonomic reflexes, as well as a suppression of motor responses (Veselis, 2001; Brown, 

Lydic, & Schiff, 2010). Therefore, anesthesia eliminates conscious processes as a 

complicating factor. The use of anesthesia, together with head-post immobilization, also 

allows for the elimination of active subject motion as a confound. Seed regions were 

selected throughout the previously identified macaque (Vincent et al., 2007; Hutchison et 

al., 2011a, 2011b) and human (Beckmann et al., 2005; Damoiseaux et al., 2006) fronto-

parietal RSNs. The potentially homologous networks (Hutchison et al., 2012) are 

putatively responsible for attention and oculomotor functions, encompassing many of the 

well-known saccade-related brain areas in both species (Paus, 1996; Luna et al. 1998; 

Desouza, Menon, & Everling, 2003 Koyama et al., 2004; Baker, Patel, Corbetta, & 

Snyder, 2006; Brown, Vilis, & Everling, 2007; Johnston & Everling, 2008; Ford, Gati, 

Menon, & Everling, 2009). As such, it is herein referred to as the oculomotor (OCM) 

network. The default-mode network, which was examined by Chang and Glover (2010), 
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was not chosen because network homologies between the species are not currently well 

established and there are known brain state dependencies (Greicius et al., 2008; Horovitz 

et al., 2008, 2009). Instead, the OCM RSN represents a distributed and well-studied 

network of both species and is supported by extensive electrophysiological and 

histological mapping (Johnston & Everling, 2008; Wurtz & Goldberg, 1989). In addition, 

it will allow us to investigate the generalizability of the dynamic network characteristics.  

A sliding-window correlation procedure was employed to verify the following 

hypotheses: 1) that RSN connectivity is not static and that the spatial pattern of functional 

connectivity depends upon the temporal scale that is being examined; 2) that ongoing 

RSN dynamics represent an evolutionarily preserved aspect of brain function, and 

therefore should be exhibited in the brain networks of other mammalian species; and 3) 

that the fluctuating relationships between brain areas represent an intrinsic and 

spontaneous phenomenon, independent of conscious processes, and therefore should 

transcend levels of consciousness.  

 

4.2 Methods 

4.2.1 Macaque monkeys 

All surgical and experimental procedures were carried out in accordance with the 

Canadian Council of Animal Care policy on the use of laboratory animals and approved 

by the Animal Use Subcommittee of the University of Western Ontario Council on 

Animal Care. Data was collected from six macaque monkeys (Macaca fascicularis; 4 

females) whose weights ranged from 3.6 to 5.3 kg (mean ± standard deviation = 4.58 ± 

1.4 kg). Prior to the imaging experiments, an MRI-compatible custom-built acrylic head 

post was anchored to the skull with 6-mm ceramic bone screws (Thomas Recording, 

Giessen, Germany) and dental acrylic that served to restrain the head during image 

acquisition and eliminate motion. In preparation for image acquisition, each monkey was 

injected with intramuscular injections of atropine (0.4 mg/kg), ipratropium (0.025 

mg/kg), and ketamine hydrochloride (7.5 mg/kg), followed by intravenous administration 

of 3 mL propofol (10 mg/mL) via the saphenous vein. Anesthesia was then maintained 
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using 1.5% isoflurane mixed with oxygen following oral intubation with an endotracheal 

tube. Animals were spontaneously ventilating throughout the duration of scanning and 

the eyes were closed. The monkey was then placed in a custom-built monkey chair with 

its head immobilized using the head post and inserted into the magnet bore, at which time 

the isoflurane level was lowered to 1%. Physiological parameters were continuously 

monitored throughout the duration of scanning (rectal temperature via a fiber-optic 

temperature probe [FISO, Quebec City, QC] = 36.5 °C; respiration via bellows [Siemens 

Corp., Union, NJ] = 25-30 breaths/min; end-tidal CO2 via capnometer [Covidien-

Nellcor, Boulder, CO] = 24-28 mm Hg). Animal body temperature was maintained using 

a heating disk (Snugglesafe, Littlehampton, West Sussex, UK) and thermal insulation.  

 

4.2.1.1 Data acquisition and preprocessing of monkey scans 

Data was acquired on an actively shielded 7-T 68-cm horizontal bore scanner with 

a DirectDrive console (Agilent, Santa Clara, California) with a Siemens AC84 gradient 

subsystem (Erlangen, Germany) operating at a slew rate of 350 mT/m/s. An in-house 

designed and manufactured conformal 5-channel transceive primate-head RF coil was 

used. Magnetic field optimization (B0 shimming) was performed using an automated 3D 

mapping procedure (Klassen and Menon, 2004) over the specific imaging volume of 

interest. For each monkey, 2 runs of 300 continuous EPI functional volumes (TR = 2000 

ms; TE = 16 ms; flip angle = 70°; slices = 30; matrix = 72 x 72; FOV = 96 x 96 mm; 

acquisition voxel size = 1.3 mm x 1.3 mm x 1.5 mm) were acquired. Acquisition time of 

each scan was 10 min. EPI images were acquired with GRAPPA at an acceleration factor 

of 2. Every image was corrected for physiological fluctuations using navigator echo 

correction. A high-resolution T2-weighted anatomical reference volume was acquired 

along the same orientation as the functional images using a turbo spin echo acquisition 

scheme (TR = 5000 ms; TE = 38.6 ms; echo train length = 5, effective echo = 3, slices = 

30, matrix = 256 x 250; FOV = 96 x 96 mm; acquisition voxel size = 375 µm x 384 µm x 

1.5 mm).  
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All preprocessing was implemented using the FMRIB Software Library toolbox 

(FSL; http://www.fmrib.ox.ac.uk.) and included motion correction (six parameter affine 

transformation), brain extraction, spatial smoothing (Gaussian kernel of full-width at 

half-maximum [FWHM] 3 mm applied to each volume separately), high-pass temporal 

filtering (Gaussian-weighted least-squares straight line fitting with sigma = 100 s), low-

pass temporal filtering (half-width at half-maximum [HWHM] = 2.8 s, Gaussian filter), 

and normalization (12 degrees-of-freedom [DOF] linear affine transformation) to the F99 

atlas template (van Essen, 2004; see http://sumsdb.wustl.edu/sums/macaquemore.do). No 

lag correction for the interleaved slice order was used, as the full width at half maximum 

of the autocorrelation function for a time series was ~12 s suggesting that errors in lags 

brought about by slice order differences in the 2 s TR period are minimal. 

 

4.2.1.2 Oculomotor network identification in monkeys 

A spherical seed (radius = 1.5 mm, volume = 14.14 mm3) was placed in the 

anterior bank of the arcuate sulcus of the left hemisphere in F99 atlas space (Van Essen, 

2004; Fig. 4.1), an area corresponding to the frontal eye fields (FEF; Area 8a, Bruce & 

Goldberg, 1985). The seed location has been previously shown to reveal the resting-state 

OCM network of the anesthetized macaque (Hutchison et al., 2011b). A voxel-wise 

correlation analysis was then conducted using a three-level analysis procedure. The mean 

time-course over all voxels within the FEF seed region was extracted for each animal and 

each scanning session and then correlated (with zero lag) with every brain voxel at the 

individual subject-level for each corresponding scanning session. The results were then 

averaged across sessions after a Fisher z-transform, and then averaged across monkeys 

before being converted back to correlation values. The group correlation values were 

projected from volume data to the F99 cortical surface using the CARET enclosed-voxel 

method (Van Essen et al., 2001). Group pair-wise correlations were also calculated in the 

same manner between all seed pair combinations to derive the group connectivity matrix.  
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aPFC (9/10m)
±4.02/25.15/13.58

FEF (8a)
±16.10/8.05/14.08

SMA (6)
±2.51/7.55/24.14

PCC (23c/b)
±2.51/-12.07/15.09

IP (5/LIP)
±10.56/-20.12/15.09

MST
±13.58/-27.66/17.10

V4
±26.16/-21.63/2.52

PGM (7m)
±-3.02/-28.17/10.06

>0.50.20

Correlation coefficient

Figure 4.1. Monkey Seed locations. Spherical seeds (r = 1.5 mm) are 
displayed to scale on coronal slices of the F99 atlas (Van Essen, 2004) 
overlaid with the group-averaged “oculomotor” network. Coordinates in 
F99 atlas space are indicated above below the brain area label. 
Abbreviations are indicated in the text. Reprinted with permission from 
Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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In addition to the left hemisphere FEF seed, a corresponding contralateral FEF 

seed in the right hemisphere was selected. Seven other seeds of the same size as the left 

FEF seed (radius = 1.5 mm) were placed in each hemisphere to encompass bilaterally 

symmetric regions having voxels with the highest correlation from the group-averaged 

correlation map (Fig. 1.4). These 14 additional seeds included the anterior prefrontal 

cortex (aPFC) in area 9/10m, the supplementary motor area (SMA) in area 6, the 

posterior cingulate cortex (PCC) in area 23c/b, the intraparietal area (IP) in area 5/lateral 

intraparietal area, visual area 4 (V4), middle superior temporal cortex (MST), and the 

precuneus (PGM) in area 7. To serve as non-grey matter controls, 4 seeds (radius = 1.5 

mm) were placed bilaterally (8 total) throughout the white matter (WM). 

 

4.2.1.3 Ventral premotor network identification in monkeys 

To assess whether network dynamics are generalizable to other RSNs, the 

previously identified, bilaterally homologous “ventral premotor” (vPM) RSN, (Hutchison 

et al., 2011a) was also identified through the same correlational analysis approach used 

for the OCM RSN with a seed (radius = 1.5 mm) placed in the left primary ventral motor 

area (area 1/F1). The homologous right hemisphere seed and four additional bilateral sets 

of seeds (10 total seed regions) were selected from the group correlation map to 

encompass bilaterally symmetric regions having voxels with the highest correlation and 

corresponding to previously identified anatomical areas. These included seeds in the 

somatosensory cortex (areas 2/1), the para-auditory cortex, the lateral secondary 

somatosensory cortex (S2E), and the ventral-cadual subdivision of the arm, neck, and 

face/mouth area (area 6/F4) (Paxinos, Huang, & Toga, 1999).  

 

4.2.2 Human participants 

Data was obtained from twelve right-handed volunteers (mean age = 26.2 years; 4 

females) who were recruited from The University of Western Ontario (London, ON, 
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Canada). Signed informed consent was obtained in accordance with procedures approved 

by the University of Western Ontario Health Sciences Research Ethics Board.  

 

4.2.2.1 Data acquisition and preprocessing of human scans 

Imaging was performed on a 3 T Siemens TIM MAGNETOM Trio MRI scanner. 

For each participant, 1 run of 360 continuous functional volumes was collected using a 

T2*-weighted single-shot gradient-echo echo-planar imaging (EPI) acquisition sequence 

with interleaved slice order (repetition time [TR] = 2000 ms; slice thickness = 3.5 mm; 

in-plane resolution = 3 mm x 3 mm; echo time [TE] = 30 ms; field of view [FOV] = 240 

mm x 240 mm; matrix size = 80 x 80; flip angle = 90°) with a 32-channel receive-only 

head coil. Each volume was comprised of 34 contiguous (no gap) axial-oblique slices 

acquired at a ~30° caudal tilt with respect to the plane of the anterior and posterior 

commissure (AC-PC), providing near whole brain coverage. Acquisition time of each 

scan was 12 min. Subjects were instructed to rest with eyes open while fixating at a 

central location. A T1-weighted anatomical image was collected using an MPRAGE 

sequence (TR = 2300 ms; TE = 2.98 ms; FOV = 192 mm × 240 mm × 256 mm; matrix 

size = 192 × 240 × 256; flip angle = 9°; acquisition voxel size = 1 x 1 x 1 mm). 

Image preprocessing was implemented in a similar fashion as carried out with the 

monkey data using the FSL toolbox. This consisted of slice time correction for 

interleaved acquisitions (using Fourier-space time-series phase shifting), motion 

correction (6-parameter affine transformation), brain extraction, spatial smoothing 

(spatial smoothing using a Gaussian kernel of FWHM 6 mm applied to each volume 

separately), high-pass temporal filtering (Gaussian-weighted least-squares straight line 

fitting with sigma = 100 s), low-pass temporal filtering (HWHM = 2.8 s, Gaussian filter), 

and normalization (12 DOF linear affine transformation) to the standard 152-brain MNI 

template (voxel size = 2 × 2 × 2 mm). 

 



138 

 

4.2.2.2 Oculomotor network identification in humans 

To allow localization of the frontal eye fields in humans, a saccade task was 

performed during a separate imaging session with the same subjects (data not shown). 

Participants looked towards one of two object locations following a vision and planning 

phase. Using the group-averaged task-based map as a reference, a spherical seed (radius 

= 5 mm, volume = 524 mm3) was placed at the junction of the superior frontal sulcus and 

the anterior bank of the precentral sulcus of the left hemisphere in MNI atlas space (Paus, 

1996; Luna et al., 1998; Brown et al., 2004; Ford et al., 2005; Amiez et al., 2006). A 

voxel-wise correlation analysis was then conducted in a similar manner used for the 

monkeys. The mean time-course over all voxels within the FEF seed region was extracted 

for each subject and then correlated (with zero lag) with every brain voxel at the 

individual subject-level. After a Fisher z-transform, the results were averaged across 

subjects and then converted back to correlation values. The group correlation values were 

projected from volume data to the PALS-B12 cortical surface (Van Essen, 2005) using 

the CARET (http://www.nitrc.org/projects/caret) enclosed-voxel method (Van Essen et 

al., 2001). Group pair-wise correlations were also calculated in the same manner between 

all seed pair combinations to derive the group connectivity matrix. 

In addition to the left hemisphere FEF seed, a corresponding contralateral FEF 

seed in the right hemisphere was selected. Eight other seeds of the same size as the left 

FEF seed (radius = 5 mm) were placed based on the generated group correlation map 

including seeds in the left and right hemisphere corresponding to the dorsal lateral 

prefrontal cortex (DLPFC), ventral premotor area (vPM), the intraparietal sulcus (IPS), 

anterior intraparietal cortex (AIP), visual area 4 (V4), and the precuneus (PGM) and two 

midline seeds in the supplementary eye fields (SEF) and primary visual area (V1) (see 

Fig. 4.2). To examine non-grey matter areas, 8 seeds were placed bilaterally throughout 

the white matter (WM). 
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Figure 4.2. Human Seed locations. Spherical seeds (r = 5 mm) are displayed to scale on 
coronal slices of the MNI template atlas overlaid with the group-averaged “oculomotor” 
network. Coordinates in MNI atlas space are indicated above below the brain area label. 
Abbreviations are indicated in the text. Reprinted with permission from Hutchison, 
Womelsdorf, Gati, Everling & Menon (2012). 



140 

 

 

4.2.3 Sliding window correlation analysis 

To explore the effects of possible time-varying dynamics, the correlational 

analysis of seed regions were repeated with truncated versions of the time series. The 

correlation between the time series derived from the left FEF seed (monkeys and 

humans) and left vPMs seeds (monkeys) and all brain voxels was calculated for 

truncation window sizes of 240s (120 volumes), 120s (60 volumes), 60s (30 volumes), 

and 30s (15 volumes). These window sizes were selected as it has been previously 

demonstrated that the average correlation values within and between RSNs stabilize at 

approximately 240s (Van Dijk et al., 2009). The remaining window sizes were then 

selected by decreasing the original window length by a factor of two. A 15s window and 

smaller was not used because the limited number of data points (volumes) did not result 

in significant correlations.  

The window was advanced in increments of one time point along the entire time 

series and the correlation recalculated. This was repeated for all possible shifts of the 

window within the 300 and 360 images of a run for the monkey and human data, 

respectively. The voxel-wise sliding window correlation between the left FEF seed and 

all individual brain voxels was calculated at the single subject, single scan level. The 

pair-wise sliding window correlations between each of the 16 seed regions were also 

calculated for all animals and all scans. 

 

4.2.4 Graph analysis 

To graphically represent the OCM RSN at different time points, a Kamada-Kawai 

algorithm (Kamada & Kawai, 1989) was used. The process arranges the network nodes 

such that correlated nodes are closer together and weakly correlated nodes are further 

apart. The distance was calculated based on the absolute values of correlation 

coefficients. The graphs’ edges were then thresholded at r ≥ |0.4|. Degree centrality, the 
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number of edges of a node that connect it to other nodes, was also calculated (Hagmann 

et al., 2008).  

 

4.3 Results 

4.3.1 Monkey OCM and vPM network identification 

Voxel-wise correlation with the time series from the left FEF seed at the group 

level revealed strong positive functional connectivity with multiple brain areas (Fig. 4.3) 

that were in agreement with previous results of task-based (Koyama et al., 2004; Baker et 

al., 2006; Vincent et al., 2007; Ford et al., 2009) and resting-state (Vincent et al., 2007; 

Hutchison et al., 2011a, 2011b) OCM network investigations of the macaque brain. There 

were no negative correlations with r values < -0.2 . The strongest positive correlations 

were found in the ipsilateral and contralateral aPFC, FEF, SMA, PCC, IP, V4, MST, and 

PGM (see Fig. 4.4 for individual connectivity maps). To explore the dynamics of the 

OCM RSN, sixteen cortical seeds within this network (as described in the Methods) were 

chosen for further analysis (Fig. 4.1).  
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Figure 4.3. Group-averaged “oculomotor” network following correlation 
analysis of isoflurane-anesthetized macaques (N = 6) with a seed placed in the 
anterior bank of the arcuate sulcus corresponding to the left frontal eye fields 
(FEF; black asterisks). The lateral, medial, and flattened cortical views of the left 
(column 1) and right (column 3) hemisphere in addition to the dorsal and ventral 
views (column 2) are overlaid with thresholded correlation maps normalized to the 
space of the F99 template (Van Essen, 2004). No negative correlations were 
present at r < -0.2. Labels indicate prominent sulci. as, arcuate sulcus; cas, 
calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hippocampal sulcus; 
ios, inferior occipital sulcus; ips, intraparietal sulcus; ls, lateral sulcus, lus, lunate 
sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; sts, superior temporal 
sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. Reprinted with 
permission from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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Figure 4.4. Single-subject (averaged across both scans) “oculomotor” 
networks of all isoflurane-anesthetized macaques (M1-M6). The lateral 
medial, and flattened cortical views of the left (column 1) and right (column 3) 
hemisphere in addition to the dorsal and ventral views (column 2) are overlaid 
with thresholded correlation maps normalized to the space of the F99 template 
(Van Essen, 2004). Reprinted with permission from Hutchison, Womelsdorf, 
Gati, Everling & Menon (2012). 
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Voxel-wise correlation with the time series from the left ventral motor area (area 

1/F1) seed at the group level revealed strong positive functional connectivity with 

homologous structures in both hemispheres (Fig. 4.5) that closely matched the vPM RSN 

revealed by independent component analysis of the same data set (Hutchison et al., 

2011a). The strongest positive correlations were found across somatosensory cortex 

(areas 2/1), the para-auditory cortex, the lateral secondary somatosensory cortex (S2E), 

and the ventral-cadual subdivision of the arm, neck, and face/mouth area (area 6/F4) 

(Paxinos, Huang, & Toga, 1999). Similar to the OCM network, there were no negative 

correlations present with r values < -0.2.  
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Figure 4.5. Group-averaged ventral premotor network following correlation 
analysis of isoflurane-anesthetized macaques (N = 6) with a seed placed in the 
ventral motor area (area 1/F1; black asterisks). The lateral medial, and flattened 
cortical views of the left (column 1) and right (column 3) hemisphere in addition to 
the dorsal and ventral views (column 2) are overlaid with thresholded correlation 
maps normalized to the space of the F99 template (Van Essen, 2004). No negative 
correlations were present at r < -0.2. Labels indicate prominent sulci. as, arcuate 
sulcus; cas, calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, 
hippocampal sulcus; ios, inferior occipital sulcus; ips, intraparietal sulcus; ls, 
lateral sulcus, lus, lunate sulcus; ots, occipito-temporal sulcus; sf, sylvian fissure; 
sts, superior temporal sulcus; pos, parieto-occipital sulcus; ps, principal sulcus. 
Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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Group pair-wise cross correlation of all seeds revealed strong intra-network 

connectivity of both the OCM and vPM networks (Fig. 4.6). The networks were 

independent of one another and seeds of both networks were not correlated with WM 

control seeds. All seed time courses were found to be stationary and not possess a unit 

root (Dickey-Fuller test, p > 0.05) suggesting a stable mean and variance over time. 
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Figure 4.6.Average pair-wise correlation matrix of resting-state 
BOLD time-courses from 16 “oculomotor” (OCM) network, 10 
ventral premotor (vPM) network, and 8 white matter (WM) seeds for 
isoflurane-anesthetized macaques (N = 6). Abbreviations are 
indicated in the text. Reprinted with permission from Hutchison, 
Womelsdorf, Gati, Everling & Menon (2012). 
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4.3.2 Human OCM network identification 

To validate the methodology, test inter-species similarities, and rule out 

anesthesia as the cause of the observed results, we investigated the OCM RSN in the 

awake human brain. Voxel-wise correlation with the time series from the left FEF seed at 

the group level revealed strong positive functional connectivity with multiple distributed 

brain areas (Fig. 4.7). The RSN encompassed multiple areas that have been shown to be 

modulated during oculomotor tasks (Luna et al., 1998; DeSouza et al., 2003; Brown et 

al., 2004, 2007) and closely resembled the previously identified oculomotor/dorsal 

attention network in resting-state investigations (Beckmann et al., 2005; Damoiseaux et 

al., 2006). The strongest positive correlations were found in the ipsilateral and 

contralateral DLPFC, vPM, FEF, SEF, IPS, AIP, PGM, V4, and V1. There were no 

negative correlations with r values < -0.3 (see Fig. 4.8 for individual human connectivity 

maps). Similar to the analysis of the monkey scans, 16 seeds were selected from the 

group map (Fig. 4.2; see Material and Methods section for details). Group pair-wise cross 

correlation of all seeds revealed strong intra-network connectivity of the OCM (Fig. 4.9) 

with none to weak connectivity with WM control seeds. 
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Figure 4.7. Group-averaged “oculomotor” network following correlation 
analysis of awake human subjects (N = 12) with a seed placed in the left frontal 
eye fields (black asterisks). The lateral, medial, and flattened cortical views of the 
left (column 1) and right (column 3) hemisphere in addition to the dorsal and ventral 
views (column 2) are overlaid with thresholded correlation maps normalized to the 
space of the PALS-B12 template (Van Essen, 2005). No negative correlations were 
present at r < -0.3. Labels indicate prominent sulci. Note that the correlation threshold 
differs between human and monkey maps shown in Fig 4.3. cas, calcarine sulcus; cis, 
cingulate sulcus; cs, central sulcus; ifs, inferior frontal sulcus; ls, lateral sulcus; lus, 
lunate sulcus; mfs, middle frontal sulcus; pos, parieto-occipital sulcus; pocs, posterior 
central sulcus; prcs, precentral sulcus; sfs, superior frontal sulcus; sts, superior 
temporal sulcus. Reprinted with permission from Hutchison, Womelsdorf, Gati, 
Everling & Menon (2012). 



150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
1 

S
2 

S
3 

S
4 

S
5 

S
6 

S
7 

S
8 

S
9 

S
10

 
S

11
 

S
12

 

0.3 >0.8 

Correlation coefficient 

Figure 4.8. Single-subject “oculomotor” networks of all awake 
human subjects (S-S12). The flattened cortical views of the both 
hemispheres are overlaid with thresholded correlation maps normalized 
to the space of the PALS-B12 template (Van Essen, 2005). Reprinted 
with permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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Figure 4.9. Average pair-wise correlation matrix of resting-state 
BOLD time-courses from 16 “oculomotor” (OCM) network and 
8 white matter (WM) seeds for awake human subjects (N = 12). 
Abbreviations are indicated in the text. Reprinted with permission 
from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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4.3.3 Transient network states 

To assess the stability of the OCM RSN’s spatial architecture, five time-points 

were selected across the duration of the scan and analyzed. For a window size of 60s 

(Fig. 4.10; for window sizes of 30s, 120s, and 240s, see Figs. 4.11, 4.12, and 4.13, 

respectively), comparison of the cross-correlation matrices (column 1), voxel-wise FEF 

correlation maps (column 2 and 3), and graph representations (column 4, thresholded at r 

≥ 0.4) demonstrated large, apparent differences in connectivity profiles within a single 

scan (M2, scan 2) not captured in the single-subject average (bottom row). The pairwise 

correlation matrix revealed periods of strong synchronization (50-110s) and at other 

times, an almost complete breakdown of the network (268-328s). Changing network 

architecture can also be observed in the graph representation (column 4) of the OCM 

RSN. Node arrangement, network inclusion, and degree centrality all vary at the different 

time points. Beyond the seeds defined by the group averaged FEF correlation map, the 

voxel-wise plots showed strongly (both negatively and positively) correlated cortical 

areas with the left FEF that were not captured when using the average time-course (Fig. 

5). During the first selected time window, the entire anterior cingulate cortex and PFC are 

synchronized with the left FEF. Primary visual areas are also transiently correlated at 

multiple time points. Negatively correlated regions that approach r = -1 occur throughout 

the scan between nodes of the OCM network and also distributed throughout the cortex. 

The unique spatial profiles do not emerge in the average or at longer time windows. 

Spontaneous changes in network connectivity are particularly evident when visualizing 

all successive sliding window increments. We visualize these dynamics in Supplementary 

Movies 1 and 2, which show pairwise seed correlations and voxel-wise left FEF seed 

correlations, respectively, for all window sizes across time. Changes in network states, 

including strong synchronization (26-86s), network breakdown (102-162s), and transient 

anti-correlated regions (280-340s) can also be seen in awake human subjects (Fig. 4.14; 

Subject 7).  
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Figure 4.10. Network changes across time with a sliding-window 
correlation size of 60s for a representative isoflurane-anesthetized monkey 
(M2, scan 2). The top five rows represent a single windowed correlation 
between the times. The bottom row displays the average for the entire run. 
Column 1 shows the pairwise correlation matrix of “oculomotor” network seeds 
in the same fashion as the blue bounded box in Fig. 4.6. Column 2 and 3 display 
the flattened cortical views of the left and right hemisphere, respectively, 
overlaid with voxel-wise correlation maps for the left FEF seed normalized to 
the space of the F99 template (Van Essen, 2004). Column 4 displays the graph 
representation of the functional “oculomotor” network connectivity in which 
each seed represents a node and pair-wise correlation r < 0.4 represented by an 
edge. The size of the node represents its degree centrality. For window sizes of 
30, 120, and 240, see Supplementary Figs. 4.11, 4.12, and 4.13 respectively. For 
all time points of pair-wise correlations, see Supplementary Movie 1. For all 
time points of voxel-wise left FEF correlation see Supplementary Movie 2. 
Reprinted with permission from Hutchison, Womelsdorf, Gati, Everling & 
Menon (2012). 
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Figure 4.11. Network changes across time with a sliding-window 
correlation size of 30s for a representative isoflurane-anesthetized 
monkey (M2, scan 2). The top five rows represent a single windowed 
correlation between the times. The bottom row displays the average for 
the entire run. Column 1 shows the pairwise correlation matrix of 
“oculomotor” network seeds in the same fashion as the blue bounded box 
in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 
and right hemisphere, respectively, overlaid with voxel-wise correlation 
maps for the left FEF seed normalized to the space of the F99 template 
(Van Essen, 2004). Column 4 displays the graph representation of the 
functional “oculomotor” network connectivity in which each seed 
represents a node and pair-wise correlation r < 0.4 represented by an 
edge. The size of the node represents its degree centrality. Reprinted with 
permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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Figure 4.12. Network changes across time with a sliding-window 
correlation size of 120s for a representative isoflurane-anesthetized 
monkey (M2, scan 2). The top five rows represent a single windowed 
correlation between the times. The bottom row displays the average for 
the entire run. Column 1 shows the pairwise correlation matrix of 
“oculomotor” network seeds in the same fashion as the blue bounded box 
in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 
and right hemisphere, respectively, overlaid with voxel-wise correlation 
maps for the left FEF seed normalized to the space of the F99 template 
(Van Essen, 2004). Column 4 displays the graph representation of the 
functional “oculomotor” network connectivity in which each seed 
represents a node and pair-wise correlation r < 0.4 represented by an 
edge. The size of the node represents its degree centrality. Reprinted with 
permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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Figure 4.13. Network changes across time with a sliding-window 
correlation size of 240s for a representative isoflurane-anesthetized 
monkey (M2, scan 2). The top five rows represent a single windowed 
correlation between the times. The bottom row displays the average for 
the entire run. Column 1 shows the pairwise correlation matrix of 
“oculomotor” network seeds in the same fashion as the blue bounded box 
in Fig. 4.6. Column 2 and 3 display the flattened cortical views of the left 
and right hemisphere, respectively, overlaid with voxel-wise correlation 
maps for the left FEF seed normalized to the space of the F99 template 
(Van Essen, 2004). Column 4 displays the graph representation of the 
functional “oculomotor” network connectivity in which each seed 
represents a node and pair-wise correlation r < 0.4 represented by an 
edge. The size of the node represents its degree centrality. Reprinted with 
permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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Figure 4.14. Network changes across time with a sliding-window 
correlation size of 60s for a representative awake human subject 
(S7). The top five rows represent a single windowed correlation between 
the times. The bottom row displays the average for the entire run. 
Column 1 shows the pairwise correlation matrix of “oculomotor” 
network seeds in the same fashion as the blue bounded box in Fig. 4.9. 
Column 2 and 3 display the flattened cortical views of the left and right 
hemisphere, respectively, overlaid with voxel-wise correlation maps for 
the left FEF seed normalized to the space of the PALS-B12 template 
(Van Essen, 2005). Column 4 displays the graph representation of the 
functional “oculomotor” network connectivity in which each seed 
represents a node and pair-wise correlation r < 0.4 represented by an 
edge. The size of the node represents its degree centrality. Reprinted 
with permission from Hutchison, Womelsdorf, Gati, Everling & Menon 
(2012). 
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4.3.4 Fluctuating connectivity dynamics during awake and 
anaesthetized states  

The supplementary movies demonstrate ongoing changes in the spatial 

connectivity profiles over time. To further assess and quantify these changes we 

examined the temporal correlation strength between seeds over time. We calculated the 

time series of the left FEF seed and of the left IP (A), left MST (B), right FEF (C), left 

PCC (D), as illustrated for a representative monkey in Fig. 4.15 (M2, scan 2). Below the 

time series plots, the sliding window correlation values for all window lengths are shown. 

Considerable time resolved variations of functional correlations are apparent when 

compared to the whole scan average correlation value shown as a dashed line. All OCM 

RSN nodes show slow fluctuations of connectivity strength that dissipate at longer 

window sizes. To quantify the change in the frequency profiles of the correlation 

waveforms across the different time windows we calculated fast-Fourier transforms 

(FFTs) (Fig. 4.15, third row of each frame). Bar graphs (bottom right of each frame) 

represent the percentage of data points that showed positive correlations (+, red), and 

anti-correlations (-, blue). Consistent with Glover and Chang (2010) anti-correlations 

decreased as a function of increasing window size and failed to be apparent at larger 

window sizes. But at smaller window sizes, negative correlations accounted for > 30% of 

the observed data points. The larger variance of the pair-wise correlations at short time 

windows could be influenced by noise or random variability that may increase with fewer 

points in the short truncation windows. To test for this possibility, we quantified the 

variability and plot the confidence values for the correlation coefficients for the four 

areas presented in Fig. 4.15 and the left FEF (Fig. 4.16). The highest variances are found 

for near-zero correlation values, regardless of window size. The confidence values for the 

large positive and negative excursions stay similar across different window sizes.  
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Figure 4.15. Time-series and sliding-window correlation 
coefficients between the left frontal eye fields (FEF) and 
“oculomotor” network seeds (A) left intraparietal cortex (IP), (B) 
left middle superior temporal cortex (MST), (C) right FEF, and (D) 
left posterior cingulate cortex (PCC) shown for one representative 
isoflurane-anesthetized monkey (M2, scan 2). The top panel shows 
the BOLD time series of the left FEF seed (blue) and the comparative 
seed (red). The middle panel shows the sliding-window coefficients for 
30s (cyan), 60s (pink), 120s (green), and 240s (orange) windows. For 
each of the correlation time courses the bottom panel shows the Fast-
Fourier transform (right side) and the percentage of time of above and 
below 0. Reprinted with permission from Hutchison, Womelsdorf, 
Gati, Everling & Menon (2012). 
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Figure 4.16. Confidence intervals for sliding-window correlation 
coefficients shown in Fig. 4.15 between the left frontal eye fields (FEF) 
and “oculomotor” network seeds (A) left intraparietal cortex (IP), (B) 
left middle superior temporal cortex (MST), (C) right FEF, and (D) left 
posterior cingulate cortex (PCC) shown for one representative 
isoflurane-anesthetized monkey (M2, scan 2). Sliding-window coefficients 
are shown for 30s (cyan), 60s (pink), 120s (green), and 240s (orange) 
windows and shaded bars represent the lower and upper bounds for a 95% 
confidence interval for each coefficient. Reprinted with permission from 
Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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Similar temporal dynamics were observed for the human data across all nodes 

(Fig. 4.17; Subject 7). The results illustrate that like the anesthetized monkey, the 

correlation time courses are nonstationary and for time dependent analysis with windows 

of less then 60s periods, positive functional correlations alternated with prominent anti-

correlations that were entirely missed when assessed with longer time windows.  
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Figure 4.17. Time-series and sliding-window correlation coefficients between the left 
frontal eye fields (FEF) and “oculomotor” network seeds (A) left intraparietal cortex 
(IP), (B) left middle superior temporal cortex (MST), (C) right FEF, and (D) left 
posterior cingulate cortex (PCC) shown for one representative awake human subject 
(S7). The top panel shows the BOLD time series of the left FEF seed (blue) and the 
comparative seed (red). The middle panel shows the sliding-window coefficients for 30s 
(cyan), 60s (pink), 120s (green), and 240s (orange) windows. For each of the correlation 
time courses the bottom panel shows the Fast-Fourier transform (right side) and the 
percentage of time of above and below 0. Reprinted with permission from Hutchison, 
Womelsdorf, Gati, Everling & Menon (2012). 
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4.3.5 Hyper-synchronization 

To further illustrate the fluctuating values of the correlations, Fig. 4.18 displays 

for the four sliding window lengths the pair-wise correlations of the OCM network seeds 

across all possible shifts of the truncation windows for the second scan of the same 

representative monkey (for all monkeys and scan 1, see Supplementary Fig. 4.19). Each 

of the 16 seed regions was correlated with the 15 other seed regions. The lines where 

each seed was correlated with itself are removed, resulting in 120 lines [(16 x 15) / 2] in 

each subplot of Fig. 4.18. These plots reveal substantial changes in the correlation 

strength over time. In particular, there are periods of enhanced coherence between seed 

regions that we have tentatively labelled “hyper-synchronization” (see below) alternating 

with incoherent periods. These fluctuations are not observed at longer time windows. 
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Figure 4.18. Sliding-window pair-wise correlations of “oculomotor” 
network (OCM), ventral premotor network (vPM), and white 
matter (WM) seeds over time for a representative isoflurane-
anesthetized macaques (M2, scan 2). Every vertical line of each image 
represents the unfolded pair-wise correlation matrix as seen in Fig 4.6 
averaged across 30s (row 1), 60s (row 2), 120s (row 3), and 240s (row 4) 
windows for the entire scan. Plots for all monkeys and both scans are 
shown in Fig. 4.20. Reprinted with permission from Hutchison, 
Womelsdorf, Gati, Everling & Menon (2012). 
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Figure 4.19. Sliding-window pair-wise correlations of “oculomotor” 
network (OCM), ventral premotor network (vPM), and white 
matter (WM) seeds over time for all monkeys (M1-M6) for both 
scans. Every vertical line of each image represents the unfolded pair-
wise correlation matrix as seen in Fig. 4.6 averaged across 60s windows 
for the entire scan. Reprinted with permission from Hutchison, 
Womelsdorf, Gati, Everling & Menon (2012). 
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Hyper-synchronization was quantified for the OCM, vPM, and WM areas by 

calculating the average pairwise correlation values across all seeds within each network 

for all monkeys (Fig. 4.20; 60s sliding window; for scan 1, see Fig. 4.21). For the RSNs, 

periods of hyper-synchrony had average correlation values greater than + 0.6 whereas 

incoherent periods approached 0. The average network connectivity time courses were 

not significantly correlated, showing different correlation peaks and hyper-synchrony 

durations. Histograms display the amount of time in seconds spent at binned correlational 

values. WM values typically centered around 0 whereas vPM and OCM networks had 

mean correlation values that were moderate to strong. Within-network seeds display 

strong negative correlations, however the mean connectivity typically does not drop 

below 0 even with a 30s window. Hyper-synchronization was observed for most animals 

with the exception of M4 (scan 2), however, scan 1 of the same monkey showed the 

greatest synchronization across seeds encompassing both OCM an vPM nodes (though 

not WM).  
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Figure 4.20. Average pairwise correlation values across all 
“oculomotor” network (OCM, red), ventral premotor network (vPM, 
blue), and white matter (WM, cyan) seeds over time for all monkeys 
(M1-M6, scan 2) with a sliding window of 60s. To the right of each plot 
shows the frequency distribution of the correlation coefficients for each of 
the three time series. For scan 1, see Fig. 4.21. Reprinted with permission 
from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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Figure 4.21. Average pairwise correlation values across all “oculomotor” 
network (OCM, red), ventral premotor network (vPM, blue), and white 
matter (WM, cyan) seeds over time for all monkeys (M1-M6, scan 1) with a 
sliding window of 60s. To the right of each plot shows the frequency 
distribution of the correlation coefficients for each of the three time series. For 
scan 2, see Fig. 4.20. Reprinted with permission from Hutchison, Womelsdorf, 
Gati, Everling & Menon (2012). 
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Periods of hyper-synchrony were not exclusive to the anesthesia state, as all 

awake human subjects also exhibited strong network specific synchrony over a period of 

12 min (Fig. 4.22; for all subjects see Fig. 4.23). As the time window was increased the 

effects were no longer evident. 
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Figure 4.22. Sliding-window pair-wise correlations of “oculomotor” 
network seeds over time for a representative awake human subject (S7). 
Every vertical line of each image represents the unfolded pair-wise 
correlation matrix as seen in Fig. 4.09 averaged across 30s (row 1), 60s (row 
2), 120s (row 3), and 240s (row 4) windows for the entire scan. Plots for all 
subjects are shown in Supplementary Fig. 4.23. Reprinted with permission 
from Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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Figure 4.23. Sliding-window pair-wise correlations of “oculomotor” 
network (OCM) and white matter (WM) seeds over time for all 
human subjects (S1-S12). Every vertical line of each image represents 
the unfolded pair-wise correlation matrix as seen in Fig. 4.09 averaged 
across 60s windows for the entire scan. Reprinted with permission from 
Hutchison, Womelsdorf, Gati, Everling & Menon (2012). 
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4.4 Discussion 

4.4.1 Dynamic RSN connectivity occurs in the absence of 
cognition 

Ongoing brain activity changes in the absence of stimuli or behaviour, and was 

historically characterized as background “noise” in both electrophysiological and 

imaging fields. Evidence from both fields is now changing this view, demonstrating that 

the spontaneous modulations of activity are highly organized across a range of temporal 

and spatial scales with profiles and magnitudes similar to task-evoked patterns (for 

reviews see (Bullock, 2003; Vogels, Rajan, & Abbott, 2005; Ringach, 2009; Sadaghiani 

et al., 2010; Raichle, 2010). 

The primary aim of the current study was to test the hypothesis that stimulus-

independent fluctuations of functional connectivity within RSN nodes measured using 

BOLD-fMRI were not solely a consequence of conscious brain processes (Paus et al., 

1997; Mason et al., 2007; Gilbert et al., 2007; Christoff et al., 2009) or subject motion 

(Van Dijk et al., 2012) during image acquisition, factors that confounded previous studies 

(Sato et al., 2006; Mantini et al., 2007; Chang & Glover, 2010; Britz et al., 2010; Musso 

et al., 2010). To eliminate these confounding variables as the origin of the temporal 

characteristics, we examined the network connectivity patterns over time between nodes 

of the macaque “oculomotor” (OCM) RSN during anesthesia with isoflurane, thereby 

precluding such processes related to conscious thought, mind-wandering, memory 

formation, or changes in arousal and attention (Veselis, 2001; Brown et al., 2010). In 

addition to the anesthesia, an implanted head post to mount the subject’s head in a stable 

position prevented any possible movement related artifacts. Under these conditions, a 

sliding-window correlation analysis revealed that, even in an anesthetized brain state, 

RSN functional connectivity was dynamically changing across time, a property that could 

not be captured with whole-scan metrics that only compute the mean connectivity value. 

Individual seed-pair correlations of the macaque and human OCM RSN showed 

oscillatory-like behaviour in which the correlation strength fluctuated between strong 
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positive and strong negative correlations reliably within subjects, and reproducible across 

subjects and species. Evidenced by the FFT of the correlation time courses, as the 

window size increased, the amplitude and number of frequency peaks diminished. This 

effect is the result of averaging the periods of positive and negative synchrony within the 

same period, effectively canceling out the alternating patterns and eliminating the 

frequency dynamics. Averaging across longer time windows will result in positive values 

simply due to the increased amount of time the network seeds are positively correlated 

compared to being anti-correlated (Fig. 7 and 8, insets). Averaging across the entire scan 

occasionally failed to detect brain areas that become synchronous with the “core” RSN 

for brief times throughout the scan, though not consistently enough to survive averaging. 

This can be seen for example, in the voxel-wise plots (column 2 and 3) of Fig. 5 (as well 

as the supplementary movies), where at multiple windows such as 268-328s (row 3) and 

360-420s (row 5), primary visual cortex (V1) is strongly correlated with the left FEF 

seed, though does not emerge as a network node in the single subject average (row 6). 

Additionally, seed-pair correlations at the network level showed periods of strong 

positive synchronization across the entire network that occurred multiple times 

throughout the scan in all animals and all human subjects that we have tentatively 

labelled “hyper-synchronization.” The hyper-synchronous periods were network specific 

in that the nodes of the OCM and vPM RSNs both exhibited periods of hypersynchrony, 

albeit at different time points and durations.  

Taken together, the findings support each of the three hypotheses investigated. 

First, in agreement with previous work, RSN connectivity was found to be dynamic over 

time and functional connectivity profiles dependent upon the temporal scale that was 

used (Sato et al., 2006; Honey et al., 2007; Majeed, Magnuson, & Keilholz, 2009; Chang 

&Glover, 2010; de Pasquale et al., 2010; Britz et al., 2010; Musso et al., 2010). Second, 

the present work offers preliminary evidence that much like RSN organization (Biswal, 

Yetkin, Haughton, & Hyde, 1995; Beckmann et al., 2005; Vincent et al., 2007; Hutchison 

et al., 2010, 2011a; Jonckers et al., 2011), dynamic relationships within the networks are 

also a conserved brain property across mammals. Third, and most importantly, the 

network dynamics persisted regardless of the use of anesthesia, thereby supporting the 

notion that RSN connectivity variations are a result of ongoing, spontaneous brain 
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activity and not solely a consequence of conscious processing. It is important to note that 

although we identified fluctuating network connectivity in the absence of conscious 

cognitive processes, we do not intend to exclude ongoing brain dynamics in the 

participation of cognition and behavior (or conversely, the modulation of spontaneous 

activity by conscious processes, context, and behavior). In fact, the results from 

converging methods have implied that the intrinsic neural and hemodynamic fluctuations 

represent an essential property of normal brain functioning (for reviews see Bullock, 

2003; Vogels et al., 2005; Ringach, 2009; Sadaghiani et al., 2010; Raichle, 2010).  

 

4.4.2 Electrophysiological correlates 

The periods of metastable RSN synchronization observed in the present study 

could represent the hemodynamic correlate of “microstates” (Britz et al., 2010; Musso et 

al., 2010), a fingerprint of specific electrophysiological processes (Lehmann, Faber, 

Gianotti, Kochi, & Pascual-Marqui, 2006) with power contributions arising from multiple 

frequency bands (Mantini et al., 2007). Functionally, the microstate is likely reflecting 

groups of neurons in separate cortical areas linked into a large-scale network that 

conjointly subserve a unified cognitive, mental, or perceptual function (Felleman & Van 

Essen, 1991; Friston, 2002; Bressler & Tognoli, 2006; Fuster, 2006). Network areas 

forming a microstate are thereby assumed to be coordinated with a unique spatio-

temporal pattern. Similar to this proposal, the RS-fMRI signals characterize not only a 

unique spatial distribution, but a multi-component temporal signature (Mantini et al., 

2007; Majeed et al., 2009; Hutchison et al., 2010; Baria, Baliki, Parrish, & Apkarian, 

2011), albeit at a much lower frequency range (0.01 - 0.1 Hz) owing to convolution with 

the hemodynamic response function. The observed fluctuation of spatiotemporal 

connectivity patterns could then represent changing microstates - a cycling of varying 

network topologies through the brain’s functional repertoire allowing for a plastic and 

flexible framework necessary for ongoing cognitive processes (Kelso, 1995; Friston, 

2000; Rabinovich et al., 2008; Tognoli & Kelso, 2009; Sporns, 2010 p.172).  
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Previous work across multiple spatial scales and modalities has implicated 

spontaneous brain activity as a source of variability in evoked responses (Arieli, Sterkin, 

Grinvald, & Aertsen, 1996; Azouz & Gray, 1999; Fiser, Chiu, & Weliky, 2004; Fox, 

Snyder, Zacks, & Raichle, 2006b; Becker, Reinacher, Freyer, Villringer, & Ritter, 2011), 

perception (Sapir, d’ Avossa, McAvoy, Shulman, & Corbetta, 2005; van Dijk, 

Schoffelen, Oostenveld, & Jensen, 2008; Hesselmann et al., 2008b; Sadaghiani et al., 

2009), and behaviour (Hesselmann, Kell, & Kleinschmidt, 2008a). Most relevant to the 

present work, Fox and colleagues (2006a) demonstrated that ongoing activity fluctuations 

within a widely distributed human RSN (“dorsal motor”) could account for trial-to-trial 

variability of the evoked hemodynamic responses to a task (finger-related movement). 

The linear superposition and neuronal basis of this phenomenon was later confirmed by 

Becker et al. (2011), reinforcing that evoked responses cannot be fully understood in 

isolation from ongoing activity. The present findings, in addition to the previous work 

(Sato et al., 2006; Chang & Glover, 2010; de Pasquale et al., 2010), suggest that intra-

network RSN connectivity fluctuations might be another key element that may account 

for parts of the variability of evoked responses, perception, and behaviour. Further, if the 

spontaneous activity fluctuations are considered as predictive representations as in a 

Bayesian framework (Pouget, Dayan, & Zemel, 2003; Körding & Wolpert, 2006; 

Sadaghiani, Hesselmann, Friston, & Kleinschmidt, 2010) in which ongoing cortical 

activity represents a continuous top-down prediction or expectation, then selecting the 

correct network state could represent the critical factor for higher-order complex tasks 

requiring large scale integration of brain areas (Engel, Fries, & Singer, 2001; Buckner & 

Vincent, 2007). 

It is more difficult to speculate on the underlying cause and functional 

significance of the “hyper-synchronized” periods of both species seen in Fig. 9, 10, and 

11. These persisted for tens of seconds and had strong correlation strengths (r > 0.6) 

across all network nodes. Additionally, the confidence values for the strong correlation 

periods were very high. The lowest confidence values were found when the mean 

correlation value was near zero. The periods of hyper-synchronization most often 

occurred independently of other RSNs and WM. The network-specific alternating 

patterns of enhanced synchrony share similar characteristics with the electrophysiological 
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‘slow rhythm’ (0.2-0.4 Hz) (Steriade, Contreras, Curró Dossi, & Nuñez, 1993a; Steriade, 

Nuñez, & Amzica, 1993b; Haider & McCormick, 2009). The slow rhythm oscillates 

between two different levels of subthreshold membrane potentials. The UP state is 

distinguished by barrages of both excitatory and inhibitory postsynaptic potentials, and 

the firing of both excitatory and inhibitory neurons, whereas the DOWN state is 

characterized by periods of hyperpolarization and quiescence (Steriade et al., 1993b; 

Contreras, Timofeev, & Steriade, 1996; Stern, Kincaid, & Wilson, 1997; Lampl, 

Reichova, & Ferster, 1999). Slow rhythms are generated and maintained in distributed 

populations of neurons throughout the neocortex and engage neurons throughout the 

brain (Isomura et al., 2006). Studies typically cite their role in coordinating other sleep 

rhythms (Steriade, Nuñez, & Amzica, 1993c; Contreras, Timofeev, & Steriade, 1996; 

Achermann & Borbély, 1997) and memory consolidation (Lee & Wilson, 2002; Mölle, 

Marshall, Gais, & Born, 2004). Given that hyper-synchronization was also observed in 

awake human RSNs it would suggest that the phenomenon is not a result of anesthesia. 

The presence and functional relevance of slow rhythms in cortical activation during 

wakefulness has not yet been fully explored (Destexhe, Hughes, Rudolph, & Crunelli, 

2007; Sporns, 2010 p.156). Nir and colleagues (2008) have reported slow (<0.1 Hz) 

spontaneous fluctuations of neuronal activity (LFP gamma power modulations) in the 

auditory cortex of awake human subjects. Bilateral single-unit, LFP, and intracranial 

electrocorticography (ECoG) also revealed significant interhemispheric correlations 

between the homologous areas that increased during rapid eye movement (REM) and 

stage 2 sleep (Nir et al., 2008). In a related study, He et al., (2008) compared the 

“correlation structure” of the sensorimotor network of humans recorded by ECoG and 

BOLD independently. Slow cortical potentials (<0.5 Hz) were found to best correspond 

with RS-BOLD fluctuation profiles across wakefulness, slow-wave sleep, and REM 

sleep, whereas gamma frequency power showed a similar correlation structure albeit only 

during wakefulness and REM sleep. The results of these studies point towards slow 

cortical oscillations as a possible electrophysiological correlate of “hyper-synchrony”. 

Given that the responsiveness of the cortex to sensory stimuli is generally increased 

during UP states and decreased during DOWN states (Steriade et al., 1993b; Contreras et 

al., 1996) the slow fluctuations of synchronization (UP states) could represent a 
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dynamically stable network organization exploited to express selective functional 

relationships.  

The present study only allows us to infer the electrophysiological correlate(s) of 

the nonstationary relationships and “hyper-synchronization” based on their resemblance 

to known phenomena. Obtaining direct evidence would require simultaneous 

electrophysiological and RS-fMRI recordings. Beyond establishing a link between neural 

activity and the hemodynamic BOLD activity (Logothetis, Pauls, Augath, Trinath, & 

Oeltermann, 2001), previous work using EEG-fMRI has attempted to directly derive the 

electrophysiological correlate of RS-fMRI fluctuations (Mantini et al., 2007; Nir et al., 

2007; Laufs, 2008, 2010; Shmuel & Leopold, 2008; He, Snyder, Zempel, Smyth, & 

Raichle, 2008; Britz et al., 2010; Musso et al., 2010; Liu, Zhu, Zhang, & Chen, 2011) and 

in what may prove synonymous, the hemodynamic manifestations of temporal EEG 

dynamics (Goldman, Stern, Engel, & Cohen, 2002; Laufs et al., 2003b; Moosman et al., 

2003; Sammer et al., 2007; Olbrich et al., 2009; Ritter, Moosmann, & Villringer, 2009; 

Michels et al., 2010; Wu, Eichele, Calhoun, 2010). It has been established in anesthetized 

monkeys that slow fluctuations in the power of band-limited oscillations (particularly 

gamma) can be directly linked to the ongoing RS-fMRI fluctuations (Shmuel & Leopold, 

2008). In humans, RSNs were assigned a unique electrophysiological signature that 

involved a combination of EEG power variations in the delta, theta, alpha, beta, and 

gamma range (Laufs et al., 2003a; Mantini et al., 2007; for review see Laufs, 2008). This 

was later confirmed by two independent studies showing that transient multi-frequency 

EEG events (microstates) can be used as regressors to elicit BOLD activation patterns 

consistent with at least some RSNs (Britz et al., 2010; Musso et al., 2010). The studies 

however, did not explore the temporal properties of the within-network connectivity. This 

presents a promising avenue for future research and will be critical in resolving 

controversies related to time-scale discrepancies between electrophysiological activity 

(microstates, slow rhythms, frequency specific power changes) and the RSN fluctuations. 
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4.4.3 Anti-correlations 

The role of anti-correlations within RSNs remains unclear and controversial (Fox 

et al., 2005; Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Cole, Smith, & 

Beckmann, 2010), though it has been suggested that they subserve a “differentiating 

role,” segregating neuronal processes that have competing representations (Fox et al., 

2005). In agreement with previous work (Chang & Glover, 2010), the strength of 

negative correlations was found to depend strongly on the time window used to analyze 

functional connectivity. Using the whole scan metrics, the correlation coefficients 

typically do not drop below -0.3, however at shorter time windows, the negative 

correlations approached -0.8 at high confidence values, suggesting active suppressive 

interactions between anti-correlated network nodes. Empirical investigations of anti-

correlations remain underrepresented in a field that is dominated by interpretations of 

positive connectivity among seeds, however, the present results calls upon a revaluation 

of their possible roles in complex brain networks.  

 

4.4.4 Evolutionarily preserved mechanism 

Resting-state fluctuations and their assembly into spatial network patterns appear 

to be a ubiquitous property of mammalian brain organization. Mice, rats, monkeys, and 

humans (Biswal et al., 1995; Vincent et al., 2007; Lu et al., 2007; Jonckers et al., 2011) 

all show robust and reproducible RSNs. The present study could now put forward that 

dynamics within this networks are also a shared feature of mammalian brain systems, at 

the very least between humans and non-human primates. Brain rhythms and cortical 

synchrony have been suggested as an indicator of complexity that parallels evolutionary 

branching; invertebrates lack EEG oscillations, amphibians show cortical coherence 

albeit less than mammals, and humans seem to possess the greatest range of frequency 

patterns (Bullock, 2003). Synchronization, network organization, and ongoing 

fluctuations would then represent an evolved and adaptive mechanism serving “higher-

order” cognitive functioning.  
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RSN networks have been shown to persist under light and deep sleep (Horovitz et 

al., 2008, 2009), sedation (Greicius et al., 2008), and various forms of anesthesia (Lu et 

al., 2007; Zhao et al., 2008; Hutchison et al., 2010). This isn’t to say however, that 

quantifiable differences do not exist between the different states. Changes in connectivity 

have been reported within and across both normal and disease states (Greicius, 2008; 

Horovitz et al., 2009; Vanhaudenhuyse et al., 2010). This makes direct qualitative 

comparisons of the anesthetized monkeys and awake human subjects problematic 

because, although qualitative assessment does indicate preserved temporal characteristics, 

any variations may not be a result of species difference but a consequence of the 

anesthesia. The mechanisms of action for isoflurane remain poorly understood, but it has 

been demonstrated to disrupt functional thalamocortical connectivity (Alkire, Haier, & 

Fallon, 2000; Steriade, 2001; Arhem, Klement, & Nilsson, 2003), in addition to causing 

vasodilation that can potentially affect cerebrovascular activity (Farber et al., 1997). The 

comparatively low dose used in the present work (1%) does not seem to affect spatial 

RSN properties as our previous work has shown RSNs closely resembling known task-

based networks and homologous human RSNs (Hutchison et al., 2011a, 2011b). A 

greater level of understanding and further experimentation will be necessary to truly 

elucidate between species differences in dynamics.  

 

4.4.5 Controls and limitations 

There has been recent evidence suggesting a possible link between resting-state 

and spontaneous oculomotor behavior in awake human subjects (Ramot et al., 2011). The 

authors admittedly could actually not delineate causal relationships between the two 

phenomenon, i.e. whether the eye movements were controlled by the spontaneous BOLD 

fluctuations, if the eye movements were actually generated by the fluctuations, or if both 

were driven by a third, common input. We visually inspected the raw monkey data to 

determine if there were shifts in eye movements during the resting-state scans of which 

none were apparent. Importantly, the eyes were kept closed throughout the duration of 

the scanning. Finally, the vPM network served as an independent control as the 
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fluctuating dynamics were not correlated with the OCM RSN activity and therefore, 

would indicate the effects could not solely be a result of residual eye movements.   

Heart rate, blood pressure, and breathing rate (monitored for monkeys) were not 

recorded during image acquisition. This prevents us from modelling the changing 

physiological parameters in reference to the network fluctuations. However, we do not 

believe physiological artifacts to be the origin of the RSN dynamics. RS-BOLD signals 

are dominated by lower frequencies (< 0.1 Hz) with minimal (>10%) contribution of 

higher frequent cardiac and respiratory oscillations (> 0.3 Hz, higher in the monkey) to 

the correlation coefficient (Cordes et al., 2001). Contributions from these signals is 

further diminished through low-pass temporal filtering. Global grey matter (data not 

shown), white matter, vPM RSN, and OCM RSN were all found to have unique temporal 

profiles excluding a common artifactual source. Within network seeds also showed 

unique time-courses and correlation fluctuation profiles suggesting node specific activity. 

Finally, the findings were reproduced using two different scanners (Seimmas and 

Agilent), at two different field strengths (3T and 7T), with different acquisition 

parameters across 2 different species, one of which was anesthetized.  

Decreasing the window size will increase the number of spurious correlations that 

occur when calculating the correlation coefficients over time. This has been shown to 

change in proportion to the square root of the sampling time (Van Dijk et al., 2009). This 

is a concern for the present work as the correlation coefficients are compared across 

window sizes. It was found however, that the highest statistical reliability occurred at the 

points of highest correlation and the highest variances were found for near-zero 

correlation values. This was also true of the mean correlation signal in which “hyper-

synchronous” states were statistically significant (p < 1.7x10-4, 1.8x10-4, 2.1x10-4, 2.8x10-

4, for 30s, 60s, 120s, and 240s respectively; corrected for multiple comparisons using 

Bonferroni correction; data not shown). This property was observed across all seeds and 

subjects. Also, correlations between seed regions are run independently of one another. It 

is improbable that states of “hypersynchrony” would result from spurious correlations, as 

these would be randomly distributed across time and not occurring between multiple seed 

regions simultaneously.  
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4.4.6 Implications for future work 

Current RS-fMRI analysis techniques such as cross-correlation or independent 

component analysis (both techniques have been previously applied to the current data set, 

see (Hutchison et al., 2011a, 2011b) assume stationarity of functional connectivity over 

the entire length of the scan, offering a limited, averaged view of the network 

relationships. Evidence is now suggesting that these techniques can be insensitive to 

robust spatiotemporal dynamics of the RSNs (Sato et al., 2006; Mantini et al., 2007; 

Chang & Glover, 2010; Britz et al., 2010; Musso et al., 2010) that disappear at analysis 

windows greater than 4 min in length (Van Dijk et al., 2009). The observation of RSN 

changes does not diminish the significance of studies assuming static network 

contributions, but suggests that there are statistically reliable and potentially meaningful 

dynamics that could be examined within these same datasets. This is in addition to new 

insights that may be gained by examining the transient inclusion of new network nodes 

into the stereotypical RSN. There is however, one major caveat. For RSNs determined 

from long observation windows, one can be confident that the static maps reflect all of 

the “core” nodes in a network. However, RSNs derived from short time windows may not 

show all nodes in a network as some of these may have transiently zero correlation as 

shown in our data. Until the nature of these dynamic RSNs are understood, it seems 

prudent to use observation windows of several minutes to ensure capture all the nodes of 

a RSN.  

The results suggest nonstationary relationships between brain areas; however, the 

sliding-window technique used to reveal this still assumes stationarity, albeit on a smaller 

temporal scale. Window sizes below 30s (15 vol) did not result in significant correlations 

and suggest a minimum window size is necessary. However, more sophisticated complex 

network measures investigating possible non-linear interactions and their manifestations 

(Friston, 1997; Werner, 2007), as well as consideration of multiple RSNs will be needed 

to truly characterize the underlying dynamics and elucidate the processes that govern 

them. 
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The time-varying changes of the RSNs may offer insight into the large-scale 

network behaviour that is difficult to achieve with other methodological approaches that 

do not share the same level of spatial resolution or brain coverage as fMRI. Additional 

work will have to focus on identifying activity profiles, transition states, and task-related 

changes to the dynamic behaviour using novel analysis strategies - particularly at the 

group level (Sato et al., 2006; Chang & Glover, 2010; Deco, Jirsa, & McIntosh, 2011). 

RS-fMRI has emerged as a possible diagnostic tool in clinical contexts (Greicius, 2008; 

Auer, 2008) and, given the wealth of information provided by dynamic alterations and 

emphasis at the single subject level, presents an exciting future direction for clinical 

applications. 

 

4.5 Conclusions 

The present findings indicate that ongoing fluctuations of resting-state functional 

connectivity are an intrinsic property of mammalian brain organization and not simply a 

consequence of conscious, cognitive processing. This fundamental feature of temporal 

brain dynamics may be exploited to assemble and modulate state- or task-dependent 

representations critical for cognition and behaviour. Multi-modal investigations will be 

necessary to elucidate the electrophysiological correlates of this phenomenon, but the 

results suggest that important network information and dynamics are missed when using 

average functional connectivity as the single network measure. 
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Chapter 5 7 

5 General discussion 

“The greatest challenge today, not just in cell biology and ecology but in all of 

science, is the accurate and complete description of complex systems. Scientists have 

broken down many kinds of systems. They think they know most of the elements and 

forces. The next task is to reassemble them, at least in mathematical models that 

capture the key properties of the entire ensembles.” (Wilson, 1998, p. 85 as cited in 

Strogatz, 2001). 

Early theoretical accounts of brain function emphasized aspects of localization and 

functional segregation, establishing the foundation of modern neuroscience. Current 

work, however, is now focusing extensively on the structural and functional interactions 

between brain areas  – “reassembling” the individual elements within a complex network 

framework. The topology of nodes at multiple levels is not random, but organized 

according to an efficient topology that combines efficient local information processing 

with efficient global information integration. Emergent and nonlinear dynamics arise 

from this connectivity architecture and the multi-scale network organization facilitates all 

adaptive behavior and cognitive processing. Resting-state fMRI affords a non-invasive 

method capable of exploring the topology of functional brain networks and has revealed 

that the human brain is composed of multiple spatially distributed, but functionally linked 

brain regions referred to as resting-state networks (RSNs).   

The identification of RSNs is only a preliminary step in elucidating the complex 

nature of human brain mechanisms. In addition to discovering the neural origins 

underlying the spontaneous activity measured with resting-state fMRI and quantification 

of disease-related changes in experimentally controlled animal models, comparative 

                                                
7
 Potions of this chapter have been published in Hutchison, R.M., & Everling, S. (2012). Monkey in the 

middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in 
Neuroanatomy. Under review. 
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studies are needed to explore the evolution and generalizability of the RSNs’ spatial and 

temporal properties. The present work represents the first step towards this goal.  

The aim of the current thesis was to characterize the functional network 

architecture and dynamics of the rat and macaque brains using a methodology that could 

allow direct cross-species comparisons with humans. Assessment of potential large-scale 

homologies represents an essential step in the validation of rats and macaques as animal 

models that span multiple physiological and pathological uses. Chapter 2 and 3 examined 

the spatiotemporal characteristics of anesthetized rats and macaques, respectively, using 

RS-fMRI. ICA, an exploratory analysis technique, was utilized to reveal multiple 

independent functional networks, circumventing limitations associated with previous 

seed-based approaches. Using a network identified in Chapter 3, Chapter 4 investigated 

the role of cognitive processing in dynamic changes in functional connectivity of both 

macaques and humans. The results supported several hypotheses showing that functional 

relationships are: not static; not solely a consequence of conscious processes; and an 

evolutionarily preserved aspect of brain function.  

 

5.1 Comparative biology 

Beyond the intrinsic motivation to explore and classify species, comparative 

biology can reveal important insights into the evolution of brain organization. By 

determining which features are conserved across species it can indicate brain regions and 

patterns that have a basic functional and/or developmental role. The results can also help 

validate extrapolated findings derived from the use of animal models that afford a greater 

range of experimental manipulations not practical in humans. Different species, including 

humans, have evolved by a repeated branching of lineages. Comparative studies typically 

focus on evaluating the divergence and similarity of characteristics between species of 

different branches. Divergence is a specialization that has evolved and is unique to a 

species or grouping of species, for example, the language capabilities in humans. Similar 

characteristics typically fall within two categories: homologies and homoplasies (also 

referred to as analogies). A homologue is “the same organ in different animals under 
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every variety of form and function,” (Owen, 1843). This could, for example, describe a 

bat's wing and a human hand that have a common underlying structure of bones and 

muscles. A homoplasic structure is “a part or organ in one animal that has the same 

function as another part or organ in a different animal” though the similarities between 

organisms are not present in the last common ancestor of the taxa being considered, but 

rather are the result of parallel or convergent evolution (Owen, 1843). An example of a 

homoplasic trait would be the wings of a bat and a butterfly.  

Rats and primates diverged over 80 million years ago and the last common 

ancestor of humans and macaques dates back to more than 25 million years ago (Fig. 5.1, 

top). Determining the relationships among cortical areas and networks between these 

species can be difficult because they differ in both brain (Fig. 5.1, bottom and Fig. 5.2) 

and body size, the relationship of which is nonlinear (Van Dongen, 1998). Over this 

duration, brain regions could duplicate, fuse, reorganize, or expand, changing the 

proportions of different regions as well as its microstructure and connectivity (Hill et al., 

2010; Sereno & Tootell, 2005). It is these changes that are believed to be related to the 

extensive differences in behavioural and cognitive capacities between the three species. 

The task of comparison is made more difficult because the measurement techniques are 

often different between species. RS-fMRI circumvents this final limitation and provides a 

more direct tool for cross-species comparisons  
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Figure 5.1. Simplified cladogram of mammals, indicating the divergence times of selected 
groups. Time scale in millions of years before the present. The encephalization quotient 
indicates the deviation of the brain size of a species from brain size expected on the basis of a 
‘standard’ species of the same taxon, in this case of the cat. Modified with permission from 
Wise, 2008. The bottom panel displays the cortial surfaces of the highlighted species. 
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Figure 5.2. Brain weight, encephalization quotient and number of cortical neurons 
in selected mammals. Modified with permission from Roth & Dicke, 2005. Data 
calculated from Jerison, 1973; Russell, 1979; Haug, 1987. 
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5.2 Homologous connectivity patterns 

The analysis of the networks of the rat using RS-fMRI in Chapter 2 revealed 

multiple networks composed of contralateral homologues (Fig. 2.1). The implication of 

which is that the synchronous hemodynamic fluctuations are reflecting ongoing electrical 

synchronization between the areas with similar functional attributes. This finding has 

since been reproduced in awake (Liang, King, & Zhang, 2011) and medetomidine-

anesthetized (Jonckers, Van Audekerke, De Visscher, Van der Linden, & Verhoye, 

2011); Fig. 5.3) rats. Similar network topology in what may be regarded as lower-order 

networks has also been observed in mice (Jonckers et al., 2011) and songbirds (Jonckers, 

Denolf, De groof, & Van der Linden, 2011b). Primates show similar patterns for sensory 

and motor networks (Fig. 5.4) and interhemispheric synchronization is also evident in 

newborn infants (Fransson et al., 2007; Gao et al., 2009). Taken together the results 

suggest that interhemispheric synchronization of LFFs is phylogenetically preserved 

across all mammalian species and may underlie a rudimentary aspect of brain function. 

As discussed in Chapter 2, coherent integration of cognition and behavior is dependent 

upon constant inter-hemispheric communication (Compton, 2002). This is especially 

critical for creating a unified representation of world (Houzel, Carvalho, & Lent, 2002), 

movement coordination (Gerloff & Andres, 2002), attentional processing (Banich, 1998), 

pooling processing resources (Liederman, 1998), and parallel processing (Compton, 

2002).  
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Figure 5.3. Resting-state networks of the awake (left column) and medetomidine-
anesthetized (right column) rat. Both studies utilized ICA to show bilaterally homologous 
networks through cortical and subcortical structures. Reproduced with permission from Liang et 
al., 2011; Jonckers et al., 2011.  
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Figure 5.4.  Sensory and motor resting-state networks of the macaque (left column) and human 
(right column) showing connectivity between bilateral homologues.  Macaque networks 
reproduced with permission from Hutchison et al., 2011a. Human connectivity maps (N = 12) 
derived from ICA of Chapter 4 data. 
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The importance of interhemispheric communication is further highlighted when 

examining disease states. For example, when compared with normal controls or 

language-delayed subjects, children with autism show significantly weaker RS-fMRI 

interhemispheric correlations across multiple bilateral homologues including the inferior 

frontal gyrus and superior temporal gyrus - areas associated with language production 

and comprehension (Dinstein et al., 2011). Further, the strength of interhemispheric 

synchronization is positively correlated with verbal ability and negatively correlated with 

autism severity. This allowed the authors to identify autistic children with a sensitivity 

and specificity of 72% and 84%, respectively suggesting that weak interhemispheric 

neural synchronization is a notable characteristic of autism. The cause of the connectivity 

disruption remains to be determined, but the authors suggest that it could result from a 

combination of “abnormal [structural] connectivity, synaptic function, excitation-

inhibition balance, local neural network structure/function, and so forth” (Dinstein et al., 

2011). 

Thus far, most of the reported RSNs of the rat (as well as mice and songbirds) 

have been primarily limited to connections between interhemispheric homologues, 

particularly when examined using ICA. Seed region analysis has revealed more 

distributed networks though these are typically much “noisier” and do not share the same 

level of robustness and reproducibility as observed in the distributed networks seen in 

both humans and macaques. Liang and colleagues (2011) have applied graph metrics to 

examine inter-RSN topology, revealing a broad grouping of the rat RSNs into clusters 

/modules (Fig. 5.5A). These were classified as 1) a cortical ribbon module that included 

bilateral dorsal olfactory bulb, motor cortex, somatosensory cortex, insular cortex, and 

visual cortex (Fig. 5.5B); 2) a module comprising the olfactory system, PFC, ACC, CPu, 

posterior somatosensory cortex, thalamus, hypothalamus, hippocampus, and auditory 

cortex that the authors speculate is involved in the integration of sensory input, cognitive 

processing, and output (Fig. 5.5C); and 3) a limbic/autonomic module consisting of the 

PFC, insular cortex, amygdala, hypothalamus, and auditory cortex  (Fig. 5.5D).  
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Figure 5.5. Segregation of the whole-brain network of the awake rat brain. a, The global 
functional network constructed based on significant intercomponent connections. Each colored 
box represents an ICA component labeled with its corresponding anatomy and the ICA number. 
Each line represents a significant connection between two components. Nodes within the same 
module are displayed in the same color (red, green, and yellow). Three modules were obtained 
by the spectral partitioning algorithm. B, Bilateral; L, left; R, right; AMG, amygdala; INS, 
insula; NAcc, nucleus accumbens; MO, motor cortex; HC, hippocampus; HY, hypothalamus; 
OB, olfactory bulb; Pir, piriform cortex; PTL, parietal cortex; S, septum; TE, temporal cortex; 
TH, thalamus; VIS, visual cortex.b– d, Community structures of the whole-brain network 
revealed by spectral partitioning. b, The first module is dominated by cortical ribbon. c, The 
second module is highlighted by the olfactory pathway and its interaction with PFC, and the 
integration of other sensory input, cognitive processing, and output in cortical and subcortical 
regions like thalamus and hippocampus. d, The third module includes regions important for 
emotional and autonomic functions such as amygdala, insular cortex, PFC, and hypothalamus. 
The same colors are used in b, c, and d as those in a. Distance to bregma (in millimeters) is 
labeled at the bottom of each image. Reprinted with permission from Liang et al., 2011. 
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The organization of the RSNs into modules, however, is still a far departure from 

the distributed within network connectivity seen in primate species. RSNs of humans and 

macaques are much more spatially distributed across cortical and subcortical areas. Even 

the aforementioned bilateral sensory and motor networks tend to encompass larger 

extents of cortex and in humans, multiple discrete functional and anatomical areas (e.g. 

Fig. 5.4, cingulate connectivity in human premotor RSN). Many task-based studies of rats 

also do not report networks beyond uni- or bilateral activation of specific areas though 

there have been reports of more distributed task- and electrically- evoked networks 

(Zhao, Zhao, Zhou, Wu, & Hu, 2008). Therefore, it appears that the minimal 

synchronization across multiple structures in the rat brain could reflect limited ongoing 

“higher-order” processing such as spontaneous cognition or predictive processing (further 

discussed in section 5.4) and represent a less evolved form of network topology. 

 

5.2.1 Fronto-parietal networks 

Homologous networks between macaques and humans are described in Chapter 3 

and some of these networks are directly compared in Fig. 5.6 (with putative functional 

labels). Apparent is the presence of lateralized, fronto-parietal networks in the human 

whose potential homologue in the macaque is symmetric. The networks have been 

implicated in cognitive attentional and oculomotor processes as well as memory and 

language functions (Beckmann et al., 2005; Jafri et al., 2008; Smith et al., 2009). The 

asymmetry in correlation patterns between left and right hemispheres might reflect 

stronger lateralization in humans than in monkeys. This is consistent with the general 

evolution to increased functional specialization in humans. Recently, event-related fMRI 

showed strong contralateral activations in monkeys, which were significantly weaker in 

putative human homologues, while the asymmetry between the hemispheres was stronger 

(Kagan, Iyer, Lindner, & Andersen, 2010). Fronto-parietal connectivity was further 

explored in a seed-region analysis of the same human and monkey data set (Hutchison et 

al., 2012b). As expected, there were consistent ipsilateral functional connections of the 

frontal eye fields with fronto-parietal cortical areas across both species. These included 

the intraparietal sulcus, dorsolateral prefrontal cortex, anterior cingulate cortex, and 
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supplementary eye fields (Fig 5.7). The use of cortical surface-based transformation of 

connectivity maps between species further corroborated the remarkable ispilateral 

organization of the FEF functional connectivity (Fig. 5.8). The analysis also revealed 

greater lateralization of connectivity with the FEF in both hemispheres in humans than in 

monkeys, corroborating the findings of the ICA. Overall, the results indicate an 

evolutionarily preserved fronto-parietal system, but also presents the opportunity to 

investigate the evolutionary predecessor of the lateralized human networks 
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Figure 5.6. Homologous higher-order resting-state networks of the macaque (left 
column) and human (right column). Putative functional roles of the networks are 
indicated on the left. Macaque networks modified with permission from Hutchison et 
al., 2011a. Human connectivity maps (N = 12) derived from ICA of Chapter 4 data. 
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Figure 5.7. Bilateral functional connectivity of FEF seeds in humans (A,B) and 
macaque monkeys (C,D). Dorsal view of the left and right hemisphere in humans (N = 
12) for left (A) and right (B) hemisphere seeds. Thresholded z-score maps normalized to 
the space of the PALS-B12 template (Van Essen 2005) are overlaid.  Dorsal view of the 
left and right hemisphere in macaques (N =6) for left (C) and right (D) hemisphere seeds. 
Thresholded z-score maps normalized to the space of the F99 template (Van Essen 2004) 
are overlaid. Note that the thresholded z-scores differ between human and monkey maps. 
Black asterisks indicate the location of the FEF seeds. as, arcuate sulcus; cs, central sulcus; 
ifs, inferior frontal sulcus; ls, lunate sulcus; mfs, middle frontal sulcus; pos, parieto-
occipital sulcus; pocs, posterior central sulcus; prcs, precentral sulcus; ps, principal sulcus.; 
sfs, superior frontal sulcus; sts, superior temporal sulcus.. Reprinted with permission from 
Hutchison et al., 2012b. 
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Figure 5.8. Registration of resting-state functional connectivity maps between 
macaques and humans. (A) Dorsal view of the macaque (left) and human (right) 
cortical surface. Superimposed are the thresholded z-score maps of macaques normalized 
to the F99 macaque brain (left) and transformed to the space of the human PALS-B12 
template (right). (B) Dorsal view of the human (left) and macaque (right) cortical surface. 
Superimposed are the thresholded z-score maps of humans normalized to the PALS-B12 
human template (left) and transformed to the space of the F99 macaque template (right). 
as, arcuate sulcus; cas, calcarine sulcus; cs, central sulcus; ifs, inferior frontal sulcus; lus, 
lunate sulcus; mfs, middle frontal sulcus; pos, parieto-occipital sulcus; pocs, posterior 
central sulcus; prcs, precentral sulcus; ps, principal sulcus; sfs, superior frontal sulcus; 
sts, superior temporal sulcus. Reprinted with permission from Hutchison et al., 2012b. 
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The results also highlight an important distinction between ICA and seed based 

approaches. The left and right human FEF maps closely resemble the left- and right- 

lateralized fronto-parietal networks revealed using ICA (Beckmann, DeLuca, Devlin, & 

Smith, 2005; Damoiseaux et al., 2006; Jafri, Pearlson, Stevens, & Calhoun, 2008; Liao et 

al., 2009; van den Heuvel, Mandl, & Hulshoff Pol, 2008). However, the networks are not 

identical and positively connected areas such as the central sulcus, postcentral sulcus, and 

precuneus are not included in the ICA lateralized networks even when ICA is applied to 

the current human data set (Fig. 5.7). Negatively connected areas are also absent. When 

ICA was applied to the current macaque data (Chapter 3), multiple independent resting-

state networks were found including a bilateral fronto-parietal network. Similar to what 

was observed in human subjects, the seed-based FEF network also encompassed regions 

associated with other resting-state networks such as the precentral-temporal and 

posterior-parietal networks including the precuneus. Negative correlations were again 

absent. A direct comparison of group ICA-derived and seed-based connectivity measures 

is not straightforward, owing to the differences in preprocessing (prewhitening and 

dimensionality reduction versus confound regression) and their underlying theory (Joel, 

Caffo, van Zijl, & Pekar, 2011). ICA also requires a prediction about the number of 

underlying sources in the data and increasing this model order can split a network into 

smaller sub-networks (Abou-Elseoud et al., 2010; Smith et al., 2009). Therefore, ICA and 

seed-based RS-fMRI analysis are both useful in examining RS-fMRI functional 

connectivity but differ in the types of questions they can answer.  

 

5.2.2 Default-mode network 

The most commonly investigated and perhaps most controversial network is the 

default-mode network (DMN). In humans, it bilaterally encompasses the posterior 

cingulate (PCC) / retosplenial cortex (Rsp) / precuneus (PGm), ventral and dorsal medial 

prefrontal cortex, inferior parietal lobule, lateral temporal cortex, and hippocampal 

formation (see Fig. 5.6). The DMN reduces its activity during goal-directed behavior and 

has been implicated in a range of functions including self-referential thought, both 

internal and external monitoring, memory consolidation, supporting consciousness, and 
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daydreaming, among others (Mason et al., 2007; Raichle and Snyder, 2007; Buckner et 

al., 2008, 2008). Given its potential role in oft-labeled “human” processes, assessing its 

presence in other species is of great interest.  

Most resting-state investigations using seed-based or ICA approaches have not 

reported a potential homologue for the DMN in the rat. Recently, however, two separate 

reports have supported a DMN-like network in the rat brain (Upadhyay et al., 2011; Lu et 

al., 2012). Both of these studies converged on a similar, though not identical topology 

patterns. Upadhyay and coworkers found that a seed placed in the anterior cingulate 

cortex of awake animals showed bilateral connectivity with Rsp/PCC, parietal cortex, and 

the hippocampus. Lu et al., using ICA of anesthetized rats (dexmedetomidine and 

isoflurane), found a network comprising bilateral orbital, prelimbic, cingulate (Cg1/Cg2), 

retrosplenial cortex, rostral, and dorsal posterior parietal cortex, perirhinal, entorhinal and 

temporal association cortical regions (TeA) as well as the  hippocampus. Many of the 

structures are the same between studies though notably absent in the published study by 

Upadhyay et al. is the occipital and prelimbic cortex, thought to be rat representations of 

the prefrontal cortex.  
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Figure 5.9. Potential default-mode network homologue in (A) awake and (B) 

anesthetized rats. Modified with permission from (A) Upadhyay et al., 2011); (B) Lu et 

al., 2011. 
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These results raise a number of interesting questions. Could this network 

represent a precursor to the primate DMN? What is its functional role? Before these 

questions can be addressed it will first be essential to determine the validity of these 

findings. It is unclear why previous reports did not reveal the same network when using 

ICA at multiple model orders at single and group levels. As mentioned, a distributed 

network at rest is also not typical of most reported RSNs in rat investigations. Finally, by 

definition, the DMN activity should decrease during task performance and this functional 

role will have to be addressed.  

The identification of a DMN in nonhuman primates remains equivocal, though a 

rough consensus is beginning to emerge (Fig. 5.10). Vincent and colleagues first reported 

a potential candidate for a homologous macaque DMN (Fig. 5.10A). An anatomically 

placed seed in the posterior midline encompassing areas of the PCC (areas 23 and 31) 

and a portion of the PGm (area 7m) of isoflurane anesthetized macaques was found to be 

functionally connected with lateral temporoparietal cortex (including area 7a and superior 

temporal gyrus) and posterior parahippocampal cortex. There were also strong 

correlations with the dorsal medial prefrontal cortex (dmPFC; area 9) though there is 

considerable overlap with the anterior cingulate cortex (area 24c). Using the same 

dataset, Margulies and colleagues showed that the heterogeneous features of the 

posteromedial cortex could be revealed using RS-fMRI and that connectivity profiles are 

greatly dependent upon the selection of the seed region within its individual subunits 

(Rsp. PCC, PGm) (Margulies et al., 2009). Seeds restricted to the PCC (area 23/31) most 

closely resembled that of the previous study and possessed characteristic human DMN 

nodes (Fig. 5.10B). There were however, notable differences as the ventral medial PFC 

(vmPFC; areas 10m, 32, and 14r), dorsolateral prefrontal cortex (dlPFC), and inferior 

parietal lobule were functionally connected to the PCC seed where as lateral 

temporoparietal cortex and hippocampal formation connectivity were absent. Their 

results also advanced the idea that the PGm is not in fact a component of the DMN 

(Buckner et al., 2008). A third study of the same isoflurane anesthetized monkeys using a 

PCC/Rsp seed defined from a posterior parahippocampal cortex (PPHC) connectivity 

map revealed a combination of areas from the previous studies albeit with limited dlPFC 

connectivity (Vincent et al., 2010); Fig. 5.10C). A separate seed-region based 
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investigation of three isoflurane anesthetized macaques did not corroborate the potential 

homologous cortical areas as medial frontal, dorsal frontal and hippocampal regions were 

absent from a posteromedial cortex seed (Teichert et al., 2010); Fig. 5.10D). Given the 

dependency on the seed location shown in the aforementioned studies - a finding that has 

been observed in humans (Cole et al., 2010) - it is possible the seed encompassed a large 

proportion of the PGm.  

To avoid the constraints of seed selection, we followed in the path of many 

human investigations and implemented ICA with a low model order (Chapter 3; 

(Hutchison et al., 2011a). The closest qualitative component matching a potential DMN 

homologue contained the PGm with some extension into the PCC, areas PG and PE of 

the parietal cortex, and unilateral vmPFC (area 14r and 10m) and ACC area 24a/c (Fig. 

5.10E). Given the previous results and significant portions of the DMN architecture that 

are missing, this more likely reflects a combination of the PGm sensorimotor and 

cognitive networks (Margulies et al., 2009). To rule out issues with the quality of our data 

or confound variables, we have since placed a midline spherical seed (radius = 1.5 mm) 

in the PCC (area 23/31). The results show homologous areas across all nodes of the 

human DMN (Hutchison et al., unpublished data; Fig. 5.10F) and taken with the other 

studies most likely represents the full DMN homologue of the macaque. Future 

investigation and application of ICA will be necessary to explain why this DMN 

component does not emerge in either group or single subject ICA (Moeller et al., 2009; 

Hutchison et al., 2011a) as it is very robustly identified in human studies.  

Most recently, a meta-analysis of fMRI data collected from ten awake monkeys 

performing tasks showed a network of regions that decreased in activity when the task 

demands shifted from a passive task to externally oriented processing (Mantini et al., 

2011) – a defining feature of the human DMN. The network included medial, cingulate, 

parietal, and prefrontal regions (Fig. 5.10G) that demonstrate substantial spatial overlap 

with our PCC seed-based network with the exclusion of lateral temporoparietal cortex 

and the hippocampal formation. The findings further corroborate this as the monkey 

equivalent of the human DMN. It is important to consider that within the same paper 

however, seeding areas within nodes of the network in awake fixating monkeys (N = 4) 
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did not reproduce the identical network, though seeding the area 31 produced the closest 

qualitative match (Fig. 5.10H). Taken together, there does seem to be a general consensus 

as to a homologous DMN and its components in the macaque that can be reveled with 

resting-state approaches. For it to become a dependent variable in experimental 

manipulations, future work examining both physiological and methodological variables 

will be needed to explain the lack of robustness within and across studies.  
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Figure 5.10. Potential default-mode network homologue of the macaque across 
multiple studies. See text for description. Modified with permission from (A) 
Vincent et al., 2007; (B) Margulies et al., 2009; (C) Vincent et al., 2010; (D) Teichert 
et al., 2010; (E) Hutchison et al., 2011; (F) Hutchison et al., 2011; (G,H) Mantini et 
al., 2011. Reproduced with permission from Hutchison & Everling, 2012. 
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5.2.3 Expanding network investigations 

The examination of functional homologous connectivity patterns between species 

with RS-fMRI is not limited to the comparison of the 8-10 most commonly reported 

networks as these primary RSNs do not represent the extent of large-scale networks in the 

human or nonhuman primate brain. Unique connectivity profiles have been reported 

when using both hypothesis driven (Krienen and Buckner, 2009; Vincent et al., 2010; 

Mars et al., 2011) and exploratory (Damoiseaux et al., 2006; Moeller et al., 2009; Liao et 

al., 2009; Hutchison et al., 2011a) techniques. RS-fMRI offers an excellent opportunity to 

examine functional subunits or parcellation within structures. As mentioned above, 

distinct patterns of functional connectivity were demonstrated within the posteromedial 

cortex or both species, with each subdivision suggesting a discrete functional role 

(Margulies et al., 2009). A similar analysis procedure has been used to delineate 

subdivisions of the ACC. Margulies and coworkers (2007) placed spherical seeds 

throughout the caudal, rostral, and subgenual ACC in human subjects (Fig. 5.11, left 

panel). They found that posterior seeds were positively correlated with cortical motor-

related areas and anti-correlated with posterior and subgenual cingulate. More anterior 

seeds showed strong positive correlations with PPC and dlPFC. The ventral ACC was 

positively correlated with insular cortex. These functional connectivity patterns were 

consistent with the popular model that proposes a distinction between a dorsal cognitive 

and a ventral affective ACC subdivision (Bush et al. 2000). Recently, we performed a 

similar analysis in macaque monkeys humans (Hutchison et al., 2011b); Fig. 5.11). We 

found that the functional connectivity of the ACC varied systematically along the 

rostral/caudal and dorsal/ventral axis, thereby confirming previous anatomical tracer and 

lesion studies in monkeys (Pandya et al. 1981; Vogt and Pandya 1987; Barbas et al. 1999; 

Rudebeck et al. 2006). We were able to delineate several subdivisions and identified 

separate primary networks within the ACC. The functional connectivity maps of 

individual seeds showed a remarkable similarity with those found by Margulies et al. 

(2007) in humans. In particular, we were able to identify macaque ACC seeds that 

corresponded to the motor, cognitive, and limbic subdivisions (Fig. 5, right panel). These 

two studies demonstrate that RS-fMRI is a useful tool for comparative mapping of brain 

networks in humans and non-human macaques. 
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Figure 5.11. Homologous functional subdivisions of the anterior cingulate 
cortex. Functional connectivity profiles of seed regions within the anterior 
cingulate cortex are shown for the human (left column) and macaque (right 
column). Seed locations are shown on the standard MNI and F99 brains for the 
humans and monkeys, respectively (top). Putative functional roles are labeled. 
Modified with permission from Margulies et al., 2007; Hutchison et al., 2011b. 
Reproduced with permission from Hutchison & Everling, 2012. 
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5.2.4 Summary of comparative biology 

The brain topology of a species is the product of evolutionary changes driven by a 

diverse range of internal and external selection pressures. Universal properties commonly 

emerge such as high efficiency of information transfer for low physical connection cost 

found in small world networks (Bullmore & Sporns, 2009; Sporns, 2010) are good 

examples. That is not to say that all brains are organized in the same fashion. The specific 

development and arrangement of neurons across multiple scales vary greatly between 

species that are not simply a product of increased size. The conclusions of the present 

thesis in regards to homologous organization is that as brain complexity increases, 

bringing with it a more diverse repertoire of cognitive and behavioural states, new RSN 

topology develops (Fig. 5.12). All three species examined demonstrate robust 

interhemispheric communication and this seems to represent the most fundamental large-

scale network structure. More sentient species such as the macaque and human show 

distributed networks encompassing multiple brain areas beyond contralateral 

homologues. Hierarchical evaluation of such networks does however, show that the 

homologous structures are most strongly connected and can represent subsystems within 

the larger network. Presumably these networks, whose cost in terms of wiring and 

development is high, evolved to facilitate greater information integration, and 

computation. At the highest complexity level, humans demonstrate robust lateralization 

of the distributed fronto-parietal RSNs, a property not found in non-human primate 

species and suggests that this specialization is a further adaption necessary for human-

specific behaviours such as language. Taken together, the results suggest that RS-fMRI is 

well suited for the examination of the evolution of brain networks and evaluation of 

homologies between species. Within the networks examined, both rats and monkeys can 

provide suitable models to address research questions not possible in humans though the 

appropriate level of network complexity must be taken into consideration. 
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Figure 5.12. Summary of findings. 
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5.3 The relationship between function and structure 
revisited 

 As outlined in the introduction (Section 1.7.4), there are a number of open 

questions regarding the potential relationship between functional connectivity, measured 

as the temporal relationships between brain regions, and the underlying structural 

connectivity that represents the anatomical white matter fiber tracts. Simulated and 

empirical investigations of humans have suggested an overall good correspondence 

between the two (Damoiseaux & Greicius, 2009; Greicius, Supekar, Menon, & 

Dougherty, 2009), although clear discrepancies have emerged. The few case studies 

examining congenital or surgical alteration of the callosal fiber connections have also 

produced mixed results (Johnston, Vaishnavi, et al., 2008; Quigley et al., 2003; Tyszka, 

Kennedy, Adolphs, & Paul, 2011; Uddin et al., 2008). There are two limiting factors 

when using human subjects that will prevent an adequate understanding of the 

relationship and as such the issue will have to be addressed with an animal model. The 

first is that thus far, most empirical studies have examined structural connectivity derived 

from diffusion MRI methodologies (Greicius et al., 2009; Hagmann et al., 2008; Honey 

et al., 2009). These techniques can provide evidence about major white matter pathways, 

but methodological limitations do not allow precise delineation of the origins, crossings, 

and terminations of pathways, thereby restricting the interpretation of results. Invasive 

tracer studies carried out in non-human primates remains the gold standard for 

uncovering the precise information concerning the origins and terminations of white 

matter connections. The first qualitative comparisons of functional resting-state 

connectivity maps and structural connectivity maps derived from experimental tracer 

studies in the macaque demonstrated remarkable consistency between the patterns 

(Margulies, Vincent, et al., 2009; Vincent et al., 2007), Fig. 5.13). In fact, the finding of 

the macaque tracing results can be accurately extrapolated to predict human functional 

connectivity patterns (Kelly et al., 2010; Margulies, Vincent, et al., 2009). 
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Figure 5.13. Overlap of functional and structural connectivity patterns in the 
macaque. Modified with permission from Vincent et al., 2007; Margulies et al., 
2009. 
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To allow for a more quantitative assessment of functional/structural relationships 

it is necessary to examine the correspondence beyond single areas. Recent work has 

compared macaque RS-fMRI connectivity to structural connectivity derived from 

macaque axonal tract tracing studies contained within the CoCoMac database (Adachi et 

al., 2011). CoCoMac is a systematic record of the known wiring of the primate brain 

containing details of hundreds of tracing studies in their original descriptions (Stephan et 

al., 2001). The primary finding of this work was that functional connectivity between 

areas with no direct structural connection is driven by common afferents and common 

efferents (as opposed to serial relays). The work however, did not attempt to explore the 

overall correspondence between the connectivity types and was limited to unilateral 

visual and sensorimotor areas in two monkeys. My collaborative work directly addressed 

this limitation. Eighty-two cortical regions of interest were selected (41 per hemisphere) 

within the CoCoMac database creating a structural connectivity matrix of the relative 

strengths of connections between the origin (source) and termination (target) of the 

axonal fibers (Fig. 5.14A). Pairwise correlations were performed across timeseries 

derived from the same ROIs in the functional data (Fig. 5.14B). There was an overall 

high cosine similarity (0.69), a measure of correspondence between the two matrices that 

could also be examined individually for sources (range = 0.39 – 0.85) and targets (range 

= 0.20 – 0.86). The results also demonstrated that the strength of functional connectivity 

was proportional to the strength of anatomical connection, albeit as shown in previous 

reports, functional connections did exist between regions that had no direct anatomical 

connection.  
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Figure 5.14. Overlap of functional and structural connectivity. (A) Structural connectivity 
matrix derived from the CoCoMac database. Strong (white), moderate (light grey), weak (dark 
grey) and no (black) anatomical connections are indicated. (B) Functional connectivity 
correlation matrix of 82 cortical seed regions averaged across 6 monkeys. Matrices are 
organized generally from anterior to posterior regions, for left then right hemispheres. 
Reprinted with permission from Shen et al., 2012. 
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The macaque model has also allowed for the controlled evaluation of fiber 

pathway contribution to functional connectivity through surgical manipulation. As stated, 

there are inconsistent results when examining patients with agenesis or resection of the 

corpus callosum. A case study of a 6-year-old child following resection of the corpus 

callosum (Johnston et al., 2008) and of a small cohort (N = 3) of patients with agenisis 

(Quigley et al., 2003) found significantly decreased functional connectivity between the 

neocortices. However, contradictory reports from a patient (age = 73) who underwent 

complete forebrain commissurotomy (Uddin et al., 2008) and a sample (N = 8) of patients 

with complete agenesis of the corpus callosum (Tyszka et al., 2011) found preserved 

bilateral connectivity. In response to these discrepancies, that are possibly related to 

compensatory mechanisms occurring over time, Croxson et al., (2011) scanned monkeys 

(N= 4) before and after surgical transection of the forebrain commissures (including the 

body and genu of the corpus callosum, anterior commissure, and splenium including the 

hippocampal commisure). There were significantly decreased interhemispheric 

correlations between pre- and post- operative scans across multiple bilateral homologues. 

Overall, the strong positive similarity values between functional and structural 

connectivity matrices and the loss of interhemispheric correlations following surgical 

resection of the tracts suggest that the two measures are intricately related. The 

correspondence between the two measures is not, however, 1:1 as evidenced by the less 

than perfect correlation and presence of correlations in the absence of direct connections. 
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5.4 Function of spontaneous fluctuations and 
synchronization  

Spontaneous activity and dynamic network relationships have emerged as a 

common theme when studying the brain across multiple spatial and temporal scales in 

both animals and humans and likely represent a fundamental property of brain 

organization (Friston, 2000; Kelso, 1995; Rabinovich, Huerta, Varona, & Afraimovich, 

2008; Sporns, 2010). The disproportionate metabolic cost driving spontaneous activity 

further substantiates its role in brain function. Beyond their underlying activity and 

mechanisms, most likely a complex manifestation of the underlying electrical activity 

(Britz, Van De Ville, & Michel, 2010; Laufs, 2008; Mantini, Perrucci, Del Gratta, 

Romani, & Corbetta, 2007; Musso, Brinkmeyer, Mobascher, Warbrick, & Winterer, 

2010; Nir et al., 2008; Shmuel & Leopold, 2008), the specific role of low frequency 

BOLD fluctuations and their synchronization remains unclear though there have been 

several hypotheses (Fox & Raichle, 2007).  

One suggestion is that the observed temporal correlations between fMRI time-

series of anatomically separated regions at rest represent a record or memory of previous 

use. Within this framework, regions that are modulated together in a task-dependent 

manner will subsequently “wire” together via synaptic plasticity/potentiation. At rest, the 

functional architecture will then continue to reflect the intrinsic energy demands of 

neuron populations that had fired together with a common functional purpose and 

possibly maintain the structural and functional integrity of networks. Evidence showing a 

high degree of overlap between resting- and task- based networks (Esposito et al., 2006; 

Fransson, 2006; Sun, Miller, Rao, & D’Esposito, 2007) and subsequent alteration of 

resting-state connectivity following intense training/learning (Lewis, Baldassarre, 

Committeri, Romani, & Corbetta, 2009) supports this view.  

It has also been suggested that BOLD correlations could represent the 

coordination of spontaneous neuronal patterns that organize or coordinate the activity of 

neurons. Regions that commonly work in concert will then exhibit synchronous temporal 

patterns. Fox and Raichle (2007) equate the idea to the temporal binding hypothesis albeit 



232 

 

on a “much slower, broader, and more permanent scale.” However, empirical evidence 

supporting this notion is still in its infancy.  

A third idea, and in the author’s opinion the most compelling, is that the 

spontaneous fluctuations and their dynamic network manifestations represent predictions 

about expected use. Correlation patterns are then a calculated assumption about the brain 

regions that are likely to be used together in the future. Both theoretical (Friston, Glaser, 

et al., 2002; Friston, Penny, et al., 2002) and empirical (Körding & Wolpert, 2006; 

Pouget, Dayan, & Zemel, 2003; Sadaghiani, Hesselmann, Friston, & Kleinschmidt, 2010) 

studies have provided support for a Bayesian perspective of brain function. That is, the 

ongoing selection of optimal statistical inferences that are continuously informed by prior 

probabilities which is akin to forms of top down processing. In a recent review, Buckner 

and Vincent (2007) argue that:  

“future oriented processes are the majority of the brain’s function. Perhaps our 

recent evolutionary adaptations, having largely solved surviving the moment, now 

include a great deal of neural resources dedicated to surviving future moments. 

That is, while we spend critical moments engaging the environment to solve 

immediate tasks, we spend most of our time directed away from the environment 

in processing modes that consolidate the past, stabilize brain ensembles, and 

prepare us for the future.” (Buckner & Vincent, 2007, p. 1095) 

The brains of most species, especially primates, must allow the individual to implement 

different behaviors under different environmental contingencies to accommodate a wide 

variety of goals. The time for perception, integration, and decision processes to take place 

can extend beyond the available time window to make an appropriate response, and in 

some circumstances lead to death of the individual (e.g. when failing to quickly decide to 

run from a predator). Predictive processing can significantly decrease the time and 

available metabolic resources needed to integrate the information for these tasks and 

allow for a faster and more accurate response. Within the context of this thesis, the 

predictions about upcoming use/need could result in a greater probability of certain 

network configurations emerging. This concept is also intricately linked to the observed 
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spontaneous cycling of network topology demonstrated in Chapter 4. The fluctuating 

configurations could reflect the updating of predictions, and may also serve a functional 

role in that changing metastable states allows the brain to better respond to changing 

internal or external demands that are the critical factor for higher-order complex tasks 

requiring large-scale integration of brain areas (Buckner & Vincent, 2007; Engel et al., 

2001). Deco and coworkers have compared the phenomenon to a tennis player awaiting a 

serve. Preemptively, a player makes small hops to the left and to the right so as to be able 

to react more quickly to the incoming ball than would be possible from a static position 

(Deco, Jirsa, McIntosh, Sporns, & Kötter, 2009). Finally, it is important to note that each 

of these three hypotheses are not mutually exclusive and it is most likely the case that 

spontaneous activity is shaped by all three at any given time. 

 

5.5 Anesthesia and States 

A large proportion of the resting-state investigations of animals have utilized 

anesthesia as a method to eliminate motion effects, physiological stress, and training 

requirements. As outlined throughout this review, RSNs have been found in rodents and 

macaques despite the use of various types of anesthesia. In rodents, these have included 

alpha-chloralose (Lu et al., 2007; Majeed et al., 2009), medotomidine (Zhao et al., 2008; 

Pawela et al., 2008, 2010; Magnuson et al., 2010), ketamine (Hutchison et al., 2010), and 

isoflurane (Kannurpatti et al., 2008; Hutchison et al., 2010; van Meer et al., 2010; Wang 

et al., 2011; Liu et al., 2011). Isoflurane represents the most commonly used anesthetic in 

monkeys (Vincent et al., 2007; Shmuel and Leopold, 2008; Teichert et al., 2010; Mars et 

al., 2011; Hutchison et al., 2011a,b) though propofol (Matsui et al., 2011; Adachi et al., in 

press) and a combination of ketamine and medetomidine (Moeller et al., 2009) have been 

used successfully. Despite convergence of results across anesthesia types and even with 

awake animals (Zhang et al., 2010b; Liang et al., 2011; Mantini et al., 2011) it is 

incorrect to say that quantifiable differences do not exist between the different states (Lu 

et al., 2007; Moeller et al., 2009; Williams et al., 2010; Wang et al., 2011). The 

mechanisms of action of many anesthetics remain poorly understood, but certainly 

modulate neural activity and consequently influence the cerebral blood flow if not 
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effecting blood flow directly. Isoflurane in particular has been shown to disrupt 

functional thalamocortical connectivity (Alkire et al., 2000; Steriade, 2001; Arhem et al., 

2003) in addition to causing vasodilation that can affect cerebrovascular activity (Farber 

et al., 1997; White and Alkire, 2003; Schlünzen et al., 2006). The effects could be 

manifested as changes in the correlation strength, localization, or inclusion of distributed 

nodes within specific networks (Vincent et al., 2007; Lu et al., 2007; Wang et al., 2011; 

Liu et al., 2011). Anesthesia can also limit longitudinal studies in cases such as alpha-

chloralose that require animal sacrifice or recoverable anesthetics that require a necessary 

interval between scanning sessions. Finally, there are concerns of possible drug 

interactions when studying pharmacological interventions. 

Despite the disadvantages, the utility of anesthesia should not be understated. 

Beyond allowing extended, motion-free acquisition in naive animals, anesthesia 

experimentation can serve to explore the fundamental physiological relationships 

underlying spontaneous fluctuations and functional connectivity by exploiting their 

unique mechanisms of action and effect on neural activity, neurovascular coupling, and 

vascular reactivity. Further, anesthesia can eliminate conscious processes such as passive 

mind wandering, active monitoring, memory formation, or changes in attention and 

arousal during image acquisition that may confound certain experiments (Hutchison et 

al., 2012a). Reciprocally, there is the potential to explore the mechanisms that account for 

the anesthesia’s diverse effects on memory, pain, and consciousness. While the use of 

anesthesia in human research is possible (Greicius et al., 2008) it is severely limited and 

provides an additional need for animal investigations. 

 

5.6 Future Directions 

The work presented in this thesis represents the first steps upon which multiple 

research directions can now be developed. It is with the knowledge of the normal brain 

topology and dynamics of the rat and monkey models that experimental manipulations 

can be characterized providing new and valuable insights in how the human brain 

operates across multiple states.  
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Homologous spatial and temporal brain properties establish the suitability of the 

rat and macaque as models of human brain organization and can extend the application of 

animal RS-fMRI investigations to the exploration controlled disease models. These can 

explore the spectrum of neurological and psychiatric diseases such as schizophrenia, 

Alzheimer’s disease, epilepsy, among others that are accompanied by abnormal 

functional disruptions (Auer, 2008; Greicius, 2008) and have a developed animal 

equivalent. Following the determination of causal relationships between the disease and 

altered connectivity patterns, the animal models will allow the assessment of early 

diagnostic biomarkers and the development of better drug treatments. In a similar 

manner, functional or structural changes can be induced with temporary or permanent 

lesions using techniques such as cooling loops (Koval et al., 2011), muscimol injections 

(Dias et al., 1995; Shi et al., 1998), tissue ablation (Rushworth et al., 2003), or 

optogentics (Han et al., 2009; Diester et al., 2011). These changes can disrupt local and 

distributed topology such as small-world topology, particularly when targeting central or 

provincial hubs. Taken further, longitudinal studies of these animals offer the opportunity 

to investigate the timecourse of network plasticity in response to the alterations of brain 

organization. Longitudinal studies are also critical to allow comparison of the network 

development in humans (Fransson et al., 2009; Fransson et al., 2007) to that of other 

species.  

The spatial connectivity patterns of RSN nodes can provide future 

electrophysiological targets that could potentially reveal new functional representations. 

The multimodal approach would first identify brain areas functionally connected to a 

region of interest using RS-fMRI. Depth electrodes can then be placed based upon the 

resulting maps to identify the functional properties of cells within that area. My current 

collaborative work has already begun exploring the functional role of cingulate areas 

identified as part of the macaque oculomotor RSN shown in Chapter 3 and 4 (Babapoor-

Farrokhran, Hutchison, Gati, Menon, & Everling, 2011). Another particularly exciting 

avenue of future research is the use of multi-site depth recordings combined with 

simultaneous whole-brain fMRI. Though technically difficult, this will allow for more 

accurate identification of the neural origins of spontaneous BOLD activity as well as 

offer insight to the electrophysiological correlates of the dynamic patterns and 
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hypersynchronization observed in Chapter 4. Like the work described in this thesis, this 

should be first conducted in anesthetized animals before examining task-related 

modulation of the dynamic patterns. A greater focus on awake animals (Liang et al., 

2011; Mantini et al., 2007) will also serve avoid the potential confounding effects of the 

anesthetic agents. It will also likely be the case that simultaneous depth recordings and 

fMRI in animal models will be necessary to reveal the origin and potential functional role 

of anticorrelated areas – a phenomenon reported throughout this thesis. Anticorrelations 

can occur within or between RSNs and the temporally consistent negative correlations are 

most often observed between regions lacking direct anatomical connections (Shen et al., 

2012). Whether this often neglected connectivity type represents a form of temporal 

segregations (Fox et al., 2005) or a manifestation of noise-driven transitions between 

different metastates (Deco et al., 2009) could provide further insights into ongoing brain 

organization. 

From an analytical standpoint the techniques used in this thesis represent a 

simplified approach for examining a very complex system. Certain properties of the 

networks are not taken into account when modeling the system. For instance, there is an 

implicit assumption of uniformity across the nodes (brain regions) and the connections 

between them. However, it is known that cell type, density, and configurations vary 

greatly region by region and the connections between the regions can have different 

weights, directions, conduction times, and signs (excitatory/inhibitory). Chapter 4 also 

outlined that the dynamic connections most likely are a manifestation of a nonlinear 

system that will require measures beyond simple correlations or measures of statistical 

independence. Therefore, future research will be needed to better take into account the 

diverse and complex functional and structural architectures as well as better address the 

interactions between both can shape the other. Finally, the effects of movement, 

vasomotion, cardiac, and respiratory factors and their contribution to the spontaneous 

signals need to be further investigated.  

 



237 

 

5.7 Conclusions 

The mammalian brain is compilation of functional and structural networks across 

multiple spatial scales. These networks work in concert to support the diverse range of 

cognitive processes necessary for the selection and implementation of appropriate 

behaviours essential for the survival and reproductive success of the individual and by 

extension, the species. The bulk of the metabolic resources in the brain are not, however, 

allocated for the implementation of the immediate behaviour, but instead to the ongoing 

brain activity necessary for consolidating, maintaining, and predicting internal and 

external representations (configurations) over much longer time scales. Resting-state 

fMRI has provided a methodology capable of exploring this fundamental, yet overlooked, 

attribute of brain organization. The present work revealed that network topology and the 

reciprocal temporal features are ubiquitous across mammalian species as well as the 

presence of homologous network architecture. The results also show that with increasing 

brain complexity more distributed network patterns emerge and as well as lateralized 

organization in humans. From an applied research perspective, the findings support the 

use of animal models for the study of network disruptions in disease and exploration of 

the true underpinnings of the RS-fMRI signal. The applications and future avenues of 

research extending from the present thesis are broad and will aid in our understanding of 

study of large-scale brain function. 
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