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ABSTRACT

Let (X, A, P) be a probability space. The statis-
tical tolerance region Q(X) is defined as a statistic
which maps the point X from X into a region Q(X) belonging
to A. The probability content of Q(X) is called the
coverage of the tolerance region and is denoted by Q).
Q(X) is a B-expectation tolerance region if the expected
value of C(Q) is equal to R.

The statistical tolerance regions in general ani the
B-expectation tolerance regions in particular are an
important part of the statistical inference. They are used
in quality control, life-testing and process reliability
studies. So far in the literature they have been construc-
ted by the standard methods and by using the Bayesian
method of statistical inference. The present work deals
primarily with the construction of the B-expectation
tolerance regions using the structural method of statistical
inference.

The structural method of inference, as developed by
Fraser, re-examines most of the inference problems taking
into account the internal structure of the response
system. The analysis of this intermal structure enables
us to express our knowledge about the parameter (based on

the data) in terms of its probability distribution, known

iii
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as the structural distribution. Using the structural
distribution of parameters, the f-expectation tolerance

regions are constructed for the following cases:

i) The samples from the normal distribution and the

exponential distribution: the location-scale model,

ii) Difference of the samples from two normal

distributions with different variances and equal variances.

1ii) The regression model with the normal error

variable.

iv) The samples from the multivariate normal distri-

bution: the affine multivariate model.

v) The samples from q multivariate normal distri-

butions: the generalized multivariate model.

vi) Pairwise difference of the samples from ¢ multi-

variate normal distributions.
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CHAPTER 1

R-EXPECTATION TOLERANCE REGIONS
BASED ON STRUCTURAL MODELS

1.1 Introduction. The present thesis primarily deals with

the construction of the R-expectation tolerance region for
the class of statistical models known as structural models.
In particular, the B-expectation tolerance regions are
constructed for the location-scale model, the regression
model, the multivariate model and generalized multivariate
model. The B-expectation tolerance regions are also
constructed for the difference of the samples from two
normal distributions and for the pairwise difference of

the samples from q multivariate normal distributions.

1.2 B-expectation Tolerance Regions. Statistical tolerance

regions are extensively used in problems of statistical
inference such as life testing, quality control and process
reliability studies. The theoretical basis of the toler-
ance regions drew the attention of statisticians from the
early 1940's. The works of Wilks (1941), Paulson (1943),
Wald and Wolfowitz (1946), Tukey (1947) may be mentioned.
Fraser (1951 and 1953), Fraser and Guttman (1956),

Guttman (1957 and 1959) and many others investigated the

tolerance regions from the classical point of view.



Development of the Bayesian method of statistical inference
helped to the further expansion of the theory of tolerance
regions. The basic works in this area are due to

Aitchison (1964), Aitchison and Sculthorpe (1965),

Guttman (1969). The results of both approaches are put
together in an excellent monograph on the tolerance regions
by Guttman (1970).

Now we introduce the necessary terminology and notation
and the definitions of the tolerance regions.

The set of all possible outcomes X, of an experiment
is known as a sample space X. The measurable space X(A)
associates the sample space X with g-algebra A, which is
defined on a class of subsets A of the sample space X. The
set of all n-tuples (xl, cees xn), where X, € X for all i is
known as a product space and is denoted by Xn. We will
restrict ourselves to the n-dimensional Euclidean space, SO
that X" = ",

The class of probability measures OVer the space is
denoted by {Pe/e € nl. Pe(A) is the member of this class,
where 6 belongs to some indexing set Q. We shall consider
tolerance regions based on a sample of n from one of these
probability measures. Now, for each value of the outcome
(xl, cees xn) we wish to associate a subset of the space R,
Accordingly, our first requirement is that a tolerance region
Q(xl, ey xn) be a set function from R" into some Borel
field B. The point of interest about the region Q(xl, RN xn)

is the probability in the region as determined by the probabi-

lity measure waich gave rise to that outcome. The probability



measure of Q(xl, cees xn) using Pe is

Pe[Q(Xl’ cees xn)];

which is called the coverage of the tolerance regiou. This
function of the outcome has an induced probability distri-
bution corresponding to the product measure of Pe over ",
It is this distribution that tells us how the probability
content of Q(xl, cees xn) varies in repeated sampling from a
given probability measure. We will be interested in the

average Or expected probability in a tolerance region

Q(xl, veey X )

n

Definition 1.2.1. Q(xl, cens xn) is a B-expectation

tolerance region if
ES{PS[Q(Xl’ ceey X )]} =B

for all 8 € Q.
Thus, the statistical tolerance region is 2 statistic which
maps the point (Xl’ ceey Xn) € R into a regiom Q(Xl,...,Xn)eA,
where Q is a random set function. The coverage of Q-abbrevia-
ted as C(Q)- is simply the probability content of the region Q
for a given 8 € Q. The coverage of the tolerance region Q,
c(Q), is a random variable and has its own distribution, since
Q is a random set function. Therefore it we construct the
g-expectation tolerance region Q, we impose the condition that
Q be such that the mean value of the distribution of its
coverage €(Q) is B. The Definition 1.2.1 is very restrictive,
because we search for suitable Q for all values of 8€ Q. It

should be also noted that such Q is not unique. The choice of



position of the tolerance region Q is given by practical
purposes. Sometimes we are interested in the middle part
of the distributionm, in other cases we might be interested
in the right-hand (or left-hand) tail of the distribution.
It should be noted also that because of practical purposes,
the value of B is taken to be reasonably close to 1
(usually B = .95 or B = .99).

As an example of the tolerance region Q we might
consider an interval (X(k)’ X(n-k)]’ where X(k)(l <k <n)
is the k-th order statistic of a sample (Xl, ey Xn)’
from a population having a continuous cumulative distribu-
tion function F(x). Then F(X(n-k)) - F(X(k)) is the
coverage of the tolerance region Q, i.e. cQ) = F(X(n-k))

- F(X,,,). Note that the coverage is a random variable

(k)
with beta distribution B(n - 2k, 2k * 1) (Wilks (1962),

page 238), with the expectation being equal (n-2k)(n+l)_1.
Therefore our tolerance region Q will be the g-expectation

tolerance region if we can find k and n such that

(n - 2k)(n + 1)’l = 8.

Let us take B = .95. Then if n = 99 and k = 2, the interval

is the R-expectation tolerance region.
From the Bayesian point of view the coverage of the
tolerance region is the function of the parameters

jpvolved, and the R-expectation tolerance regions are



obtained by using the posterior distribution of the
parameters. (Guttman (1970)).

The development of the structural method of statistical
inference by Fraser (1968) puts a new light on the statis-
tical philosophy which admits the distribution of parameters.
The distribution of parameters for the structural models is
called the structural distribution. In this thesis we
construct the B-expectation tolerance regions based on the
structural models. 5o a brief review of the structural
nethod of statistical inference is given in the next

section.

1.3 The Structural Method of Statistical Inference. This

method gives special emphasis on the error variables
associated with any system of observations as the basis of
inference. The basic assumptions of this method are:

(i) The error variable e € E has a known distribution
on EcC Rn, which is denoted by

f(e)de. (1.3.1)

(ii) The observation X € X is the respomnse generated
from e by the application of a transformation 8. This is

described by the structural equation

x = fe, (1.3.2)

(iii) © is a member of a unitary group of transforma-
tions G(A group of transformation G is unitary if g¥ = go¥%

8, ~ 8 for all 8 8 ¢ ¢ and for all x € X).



Definition 1.3.1. A statistical model is a structural

model if it satisfies assumptions (i),
(ii) and (iii).
The structural model has two parts:
(a) the error variable e having known distribution on E and
(b) the structural equation describing the relationship of
a realized value e from the error variable, the known
response x, and the unknown quantity 8, taking values
in the unitary group of transformations G on E.
The notation for the structural model is
x = Qe
(1.3.3)
f(e)de
For the analysis of the structural model (1.3.3) the
following is essential:

Definition 1.3.2. An orbit of e is a set Ge such that

Ge = {ge/g € G, e € E}.
Usually the orbit of e has dimension 1 < n and hence
provides a basis for reduction. Also note that for every

x & X

so0

N
where g € G, so therefore
Ge = Gx.
After obtaining the observation X, the orbit Ge = Gx

is available to us as an event. That is, given the observa-

tion, the error variable e lies on the orbit Ge and so



conditional probability statement of e on the orbit can be
made.
Now, e on the orbit can be conveniently located from

a reference point by the transformation

e = [e]D(e), (1.3.4)

where D(e) is the reference point and [e] is an element of
group G,

Definition 1.3.3. A function [e] from the space E to the

group G is called a transformation
variable if
[ge] = gle] for all g¢ G and all e¢ E
(1.3.5)
The [e]'s can be considered as new coordinates of the

points on the orbit Ge., From (1.3.4) we have

D(e) = [e]_le.

Note that
D(e) = fe]"e = fe] g lge = (ale])'ge = [gelge
= D(ge).

Thus reference point D(e) on each of the orbit Ge is
uniquelly determined by the transformation variable [e],
and so the set of all reference points indexes the class of
all orbits.

Furthermore it follows that to find a conditional

probability distribution of e on the orbit is equivalent to

find the conditional probability distribution of [e] given



the reference point D(e). Let fx([e]/D(e))d[e] be the
conditional probability element of [e] given the reference
point D(e) on the orbit Ge.

From the definition of the transformation variable

we also have

[x] = [ge] = ole]l , 6 ¢€ G (1.3.6)

and

D(e) = [e]-le = [e]-le-lee = [ee]'lee
(1.3.7)

(1.3.8)
£%([e]/D(e))dlel

satisfies Definition 1,3.1 and hence is a structural model.
The model (1.3.8) is known as a reduced structural model,
since it offers a reductiom of the original model.

Probability elements. For derivation of f*([e]/D(e)) the

inpvariant measure is a very convenient tool. To define
:pvariant measures on G we need one more assumption about G.
Assumption. G is a locally compact topological group.

This assumption assures us of the existence of at

least one invariant measure o1 ¢ (Halmos (1950), Hora and

Buehler (1966)).

Definition 1.3.4. An invariant measure is a Borel measure

u in a locally compact topological group

G such that p(U) > 0 for every nonempty



Borel open set U and p(gB) = u(B) for

every Borel set B and for all g ¢ G.
Let p(+) be the left invariant measure, y(+) be the

right invariant measure and A(+) be the modular function

such that for all g ¢ G:

u(g) = a(g)v(g).

Then the following properties hold:

u(gB) = n(B), u(Bg) = A(g)u(B);
o(Bg) = v(B), v(gB) = Al Dv(B);
LB = v, ae) > 03 | (1.3.9)

A (g.8,) = A(gl)A(gz)

182
and

du(gilgz) = A(gz)dv(gl)

for all g, g-l,

J
81> gil and &y belonging to G and for all
Borel sets B of G. (Fraser (1968)).

Let m be an invariant measure defined on E such that

n(ge) = m(e) for all g €G and for all e € E.

1) Conditional probability element om the orbit. Let

E(e)dm(e) be the probability element of e with respect to
the left invariant measure m on E. The probability element
can then be expressed in terms of the reference point D(e)
and the transformation variable [e] using (1.3.4) and the
left invariant measure p on G since two invariant measures

n and p differ by a constant only. Thus we have
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F(e)dn(e) = CE([e]D(e))dule] (1.3.10)

Therefore by normalizing (1.3.10) the conditional
distribution of [e] given D(e) with respect to the invariant

measure is obtained as

gx([e]/D(e))d[e] = k(D)E([e]Dle))dule]. (1.3.11)

2. The structural distribution of 6 given x. For an

observed x we have the structural relation

which along with the conditional probability distribution

(1.3.11) gives the structural distribution of 6§, given x as

e 6 S au (e xD)

g(6/x)dg =
- k(n)f(e'lx)A(x)du(e'l)
- k(D)E(6 TR A () AV (8) . (1.3.12)
Renarks.

1) The structural distribution of 8§ does not depend on
the choice of the transformation variable and 1is
unique on the group space for a given structural model.
2) For particular structural models, the invariant
measures will be determined by use of the invariant
differentials on R". So for most cases the term
invariant differential will be used in place of
invariant measure. The construction of the invariant

differentials has been discussed in detail by Fraser
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(1968) and James (1954).

1.4 R-expectation Tolerance Regions Based on Structural
Models.

From the structural point of view, the tolerance regions
are constructed for the future responses (which might be
denoted Y) from the system, based on actual data.
Consider the future response Y from the structural
model (1.3.1). This future response will be generated

from some error variable e* by relation

The realized value of e* is not known, however the
probability element of e* is known and is equal to f(e)de
(1.3.1), since the future response is generated by the same

system. Therefore, using the relation

the probability element of y is obtained as

£(87 TR I(er + y)dy,
where J(e* - y) is the Jacobian of transformation from E to
¥, This probability element depends on the unknown value of
the parameter §. Let us denote this probability element by
p(y/8)dy, so that
p(y/0)dy = £(67 ) I(ex » ay.  (L.4D)
Let us now define the structural tolerance region

based on actual response X, as follows:
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Definition 1.4.1 The structural tolerance region is a

statistic Q(x) on Rn, the space of the

future responses, based on data such that

clQ(x)] = J p(y/8)dy (1.4.2)
yeQ(x)

Definition 1.4.2 0(x) is a B-expectation structural

tolerance regicn if

B, [C(0(2))]

= {[ [ p(v/8)dylg(8/x)de=8, (1.4.3)
2 Q(x)

where g(8/x) is the structural distribu-
tion of parameters defined by (1.3.12).
Now, assuming that the conditions of Fubini's
theorem hold, the left-hand side of (1.4.3) can be expressed

as

f
EQ[C(Q(X))] = J JP(Y/G)g(e/x)dey
: Q(x) 2

= J h(y/x)dy. (1.4.4)
0(x)
The density h(y/x)dy, where
h(y/x) = Jp(y/@)g(e/x)de (1.4.5)
Q

has been called the prediction distribution of the future
response Y (Fraser and Hagq (1969), (1970)).

Therefore to construct the B-expectation structural
tolerance region for a particular structural model is

equivalent to derive the prediction distribution of the
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future response from this model and then 2 -egion Q(x)

such that

n(y/x)dy = B. (1.4.6)
Q(x)

It should be noted that such a Q(x) need not be
unique.

Since in this thesis we will investigate this type of
tolerance regions, namely the R-expectation structural

tolerance regions, We will omit the word "gtructural” and

simply call them the R-expectation tolerance regions.

1.5 Some Results from Matrix Algebra. For investigation

of the structural models we will frequently use the results

of matrix algebra. For terminology and some results we

refer to any book on linear algebra or multivariate analysis

(for example Anderson (1958), Morisson (1967)).

There are, however, three results which will be used
more frequently in different chapters. So we will state
them as Lemmas here for convenient references.

Lemma 1.5.1. (Anderson (1958) page 103). For the parti-~

tioned matrix

SPRRSY.
A =
SR Y!
] el
o = 1oy 18y, = Aarfrbnal (1.5.1)

if All is nomsingular and

i Ll
|8l = lagylley SPUSLITIE (1.5.2)
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if A22 is nonsingular.

Lempa 1.5.2. (Goldberger (1964) page 27). For the parti-

tioned matrix

where A11 and A22 are both square and by their

principal—minor nature nonsingular, its

inverse
B RENRY.
At s , (1.5.3)
21,2

where

11 1 -1
AT (All A12A22A21)

12 1 -1 -1
At = -(a A phptr) TArta

(1.5.4)

21 -1 21 -1

ATT = magnhy By Aghgphar)

2 -1,,-1 Ll 41,
ATT = Ay taghy (A AL,baotyy) 1ot

Lemma 1.5.3. The following rearrangement of the matrix

expressions holds:

(3-4)CC' (3-4)" + (D-AE) (D-4D)'
l](CC'+EE')
(1.5.5)

[A—(BCC‘+DE')(CC'+EE‘)—

[A-(BCC'+DE')(CC'EE')-l]'

x

(D-BE)(I—E'(CC‘+EE')_1E](D—BE)'

+

Proof of this lemma is given in appendix.



CHAPTER 2

THE LOCATION-SCALE MODEL

2.1 Introduction. In this chapter we will construct the

R-expectation tolerance regions for the structural model
which is known as the measurement model or location-scale

model. This model has the form

IS

1 (2.1.1)
L fle;)de, »
i=1
where %' = (xl, . xn) is a vector of known responses,
e' = (e., «o., € ) is realized, but unknown vector of error
% 1 n

variables, 0 is a scale factor applied to the error variable

and y is the general level of the respomse.
Then following Fraser (1968) the structural distribu-

tion of u and g, given the set of responses X is

n X,-U _
g(u, o/ﬁ)dudo = k(é) il f(—ig—)o (nt1)
i=1

duda, (2.1.2)

where k(%) is the normalizing constant:

n x,-U
k) = [ f T f(—;—)o'(“”)dpdo.
i=1

u,0

For the rest of the derivations we will assume that
the error variable follows normal distribution and exponen-
tial distribution. Im other words, we will construct the

15
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B-expectation tolerance regions for the samples from

normal distribution and exponential distribution.

2.2 VNormal Distribution.

Theorem 2.2.1. Let the error variable e have the normal

distribution with 0 mean and variance 1,

i 2
22 e
f(e)de = (2%) exp{-jf}de.

Then for central 1008 percent of the normal

distribution being sampled, the region
1 1

0= (- K sx/(n-l)z, ¥+ KlsX/(n—l)z] (2.2.1)

is the B-expectation tolerance region,

where
n n
- - 2 -
X =1 " ] x, »s.= ] (x.-x)z, (2.2.2)
. i x . i
i=1 i=1
1
_ -1,2
K, = L+ Dt ey (2.2.3)

and t is the value of the

n-1;(1-B)/2

t-distribution (n-1 degrees of freedom)

exceeded with probability (1-8)/2.

Proof: Since the error variable e has standard normal
distribution, the distribution of the realized errors for

the location-scale model (2.1.1) is
n -2 n n
T f(e.)de, = (27) Zexp{-l 2 e?} I de. .
. i i 2 . i, i
i-1 i=1 i-1
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Then by (2.1.2) the structural distribution for u and ¢ is

n-lo—(n+l)

g(u,0/x)dudo = k(g)exp{-zig[n(;-u)z + si]}sx dudo,

where 1

For the future response variable Y, the distribution is

1

277 et
p(y/u,0)dy = (216") “exp{- sHy .

20

Therefore the joint distribution of Y, p and ¢ is

L
2
p(y/u,0) 8 (ws0/g)dudody = =77
2 n-1
™ 7 (==
2 ey
L (n(5-p) 24s? 2. n-1 -(n+2
¢ exp ——(a (W Hs ) 5T (*2) 4160y,

20

Then by (1.4.5) the prediction distribution for Y is

1

nylper = [ao1u,08 00l duto2y

Q

n-1
2 T T( 5 )

- =2
expi-Ll ) (- T 4 o7+ 2L )

x

20

x

dudody
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®

) n ® o m#l, nxty,2
(O[LMexp{ zcz(u ) }m%

-2
1 . 2, nl{y-x ]}si-l c-(n+2)

do-dy

L
2?13
1 11

(n+1)2r(%l>sx 7 (a-1)

That is, the prediction distribution of Y is such that

1
n .2 _Y-X
Tn-l (n+1 1 (2.2.5)
2
s /(n-1)

has Student's t-distribution with n-1 degrees of freedom.
Then by (1.4.6) the region Q defined by (2.2.1) is

the B-expectation tolerance region if we take Kl such that
1

_ -1,2
LIRS FICE VA

This proves the theoren.
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Corollary 2.2.1 For the left-hand and right-hand 1008

per cent of the normal distribution being

sampled the regions

1
Q, = (<=, x + Kst/(n-l)z] (2.2.7)
and
1
QZ = (x - Kzsx/(n-l)z, ®) (2.2.8)

are respectively the g-expectation

tolerance regions, where

1

i} -1,2
R, = (Lt )"t g (2.2.9)

Proof:
By using (1.4.6) and (2.2.5) it is readily seen that
the regions Q1 and Q2 are the B-expectation tolerance

regions if

ro =

K. = (1+ n-l)

/) th-151-p"

7.3 Special Case: 0 Known. Let us suppose that the condi-

tions for the location-scale model are such that the scale
factor applied to the error variable is known in advance
and is equal to 00. Then we get the model which is called

the simple measurement model or location model, which has

the form

% = u-k+ 0'0’%

0 (2.3.1)

'H f(ei)dei s
i=1
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and for which the structural distribution of y given the set

of responses is reduced to

g(p/x)dy = k(g)g*(z—(-)'u)du, (2.3.2)

where g* is the conditional probability element for the
location variable (transformation variable for the lccation

model) given the orbit.

Theorem 2.3.1. Let the error variable e have the normal

distribution with 0 mean and variance 1, i.e.

1

-= 2

2 e
f(e)de = (2m) exp{—jf}de.

Then for central 1008 per cent of normal

distribution being sampled the region
Q= (x - K045 % + K3°0] (2.3.3)

is the B-expectation tolerance region, where

>
u\
[

n
=0t I (2.3.4)

Y =

&Ly

37 G5 2a-pn (2.3.5)

K

and Z(l-B)/Z is the value of the standard

normal variable exceeded with probability

(1-8)/2.

Proof:

Since the error variable e has standard normal

distribution, the distribution of the realized errors for
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the location model (2.3.1) is

n
n - n
i ) 18
.H f(ei)dei = (21) exp{-2 izlei}

n
I de. .
i=1 i

i=1
Then by (2.3.2) the structural distribution for p is
1

g(u/x)dy = || exp{—"3 (;-u)z}du-
Ly 2 2

2n00 200

For the future response variable Y, the distribution is

i

ply/wdy = (2“03) : exp{-'lg (y-u)z}dy .

200

Therefore the joint distribution for Y and p is

1
2 -
p(y/wg(u/x)dudy = . 5 exp{--%[n(x—u)2 + (y-u)zl}dudy-

2ﬂ00 200

Then by (1.4.5) the prediction distribution for Y is

h(y/x)dy = f p(y/1)g(u/x)dudy
Q
1
2 [ =
+1 +y.2
- [ exp{-23 (- ZE g
2noO - 200
n =2
x exp{-—F5—— (y - x)"}dy
200(n+1)
n

]

- expl-—s2— (y - D My (2.3.6)
2ﬂ00(n+1) 200(n+l)

That is, the prediction distribution of Y is such that
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1 -
o (B2 Y - x
z = (n+1) 00

(2.3.7)

is the standard normal variable.
Then by (1.4.6) the region Q defined by (2.3.2) is

the B-expectation tolerance region if we take K3 such that

2(1-g)/2 °

which was to be proved.

Corollary 2.3.1. For the left-hand and right-hand 1008

per cent of normal distribution being
sampled the regions

Q = (-», x + X (2.3.8)

1 4%

and

Q2 (X - K[}GO, w) (2.3-9)

are respectively the B-expectation

tolerance regions if

(2.3.10)

Proof:
By using (1.4.6) and (2.3.7) it is seen that the
regions Q1 and Q2 are the B-expectation tolerance regions

if



23

9.4 Exponential Distribution. We will now investigate the

jocation-scale podel again, but assume that the error
variable has the exponential distribution. Since in the
practical cases the main interest is the right-hand tail

of the distribution, we will construct the tolerance

regions of the type (a, ®).

Theorem 2.4.1. Let the error variable e have the expomnen-

tial distribution

f(e)de = expl{-elde, > 0.
Then for right-hand 1008 per cent of
exponential distribution being sampled,

the region

(X(l)+cxdl;8’ ) for B<n(n+1)—1

Q= {(xyy @ for Bea(atl) T (2.4.1)

(x(l)—n_lcxdz;s,m) for 8>n(n+l)-l

where X(i) ig ith ordered statistic and

. - (n-1)x (2.4.2)

X (1) 1’

[g]
n
e~

i=2

is the B-expectation tolerance region if

f :
dl;B and dZ;B are as follows

1
n-1

- n -
41,67 | D)B L (2.4.3)
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1
1 n-1
G " @D b Y

Proof:

Since the error variable e has the exponential distri-
bution, the distribution of the realized errors for the

location-scale model (2.1.1) is

n n 0
'H f(ei)dei = exp{-'E ei} 'H dei, e, > 0 for all i.
i=1 i=1 i=1

Then by (2.1.2) the structural distribution for u and o is

1
g(u, o/x)dudo = ??§:37 eXP{-g[n(x(l) - ) 1 cX]}

cx n-1 dudo
(?;) —ii— s for u < X(l) and o0 > 0.

For the future response variable Y, the distribution is
p(y/u,0)dy = % exp{-lég}dy, for y > p and 0 > 0.
Therefore the joint distribution of Y, p and ¢ is

p(y/u,0) g (u,0/x)dydudo = r(nfl)EXP{-%[n(x(l)-u)+(y-u)+cx]}

n-1
c
X

X
n+2
of

<
dudody, for u X(l)’
u <yando>0.
To find the prediction distribution for Y by (1.4.5) we

have to consider two cases: y < X(l)’ and y > X(l)’

because of two conditions imposed om u:p < X(l) and

p<y.
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. < .
First for y X(l)

|y
h(y/x)dy = F(i-l) fo[[ exp{&ﬂﬁilk}d;} exp{—%[nx(l)+y+cx]}

n-1
°x
X do+dy
0n+2
n-1
n ® 1 Cx
~ (a+1)T(n-1) [OeXP{_E[Cxﬂ(x(l)_”]} o+l dody

T (ot
(n l)cX c,

n(x, .-y)|-n
_alel) {} A gy

Secondly for y 2 X(l):

X
! (1)
B * T |, L,o exp (L) gy exal - oy 1y, )
n-1
CX
g ntl dg-dy
n-1
I — ’ 1 fx
~ (e+DT(n-1) foexp{'o[cx”'x(n” ¥l dody
_n(-l) (1 AT I
(n+1)cX t ¢,

Therefore the prediction distribution for Y is

(e n(z,,\-y) |-n
ELH—D— [1+——i-l')—_j\ dy fory<x(1)

¢ (n+l) c
x

X

h(y/x)dy = (2.4.5)
n(n-1) 1+ y- X{l! -ndy for v 2 x(l)
{cx(n+l) ¢
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Then for the right-hand 1008 per cent of expomential

distribution being samples the relationship

J h(y/x)dy = B

a
should be fulfilled.

For that we first take a = x(l). Then

-1 ® y'xglg -n ol
= 1) f [+ c Idy =04
X

X

Therefore for B = —2_ the region Q = (X(l)’ ®) is the

1+l
B-expectation tolerance regiom.

Now for B < n(n+1)_l we have to find an "a" such that

_ ® y-X .\ -D
n(n-l ( (1 + —E—ill] dy = 8.

+
cx(n 1) a X
For that
© y-X n a-x -(n-l)
n(a-) [Ty e ) gy = 2 e —(
¢ (n+l) c n+ c
X a X X
and therefore
a- -(n-1
gy g ) R
n+l c ?
X
from which we get
a-x n-1
[1+ S €5 X R,
¢ (n+1)B
X
1

a-x ]

(1) _ 1 n-1
L+ c, - [(n+1)8]
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1
a7% (1) . o ]n-l 1
c (n+1)B )
X
Let
1
_ ! n-1
d1;8 - [(n+l)B] - L
then
= +
a X(l) cxdl;B R
so the region Q = (x(l) + del;B’ w) is the B-expectation
tolerance region.
For B8 > n(n+l)-1 we have to find an "a" such that
a(n-1 ra n(le:—y) -n i
¢ (ntl) J [1+ ¢ ] dy=1-8.
X ® X
For that
2(n-1 a n(x 1 -y) -n Y n(x 1 -a) -(n-1)
nla-l) [1+ '-‘i'l-——] dy = (1+ -—i-l—-—]
¢ (n+l) c ntl c
X -0 X X
and therefore
1 n(x;ll-a) -(n-1) i
_[l+ ] ‘J-'B,
n+l c
X
from which
n(x, ,-a) n-1
¢, (n+1) (1-8)
1
L nlxyma) (— 1ol
c. (n+l) (1-B)
1
nlx(py7e) 1l

. = D as)
X
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Let
L
_ 1 n-1
dyg = [mmaemy) "1
then
_-1
X(l) -a=n cde,B
and
-1

, ) ! . ) ,
so the region Q = (x(l) n cde;B’ ©) is the B-expectation

tolerance region.

Combining all three results we see that the region Q
defined at (2.4.1) is the B-expectation tolerance region
for the right-hand 1008 per cent of exponential distribution

being sampled, which was to be proved.

Remark. The construction of the R-expectation tolerance
regions for the left-hand side of the exponential distri-
bution is equivalent to the construction of the (1-B)-
expectation tolerance regions for the right-hand side of
the exponential distribution,

To show this, let "a" be the point such that

Ql = (-=, a] and QZ = (a’ ®) . Then
- &t g - ¢
Ql U Q2 - an an Q2 - .

It is evident, that

c(Q, U 0,) = C(@)) + C(Qy) = chy = 1.
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Then

B,[0(Q) + €(Q,)] = Eg(D)

or

Bo[C(Q))] + Eglc(e,)] = 1.

Assuming that Q2 is the (1-B)-expectation tolerance region

we get

n

EQ[C(Ql)] +1-8-=1

or

EQ{C(QI)] B,

f

which shows that Ql (-», a] is the B-expectation tolerance

region.

2.5. Special Case: p = 0 (Life Testing). Let us suppose

that conditions for the location-scale model are now such,
that the general level of the response is known in advance
and is equal Ko Since Mo T 0 is of great importance in
statistics (so called life testing problem), without loss
of generality we will investigate this case. Then we get
the model which is called the scale model and which has

the form

=0%

5

(2.5.1)

n =s

f(e,)de,
1 1

i=1

Then the following theorem holds:
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Theorem 2.5.1. Let the error variable e have the exponential

distribution
f(e)de = exp{-elde, e > 0.
Then for the right-hand 100 per cent of

exponential distribution being sampled the

region
Q= (t, d3;6’ ®) (2.5.2)
where
n
te = 1% (2.5.3)
i=1

d =g - 1. (2.5.4)

Proof:

Since the error variable e has the exponential
distribution, the distribution of the realized errors for
the scale model (2.5.1) is

h n 1
'H f(ei)dei = exp{—.E ei} 'H dei, e, > 0 for all i.
i=1 i=1 i=1

Then by (2.1.2) the structural distribution for ¢ (note that

u=0) is
1 tx t:
g(o/x)do = T exP{—Q; }on+l o, t >0, 0>0,
X

For the future variable Y, the distribution is

p(y/o)dy = % exp{-ﬁ}dy, y>0, o>0.
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Therefore the joint distribution of ¥ and 0 is

t +y tn

p(y/0)g(o/x)dydo = F:h) exp{-— }c§+2 dydg,

tx >0, y>0, 0>0.
Then by (1.4.5) the prediction distribution for Y is

1 2 tx+y tz
h(y/g)dy " T (Oexp{-——g—};;;g dgedy

tn
_nl(n) X
Fe) [t ty]

n+l dy

21+ Yt-—]'(““)dy (2.5.5)
X X

Now, we have to find an "a" such that

o]

[ h(y/z)dy = 8,

a

to obtain the B-expectation tolerance region.

For that

n_ ® y_,-(n+l) _ a\-n
. { [1+ " ] dy = (1 + . )
x Ja X X

and therefore

1+ =p
t
X
from which 1
a _ ,d.n
1+ T T (B
X
1
a_ _ (JLyn_
e @t -t



Let 1
A
43,8 - B L
then
a= txd3;8 ,

and therefore the region Q defined at (2.5.1) is the

R-expectation tolerance region, which was to be proved.

32



Values of d1 g

.
’

TABLE I
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for the Exponential Distribution

0.01

0.05

0.1

0.9

0.95

0.99

[
O WO 00~ LN P

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
50
60
70
80
90
99
100

65, 6666667
7.6602540
3.3088694
2.0213754
1.4356262
1.1070168
0.8984833
0.7550129
0.6505285
0.5711626
0.5088914
0.4587626
0.4175595
0.3831048
0.3538734
0.3287661
0.3069706
0.2878745
0.2710069
0.2560006
0.2425641
0.2304641
0.2195109
0.2095494
0.2004508
0.1921080
0.1844306
0.1773423
0.1707778
0.1246233
0.0980973
0.0808779
0.0687995
0.0598592
0.0529748
0.0480056
0.0475105

12.3333333
2.8729833
1.5198421
1.0205155
0.7652924
0.6112874
0.5085299
0.4351889
0.3802562
0.3375935
0,3035127
0.2756664
0.2524903
0.2329023
0.2161302
0.2016082
0.1889126
0.1777195
0.1677773
0.1588876
0.1508918
0.1436617
0.1370923
0.1310970
0.1256039
0.1205523
0.1158912
0.1115769
0.1075722
0.0791573
0.0626154
0.0517916
0.0441580
0.0384855
0.0341044
0.0309350
0.0306188

5.6666667
1.7386128
1.0000000
0.6990442
0.5367762
0.4354939
0.3663112
0.3160740
0,2779443
0.2480188
0.2239083
0.2040687
0.1874579
0.1733471
0.1612117
0.1506640
0.1414116
0.1332298
0.1259429
0.1194117
0.1135244
0.1081904
0.1033351
0.0988969
0.0948242
0.0910736
0,0876085
0.0843974
0.0814133
0.0601469
0.0476896
0.0395072
0.0337213
0.0294137
0.0260819
0.0236690
0.0234282

0.0000000
0.0011173
0.0018365
0.0023042
0.0026077
0.0028014
0.0029201
0.0029868
0.0030171
0.0030218
0.0030082
0.0029818
0.0029463
0.0029046
0.0028586
0.0028099
0.0027596
0.0027084
0.0026571
0.0026059
0.0025553
0.0025055
0.0020705
0.0017476
0.0015067
0.0013222
0.0011771
0.0010602
0.0009730
0.0009642

0.0000000
0.0001317
0.0002387
0.0003258
0.0003970
0.0004553
0.0005031
0.0005422
0.0005742
0.0006002
0.0006213
0.0006382
0.0006823
0.0006428
0.0005893
0.0005379
0.0004921
0.0004522
0.0004209
0.0004176

0.0000000
0.0000010




TABLE 1II

Values of d2-

8 for the Exponential Distribution
b

B
2 0.9 0.95 0.99
2 2.3333333 5.6666666 23.3333333
3 0.5811388 1.2360679 4.0000000
4 0.2599210 0.5874010 1.7144176
5 0.1362193 0.3512001 1.0205155
6 0.0739409 0.2336341 0.7020816
7 0.0378908 0.1649930 0.5234153
8 0.0151653 0.1208334 0.4105676
9 0.0000000 0.0905077 0.3335214
10 0.0686822 0.2779442
11 0.0524097 0.2361804
12 0.0399390 0.2037896
13 0.0301690 0.1780290
14 0.0223760 0.1571178
15 0.0160665 0.1398522
16 0.0108935 0.1253909
17 0.0066067 0.1131289
18 0.0030218 0.1026209
19 0.0000000 0.0935324
20 0.0856070
21 0.0786458
22 0.0724916
23 0.0670191
24 0.0621271
25 0.0577331
26 0.0537690
27 0.0501785
28 0.0469144
29 0.0439368
30 0.0412122
40 0.0231248
50 0.0138365
60 0.0084130
70 0.0049759
80 0.0026709
90 0.0010602
99 0.0000000
100




CHAPTER 3

DIFFERENCE OF SAMPLES FROM TWO
NORMAL DISTRIBUTIONS

3.1 Introduction. In this chapter we will construct the

R-expectation tolerance regions for the difference of

sanples from two normal distributions N(ul, oi) and N(uz,oi).
In such a case for the corresponding structural method we
consider two response variables Xl and xz, generated from

two independent error variables e and ey respectively, by

the equations:

+
1M T 0%

"
n

(3.1.1)

+ 0,e

Xy Ty T 098

where e; and e, have standard normal distributioms, g and
W, are the general levels of the response variables X and

x., respectively and cl and 02 are the scale factors

2
applied to the error variables e; and ey respectively.
Since the corresponding structural model is given by
Fraser (1968), Chapter 2 only as an exercise we will
investigate it in more detail. TFirst we will investigate

the case Ol # 02 and call it model 1 and then we will

consider the special case 01 = 02 and call it model 2.

35
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3.2 The Model 1. Let zi = (Xil’ Xigs +rey Koo ) be the
i

sequences of ni(i = 1, 2) observations of the response
variables. Then the equations (3.1.1) lead to the model 1,

which in coavenient matrix notation is:

[ (11 1 { 1 1)
19 1 0 0o 0] (i A
,Q' ;]{Il 0 1 0 0 Q‘l Jg'
1 1 t 1
SR i 0o Og R (3.2.1)
1 | 1] 1
I A I U T I LA %)
I, n1+n2 n,
2 i > 1 2 i,
n I f(ei.)dei. = (27) exp{—E 7o) e}
=1 j=1 i=1 j=1
x I de,.,
R !
i,]
or
X = 0E
(3.2.2)
f(E)dE

The transformation

f[1 0 0 0

0o 1 0 0
g =

My 0 01 0

LO Wy 0 0,

has positive scale factors Ol and 02 and relocations My and
uz. Such a transformation is an element of the unitary

positive-affine group
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f (1 0 0 o0 -m<a1<w‘
o 1 0 0 -°°<a2<oo
G = g =
7 G0 e o <o (3.2.3)
L L0 2, 0 ch 0< c2<°°‘ ’

where .the group operation is defined as a matrix multipli-

cation rule.

It can be easily verified that

1 0 0 0 |
0 1 0 0
[E] = |_ (3.2.4)
e 0 s 0
1 el
0 e, 0 se2 ,
where
n,
-— _l 1
e, =un, ) e, i=1,2 (3.2.5)
i i, ij
j=1
and ni
s - T Ce,, - Tt 11,2 (3.2.6)
e, .o ij i
i j=1

is a transformation variable for this model.

3.3 The Model l:Distributicms. In order to derive the

conditional distribution on the orbit and the structural
distribution of parameters the following invariant differ-
entials based on the transformations may be helpful:
Consider first the error space E. Let us apply
transformation g € G to the matrix of error variables

E then



14
gt A

E*= =

1
g3 9

o R

S0

Then

s0

and

dn(gys 8)) =7 q

38

(3.3.1)

Now consider the jpvariant differentials on the group:

(1 0 0 O

0

[

0

N
2

o2 ©

1 1

o 5

0
"
c

e o
o

which implies for

24

[\X4

(e ¥4

1

0

[N

0 00

1 00

’

1 0
01 00
% *
a1 0 c1 0
th*O

2

0 0 )

*
CZJ
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Therefore
| 2 2
= —g- =
J(g) e ¢, ¢ (3.3.2)
and
am
Jh(g) = |SB—| = o of (3.3.3)
ber| L2
This implies that
- = -2 =) - -
due,, e,, s , s ) =s s =~ de,de,ds ds ,
1 2 el e, e1 e2 1772 ey e2
dv(zl, 22’ s , 8 )= s-ls;l dgl de ds ds
¢ & ¢1 ¢ & &
and
A(:;l’ Z2’ e.? e ) = S¢. ® ;2 5;2 B ;l 5;1
1 %2 1 %2 51 % 1 %2

is
r;{;l ’QIW f %v
A - R
D - -
1 1 LI « 1!
i 9 sel(%l e;*d’)
1 1 t l
s
From this for i =1, 2
ni ni
Ja, = Dsi'te, -3 = s
=1 og=r 8 N ij=1
and
ol By ni
= st et = st T ey me))
j=1 M 5=1 & ij=1 *J
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Then by using (1.3.11), (3.3.4), (3.3.5) and the fact
that the normalizing constant is
1

2
k@) = (ny 2p) Ay 1y

where

[N
=
ro s

oo
|

—
Py
o=
g

the conditional distribution on the orbit is

es = - -
f (el, ey 5, s, /gl, ,c\liz)deldezdse dse
1 2 1 2
(3.3.6)
1 n1 + n2
2 N 2
LRI Sl WP WP 1)
1 2
2 n.-2 n,-2
X exp{-% y (nizi Fsf ks T s 2 dEldzzdse ds .
i=1 & &1 & 1 &2

Now since [X] is a member of group G it follows,

that
1 0 0 0
0 1 0 0
s X, 0 s 0
1 X
L0 3?2 0 sle ,

where for i = 1, 2

- -1 o
X, =D, | X.. (3.3.7)
i i 521 1]
and 2
2 1 -2
s, = '2 (x5 x,)" (3.3.8)
i =1
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The structural distribution of ul, uz, 01 and 02 is

then (by (1.3.12) and (3.3.6))

g(ul, By 045 0 1 Qz)du duzdoldo2

1 .nl+n2

2 2
= (nl nz) Anl_l An _1(2n)
2
- 2 S
2 1ny (K -u) X5

cempiy L\
i=1 o 0-
1 1

nl-l n2-1 -(n1+l) -(n2+1)

X s S 0) o)
X 1 2

X du_du,do. do

14u,do, do, . (3.3.9)

3.4 B-expectation Tolerance Region For the Variable

Z =X

1" X2, Assuming 0, # 0y

Theorem 3.4.1., Let the independent error variables ey and

e, have the normal distribution with 0 mean

and variance 1, i.e.
1
f(ei)de (2m) exp{—— e, }de i=1, 2.
Then for the central 1008 per cent of the
distribution of the variable Z = Xl - X2
. 2 . 2
(where Xl is N(ul, cl) and X2 is N(uz,cz))

being sampled, the regiom

T; x -x,+d, 1] (3.4.1)

0=(x)-%,"d; g 7M1

is the B-expectation tolerance regiom, where
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n. +1 n, +1

2 2 1 2 2
rT=st = ts. T oo (3.4.2)
X nl(n1 1) X, nz(n2 1)

with ;l’ ;2, sx and Sy defined by (3.3.7)and
1 2

(3.3.8) and where dl_B is the point exceeded

with probability 1-B when using the Behrens-

Fisher distribution with (n1 - 1) and

(n2 - 1) degrees of freedom and the

parameter 8§, where § is given by

1 1
n.+1 2 n,+1 2
§ = 2 I S
= arctams, 7 (a,-1) 5. ln. (n.-1)
2172772 117171

(3.4.3)
Proof:
Since the independent error variables e; and e, have
the standard normal distribution, the distribution of the

realized errors for the model 1 (3.2.1) is
n_ +n

n, 1 2 n,
2 i 3 1 2 i,
T 1 f(e,,)de,, = (2m) exp{-= | ] e;.}
i=1 j=1 M 2421 421 M
x [ de,..
s 1]
i,j

The structural distribution for ul, uz, Gl and 02 is then
given by (3.3.9). For the independent future responses

Yl’ Y2 in the structural model (3.2.1) the distribution is

- -1
p(yl,yz/ul,uz,cl,oz)dy dy2 = (Znolcz)
2

p 2y T Myt
X exp{-E ) [_—_3——_] } dy, dy, -
i=1 i




Therefore the joint di

and 02 is
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stribution of Yl, Y2’ By Hoo 0y

P(Yl,yzlul,uz’01:02)g(Ul,u2»01:02/§19?\<’2)

X dulduzdcldczdyldyz

1

= (n, 0n,) A _ A
1 72 ny 1 o,

n1+n2+2

e —————

Jom

2,2 2
n, (%-ug) Hsy +0y By

1

2
exp —% )

i=1

ag.
1

X
s R
X dpldpzdoldozdyldy2 .

+ +
n, 2 on2 2
1 2

9

The term in the bracke

t in the exponent can be rearranged

using the following result for i=1, 2:

2

n, (%, - ui) + (Yi -y

11

n,.

i -
a1 (v; = %)

+

Then

2 Bi¥g
)i g D T T

’ (3.4.4)

p(yl’yZ/ul!u2,01902)g(ul’uziol’cz/xlsxz)

X dulduzdcldozdyldy2
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1 _nl+n2+2
2 2
(ny n)" A 4 A 1M
1 2
+ X+
X eXP{-i % 1 l[u - T 2}
=1 g2 U1 n;+l
1
2
- 2 -
{ % n, (y;,7%,) °%, }
X expl-3 + —=
2 5oyt o2 o2
1
nz-l n2-1
S S
Xl Xz
X 0,72 Pl du,du,d0,do,dy, dy,
1 1

Then by (1.4.5) the prediction distribution for Yl and Y2 is

h(yys ¥,/Rp0 X))4Yys 99y

0 +n 42 nl—l n2-1
1 1 2 s s
< - 5 ® X X
= (n, n,) A A (27) { f : "
1 72 n.-1 "n, -1 0olo cn1 2 0n2 2
1 2

2 n, (y.-% )2
LI I i S 2 .
X exp{-2 .2 2[ n.+1 * Sx.}}dcldGZ dyldy2
i=10, i i
1
n.-1 n.-1
1 n.+n 2
B ) 2 R A Sx Sx
| GAD G| 41 A2 (20 2 [ J T o
By TR, S 00 ™17 o™2
1 2

2 n, (y,-% )2

1&g |2 UsTR 2 _

< expl-3 1 2{ a1 ¥ sxi}}d°1d°z 45,97,
1

a |~
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1 n n
5 Lyr 2
n, o, 2 I'( 2)I‘(2 )
(n,+1) (n,+1) n.-1 =n,-1
1 72
! i
-2 -2 2
nl(y1 xl) nz(y2 Xz)
x |14 = 1 + ———— &y, 4y,°
(n +1)s (n +1)s
1 X; 2 X,

Let us now introduce new variables for i = 1, 2:

1

(n.-1)n, 2 Y, - x,

- i i i i

i n.tl s
1

X,
1

then Tl and T2 are variables having Student t-distribution
with (nl - 1) and (n2 - 2) degrees of freedonm, respectively.

Now define

and

o[

n.+1 n,+1
tan § = s -—?%—:37 % ——?%—:IY
%"t ¥ MM

Then we have

1
n.+1 2
1
r cos § = s 3 n.-D)
117171
and
1
n,+1 2
. 2
r sin § =
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Hence the prediction distribution for Z = Yl - Y2 can be
represented in the form (for references see for example

Fisher (1939))

7= Y1 - Y2 = (xl-xz) + r(Tl cos 6 - T2 sin §)

(§1-§2) + U, (3.4.5)
where the distribution for the variable

U= T1 cos § - T2 sin §

is known as the Behrens-Fisher distribution with (nl-l) and
(nz—l) degrees of freedom and the parameter § defined by
(3.4.3). Then by (1.4.6) the region Q defined by (3.4.1)
is the B-expectation tolerance region, which was to be

proved.

1.5 The Model 2. Let us now investigate the special case

of the previous problem. We will now assume that the
scale factors applied to the error variables are the same,
namely 01 = ¢_ =0, say., Ihen the two response variables

2

are generated from two error variables by the equations

1 ul + Oel

>
It

(3.5.1)

Uz + 082 .

>4
1

Since the structure of the system has changed we have
to construct the new structural model for this system. Let

us again assume that two error variables have standard
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normal distributioms. Let 1y and Hy be the general levels

of two response variables X and X, respectively. Let ¢ be

the common scale factor applied to the error variables ey

! =
(xil’ vy xin.) be the sequences of

and e,. Let X.
2 Al i

ni(i =1, 2) observations of the response variables. This
leads to the model 2:
((1! ' ( 1 '
1 M 1 0 0 o1 0')
o' 1 o 1 0 O o' 1
AV LAY
1 v 1 1
SR b 00 0pigg Y (3.5.2)
1 L] 1
LEE T U T JICAN=)
a n +n2 '
2 i - 1 2 i,
T I f(ei.)de.. = (27) exp{-E Z ei,} i dei,,
i=1 j=1 i1 3=1 Y3 1,3 J
or
X = §E
(3.5.3)
f(E)dE
The transformation
(1 0 0 0
o 1 0 O
§ =
] 0 o O
{0 ) 0 c‘

has a positive scaling factor © and relocations Hy and o

Such a transformation is an element of the unitary positive-

affine group
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( (1 0 0 0 )
-0 < da, < @
0 1 0 0 1 }
G=]g-= <3, <@ (3.5.4)
) a1 0 c 0
0<ec <o
0 a 0 c ,
| | 2 J )

where the group operation is defined as a matrix multiplica-
tion rule.

It can be easily verified that

1 0 0 0)
0 1 0 0
(E] = |~ .
e; se 0
kO e, 0 So| (3.5.5)
where
o,
- -1 2
e.=n, Je., 1=1,2 (3.5.6)
i i L.7ij
j=1
and
2 M )
s = E ] (e, - e (3.5.7)
¢ i1 e 47

is a transformation variable for this model.

3.6 The Model 2: Distributions. In order to derive the

conditional distribution on the orbit and the structural

distributions of parameters, the following invariante

differentials based on the transformations may be helpful:
Consider first the error space E. Let us apply

transformation g € G to the matrix of error variables E.
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Then
(v ot} 1o oo o o[ Y o' )
Y VY Ly n
,Q' %l 0 1 0 0 ,(\)I' ‘%I IQI! l!
E*: =gE= = v
*I 1 ] 1 1 | ]
g 9 a, 0 ¢ Ofgr O'f fali*egy
1 *l 1 1 1 | 1
{2 £2 | 0 2, 0 el g | Q' 2t eRy
S0
e = a,1l + ce, i=1, 2
i i% i
Then
n_+n
ooy o |Q8E| o .1 2
Jnl+n2(g.E) ‘BE c , (3.6.1)
and
I de..
N deq g
dn(e,, e,) = =
nl? w2 n, +n n, tn
1 2 172
s S
e e

Now consider the invariant differentials on the group

(1 o0 0 0] (10 0 0L 0 0 0]
0 1 0 0 0o 1 0 0ffo 1 0 O
n N\ = % %
a1 0 ¢ O a1 0 ¢ @ a1 0 c* 90
" \
%
LO 2, 0 cJ 0 3, 0 c‘ 0 a3 0 c*J ,

which implies

N

a, = a, + ca¥ i=1,2
i i i
% = cc*
Therefore
W
ite) = |2 - ¢ (3.6.2)

and
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J*(g) = 3% | o ok (3.6.3)
ag*
This implies that
- - I
du(el, ey se) = s, deldezdse,
- - el =
dv(el, ey se) = s, deldezdse
and
- = _ -3 _ -2
A(el’ € Se) 5% Se
The reference point D on the orbit by (1.3.6) is
’]\;l ,?J'W 1 0 0 0 V,{' ng
Q' %' -1 0 1 0 0 ||0' %‘
D= =[E] E= -1 -1 v
' = 1 1
4 3 es, 0 5, & d
o' 4. 0 -t s—l 0 s_l 0" el
{m V2| | 27e e ‘Lw mZJ
1 0! )
A %
0' 1
" A
s 1! - T.1") 0'
e 'l 1y y
' -1 _ = 1!
| Q Se (%2 62% )J
From this
1, n. n.
i iy _ I B
-Zldij _.lee (eiJ - ei) = s, 'Zl(eij - ei) =0,
J ] J (3.6.4)
i=1, 2
and
n n
i 2 i
- - .2
I Jet=1 1 st ey, - %))
i=1 j=1 3 i=1 j=1 J



20572y, (3.6.5)

n
_2 2 i -_—
=S, ) (ejy - e;) e Se

i=1 j=1
Then, by using (1.3.11), (3.6.4), (3.6.5) and the

fact that the normalizing constant is
1

LKD) = (n n2)2 A

1 n1+n2‘2

the conditional distribution on the orbit is

e - -
f (el, e,y se/gl, gz)deldezdse

1 -nl+n2
2 2 1, =2, =2, 12
= = +
(n, n,) Anl+n2-2(2ﬂ) expl 2(nlel n2e2+se)}
nl+n2-3 _
X S, deldezdse . (3.6.6)

Now since [X] is a member of group G it follows that

(1 0 0 o0
0o 1 0 o0
(2] = |3
Xl 0 sx 0
k0 ;2 0 sX s
where
n,
- -1 1
x, =0 ) X5 i=1,2 (3.6.7)
i=1
and
n
2 i
2 -—
so= 1 L (- xi)2 (3.6.8)
i=1 j=1 3

The structural distribution for ul, uz, g is then

(using (1.3.12) and (3.6.6))
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+
1 )

a———

2
= (n, 0,) A 4p - (2m)
1 72 1, n2 2

1 - 2 - 2 2
X exp{'zcz[nl(xl ul) + nz(x2 uz) + sx]}

n.+n.-2 -(n tn +1)
x sxl 2 1 g dudo (3.6.9)

3.7 B—expectation Tolerance Region For the Variable

7= Xl - XZ’ Assuming oy = 0y Before proceeding with

the main theoren of this section we will state 2@ Lemma,

which will be helpful in proving later developments.

(Cornish (1954)) 1f the distribution of the

Lemma 3.7.1.

random variable % = (Yl, . Yn-l) is
1
+n-1 2
T2 (R
Y S S
h(y)dy = Tao1
2
T T(z)
_v+n-l
. (1+ 7R L gy wcy<e (3.7.1)
PR {1 i

then the distribution of the random yariable
7= (Zl’ N Zp)', which is the linear

combination of X given DbY the relation

AR

where H is such that HE' # 0, is

(3.7.2)
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1
F(B%R)|HRH'| 2
I
_vt+p
x (g (mReD T P g (3.7.3)

Now we state the main theorem of this section.

Theorem 3.5.1.

Let the independent error variables el and

e2 have the normal distribution with 0 mean

and variance 1, i.e.
1 2
fle )de, = (Zw)-2 {-Ei}de i=1, 2
i’ %84 SXPL=TTCe > L

Then for central 1008 per cent of the

distribution of the variable Z = Xl - X2
. 2
is N(uz,v ))

(where X, is N(ul, 02) and X

1 2

being sampled, the region
1
- = 2
qQ = (xl X, KSSx/(nl+n2 2)°,
1

- - 2
X, x2+Kssx/(nl+n2-2) ] (3.7.4)

is B-expectation tolerance region, where

X, and x, are defined by (3.6.7), s, 1is

defined by (3.6.8) and

1
-1, -1.2

= (24n. + ,

Ky = (Z4n, 0,7 tnl+n2—2;(l-6)/2

where tnl+n2'2;(l'8)/2 is the value of the

t-distribution (n.+n

1 2-2 degrees of freedom)
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exceeded with probability (1-B)/2.

Proof:
Since the independent error variables & and e2 have
the standard normal distributions, the distribution of the

realized errors for the model 2 (3.5.1) is

n n1+n2
2 1 - 2
I T f(e.,)de,, = (2m)
=1 j=1 4 Y
n ni
X exp{-% ) ei.} i deij .

i=1 j=1 M 1,3
The structural distribution for ul, UZ and 0 is then
given by (3.6.9). For the independent future responses Yl

and Y2 the distribution is
p(y.»y, /1. ,¥,,0)dy dy, = (2noz)'1
1’72071’ 172

1 2 2
X exp{-—"'z‘[(yl - Ul) + (yz - Uz) ]}dyldyz
20

Therefore the joint distribution of Yl, Y2’ ul, uz and 0 is
p(yys¥, M ka0 gk 5y, 0 k) Ry 4y, dy,)du, AU,y 60

1
2

1 ottt
) 2
= (n; ) Anl+n2-2(2“)

T R R 2,2
X eXP{-ZGZ[nl(xl ul) +n, (%, uy) "y )+ Gy, u,) +sX]}

n.+n.-2
s 172
X

X ——
n,+n,+3

=, dy, dy,du du,do .

The term in the bracket in the exponent can be rearranged,
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using result (3.4.4) for i =1, 2. Then
p(yys ¥olups Hyr 98U My 0/%y %) 87,87,du;dpyd0

1 n1+n2+2

2 n
1 .2 i — .2
x exp{- Z[SX ¥ .z n.+1(yi - X))l
20 i=1l i

nl+n2-2
s

b S—
r— dyldyzdulduzdo .
172
)
Then by (1.4.5) the prediction distribution for Yl, Y2 is
[+<}

-0
X g(Ul’uz,0/¥1,%2)duldp2do-dyldy2
1 _nl+n2+2
2
= (n, 1,) A _2(2ﬂ)

rm © 0 n, X +y
X ﬁ [ [ exp{———' E (n, +l)(u +"""-—) }duldu2

nl+n2—2

2 PN 2], 8
s P ]}—Irlzm d0dy; 97,
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n 4n,-2
© 2 n. S1 2
I eXP{""l":')_'[sz + ) - il(yi - §i)2]} '5—:E—II dgdyldy2
0 20 ¥ i=l i 0“1 /)
1 n.+n
Y 1 72
_ n, o, 2 I( 5 )
+ -
(nl+l)(n2 1) 5 nl+n2 2
Ts. (=5 )
X
n_+n
- _ 1 2
n, (y, - X )2 n, (y, - % )2 T2
171 1 272 2
x |1 + 5 + 5 dyldy2
(n, t1l)s (n +1)s
1 b4 2 X
1 n_+n
Y 1 2
[omm M
+ + -
(nl 1)(n2 1) 9 nl+n2 2
Ts T(—=5—
X 2
0. +1 y. % nl+n2
_ _ 1 0 1 71 - 7
y.=X, ¥,°X n S
l”i : i Hl b aally® dy,dy,
X X 0 2 y2 2
n, S
Let us now make a linear Eransformation
Y -X \
1
x Y -Y.-(X,-X,)
T B IR L)
Yz'Xz X
L %x
Then
(0 +1 A
! 0 |1
nl n, +l n.+1 n, + n2 + ann2
(1 -1) T n ¥ n B n, n
n.+1 1 2 1 2
0 -1
%2

Then by using Lemma 3.7.1 we get
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1 n,+n,-1
- p(_l__.z_)
h(2/151’?\52)dz =l +i +§n n :
12 172 5 nl+n2-2
T S, T(-—Er—-—ﬁ
R v s
nlnz[z—(xl-xz)] 2
x {1+ =) dz (3.7.6)
(nl+n2+2nln2)sx

That is we have, that the prediction distribution of Z is

such that

i - -
_ nln2 2 L- (xl-xz)

+n,- +n,+
ny n2 2 n; n, ann2 %
sx/(nl+n2—2)

T (3.7.7)

has the Student's t-distribution with ny + ny - 2 degrees

of freedom.

Then by (l.4.6) the region Q defined by (3.7.4) is

the B-expectation tolerance region if we take KS such that

1
) 1 -1,2
ko= (241 ta,) tn1+n2—2;(l-8)/2 '

This proves the theorem.



CHAPTER 4

THE REGRESSION MODEL

4,1 Introduction. In this chapter we will investigate

the construction of the 3-expectation tolerance regions for

the regression model:

=V'g + i
where x' = (x ... % ) is the vector of n respomnse
Ly 1 n

variables, Vis a p x matrix of known elements usually

called the design matrix, Q' = (Bl ‘e Bp) is the vector
of regression coefficients, E' = (e1 oo en) is the vec-
tor of error variables and ¢ is the scale factor applied
to the error variable.

For the structural regression rodel the response
variable x may be considered as generated by the response

generators Bj operated on the controllable variables vji

and ¢ operated om the error variable e as follows:

P
= + i = e 1.
X, jzlsjvji ey i 1, , 1 (4.1.2)

Also for a set of respomnses, the error pattern in this
system in some arbitrary units has the form of independent
realization of the error variable e with the probability
element f(e)de on the real line Rl. The regression model

can then be conveniently expressed in the following form:

58
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v I 0}V
1 ] 1
X B' af|e (4.1.3)
4

1

T f(e,)de, ,

. i’ 771
i=1

or

X = gE
f(E)dE (4.1.4)

The transformation § is an element of the regression-

scale group

1 ...0 0
. . I g ~o ¢ a, <o, j =1, sP
G:{g:O. 1 0=
a' ¢ 0 <c<eo
a a ¢ "
1" p

where the group operation is defined as matrix nultipli-

cation.

Then following Fraser (1968), Chapter III, the
structural distribution of % and g, given the set of

responses, is

P
n Xl—.z BJ ji|_n-p
§(8,0/x)dgdo = k(D) 1 f 21 s 0 ggdg,  (41.5)
i=1 o J g
where
RN UTOMICERE-C)
- (4.1.6)
b(x) = (VO1) "Vx

We will comstruct the g-expectation tolerance region,

assuming normal distribution of error variable.
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4.2 Normal Distribution. Before proceeding with the main

Theorem in this chapter we state a Lemma, which will be

helpful in proving the Theorem.

Lemma 4.2.1 (Tiao and Guttman (1965)). If the random
variable é has a multivariate T-distribution
with 1 degrees of freedom and quadratic form
R, then the random variable k_l%'R-l% has
an F-distribution with k and 1 degrees of

freedom (k is a positive integer).

Theorem 4.2.1 Let the error variable e have the normal

distribution with 0 mean and variance 1, i.e.
L
f(e)de = (2m) 2 exp{-%ez}de.
Then for central 100f per cent of normal
distribution being sampled, the ellipsoidal

region

-1
Q={¥/(X_W'R(§))' ;éa} (x-ka(%))ipr;n-p;l-B}

(4.2.1)
is the B-expectation tolerance region,
where W is the design matrix for future

responses,

g1 - s—z({)(l - WUV o+ ww')'IW),

(x) and 52( ) are defined as in (4.1.6) and
Rz X

F_. is the point exceeded with
p;n-p;l-B
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probability 1-@ when using the F distribution

with p and n - p degrees of freedom.

Proof:

Since the error variable e has standard normal
distribution, the distribution of the realized errors for

the regression model (4.1.3) is

n -% 1t n

T f(e,)de, = (2m) “exp{-3 T e} T de, .

. i’ R SO i

i=1 i=1 i=1

Then by (4.1.5) the structural distribution for % and g is

i 1
o300 ¢gao = '] "2m exp{-2gp () b))
o]
2 n-p
s"(x) s (x)
x An-p exp{- Z } ~ dgdo .

+
2 0n 1

Tor the n' future responses %, with design matrix W, the

distribution is !

p(x/g,c)d:g = (ZTroz) 2 exp{-—%(z-w'ﬁ)'(z—w'g) dy -
20

Therefore the joint distribution of %, % and ¢ 1is

p(x/g,c)g(g,c/ﬁ)dzd%do

1 n+n'

vt fen boa

n-p
] exp{-—la{(k'(%)-Q')VV'(R'({)'%')' . <X'—Q'W)(x'—g'w>'}}
20
S s
X

- d .
exp{ 2 1 il dz %do
20 g
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The matrix expression in the exponential can be rearranged
as follows from Lemma 1.5.3:
(b G-ENTV (B (gD + (R T
- (g'-D) (VIR (§1-D) " (7' WS (' W
where
D' = (b' (VY * AU et
and

-1 -1
Sl =1 - W (VW' + WW') W,

Then
p(X/%,O)g(%,G/%)dxd%do

1 n+n'

1 5 ) 2 _l_ 1 1 7t
= |vv'| " (2m) An_p exP{-zoz(Q-D) (Vv' + WW )(Q—D)}

X exp{-'lg[(x-w‘g(g))‘Sil(x-w'g(g)) + sz(g)]}
20

Then by (1.4.5) the prediction distribution for X is

b3/ N

1 nt+n'

' 2 - 2 - 1 ' ' !
= |vv'|T(2m) - }Oo PJBEXP{_;;E(%-D) (VU'+H') (-D) bd

1 \ -1 2 ")
x exp{-—5[(y-¥ b(x))'S; (y-W'b(x))+s €30 Basvweymey dg-dy
20 o
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1
2 n-p
1
e TR
) 1 nt+n'-p

[vv'+ww'|2 (2m) 2

x f expl-=5 L (1-W'p (1) '$7 (- R (p) + s (1)
0 20

- ‘—
X g (n+n'-p+l) do+dy

1 n-p ntn'-p-2
- '—
v |2 on 2§ Px)2 2 P(Ei%——ﬂ)

1 ntn'-p
lvv w2 (omy 2 r(Béﬂ)

_ntn'-p
2 : -1, 2
AL 1 - d .
TG + (g RG) 'S (g R () | Y
By the Lemma 1.5.1
1 o 1 VU W
sy = Tr-wr vt ) ) = B I
- 1 ' 1 'ln - vy'
BRAAAR AN MERRLEEE A |Vt |
and therefore
2 1
vy |2 ) ‘s "5
1 N
] 1 2
AR UM
Then
1
- .
5 [ e
h(y/x)dy = =
B i
st ) 1D
-1 n+n'-p
5, T2
L QRG)T 5 — GRG)) a -
s (%)
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Denote

then

-n' 2 2
ST@ls T =08

and therefore

1
5] ? r (2R
h(X/}é)Xm = 1
nt T(BER)
_nin'-p
< |re garae) s | T g (4.2.2)

Now if we let
= Joep (veU!
z = v/o-p (y-W'b(x))
we get

n-p+n'

-1 5

s %
1+

1
IS\ 2 T(n_';'&)

/

z =
v n

h(z/x)d

1

z/x dz (4.2.3)
A n-p by

2 -
[r(a-p)] © TCER)
That is we have that
= — oyt
7= /i (L - W'b(x)
is a multivariate T-variable with n-p degrees of freedom

and quadratic form S. By Lemma 4.2.1 it means that

Then by (1.4.6) the region Q defined by (4.2.1) is the

B-expectation tolerance regiom, which was to be proved.



CHAPTER 5

THE AFFINE MULTIVARIATE MODEL

5.1 1Introduction. In this chapter we will investigate

the construction of B-expectation tolerance regionm for
affine multivariate model. For this model, consider

a system with p response variables xl, ey xp, which are
generated from p error variables €15 soes ep with a known

distribution on RP, by the relations:

P T T o TS

X oo+ Yplel + ... tY_ e .

P P PP P
The characteristics My ij (i, j, k=1, ..., p) can
be viewed as follows: Hy is the general level for the
corresponding response variable and ij is the coefficient
applied to the k-th error variable as its contripution
towards the linear distortion of the j-th response variable.

Now consider n performances of the system and let

X (x., +.. %, ) be the observations for the i-th
il in

1]
i
response variable (i =1, ..., p). In matrix notation let

1 ...1 )1 q

St

M oe e

pl pn Lﬁp
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and

The system and the n performances can the

.

(PSR Ypp,

l 1
Yi100r Yip| = { h

! T

by the Affine Multivariate Model:

,

or

X

1 0 ...0 |

My Yppeer Yo

"o Yor YPPJ

e ,)de

=9E

f(E)LE .

1
&1

%p)

11° "0 Tpil 1 T

|
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n be described

(5.1.1)

(5.1.2)

The transformation 6 is an element of the positive

affine group omn RP:
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r {
10 ...0 | me<a <o § = 1D
1 g
L] =< < i = oo
6={g=|%1 11°"" “1p| = ©ey @ Dk =lieep

Lo : ¢ HEX
a ¢ eeeel
L'p Pl 12 ,

where the group operation is defined as a matrix multipli-

cation rule.

To avoid the degeneracy for this model, it is

assumed n > p + 1.

1f the error variables are standardized such that their
variance-covariance matrix is I, then,the variance-covar-

jance matrix for the possible response variables is IT' =1

(say).

Consider now a transformation g applied to the error

matrix E

% = gk,
: . v N

Vectors e.,, ..y & 2ar€ carried into vectors g., ...y &5
Up vl %

Tl P

. . n . .
in fact vectors %l’ cens %p in R" are carried into vectors

%l’ Ve %p in the linear subspace L(%, g1y +r %p) of R,

"
The transformations g in G produce arbitrary B1s *r0s %P in

. . v "
L(%, SERRRRE %P) except that the orientation of 1, %l""’gp
nust be the same as the orientation of &, £1o o %p'
Let us now take any g € G. It is evident that g can
be factored as follows:

g=ng0’

where
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with T a positive lower triangular matrix and

A
1y

with 0 an orthogonal matrix.

&g

Let TG be a group of all elements 8°

(1 0 0 ...0 meca <o i=ly.veyp

21 (1) o ...0 1 g 0<e (5y<e 521, .40,p
G=‘ g= o = . =
T T aZ’bZl "(2)-.-0 ’% T -W<bjk<w J k,k 1’.,.,p
; é é . |T| > 0

(5.1.3)

This group is known as the location-progression group
(Fraser (1968) page 141) and it is a subgroup of G, Im
our application of the affine nultivariate model we will
restrict ourselves to the error variable having nulti-
variate normal distribution, so the analysis of the model
will mainly depend on TG, since the multivariate normal
distribution is rotationally symetric (Fraser (1968),
Chapter 5). We will also need the transformation variable
for the location-progression group TG to construct the
transformation variable of the positive affine group G,
The transformation variable for the group TG has been
derived by Fraser (1968). We will derive this transforma-
tion variable in the different way. The difference is
that our elements of the transformation variable are given

by explicit formula. We will also prove that the variable,
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defined in such a way is the transformation variable for TG.
The advantage of introducing the transformation variable
for TG this way is that it will help us in the construction
of the transformation variable for the generalized multi-
variate model in the next chapter.

Lemma 5.1.1 1 0 0 ... 0

. . ml(E) s(l)(E) 0 ... 0

[E]= vololn (B) t, (E) s, (E)... 0
T |p(®) T(®) K K2 [(2)

mp(E) tpl(E) th(E)"'s(p)(E)

(5.1.4)
is a transformation variable for the location-
progression group TG (5.1.3), where non-zero,
non-diagonal elements of the (i + 1)-st row
of matrix (5.1.4) for i =1, ..., p are

given by (denoting mi(E) = tio(E))
£ (E) = (t; (B, (B).enty 11 (BN
D. . (Ede. , (5.1.5)

the diagonal elements are given by

2 B -* ' _*
2 (B = (g0 (D (B (0, (B, (),
(5.1.6)
[
S Bl PR
N i-1

and
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CE
' & ®
(E) !
D, ,(E) = o s |6 ®)
12;.1E)) :
&1 )
L’\Ji-l\

*
with %j(E)’ for j =1, ..., i-1 given by

recurrence formula

* ! _ ®!
Qj(E) = s(j)(E)(gj Dj_l(E)£j(E)) 5.1.1)
-1 izl *

where

QZ(E) = 1.

Let us first prove few simple facts about the inner

*
products of the vectors g. and %i (i =1, ..., P)-

i} From (5.1.5) we see that
(¢ rn_l 0...0) (1" ) n_ll'W (n ll'e,w
io ~ A A Rd
®! %! %!
e o= ltyg f=] 0 0 1S e, - e =[S %
vi . . 7l . i .
: %! Cxt %!
el ,
ktii—l/ 00 J vi-1 nvi-1 $i-1%1 )
so by comparing
%'%i = ot = ngi for i =1, «vuy P (5.1.8)
and
*'
%i g, tij for j < i, 3 =1, «0evy P-1 . (5.1.9)
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ii) Using (5.1.6) and (5.1.7), we get

' % - *' -1 D*'
4 47 (1)(e D, 15 "8y (8 ~ Dyaky)
2Ly %1 - _
(1)(e Dlyk) gy = Dyt T s(i)S(ny T b
SO
£ % )
%i d. = 1 for i=1, ..., P. (5.1.10)

%' %
iii) For the inner product %j %i , j # 1 we will use the

principle of the mathematical induction.

o el 15.1'1) = _

)4 % (1) 7toh) BEs gy Aeid D) (1)(ne ey
= 0.
* !

2°) Let us assume that up to i = j -1 %i 1 = 0, then by
using (5.1.7) we get
&= ( D £ )'1=s t (el 1-t! D, 1)

. e‘ . . =s,.,\e, 1-C.
Vi (J) j-1%] & (3Y'8y v v i-1n

-1 _ _
s,., (ne, - ne.) = 0.
(J)( i J)
° h i =] 1 d* d* =0
3°) Let us now assume that up to i =73 - 14d.d =7U.

Without loss of generality we can assume that 0 < k<j-1.

Then by using (5.1.7), (5.1.9) and (5.1.10) we get

%' % -1 %1 * -1 i -1 x! %

d, d =5, (g, - D, t. = s,
i vk S(J)\%J o3’ Ak S(J)(mj Ak Z tjlml %k)

- 1 - =
(d, e. - tj d, d,) = s(j)(t. t..) =0,




SO
*l
e =0 forj#i =0,
nj i
iv) By using (5.1.7), (5.1.10)
%! *?' * 1 *!
e =4 (g~ Dik*Diks) T
x' % i-1 %!
=siyds 85t Lty T
k=0
SO
*‘
4 8 = 5yy ‘fort

v) By using (5.1.7) and (5.1.11)
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1, ..., P. (5.1.11)

H

and (5.1.11) we get

®1 *1! ' %!
4 ey = D pks)*8s Dionds
*(1)
-1, e, p. (5.1.12)

for j > i we get

%! %1 *! %! ! x' k!
58 =8 (&Piks Dy 1ks) T & (g;7Ds_1k:)%85 Di-nks
d*‘ * + D* d* ! =0
S(i)%; A CHET IV TR
S0
*l
%j .~ 0 for j>1i 1i=1, ., p-1. (5.1.13)
Let us now denote
L.
By = (L ogy oo 8y)
and
1 0 0 0
ml(E) s(l)(E) 0 0
%E]i = mz(E) tZI(E) S(z)(E)-. 0
mi(E) til(E) tiZ(E) .s(i)(E)J ,
for i =1, ..vy Do
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Then we can prove few relationships between [E]i and Ei'

T
. ~'1*|
vi) [E], = N, D.E. . (5.1.14)
i i 7i’i
T
For that
oo 0} i)
¥
0 1 0 id
-1 % vl
N, D.E; = ) (Log, & )
i 11 0 0 ... 0 d NNl N2 %1
N2
. #1
LO 0 1] {d.
/i
rn-ll' rn_ll‘l n_ll'e 2 tve n_ll‘e,}
1w VY ANl A N2 LVGYE
x! 1 1 ' A
g1 gl die L% b
= RasesdT L , o
) 4 b £ gy 8y o83 &
*' *' '*| *l *'
d, d. 1 d. e d. e ..d. e,
| vi ALY i vl Al N2 il
1 m1 m2 . m1
0 sepy Eppveefin
= =[E]..
¢ 0 5(27..t12 T i
0 0 0 S(i)
i i = [E D* 5.1.15
vii) Ei = [ ]i i (5.1.15)

For that
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1 0 o 1) 1 )
*! , %1
.o a4 bod T syds
[E].D, = |, . . = .
T 1 1 . . :
*l
t10 til . S(1) %i i-1 o 4
R I A T )
k=0 ikvk (i)vi

3 1
PR -1 1T 4 '
RCABAICIN PR S LR IR (S I
i-1 . -1 i-1 N )
lkZOtikgk+s(i)s(i)(’%i—kzotik’qk) %i‘

Now we can prove our lemma. For this we will again

use the principle of the mathematical induction.

1°) Let us assume p = 1. Then

1 0
(E], = ’
T @ sy ®
where
_ T L% = -1 ! = e
my(B) = £ (B) = (£ ()" = N "D (E)g, =n L'g = ,
and

2 - .., - ° -2
S(l)(E) = (%1 = %11) = (%l - %ll) = iz (eli - el) .

The transformation 6 € G in this case (using the notation
T T

ei for i =1, 1, ..., p) is
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Then
1 0 |[1 0 1 0
6 [8],- -
T°T 2 C(l) ml(E) s(l)(E) al+c(l)ml(E) C(l)s(l)(E)
and
1 0 ! 1'
9. E. = ¢ = v
T 1l a, ¢ ! a l' + ¢, ¢!
1 ‘(1% 1 (1)R1

It follows from the location-scale model (Chapter 2) that
ml(Telﬁl) = th(TGlEl) = ay + c(l)ml(El)

and

S(l)(TelEl) = c(l)s(l)(El) ,

so [E]. is the transformation variable. Also
T

* ! *
@1(T61E1) y s(1)(T81E1)(’%1 tlo(TelEl)%)

-1 -1
c1ys (1) Bp) (Grdte qy8y72d¢ 1y F10 B

1 -1 K
¢S (1) B ey @t BPB = £,y o

so

*eE) =D
D, ( 8.E) =D (E) -

T
2°) Let us now assume that up to p =1 - 1 8, _[E].
i-1 i-1
T T
-6, .E ] ad (6. B ) =D . (E i1
= %T i-1Bi-1'4-1 o0 i—l(T j-185-p) = Dyoq(Ey ) and let

us show that this is true for p = i. For that



6._ 0 [E] 0
T i-1 0y T i-1 Y
ei = ) [E]i =
T 1 T 1
b S ECED Sy
S0
[ g, 0 [E] 0
T i-1 v T -1 "N
] 1
bl | [E1ED Sy Y
6. ([E]._
T i lT i-1 Q
1 . + 1
Ri%E]l-l ¢ iyki By ¢1)% (1) By
Also
6. . 0 E, 6. qE._
) 7 i-1 ~ i-1 T i-17i-1
Byt Biha T ]
1 1 ] 1
Ri S (& Rifi-17¢ (1) %4
therefore
*! .
= '
g, T REia Tt

Then by using (5.1.14)

_l *
¢ (8.E)=N.D. (8,
Nl T i1 i-17i-1 T i

- *
=Nl

+ ¢

_- 1]
'éE]i-lRi

s0

t = !
£r( 88 RiéE]i—

T

\i
io10i-1Fi-1R1 7 ¢ 1y¥3-121-1F1-1

ve get

1

-1 _* )

e,
1

()5 By

Lt et Gy

76

=N ! +
B8 N0 g (By ) By qBa¥e )&y

(5.1.16)

)
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Also by using (5.1.15) and (5.1.16) we get

2
s(i)(TeiEi)

*'

=(g;D, NUSCAS AL (8D, (Tei_lﬁi_l)&i(TeiEin

1

%! * '
=(Ej_1Rite(g)RiPi-1(Bip) E] 11837 (1)Pi-1 B0k (B5))

*v
X(E lk (1)%1 -l( E]i—l)e/i \1) i- l )£ (E )

= 1] *’ 1

(B} 1Rs B 120 (o) D51 By ks (B

*l
BioaRi EioqRi e (1) 8503 Bk (D))
2 *l . *'
=3y (83751 (B )k (By)) (g;=Ds 1 (B;_1)k4 (E5))
(E ) (5.1.17)

( ) (1)

which together with (5.1.16) proves that

6.[E], = [ 6.E.]

T Yoqrtt

Also by using (5.1.15), (5.1.16) and (5.1.17) we get

& (8.E)
i ii

T
-1 % %!
=5 (1) ¢ eiEi)(%i'Di-l(T i-155-10%s ( 558;))
1 ! *'
—c( ) ( )(E )(E (1)w1 1—1(Ei—l)£ ]1 1vi (1) i- 1(
x k5 (B))
-1

1
5 DB Rk T e

%!
=¢ (1) (1) (87051 (By %5 By

-1
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-1 *!
=s (1) (Eg) (85703 1 By 5 (By))
*
=8 (Ey)>
1]
* _ *
ni(TeiEi) = D, (E,) . (5.1.19)

Then (5.1.18), by knowing that (5.1.19) holds, proves that

[E] is a transformation variable for the location-progression
T

group G (5.1.3).
T

This transformation variable [E] may be now thought as
T
the first stage of the transformation variable for whole

positive affine group G. For this group, the variable

[E] did not consider the orthogonal projections of coordina-
T

te vectors into the linear subspace L(l, e., ..., & ).
A Al AP

Denote

0¥ () = 0" (E)
Pl (E) -

Then from (1.3.4) we have

1 Ov\ 1
= v

1! 1
o, N,
el e 1@ Dm,
N,

or

[E]D*(E) . (5.1.20)
T

=1
[

*

By (5.1.10) and (5.1.11) D (E) is an orthogonal set.
Consider p orthogonal projections of the coordinate vectors
(1, 0, ... 0)y «u.vy (0,..0, 1, 0...), ... into the linear

sspace L(%, £ o %p)’ ... getting p orthogonal
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0 0 0
i i ey €, T N
projections g1» & he vectors g1 ' &

chosen in such a way that L[(], 0, ey 0) and
'%]_ ’%p

L(&, B2 e %p) have the same orientation.

Let
1" 1" ),
2= Y famdd® = Y o= = )
E D (E) D (E7)
- - = (5.1.21)

* *
It is to be noted that the vectors in D (E) and D(E) =D (Eo)
are orthogonal sets, have the same orientation and are
related by an orthogonal rotation, Let O(E) be a p X p

%
rotation matrix which carries D(E) into D (E), so that

2"(E) = 0(B)D(®)

Therefore
. l ,(\)11 \ %1
D (E) = = [E]D(E) (5.1.22)
9 0(E)| |D(E) 0

Lemma 5.1.2

1 o' 1 0 1 0!
v L N

(E]=[E][E]= =
T 0 (n(E) T(E)]{Q O(E)] (m(E) C(E),

(5.1.23)
is a transformation variable for the structur-
al model (5.1.1).
Proof:

From (5.1.20) and (5.1.22) we have
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<]
L]

[E][E}D(E)
T 0

1ot

= D(E)
p(E) T(E)} {§ O(E)
1 0'
= )
R(E) C(E)
= [E]D(E) (5.1.24)

By the construction [E] € G. Since G is unitary, [E] is

a unique element in G, By definition D(E) is a fixed
reference point on the orbit GE of E and depends wholly

on the orbit GE. From (5.1.24) we see that the unique [E]
transforms D(E) into E, a unique point on GE and hence
from (1.3.4) [E] is a transformation variable for the
structural model (5.1.1) which was to be proved.

We will investigate the affine multivariate model
with the error variable having multivariate rormal distri-
bution. Then following Fraser (1968) and Fraser and Haq
(1969) the structural distribution of K and I, given the set

of responses, is given by

P _np
=2 Palam) 2

o=

1 ol
j 1An_j8Xp{-3(g(X)-g) nl " (m(X)-p)}

n-1 nt+ptl

xexp{-%tr Z-ls(X)}IS(X)[ 2 |Z] 2 dydI, (5.1.25)
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where

S(X) = T(X)T' (X). (5.1.26)

Remark. Since [X] is a member of the group G, %(X) and
T(X) are defined for the responses by the same formulas

as %(E) and T(E) for the error variables.

5.2 B-expectation Tolerance Region for This Model.

Theorem 5.2.1 Let the error variable e have the normal
distribution with Q mean and variance-

covariance matrix I, i.e.
3 1 B o2, P
f(g)de = (2m) “exp{-> [ e} T de,
2 o1 37 4o 3
J J
Then for central 1008 per cent of normal
distribution being sampled the ellipsoidal
region
2lyf—B (e S EIC.ON L
0=/ (R (0) [n_p (GRENPE, o)
(5.2.1)
is the P-expectation tolerance region,
where S(X) is defined by (5.1.26), %(X)
and T(X) are defined as in (5.1.4) and
F is the point exceeded with
p;n-p;1-B
probability 1-f8 when using the F-distribution
with p and n-p degrees of freedom.

Proof:

Since the error variable £ have the multivariate
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standard normal variable, the distribution of the realized

errors for the affine multivariate model (5.1.1) is

.g f(eli’ cees epi)deli...depi = (21)
i=1
1 n no, P n
xexpl-y [ [ eyl U T degy -
j=1 1i=1 j=1 i=1

The structural distribution for K and § is given by (5.1.25).

For the future response variable z, the distribution is

21
p(y/y,1)dy = (2m) 2[21 zexp{-%(x-g)'z—l(x-g)}dz .

Therefore the joint distribution of T K and ¢ 1is

p(z/g,z)g(g,z/x)dede

ntl)p p X . g%l n+p+2
A _yexe{-gtrl s(0) s © |z}

- )
= 277 n?
]

N —=o
fousy

1 - -
Xexp{-a[(g(x)-g)'nz l(Q(X)-H)+(g-H)‘Z l(z-g)]}dkdzdz .
The expression in the exponent for ! can be rearranged as

follows:

(- 0 O+ T ()
- D ] ) e ()T (4]

b (rp) ) T ()

Then by (1.4.5) the prediction distribution for % is
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nt+l P

- - 7
h(y/%) dy=2 Plam 2, j

| [J=—= Ry =]

A, J exp{—ltri-lS(X)}
il 2

xJ exp{-%[g-(n+l)-1(n%(X)+x)]'(n+l)S—Hg-(n+l)_1(ng(x)+x)]}du
K

X exv{-%(z-%(x))’n(n+1)'lz'l(x-%(x))}

n-1  ptpt2
x |S(X) | 2 |z 2 dzdy
np P n-1 ntptl
“p a2 1,2 P 2
27P0m L e A f s 2l
=1 "3 g

xexp{—%trz-l[S(X)+n(n+l)_l(x—%(x))(z—%(x))']}dzdz .

Using the integration relationship

_ntptl 0 %B n
[ expi-bers RO} 3] gt — jrw)
L TA .
j=1 n-(j-1)

(for references see Fraser (1968) page 242), we get

h(x/x)dx
2 % A . e
()P izt 2P
n+l np n
A
CORIRAESICES
a-l
s °

X

n
s ™ () (g |



84

Ry
_ |n_|?2 n-p
[n+1] A
n
n-1
X s :
n n X

2 -1 .| )
150 | 2|40 (o+D) T (p-r (1) 'S T (R) (32 (D) |

B R=R P
[ 2 9n 2 T-Z_]IS(X)L%_
ntl o
n-p}, 2
F{ > J2ﬂ

1
e et pp ) 18T () | ey

Therefore the prediction distribution for % is

h(X/X)dX
. 1
2
. 12 r|3|1s® |
ntl D A~
' 2p(nzp
Y
2
C eir(ea ) SO (rrm) | ey (5.2.2)
Now if we let
1
_ (n(n-p),2
z = (22 (5.2.3)
we get
1 ]
n 2 -
Iy IS(X)‘ 1 -1
h(z/X)az = [2] " 1 +Z—ISI$Q‘)—Z dz . (5.2.4)
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That is we have that 7 from (5.2.3) is a multivariate
t-variable with n-p degrees of freedom and quadratic form

$(X). By Lemma 4.2.1 this means that
' -1 -
— - Lo (- (0) 17T (0 (g (0) = P

Then by (1.4.6) the region Q defined at (5.2.1) is the

R-expectation tolerance region, which was to be proved.



CHAPTER 6

THE GENERALIZED MULTIVARIATE MODEL

6.1 Introduction. In this chapter we will investigate the

generalized multivariate model. Such a model is a general-
ization of the model we have investigated in the previous
chapter. TFor the generalized multivariate model we consider
a system which does not deal only with one set of p response
variables, but with q such sets. The general levels of

each set of response variables are considered to be differ-
ent, but the linear distortion by which every set of response
variables is affected by the error variables is the same for
every set of response variables. The R-expectation tolerance
region for this model is then constructed, assuming multi-

variate normal distribution of the error variables.

6.2 The Model. Consdier a system with qp response

variatles xilz ey xél), x§22 ey xéz), ceey xiq), cers
x;q). Let us suppose that the internal error of this system
can be described by qp error variables eil), ceey e;l),

eizz RN eéz), BN eiq), ceay e(q), with a known
distribution on qu. Let uil), ceey u;l), U§2), ey

UéZ)! ey uiq), ey u;q) be the general levels for the

qp response variables (accordingly). And suppose that the
every set of p error variables affects the corresponding
set of response levels by linear distortion, which is the

same for every i-th pair (i = 1, ..., q) of corresponding

86
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sets of error variables and response levels: for the j-th

response (xgl)) let ij be the coefficient applied to the

(1)

k-th error (ek1 ). Realized error variables and the corres-

ponding response variables are then connected by the

equations:

(1) _ (1) (1)
X 0 F ] + Y1181 + ... 7 Ylpep
1 = 19 H q
(i) (1) (1)
= + e + ... t e .
*p up Ypl 1 Ypp P

Consider now n, performances of the i-th component of
. (i) _ , (1) (1),
the system (1 =1, «vo) q) and let S (xll "'Xlni)

be the observations for the first response in the i-th set,

., and §(1) = (x(l), ceey x(l))' be the observations for
P P g
a
the p~th response in the i-th set., Let n = 2 o The
i=1

system and the n performances can then be described by the

Gepneralized Multivariate Model:

(6.2.1)



1...1 0...0...0...0 (1" o' ...0" )
mnl n L")
0...0 1...1...0...0 o1 .0
vel. .. I N R
0.0 00,000 100l o' o' ...1'
/ L% an un )
q
(1) (1) _(2) (2) (q) (q))
T R SRR B M
1 2 q
(1) (1) _(2) (2) (q) (q)
X = %21 oo, F21 0 Fan T2
. 1 2 . . q
X(i)' "X(i) x(i). “X(i)' _.x(g) ...x(g)
a P pn, P pn," P Prg)
[ (1) (1 _(2) (2) (q) (q)
e e e e sea B = ce s €
11 lnl 11 ln2 11 lnq
(1) (1) (2) (2) (q) (q)
E =% **C2n S21 *T8n,t0%21 Ch |=
= 1 2 q
e(i). ..e(l) e(i).. 'e(i).' .e(g)_ _.e(g)
B pn; P pn," " P PRy
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(6.2.2)

(6.2.3)

(6.2.4)

1 is a q x q identity matrix; 0 is a ¢ x p null matrix;

[ (1) (2) ()
L B A
(1) (2) ()
M = Uz Uz "‘Uz
W@ (@
Hp o Hp R
Y11 Yip
T =
Yp1 "7t Ypp

and

(6.2.5)

(6.2.6)
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¢ i
1 1 f(eii)
i=1 k=1

(1)

i)
T ' . (6.2.7)

- (i) (
f(E)dE = ...epk )de depk

If the error variables are standardized such that their
variance-covariance matrix is I, then the variance-
covariance matrix for possible respomnse variables is
IT' = 5(say).

The model (6.2.1) can be utilized in analysing
observations on individual units through time or space.
For example, p characteristics of production process can
be investigated in q different situations. Those situatioms
could be q different plants of the same corporations
producing the same products (It is known that the general
levels of characteristics are slightly different even
though the variationms remain the same). Or those sutuations
could be the q different shifts in the same plant.

The transformation § from the model (6.2.1) is an

element of the positive-affine group om RP:

( .
(1 ...0 0 ...0 ) coca P ca
. . . i=1, ..., ¢
0 veal .0 10 j =1, «ovy P
G=<g— =
(1) (q) —w<e ., <@
a; a; 11...c1p AC jk
E E : E j’k=1s ceey P
N BT U c| > 0 :
L P P P PP/
J
(6.2.8)

where the group operation is defined as a matrix multiplica-

tion rule.
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Consider now a transformation g applied to the error
matrix E,

"
E =gk .

(1) @ @y

Then vectors B2 cro %p (where %i = (%1 81 Y

| - 1(1) 1(2) u v
g0 &y Rp vt

In fact the transformation g carries vectors B0 tr o %p in
n . v v, .
R" into vectors B1r v %p in the linear subspace

Ly

n
Xp0 v Xq’ g0 v %p) of R°. Of course the vectors

v

Y0 o Xq (defined in (6.2.2)) are not affected by the

transformation, or better say, they are carried into them-
selves by the transformation, so we do not have any changes

in them. The transformation g in G produces arbitrary

b

N
g1y e %p in L(Xl’ ey Vg By wees %p) except that the

ng’ 817

. . "
orientation of v ey %p must be the same as

l’
the orientation of Vir veeo

s 51’ Cey %p' To avoid the

o<
O

degeneracy for this model, let us assume that E is of rank

g+pandmn>ptq.

6.3. The Transformation Variable. It is evident that any

g € G can be factored as
g = 18 &

where

with T a positive lower-triangular matrix and

I(Q) . .
%p ) are carried into vectors %l""’%p



&0

9

0o 0,

with 0 an orthogonal matrix.

Therefore for the same reasons as in the previous

1

chapter we will first construct the transformation variable

for TG, the group of all Tg. This group is known as a

location-progression group on qu and has a form:

1 0 o 0 0 0o ) —m<a§i)<w ‘
0 1 ..0 0 0 ...0 i=1,...,49
. . 0 i=l,...,p;
0 0 10 0 ...0 1.0) [ 0<c,. <=
G={.g = (1) }
Tt ail) aiz)...aiq) ¢(1) 0 0 AT §=1,.0.,5P;
(1y _(2) (q)
a2 a2 ...a2 b21 °(2)' 0 _w<b3k<m
: : : j,k=1"",p’
(1)y (2) (9)
| ap ap ...ap bpl bp2 . c(p)J [Tl > 0
(6.3.1)
Lenma 6.3.1.
(1 0
(E] =
T M(E) T(E)
(1 0 0 0 0
0 ... 1 0 0 0
1
_ mi )(E)...miq)(E) sy® 0 0
mél?(E)...?gq?(E) £y (B) sy (Beee 0
(1) (q) ' '
me (E)...mp (E) tpl(E) th(E) ...s(p)(E

(6.3.2)
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is a transformation variable for the location-
progression group TG (6.3.1), where non-zero,
non-diagonal elements of the (g + j)-th row

of this matrix (j = 1, ..., p) are given by

- (1) (q) 1
gj(E) (mj (E)--.mj (E) tjl(E)..-tjj_l(E))

-1 _*
-NyyDy_p (B)g, (6.3.3)

and the diagonal elements are given by

2 %! *1
E)= - ! -
S(j)( ) (%j Dj_l(E)gj(E)) (aj Dj_l(E)gj(E)),
(6.3.4)
where
N1 0
-1
N, =
i-1 0 1 )
(3=-1)x(j-1))°
-1 N
nq 0o ...0
0 n;l.. 0
-1
N = | . . (6.3.5)
0 0 2
| q
{ ]
Nl
V'
* v NG
D. .(E) = = (6.3.6)
J"l D* (E) %!
=i-1 31 (E)
o
Sj—l(E));
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*l
Qk (E) for k =1, ..., j -1 is given by the
recurrence formula

%! -1 ®1 1
b () = s (B) (g, Dy (BIE (B (6:3.7)

Again we will first prove few facts about inner

produ
¥
i) F

and

so fo

ii)

*
cts involving vectors g., 4.(3 =1, «vvs ) and
g g0 450 P
=1, oy O
rom the form of the matrix V (6.2.2) we see that
Xl Y %0y for i =1, ..., q (6.3.8)

0 for 1l #i,1=1,...,0, (6.3.9)

rany i (i =1, ..., Q)

Vg, = (0 0mg 0 0) (6.3.10)

From (6.3.3) we see that

Yy (.1 Y (o
e 000 O ’
)l lo vonto ..oy
i} q Vg
%! '\Jj
0 0 1...0|4,
'
Y 0 ...0 0 1) g1




94

{ -l 1 ( —l 1 \
1 '»1W 7y X184
n-l ! n-l !
q q VgV
= £ %j = o
1 81 8
%! %!
IR UL A

so by comparing

- (1) .o .
X;%j = nimj for j=1,...,p and i = l,...,q (6.3.11)

and

P
gk %j = tjk for k < j’ j = 13 AL | p' (6'3'12)

(iii) Using (6.3.4) and (6.3.7) we get

4 *'%* = s—l ( -D*' t )'s_l ( —D*' t.) = s-2 s2
5 &5 T SR @) £3775-173 () (3

sO

x' %
éj gj =1 for j=1, «.0y P (6.3.13)

*' &
iv) For the inner product %k g j # k we will use the
J
principle of the pathematical induction. We should point

out that whenever vectors y. are involved, the results
hold for any 1 (1 =1, +vu) q).

1°) Using (6.3.7), (6.3.10) and (6.3.11) ve get

*'

_ -1 ! 1 _ -1 1
4 %5 = 5% % 20" = () Bls )

_ ot
5§18

_ 1 (i) (1), _
= s(l)(niml - nim1 ) = 0.

*'
2°) Let us assume that up to j = k-1 éj 1 0, so
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%! %!
d1 gl a1
D* e = : =0
'S5 2 S K A S IR
d-1 Sk-1ni
and
DY v, = (0 ... 0m, 0. 00...0)"
k-lXi = (0 ... n, ces cos
Then by using (6.3.7) and (6.3.10)
&y = s (e 1) ( v)
Sk A1 T S(k) Rk k-14k’ Ad (k) Skvi T Elke lml
- (1) (1)
- (k)( m nl k ) = O ’
S0
*!

%j v =0 forj=1,...,p and i = 1,...,q . (6.3.14)
3°) Now by using (6.3.7), (6.3.12), (6.3.13) and (6.3.14)
we get

N -1 D ' 'd* =57t 'd* d
2 817 5280 £2) '8y = 5oy (eady - EoP1dy)
v *
- st *' t! v d* = s_1 t t' %1
E)) ml §2 75 d*' 4l (2) *' %
Al 41 gl
_1 B
s(z)(t21 t21) = 0.
. . . LA 0
4°) Let us now assume that up to j = k-1 %j %1 = 0,
j # 1. Without loss of generality we can assume that

0<l<k=-1. Then by u

and (6.3.14)

d*'d*
nk vl

P

*
_ _ 1
(e Dpo1fy) 4y =

!
(k)

) =

-1
S0 et Tt

sing (6.3.7), (6.3.12), (6.3.13)

*
d )

*
(e1d) - 5D1d)

(k) Akl
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SO
* %
fidy =0 for J#K, T =1, oy (6.3.15)

v) By using (6.3.7), (6.3.13), (6.3.14) and (6.3.15) we get

®! %! D*' D*' ) %! D*' )+ *'D*'
e, =4, (g, - D, k. +D._£) =4 (e =D, £+, Dot
£5 85 = &5 85~ Py-aky * Pyaaky) TRy (R 7 Paady) ™y Py-ihs

a ! % + 0 =
B CI L I T C DU

S0

d. g, =5, for j =1, .u., 6.3.16
Ry Rj s(J) or P ( )

vi) By using (6.3.7), (6.3.14) and (6.3.15) we get for
k> j

*! _ * 1 %! *1 _ *! %! ! %!
i Ry~ S (%j_Dj-l%j"'Dj_lEj) = 8 (Ej'Dj_lrEj) * 4 Dj_ﬁj

*! %

o g T 0
S0
%!
.=0 fork>3j,3ji=1, ..., p-1 . (6.3.17)
Qk %J

Let us now denote

Ej = (V By v %j)' (6.3.18)
and
1 0 0 0
0 .1 0 0
I 0
[E].= - m{l)(E)...miq)(E) Sy (B)ee 0
T 3 IM.(E) T.(E) . ) ;
i i : : .
(1) (q)
mj (E)...mj (E) tjl(E) ...s(j)(E) s

(6.3.19)



for j =1, ...y P

ships between [E]j and Ej:

T
-1 %,
vii) [E]! = N, DE'.
LANS T T B
1) £ = [E].D
vii .= D..
j 3

T

To prove vii):

e R0y ly
N,"D.E. = « (V'ED=|
A I P i
=] =]
Nyt w e
i
= % *%
D.V' D.E!
=] =i=3
Now, by (6.3.10)
ORIk

By (6.3.14)

%! %1 %1
1 £ %184
| - - .
e RIRR P I
*v *1 *v
] £ 28y A
By (6.3.11)
1 [}
1 1 N1 RS
N VE' = N “|! [(e;vvve.) =N :
=] . ( 1 J)
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Then we can prove the following relation-

(6.3.20)

(6.3.21)



mil)...m§l

m(Q)...mFQ)

1 ]

M!
J

By (6.3.12), (6.3.16) and (6.3.17)

PR

TR
$1
x1
D.E., = %2 (e. e
=373 Tl a2
L
d.
3
Sy a1
i 0 S(2)°
0 0
L
Therefore
% v Ly
N, D,E!
i3 .
.V
]

which was to be proved.

To prove viii):

u
e
)
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Now, by (6.3.7)

0 %1
R sy 0 (14
R , ;
MV+TD. =1 |V+ "
J J=] . R a.
\J) il (i) ) (3
*l
1er)
Y S(1y81
j’l 1 1
n'vV * *
j Z t..d + s, ..d.
’ o1 Jkuk ()]
SO
* {V
[E].D. = ol = = E.
T 33 | V+T.D) E, J
I i

Now we can prove our lemmna,

use the principle of the mathematical induction.

1°) Llet us assume p = 1.
1 0
[E], =
1
T 0 1
mil)(E)"'miQ)
where
_l*
ml(E) = £1(E) = NO DO(E)Ql
and
2 B %!
s(l)(E) = (gD (B)

"

The transformation TG € TG in this case (using the

notation TGi

for 1

1, ...

Then
0
0
(E) 5(1)(E)J

= N—lV%l

%!
LEN (gD, (B)g, (B))

(%l - V'NV&l)'(%l - V'NV%l) .

, p) is

Qi(E)
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For this we will again

S(l) (E) |,



1 .. 0 0 )
. . 1 0
8, = = K
T 1 0 1 0 ai ¢
nl (1)
(1) (q)
ST BRI ¢ ¥
Then
I Q 1 2 I
el[E]1 =1 ' =
T+
T°T 21 B (F) s(l)(E) 21l%e )1y
and
. (v I 0 |V v
= = E = =
£ T 0
e* T al ¢ e! a V + ¢
Rl &1 (1)) |11 (
Therefore
*'
%l a Vv o+ C(l) 1
Then
-1 * -1,
= = + = N
Ql(TelEl) N Vsl N V(V 2 c(l) 1) vV
=1 E s
2t et EY)
from which
1 = + .
El(TelEl) g+ ey ®
Also
( 6 E ) = (e*-V'N lVe ) (e -V'N 1Ve )
(l) a1l
= ! L
(v %1+c(l) 1 -V'N V(V a c(l)e 1!
! +
x [V %1+C(1)w1 -V'N V(V 217¢(1)8 l)]

m! (E) ¢

l)ml

+
21

‘1

100

0
o

(1)°(1)

-1

N Ve

(E)
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' 1 |'l 1
= [V %l-V %1+c(1)(€1‘v N V%l)]

! i 1‘1
X[V gl-V %1+c(1)(%l-v N V%l)]

2 1"1 t 1'1
c(l)(ﬁl-v N Vgl) (%l-V N V%l)

(1) (1)(E )

so

( 8,E,)

Sy 1f) T ¢S Ep)

From this we get

( 1 0
[ 6,E]1, = .
TT '"( 6,E) s, ( 6.E))
L2RMe i R C DR i
- = 8,08],
%lI+c(l)mi(E) C(l)s(l)(E) T°T

which by (1.3.5) proves that [E]1 is the transformation
T
variable for the location-progression group TG (6.3.1) for

p = 1. Also

%!

d ( 6,E ) s(l)( 8.E )[ L) (TelEl)gl(Telsl)]

(1)( 6,E )[gl-V'gl(TelEl)]

-1

(l) (1)(E y[v! a +c

V' (Ia,+c

&1~V Tagte(y8, (B

(E )[V 2 V'a_ +c, ., (e

arteny (&7 (D]

(l) (l)
£ ' =4

SO
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% K.
Dl(TelEl) = Dl(El) .

2°) Let us now assume that up to p = k - 1

*

F3
and Dk—l(Tek—lEk—l)-Dk-l(Ek—l)

0,7 (El, . = [6,_-E .1, _
S S B L

and let us show that this is true for p = k.

For that
8 0
T k-1 ~
Gk =
T b! c
nk (k)| °’
where
(- (1) (q)
BT BT e g by e Bgy)
Also
([E] 0 )
T k-1 v
[E], =
T £'(E) s, . (E)
[Tk k (k) "k J
Therefore
6, ; 0 (E], P
T k-1 «~ 7 k-1
8, [E], =
k k 1] 1
T Be Sl kB s B
6 _,[E] _ Q
T k lT k-1
1 1
kkéE]k—l+C(k)£k(Ek) © (1) S () (Y
Also
6 0o (e ) 6. _E
) T k-1 k-1 T k-1"k-1
E, = 0. E = =
k 7 kk

b Collfk REe-1tC ()R]



therefore

%!
= p! + '.
S Rk T C ot

Then by using (6.3.20) we get

g %
&k(TekEk) = NP k 1( 8-1Fx-1) 8k

RS
= N D Brp) By gby ¥ c(k)mk

-l l

= Mg Py 1( g-1)

)

[ el * c s

§0
%L(TekE ) ° k[ eor ek By

Also by using (6.3.21) we get

1

(k)(eE)_(mkkl(e g BiE)

k- 1 k-1"%vk
% %!

x(g, - kl(eklkln(eﬁn

*v
1
(B 1Bt &k Pk et

)[E] k=18 (k) Dy-1

[ 1bk+c(k)wk k-1

>

(E [E]

k- 1 k- lmk (k) k 1

(B, D5 (BN

*l
' —
[Ef 1B 12 () 8 Pk-1 B ki

b. +c

*I
(B 1 Brorbite ) (8 D1

1) £ B

x

2 %! ' %1
¢ ) € Dk-1 B i B (e Dy g (Byop) by

2

© (k) TR

S0

(8,E)=c¢c

S0 (E) -

(k) * (k)

Ek lmk (k) k 1 k 1
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(B 18

CHININCRIR

(B )5 (By)]

(E,))
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Then
( 9, .IE] 0 )
D1 e Y
kaéE] Feiob ) o a B
[ 8k-18k-11 k-1 9
t!'( 8,E ) s, (6,.E)
L ok T kk (k) T kk
- %TekEk]k ,
SO
[+8,E ] 6, [E], . (6.3.22)
b N P Sk
Also
% 1 ¥
G Tt ) (5,0, 1t B B 5 W)
-1
©1)® () B
*' &1
x(Ep_1bite gy 8Dy g By 1)[E]k 1 (10 2o B i B
(k) (k)(E YL Bro11e 1) Bk Pi- 1( e (B
( )(E ) (8B 1( =15 By))
_ *
- %k(Ek)
S0
*
D (8,5 = D (E,) (6.3.23)
T K

Then (6.3.22), by knowing that (6.3.23) holds, proves that
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[E] is the transformation variable for the location-
T

rogression group .G (6.3.1), which was to be proved.
P T

This transformation variable [E] may be now thought as
T

the first stage of the transformation variable for whole

positive-affine group G. For this group, the variable [E]
T

did not consider the orthogonal projections of coordinate
vectors into the linear space L(Xl""’¥q’ gl""’%p)'

Denote

DY(E) = D (E
B = )

Then from (1.3.4) we have

v I 0 v
E = = *
E M(E) T(E)J{D (B)),
or
*
E = [E]D (E) . (6.3.24)
T

*
By (6.3.13) and (6.3.15) D (E) is an orthogonal set.
Consider p orthogonal projections of the coordinate vectors

(1, 0y vovy 0)y «0uy (04420, 1, 0...), ... into the linear

space L(Xl""’Xq’ %1""’%p)’ getting p orthogonal

. . 0 o 0 0
rojec y sees . y eens
projections g, %p The vectors g, e_ are

vp
0
chosen in such a way that L(xl, ceny Xq’ SOIEERE %p)

and L(Xl’ ey xq, g1+ %p) have the same

orientation.

Let



106

v v o v
0 _ _ _ n¥.0
£ = and D(E) = = | 4 =D (E). (6.3.25)
0 0
E D(E) D (E)

* *
Tt is to be noted that the vectors in D (E) and D(E)=D (£%)
are orthogonal sets, have the same orientation and are
related by an orthogonal rotation. Let O0(E) be a p X P

*
rotation matrix which carried D(E) into D (E), so that
*
D (E) = 0(E)D(E) .

Therefore

\ 1o (v
D (E) = = [E]D(E) . (6.3.26)

Then the following theorem holds.

Theorem 6.3.1.

10 Y[1 O

Y[
(8]=[5] [£]= H
T o (M(E) T(E)|{0 0(E)

M(E) C(E)
(6.3.27)
is a transformation variable for the

structural model (6.2.1).
Proof:
From (6.3.24) and (6.3.26) we have

= [E]J[E]D(E)
T 0
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1 0 I 0 I 0
= D(E) = D(E)
M(E) T(E)||0 O(E) M(E) C(E)
= [E]D(E). (6.3.28)

By the construction [E] € G. Since G is unitary, [E] is a
unique element in G. By definition D(E) is a fixed
reference point on the orbit GE of E and depends wholly on
the orbit GE, From (6.3.28) we see that the unique [E]
transforms D(E) into E, a unique point on GE and hence from
(1.3.4) [E] is a transformation variable for the structural

model (6.2.1) which was to be proved.

6.4 The Generalized Multivariate Model:Distributions.

Before we proceed with the distributions for this model
we will investigate the Jacobians for the transformations
used in this model.

Consider the invariante differential on the error
space. A transformation g applies column-by-column on
the matrix E. Its effect on the [(i)]'th column

(k =1, ..., ni; i=1, ..., q) is

(i) (1)
Vik ik
Al +C |
(1) (i)
qu epk ’

which has Jacobian |C|. Hence
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. _ n_ ! - n_ n
Ta@:E) = [c]® = [g?, Toa® = le@|" = [[51]",
I de(i)
i gk .
dm(E) = L = "
)| | 5]

Now consider the invariant differentials on the group:

I 0 I 0} o
A * %
A C A Clla ¢
The left transformation operates column-by-column. For

any given column the Jacobian is ]C,; hence
+ +
T, ae) = [g)PYe

- —dz
du(g) lg[p+q

The right transformation operates row-by-row. TFor any

%
given row the Jacobian is IC |5 hence

The modular function is

1g/P 1
A(g) = =
817" g

The distribution of the transformation variable [E]

given the orbit then is

£ (131/D)alz] = k) £([E1D) | [E)™ | 2”@ gpgg

The differential can be factored:
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d{E]
d[E] T . ___dM(E) dT(E) 40(E) .

prq (LBl o
| (21 e hettml],

The distribution of [E] can then be expressed in terms of

components M(E), T(E), 0(E):

* r(gy| Y
X ([£]/D)4[E] = k(D)£([E]D) lTéT%%T——dM(E)dT(E)dO(E) .
A

(6.4.1)

The structural distribution for 6 given X is

2(8/%)d8 = k(n)f(e'lx)l[X]l“'qe'(“'Q)dv(e). (6.4.2)

6.5 The Generalized Multivariate Model:Normal Error.

We will consider now that the error variables have the
standard normal distribution. Then the generalized multi-
variate model (6.2.1) in reduced form is:

[x] = o[E] , D(X) = D(E)

p n (6.5.1)

- qQ P i 2,, .
eyap = m Sexpl-y |11 e (D} 1 de
i=1 §=1 k=1 3% i,i,k J
Let us note, that from the results in Lemma 6.3.1

follows that

yy' =N, D' =1 and VD' =0

and let us denote



ol

(Va. 0 ... 0 )
1
0 /E; v 0
0o 0 /o
q)
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Then the sum of squares in the exponential in the

distribution in (6.5.1) can be expressed in terms of

transformation variable

n,
g 1 i Z(i)

I e

i=1 j=1 k=1

where

jk

tr EE'-tr VV' = tr [E]DD'[E]'-n

- -

{1 0 ’[v I M'(E)

(V'D") -n
M(E) C(E)] 0 C'(E)

tr

D
(1 0 (v vp" {1 M'(E))
tr -1
M(E) C(E)j|DV' DD'|{0 C'(E)

tr -1

I 0 n o] 1 M'(E)

M(E) c(E)llo 1)l0 ¢'(B)]

1
—
to {1

1
"2
I 0 N o||y°o0

tr

\M(E) C(E)J|0 IJ{0 IJ|O C'(E)

1

( l ( 1 !
N2 0 N2 0

tr 1 1 -n

ME)NZ ¢ (E) | |M(E)NE o(E)

tr(E]LE]" -n ,
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( \
/EI .0 0 0
L S T
N 0 4
[E]= = /Ezmil)(E),,./ﬁgmiq)(E) cll(E)...clp(E)
1 ) . .
M(E)N® C(E)
(1) (q)
\/ﬁzﬁp (E)...¢';hp (E) cpl(E)...cpp(E)‘

The adjusted transformation variable [E] can be factored
into triangular and orthogonal components as we saw in the

section 6.3:

o =

(e] = [E][E] =

0

- yw

1
MEWE T(E)| |0 0@®)

The sum of squares in the exponential in the distribution
in (6.5.1) can then be further expressed in terms of

triangular components:

¢ p i 2(1)
e, tr[E]{E]' - n = tr{E][F]' - n
ik T T

i=1 j=1 k=1
1 i

= tr M(E)NZ(M(E)NZ)' + tr T(E)T'(E)

¢ 2 Py P
-7 T Pm ] L me ] sm.
i=1 j=1 *J j>j1=1 13 j=1 M
The distribution of the transformation variable [E] given

the orbit them by (6.4.1) is
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]
E((E1/D)AE] = k(D) (2n) © exp{-3(er(EI(E] - n)

n-q
CIIEI T gw(E)aT(E)dO(E)

1@,
_%R p
= (2m) jElAn-q--jH
X exp{—l % § n Illz(i)(E)—'L E t2 (E)-—l E 52 (E)}
2 421 4o1 + 3 2 a3 25500
ST P gAY @) 1o ()
(1) (p) PR BTN
s ] 121
d0(E)
* gds(j)(E) p (6.5.2)
T A,

j=2 7

The structural distribution for § given X then by (6.4.2)

is
np
(g/X)ds = (2 )-2 % A ex {-ltr(e_lXX' '—l)—n}

2

)

T n; -

il 1) didrdg

P n-q q ’

P T e,

j=2 7

where we have factored § ¢ G into the triangular and
orthogonal component as members of group G in the section

6.3 as follows:
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SO

r = 10.

For the purpose of finding the structural distribution
for 0 expressed in its terms the exponential in the

distribution in (6.5.1) can be rearranged as follows:

1,
ir 1e?(i)

1oL 1 e

i=1 §=1 k=1 9

1 1
- tr EE'-n=tr M(E)N°(M(E)N)'+tr C(E)C'(E)

11
err LD - AN 2@ - 1t e ey (ot
i1

er (7)) " L@ NI 2 Qeey - e (e "o (met (1)

11

20 F () -1 '+ (R) 1,

-1
tr ¢ T[(M(X)-MN
where two inner-product matrices are defined by

g =17 = 100"t = 11 (6.5.3)

S(X) = C(X)C'(X) = T(X)0(X)0" (X)T"(X) = T(X)T'(X). (6.5.4)

The structural distribution for 6 then is:

o
2
(6t = () T Ty g
]
11
« exp{-3 trr QU -HNTNTE (D)) S (D)] )
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D
Lisl© Is(m| ° _dMdae

1”7 11l

I =.o

n =wo

A,

j=2

The structural distribution for § can then be integrated
over the rotations 0, the rotations in effect being
absorbed by the demsity f. Also the structural distribu-
tion for 1 induces a structural distribution for §, by
using Jacobian matrix

gl _ P
0T 2 ITIV ’

so we get the structural distribution for K and I:

ol
s, /D andz = 277 (2m 2 v

0o [

2
An-q-j+1

n =«

j=1
1

s e (x) -1 )

Do i

X exp{-% tr (M(X)-#)'N'

a-q¢ _ntptl
cepl-Smls@ysm| P gl 7o 6.5.9)

Note: Using the terminology of classical method of
inference we can say that our model is investigating q-
multivariate normal distributions with mean vectors
Q(i) (i=1, ..., q) and the same variance-covariance

matrix § (Anderson (1958), pg. 212).
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6.6 B-expectation Tolerance Region. Before proceeding

with the main result in this chapter let us state two

Lemmas.,

Lemma 6.6.1. (Anderson (1958) pg. 319). If the distribu-
tion of Z (p X n*) is h(ZZ')dZ, then the

distribution of U = 2Z' is

1 1
TrEp[ﬂ*-g(r’-l)] %‘(n*-p-l)
£(U)dU = [u] h(U)4vU .
ﬁ r(n*;"*‘l)
3=l (6.6.1)

Lemma 6.6.2. If the distribution of Y(p X n#*) is
2

8 1
A
h(yer = —dzt T
P
jElAn+n*'Q'j+1
2-g
2
» [s(x)] i
ntn*-gq !
|8 (X)+(Y-M(X) V&) H (Y-M(X) V%) " | 2
(6.6.2)

where S(X) and H are symetric non-singular

matrices, then the distribution of

U= (14 Ul)'lu (6.6.3)

1’
where

Ul = 77',

with

Z = T(Y-M(X)V%)K,
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where T is such that

and K is such that
KK' = H
is

)l |%(n*-p-l) %(H'Q‘P‘l)

f(U)dU=B;1[£*- = 10 av,

22
(6.6.4)

which is generalized Beta distribution with

I (a)T (b)
Bp(3:0) = =55y
2
where
ip(p-l) P
I (a) = ﬂ4 IT(a - lil) .
P j=1 2

(For references to generalized Beta

distribution see Olkin (1959)).

Proof:
In the distribution (6.6.2) let us first make the
transformation
= - %
Z1 (Y - M(X)V*)K, 1
where K is such that KK' = H and [K| = [le, which exists

since H is symetric and non-singular. Then

(Y-M(X)VF)H(Y-M(X)V*) "' = (Y-M(X)VHF)KRK'(Y-M(X)V*)' = lei

and
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D

- P _ 2
3 sz = [®[TP= | 7
(For the references on the Jacobians of matrix transforma-

tions see Deemer and Olkin (1951) and Olkin (1953)),

so we get
2oy Blﬂéiil n¥n¥-g-j+l
lH[ I 2m T 2
- J=1
h(zl)dz1 ) e
T om 2 F[B:H:lil]
, 2
j=1
5 0
sl ® 5] °
ntn*-gq 1
1
2
|s(%)+2,2, |
P ,
+nk-g-i+ -
_n*p g p|Rfnf-g-itl =g
. 2 2
A [S(X) ]
=T Tk le.
n [ T
5=1 2 (S(x)+zlzl(
Now by Lemma 1.5.1
1 I -z,
|S(x)+zlzi| = [I|]S(X)+Z11 zi] =
z! §8(X)
1
-1
= !
|5(x)||1+z1s (X)le ,
so that
P (n4nk-g-i+
atp T Fln__a_z.u_l]
n(z)dz, = 5 > A3
171 P —q-it1
1[5
j=1
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n-9
2
18(X) | iz
ntn*-gq ntn*-¢ 1 °
2 -1 2
|s(x)] 142,58 " (024 |

Let now

Z-= TZ1 )

where T is such that T'T

1

s7L(x) and IT| = IS(X)I—Z,

which exists since S(X) is symetric and non-singular. Then

1e-1 = gimt = 7t
ZlS (X)Z1 2.T'TZ 27

11
and ok
-n¥ 2
2z, » o) = 1T = st
so we get
P . n- n*
a%p I T ntn*-g-j+1 —Eﬂ 5
7 =1 2 [sx)] 7 s
h(2)dZ = 7 dz
P n~g-$+1 otn¥-q atn*-g (
jElF[ 2 ] |S(X) | 2 |1+2'Z] 2
P g
i T r[zie_is_lil] _ntntog
- 2 12|t oaz,
% r n-q-it+l 1
1L |
by using the fact that |I + 2'Z| = |I+22'|. Note that |

= TZl = T(Y - M(X)V¥)K,

with T such that T'T = s'l(X) and K such that KK' = H.

Then by Lemma 6.6.1 the distribution of

= 22"
Ul
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is
1 1
- K o= -
£(U.)dU, = U 1 1
1 1 P xoi41 1
mor|i=1t=
=1 U7

1 1
2p[n*-2(p-l)] ']é"(n*-p-*'l) ‘%R

il
= Ull T
% I,[n*—j+l]
=1 U
P o
: p[n_’rn_zﬂ_lﬂ] ptn-
x 1= |I+Ull 2 av,
ﬁ T n-g-j+1
=] 2
POD) P fninkogoj4l
T T 7 _( *-p_ ) -n-{-n*-g
) i=1 |2 0. 2
 fixi41] P fama-idl) ! 1
1T ”'EJ" 1T -—%—l——
=1 =

* q-
let us now investigate BP[%T, EEE] as defined in Olkin

(1959):
Sula
0% n- } pl2) pl 2
B =il -
p[ 27 2 r ln+n*-g] ’
pl 2
where
) el
P §=1 2
Similarly
Zp(p-1) P .
T [%ﬂ] = ,n,[* H I-[n-g- +l]
P 521 2

and
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1
r ntn*-g ﬂép(p—l) P r n+n*-gq-j+1
P 2 _ 2 ’
j=1
so that
Lo-D) 2 (peoer) POD 2 (pgoin
m i r[—il——}n T r[—-‘z‘-—l—
3 {33 n- ]_ =1 i=1
pLZ7 2 L6p-1) P (ntnt-g-itl
i j=1 2
which implies that
-7p(p-1) p .
T 42 4P 1 rrn+n*;g-]+l]
i=1 _ B-l[pi, u.] _
, r(n*-j+l] > r[n-g-j+1] P22
. 2 . 2
i=1 =1
Using this result we get
1 1
5(n*-p-1) -=(n+n*-q)
. p-l{n¥ n-g 2 2
£(U)dU, = B { 7 o )]ull | 1+, | au, .

Now, if we let

-1
U= (I+ Ul) Ul’

then
v, |
o = ——,
[I+U1[
TR
T+, = |1 - vl
and
Ju. -0 = |1 - o

S0



1
1 1 7(a*-p-1)
5 (n*-p-1) -=(n+n*-q) |U1|
|7, | 140, | U = EN
1
-5 (n-gtp+l)
x| I+Ul‘ dv,
1 1
=(n*-p-1) =(n-q+p+l) _
= |U] |1-v|? j1-v]” P gy
%(n*-p-l) %(n-q-p-l)
= |0 1-U] dv .
From this we see that
“1(n* n- 5(n¥*-p-1) %(n-q-p-l)
B0 = B {7;, -Efqlul [1-7] du for 0<U<I,
which was to be proved.

Theorem 6.6.1.

Let the independent error variables
(i) ,. _
3 (i=1,...,q9) of the structural
model (6.2.1) have normal distribution
with 8 mean and variance-covariance matrix

I, i.e.

(1)

2,. P
(1)
ej }-H h|

hu
. . - P
f(%(l))d%(1)=(2‘n’) zexp{_%.z J=l

j=1

de

Then for central 1008 per-cent of normal
distribution being sampled, the region

Q = {U/U < UB} (6.6.5)
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is the B-expectation tolerance regionm, where
U is defined as in (6.6.3) and UB is the
point exceeded with probability 1-f when
using the generalized Beta distribution with
i and 2 degrees of freedom (i.e. U, is

2 2 8
the point such that

v, 1 1

- - B o(n¥-p-1) Z(n-q-p-1)
B 1{31 E—QJJ ju]® -] du=g.)
0

Proof:

Since the error variable %(i) for i =1, ..., q have
standard multivariate normal distributions, the distribution
of the realized errors in the generalized nultivariate

model (6.2.1) is

n

q i . . . .
T I f(ei;)...e(;))deii)...de(;)
i=1 k=1 i ?
ap .
- q P i 2,, .
= (2m) 2 exp{-% ) ) e.él)} il def;) .
i21 521 k=1 3% 1,3,k

Then by (6.5.5) the structural distribution for M and L 1is

g (M,I/X)dMdL
_np B n-g _ntptl
-2 ?am t ) 1A s |z 2
c=1 n-q-j+1

x exp{—%tri-l(M(X)-M)VV'(M(X)-M)' - %tri-lS(X)}deZ.
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For the n* future responses Y, the distribution is

ntp
p(@/M,D)aE = (am) Z |1

ex?{-%tr(Z-MV*)E-l(X-MV*)'}dz .
Therefore the joint distribution of ¥, M and I is

p(¥/M,L)g(M,2/X)dMdIdY

_{(ntn¥)p P > n-g _nin*+p+l
P 2 ) 2 2
= 277 (2m) tvv'| jElAn_q_jHIS(x)l |z

bl

exp{-%trz-l[(M(X)-M)VV'(M(X)-M)' + (Y-My*) (x-My*) ']}

x

exp{-%tri_ls(x)}deZdX.

The matrix expression in the bracket in the exponential

can be rearranged following Lemma 1.5.3:
M(X)-M) YV (M(X)-M)" + (I-Mux) (X-My*)®

= (M-F) (VV'+V%y% ') (M-F) ' + (Y-M(X)VF)H(X-M(X)VH) ',

where

Fo= (M(X)UV'4YV&") (VV' + yayxry L
and

g o= (I - Vk'(VV' + yeyxty "lyxy (6.6.6)
Then
p(Y/M,Z)g (M, Z/X)dMdzdY

(ntn*)p 2 n-qg _ntn*+ptl

_oPomy b v T sw] 2l °

1 n-q-j+l
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xexP{'%trZ—l[(M-F)(VV‘+V*V*')(M-F)'+(17M(X)V*)H(17M(X)V*)']}
xexp{-%trz_ls(x)}dezdz.

Then by (1.4.5) the prediction distribution for Y is

n(¥/X)dY

_(ntn*)p Lo, n-q _ntn¥+ptl
_ 7P 2 .y 2 2
SRR S | 12

» [[ exp(-~Serr () (VW TR (U-T) 'Yl
It

X eXP{'%tTE—l[(XfM(X)V*)H(XfM(X)V*)'+S(X)]}dZdX

: 5
v . An-q—j+1IS(X)l _ntn*-gt+ptl

_ 2
T 3 ML'”

Ivv'+v*v*'|22P(2v) 2

[ J=—s ]
=

xexp{-%trz_l[(IfM(X)V*)H(X;M(X)V*)' + §(X)]}drdY .

Using the integration relationship

n-r

_n+p-r+1
2P (om)

[ exp{-Strr RO} 1] 2 4 -
D

n-Tr
JJRO|Z

.
n =

A .
1 n-(z+j-1

(for references see Fraser and Haq (1970) pg. 106)

we get
g 2 P
I A .

wor|? gm1 RTOIE

B(L/R) AL = — y 15
2
1 Lykyk!
| Vv T l jglAn+n*-Q’j+l



125

n-g
s(ny|
n+n*-g dt .
2

|'S (X)+(¥-M(X) V*)H(T-M(X)V*) |

Applying Lemma 1.5.2 to (6.6.6) we see that

7
[vv'] 2
= |g]*
D
| vV +vayse |2
SO
]
P
|Hl2 I An-q-j+1
B(I/X)AY = . i=1
jElAn+n*-q—j+1
n-g
2
s
X s Y (6.6.7)
2

|5 (X)+(T-M(X) V*) B(T-H(X)V*) ' |
Now from (6.3.10) we see that VV' = N and V*V*' = N*, so

+* 0
nl nl .o

VV'+yky%!' =
which implies that

(Vv'+v*v*')'1 =

Therefore
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-k— '
1,0 [t .0 1,
. 1 . . b |
ger (V0 +uETRT) T vRe | ' ' 4l
0 ...1,ll0 coo(n +n®) ][0
Y A1 q q Y
q
*
Hl e 0
0 .H* 9
q
where
-1 -1
%) ... *
(ny*n}) (ng*nf)
BE = : =1, vor, G
-1 -1
* %
(ng#nf) oo () T ant)
i1
Then
I-H*... (g, .
H 0 Hl 0
H=I-v*'(vv'+v*v*')'lv* = | X = | :
0 e I-HE 0 H ?
q g
where
(1-(n.+n% -l £y)~1 Vel - £~ L
1 (ni ni) (ni+ni) (ni+ni) )
-1 -1 -1
—(n +n% - * R %
(ni ni) 1 (ni+ni) (ni+ni)
Hi = . . . , i=1l,...,¢
-1 -1 -1
- % - % - *
L (ni+ni) (ni+ni) el (ni+ni) ]
(6.6.8)

which shows that B is symetric and non-singular. S(X) is
symetric and non-singular by the definition, so (6.6.7)
fulfills the assumptions of Lemna 6.6.2, so U defined by

(6.6.3) follows generalized Beta distribution and Q
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defined at (6.6.5) is the B-expectation tolerance region,

which was to be proved.




CHAPTER 7

PAIRWISE DIFFERENCE OF THE SAMPLES FROM ¢
MULTIVARIATE NORMAL DISTRIBUTIONS

7.1 Introduction. In Chapter 3 we have investigated the

construction of B-expectation tolerance region for the

variable Z = Xl - Xz, where the variables X1 and X2 were

normally distributed with the different means znd the
same variance. The multivariate analogue of this problem
is to find the B-expectation tolerance region for the

variable 7 = §(1) - §(2) M

(2)
X

complex problem of finding the B-expectation tolerance

OREMOING

kg (j-:ls'-',q_l),
s are distributed as Ni(gi, ) and k(q) is

, where X is N(Rl, L) and

is NZ(%Z’ 1). But this is only special case of more

region for q - 1 variables Z
where K(l)'
distributed N L),

istributed as q(kq’ )

In the previous chapter we have derived the prediction

(1) Y(q)

distribution for the future respomses Y 7, ... for
response variables z(l), ey §(q). So to find the
B-expectation tolerance region for variables %(1)’...’%(q-l)

it is enough to find the prediction distribution of the
following linear combination of the future response

variables:

128
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a® - ypv® - @@ - wv @y ...
(7.1.1)

(1)

i) . .
where Y is a p X ni matrix of ng future responses for

. (1) _ 4 (1) (1) (1), () *
variable X = (X1 X2 vos Xp y', v is a q X n¥
patrix, having 1's in the i-th row and 0's as other

elements (1 = 1, .oy q) and M(X) is p X ¢ matrix of

m§i)(x) (i-= 1,000,595 j= l"--’P)'

7.2 The Distribution of Linear Combination (7.1.1) of
Future Response Variables.

In the previous chapter we have obtained the distribution

(1) @) @)y,

of future response variables ¥ = (Y

We will now investigate the distribution of

() (2) (¢-1)
Zq—l = (Z yA R/ ), (7.2.1)
where
f ot sy ) 1 /s . 1 3
o) xl(l)‘mil)(X>&"<11(Q)'mEQ)(X)&'>
e xz(i)’méi)<X>&"<xz(q)'m§Q)<X>%'>
Z(l) = = . for
. i=1,
"(1) '(1) (1) v o) (a) '
%) pr - (=G (L]
(7.2.2)

which is the linear combination (7.1.1) of the future

(1) (2

response variables Y "7, vy Y(q). From (7.2.2) we
see that this combination is possible only if we have the

came number of future respomse variables for i = 1,...,4;

i . .
or the vectors ¥§ ) are of the same dimensiom, Say ng for




all i and j.

1

qn¥, i.e. n*

d

lemma holds.

Lemma 7.2.1.

n* = n¥% = ,,.
2

= *
qn¥.
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It means that we have to assume

= p* = ng. Therefore n* from Chapter 6 is

Under these assumptions the following

If the distribution of ¥ = (Y(l)...Y(q)),

where Y

R (Xii) xgi)...xéi)) for

(S (O+(I-NE@UOEE-H@T] C ar,

then the distribution of Zq—l defined by

(7.2.1) is
2 n-g
. 2 ﬁ A |S(X) | 2
q-1 i=1 n-q-j+1

h(Z, 1)d2

=

. 1An+(ng-1)(q-1)-j
(7.2.4)
n+(n§-l)(q-l)-l

-1 2
x|s(X)+zq_lHq_lzq_1| a2, q >

where

q-1
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Hl, H Hq are ng X ng matrices defined

93 ot
in (6.6.8) and

Proof:

Let

KCO IR C) DT C') R
R (0 =gy 0 Sl ws

then from (7.2.2) we see that

xj(i) - m§i)(X)%' = %j(i) + %j(Q) i=1,...,q-1; j=1,..
Hence
Xl(l)_mil)(x)%. Xl(q)_miq)(xw
(Y-M(X)V*) = : :
"(1)__(1) ' "(q)__(q) '
o —mp (X)% “oe XP g -mpq (X))}
(1), '(q) "(g-1), '(q) _'(a)
AR 2] 3] 21 &1
(1), "(q) "(¢-1), "(q) _'(q)
B TRyt hy TRy &
- (Z(l)+z(q) Z(q-l)+z(q) Z(q)) -z,
where
z (1) . (%ii) ééi)) for i =1, voey Qo (7.2.5)
Therefore
ls(x)+(g-M(x)v*)H(Y-M(x)v*)'[=\S(x)+zsﬂz;| . (7.2.6)

In Chapter 6 it has been shown that H is symetric and that

5D



there exists K such that

\
Hy oon O Ry oee O )[RQ e 0
: Pl =H=KK' = | . (7.2.7)
0 ... H 0 .k |0 k' .
| q q q
Then by using Lemma 1.5.1
1 1K'z
' = Tt =
|S(X)+ZSHZS| [1||S(x)+zSKI K zs|
-2 K S(X)
- -1 _
= |S(X)||IHK'Z]S (X)z K| = || [R,]
(7.2.8)
Let us now investigate |R1| from (7.2.8):
|R,| = ]I+K'z's"l(x)z K|
1 s S
1 1]
I...0 ow ®l...0 0)(z L)y, (O
=, ol . :
[ 1
0...10] |0 ...K 0 |Z (@-1),," (@)
1
0...0 1) {0...0 KJ{ Z @
/ qJ
Ry+.0 0
y s'l(X)(z(l)+z(q)...z(q'1)+z(q)z(q)) .
0 ...k .0
q-1
0...0 K
{ q)

'I...O O\ rKi(Z'(l)‘*'Z'(q)) 3

= ‘4 '
- ' "(q-1),, " (q)
0...10 Kq-l(z +Z )
0...01 gz (@
/ \ q /

132
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-1 (1),.(q) (¢-1) . (q) (q)
X § T(X)((z 4z YRy +e e (2 +Z )Kq_lz Kq)

I+Ki(z'(1)+Z'(q))S-l(X)(Z(1)+Z(q))K1

1

Kq_l(Z'(q—1)+Z'(q))S_l(X)(Z(1)+Z(Q))Kl o

K;Z'(q)S-l(X)(Z(l)+Z(Q))K1 e

L Ki(z'(1)+Z'(Q))S_l(x)z(q)K

q

"(a-1), " (@) y =1 0y, ()
L K 2 )8 TR

. I+K'z'(q)s"l(x)z(q)x
q q

The value of the determinant does not change after making

elementary operations, so let us multiply the last row of
’—

this determinant by Kqu 1 from left and subtract it from

the ith row (i =1, ..., q-1). Then we get
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I+KiZ'(l) (x)(z(1)+z(Q))h

v, (g l)
Kq_l

|R
HCAREUIL YIS

KéZ'(q)S_l(X)(Z(l)+Z(q))K1

'(1) (q) -1
k)2 Lixyz K leq
v, (g l) (q) v -l
...Kq_lZ Loz R K 1-1%q

Let us now multiply the last column of this determinant by
K;lKi from right and subtract it from ith column

(i = l, s 00y q-l)- Then

-1 - '(l) 1 )
1
T+RIR K K1+Klz lxyz R, e
U ek ki exe g @D ligy (Mg
g-1'q ¢ 1 "q- 1 l *t
-1 ‘(q) (1)
+
K qu Loz K,

! '- '(l) (Q)
. Kqu +Klz (X)Z

1 1
' -1, (q-1) ¢~ (0,
-K' K TT4K' 2 A
Kq-l q q-1 (x) %

. I+KéZ'(Q)S_1(X)Z(q)K
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(T+KE K. .. -K'K"l '
1qg"1 l'q
PO e P e
q=1"q "1 q-1"q
x Ik . 1
Lol ’
(1) -1 (1) '(l) (q ) ;
(K'Z S "(X)Z2'7’'K . K!Z X))z
1 WK 1 .( AL
Ple ey g g @Dl (@),
q- l 1" q-l q
1] t -
. q 1 q q
= [Kq + K'z's'l(x)ZK| (7.2.9)
where
-1 -1 -1
( ' 1 ! \ 1
I+ H Ky KlHq K, Kqu
. -1 R | A |
+ -
Ky = L L L T (7.2.10)
-1 -1
-K K ¢ I
L el q g¢-1 J
and
z = 2D 2 (e 2(Dy, (7.2.11)

In Chapter 6 we have also seen that there exists a P X P

matrix T, such that

S(X) = 171"

(7.2.12)

Then we can further simplify (7.2.9) using Lemma 1.5.71:



Vq o1 1 T
|R.| = |K +K'Z'T 117l 1ZK[ =
1 q "'1
-K'Z'T K
1 1 glaD) T-lz(q)K
q-1
L !
q-1 q-1
! L !
gz (Dg -1 g (@) 1
wvhere
Kl . 0
g(a-1) _
0 . hq_l ,
1 -1 ' -1 )
I+K1Hq Ry oo KlHq Kq_l
Kq-l =
-1 -1
K' JH "K....I+K' _H
¢-l17q "1 q-1"q “q-1]
and
1
(q) -1 -1
K = (K K, ... KK .
( q 1 q q-l)
Now let
-1 (
I T Zq_lK
L =
1 1
_ (q"l) 1 -1
K Zq_lT Kq_l

From this, using Lemma 1.5.1, we get

q-1)
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(7.2.13)

(7.2.14)

(7.2.15)

(7.2.16)

(7.2.17)
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I iy gle-D
q-1

=
"

l(q_l) l_l
-K z' T
q-1 Kq-l

"(¢-1),, o'-1.-1_-1 (q-1)
|I||Kq_1+K it TT Zg-1¥ ]

= "(q-1),, -1 (q-1)
]Kq_l-*-K Zg-1S (@2 K |
'(q"l) '
K -K /
= |s(n ™ i o
zq_lK(q'l) S (X)

-1 (¢-1) -1 " (¢-1),,
|s(x)] qu_l||S(x)+zq_lK Kq-1% Z

q-ly'

(7.2.18)

Let us now investigate Kq_ « In (7.2.15) for i = 1,...,q-1

1

11 1 '-1-1 &l -1 _ 7t "1 -1
I+K.H “"K.=K!K, "K,"X,+K'E "K.= K'(K.K!') "K.+K.H "K.
iqg 1 i1 7171 Titqg i TiviTi i7iq 1

= KUECR 4K'ER, = k't hr by
i1 71 iq i i Tq i

so (7.2.15) becomes

( -1 -1 -1
1 1
K; (8, H, SERE RiH, Ri-1

<
n

v g g LK +H'1)K

K
L a-lq 1 g-1""¢q-1 "q ""g-1

—

( -1
1
Kl..l 0 Hl q L3N N

w7t -1

Y (
Hq ’ Rieer O
-1 -1, -1
0 ...x' H .o B T +H 0 ...K
| q-1 q q-1 q q-1
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_ o (g-1) (q-1)
= K Hq_lK (7.2.19)

using (7.2.14) and letting

(1 -1 .- -1 )
TR T S 1
1 ¢ ¢ q
-1 -1,.-1 -1
H H+H ... H
Hoop =1 L8 . q q (7.2.20)
q : .
Bt Bl gl
.9 q -1 ¢

Then from (7.2.19) we see that

-1 _ -1(g-1) -1 '-1(¢-1)
1" K Hq-lK (7.2.21)
and
-1 g-1
(e (g-1),_ ¢ 2_
(Kl 1% g% \-lHq-lli{_{llKil -IHq_lligliﬁil-
(7.2.22)

Using (7.2.21) and (7.2.22) in (7.2.18) we get

-1
L] = (5| ]

q-l _ "'l _ - '—l - 1 -
x[ I IHil]|S(X)+Zq_1K(q Dy G 1)qulK (a1 (g l)zé_ll
i=1

-1 q-1 -1,
50| |Hq_l|(igllHiI]]S(x)+zq_lHq_lzq_l|

-1 q-1
|S(X)] |Hq_l||z|izllﬂi| , | (7.2.23)

where

= -1,
1= S+ 42 (7.2.24)
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For L-l let us use Lemma 1.5.2. Since

\
Lir By

Ly Ly

as we can see from (7.2.17),

B SERE:
L =
2
where
11 21 -1
L = (LyyLyply) 21)
12 [ WS R |
L7 = =Ly Lyplyolyg) Toolyy
21 -1 I R
L= L22L21(L11 L12L22 21)
22 -1, -1 [ TS T |
L7 = Ly gLy Ly (Tygmlyalyglyg) Lygly,

11’ Ll2’ L21 and L22 from (7.2.17) and

using (7.2.12), (7.2.21) and (7.2.24) we get

Substituting L

11 -1 (q-1) -1 ,'(q¢-1)., .'-1,-1
LT = (42 K Koo 2T )
T T DT T D U e S LY ol D S
= (141 "2 K K H " K K AR
q-1 q-1 q-1
JRES, FRL S S | -1 ., '-1.-1
= (T Tz 6Tz )
-1 -1, L S RS |
= (T [S(X)+zq—lHq—qu-1]T y =TT . (7.2.25)
P12 0 gyttt glenDd
q-1 q-1

-l

-1 -1
K(q—1>K (a-1)y-1 o (q-1)
q-1 g-1
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1
-1
o gl -1 (q-1)
T'7 Zq—lHq-lK . (7.2.26)
2ol ey 1 gl - K_l(q_l) "l gh
g-1 q-1 Hq-l q-1
(7.2.27)
-1 -1
22 (¢-1) -1 (g-1)
L““=x Hom1¥
- K-l(q_l)H-l R i K'-l(q-l) (7.2.28)
g-17q-1 q-1"q-1 e

Now substituting (7.2.17) into (7.2.15) and using Lemma

1.5.1 again, we get
-1, (q)
L (T 7 VK
_(q)
E :

_(Kéz'(q)T‘-l K‘(q)) 1

It

11 (Vg
q

I OO U

I+(K'Z
q

n

N N, (@)

I+(K'2
q

! ' !
(q)T 11y (q)L21

|L

I+(K'Z
q

171Dy

1 1_ ' q
KéZ (Qq =112 (¢) 22,

Y

' L - ' -
(q)T lLllT lz(q)Kq+K (q)LZlT 1Z(q)K

|L] | 1+K!2
q q
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Substituting for Lll, L

(7.2.28) we then get in

'(q)T'-l

|B] = |L[|I+K'Z

+K'(q)K Hq- L)y~ T

q 1 q -1

“loply
.-

'(q)T'-l

'—
l(q>H-1 :
q-1 q 1

(q 1) -1y
q 1

+K'2 T'7
q

wx Dy

_K'(q)K (q

"(q ) (q 1)~

q
-l(q-l)

- [ 1-x

"(q) " (@)

= L L tEZ UK

(q)

X z'l(z K

by letting

Lo
L . = I-K (Q)K
q-1

Let us now calculate |L
g-1

(7.2.16) and (7.2.20):

-1

y
q-1"q-

+Zq lHq 1

141

2

21

L, L22 from (7.2.25) up to

(7.2.29)

-1

T'7 -1

(Vg

L.

-1
-1 (q-1),(q)
lHq—lK K

-1 (q l) (q)

-1
1
T'7 'IT Zq M- lK

"Dl

-l(q-l)K(q)

l

Hq-l q-l)

-1
1 -1

1

K z'

-1
(g-1),-1
g-1 ¢q-1

<q-1>K<q>)| (7.2.30)

H-l

a1 (@)
q- a2 '

(g-1) (7.2.31)

| using Lemma 1.5.1, (7.2.14),

- -1
- "(¢), (q-1),-1 (g-1),(q)
|Lq_l\ = |1-x ‘g ¢ Hoor LR e
l_l l
1 K (Q‘ )K(Q)
= [, -
T @ e

q-1
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e ED @ @ e,

= |Hq_1
-1
= !Hq..ll
1_ 1_ -
k! .0 K!K 1 K 1.. 0
1 1 1 1 1
x| .- : . (K K KK ). .
q-1 Y | 17" g Tq-l '
0 ...k ||k’ 0 K
g-1ji a1 q q-1
-1 -1 -1 -1 -1
H,"+H .. H™) [(RK'Y) "...(RK'
1 1 My ' ( oo ( q'q)
Mgl :1 1 : 1| 1 a1
H L. H L +H (K K" 7. (KK
g -1 ¢ ) | q¢ qq
gl gty ottt
1L q 4 q
=|Hq'1| : SRR 1
g1 -1y H H
q ¢-1 g | g q
it .0
-1 L
=|Hq-l[ .
-1
0 ..Hq_l
-1
-1 q -1
= |H 1B . (7.2.32)
ol
Now let
-1
(q) -1 (q-1),(q)
= + K K , 7.2.33
W= 2 Kq Zq-lHq—l ( )
then
@), Yg-1),-1 ()
' (q) q- = 1 '
= 7' +K'Z
W=k K Hq-l -1 Kq ,
since is symetric, so H—l = H'—l. Then (7.2.30)
q-1 ’ q-1 q-1
becomes
_ -1
ENIR LR 1 (7.2.34)
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From (7.2.24) we see that 7 is a symetric matrix, so there

exists a matrix 21 such that

;L= 2} (7.2.35)

and 1

12,1 = 17 L, (7.2.36)

Substituting (7.2.35) into (7.2.34) and using Lemma 1.5.1

we get
- =
Ry = (L Loy 2 W] = (M2 1
bt M1l B
= = tat
= |1 . = \L[[Lq_1]|1+zlw1Lq_lwlzl\.
L (7.2.37)
Let now
W =V, (7.2.38)
so that
7] = [L[\Lq_1[[1+WL;flw'| : (7.2.39)
Combining (7.2.6), (7.2.9), (7.2.23), (7.2.32) (7.2.39)
we get

S (X)+(I-M(X) VA B(L-M(X) V) '

-1 NG
[S(x)]]8(X)] IHq-lIIL|L i 1HiJ

i=1

-1
-1|9 -1 -1
x[Hq_ll (izllﬁi‘ ]|I+qu_lwv[

|z[|1+WL;f W,

1

so using (7.2.24) we get
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IS(X)+(Z-M(X)V*)H(X-M(X)V*)'I

||1+WL'l W (7.2.40)

|S(X)+z o1

H
-1 g- 1 q
Now, from (7.2.1) we see that
J¥ »2) =1, (7.2.41)

from (7.2.33) we see that
(q) -%
v, - P - 2,42
J(z W) qul |Hq| (7 )

and from (7.2.38) by using (7.2.24) and (7.2.36) we see that

d 2 il 2
I, W) = ]Zl| = |7 |S(x)+z 1 - Ry - 1|
(7.2.43)

So by substituting (7.2.40) into (7.2.3) and using the

Jacobian results (7.2.41), (7.2.42) and (7.2.43) ve get

2
Bk I Ao

h(z_ys M2 g8 = T : =1

1H ‘2 ?1An+(n§—l)q-j+l

1=g i

500 2 IS(X)Jrzq-lh'zifl é-llz dz_ ,dw
X n+q(ng-l) n+q(n§-1) -1
s(®)+2 qll -1 2 |I+WL;_1W'[ Z

(7.2.44)

Using the integration relationship

b
* -
n+q(nd 1) lL 112
- ) a-
W'l v =

S Py
1 =o
o)

A
£-1)q-j+
-1 n+(n% 1)q-j+1

g-1

(|I+WL

(===

; 1An+<ng—1>(q-1>-j

(7.2.45)

(for references see Fraser and Hag (1970)) and substituting
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for ‘Lq-ll from (7.2.32) we get

h(z )82
7] e e
HH.]H IIA__.(]IH. ]H_ T A .
=1 i 1 .o n-q~j+1 j=1 & q-1 i=1 n+(n§-l)q-3+l
| I%p P
H TaA £1Yaos I . T
9 4=1 n+(nd 1)g-j+1 j=1 n+(nd 1) (q-1)-]
h-g
2
N [s(x)| i
nt(n¥-1) (g-1)+1 ~q-1
-1 2
+ H !
|s (x) Zg-1 q_lzq_ll
LRSI "SR L0 o)
i} q-1 j=ln-q-3+l
I
A
51 £y
=1 n+(nd 1)(g-1)-j
n+(n§-l)(q-l)+l
-1 i} 2
X H !
Is(x)+zq_l q-qu-l| 2.1

which was to be proved.

7.3 B-expectation Tolerance Region for This Case.

(1)

Theorem 7.3.1 Let the error variables e (i=1, ..., 9)

have the multivariate normal distributions
with Q mean and variance-covariance matrix

I, i.e.
P

f(e )de, = (21r)-2exp{-l %
WAl 2,-

2,.. P .
e.(l)} i degl) .
] j=

13 =1

Then for central 1008 per cent of the variable
-1 ;

Z = ({(1)_%(q)'._§(q )_%(q))’ where K(l) is

N(%i, f) fori=1, ..., q, being sampled,
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the region
= <
Q = {U,/U, UZB} (7.3.1)
is the B-expectation tolerance region, where
B -1
U2 = (I + U3) U3 , (7.3.2)
with
v, =12 Hlgr T (7.3.3)
3 q-1 q-17¢-1" °

with T such that
7' = T 'l(x)T'l(x) = s'l(X) ,(7.3.4)

and 2 _

01 is defined by (7.2.1) and U, 1is the

2g

point exceeded with probability 1-8 when using

the generalized Beta-distribution with

n%(q-1) _
d and Rt

_——E___ 5 degrees of freedom.

Proof:

By using structural model (6.2.1) and Theorem 6.5.1 we
see that the prediction distribution of Y is (6.5.7). Then
by Lemma 7.2.1 the prediction distribution of Zq-l is (7.2.4).
From (7.2.19) we see that H;%l is symetric, S(X) is also
symetric, so (7.2.4) fulfils the requirements of Lemma
6.2.2, so the distribution of U2 is generalized Beta-

n#*(q-1)
distribution with — and Béﬂ degrees of freedom.
Therefore by (1.4.6) the region Q defined at (7.3.1) is the

B-expectation tolerance region, which was to be proved.



147

7.4 Special Case: g=2, ng =1, If q = 2 we are dealing with
ey
A

(2) (1)

the variable % = , where X is N(Hl, T) and

(2
4"

-X
N

is N(EZ’ ). Let us note that in this case

: 1 5" Then the following theorem holds:

Theorem 7.4.1. Let the error variables % = 1, 2) have
the multivariate normal distributions with

0 mean and variance-covariance matrix I, i.e.

2
- 2 1
f(%i)d%i = (21) “exp{- 23

(1)} I de ( )
l j=1

ll o~

Then for central 1008 per cent of the variable

_ LD _(2) (1) .
% = % -% , where % is N(Rl’ I) and
%(2) is N(EZ, I), being sampled, the region
Q= i "1 olos@ |
n2(n1+1)+nl(n2+l) & n1+n2-p-1 A
z pr;nl+n2-p—l;l-B} (7.4.1)

is B-expectation tolerance region, where

(since n* = 1)

d
Zil) yil)_yiz)_(zil)_;iz))‘
S I ;
Lz;1) y;l)_y;Z)_(;;l)_;éZ))
LGOI, G
S(X) = T(X)T' (%), (7.4.3)
and Fp;nl+n2—p—l;l-8 is the point exceeded

with probability 1-f when using the
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F-distribution with p and nl+n2~p—l degrees
of freedom.

Proof:

By the Theorem 7.3.1 the pradiction distribution for

Zl (or for the case when ¢=1 and ng = 1) is

2
ERT
W2 /DL, = 1 i=1 n1+n2-J-l
1 1 P
jElAnl+n2-j
n1+n2—2
2
[S (%) |
X A, az; - (7.4.4)
-1, 2
s (X)+2,H, 2|
By (7.2.1) and (7.2.2)
e
2, = @My -]
(1)
2
P
sy @M (-1 (1)

= . (7.4.5)
()2, (1) (D)
N N O U

By (6.3.3) for j =1, ..., P

(1) (2) 1 -1
U)X (X)L e, (X = N,7.D%¥ _(X)x,
(mJ ( )mJ (X) Jl( ) §3-1 )) i1 3—1( ){J
r_ ) ) [ _ \
N 1 0 v N le.
- - NJ
= X5 -
* *
0 I gj_l(X) Qj_l(X)ﬁj )

from which we get
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(1) -1 )
mj (X) i n1 0 XI )
(2) 1l ||
mj (X) LO n, Xz{
(-1 Ve o) xfl)\
1 R LY
) -1 1 1 (2)
ol )
\ 1
-1, (1) -1 (1) =(1)
11 E 1 kZl"jk X
- = . = (7.4.6)
: \ 2 k=1 jk j ’
so (7.4.5) becomes
) 1 2 - -
D] P
S IR N : (1)_ ()51 52,
1 N . . 1 Xq & 8 )
(1) (1)_(2)_~(1)_=(2)
zP yp yp (xp Xp ) (7.4.7)
From (7.2.20)
PR
Hl (Hl +H2 )
where
n. +1 n.+1)
H11=li}and}1—=ti ,
1 2
S0 .
. nl+1 X n2+l _ (nl+l)n2+nl(n2+1)
1 n; n, nln2 ’
from which
a.(n +1)+n, (n,+1)
| - 2 1nn1 2 (7.4.8)
12

Let us now evaluate the constant in (7.4.4):
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2 " +n2-p 1 n,+n,-1
I An +n,~j-1 An +n,-p-1 2 T 12
i=1 "1 "2 o1 2 - YAl 2
P A nl+n2 p-1 nl+n2 1
H An +n nl+n2-1 T 5 5
=1 "1 27 27
n -
r[ l+n2 1]
= 2 Y
2 (n +n -p -1
2T 12" -
2 (7.4.9)

Using (7.4.7), (7.4.8) and (7.4.9) we get

1
D -= (n.+n,-1
n.n 2 |S(X)| 2 L2 J
h(z/X)dz = 12 .
& £ (n1+l)n2+nl(n2+l) R p 4n.-p-1
hp)
+ -
o -nl n2 1
12 1ol 2
X ‘1+n2(n1+1)+n1(n2+1) g's (gl dg - (7.4.10)

That is we have that

)
o, (n 1) 40, (n)41) % (7.4.11)

is a multivariate T-variable with nl+n2-p-1 degrees of

freedom and quadratic form S(X). By the Lemma 4,2.1 this

means that

1% T
n2(nl+l)+nl(n2+l) n +n2-p -1 p ;o0 z-p—l

Then by (1.4.6) the region Q defined at (7.4.1) is the

R-expectation tolerance region, which was to be proved.




APPENDIX

We will prove Lemma 1.5.3 now:
Lemma 1.5.3. The following rearrangement of the matrix

expression holds.

(B-A)CC'(B-A)'+(D-AE)(D-AE)'

= [A—(BCC'+DE')(CC'+EE')-1](CC'+EE')

x [A-(Bcc'+DE')(CC'+EE')'11‘

+ (D-BE)(I-E'(CC'+EE')_1E](D-BE)'.

Proof:
[A-(BCC'+DE')(CC'+EE')-1](CC'+EE')[A-(BCC'+DE')(CC'+EE')-1]'

+ (D-BE)[I-E'(CC'+EE')—1E](D-BE)'
=A(CC'+EE')A'-(BCC‘+DE')(CC'+EE')-1(CC‘+EE')A'

- A(CC'+EE')(CC'+EE')-1(BCC'+DE')'

+ (BCC'+DE')(CC'+EE')-1(CC'+EE‘)(CC‘+EE')-1(BCC'+DE')'

+ (D-BE)(D—BE)'-(D-BE)E'(CC'+EE')-1E(D-BE)'
=ACC'A'+AEE'A'-BCC'A'-DE'A'-ACC'B'-AED'+BCC'(CC'+EE')—1CC'B'

+ DE'(CC'+EE')-1CC'B‘+BCC'(CC'+EE')-1ED'+DE'(CC'+EE')ED'+DD'

 pEB'-3ED'+BEE'B'-DE' (CC'+EE') LED'+BEE' (CC'4EE') TED'

+ DE' (CC'+EE") EE'B'-BEE' (CC'4EE") TTEE'B'
RCC'B'-ACC'B'-BCC'A'+ACC'A"4DD' -DE'A"-AED'+AEE'A'

- BCC'B‘+BCC'(CC'+EE')—ICC'B'+BEE'B'-BEE'(CC'+EE')-1EE'B'

151
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+ BCC'(CC'+EE')-1ED'+BEE‘(CC'+EE')_1ED'-BED'
+ DE'(CC'+EE')-1CC'B'+DE'(CC+EE')-1EE'B'-DE'B'
=(B-A)CC" (B-A) "+ (D-AE) (D-AE)"
+ B[EE'-EE'(CC'+EE')-1EE'-CC'+CC'(CC'+EE')-ICC']B'
] ' [} -1 [ [ 1 -1 '
+ B[CC'(CC'+EE') “+EE' (CC'+EE') "-I]ED
[} 1 1 -1 1 t i -1 1 1
+ DE'[(CC'+EE"') “CC'+(CC'+EE') "EE'-I]B
=(B-A)CC' (B-A)'+(D-AE) (D-AE)" ;
since
B[EE'-EE'(CC'+EE')_1EE'-CC'+CC‘(CC'+EE')_ICC']B'
=B[(CC'+EE')(CC'+EE')_1EE'-EE'(CC'+EE')_1EE'
- CC'(CC'+EE')-1(CC'+EE')+CC'(CC'+EE')_1CC']B'
=B[(CC'+EE'-EE')(CC'+EE')-1EE‘
-1
- CC'(CC'"+EE') ~(CC'+EE'-CC')]B'
=B[CC'(CC'+EE')-1EE'-CC'(CC'+EE’)-1EE']B'
=0 }

1 1 [ -1 ' [ 1 -1 [}
B[CC'(CC'+EE') ~+EE'(CC'+EE') ~-I]ED
=B[(CC'+EE')(CC'+EE')-1-I]ED' = B[I-I]ED’
=0
and

' i 1 -1 t 1 1 -1 1 '
DE'[(CC'+EE') ~CC'+(CC'+EE') “EE'-~I]B

=DE'[(CC'+EE')_l(CC'+EE')-I]B' = DE'[I-I]B'

=0 .
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