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Cancer Cell

Article
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SUMMARY

Esophageal adenocarcinoma (EAC) arises from Barrett esophagus (BE), intestinal-like columnar metaplasia
linked to reflux esophagitis. In a transgenic mousemodel of BE, esophageal overexpression of interleukin-1b
phenocopies human pathology with evolution of esophagitis, Barrett-like metaplasia and EAC. Histopa-
thology and gene signatures closely resembled human BE, with upregulation of TFF2, Bmp4, Cdx2, Notch1,
and IL-6. The development of BE and EAC was accelerated by exposure to bile acids and/or nitrosamines,
and inhibited by IL-6 deficiency. Lgr5+ gastric cardia stem cells present in BE were able to lineage trace
the early BE lesion. Our data suggest that BE and EAC arise from gastric progenitors due to a tumor-
promoting IL-1b-IL-6 signaling cascade and Dll1-dependent Notch signaling.

INTRODUCTION

Esophageal adenocarcinoma (EAC) has been linked to chronic

inflammation of the esophagus and its incidence has increased

by more than 500% since the 1970s (Corley et al., 2009) despite

powerful acid suppressant medications (proton pump inhibitors)

and a decline in the prevalence of Helicobacter pylori in the

United States and Europe. The main risk factor for EAC is Barrett

esophagus (BE), involving a progression from BE to low-grade/

high-grade dysplasia (Falk, 2002). The precise origin of both

EAC and BE has been difficult to discern in part because of the

absence of useful experimental model systems that are geneti-

cally based.

BE has been attributed primarily to gastroesophageal reflux

disease (GERD), leading to chronic inflammation of the esoph-

agus. The link between inflammation and cancer is well estab-

lished (Grivennikov et al., 2010); in particular, elevated IL-6

has been identified as a key mediator of tumorigenesis in

murine models of cancer (Grivennikov and Karin, 2008). IL-1b,

a pleiotropic pro-inflammatory cytokine upstream of IL-6 and

Significance

Using a transgenic mouse model of BE and EAC, that closely resembles the human disease, insights into the pathogenesis
of BE are provided. A gastric cardia progenitor cell lineage appears to be activated by bile acid-induced and IL-1b- and
IL-6-dependent inflammation, inducing migration into the distal esophagus where it gives rise to columnar-like metaplasia
and dysplasia. Activated Notch signaling appears to regulate differentiation of the cardia progenitor into intestinal-type
columnar cells instead of goblet cells, and is associated with a malignant transformation in mice and humans. Our findings
challenge the common paradigms regarding the pathogenesis of BE and EAC.
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TNF-a signaling cascades, has been demonstrated to induce

tumorigenesis of the mouse stomach (Tu et al., 2008). IL-1b is

overexpressed in BE, and clinical studies have suggested that

polymorphisms in the IL-1b gene cluster are associated with

BE (Fitzgerald et al., 2002; Gough et al., 2005; O’Riordan et al.,

2005).

BE is defined as replacement of the stratified squamous

epithelium in the distal esophagus with a metaplastic, intes-

tinal-like columnar epithelium (Spechler et al., 2010). Whereas

attention in the past has been focused on goblet cells (i.e., clas-

sical intestinal metaplasia [IM]) as the primary marker for BE, the

recent change in the definition to include nongoblet, columnar

lined esophagus ([CLE], resembling intestinal and cardia meta-

plasia) was made to acknowledge the more variable histologic

presentation of BE. A major unanswered question that has

been debated for decades, is whether the BE cell of origin

derives from transdifferentiation of the esophageal squamous

epithelium (Yu et al., 2005), or originates rather from a progenitor

cell in the esophagus (Kalabis et al., 2008), the esophageal

submucosal glands (Leedham et al., 2008), residual embryonic

cells located at the squamocolumnar junction (Wang et al.,

2011), or, as early investigators proposed, the gastric cardia

(Allison and Johnstone, 1953; Barbera and Fitzgerald, 2010;

Hamilton and Yardley, 1977; Nakanishi et al., 2007). However,

prior to the development of IM, a regenerative intestinal-like

columnar cell lineage appears in the esophagus that expresses

TFF2, KRT8, KRT20, NOTCH, and CDX2 (Hanby et al., 1994;

Menke et al., 2010; Stairs et al., 2008; Tatsuta et al., 2005). It is

crucial to identify the progenitors responsible for BE, given the

preneoplastic nature of the lesion.

Until recently, the primary animal model used to study BE

has been a rat model comprising esophagojejunostomy that

induces gastroduodenal reflux (Fein et al., 1998; Li and Martin,

2007). The observation that duodenesophageal reflux induces

EAC in rats points to the importance of refluxed duodenal

contents in the pathogenesis of BE. Bile acids, particularly

unconjugated bile acids such as deoxycholate (DCA) that induce

DNA damage, are one component of gastroduodenal reflux

that have been linked strongly to the development of BE. Reflux

injury in the esophagus results in chronic inflammation with

upregulation of numerous cytokines, such as IL-1b, IL-6, and

IL-8, that might contribute to the metaplastic and dysplastic

conversion of BE (Fitzgerald et al., 2002). Here, we aimed to

utilize a model of Barrett-like metaplasia, involving overexpres-

sion of IL-1b, to provide insights into the origins of Barrett

esophagus.

RESULTS

Interleukin-1b Overexpression in the Mouse Esophagus
Induces Esophagitis, Barrett-Like Metaplasia,
and Neoplasia
To understand the pathogenesis of BE and EAC we generated

a model of chronic esophageal inflammation, inserting the

modified human IL-1b cDNA (Björkdahl et al., 1999) downstream

of an Epstein-Barr virus (ED-L2) promoter that targets the oral

cavity, esophagus, and squamous forestomach (Figure S1A

available online) (Nakagawa et al., 1997). In two founder lines

we observed high (Line 1) and low levels (Line 2) of specific

esophageal (and forestomach) hIL-1b mRNA and protein

expression (Figures 1A and 1B) that correlated with upregulated

IL1-receptor-antagonist (IL1ra), indicative of IL-1 receptor

signaling (Figure 1C). No hIL-1b mRNA and protein expression

was observed in the glandular stomach or elsewhere (Figures

1A and 1D). L2-IL-1bmice developed splenomegaly (Figure S1C)

that correlated with age dependent IL-1b expression levels

(Figure 1B), consistent with a systemic inflammatory reaction

and at least 10-fold elevated (p < 0.05) circulating levels of

IL-1b, TNFa (Figure S1D), and IL-6 (Figure 1D).

The esophagus and squamous forestomach in the low and

high expressing L2-IL-1b mice were markedly thickened with

a mixed acute and chronic inflammatory infiltrate compared to

age-matched wild-type (WT) mice (Figure S1B). However, the

major histopathological changes in L2-IL-1b mice occurred at

the squamocolumnar junction (SCJ), an anatomical location

where the squamous and gastric columnar epithelium meet

(Figure 1E) and where the esophagus enters the stomach.

Compared to the human SCJ, the mouse esophagus enters

the stomach at the midpoint of the lesser curvature of the

stomach, at the junction between the glandular stomach and

squamous forestomach, forming a SCJ that traverses the entire

stomach and resembles the Z line in the human esophagus

(Figure S1E). To determine whether the L2-IL-1b mice develop

metaplasia resembling human BE, histological evaluation was

performed on sagittal sections through the esophagus and

stomach (Figure S1E, yellow line). Based upon previously

described criteria (Fox et al., 2000), a histopathological scoring

system for the mouse SCJ was developed. In 100% (10/10) of

the 6-month-old L2-IL-1b mice, we observed moderate inflam-

mation and profound epithelial hyperplasia (Figure 1F) that was

never observed in age-matched WT mice. Proliferation was

increased significantly in the esophageal basal compartment

(Figure 2A).

In L2-IL-1b mice that were 12–15 months of age, 90% (9/10)

developed severe columnar metaplasia (Figures 1E and 1F)

with mucus producing (Muc5ac+, PAS+) cells (Figure 2A) at the

SCJ, similar to human BE. Although classical goblet cells were

not observed in L2-IL-1b mice, the mucus producing columnar

cell types observed were consistent with Barrett-like metaplasia.

Tff2, a marker for metaplasia in human BE (Van De Bovenkamp

et al., 2003; Warson et al., 2002), and also an oxyntic progenitor

cell marker in the gastric corpus (Quante et al., 2010), was not

expressed in the WT esophagus but was upregulated above

the SCJ of L2-IL-1b mice harboring metaplasia but not in

dysplasia (Figure 2A). Electron microscopy studies revealed

nearly identical ultrastructural features (columnar cell type,

microvilli, granules, mucins) in human andmouse BE (Figure 2B).

At 20–22 months of age, 20% (2/9) of L2-IL-1b mice developed

high-grade dysplasia (HGD) or intramucosal EAC (Figures 1E–

1G). These lesions were grossly visible within the distal end of

the esophagus (Figure 1G) and were associated with significant

weight loss (28% ± 4%, p < 0.05; data not shown). During this

stepwise progression to cancer, we observed a gradual increase

in aSMA+ stromal myofibroblasts (Figure 2A) and increasing

stroma global hypomethylation (Figure S2) in BE and HGD

compared to WT, consistent with other models of inflamma-

tion-induced cancer (Jiang et al., 2008). Although hypomethyla-

tion was prominent in the stroma, we could not exclude (and
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Figure 1. Overexpression of IL-1b-Induced Chronic Inflammation in the Murine Esophagus and Stepwise Development of Metaplasia

and Dysplasia at the SCJ

(A) mRNA expression (RT-qPCR) in different organs of 3-month-old two founder L2-IL-1b-lines.

(B) ELISA for human (transgenic) IL-1b showed age dependent hIL-1b protein expression levels.

(C) mRNA expression (RT-qPCR) of IL1-receptor-antagonist (IL1ra) in different organs in 12-month-old L2-IL-1b mice compared to WT littermates.

(D) ELISA for serum levels and organ protein expression of mIL-6 in L2-IL-1b mice compared to WT (C57/B6) littermates.

(E) Histopathologic changes in L2-IL-1bmice occurred at the squamo-columnar junction (SCJ, arrow in WT). Representative pictures of WT and 6-, 9-, 12-, 15-,

and 20-month-old L2-IL-1b, top panels show an overview of the SCJ, where the squamous esophagus epithelium meets the columnar cardia/stomach

epithelium, second and third panels show inset magnifications of the stepwise progression to BE and EAC.

(F) Histopathologic scoring of 6-, 9-, 12-, 15-, and 20-month-old L2-IL-1b mice compared to WT (C57/B6) littermates.

(G) Representative gross pictures of the SCJ in WT and 20 months old L2-IL-1b mice with tumor (arrow). Data are represented as mean ± SEM. *p < 0.05,

**p < 0.01. See also Figure S1.
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indeed suspect) gene specific hypermethylation in epithelial cells

as described in humans (Sato and Meltzer, 2006).

Within the epithelial compartment, we observed stabilization

of nuclear b-catenin (Figure 2C), a finding suggested by gene

expression microarrays of WT and HGD tissue following

laser capture microdissection (LCM) of metaplastic lesions in

L2-IL-1b mice (Table S1). This microarray analysis confirmed

an upregulation of b-catenin, EVI1, and RRas in the tumors,

consistent with activation of these pathways. Pathway analysis

also revealed markedly increased phosphorylation of Akt and

Erk in HGD samples (Figure 2D), compared to only a slight

increase in BE-like metaplasia, especially after bile acid treat-

ment, and absent expression in WT cardia tissue (Figure 2D).

We also observed occasional loss of p16 and increased c-Myc

expression or stabilization of p53 in the neoplastic epithelium

(Figures 2C and 2D), thus demonstrating involvement in our

mouse model of BE/EAC of a number of pathways relevant to

human BE and EAC.

Bile Acids and Carcinogens Accelerate the
Development of Barrett-Like Metaplasia and Dysplasia
that Can Be Diagnosed Endoscopically in the Mouse
BE and EAC have been attributed to acid reflux leading to

chronic esophagitis. In our mouse model of chronic inflamma-

tion, Barrett-like metaplasia and dysplasia appeared to be

more dependent upon IL-1b overexpression than acid exposure,

because bothWTmice and L2-IL-1bmice were kept on acidified

water (pH % 2.0) but pathological changes were evident only

in the EL2-IL-1bmice. Unconjugated bile acids are another com-

ponent of gastroduodenal reflux that has been linked to the

development of BE. Consequently, we treated 2–3-month-old

L2-IL-1b mice (line 2) and WT littermates with an unconjugated

Figure 2. IL-1b Mouse Model Resembles the Human Disease

(A) Representative pictures of staining for PAS, Muc5ac, Krt19, Tff2, Ki67, and aSma of normal SCJ histology in WT (left panel), BE histology in 15-month-old

L2-IL-1b mice (middle panel), and HGD histology in 22-month-old L2-IL-1b mice (right panel).

(B) Representative electron microscopy pictures of mouse (top panel) human (bottom panel) BE epithelium showing columnar cells (left), granules with mucin

(middle), and microvilli (right). Scale bar represents 2 mm.

(C) Representative pictures of b-catenin, p16 and c-myc in WT mice and dysplastic tissue of 16-month-old BA-treated L2-IL-1b mice.

(D) Western blot for p53, p-Erk, and p-Akt in indicated tissues, showing p53 stabilization, and activation of Akt and Erk pathways in EAC- and BA-treated BE.

See also Figure S2 and Table S1.
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bile acid ([BA], 0.2% deoxycholate) in the drinking water (pH 7)

and analyzed the mice at 6, 9, 12, and 15 months (Figure S3A).

Due to issues of solubility, BAwere administered in pH 7.0 water,

thus eliminating the possibility of acid exposure.

Six-month-old BA-treated L2-IL-1b mice showed severe

esophagitis with inflammatory infiltrates, but only moderate

changes were observed in BA-treated WT mice (Figures 3A

and 3B). Sixty percent (6/10) of 9-month-old BA-treated

L2-IL-1b mice showed metaplastic changes at the SCJ, with

higher overall metaplasia scores compared to untreated L2-

IL-1b mice (2.7 versus 1.8, p < 0.05) (Figure 3A; Figure S3C),

indicating a significant acceleration by BA of Barrett-like meta-

plasia. Moreover, we observed more severe metaplasia and

dysplasia in BA-treated L2-IL-1b mice compared to untreated

L2-IL-1b mice at both 12 months (dysplasia score 2.1 versus

1.0, p < 0.05) and 15 months (dysplasia score 2.4 versus 1.4,

Figure 3. Bile Acids and Carcinogens Accelerate the Development of Barrett Metaplasia and Dysplasia

(A) Histopathological scoring of 6-, 9-, 12-, and 15-month-old BA-treated L2-IL-1b mice and combined 12 months old BA and N-methyl-N-nitrosourea

(MNU)-treated L2-IL-1b mice compared to WT (C57/B6) littermates (*p < 0.05 compared to WT, #p < 0.05 compared to untreated L2-IL-1b mice).

(B) Representative gross pictures of the SCJ in WT, 22-month-old L2-IL-1bmice, 15-month-old BA-treated L2-IL-1bmice, and combined BA and MNU-treated

12-month-old L2-IL-1b mice with tumors at the SCJ.

(C) Representative pictures of the esophagus and SCJ during upper endoscopy in intact 15-month-old BA-treated or untreated L2-IL-1b mice and WT mice

and corresponding gross macroscopic evaluation (right).

(D) PET imaging was performed on a rodent microPET scanner to measure glucose uptake in tumors relative to normal tissue. A representative picture of

15-month-old BA-treated L2-IL-1b mice is shown in sagittal, coronal, and axial position (arrow indicates the tumor that was macroscopically and histologically

confirmed). Data are represented as mean ± SEM. See also Movies S1–S5 and Figure S3.
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p < 0.01) (Figure 3A; Figure S3C). Forty percent (4/9) of 15-

month-old BA-treated L2-IL-1b mice presented with macro-

scopically visible tumors in the distal esophagus (Figure 3B),

and exhibited significant weight loss consistent with partially

obstructive lesions. These data suggest that BA play a significant

role in the pathogenesis of BE and dysplasia, althoughwe did not

use bile acids at pH 2.0 and cannot rule out that gastric acid

might also have a role in esophageal carcinogenesis.

N-nitrosamines are generated typically at the SCJ from reduc-

tion of salivary nitrite to nitric oxide in response to gastric juice

(Winter et al., 2007) and might play a role in the pathogenesis

of BE. N-methyl-N-nitrosourea (MNU) is a known gastric

carcinogen for mice (Tomita et al., 2011), but does not appear

to promote transformation of the noninflamed esophageal

epithelium (Figures S3A and S3B). Mucosa that is chronically

inflamed is thought to be more sensitive to the effects of luminal

carcinogens (Winter et al., 2007). Thus, in comparison to

BA+MNU-treated WT mice (Figure S3B), we observed a sig-

nificant increase in tumor development in 12-month-old

BA+MNU-treated L2-IL-1b mice (Figures 3A and 3B).

Patients with EAC lose weight due to luminal obstruction, typi-

cally diagnosed by endoscopy and/or noninvasive imaging.

Upper endoscopy in intact 15-month-old BA-treated or

untreated L2-IL-1b (Movies S1 and S2) and WT (Movie S3)

mice after intubation and under constant ventilation (Figure 3C)

revealed the luminal presence of BE-like metaplasia and tumor

growth in the distal esophagus. The esophagi of L2-IL-1b mice

showed circumferential erythema and edema with inflammatory

exudates compared to the normal esophagus (Figure 3C),

changes that were increased in BA-treated L2-IL-1b mice.

The endoscopic appearance resembled human BE (Movie S4).

In four of nine BA-treated L2-IL-1b mice (15 month) but no

L2-IL-1b mice (15 month), we observed obstructing tumors at

the SCJ (Figure 3C; Movies S1–S3). 18F-FDG PET scans of

BA-treated L2-IL-1b mice with endoscopically detected tumors

revealed markedly increased focal glucose uptake, consistent

with the severe inflammation in the esophagus and forestomach,

along with tumorigenesis confirmed histologically (Figure 3D;

Movie S5). These imaging data provide support for the acceler-

ation of neoplastic processes in L2-IL-1b mice by BA.

Bile Acids Induce an Acute and Chronic Immune
Response and Activate Differential Gene
Expression in BE
Previous studies of IL-1b-induced carcinogenesis suggested

that recruitment of myeloid cells is crucial for the development

of neoplasia (Tu et al., 2008; Yang et al., 2011). In 6-month-old

L2-IL-1b mice with mild esophagitis, there was no change in

the abundance of CD4+ and CD8+ T cells or CD11b+/F4/80+

monocytes/macrophages in esophageal tissue, but a significant

accumulation of immature (CD11b+Gr1+) myeloid cells (Fig-

ure 4C). At 9, 12, and 15 months, there was an even greater

accumulation in L2-IL-1bmice of CD11b+Gr1+ cells in the esoph-

agus (Figure 4C) and spleen (not shown) associated with chronic

esophagitis and metaplasia. CD4+ T cells, F4/80+ macrophages

and CD11b�Gr1+ neutrophils were also significantly increased

but to a lesser extent in L2-IL-1b mice at these later time points

(Figure 4B). Inflammatory cytokines were increased (Figures 1A–

1D; Figure S1D) and the L2-IL-1bmice developed splenomegaly,

likely due to an accumulation of immature splenic myeloid cells

(Figure S1C). BA treatment resulted in additional increases in

CD4+ T cells and CD11b�Gr1+ neutrophils, along with a slight

decrease in CD11b+Gr1+ cells but no changes in CD11b+/F4/

80+ macrophages (Figures 4A and 4B). These observations

confirmed our histopathological scoring, showing more acute

inflammation in BA-treated mice (Figure 3A). Our data suggest

that BA may contribute to the development of BE by shifting

the chronic inflammatory response toward an acute neutrophilic

response. Recruited macrophages also suggest a role for

tumor associated macrophages (TAMs) in BE.

In addition, 15 month BA-treated L2-IL-1b mice harboring

metaplasia showed elevated levels of Tff2, Cckbr, Muc5ac,

Cdx2, and Krt19 (Figure 4D). Bmp4, Cdx2, and Shh, which are

known to be involved in cellular differentiation and proliferation,

were also associated with BA treatment (Figure 4D). Interest-

ingly, we observed a significant upregulation of Notch1 upon

BA treatment, indicating a potentially important role for the

Notch signaling pathway in BE and HGD (Figure 4D).

DLL1-Dependent Notch Signaling Regulates
Differentiation and Correlates with Progression
Notch signaling is an essential factor in intestinal differentiation

and seems to be required to maintain stem cells in an uncom-

mitted state (Kim and Shivdasani, 2011). As with the intestinal

epithelium, the Barrett epithelium contains proliferative crypt-

like compartments, and the Notch pathway has been found to

be active in BE (Menke et al., 2010). Indeed,Notch1was upregu-

lated significantly in the epithelium at the SCJ of BA-treated

L2-IL-1b mice, compared to WT and untreated L2-IL-1b mice

(Figures 4D and 5A; Figure S4A), pointing to a role of Notch

signaling during EAC pathogenesis. Notch inhibition by systemic

treatment with a g-secretase inhibitor (DBZ), as reported

previously (Menke et al., 2010), markedly increased both PAS+

cells and Alcian-Blue(+) goblet-like cells (Figures 5B and 5C),

suggesting that inhibition of Notch signaling is associated with

IM. Moreover, IHC for a general marker of activated Notch

signaling (Notch intracellular domain or NICD; Figure S4A)

revealed that NICD-expressing cells were predominantly found

within columnar-lined esophagus (CLE) and dysplastic epithelial

tissue at the SCJ, but not in IM at the SCJ, and were in general

not present in DBZ-treated mice (Figure 5A; Figure S4A) where

we observed increased numbers of goblet cells (Figure 5C).

These findings suggest that Notch signaling might contribute

to the development of dysplasia, whereas inhibition of Notch

signaling results in goblet cell differentiation and may prevent

malignant transformation, although in theory both processes

could occur simultaneously in different regions of the meta-

plastic epithelium.

We also observed upregulation of the Notch ligand Delta-like1

(Dll1) in BE-like tissue (Figure 5D; Figures S4C and S4D), which

correlated with increased Notch1 expression and proliferation

in BE. Increasing numbers (Figure S4E) of Dll1-expressing cells

could be found adjacent to Notch activated cells (Notch-IC),

suggesting a possible intraepithelial crosstalk (Figure 5D). Most

of the Dll1+ cells also expressed Tff2, supporting a concept of

an expansion of Dll+ cells in the BE lineage (Figure S4F). In

addition, we found downregulated Jagged2 gene expression in

BE and EAC (Figure 6D; Table S1) and were able to confirm
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decreased Jagged2 as assessed by IHC (Figure S4B), suggest-

ing that Dll1, not Jagged2, is the predominant ligand inducing

Notch signaling in BE. The location of Dlll1 expression was asso-

ciated with the normal stem cell zone in the gastric cardia (data

not shown), whereas Jagged2 appeared to be expressed in

more terminally differentiated areas of the gastric cardia glands

(Figure S4B, data not shown).

To confirm these findings from our mousemodel, we analyzed

46 human BE biopsy samples. Biopsies were taken from Barrett

mucosa, evaluated by an expert gastrointestinal pathologist, and

samples were classified histologically based on the highest

degree of neoplasia present on any of the biopsies. Notch1

was significantly upregulated in human biopsies of dysplastic

tissues compared to BE tissue (Figure 5E), pointing to a role of

Notch signaling in the development of EAC from BE. Overall,

Notch activation appears to be associated with decreased

goblet cell differentiation, as suggested by a lack of goblet cells

in adjacent tissue of human EAC samples (unpublished data) and

a review of the literature (Table S2). IHC for Notch intracellular

domain (NICD) and Dll1 in human BE tissue showed a similar

pattern, where expression of the receptor and ligand was found

in adjacent but distinct cell types (Figure 5F).

Gene Expression Profiles of the IL-1bMouse Esophagus
Closely Resemble Those of Human Barrett Metaplasia
and Esophageal Adenocarcinoma
The gene expression profile of human BE (Stairs et al., 2008) is

only slightly more similar to small intestine than it is to normal

esophagus, in contrast to the striking similarity of BEmorphology

to intestinal morphology. Nevertheless, we found in both human

BE and our mouse model that a number of gastric and intestinal

genes were significantly upregulated. LCM was applied to

typical metaplastic lesions in L2-IL-1b mice (with or without

BA), and to the squamous epithelium of WT mice (Figure 6A).

Figure 4. Bile Acids Induce an Acute and Chronic Immune Response and Activate Notch Signaling in BE

(A) The frequencies of lymphoid and myeloid cells in the esophagus from 12-month-old L2-IL-1b mice and age-matched WT mice were measured by FACS,

and representative FACS blots for detecting immature (CD11b+Gr1+) myeloid cells in the esophagus from WT, L2-IL-1b mice, BA-treated WT, and BA-treated

L2-IL-1b mice are shown.

(B) Quantitative analysis of FACS for immature (CD11b+Gr1+) myeloid cells, neutrophiles/granulocytes (CD11b�Gr1+), macrophages (Cd11b+/F4/80+), and T cells

(CD4+) (*p < 0.05 compared to WT, #p < 0.05 compared to BA-treated WT, $p < 0.05 compared to untreated L2-IL-1b mice).

(C) Quantitative analysis of FACS for immature (CD11b+Gr1+) myeloid cells in 6-, 9-, 12-, 15-month-old L2-IL-1b mice compared to age-matched WT mice.

(D) mRNA expression (RT-qPCR) of Cdx2, K19, Cckbr, Muc5ac, TFF2, Shh, Bmp4, and Notch1 in the SCJ tissue of WT, L2-IL-1b mice, BA-treated WT, and

BA-treated L2-IL-1b mice (*p < 0.01 compared to WT, # p < 0.05 compared to L2-IL-1b mice). Data are represented as mean ± SEM.
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Figure 5. Notch Signaling in BE
(A) Representative pictures of NotchIC IHC in 15-month-old L2-IL-1bBA-treatedmice and 9-month-old L2-IL-1bmice after g-secretase inhibitor treatment (DBZ).

(B) Representative pictures of periodic acid-Schiff (PAS) and Alcian blue staining at the SCJ of 9-month-old L2-IL-1b without and with 10 days g-secretase

inhibitor treatment (right, Notch signaling inhibitor, DBZ).

(C) Representative picture of BE in g-secretase-treated L2-IL-1b mice showing occasional true goblet cells (white arrows), CLE (green arrows), and goblet like

cells (red arrows) on the left. On the right goblet cells in BE (top) and small intestine (SI, bottom) are shown to show similarities in intestinal metaplasia.

(D) Representative pictures of NotchIC (red) and Delta-Like1 (DII1) (green) IHC in 9-month-old WT, 9-month-old L2-IL-1b with BE, and 15-month-old BA-treated

L2-IL-1b with EAC (insets label magnified area below).

(E) mRNA expression (RT-qPCR) of Notch1 in biopsies of esophageal tissue, obtained from 46 patients with BE with and without dysplasia. In each patient,

biopsies were taken from Barrett mucosa and from dysplastic appearing mucosa.

(F) Representative pictures of NotchIC (red) and Delta-Like1 (DII1) (green) IHC in human BEwith CLE or IM. See also Figure S4 and Table S2. Data are represented

as mean ± SEM. *p < 0.05.
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Compared to squamous epithelium, we observed 5,698 genes

with a significance cutoff of <0.05, that were differentially

regulated in BE tissue of 15-month-old L2-IL-1b mice and

5,950 genes in 9-month-old BA-treated L2-IL-1b mice. Direct

comparison of these two groups identified 1,678 similarly upre-

gulated (A in Venn diagram) and 2,166 similarly downregulated

(B in Venn diagram) genes (Figure 6B). In KEGG pathway

analysis, these transcripts were enriched for cell adhesion

molecules, adherens junctions, tight junctions, biosynthesis of

unsaturated fatty acids, PPAR signaling pathway, and protein

export. When compared to the earlier human expression

analysis (GSE13083) (Stairs et al., 2008), entire sets of genes in

the mouse were altered in the same directions (Figure 6C).

KEGG pathway analysis of those genes that were identically

up- or downregulated in mouse and human, revealed changes

in the expression of genes relevant for bile acid-induced

Figure 6. Gene Expression Profiles of Mouse BE Resembles that of the Human Disease

(A) Laser capture microdissection (LCM) was applied to typical metaplastic lesions at the SCJ in 15-month-old L2-IL-1bmice or 9-month-old BA-treated L2-IL-1b

mice and to the squamous epithelium of WT control mice. A schematic sequence of the experimental procedures is shown: (A) After LCM (a representative

outlined area is shown) followed by RNA isolation and amplification, (B) Venn diagrammouse BE versus BA-treatedmouse BE: gene expression of BE tissue from

untreated L2-IL-1b mice (n = 3, BE versus N), and BA-treated L2-IL-1b mice (n = 3, BeBA versus N) was compared to WT squamous tissue (n = 3) in order to

determine the overlapping up- and downregulated genes in both cohorts.

(C) Venn diagram mouse versus human. These 3,832 significantly different genes (1,676 up [Venn diagram: A] and 2,166 down [Venn diagram: B], p < 0.01) were

than compared to the gene expression pattern of a human expression analysis (Stairs et al., 2008) where human BE tissue was compared to human esophageal

squamous tissue. This comparison identified 606 genes, which were analyzed by KEGG pathway analysis.

(D) A list of these significantly identical genes in human andmouse is shownwith the log2 fold change of the comparison of BA-treated L2-IL-1bmice compared to

the squamous epithelium of WT control mice.

(E) KEGGpathway analysis also identified genes that were altered differentially in BE epithelium of L2-IL-1bmice versus BA-treated L2-IL-1bmice (Venn diagram:

C–F). A list of significantly different genes is shown.
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damage, signaling pathways (i.e., Notch), columnar cell related

genes, and cell-cell contact genes (Figure 6D).

KEGG pathway analysis also identified genes that were

altered differentially in BE-like epithelium of L2-IL-1bmice versus

BA-treatedL2-IL-1bmice (C–F in Venndiagram)with a significant

overrepresentation of the biological processes of mismatch

repair, adherens junction, apoptosis, and autophagy, as well

as alterations in signaling pathways with importance for carci-

nogenesis (Figure 6E). These results are consistent with a role

for bile acids in promoting metaplasia and cancer by loosening

cell-cell contacts, inducing oncogenic pathways, and causing

cell death by DNA damage and oxidative stress.

Barrett-Like Metaplasia and Dysplasia Correlate
with Expansion of Gastric Cardia Progenitor
Cells in Mice and Humans
The current paradigm suggests that BE derives from dedifferen-

tiation or transdifferentiation of the squamous esophageal

epithelium (Jankowski et al., 2000). To address the possible

origins of BE in our mouse model, we examined the expression

and localization of a number of putative stem cell or progenitor

cell markers. Lgr5/GPR49 is a validated stem or progenitor cell

marker for the mouse gut, but in the stomach it is expressed

only in the gastric antrum and in the gastric cardia (Barker

et al., 2010). Krt19 and Tff2 have been shown through lineage

tracing studies to label different gastric progenitor cells

(Means et al., 2008; Quante et al., 2010). Doublecortin and

CaM like-kinase-1 (Dclk1), a microtubule-associated kinase

expressed in neurons, has been postulated to be expressed in

gut epithelial progenitors (Giannakis et al., 2006).

Although the above markers were absent from the normal

squamous esophageal epithelium, they showed increased

expression over time in our L2-IL-1bmouse model, with expres-

sion first in the gastric cardia and later above the SCJ. In qRT-

PCR studies Lgr5 was expressed minimally in the WT cardia,

but could easily be detected in the cardia in 15-month-old

L2-IL-1b mice that showed features consistent with Barrett

metaplasia (Figure 7B). Lgr5-labeled cells were present in the

cardia of Lgr5-Cre-ERT mice crossed to Rosa-LacZ reporter

mice shortly after tamoxifen induction, which within 7 days

gave rise to lineage traced cardia epithelium in WT mice (Fig-

ure 7D), as previously shown (Barker et al., 2010). In L2-IL-1b

mice crossed to Lgr5-Cre-ERT/Rosa-LacZ mice, we observed

labeled BEmetaplasia four months after tamoxifen induction fol-

lowed by BA treatment at the age of 6–8 weeks (Figure 7D).

These findings indicate that Lgr5+ cells within the cardia may

function as progenitor cells, and thus potentially as the cells of

origin for BE and dysplasia. Furthermore, we observed an

increase in protein and mRNA expression of the Krt19 gene

(Figures 2A and 4D), which is a known marker for surface mucus

and gastric progenitor cells (Brembeck et al., 2001; Means et al.,

2008), and of the Tff2 gene, expressed in gastric and cardia

mucus neck and progenitor cells (Quante et al., 2010), but not

in the normal esophageal epithelium (Figures 2A and 4D). Finally,

we found an accumulation of Dclk1+ cells adjacent to the

metaplastic mucus producing cells in BE tissue (Figures 7A

and 7B). Dclk1+ cells are typically present as rare scattered cells

localized primarily to the isthmus of the gastric glands (data not

shown), but Dclk1+ cells are highly abundant in the gastric

cardia, particularly just below the SCJ (Figure 7A). The gradual

accumulation of Dclk1+ cells just above the SCJ in L2-IL-1b

mice positively correlated with the development of metaplasia

at the SCJ; with progression to dysplasia, Dclk1 expression

was downregulated.

In human BE, qRT-PCR analysis showed a highly significant

upregulation of LGR5 and DCLK1 compared to normal squa-

mous epithelium (Figure 7C). Moreover, IHC for DCLK1 showed

increased expression in dysplastic BE and decreased (or absent)

expression of DCLK1 in dysplasia or adenocarcinoma (Fig-

ure 7A), similar to the observation in L2-IL-1b mice. Consistent

with previous reports, TFF2 was highly expressed in Barrett

mucosa but not in biopsies of squamous esophageal epithelium

(data not shown). Interestingly, LGR5 and DCLK1 were signifi-

cantly elevated in the gastric cardia of BE patients (Figures 7E

and 7F). The upregulation of gastric columnar progenitor cells

in the region of the cardia and in BE suggest that the metaplastic

lineage in BE lesions in mice and humans may derive from

a gastric cardia lineage (Figure 4G).

IL-6 Deficiency Abolishes Inflammation, Metaplasia,
and HGD in L2-IL-1b Mice
IL-1b is upstream of IL-6 and TNF-a, which are both upregu-

lated in our models (Figure S1D) and overexpression of IL-1b

has been shown to induce tumorigenesis of the stomach (Tu

et al., 2008). Persistent activation of the transcription factor

signal transducer and activator of transcription-3 (Stat3) occurs

in a large number of solid malignancies and supports the prolif-

eration and survival of malignant cells, mostly triggered by an

autocrine-paracrine production of IL-6 and family members

(Bollrath et al., 2009). We observed elevated IL-6 protein levels

in the serum and the SCJ of L2-IL-1b mice (Figure 1D), and IL-6

could be upregulated further by BA treatment (Figure 8A). IHC

revealed increased pStat3+ cells during the progression from

normal esophagus to BE and EAC (Figures 8B and 8C). Inter-

estingly, we observed a significant upregulation of IL-11Ra

and Jak2, and downregulation of Socs3, in our microarray anal-

ysis (Table S3). Given that we demonstrated increased levels

of IL-6 and phosphorylated Stat3 in mouse BE-like and

dysplasic tissues, IL-11Ra upregulation likely represents an

inhibitory feedback mechanism. The finding of SOCS3 downre-

gulation, as demonstrated recently (Watanabe et al., 2007), and

increased levels of Jak2 with STAT3 activation, suggest

a mechanism by which IL-1b and IL-6 could induce the devel-

opment of cancer in our mouse model of BE/EAC (Lesina et al.,

2011).

In humanEACsamplesqRT-PCRanalysis showedasignificant

upregulation of IL-6 and IL-1b compared to BE samples (Figures

8D and 8E), supporting our hypothesis that both cytokines play

an important role during EAC pathogenesis. When we crossed

L2-IL-1b mice with IL-6�/� mice we observed a complete abol-

ishment of themetaplastic and dysplastic phenotype in homozy-

gous L2-IL-1b/IL-6�/� mice, and a partly diminished phenotype

with little metaplasia and no dysplasia in heterozygous L2-

IL-1b/IL-6�/+ mice (Figure 8F). In L2-IL-1b/IL-6�/� mice, we

observed only a minor inflammatory response, which was

increased in L2-IL-1b/IL-6�/+ mice, but no increase in pSTAT3+

cells could be detected (data not shown). These data indicate

that IL-1b mediates its carcinogenic effect in part through IL-6,
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Figure 7. Barrett Metaplasia and Dysplasia Arise from Gastric Cardia Progenitor Cells in Mice and Humans

(A) Representative pictures of human (left) and mouse (right) SCJ, BE, and EAC tissue with doublecortin like kinase-1 (Dclk1) IHC.

(B) mRNA expression (RT-qPCR) of Lgr5 and Dclk1 in the SCJ tissue of WT, L2-IL-1b mice, BA-treated WT, and BA-treated L2-IL-1b mice.

(C) mRNA expression (RT-qPCR) of Lgr5 and Dclk1 in biopsies of esophageal tissue, obtained from 46 patients with BE. In each patient, biopsies were taken

from Barrett mucosa and from normal-appearing squamous mucosa.
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suggesting the presence of a tumor-promoting IL-1b-IL-6-pStat3

signaling cascade in mouse EAC.

DISCUSSION

Using a transgenic mouse model of esophageal inflammation,

we demonstrate that increased IL-1b expression is sufficient

for the induction of Barrett-like metaplasia and dysplasia at the

SCJ, extending previous findings in the glandular stomach (Tu

et al., 2008) and affirming a crucial role for IL-1b in carcinogen-

esis, which is highly upregulated in human BE and EAC (Fitzger-

ald et al., 2002). Gene expression analysis, IHC, EM, and endos-

copy provided evidence that our IL-1b mouse model closely

resembles human disease, despite the fact that the mouse

stomach differs from the human stomach. Inflammation in the

squamous esophagus resulted in migration of cardia progenitor

cells (including Lgr5+ cells) and their metaplastic descendants

into the esophagus. Wewould conclude then that Barrett esoph-

agus is derived from gastric cardia progenitors at the SCJ

junction.

Although our L2-IL-1bmouse model exhibits a columnar-lined

esophagus (CLE) but lacks abundant goblet cells (or classical

IM), it is increasingly recognized that BE does not require clas-

sical IM to establish the diagnosis (Ogiya et al., 2008; Playford,

2006). Several studies have indicated that the risk of progression

to EAC is the same in patients with CLE without goblet cells as it

is in patients with IM (Gatenby et al., 2008; Goldblum, 2010; Kelty

et al., 2007; Odze and Maley, 2010; Riddell and Odze, 2009;

Takubo et al., 2009) (Table S2), and our clinical experience would

support this broader premise. The findings that dysplasia tends

to recur following radiofrequency ablation in the presence of CLE

without classical IM would support this model (Vaccaro et al.,

2011). Notch inhibition has been associated with goblet cell

differentiation (Menke et al., 2010), and thus the absence of

Tff3+ or Muc2+ goblet cells may be related to the high levels of

Notch expression. Our study adds to the evidence challenging

the notion that metaplastic nongoblet cell CLE is entirely benign,

and we would even argue that TFF2 has many advantages as

a marker for BE, because it seems to be expressed early in the

development of CLE, a lesion we postulate is the primary

precursor lesion for EAC. Nevertheless, further studies in

patients are needed to clarify the prognostic and diagnostic

value of IM and CLE, because at present it remains controversial

as to which metaplastic epithelial subtype best defines BE

(Chatelain and Fléjou, 2003), leading to controversial risk esti-

mates for the development of HGD or EAC in BE patients

(Hvid-Jensen et al., 2011).

IL-1b overexpression was able to induce metaplasia and

dysplasia of the SCJ in part through recruitment of immature

myeloid cells (IMC), which have been linked to carcinogenesis

(Stairs et al., 2011; Tu et al., 2008; Yang et al., 2011). IMC were

increased early in the distal esophagus and likely contribute to

esophageal inflammation and carcinogenesis through secretion

of pro-inflammatory cytokines (IL-6 and Tnf-a) and chemokines

(Sdf1). With BA treatment, there was acceleration of dysplasia

and a shift in the myeloid phenotype more toward granulocytic

differentiation, pointing to the possible significance of a mixed

acute/chronic inflammatory response in carcinogenesis (Frid-

lender et al., 2009). IL-6 levels were systemically elevated in

L2-IL-1b mice, and IL-6 deficiency completely abrogated the

IL-1b-induced phenotype, indicating the importance of systemic

immune activation in the development of neoplasia. Persistent

activation of Stat3 through IL-6 additionally supports the pro-

liferation and survival of malignant cells in mouse and human

EAC, in contrast to the importance of IL-11 in carcinogenesis

of the antrum (Ernst et al., 2008; Howlett et al., 2009). IL-6 in

most tissues is a critical mediator of cancer initiation and pro-

gression, and IL-6-Stat3 inhibition may be a useful target for

prevention or treatment of BE and EAC.

Unconjugated BA, which are increased in the refluxate of

patients with BE (Kauer et al., 1997) and in patients on a high

fat diet (Theisen et al., 2000), accelerated the development of

BE and dysplasia. Unconjugated BA can induce gene promoter

demethylation leading to activation of IL-6, Cdx2, or Notch1

gene expression in esophageal cells (Jankowski et al., 1999; Ka-

zumori et al., 2006), a finding we can confirm in our BA-treated

L2-IL-1b mice. Thus, through modulation of gene expression,

unconjugated bile acids may promote an intestinal lineage

commitment by progenitors. Pathway analysis of our gene

expression studies confirm previously suggested carcinogenic

roles for BA (Bernstein et al., 2005, 1999; Dvorak et al., 2007;

Payne et al., 2005).

Although it is generally accepted that BE and EAC arise from

a common progenitor cell, the precise type and location of this

cell remained unresolved. Temporal analysis of the L2-IL-1b

mouse SCJ at different stages of the disease showed an initial

expansion of progenitors in the gastric cardia, followed by

migration over time into the esophagus (Figure 4G). LgR5 cell

lineage tracing studies demonstrated the likely origin of at least

some of the metaplastic BE tissue from Lgr5+ cells within the

gastric cardia, where Lgr5+ cells also serve as functional cardia

stem or progenitor cells. Furthermore, progenitor markers were

essentially absent from the normal esophageal squamous

epithelium, but Lgr5 (Barker et al., 2010), Tff2 (Quante et al.,

2010), Krt19 (Means et al., 2008), Cck2r (Jin et al., 2009), and

Dclk1 (Giannakis et al., 2006) were all present in the normal

mouse gastric cardia, and were significantly increased in BE.

Analysis of a cohort of human patients with BE showed

(D) Left: Lgr5-Cre-ERT x RosaLacZ mice were treated with 3-OH tamoxifen and sacrificed 1 day or 7 days postinduction. Analysis at 1 day showed a small

collection of Xgal+ cells in the cardia at the squamocolumnar junction (SCJ), whereas analysis at 7 days showed complete lineage tracing of these columnar

cardia glands. Right: lineage tracing of BE tissue in 6-month-old Lgr5-CreERT/IL-1b/RosaLacZmice. Tamoxifen induction (6mg in one dose) was performed prior

to bile acid treatment at the age of 4 weeks. Mice were sacrificed at 2, 4, or 6 months after induction, indicating lineage tracing of developing BE suggesting that

Lgr5 cells might migrate into the distal esophagus and give rise to BE.

(E) mRNA expression (RT-qPCR) of LGR5 and DCLK1 in biopsies of cardia tissue, obtained from five patients with BE and five patients without BE (normal).

(F) Representative DCLK1 IHC pictures of normal human cardia (left) and of cardia from patients with BE (right) with doublecortin-like kinase-1.

(G) In our model of the pathogenesis of BE and EAC in mice, bile acid treatment, and IL-1b-induced inflammation lead to migration of gastric cardia progenitor

cells into the distal esophagus, giving rise to BE and EAC in association with increased Dll1-dependent Notch signaling that induced columnar cell differentiation.

Data are represented as mean ± SEM. *p < 0.05.
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a significant increase of identical progenitor markers in both

gastric cardia and BE tissue.

However, our findings that Lgr5+ cardia cells can contribute

to BE does not exclude contributions from other lineages. In

addition, the use of mouse models to investigate the origins of

human metaplasia has its limitations, given the anatomical

differences. The predominant theory for the origins of Barrett

esophagus is based on the notion of reflux-induced transdiffer-

entiation of squamous epithelial cells (Barbera and Fitzgerald,

2010; Yu et al., 2005). In addition, genetic evidence has sup-

ported the possible origin from multipotent progenitors present

in submucosal squamous gland ducts, which are not present

Figure 8. IL-6 Deficiency Abolishes IL-

1b-Induced Metaplasia and Dysplasia

(A) mRNA expression (RT-qPCR) of IL-6 in the SCJ

tissue of WT, L2-IL-1b mice, BA-treated WT, and

BA-treated L2-IL-1b mice (*p < 0.01 compared to

WT, # p < 0.05 compared to L2-IL-1b mice).

(B) Quantification of cells with phosphorylated

STAT3 in WT, L2-IL-1bmice, BA-treated L2-IL-1b,

and BA-treated L2-IL-1b mice with EAC (*p < 0.01

compared to WT, # p < 0.05 compared to L2-IL-1b

mice).

(C) Representative pictures of pSTAT3 IHC in 12-

month-old L2-IL-1bmice andBA-treated L2-IL-1b,

and 15-month-old BA-treated L2-IL-1b mice

with EAC.

(D and E) mRNA expression (RT-qPCR) of IL-6 (D)

and IL-1b (E) in biopsies of esophageal tissue,

obtained from 46 patients with BE.

(F) Histopathological scoring of 12-month-old

L2-IL-1b mice and L2-IL-1b/IL-6�/� or L2-IL-1b/

IL-6�/+ mice and WT (C57/B6) littermates (*p <

0.05, compared to L2-IL-1b mice). Data are rep-

resented as mean ± SEM. See also Table S3.

in themouse and thus could not be exam-

ined in our model (Jankowski et al., 2000;

Leedham et al., 2008). A recent study of

p63 nullmice led to the proposal that Bar-

rett-like metaplasia may arise from a pop-

ulation of Car4+/Krt7+ embryonic progen-

itors at the squamocolumnar junction

(Wang et al., 2011). However, each of

these alternative hypotheses, although

reasonable, is also limited to date by the

absence of dynamic lineage tracing and

the sort of mechanistic underpinnings

provided by our model.

Notch signaling appears important in

the regulation of stem cell differentiation,

and our data suggest that Dll1 is themajor

ligand inducing activated Notch signaling

in BE, whereas Jagged2 may acts as an

inhibitor, similar to amodel of antagonism

between different Notch ligands sug-

gested previously (Benedito et al., 2009).

In the cardia, DII1 was expressed at the

bottom of the crypts adjacent to the loca-

tion of Lgr5 cells. Notch activation in

Lgr5+ cells has been shown to correlate with lineage tracing at

the SCJ at the cardia (Kim and Shivdasani, 2011), consistent

with our hypothesis that Lgr5 cells from the gastric cardia

migrate into the distal esophagus to give rise to BE tissue with

increasedNotch activation and Lgr5 expression.With the expan-

sion of progenitor cells in BE, we observe a similar expansion of

DII1+ cells immediately adjacent to Notch expressing cells within

themetaplastic lineage. The strong correlation betweenDII1 with

the progenitor cell zone and proliferation, and Jagged2 with

postmitotic, differentiated cells, suggests a potential mechanism

for modulation of progenitor cell expansion and differentiation

through Notch signaling. In this model, DII1 promotes progenitor
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cell maintenance and proliferation, and Jagged2 inhibits prolifer-

ation and promotes differentiation, both a consequence of intra-

epithelial crosstalk between progenitor cells and their progeny.

We would further hypothesize, that the development of IM

occurs in a low Notch signaling environment, whereas mainte-

nance of the CLE phenotype and progression to dysplasia

occurs in a high Notch signaling environment.

Taken together, our data strongly suggest that BE arises from

a gastric cardia lineage, as originally suggested (Hamilton and

Yardley, 1977). Indeed, it has been difficult to distinguish at the

histopathological level between so-called esophagogastric

‘‘junctional tumors’’ that appear localized to the cardia and

EAC, clearly present in the esophagus. The fact that BE always

begins precisely at the SCJ has never otherwise been explained,

and it now seems clear that special consideration should be

given to ‘‘carditis,’’ inflammation of the gastric cardia that may

represent a precursor lesion of BE and EAC.

EXPERIMENTAL PROCEDURES

For a detailed description of all methods see Supplemental Experimental

Procedures.

Mice

All mice studies and breeding were carried out under the approval of Institu-

tional Animal Care and Use Committee of Columbia University. Human IL-1b

transgenic mice were generated by targeting expression of hIL-1b to

the esophagus using the Epstein-Bar virus promoter. Mice were placed on

drinking water containing bile acids (0.3%DCA, pH 7.0) at the age of 3months.

Nine-month-old L2-IL-1b mice were subjected to a 5-day treatment regimen

with the GSI (DBZ, 30 mmol/kg). Lineage tracing studies were performed

with Lgr5-CreTM-IRES-GFP mice crossed to Rosa26R-LacZ reporter and

L2-IL-1b mice. Tamoxifen (6 mg) was given at the age of 6–8 weeks prior to

administration of BA.

Human Study

Esophageal tissue was obtained from 46 patients with BE, with and without

dysplasia. Biopsies were taken for clinical and research purposes. This study

was approved by the Columbia University Institutional Review Board and

informed consent was obtained from all patients.

ACCESSION NUMBERS

Micro array information were deposited at the Gene Expression Omnibus

database (http://www.ncbi.nlm.nih.gov/geo/) with the accession number

GSE24931.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, three tables, Supplemental

Experimental Procedures, and five movies and can be found with this article

online at doi:10.1016/j.ccr.2011.12.004.
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