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Abstract 

In an effort to expand the histone code, we examine a novel site of methylation on lysine 43 

of histone H2B. In mouse embryonic stem cells (ESCs), KDM5b acts as the lysine 

demethylase for H2BK43me2, diminishing this histone mark as cells differentiate. We utilize 

a synthetic peptide mimetic corresponding to amino acids 37-49 of histone H2B in order to 

sterically inactivate KDM5b enzyme. The addition of inhibitor peptide into culture enhanced 

stem cell differentiation, upregulating cell cycle and neural-specific markers while 

downregulating the expression of pluripotency genes. Global gene analysis patterns of 

peptide-treated ESCs were representative of differentiated cell populations. Applying a novel 

inhibition method, we reveal an accelerated rate of stem cell differentiation through the 

upregulation of KDM5b targets. Our investigation serves to elucidate the role of histone 

H2BK43 methylation in an epigenetically regulated model of development. 

 

Keywords 

Mouse embryonic stem cells, epigenetics, lysine methylation, cell differentiation, 

development, peptide inhibition, H2B histone, KDM5b, chromatin immunoprecipitation  
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Chapter 1  

1 Literature Review 
 

1.1 Embryonic stem cell model  

The ability of a single-cell zygote to generate all specialized cell types of an organism 

introduces the remarkable potential of embryonic stem cells. At the pre-implantation 

blastocyst stage of development, there exists two cell lineages. A layer of epithelial cells 

form the trophectoterderm, a lineage contributing to the fetal placenta (Tanaka et al 1998). 

Encapsulated in the trophectoderm is the pluripotent inner cell mass (ICM), an aggregate of 

cells capable of forming any differentiated cell type of the developed organism. The inner 

cell mass progresses into three separate layers, the ectoderm, mesoderm, and endoderm. Cells 

of the outer later form structures of the ectoderm lineage, including skin, hair, tooth enamel, 

and the nervous system. The inner layer, the endoderm, gives rise to internal organs such as 

the heart, lungs, and stomach. Between these layers is the mesoderm, which will generate 

muscle, bones, connective tissues, kidneys, and the circulatory system (Kessler and Melton 

1994, Martin 1981). 

The pluripotent properties of cells in the mouse ICM have been successfully 

maintained in vitro as cultures of embryonic stem cells (ESCs) (Evans and Kauffman 1981). 

These cells retain their self-renewing capabilities when leukemia inhibitory factor (LIF) is 

introduced into the media, allowing for feeder-independent proliferation (Williams et al 

1988). In relevance to our study, ESCs can differentiate into neurons with the removal of LIF 

and the aggregation of cells on nonadherent plates. When aggregates are transferred back to 

adherent plates, neural outgrowths form and differentiated cells can continue to propagate. 

The successful culture of ESCs has provided a suitable model to investigate how mammals 

develop in utero, and has also introduced possibilities of cell replacement therapy and tissue 

regeneration. Not only have ESCs contributed to our understanding of developmental 

disorders, stem cell therapy has further been implicated in cardiac repair, Parkinson’s 

disease, diabetes, and in the treatment of cancer (Thomson et al 1998).  
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1.2 Maintenance of pluripotency 

Takahashi and Yamanaka in 2006 revealed the reprogramming of adult cells into an 

embryonic-like state. A set of four factors introduced into mouse fibroblasts reverted the 

adult cells into an induced pluripotent stem (iPS) state. iPS cells expressing Oct4, Sox2, c-

Myc, and Klf4 displayed stem cell markers, were morphologically identical to ES cells, and 

contributed to mouse embryonic development. iPS cells provide a promising outlook for 

regenerative therapy, circumventing the issue of tissue rejection following transplantation in 

patients.  

 Many factors have been characterized in embryonic stem cells, perhaps the most well 

known being Oct4. Mammalian POU transcription factor Oct4 is expressed only in early 

embryos and germ cells, and is imperative for the maintenance of self-renewal (Nichols et al 

1998). In the mouse blastocyst, Oct4 expression is present in the ICM but not in the 

trophectoderm (Palmieri et al 1994). In vitro, Oct4 is expressed in ESCs, as well as 

embryonal carcinoma and embryonic germ cells (Okamoto et al 1990, Rosner et al 1990). 

Reduction of Oct4 expression in mouse embryos promoted differentiation of ICM cells into 

trophectoderm, while increasing expression promoted endoderm differentiation (Niwa et al 

2000). As a master regulator of pluripotency, Oct4 is under constant control to ensure the 

correct levels of developmental factors and the proper growth of the embryo. Oct4 regulates 

a variety of other genes by direct activation or suppression, or through dimerization with 

other factors (Pan et al 2002, Pesce and Scholer 2001).  Oct4 transrepression of human 

chorionic gonadotropin (hCG) genes may be the first step toward trophectoderm lineage (Liu 

and Roberts 1996). Oct4 regulation is further evident in binding with the zinc-finger 

transcription factor Rex-1, and in the activation of fibroblast growth factor FGF4 through 

interaction with Sox-2 (Ben-shun et al 1998, Curatola and Basilico 1990).  

While Takahashi and Yamanaka’s iPS cells were most successful when all 4 factors 

were introduced, it was subsequently shown that c-Myc and Klf4 were dispensable 

(Nakagawa et al 2008). However, studies indicate that Oct4 and Sox2 are necessary for the 

maintenance of pluripotency in human and mouse stem cells (Huangfu et al 2008). In a 

separate study, Oct4 and Sox2 induced pluripotency in human somatic cells in conjunction 

with stem cell factors Nanog and Lin28 (Yu et al 2007). Oct4 and Sox2 are appear to play 
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important roles in stem cell maintenance, while Oct4 and Nanog have been recognized to 

interact as masters of stem cell transcription. The omeodomain protein Nanog is expressed in 

pluripotent cells and works to maintain self-renewal through suppression of cell 

differentiation (Torres and Watt 2008). Each of these stem cell factors work collaboratively 

to ensure a precise state of transcriptional regulation. Oct4, Sox2 and Nanog regulate many 

of the same target genes and are found to co-localize at these regions.(Luo et al 2008). With 

their binding sites in close proximity, stem cell factors form a self-reinforcing network that 

promotes expression of renewal genes while repressing genes involved in differentiation. 

Such stringent orchestration of pluripotency enables ES cells to perpetuate stem cell qualities 

and maintain the integrity of the developing embryo. 

 

1.3 Cell cycle control in cancer and development 

Most cells in the body reside in an out-of-cycle state, while a minority are actively 

proliferating. Cells in active cycling are located primarily within self-renewing tissues such 

as epithelia and bone marrow. The majority of cells have irreversibly withdrawn from the 

division cycle into either a terminally differentiated lineage or into quiescent G0 state 

(Williams and Stoeber 2011). Progression through each phase of the cell cycle relies on the 

mechanisms of cyclin-dependent kinases (CDKs) to ensure the correct transition of events. In 

an occurrence of aberrance such as DNA damage, CDK inhibitors are able to temporarily 

halt progression so that the cell cycle system can be repaired. In tumorigenesis, deregulation 

of the cell cycle machinery occurs, resulting in uncontrolled proliferation and a malignant 

phenotype. The invasive growth of cells characteristic in cancers is linked to a reduction in 

sensitivity to signals that control the cell cycle. Normal signaling mechanisms allow cells to 

respond and carry out events such as migration, differentiation, or apoptosis (Collins et al 

1997). The onset of cancer may result from the presence of oncogenes that promote 

proliferation factors, or from the mutations of tumor suppressor genes that regulate cell cycle 

progression (Aaronson 1991, Weinberg 1991). It is established that several cancers 

accompany the mutation of retinoblastoma (Rb) protein (Horowitz et al 1990). Rb is 

normally found in an underphosophrylated state preceeding G1 phase until checkpoints allow 

for phosphorylation and functional inactivation (Weinberg 1995). Thus, conditions that 
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favour Rb phosphorylation support cell proliferation through the activity of E2F genes 

(Figure 1.1). It is no surprise that a mutation in Rb results in a loss of proliferative control 

and the onset of a malignant phenotype.  

In order for cells to undergo arrest and terminally differentiate, it is necessary to 

block the cell cycle either by downregulating cyclins or by activating CDK inhibitors. For 

example, mice lacking the CDK inhibitors p21 and p27kip1 are unable to form many cell 

types during embryonic development, a direct result of failure to exit cell cycle (Zhang et al 

1999). Inhibition of cyclins can promote differentiation through the action of Rb and the 

basic helix-loop-helix (bHLH) transcriptional activation of lineage-associated genes (Figure 

1.1). Certain factors involved in cell cycle withdrawal often carry dual roles in 

differentiation and cancer. Early growth response protein 1 (Egr1) is induced immediately 

during differentiation and increases in expression as cells terminate into cardiac and neural 

lineages (Sukhatme et al 1988, Lanoix et al 1998). Its role in cell cycle includes responding 

to stress signals, regulating proliferation, and mediating apoptosis (Liu et al 1998). Egr1 also 

performs paradoxical functions in tumor suppression as well as progression, and has become 

a relevant target for cancer therapy (Gitenay et al 2010).  This factor is one of many that 

provide a link in cell cycle proliferation versus differentiation. Many effectors that are 

involved with cell cycle control and lineage determination are also implicated in cancer 

studies due to improper regulation of proliferation. In understanding normal and aberrant 

checkpoint control, studies continue to reveal multifaceted roles for factors involved in 

development. 



5 

 

Figure 1.1 Cell cycle control genes regulate proliferation versus differentiation 

Prior to each mitotic division, cells must undergo a series of checkpoints governed by 

cyclins and CDKs. Through this process, ESCs can then decide to progress into cell 

cycle and continue to proliferate, or exit the cycle and begin transcription of 

differentiation genes. Several cancers arise from a mutation of retinoblastoma (Rb), a 

pivotal regulator of differentiation and proliferation. Phosphorylation inactivates Rb 

and promotes cell cycle progression through the activation of E2Fs; a mutation in Rb 

supports the loss of proliferative control. When conditions allow for cell cycle exit, 

Rb promotes differentiation by inactivating E2F genes and at the same time, by 

relieving inhibition of bHLH transcription factors that allow expression of lineage-

specific genes.  
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1.4 Epigenetic gene regulation 

The last decade of genetic research has shifted focus to the role of epigenetic mechanisms in 

governing cell fate decisions. Since all specialized cells of an organism arise from a single-

cell zygote, variation in gene expression is attributed to differences at the epigenetic level. 

Wu and Morris (2001) describe epigenetics as change in heritable gene function that does not 

entail a change in the primary DNA sequence. DNA methylation is essential for embryonic 

development and plays a role in gene expression, X chromosome inactivation, genomic 

imprinting, silencing retroviruses, and has also been implicated in the progression of cancers 

(Jahner et al 1982, Jones and Laird 1999). The first wave of DNA demethylation occurs 

during preimplantation and serves to eliminate much of the inherited parental methylation 

pattern. Following implantation, the embryo then experiences de novo methylation, 

establishing the new embryonic methylation pattern (Monk et al 1987). The DNA 

methyltransferase activity of early embryos is attributed to members of the Dnmt2 and 

Dnmt3 families; subset genes Dnmt3a and Dnmt3b are highly expressed in undifferentiated 

ES cells and are required for the genome-wide de novo methylation essential for mammalian 

development (Okano et al 1998). High GC content areas called CpG islands are often found 

in promoter regions of tissue-specific genes and are differentially methylated to create 

specific methylation profiles for each tissue type (Shiota et al 2002). Hattori et al in 2004 

demonstrated that Dnmt3a and Dnmt3b are required for DNA methylation at these tissue-

specific regions and are important in the maintenance and de novo methylation of CpG 

islands in ES cells.  

While epigenetics encompasses the study of DNA methylation, much study focuses 

on the diversity of covalent histone modifications. In the nucleus, histones H2A, H2B, H3, 

and H4 associate with histone H1 and linker DNA, assembling into high order chromatin 

(Luo and Dean 1999). Such tight packaging of chromatin consequently inhibits access of 

DNA-binding proteins to promoter regions (Suman et al 1994). However, chromatin 

structure can undergo remodeling via the activity of post-translational modifications such as 

ubiquitination, acetylation, methylation, or phosphorylation, collectively forming the 

“histone code” (Davie 1998). These enzyme-specific modifications occur on amino acid 

residues exposed on histone tails, stimulating chromatin structural changes and inducing 
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repression or activation of target genes. Almost all of the histone modifications have been 

shown to be reversible; their implementation and removal contribute to many processes 

including replication, repair, recombination, transcription and RNA processing.  

 

1.5 The Histone Code 

Of the known post-translational modifications, histone acetylation has been the most studied. 

Acetylation is a reversible mark mediated by acetyltransferases (HATs) and 

deacetyltransferases (HDACs), transferring an acetyl group to the N-terminal tails of histone 

lysine groups. These post-translation modifications play multiple roles in transcriptional 

regulation during cellular processes, supporting the recruitment of transcription factors and 

RNA polymerases to gene promoter regions (Struhl 1998). The presence of acetylated lysine 

alters chromatin structure toward a relaxed state and allows for the binding of transcriptional 

activators or repressors. On the other hand, deacetylation supports gene silencing and a more 

restricted state of chromatin (Deckert and Struhl 2001). 

Another actively studied modification focuses on phosphorylation of residues in 

histones H1 and H3. In particular, phosphorylation of Histone 3 Serine 10 emerged as an 

important mark in transcriptional activation as well in chromosomal condensation during 

mitosis (Cheung et al 2000). Furthermore, histone phosphorylation has also been implicated 

in the induction of early mammalian genes such as the c-Fos gene (Mahadevan et al 1991). 

Other histone modifications that are less studied include ubiquitination, sumoylation, 

and methylation. The two types of histone methylation occur on either arginine or lysine 

residues. Arginine methylation is involved in gene activation, RNA metabolism, and DNA 

damage repair (Bedford and Richard 2005). For the purpose of our investigation, we focus 

our study on the methylation of histone lysine residues. Five lysines on histone H3 (K4, K9, 

K27, K36 and K79) as well as one lysine on histone H4 (K20) have demonstrated 

methylation via specific lysine-targeted enzymes (Sims et al 2003). Continual effort in 

expanding the histone code will provide new insights into chromatin remodeling and the role 

of post-translational modifications in human development and disease. 
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1.6 Lysine methylation and chromatin remodeling   

Histones can be methylated on their arginine or lysine residues through the action of a lysine 

methyltransferase (KMT). Histone lysine methylation can occur in mono-, di-, or 

trimethylated states and are catalyzed either by the same enzyme or a set of different 

enzymes. The reaction can either result in active transcription by RNA polymerase II or 

transcriptional repression through heterochromatization (Shilatifard 2008). For example, 

Histone H3 Lysine 4 methylation is a hallmark of actively transcribed genes conserved in a 

variety of organisms. This site is subject to mono-, di-, and trimethylation via the COMPASS 

methylase complex, which includes Set1 lysine methyltransferase (Schneider et al 2005). 

Although the function of H3K4 me1 and me2 marks remain elusive, H3K4me3 is known to 

activate transcriptional initiation, elongation, and RNA processing in higher eukaryotes. 

Similarly, the function of H3K36 methylation has also been elucidated as a mark of active 

chromatin. In higher eukaryotes, it is believed that the three methylation events of H3K36 are 

catalyzed by separate mono-, di-, and trimethylases (Lee and Shilatifard, 2007). The SET 

domain-containing trimethylase Set2 interacts with the large subunit of RNA polymerase II, 

again stimulating active gene transcription (Kizer et al 2005).  

On the contrary, H3K27 methylation is an established mark of gene repression and is 

mediated by EZH2, a component of the Polycomb PRC2 complex. Originally identified as a 

Hox gene repressor, the PRC2 complex is also involved in X chromosome inactivation, cell 

cycle regulation, cancer, and stem cell identity (Tomek and Wysocka 2007). The presence of 

H3K27me3 recruits and stabilizes Polycomb PRC1 complex on chromatin, subsequently 

resulting in gene silencing (Schuettengruber et al 2007). An additional mark of histone 

repression occurs on Histone 3 Lysine 9 and represents a hallmark of constitutive 

heterochromatin. The associated lysine methyltransferase G9a recognizes Histone 3 Lysine 9 

through its SET domain, resulting in trimylation of the histone and recruitment of 

heterochromatin protein 1 (Krishnan et al 2011). This silencing mechanism is evident on 

many genes such as Oct4, Nanog, and Dnmt3L, all closely involved in maintaining the ESC 

phenotype (Epsztejn-Litman et al 2008). The G9a-mediated heterochromatization of Oct4 

confers a condensed “closed” state of genetic material involving the association of several 
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chromatin factors (Melcer and Meshorer 2010). Such key genes are regulated at the 

epigenetic level to reiterate the importance of controlled expression levels in development.  

An interesting revelation of chromatin dynamics involved the presence of both active and 

repressive histone marks on the promoters of both mouse and human embryonic stem cells. It 

was revealed through genomic analyses that the presence of H3K27me3 repressed expression 

even at target genes containing high levels of H3K4me3, a mark of active transcription. 

Regions containing both active and repressive marks have been termed “bivalent domains” 

and are often found in ES cells at promoters of genes encoding key developmental 

transcription factors (Bernstein et al 2007). The repressive H3K27me3 mark is considered 

dominant over the activating H3K4me3 mark, maintaining genes in a repressed mode. 

However, their promoters are bound by RNA Polymerase II and are held in a poised state in 

preparation for transcriptional elongation once the H3K27me3 mark dissociates (Herz et al 

2009). Bernstein et al in 2006 revealed that about 50% of bivalent domains in ES cells 

coincide with the binding sites of Nanog, Oct4, or Sox2. Many of the downstream target 

genes bivalently colocalized were also in a repressed state, suggesting that Nanog, Oct4, and 

Sox2 maintain these genes in a poised state. The discovery of bivalent domains formed an 

additional layer of transcriptional control, contributing to our knowledge the role of 

epigenetic regulation in stem cell dynamics.  

 

1.7 Histone lysine demethylases 

While lysine methyltransferases are responsible for the addition of methyl groups to histone 

tails, the reverse process of removing these marks demands the action of an opposing 

enzyme. It was not until 2004 when Shi et al identified Lysine Specific Demethylase 1 

(LSD1/KDM1A) as the enzyme demethylating H3K4me1/2 in fission yeast.  The mammalian 

counterpart was isolated as part of a complex mediated by repressor element 1-silencing 

transcription (REST), a factor associated with regulating neuronal genes. Since methylation 

of H3K4 is a gene-activating mark, KDM1A contributes to the transcriptional repression of 

neuronal genes through the removal of this modification (Fomeris et al 2009). The function 

of KDM1A repression was then extrapolated to other events such as cell differentiation and 

tumorigenesis (Saleque et al 2007, Wang et al 2007).  
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There are now two known classes of histone demethylases. Those of the KDM1 

family function as FAD-dependent amine oxidases and only act on mono- and dimethylated 

lysines (Fomeris et al 2009). The Jumonji C (JmjC) domain-containing histone demethylases 

(JHDMs) are Fe(II) and 2-oxoglutarate-dependent enzymes and are able to act on all three 

degrees of methylation (Hou and Yu 2010). The Jumonji (jmj) gene was originally identified 

in a mouse gene trap approach, named for the morphology of abnormal “cruciform” shape of 

neural plates in jmj mutant mice (Takeuchi et al 1995). Jmj is highly expressed in mouse and 

human embryonic stem cells and jumonji family proteins are involved in transcription and 

chromatin function. The JmjC histone demethylases are categorized into several groups 

according to sequence similarities and different groups target specific histone lysines at 

various states of methylation (Mosammaparast and Shi 2010). Tsukada et al (2006) purified 

the founding member of JHDMs, KDM2A/JHDM1, and identified the enzyme as an 

H3K36me1/2 demethylase. Since this discovery, thirty JmjC domain-containing proteins 

have been identified in mammals and are clustered into seven subfamilies: JHDM1, JHDM2, 

JHDM3/JMJD2, JARID, PHF2/PHF8, UTX/UTY, and JmjC domain only (Klose et al 2006).  

The JARID family of proteins encompasses the two subgroups JARID1 and JARID2. 

While we have mentioned JmjC-containing JUMONJI/JARID2 and its role in mouse 

organogenesis, JARID1 has a much broader scope of function. JARID1 family proteins 

contain five evolutionarily conserved domains: JmjN, ARID, JmjC, PHD, and a zinc-finger 

domain (Figure 1.2A). The PHD domain is capable of binding methylated residues and can 

recruit other proteins such as HDACs to the reaction site (Chi et al 2010). As a lysine 

demethylase, JmjC domain forms the enzymatically-active pocket by folding into a structure 

of eight !-sheets. Residues within the JmjC domain bind the Fe(II) cofactor and "-

ketoglutarate, producing a highly reactive oxoferryl species that hydroxlates the methylation 

site and eliminates the methyl group as formaldehylde (Clifton et al 2005).  

There are four JARID1 members in mammals: JARID1A/RBP2, 

JARID1B/KDM5b/PLU1, JARID1C/SMCX, and JARID1D/SMCY. The alternate 

nomenclature for each of the members demonstrates the various roles JARID proteins play; 

for example, JARID1A was discovered as a retinoblastoma (Rb)-binding protein and thus 

contributes to cell cycle control (Defeo-Jones et al 1991). Our interest lies primarily in the 

function of JARID1B, a multifaceted protein that is evolutionarily conserved among species 
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(Figure 1.2B). For the comprehension of our study, we will expand on its role as a lysine 

demethylase (KDM5b) as well as its regulation in cancer (PLU1). 
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Figure 1.2 Structural domains of PLU1/JARID1B/KDM5b 

The histone demethylase KDM5b is identified as a member of the JARID1 family of 

proteins. These proteins carry five domains including the JmjN, ARID, JmjC, PHD, 

and zinc-finger domains as described by Chi et al (2010) (A). The PHD domain is 

able to recruit HDACS, while it is the JmjC domain that forms the catalytic site 

through a Fe(II) cofactor. There exists four JARID1 members in mammals, and 

domains are evolutionarily conserved within several species (Wolfram|Alpha 2012) 

(B). 
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1.8 PLU1/JARID1B/KDM5b 

Overexpression of the c-ErbB2 receptor is evident in breast cancers and is affiliated with 

poor prognosis. In a treatment experiment inhibiting this receptor, Lu et al (1999) identified 

PLU1 as one of the primary genes that were downregulated. PLU1 is highly expressed in 

breast cancer cell lines and evident in 90% of breast cancer cases; however, expression is 

restricted in normal adult tissues with the exception of the testis (Lu et al 1999, Barrett et al 

2002). In 2006, Yamane et al recognized PLU1 as a lysine demethylase targeting H3K4me3, 

thus the adapted name KDM5b. The KDM5b-mediated demethylation of H3K4me3 acts to 

inhibit many tumor suppressor genes, including the breast cancer DNA repair gene BRCA1. 

The study revealed that downregulating KDM5b suppressed mammary tumor growth in a 

mouse cancer model. The protein was additionally identified as an oncogene for prostate, 

lung, bladder, and skin cancers (Hayami et al 2010, Xiang et al 2007). Findings also indicate 

that KDM5b demethylation of H3K4 at the KAT5 promoter interferes with regulatory control 

and enhances the invasiveness of cancer cells (Yoshida et al 2011).  Downregulating KDM5b 

in cancer cell lines also inhibited the transcription factors E2F1 and E2F2, two proteins 

involved with cell cycle control, proliferation, and tumor suppression. Since the 

downregulation of KDM5b mitigated tumor progression and cell proliferation, the lysine 

demethylase would be an ideal candidate for drug targeting therapy in many cancers.  

Although initial studies of KDM5b involved tumorigenesis, its roles in cancer cell 

growth and control are also implicated in the developmental model. KDM5b knockout mice 

showed embryonic lethality and arrested at E4.5, suggesting that KDM5b is required for 

implantation and later stages of development (Catchpole et al 2011). This finding is in 

contrast with JARID1A knockout embryos which were viable and fertile. No other members 

of the JARID proteins were able to compensate for the loss of KDM5b expression. In a yeast 

two-hybrid screen, KDM5b was shown to corepress two factors critical for mouse 

development: BF-1, which regulates neural development, and PAX9, a factor that regulates 

neural crest development (Tan et al 2003). In 2011, Schmitz et al confirmed the role of 

KDM5b in a stem cell model, demonstrating that the demethylation of H3K4me3 occurs 

predominately at genes encoding developmental regulators. Nearly all gene promoters in 

ESCs are bound by H3K4me3, many also marked by the repressive H3K27me3 in a state of 
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bivalency. In the transition from self-renewal to differentiation, levels of H3K4me3 decrease 

and the resolution of bivalent domains occurs (Bernstein et al 2006). Depletion of KDM5b 

lead to global increase of H3K4me3, failed silencing of lineage genes and impaired neural 

differentiation of ESCs (Schmitz et al 2011). This verified that KDM5b plays an imperative 

role in the differentiation of cells and the development of the embryo.  

Although Schmitz et al proclaim that the demethylase is dispensable for ESC self-

renewal, other studies reveal the function of KDM5b in activation of pluripotent genes. Xie 

et al (2011) reveal KDM5b as a downstream target of Nanog and Oct4, occupying 

transcribed regions of genes involved with self-renewal. While verifying the function of 

KDM5b in demethylating H3K4me3 in ESCs, Xie et al also confirmed binding to the 

activating mark H3K36me3. Knockdown of KDM5b reduced pluripotency-associated genes 

while increasing expression of lineage-specific genes, resulting in differentiation and the loss 

of self-renewal. A decrease in ESC proliferation was demonstrated in conjunction with a 

higher percentage of cells in G1 phase of mitosis. Consistent with this investigation, Dey et al 

(2008) revealed the function of KDM5b in blocking cell cycle exit when ESCs decide 

between proliferation and differentiation. The reduced expression was associated with the 

loss of H3K4me3 at the promoters of cell cycle genes. Furthermore, constitutive KDM5b in 

ESCs promoted the expression of progenitor markers, retained Oct4 and Nanog, and cells 

were unable to properly differentiate into neural lineage. Thus, Dey et al reiterate the role of 

KDM5b in stem cell proliferation, and in propagating ESCs in an uncommitted and self-

renewing state. Our investigation strives to elucidate the consequences of KDM5b 

inactivation in a stem cell model, and also to examine the expression of target genes as a 

result of demethylase inhibition.  

 

1.9 Histone H2B 

While most of the work involving epigenetics and post-translational modification focuses on 

histones H3 and H4, very little is known about the transcriptional roles of histones H2A and 

H2B. Kao et al in 2004 established the ubiquitination of histone H2B in Saccharomyces 

cerevisiae, the only histone species known to be ubiquitinated in yeast (Robzyk et al 2000). 

Subsequent work identified monoubiquitination on H2B Lysine 123, a mark involved in 
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chromatin compaction, chromosomal segregation, and the establishment of other histone 

marks such as H3K4me3 and H3K79me3 (Latham et al 2011, Wang et al 2011, Schulze et al 

2011). In Neurospora crassa, H2B histone was revealed as a target for HDACs and a 

regulatory component of DNA methylation as well as heterochromatin formation (Smith et al 

2010). In Drosophila melanogaster, Maile et al (2004) uncovered the phosphorylation of 

H2B Serine 33 at promoters of cell cycle genes, establishing a function in the activation of 

cell progression and development.  

Histone H2B lysine modifications remained unknown until the identification of 

Lysine 37 as a site of methylation. In a top-down mass spectrometry identifying post-

translational modifications, Gardner et al (2011) reported dimethylation at H2BK37 in 

Saccharomyces cerevisiae. The group additionally generated an antibody specific to this 

mark and confirmed its existence in yeast and in higher eukaryotes. However, a novel 

methyltransferase for this lysine remains unresolved, as well as the functional significance of 

H2BK37 methylation. Other methylation events reported at histone H3 include Lysine 122 in 

mice, as well as Lysine 5 in humans (Barski et al 2007, Wang et al 2008).  

 

1.10 H2BK43 demethylation via KDM5b 

Collaborators from our lab performed an MRM-MS experiment whereby KDM5b 

demethylase activity was examined with various methylated lysines. The technique revealed 

H2BK43 as a novel substrate for KDM5b. While both H2Bk43me2 and me3 were recognized 

substrates, maximal demethylation activity was observed on H2BK43me2 (Stalker et al 

2012). The presence of KDM5b is low in mouse ESCs but increases during neural 

differentiation until day 5 when it is again downregulated. This pattern implies an opposing 

trend in H2BK43me2 expression, where it is abundant in ESCs but becomes demethylated by 

KDM5b as cells differentiate. On day 5, cells demonstrate a sharp increase in H2BK43me2, 

concomitant with the decline observed in KDM5b expression. The dynamics of both 

H2BK43 and KDM5b over the course of neural specification illustrate their pertinent and 

time-sensitive roles during differentiation, a process that abandons cell cycle and pluripotent 

genes in order to adopt a terminal lineage. In our study, we characterize the downstream 
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effects of KDM5b obstruction during ESC differentiation, through the introduction of an 

H2BK43 inhibitor peptide.  

 

1.11 Applications of peptide mimetic 

Synthetic peptides have provided a mechanism of therapeutic targeting in a broad scope of 

disease models. Sitcht et al (2005) reported a 12-mer peptide that inhibits capsid particle 

assembly in infectious HIV-1. Another group utilized synthetic peptides derived from 

p21WAF1 sequence, an inhibitor of DNA replication in vitro. The peptides enabled 

researchers to deduce p21WAF1 as an inhibitor of PCNA, a factor contributing to DNA 

polymerase activity (Warbrick et al 1995). Furthermore, a cell-permeable peptide blocking 

NF-#! was able to ameliorate inflammation in the mouse model, encouraging a possible drug 

targeting therapy for the blockage of inflammatory response (May et al 2000). Inhibitor 

peptides have since been implicated in the biotechnology industry as possible research tools. 

For example, IMGENEX markets synthetic peptides as a decoy to block propagation of 

downstream signaling pathways. The company adds to a growing portfolio of inhibitors 

targeted for the manipulation of signal transduction.  

Vives et al (1997) were able to improve our prospects of peptide drug delivery with 

the introduction of a nuclear-localizing sequence. The amino acids 47-57 of HIV TAT 

correspond to the protein transduction domain, the region that enables the virus to infect cells 

through nuclear localization. Using a truncated and modified peptide sequence, Ho et al 

(2001) optimized the TAT protein transduction domain to form a strong amphipathic helix 

capable of conveying large molecules into the cell nucleus. For our study, we synthesized a 

25-amino acid peptide corresponding to regions 37-49 of histone H2B, and tagged with the 

modified TAT sequence at the N-terminal.  

It has been demonstrated that demethylation products are capable of inactivating the 

demethylase reaction through a negative feedback method. H3K4me0, a demethylated 

product of LSD1, has been shown to bind BHC80, a downstream effector of LSD1 and a 

component of the LSD1 complex. The recognition to H3K4me0 by BHC80 is specific to the 

monomethylated mark and the interaction inhibits LSD1 enzyme activity on its substrates, 
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such as H3K4me2 (Lan et al 2007). H3K4 demethylation can also be inhibited by targeting 

monoamine oxidases, a compound with close homology to LSD1 (Lee et al 2006). Our 

inhibitor peptide mimics the unmethylated mark of histone H2B, an end product of KDM5b 

demethylation. The inhibition of KDM5b thus suppresses its demethylase activity on 

substrates such as H2BK43 and H3K4 methylated lysines. 

 

1.12 Hypothesis and outline 

We hypothesize that an inhibition in KDM5b enzymatic activity affects target genes involved 

in development and upregulates neural differentiation of mouse embryonic stem cells. To 

investigate our hypothesis, we constructed a synthetic peptide corresponding to unmethylated 

amino acids 37-49 of H2BK43 with a nuclear-localizing TAT tag. In order to validate our 

peptide, we purified them using HPLC, verified them with mass spectroscopy, and confirmed 

the interaction of H2BK43me0 with KDM5b. Our peptides were introduced into mESC 

culture and cells were induced to differentiate following a neural lineage time-course. We 

assessed phenotypic changes in ESC following peptide addition and also expression patterns 

throughout differentiation. To study the downstream effects of this inhibition, we examined 

target genes of KDM5b and the enrichment of KDM5b substrates at lineage-associated 

genes. Our investigation uses an optimized inhibitor peptide to closely examine cell 

differentiation, a novel approach in studying histone post-translational modification 

dynamics in stem cells.  

 

1.13 Objectives 

1. Examine phenotypic changes in ESCs and during differentiation following 

introduction of inhibitor peptide  

2. Investigate transcriptional changes in pluripotent, cell cycle, and lineage-

associated genes when cells are treated with H2BK43me0 peptide 
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3. Characterize the interaction of our peptide with KDM5b and its effect on alternate 

substrates and downstream target genes 
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Chapter 2  

2 Histone lysine methylation in stem cell differentiation  
 

2.1 Introduction 

The emergence of epigenetic research has lead to our curiosity to solve “the histone code.” 

Genetic material within the cell nucleus is highly condensed with DNA wound tightly around 

associated proteins, or histones (Li 1975). In this state, only the histone tails of nucleosomes 

are accessible, and these sequences are subject to an array of post-translational modifications 

(Wu et al 1986). Of particular interest to us are histone lysine methylation states and their 

corresponding enzymes, lysine methyltransferases and demethylases (Varier and Timmers 

2011). Methylation can exist in mono-, di-, tri-, or unmethylated states, and each reaction can 

be facilitated by separate methylating or demethylating enzymes (Shilatifard 2008). The 

methylation status of lysines can infer activation or repression of transcription, and in many 

cases, promoter regions can carry both marks in a state of bivalency (Bernstein et al 2006). 

Occupancy of methylated lysines on certain developmental genes provides a highly stringent 

mechanism for developmental control, particularly in a bivalent state where genes are 

repressed but poised for timely activation (Herz et al 2009, Adamo et al 2011). Many histone 

lysines are involved with both differentiation and tumorigenesis due the role of target genes 

in cell cycle control. Regulation of cell cycle is required for cells to exit mitosis and accept a 

terminal lineage, as well as for the maintenance of normal proliferation (Phang-Lang et al 

1989, Collins et al 1997).  We focus our study on KDM5b, a known lysine demethylase 

characterized in developmental control. The enzyme is most recognized for its upregulation 

in several cancers; however, its demethylase activity has been mostly restricted to H3K4me3 

(Lu et al 1999, Xiang et al 2007). Most genes in stem cells are marked by H3K4me3 and are 

activated by this histone. KDM5b association with this activating mark ensures proper 

regulation of differentiation, and the depletion of KDM5b results in failed silencing of 

lineage-specific genes (Schmitz et al 2011). 

While we attempt to elucidate the functional relevance of each of the four histones, 

much speculation remains regarding Histones H2A and H2B. Previous work in Neurospora 
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crassa revealed an increase of H2BK43 dimethylation following treatment with HDAC 

inhibitors (Anderson et al 2010, Xiong et al 2010). We extrapolate the possibility of 

methylated H2B in eukaryotes through examination of the lysine mark in a stem cell model. 

Mouse ESCs follow a differentiation time-course upon LIF withdrawal, and express many of 

the pluripotent and lineage-specific factors observed in mammalian development (Tremml et 

al 2008). In a previous experiment, our group has identified H2BK43me2 as a novel target of 

KDM5b and thus we have included this lysine mark into the histone code. In normal ESCs, 

KDMb5 acts to demethylate H2BK43 during differentiation. The increase in KDM5b activity 

is accompanied by a decline in the appearance of H2BK43me2 until day 5 of differentiation 

(Stalker et al 2012). Our current study examines differentiation of ESCs following the 

treatment of cells with H2BK43 inhibitor peptide. The peptides we synthesized mimic the 

unmethylated lysine sequence of histone H2B and inhibit the demethylase activity of 

KDM5b. We attached a modified HIV TAT tag to our H2BK43 sequence in order to confer 

nuclear localizing properties to our peptides (Vives et al 1997, Ho et al 2001). Following 

purification and verification by MALDI-MS, we incubated our peptides in ESC culture and 

examined phenotypic changes and expression dynamics throughout the neural time-course. 

We hypothesized that our peptide would act as an end-product inhibitor of KDM5b and 

would thus out-compete affinity for alternate KDM5b substrates, including H3K4me3. The 

interaction of our unmethylated peptide with the lysine demethylase suggests improper 

regulation of downstream KDM5b targets such as cell cycle and differentiation genes. Our 

study aims to characterize the expression patterns of KDM5b-obstructed ESCs in order to 

elucidate the function of H2BK43 methylation in stem cell differentiation. This investigation 

will provide us with a better understanding of new lysine modifications in eukaryotes and 

their potential regulatory roles in embryonic development.  

 

2.2 Methods 

2.2.1 Cell culture  

E14Tg mouse embryonic stem cells (mESCs) were obtained from BayGenomics and 

maintained in ESC medium consisting of phenol red-free Dulbecco’s Modified Eagle’s 
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Medium (Gibco) supplemented with 2mM L-glutamine (Gibco), 2mM sodium pyruvate 

(Gibco), 0.1mM non-essential amino acid solution (NEAA) (Gibco), 0.1mM !-

mercaptoethanol (Sigma-Aldrich), 1000U/mL mouse recombinant leukemia inhibitory factor 

(LIF), and 10% fetal bovine serum (FBS) (Gibco). Recombinant LIF was purified from 

bacteria in our lab. Briefly, pGEX 2T LIF (EcoRI-EcoRI) plasmid was expanded in LB 

media to an OD of 1.2 and then induced with 0.1mM IPTG for 3 hours. Bacterial cultures 

were suspended in 12.5mL cold phosphate-buffered saline (PBS) with protease inhibitors 

before sonicating with Sonic Dismembrator Model 60 (Fisher Scientific) at medium setting 

for 10s on, 50s off for four cycles. Samples were then mixed in 1% Triton-X 100 and 

centrifuged 30min at10000g before incubation with 400µL of glutathione Sepharose slurry. 

rLIF was cleaved in 80U/mL thrombin overnight before confirmation on coomassie stained 

gel against BSA standard. ESC cultures were grown at 37°C in a humidified 5% CO2 

incubator and passaged every two days.  On alternating days, ESCs were trypsinized using 1 

x TripLE solution (Gibco) for 30 seconds at 37°C and replated onto 10cm feeder-free plates 

pre-coated with 0.1% gelatin (Sigma-Aldrich). 

 

2.2.2 Differentiation assay 

ESCs following a neural differentiation time-course were grown to 70-80% confluency (48 

hours after passage) and replaced with neurosphere media consisting of phenol red-free 

DMEM with 2mM L-glutamine, 2mM sodium pyruvate, 0.1mM NEAA, 0.1mM !-

mercaptoethanol, 1 x B-27 supplement (Gibco), and 1% FBS. At day 2, cells were 

mechanically separated from adherence by vigorous pipetting, before replating 1:2 onto 

10cm bacterial Petri dishes (VWR) in neural differentiation media (neurosphere media with 

5% FBS). On Day 4, neurospheres were replated 1:2 onto 10cm cell culture dishes coated in 

1% gelatin for the remainder of differentiation. Adherent aggregates were capable of 

propagation for an addition 5-10 days. Brightfield images were visualized using a Motic 

AE30/31 Inverted Microscope and captured using an Infinity2 camera and Infinity Campure 

Imaging Software. 
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2.2.3 Peptide synthesis 

We employed a method of Fmoc (N-(9-fluorenyl)methoxycarbonyl) peptide synthesis on 

TentaGel rink amide resin (Novabiochem) using a 433A Peptide Synthesizer (Applied 

Biosystems). Fmoc-amino acid derivatives were purchased from AnaSpec and elongation of 

peptide resin was carried out by 0.10mmol scale from C-terminal to N-terminal. After 

deprotection (50% trifluoacetic acid [TFA]/dichlormethane [DCM] [v/v]) of the Boc group 

of the first amino acid, the next Boc-amino acid was coupled (N,N’-

dicyclohexylcarbodiimide [DCC]/N-hydroxybenzotriazole [HOBt]). Methylated amino acids 

were manually coupled using Fmoc-protected OH-chloride lysines (AnaSpec.). Cleavage 

from the resin was achieved using TFA and triisopropylsilane (TIPS) and peptides were 

precipitated in cold ether. H2BK43 peptide corresponded to amino acids 37-49 of 

endogenous H2B sequence and tagged with a modified HIV TAT sequence at the N-terminal 

as described by Ho et al (2001). TAT peptide followed the sequence YARAAARQARAW; 

sequence for H2B peptides used were YARAAARQARAWYSIYVYKVLKQVH; H3K4 

peptides followed the sequence YARAAARQARAWARTKQTARKS; H3K9 was 

synthesized with the sequence YARAAARQARAWTKQTARKSTGGKA. Crude peptides 

were de-salted using Sephadex G-10 affinity chromatography beads in 5% acetic acid buffer 

through a 20mL packed column. Fractions were manually collected at 1min intervals 

between 6 and 14 minutes and analyzed by Envision 2012 Multilabel Reader (PerkinElmer) 

at 280nm. Samples were then vacuum centrifuged for 3h at 45°C using a Thermo UVS400 

speed vacuum (ThermoScientific). Dehydrated peptides were then dissolved in double 

distilled H2O and adjusted to neutral pH. Peptide solutions were introduced into cell culture 

at a concentration of 300µM and at 24h following cell passage.  

 

2.2.4 HPLC purification 

Crude peptides were purified by high performance liquid chromatography using a 1525 

Binary HPLC Pump (Waters) at a flow rate of 4.0mL/min using a gradient elution of 5% B at 

0-5min, 60% B at 35min, 100% B at 36min, 5% B at 45 min (solvent B was 90% [v/v] 

acetonitrile, 0.1% TFA, and solvent A was 0.1% TFA in water). UV detection was performed 

at 260nm and 280nm with a 2487 Dual $ Absorbance Detector (Waters), fractions were 
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collected using a Fraction Collector III (Waters), and then analyzed with Breeze software 

(Waters). Masses of collected samples were determined by matrix-assisted laser 

desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry (MS). Purified 

peptides were dehydrated under speed vacuum, dissolved in water at neutral pH and cultured 

at 300µM. 

 

2.2.5 MALDI-MS and Gene Ontology analysis 

Synthesized peptides were analyzed using MALDI-TOF MS performed on a Micromass 

M@LDI system (Waters) and analyzed using MassLynx software. 1µl of peptide solution 

was mixed on target with 1µl of 10µg/µl "CHCA ("-cyano-4-hydroxycinnamic acid) in 30/50 

(v/v) CH3CN/1% formic acid, via the dried droplet method. Mass spectrometric spectra were 

obtained at a laser power of 2700 kW/cm2. For Gene Ongoloy, total RNA was labeled and 

hybridized to GeneChip Mouse Gene 1.0 ST arrays (Affymetrix) according to the 

manufacturer’s protocol and scanned on a GeneChip Scanner 3000 7G (Affymetrix), with 

three replicates for each sample. Gene expression data was normalized by RMA (Robust 

Multichip Average) method using Affy, a bioconductor package in the R programming 

language. Differentially expressed genes were identified using a positive false discovery rate 

(FDR) of 0.01 and a fold-change of 2.0. Principal component analysis was performed on all 

experimental groups using Partek Genomics Suite software. Gene ontology of differentially 

expressed genes was performed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID). 

 

2.2.6 Immunocytochemistry 

Slides were coated in 0.1% gelatin for the adherence of ESCs and neurospheres. Cells were 

washed twice in PBS and fixed in 4% paraformaldehyde for 15min at room temperature. 

Samples were incubated with 0.2% Triton X-100 for 20min and blocked in 1% bovine serum 

albumin (BSA) for 1h at room temperature. All primary antibodies were incubated overnight 

at 4°C in the following dilutions: anti-Oct4 (Santa Cruz), 1:200; anti-TUJ-1 (Chemicon), 

1:500; anti-neural filament (Sigma-Aldrich) 1:200. Secondary antibodies (anti-mouse Alexa 
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488) were diluted 1:1000. Slides were stained in 1µg/ml Hoechst 33342 trihydrochloride 

trihydrate (Invitrogen) for 15min at room temperature in order to visualize nuclei. Images 

were taken with a Nikon Eclipse Ti microscope, Nikon Digital Sight DS QiMC camera, and 

NIS Elements V3.10 SP3 software.  

 

2.2.7 Immunoprecipitation and Western blot 

Constructs of H2B and rKDM5b, nucleosome preparations, and pull-down assays were 

reported previously (Dey et al 2008). Briefly, cells were washed in PBS and incubated in 

Buffer A (10mM Tris pH 7.9, 1.5mM MgCl2. 10mM KCL, 0.5mM dithiothreitol [DTT], 

0.2mM PMSF) for 5min at 4°C. Samples were centrifuged and supernatant collected in 

Buffer E (50mM Tris pH 7.9, 25% glycerol, 0.5mM EDTA, 5mM MgCl2, 0.5mM DTT, 

0.2mM PMSF). The samples were then sonicated for 12min (30s on and 30s off) using a 

Diagenode Bioruptor. Cells were pelleted and supernatant was used for nucleosome 

fractions. Pull-down experiments were accomplished using biotin-labeled peptides on 

nucleosome preparations containing the rKDM5b-6xHis constructs. For western blots, anti-

KDM5b antibody (1:2000 dilution, Bethyl labs) was used followed by HRP-conjugated 

secondary antibody against mouse IgG (1:1000 dilution, BioRad). Western blot was 

visualized using ECL from GE Healthcare.  

 

2.2.8 Quantitative RT-PCR 

RNA was prepared using Trizol reagent (Invitrogen) and reverse transcribed using qScript 

cDNA Synthesis Kit (Quanta BioSciences). Samples were analyzed by a C1000 Thermal 

Cycler and CFX384 Real-Time system (BioRad), using FastStart SYBR Green Master Mix 

(Roche), and analyzed on BioRad CFX Manager 2.0 software. Amplification was achieved 

by 40 cycles of 95°C for 10s followed by 55°C for 10s. Potential amplification of 

contaminating genomic DNA was ruled out using a negative control sample of mock cDNA 

preparations lacking reverse transcriptase. Melt curve analyses were performed following 

each PCR. qPCR was performed in biological triplicate experiments and values were 

expressed as percentages of the control per unit of GAPDH. Primers used include: GAPDH 
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forward (CAT GGC CTT CCG TGT TCC TA), GAPDH reverse (CCT GCT TCA CCA CCT 

TCT TGA); Egr1 forward (GGG AGA GGC AGG AAA GA CAT), Egr1 reverse (TCT 

GAG ATCT TCC ATC TGA CC); Oct4 forward (TTG GGC TAG AGA AGG ATG TG), 

Oct4 reverse (GGA AAA ACT GAG TAG AGT GTG); Nanog forward (CAG CCC TGA 

TTC TTC TAC CAG), Nanog reverse (GAT GCG TTC ACC AGA TAG CC); BRCA1 

forward (GCC TAC AGG GAA GCA CAA GGT TTA), BRCA1 reverse (CCA TTT GTA 

AGC TGC ATT CCC GTG); NF forward (CCA GGA AGA GCA GAC AGA GGT), NF 

reverse (GTT GGG AAT AGG GCT CAA TCT); neuroD2 forward (CGA AGA AAC GCA 

AGA TGA CC), neuroD2 reverse (GAA GTT GCC GTT GAG ACA GA); TRAIL forward 

(CAA CTC CGT CAG CTC GTT AGA AAG), TRAIL reverse (TTA GAC CAA CAA CTA 

TTT CTA GCA CT); Synapsin forward (CCG CCA GCA TGC CTT), Synapsin reverse 

(TGC AGC CCA ATC ACC AAA); Sox17 forward (GGA TGT AAA GGT GAA AGG 

CGA GGT), Sox17 reverse (ACA CCA TAA AGG CGT TCA TCG GCC).  

 

2.2.9 Chromatin immunoprecipitation (ChIP) 

ESCs were washed twice in PBS and crosslinked with 1% paraformaldehyde for 10min at 

37°C. Adherent cells were scraped, washed twice with ice cold PBS, resuspended in 200µL 

of SDS-lysis buffer containing protease inhibitor (1% SDS, 10mM EDTA, 50mM Tris pH 

8.1) and incubated for 10min at room temperature. Total volume was brought up to 2mL with 

ChIP dilution buffer (0.01% SDS, 1% Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl pH 

8.1, 167mM NaCl) and then sonicated with a Sonic Dismembrator at medium setting for 

12min (30s on and 30s off). Lysates were verified by DNA electrophoresis ethidium bromide 

stained agarose gel to ensure fragments of 500-1000bp in size. Samples were pre-cleared 

with 50µL of salmon sperm DNA (Sigma-Aldrich) protein G-agarose (50%) bead slurry 

(Roche) for 1h at 4°C on a Nutator. Salmon sperm DNA and protein G beads were removed 

by centrifugation at 3000rpm for 2min at 4°C. 100µL of supernatant was collected for input 

control and another 100µL for PCR standards. Aliquots were incubated overnight in 65°C 

water to decrosslink and were gene cleaned using Purelink PCR Purification Kit (Invitrogen). 

Remaining supernatant was divided equally among anti-KDM5b (1µL) antibody (Bethyl), 

anti-H2BK43me2 (3µL) antibody (AbCam), anti-H3K4me3 (3µL) antibody (Active Motif), 
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or IgG control (3µL) antibody (Santa Cruz) and incubated overnight at 4°C on a Nutator. 

Antibody-chromatin complexes were precipitated with 45µL of salmon sperm DNA/protein 

G beads, agitated for 2h at 4°C on a Nutator, and then centrifuged at 3000rpm for 4min at 

4°C. The beads were washed five times in 1 x low salt immune complex wash buffer (0.1% 

SDS, 1%Triton X-100, 2mM EDTA, 2 mM Tris-HCl pH 8.1, 15 mM NaCl) at 4°C for 5min, 

1 x high salt immune complex wash buffer (0.1% SDS, 1%Triton X-100, 2mM EDTA, 

20mM Tris-HCl pH 8.1, 500mM NaCl) at 4°C for 5min, 1x LiCl immune complex wash 

buffer (0.25M LiCl, 1% IGEPAL-CA630 [Sigma-Aldrich], 1% deoxycholic acid sodium salt 

[Sigma-Aldrich], 1mM EDTA, 10mM Tris pH 8.1) at 4°C for 5min, and 2 x Tris-EDTA 

buffer at room temperature for 5min. Chromatin was eluted from the antibody by using 100µl 

of 1% SDS, 0.1M NaHCO3 for 2h at room temperature. Beads were centrifuged at 3000rpm 

for 1min, and then supernatant was decrosslinked at 65°C overnight before purification using 

a Purelink PCR Purification Kit. Purified samples were analyzed by qPCR performed on 

C1000 Thermal Cycler and CFX384 Real-Time systems, and using FastStart SYBR Green 

Master Mix. Data was analyzed using BioRad CFX Manager 2.0 and represent percentages 

of DNA normalized by ChIP analyses to the amount of DNA found in input. These values 

were then compared between control and experimental samples. Values were expressed as a 

result of biological triplicates. ChIP-qPCR primers used were as followed: TFC3 forward 

(ACA GAG CCA CGC CCC TGT C), TCF3 reverse (TGC CTG GCC CGG CCC GGC G); 

Egr1 TSS forward (TTC ACG TCA CTC CGG GTC CTC C), Egr1 TSS reverse (AGT TCT 

GCG GCG CTG GGA TCT); Egr1 TATA forward (GCC GGT CCT TCC ATA TTA GG), 

Egr1 TATA reverse (CAA GTT CTG CGC GCT GG). 

 

2.2.10 Statistical analysis   

Results shown are presented as mean with standard deviation of the mean. Statistical analysis 

was performed using Microsoft Excel. All p-values were derived using student’s t-test using 

two-sample, equal variance, two-tailed setting. Experiments were performed in biological 

triplicates. Results were graphed using Prism GraphPad 5.0a software. 
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2.3 Results 

2.3.1 Synthetic peptides exhibited nuclear localization in ESCs 

We constructed a 25-amino acid length peptide mimicking unmethylated H2BK43, in order 

to investigate the properties of stem cell differentiation when KDM5b activity is disrupted. 

The inhibitor peptide corresponded to amino acids 37-49 of endogenous H2B and tagged 

with TAT PTD.  We confirmed the sequence of our peptide using MALDI-MS (Figure 

1.1A). Crude peptide samples were then separated into fractions using HPLC and confirmed 

peaks were collected for use in stem cell culture (Figure 1.1B). Our TAT peptides were then 

examined for effective nuclear translocation as described previously (Frankel and Pabo 1988, 

Vives et al 1997). The amino acid sequence we used ensured folding into an amphipathic 

alpha-helix secondary structure, where charged arginine residues line one face while 

hydrophobic residues line the opposite (Figure 2.1C). Incubation experiments confirmed 

effective nuclear transduction of TAT peptides in ESCs (Figure 2.1D). We introduced a 

TAT-fluorescein peptide into ESC culture and refreshed media the next day. With 

fluorescence microscopy, we successfully imaged the nuclear localization of TAT peptides in 

nearly 100% of stem cells after 24 hours of incubation  

 

2.3.2 ESCs formed neurospheres upon LIF withdrawal and 

aggregation 

Normally, ESCs form round colonies with clear margins, but can also take on a proliferative, 

adherent morphology (Figure 2.2A). Both morphologies are characteristic of pluripotent 

stem cells and stain positive for alkaline phosphatase. Upon LIF withdrawal, ESCs begin to 

aggregate while some cells experience necrosis and are lifted from culture. When further 

aggregated in nonadherent plates, cells form distinct, rounded neurospheres suspended in the 

culture media from days 3 to 4. Differentiation of peptide-treated cells followed the normal 

ESC timecourse (Figure 2.2B). Peptides were added to media 24h following passage and 

incubated in culture for 24 hours (day 0). At day 0 of differentiation, media was switched to 

LIF-free conditions.  
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Figure 2.1 H2BK43me0 inhibitor peptides were confirmed, purified, and nuclear-

localized in ESCs. 

Following synthesis of our 25-amino acid length sequence mimicking endogenous 

histone H2B, we verified the identity of our peptide using MALDI-MS (A). We 

performed HPLC on our crude sample and identified each peak in our purification 

(B). Our H2BK43me0 peptide was collected in fractions between 8.25 and 8.75 

minutes. Peptides were synthesized with a modified HIV TAT sequence at the N-

terminal. Secondary structure of TAT forms an alpha-helix where hydrophilic 

arginine residues are found on one side while hydrophobic amino acids are found on 

the other (C). The configuration of the alpha-helix allows for its amphipathic 

characteristics and enable nuclear localization of TAT-mediated peptides. A TAT-

fluorescein peptide was synthesized and incubated with ESCs at a concentration of 

0.5nM for 24 hours. Using fluorescence microscopy of FITC (green), a colony of 

ESCs was visualized to have nearly 100% nuclear uptake of the TAT peptide. Images 

were taken at 400x magnification. Cell nuclei were visualized with DAPI. 
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Figure 2.2 Mouse embryonic stem cells begin differentiating upon LIF withdrawal 

and form neurospheres when aggregated 

Mouse embryonic stem cells often form round colonies with defined edges, but can 

also adopt a spread out, proliferative morphology (A). Both ESC phenotypes are 

pluripotent and are positive for self-renewal markers as well as for alkaline 

phosphatase. Nearly 100% of cells in culture continually expressed alkaline 

phosphatase. On day 1 of differentiation when ESCs are serum-starved and cultured 

in the absence of LIF, cells start to aggregate spontaneously and many cells 

experience apoptosis. When cells are further aggregated on nonadherent plates, ESCs 

form round neurospheres. Images were obtained at 100x magnification. ESCs are 

differentiated following a neural time-course (B). LIF withdrawal occurs at day 0 and 

cells are aggregated on day 2 for 48 hours before plating on adherent cultures. When 

ESCs are treated, peptides are introduced into culture 24 hours following passage, 

incubated for 24 hours, and then removed with media change at day 0.  
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2.3.3 H2BK43 peptide promoted a neural phenotype in ESCs 

Following incubation of our nuclear-penetrant inhibitor peptide, we noticed remarkable 

phenotypic changes in ESCs within 24 hours of treatment. While TAT-treated control cells 

retained pluripotent morphology, cells treated with H2BK43me0 peptide exhibited early 

differentiation characteristics within hours of incubation such as the initial aggregation and 

lifting of ESCs from culture (Figure 2.3). This phenotype is representative of early 

differentiation when ESCs are LIF-deprived on day 0. After 24 hours of peptide treatment, 

cells have further aggregated and adopt characteristic neurosphere morphologies. Aggregates 

of neurospheres were also found suspended in the media on the same day. At 48 hours of 

treatment, suspended neurospheres begin to attach to plates and we begin to see neural 

outgrowths and the appearance of neurons. Cells treated with TAT were unaffected and 

appeared as ESCs for the duration of the experiment.  

 

2.3.4 Neural phenotype was specific to H2BK43me0 peptide 

treatment 

In a large scale screening of 88 peptides of variable lysine methylation states, we identified 

H2BK43me0 as one of few peptides capable of inducing morphological transformations. 

Surprisingly, ESCs incubated with H2BK43me3 peptides did not promote the neural 

phenotype seen in the unmethylated counterpart experiment (Figure 2.4). Furthermore, 

when cells were treated with H3K4me0 and H3K4me3 peptides, no neural differentiation 

was observed and cell phenotypes were analogous to that of TAT control cells. Similarly, 

when we treated ESCs for each methylation state of H3K9, no changes in stem cell 

morphology occurred. Our treatment assays demonstrated specific induction of neural 

phenotype in cells treated with H2BK43me0 inhibitor peptide. 
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Figure 2.3 Incubating ESCs with H2BK43me0 peptide induced a neural 

differentiation phenotype 

Within hours of peptide incubation, ESCs take on morphological changes and 

aggregate in culture. Treatment for 24 hours induced a neurosphere phenotype similar 

to embryoid bodies seen when ESCs were differentiated at day 3 of the neural time-

course. Several neurospheres spontaneously became nonadherent and were suspended 

in the culture media. After 48 hours of treatment, many of the neurospheres 

developed neural outgrowths and the appearance of neurons occurred. Contrarily, 

cells treated with TAT control peptide did not have any observable phenotypic 

changes in the 48-hour duration of the experiment. ESCs were treated at 300µM 

peptide solution in media and images were obtained at 100x magnification.  
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Figure 2.4 Treatment of H2BK43me3, H3K4 and H3K9 peptides did not promote any 

changes in ESC morphology 

When incubated with peptides corresponding to alternate methylation marks, cells 

retained ESC morphology and did not appear to differentiate. As an alternate to the 

nonmethylated lysine, we treated cells with the trimethylated counterpart 

H2BK43me3. Trimethylated peptide-treated ESCs appeared identical to cells treated 

with TAT control peptide. Similarly, when cells were treated with H3K4me0 and 

H3K9me0, ESCs did not aggregate in culture or demonstrate any onset of 

differentiation. Following treatment of H3K4me1,2,3 and H3K9me1,2,3 peptides, cell 

morphology was comparable to that of TAT-treated ESCs (data not shown). ESCs 

were treated 24 hours at 300µM peptide solution in media. Images were obtained at 

100x magnification. 
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2.3.5 H2BK43me0 treatment downregulated pluripotency factor 

Nanog and induced expression of neural markers 

Cells treated with H2BK43me0 peptide were assayed by qPCR for changes in pluripotent 

and lineage markers after 24 hours. While pluripotent marker Oct4 demonstrated 

insignificant changes in expression compared to TAT treatment, there was significant 

downregulation in expression of Nanog following peptide incubation (p<0.05) (Figure 

2.5A). Furthermore, when ESCs were treated with H3K43me0 peptide, we observed 

upregulation in lineage factor, neural differentiation factor 2 (neuroD2).  By comparison, 

TAT control cells did not amplify either NF or neuroD2 transcript. This confirmed our 

speculation that morphological changes in ESCs were a result of differentiation into the 

neural lineage. Cells cultured in peptide solution aggregated into neurospheres after 24 hours 

while ESCs normally do not form neurospheres until day 3 of the differentiation time-course, 

when cells are induced to aggregate. When we stained these cells, we observed positive 

expression of both NF and TUJ1 (Figure 2.5B). In contrast, ESCs treated with the TAT 

peptide did not express NF or TUJ1 after 48 hours.  Our experiment thus verifies the onset of 

neural differentiation in H2BK43me0-peptide treated cells but not in our control cultures.  

 

2.3.6 Peptide-treated ESCs upregulated expression of cell cycle 

gene Egr1  

Following observation of a differentiating phenotype in our peptide-treated cells, we 

speculated an increase in expression of lineage-associated genes. Since Egr1 has been 

previously identified as an early gene upregulated as ESCs exit cell cycle, we expected Egr1 

transcription to increase in our peptide treatment samples (Sukhatme et al 1988). We 

investigated the levels of Egr1 expression 48 hours following treatment, and also post-

treatment at days 1 and 3 during the differentiation time-course. When cells were incubated 

with H2BK43me0, there was a significant increase in Egr1 transcription at day 1 (p<0.05), 

but expression was downregulated afterwards (Figure 2.6A).  Since we previously did not 

observe morphological changes in ESCs treated with H2BK43me3 peptide, we also 

investigated the expression of differentiation genes in this treatment sample. 
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Figure 2.5 ESCs incubated with peptide inhibitor exhibited downreguation of Nanog 

and upregulation of neural markers 

While Oct4 remained constant between TAT and H2BK43me0 treatments, there was 

a significant downregulation in Nanog when ESCs were incubated 24 hours with 

inhibitor peptide (A). Further upregulation was observed in neural markers neural 

filament (NF) and neuroD2. GAPDH was used as a loading control. Asterisks denote 

statistical significance (p<0.05). Experiments were run in biological triplicate (n=3). 

Bar graphs represent normalized means ± standard deviation. When we stained day 1 

cells following treatment, H2BK43me0-induced neurospheres exhibited positive 

expression of NF and TUJ1 (green) (B). TAT cells remained pluripotent and did not 

stain positive for neural markers. Immunofluorescent images were taken at 400x and 

cell nuclei were visualized using DAPI (blue).
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There was a similar significant upregulation in Egr1 transcript at day 1 when cells were 

treated with the trimethylated peptide, and a comparable downregulation at day 3. Compared 

to TAT, cells treated with H2BK43me0 increased Egr1 expression on each day of 

differentiation that we examined, with significant upregulation (p<0.05) at days 0 and 1. 

Expression of pluripotent gene Oct4 were fairly constant from days 0 to 3 in our control 

cells, while a significant downregulation (p<0.05) was observed during differentiation of our 

H2BK43me0-treated cells However, following day 1 of peptide treatment, Oct4 did not 

continue downregulation`. Furthermore, cells treated with the trimethylated peptide 

counterpart did not downregulate Oct4 during differentiation. Interestingly, Oct4 was still 

expressed on day 3 of both nonmethylated and trimethylated peptide treatments (Figure 

2.6B). We stained cells treated in H2BK43me0 for 48 hours and while there was reduction 

of expression, Oct4 was still apparent in differentiated ESCs (Figure 2.6C). This compelled 

us to conclude Oct4 as a late fluctuating marker, continuing to regulate downstream genes as 

cells are differentiating.  

 

2.3.7 Peptide-induced differentiation upregulated BRCA1, Synapsin, 

and Sox17 but not TRAIL 

As a prospective KDM5b target, we examined tumor suppressor gene BRCA1 following 

treatment with the demethylase inhibitor peptide. BRCA1 was upregulated in expression 

when cells were incubated with the peptide; however, this change in expression was not 

observed in the treatment of H2BK43me3 (Figure 2.7A). We further examined peptide 

treatments of KDM5b alternate substrate H3K4. BRCA1 was significantly increased 

following treatment of H3K4me0 peptide (p<0.05). Similar patterns of upregulation were 

observed in the expression of both lineage-associated genes Synpasin and Sox17. (Figure 

2.7B). Our experiment demonstrates the upregulation of a KDM5b target gene when the 

demethylase is inhibited, and confirms peptide-induced cell specification through the 

increase of differentiation genes. In order to eliminate the possibility of cell stress-induced 

differentiation, we assayed for the expression of TNF-related apoptosis-inducing ligand 

(TRAIL).  No upregulation of TRAIL transcript was observed in any of our peptide treatment 
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Figure 2.6 H2BK43me0 peptide treatment resulted in the early upregulation of Egr1 

compared to TAT treatment 

ESCs were treated with TAT, H2BK43me0 or H2BK43me3 and induced to 

differentiate. Comparing the days of differentiation, H2BK43me0 peptide treatment 

significantly upregulated Egr1 expression on both days 0 and 1 compared to TAT 

(A). In contrast, Oct4 expression was relatively constant in TAT-treated cells 

throughout differentiation. Downregulation of Oct4 was only observed on day 1 of 

differentiation when cells were treated with H2BK43me0 when compared to TAT 

(B). GAPDH was used as a loading control. Asterisks denote statistical significance 

(p<0.05). Experiments were run in biological triplicate (n=3). Bar graphs represent 

normalized means ± standard deviation. When cells were stained for Oct4 after 48 

hours of peptide incubation (green), K43me0 treatment did not demonstrate 

substantial decline in expression and staining remained positive in TAT control cells 

(C). Images were obtained at 400x magnification. Cell nuclei were visualized using 

DAPI.  
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Figure 2.7 ESCs incubated with inhibitor peptide upregulated lineage genes but did 

not express apoptosis factor TRAIL 

24-hour treatment of ESCs with H2BK43me0 peptide upregulated the expression of 

BRCA1, Synapsin and Sox17. Our inhibitor peptide is hypothesized to inactivate 

KDM5b and thus increase the expression of KDM5b target gene BRCA1. While the 

trimethylated peptide did not upregulate gene expression, H3K4 peptide treatments 

appeared to increase BRCA1, with significant upregulation in cells incubated with 

unmethylated H3K4 (A). The trend was also apparent in lineage-associated genes 

Synapsin and Sox17. Sox17 upregulation was most pronounced, with a ten fold 

significant increase when ESCs were treated with H2BK43me0 peptide compared to 

TAT treatment. No upregulation of TRAIL transcript was observed in any of the 

peptide treatments (data not shown). GAPDH was used as a loading control. Asterisks 

denote statistical significance (p<0.05). Experiments were run in biological triplicate 

(n=3). Bar graphs represent normalized means ± standard deviation. 
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experiments. The absence of apoptosis-inducing factors supports our hypothesis of cell 

differentiation as a result of KDM5b inhibition and not as a result of cell stress.  

 

2.3.8 Microarray analysis revealed characteristics in peptide-treated 

ESCs similar to differentiated cells 

In order to analyze global changes in gene expression, we employed Gene Ontology (GO) 

using data from our Affymetrix microarray. A relational graph of phenotypic characteristics 

was obtained from the array comparing expression patterns of TAT treatment (purple) and 

H2BK43me0 treatment (green) (Figure 2.8A). The relational graph revealed comparable 

changes in global gene expression of H2BK43me0 treatment compared to TAT. In addition, 

we inspected the top five GO categories of global changes between TAT and H2BK43me0. 

Our results showed that the majority of changes induced by addition of inhibitor peptide 

compared to control were regulators of transcription (Figure 2.8B). There were comparable 

global changes in transcription between TAT and H2Bk43me0 cells similar to the changes 

observed between peptide treatment and day 5 differentiated ESCs. Peptide-induced KDM5b 

inhibition induced a neural lineage possibly through blocked chromatin recruitment, thus 

resulting in global changes in transcription similar to when cells differentiate.  

 

2.3.9 H2BK43me0 peptide inhibited KDM5b demethylase activity 

Since previous experiments revealed H2BK43me2 as a primary target of KDM5b, we 

designed an H2BK43 unmethylated peptide as an end-product inhibitor of the demethylase 

(Stalker et al, 2012). To confirm this interaction, we performed a series of pull-down 

experiments comparing the binding of recombinant KDM5b (r.KDM5b) to our peptide and to 

that of H2BK43me2 and the end-product of its alternated substrate, H3K4me0 (Figure 

2.9A). Immunoblotting for KDM5b, we revealed maximal pull-down H2BK43me0 and no 

interaction with its alternate substrates. Our pull-downs confirm H2BK43me0 peptide as an  
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Figure 2.8 Gene Ontology analysis revealed differences between TAT and 

H2BK43me0-treated ESCs 

Relational graph of phenotypic characteristics shows similarities and differences in 

global gene expression between TAT control peptide (purple), and H2BK43me2 

peptide-treated cells (green). On a global level, samples treated in K43me0 peptide do 

not share similar gene ontology (GO) terms with TAT treated cells (A). Comparison 

of the top five GO categories revealed regulation in transcription as the major 

difference between TAT and K43me0 peptide-treated samples (B). Transcription also 

represents one of the highest global changes both between TAT and K43me0 as well 

as between K43me0 and day 5 wildtype ESCs. The key change between peptide 

treatment and day 5 differentiated ESCs was the shift from regulation of 

transcriptionally related programs to genes that are involved in cell signaling 

(phosphorus metabolic process and intracellular signaling cascade). Data represent 

biological triplicate experiments.  
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end-product inhibitor of KDM5b demethylase activity that acts to downregulate the 

enzymatic targeting of other lysine methylation marks. We then examined the expression of 

transcription factor 3 (TCF3), a known KDM5b target and regulator of self-renewal versus 

differentiation (Dey et al, 2008). H2BK43me0 peptide treatment significantly upregulated 

expression of TCF3 transcript compared to control cells (p<0.05) (Figure 2.9B). Through 

chromatin immunoprecipitation (ChIP), we confirmed the downregulation of KDM5b 

activity at the TCF3 promoter (Figure 2.9C). Furthermore, the inhibition of KDM5b 

significantly enriched recruitment of H2BK43me2 at TCF3 (Figure 2.9D). Peptide 

inhibition of KDM5b activity also enriched recruitment of H3K4me3 at the promoter of 

TCF3 (Figure 2.9E). ChIP experiments confirmed KDM5b enzyme inactivation on its target 

gene TCF3 and revealed the increased enrichment of KDM5b alternate substrates at this 

gene.  

 

2.3.10 Peptide treatment upregulated H2BK43me2 recruitment at Egr1 

promoter regions  

After revealing the activity of KDM5b target gene TCF3, we investigated another target gene 

involved in differentiation. As a regulator of cell cycle exit and early cell fate, we 

demonstrated that Egr1 was upregulated during differentiation and when treated with 

inhibitor peptide (Figure 2.6A,B). We then compared enrichment of H2BK43me2 at Egr1 

transcriptional start site (TSS) and TATA region between ESCs and differentiated cells at 

day 5. ChIP experiments revealed the upregulation of H2BK43me2 at Egr1 TATA when 

cells were differentiated, but only slightly increased at Egr1 TSS (Figure 2.10A). This trend 

was similar to the comparison between TAT and H2BK43me0 cells treated for 24 hours 

(Figure 2.10B). When we examined enrichment at downstream regions of Egr1 such as the 

3’UTR and at -1700 to -1920, there was no observable upregulation of H2BK43me2. These 

findings suggested that peptide-induced cell differentiation upregulated lineage-associated 

genes through the inhibition of KDM5b and recruitment of H2BK43me2 at target promoter 

regions.  
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Figure 2.9 H2BK43me0 peptide inhibits KDM5b and affects transcriptional regulation 

of TCF3 

Pull-down experiments revealed the interaction between inhibitor peptide and 

r.KDM5b. Top IP His-tag represents loading control. Streptavidin (SA)-tag pull-down 

of H2BK43me0,2 H2K4me0, and H2A peptides reveals that r.KDM5b-6xHis is 

maximally pulled down with unmethylated H2BK43 (A). Last lane shows control 

anti-KDM5b IP. KDM5b target gene TCF3 was examined for changes in RT-PCR 

versus control. There was significant increase in TCF3 gene expression when cells 

were incubated with H2BK43me0 peptide when compared to TAT (B). ChIP 

experiments revealed a downregulation of KDM5b enrichment at the TCF3 promoter 

(C). Upregulation of enrichment, however, was observed in KDM5b alternate 

substrates, H2BK43me2 and H3K4me3 (D,E). Data represent percentages of DNA 

normalized to input DNA compared between control and experimental samples. 

Asterisks denote statistical significance (p<0.05). Experiments were run in biological 

triplicate (n=3). Bar graphs represent normalized means ± standard deviation. 
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Figure 2.10 Peptide treatment leads to recruitment of H2BK43me2 at Egr1 promoter 

regions similar to differentiated cells 

Egr1 expression is upregulated early in differentiation and when ESCs were treated 

with inhibitor peptide. Day 5 differentiated ESCs did not substantially upregulate 

enrichment of H2BK43me2 at Egr1 transcriptional start site (TSS), but did increase 

enrichment at Egr1 TATA region when compared to TAT control (A). Similar 

enrichment patterns were observed between H2BK43me0-treated cells and TAT-

treated cells (B). A significant upregulation was seen in peptide-treated cells at the 

Egr1 TATA region compared to control. There was no increase in H2BK43me2 

enrichment at downstream regions of Egr1 promoter. Data represent percentages of 

DNA normalized to input DNA compared between control and experimental samples. 

Asterisks denote statistical significance (p<0.05). Experiments were run in biological 

triplicate (n=3). Bar graphs represent normalized means ± standard deviation.
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2.4 Discussion 

A variety of histone post-translational modifications impact chromatin remodeling and affect 

transcriptional regulation of genes (Wu et al 1986). The recruitment of transcription factors 

and epigenetic control of gene expression is paramount in the proper establishment of the 

developing embryo (Stein et al 1989). Important pluripotent factors such as Oct4 and Nanog 

must be maintained at normal levels to ensure proper self-renewal of stem cells (Chambers 

and Smith 2004, Perry et al 2004). Methylation of histone lysines confers chromatin 

structural changes and is responsible for epigenetic control of many pluripotent factors, for 

example the methylation of H3K9 downregulates expression of Oct4 (Freberg et al 2007, 

Yuan et al 2009). Lysine methylation and demethylation reactions are catalyzed by specific 

enzymes, KMTs and KDMs (Nochumson et al 1978, Kubicek and Jenuwein 2004). While 

several KDMs and their substrates remain unidentified, we focus our investigation on the 

lysine demethylase KDM5b.  

As part of the JARID family of Jmjc-domain containing enzymes, KDM5b was 

originally identified as a factor upregulated in cancer (Lu et al 1999). Further elucidation 

revealed KDM5b as a lysine-specific demethylase of H3K4 (Schmitz et al 2011). 

Collaborators of our lab also confirmed KDM5b as a demethylase acting on H2BK43me2 

(Stalker et al 2012). Using a novel peptide inhibitor designed to mimic amino acids 37-49 of 

histone H2B, we hypothesized steric inactivation of KDM5b and the spontaneous 

differentiation of ESCs. By inhibiting KDM5b enzyme activity, we expected the 

upregulation of KDM5b target substrates, thus affecting the transcriptional regulation of 

target genes. In brief, our study revealed the onset of neural differentiation when ESCs were 

treated with H2BK3me0 peptide. Cells revealed an upregulation of cell cycle and lineage-

associated genes, the inhibition of KDM5b at target genes, and the enrichment of KDM5b 

substrates at target promoters.  

 

2.4.1 Inhibitor peptide localized into ESCs and induced transcriptional 

changes resulting in differentiation  

Our peptides were designed as mimetics of endogenous lysine methylation marks and were 
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tagged with a nuclear localizing sequence (Frankel and Pablo 1988). Previous localization 

experiments of TAT peptides were successfully performed in Jurkat T cells and CHO cells 

(Lundberg and Johannson 2001, Ho et al 2001). Our experiment is the first to demonstrate 

localization of peptides in mouse embryonic stem cells. Incubating cells with H2BK43me0 

peptide initiated ESCs to aggregate and adopt a neurological phenotype. When we 

investigated transcriptional changes following treatment, we revealed a significant 

downregulation of pluripotent gene, Nanog. Nanog is a transcription factor well known for 

its crucial role in embryonic cell fate specification and is immediately downregulated 

following differentiation (Cavaleri and Scholer 2003). Peptide-induced differentiation is thus 

partially associated with the decline in Nanog.  

An imperative factor for iPS cells, Oct4 remains a central regulator of developmental 

control. It is well-established that Oct4 must be maintained at adequate levels and the lack of 

this factor induces trophectoderm differentiation in mouse ESCs (Velkey and O’Shea 2003).  

In both ESC and EC cells, Oct4 follows a distinct pattern of downregulation following 

differentiation (Schoorlemmer et al 1995). While there appeared to be downregulation of 

Oct4 in peptide-treated cells at day 1 of differentiation, we observed minimal changes in 

Oct4 expression when cells were treated with inhibitor peptide for 24 hours compared to 

control. Immunofluorescent visualization of Oct4 expression in cells treated with 

H2BK43me0 for 48 hours revealed positive staining. In previous investigations of Oct4 in 

ESCs constitutively expressing KDM5b, Dey et al (2008) demonstrated no differences in 

Oct4 expression compared to control, implying that overexpression of KDM5b did not alter 

stem cell dynamics.  The study also confirmed that when constitutive KDM5b ESCs were 

differentiated at day 3, cells continued to express Oct4. Taken together, our studies support 

the conclusion that Oct4 is a late pluripotent marker, observed when ESCs are induced to 

differentiate. This is in agreement with previous studies identifying Oct4 as an early 

differentiation marker that is expressed in the embryonic neural crest (Guo et al 2002).  

Induced differentiation can often result following cell stress; in fact, apoptosis and 

differentiation are physiological processes that share several common features (Altman et al 

2002, Lanneau et al 2007). Cell differentiation as a result of mechanical stress upregulates 

many factors involved in apoptosis such as TRAIL (Wu et al 2011, Gobbi et al 2012). To 

eliminate the possibility of stress-induced differentiation, we ensured that TRAIL was not 
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upregulated in any of our treatment experiments.  

Confirming lineage-specific differentiation, treatment of H2BK43me0 peptide also 

induced transcriptional upregulation of neural markers. NF is critical for neural structure 

while neuroD2 plays a role in neurite formation (Lalonde and Strazielle 2003, Messmer et al 

2011). TUJ1 is characteristic of embryoid bodies when mouse ESCs are induced to 

differentiate into the neural lineage in culture (Xu et al 2012). Synapsin is a lineage-

associated gene with implications in the regulation of neurotransmitter release at synapses 

(Esser et al 1998). The appearance of neural markers in our peptide-treated cells confirmed 

the neuronal differentiation phenotype when ESCs were incubated with H2BK43me0. 

Another gene that was upregulated during peptide treatment was Sox17, a known 

transcription factor playing key roles in developmental processes such as endoderm 

formation, cardiac myogenesis, and the differentiation of neural cells (Combes et al 2012). 

Increase in Sox17 expression following peptide-induced differentiation of ESCs was 

consistent with previous studies of upregulation during embryonic development Further 

investigation is required examining the role of KDM5b regulation and histone post-

translational affects on Sox17 gene. Some studies have revealed the role of HDAC inhibition 

augmenting endoderm differentiation and the possibility of histone acetylation regulating the 

Sox17 promoter (Fu et al 2011). We are curious to discover if the development gene is 

subject to lysine methylation and if H3K4 and H3K9 regulate transcriptional expression of 

Sox17.  

 

2.4.2 H2BK43me0 peptide is an inhibitor of KDM5b and upregulates 

known target genes  

We observed pronounced differentiation characteristics in embryonic stem cells when treated 

with an inhibitor peptide. Since previous experiments revealed H2BK43me2 as a target of 

KDM5b demethylase activity, we designed our peptide in the unmethylated state of 

H2BK43 as an end-product inhibitor of the demethylase enzyme. Many reaction end 

products are known to sterically inactivate enzymes, for example small molecules have been 

designed to inhibit HDAC activity in the treatment of cancer (Zhou et al 2011). Furthermore, 
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monoamine oxidases have been employed as mimics of LSD1 and inhibitors of H3K4 

demethylation (Lee et al 2006). In fact, the nonmethylated end product of H3K4 

methylation, H3K4me0, acts as a competitive inactivator of LSD1 and inhibits the enzyme 

from interacting with its substrates (Lan et al 2007). We have demonstrated the pull-down of 

KDM5b with H2BK43me0 peptide, validating the binding of our peptide with the enzyme 

and inhibiting interaction with other KDM5b substrates. ESCs treated with the KDM5b 

inhibitor upregulated target genes including Egr1, BRCA1, and TCF3.  

Egr1 is gene known to be involved in cell cycle exit and the early onset of 

differentiation (Sukhatme et al 1988, Petrovic et al 2010, Lejard et al 2011). Our results are 

consistent with the literature in that peptide-induced differentiation increased expression of 

Egr1. This finding is also congruent with previous experiments involving significant decrease 

of Egr1 in cells overexpressing KDM5b (Dey et al 2008). Egr1 was more sensitive to loss of 

KDM5b than other cell cycle genes because of its role as an immediate early gene and its 

variability of expression in mouse ESCs (Waters et al 1990).     

KDM5b was originally identified as a factor upregulated in breast cancer (Lu et al 

1999). Subsequent studies revealed KDM5b as a lysine demethylase of H3K4 and inhibited 

the tumor repressor gene BRCA1 (Yamane et al 2007).  BRCA1 is involved in DNA damage 

repair and mutations in the gene confer inherited susceptibility to poor breast cancer 

prognosis (Easton et al 1993, Bowcock 1993). Consistent with these studies, treatment of 

KDM5b inhibitor peptide upregulated BRCA1 expression in ESCs. Our findings recapitulate 

BRCA1 as a target of KDM5b but do not elucidate the role of BRCA1 in stem cell 

differentiation. Feng and Zhang (2012) propose a role for BRCA1 in the cell cycle eliciting 

replication blocks, a function that may have relevance in the decision between proliferation 

and differentiation. In addition, Yoo and Henninghausen (2012) published the contribution of 

EZH2 methylation at H3K27 in suppressing BRCA1 and affecting cell cycle in breast cancer 

cells. Other methylation marks may expand our understanding of BRCA1 function in an 

embryonic stem cell model and imply cross-regulation between cancer, cell cycle, and 

development.  
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 Transcription factor 3 (TCF3) remains an integral component of the Wnt signaling 

pathway, controlling lineage differentiation of embryonic stem cells (Watanabe and Dai, 

2011). The regulated circuitry of Oct4, Sox2, and Nanog is maintained in tight orchestration 

to ensure proper timing of cell differentiation (Rodda et al 2005). Cole et al (2008) introduced 

TCF3 as a co-occupant of promoters throughout the genome in association with Oct4 and 

Nanog, and demonstrated that TCF3 depletion increases expression of these pluripotency 

factors. Indeed, TCF3 regulates stem cell dynamics through the inhibition of Nanog, a 

function that limits self-renewal and promotes cell differentiation (Pereira et al 2006). 

Through transient transfections of KDM5b in ESCs, Dey et al (2008) identified an increase in 

the expression of Nanog. The group was unsuccessful in determining TCF3 transcription in 

KDM5b siRNA experiments. We were able to reveal upregulation of TCF3 expression and 

downregulation of Nanog when cells were treated with the KDM5b inhibitor peptide. Thus, 

our experiments confirmed TCF3 as a direct target of KDM5b and the repression of Nanog as 

a consequence of induced differentiation.  

 

2.4.3 Global gene expression of peptide-treated cells recapitulate 

changes in KDM5b heterozygous ESCs 

GO analysis revealed the primary change in gene expression to be regulation of transcription 

when comparing cell samples between H2BK43me0 and TAT treatments. Transcriptional 

changes are also a principle change between ESC and differentiated cells. It is not surprising 

that the onset of differentiation is associated with changes in transcriptional circuitry. While 

ESCs constitutively expressing KDM5b were unable to properly form neurons, KDM5b 

knockdown ESCs differentiation characteristics remained inconclusive (Dey et al 2008). Our 

lab performed GO analysis on KDM5b heterozygous stem cell line from BayGenomics and 

found expression pattern changes from EpopooooSCs analogous to the comparison between 

inhibitor peptide and TAT treatments (data not shown). Relational graph exhibited close 

correlation of H2BK43me0 peptide-treated cells and KDM5b heterozygous ESCs. When Dey 

et al attempted to form embryoid bodies with KDM5b heterozygous cells, they observed a 

high level of apoptosis and could not gather conclusions representative of KDM5b 
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expression profiles. With GO analysis, we were able to disclose similarities in ESCs treated 

with KDM5b inhibitor peptide and ESCs heterozygously expressing KDM5b. This similarity 

in global expression profiles validated our peptide as a KDM5b inhibitor in ESCs. Using a 

peptide inhibitor-based paradigm, we were able to perform successful experiments in a stem 

cell model to elucidate the function of histone lysine demethylases.   

 

2.4.4 Recruitment of KDM5b substrates increased in cells treated 

with inhibitor peptide  

Experiments with H2BK43me0 peptide revealed an upregulation of several factors, including 

BRCA1, Egr1, NF, Sox17, and TCF3. We speculated an interaction of our peptide with 

KDM5b, inhibiting its demethylase activity and affecting downstream target genes. The 

inhibition of KDM5b thus explains the increase in expression observed in such targets as 

BRCA1, Egr1, and TCF3. While the role of BRCA1 in stem cell differentiation remains to be 

uncovered, TCF3 is a characterized repressor of Nanog and confers regulation of cell 

specification. Since peptide inhibition of KDM5b resulted in an upreguation of TCF3, we 

were prompted to investigate enrichment of KDM5b substrates on the promoter of TCF3 

gene. KDM5b was previously found to bind to the -50 to -150 region of TCF3 (Dey et al 

2003). When ESCs were transfected with KDM5b, Dey et al observed an increase of KDM5b 

at TCF3. Parallel to this finding, inhibition of the demethylase with H2BK43me0 peptide 

resulted in a reduced enrichment at TCF3 promoter regions. Our lab also found that on day 0, 

H3K4me3 and H2BK43me2 are found at downstream regions but are absent from promoter 

regions. However, when ESCs are differentiated, the two methylation marks enriched at the 

TSS region of TCF3, while KDM5b is removed (Stalker et al 2012). With chromatin 

immunoprecipitation, we examined TSS promoter enrichment when cells were treated with 

KDM5b inhibitor peptide. Our results confirm previous findings in that addition of peptide 

decreased KDM5b at TCF3 promoter, while H2BK43me2 and H3K4 were enriched at this 

region compared to control. 

 While we provided evidence supporting regulation of TCF3, we continued to 

elucidate the effect of peptide addition on KDM5b targets. Our results are congruent with 
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preceding experiments in that KDM5b disruption upregulated the expression of Egr1. 

Overexpression of KDM5b was shown to decrease Egr1 expression, and a 70% decrease of 

H3K4me3 was observed at the Egr1 promoter (Dey et al 2008). We chose to examine 

enrichment of the KDM5b alternate substrate, H2BK43me2, at Egr1 promoter regions TSS 

and TATA. Day 5 differentiated ESCs exhibited an increase of H2BK43me2 enrichment at 

Egr1 TATA compared to control, while this upregulation was less pronounced at Egr1 TSS. 

Similar increases at these regions were observed when inhibitor peptide was introduced into 

culture compared to TAT control. Our findings support Egr1 as a direct target of KDM5b and 

introduce the upregulation of substrate H2BK43me2 in order to further regulate Egr1 

expression as cells differentiate. From our ChIP studies, we speculate that recruitment of 

H2BK43me2 at target genes mirrors the functional significant of H3K4me3 enrichment at 

factors involved in species development.  

 

2.4.5 Peptide-induced cell differentiation is specific to H2BK43me0 

An immediate neural phenotype was observed when ESCs were treated with H2BK43me0 

peptide. On the contrary, treating cells with the trimethylated peptide did not induce any 

changes when compared to TAT treatment. Furthermore, treatment of H3K4 methylated 

peptides also failed to induce any morphological changes. H3K4 methylated mark targets 

many differentiation genes for activation, as previously reviewed (Lee and Shilatifard, 2007, 

Benevolenskaya 2007). Since H3K4 peptides did not induce differentiation characteristics in 

ESCs, we propose a compensatory mechanism enabling cells resistant to the treatment of 

these inhibitor peptides. While H3K4me0 was revealed to be an inhibitor of LSD1 (Lan et al 

2007), the enzyme inactivation was insufficient in creating any observable changes in ESCs. 

When cells were treated with H3K9 methylated peptides, ESCs also remained resistant to 

morphological changes. H3K9 methylation recognizes promoters for gene silencing and 

inactivation (Snowden et al 2002). It is uncertain if the end-product peptide can act as a steric 

inhibitor on enzymes targeting H3K9, but we theorize a tight control of factors associated 

with this histone mark conferring resistance to the addition of inhibitor peptides. Although 

we do not observe any perceivable changes in cell morphology when H3K4 and H3K9 
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peptides were introduced, it is possible that transcriptional changes are occurring. Slight 

increases in Egr1 expression were observed when cells were treated with H2BK43me3, and 

lineage-associated factors were upregulated when cells were treated with H3K4 peptides. 

Further investigation is required in order to understand the possible outcomes and 

transcriptional changes when other methylated peptides are introduced into ESCs.   
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Chapter 3  

3 General Overview 

 

3.1 Conclusion and Summary 

 

Objective 1. Examine phenotypic changes in ESCs and during 

differentiation following introduction of inhibitor peptide 

Frankel and Pabo (1998) revolutionized the prospects of drug delivery using the TAT 

sequence derived from HIV. Investigators have successfully localized small molecules into 

the nucleus of cells using the TAT sequence (Vives et al 1997, Ho et al 2001). While 

previous localization experiments were performed in cancer cell lines, we have successfully 

demonstrated the localization of TAT-tagged peptides in mouse ESCs. In order to investigate 

histone lysine methylation properties in stem cells, we designed a peptide corresponding to 

amino acids 37-49 of histone H2B. We speculate that the nonmethylated peptide is an end-

product inhibitor of the lysine-specific methylase acting on lysine 43 of histone H2B. This 

common inhibitor-based paradigm has proven successful in inhibition of HDACs as well as 

the inhibition of H3K4 methylation (Lan et al 2007, Zhou et al 2011). Epigenetic regulation 

of genes has transpired as a new topic in biological research and many groups strive to fully 

elucidate the histone code. As more lysine modifications are revealed, associated 

methyltransferase and demethylase enzymes are also emerging. KDM5b was re-identified 

when it was revealed to be a lysine demethylase in addition to being a factor upregulated in 

cancer (Yamane et al 2007, Xiang et al 2007). While KDM5b was initially branded as an 

H3K4-specific demethylase, our lab revealed the interaction between KDM5b and a novel 

histone mark, H2BK43me2. Very little work has been performed on histone H2B and 

virtually no information is known about its role in eukaryotic development. Our synthetic 

peptide strives to elucidate the role of H2BK43 methylation in stem cells through the 

inhibition of its lysine demethylase. 
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When ESCs were incubated with inhibitor peptide, changes in cell morphology were 

immediately seen. Cells aggregated within hours of treatment and formed neurospheres 

within 24 hours. The accelerated differentiation following peptide treatment represents a 

novel method of enzyme inhibition. KDM5b heterozygous ESCs were unable to complete the 

differentiation time-course and thus offered no conclusive results involving downstream 

transcriptional dynamics (Dey et al 2008). Inhibition of KDM5b with a synthetic peptide is 

the first successful experiment inactivating the enzyme’s demethylase activity. Interestingly, 

no phenotypic changes were observed when cells were incubated with H2BK43me3 peptide, 

confirming end-product inhibition specificity. Similarly, methylated peptides of H3K4 and 

H3K9 did not confer any morphological changes in stem cells. As two pivotal histone marks 

of gene activation and repression, we presume that there exists a compensatory mechanisms 

that enables ESCs to resist morphological changes when treated with H3K4 or H3K9 

peptides. Through this novel experiment, we were able to reveal pronounced differentiation 

phenotypes in stem cells treated specifically with H2BK43me0 peptide. 

 

Objective 2. Investigate transcriptional changes in pluripotent, cell cycle, 

and lineage-associated genes when cells are treated with H2BK43me0 

peptide 

Differentiation of embryonic stem cells conforms to a stringently orchestrated 

downregulation of pluripotent factors such as Oct4 and Nanog (Kashyap et al 2009, Chan et 

al 2011, Lee and Qu 2011). Following observations of phenotypic differentiation in ESCs 

treated with H2BK43me0 peptide, we assayed for transcriptional changes of several genes 

involved in self-renewal and lineage association. Few cells in developed organisms remain in 

an actively proliferating state; the majority of cells have undergone cell cycle exit. At each 

mitotic division, ESCs must choose between proliferation and differentiation (Browna et al 

2003, Xia et al 2006). Egr1 is an early marker of differentiation and controls many target 

genes involved in cell cycle progression (Virolle et al 2003). We observed an upregulation in 

Egr1 expression from days 0 to 3 of differentiation in control and peptide-treated cells. 

Additionally, a significant increase was observed in H2BK43me0-treated cells compared to 

TAT-treated ESCs. Upregulation of Egr1 confirmed its role in cell cycle exit, cell 



83 

 

differentiation, and as a target of KDM5b. On the contrary, we did not observe significant 

downregulation of pluripotent factor Oct4, although a significant decrease in Nanog 

expression was apparent. Our results confirm Nanog as a gene immediately downregulated 

following differentiation, while Oct4 remains a late pluripotent marker expressed in neural 

crest cells (Guo et al 2003).  

 In tandem with upregulation of Egr1, cells treated with inhibitor peptide increased 

expression of several lineage-associated genes indicative of a neural phenotype. Peptide 

treatment promoted upregulation of NF, neuroD2, TUJ1 and Synapsin expression levels. 

Since these markers are imperative in the structural and functional integrity of neural cells, 

we conclude that ESCs treated with inhibitor peptide have adopted a neural lineage. KDM5b 

heterozygous ESCs failed to express neural markers when differentiated toward the neural 

lineage (Dey et al 2008). While increasing KDM5b obstructed differentiation of stem cells, 

treatment of the KDM5b inhibitor peptide encouraged the differentiation of cells and 

upregulated several neural-associated factors. In addition to neural genes, peptide treatment 

also increased the expression of other lineage genes such as Sox17. As a factor involved in 

endoderm formation, Sox17 upregulation is consistent with differentiation phenotype 

observed in ESCs following peptide treatment. The possibility of Sox17 epigenetic regulation 

was introduced by Fu et al (2011); the study revealed Sox17 regulation via histone 

acetylation and the role of HDAC inhibitors in enhancing endodermal differentiation. 

Possible lysine methylation mechanisms may also offer regulatory control of such 

differentiation genes such as the Sox family of transcription factors.  

 

Objective 3. Characterize the interaction of our peptide with KDM5b and 

its effect on alternate substrates and downstream target genes 

While initial studies involving KDM5b lysine demethylase involved H3K4, investigations in 

our lab confirmed an additional histone target, H2BK43me2 (Yamane et al 1997, Stalker et al 

2012). KDM5b maximally pulled down our unmethylated H2BK43me0 peptide and inhibited 

interaction with other substrates of the demethylase. KDM5b enzyme disruption thus 

increased enrichment of H2BK43me2 as well as H3K4me3 at target genes. When we 

examined KDM5b targets following H2BK43me0 peptide incubation, we observed an 
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increase in BRCA1 and TCF3 expression. Upregulation in breast cancer tumor suppressor 

gene BRCA1 confirmed speculation of its interaction with KDM5b (Lu et al 1999, Yamane 

et al 2007). Close inspection of the TCF3 gene revealed significant increase in ESCs treated 

with peptide compared to control. Furthermore, peptide treatment reduced KDM5b activity at 

TCF3 promoter. Constitutive KDM5b in ESCs was previously shown to increase the enzyme 

interaction with TCF3 (Dey et al 2008). Our ChIP assays also demonstrate the upregulation 

of KDM5b substrates, H2BK43me2 and H3K4me3 at the TCF3 promoter regions. Taken 

together, we deduce a synergistic mechanism of regulating transcriptional factors. 

H2BK43me2 recruitment may mirror the effects of H3K4me3 activation on target genes such 

as TCF3. Co-occupancy of TCF3 at pluripotent genes such as Nanog indicates that TCF3 

plays an integral role in Wnt-dependent stimulation of self-renewal in stem cells (Yi et al 

2011).  

 Additional ChIP experiments compared the enrichment of H2BK43me2 at Egr1 

promoter regions between ESCs and day 5 differentiated cells. While a slight increase 

occurred at Egr1 TSS, a substantial upregulation was observed at the Egr1 TATA region. 

Comparison of TAT and H2BK43me0 peptide-treated ESCs also reflected this trend in 

upregulation, with a significant increase of the dimethylated lysine mark at Egr1 TATA. 

These findings agree with overexpression experiments of KDM5b in ESCs, in which a 

reduction of H3K4me3 was seen at the Egr1 gene promoter while an upregulation of KDM5b 

at Egr1 occurred (Dey et al 2008). Transient siRNA-mediated knockdown experiments of 

KDM5b also increased levels of H3K4me3 at Egr1, similar to our peptide-inhibited assays.  

Downregulation of KDM5b at target genes and upregulation of substrates at the same target 

regions reveal the cooperation of lysine demethylases and their respective histone marks in 

regulating transcription. Investigations using H2B inhibitor peptide have confirmed 

H2BK43me2 as a crucial mark in the histone code and an integral contender in the circuitry 

involved in organism development.  

 

3.2 Future studies 

In our screen of 88 peptides with varying methylation states, we found that most peptides did 

not elicit phenotypic abnormalities when cultured with ESCs. While H2BK43me0 was 
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capable of inducing differentiation, the trimethylated peptide of the same lysine did not 

generate any cell changes compared to TAT control. ESCs incubated with peptides of other 

important histone marks such as H3K4 and H3K9 also retained stem cell qualities and were 

resistant to change. Although no observable differences were exhibited when cells were 

viewed under a microscope, transcriptional dynamics may have been altered with treatment 

of alternate peptides. In fact, H2BK43me3 appears to upregulate Egr1 when introduced in 

cell culture. H3K4 peptides also seem to increase expression of a few lineage genes such as 

Sox17. Recent studies in biochemical research have revealed methods of inhibiting important 

histone post-translational modifications in order to determine functional relevance of these 

marks. For example, the use of oligoamine analogues to inhibit LSD1 and induce expression 

of epigenetically silenced genes, or the analogue BIX-01294 in suppressing G9a activity on 

H3K9 (Huang et al 2009, Upadhyay et al 2012). Since H3K4 and H3K9 are imperative for 

epigenetic gene regulation, alterations in transcriptional dynamics may be rectified by 

alternate mechanisms in order to maintain integrity of the developing embryo (Eissenberg 

and Shilatifard 2010, Shinkai 2007). This could explain why changes in lineage genes are 

seen but ESCs are resistant to phenotypic changes when treated with H3K4 or H3K9 

inhibitor peptides. In addition to these two histone lysines, several other marks remain 

undiscovered. Our large-screen assay revealed the promising possibilities that H3K23 and 

H4K20 may participate in developmental regulation. Further investigations of self-renewal 

genes following treatment of these peptides may provide us with a clearer picture of the 

complete histone code.  

In terms of the interaction between the inhibitor peptide and KDM5b, future studies 

may provide details of steric inactivation of the enzyme. In the case of H3K4me0 binding 

BHC80, substrate specificity is conferred through a hydrogen bond “cage” recognition of the 

H3 amino terminus (Lan et al 2007). Monomethylated lysine allowed limited motion before 

clashing with other atoms, thus additional methyl groups on H3K4 would interfere with side 

chains of the enzyme. While we were able to show binding of our peptide to KDM5b and the 

out-competing of alternate lysine substrates, further investigations in protein crystallography 

would elucidate sites of steric inhibition and enzyme suppression. While we have focused our 

study in a stem cell model of development, many factors we investigated have dual roles in 

differentiation and cell cycle regulation. This suggests that KDM5b inhibition at target genes 
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may have implications in cancer cell lines as well. KDM5b was originally identified 

upregulated in cancers and targets transcription of tumor suppressor genes such as BRCA1 

(Lu et al 1999, Yamane et al 2007, Xiang et al 2007). Egr1 is responsible for cell cycle exit, 

early differentiation, and is involved in cancer cell signaling (Liu et al 1998, Song et al 

2012). The knockdown of KDM5b and upregulation of tumor-associated genes BRCA1 and 

Egr1 would potentially alter signaling landscapes in cancer cells and confer therapeutic 

outcomes. Mutation in BRCA1 is often associated with poor prognosis and studies strive to 

target the gene for upregulation in patients (Clark-Knowles et al 2010). This offers the 

possibility of KDM5b inhibition as a potential target in future cancer therapy. Results from 

stem cells can hopefully be extrapolated to cancerous cell lines; however, further 

experimentation of KDM5b regulation in a tumorigenetic model must be performed to better 

understand the onset of cancer from an epigenetic viewpoint. 
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