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Abstract 

A key challenge associated with protein folding studies is the characterization of 

short-lived intermediates that become populated en route to the native state. In this work, 

a covalent labeling method was developed that provides insights into the structures of 

these transient species. Hydroxyl radical (·OH) reacts with solvent-exposed side chains, 

whereas buried residues are protected. Mass spectrometry is used for monitoring the 

locations and the extent of labeling. Pulsed ·OH labeling of proteins at selected time 

points during folding results in high temporal and spatial resolution when compared to 

existing other labeling methods.  

This novel technique was validated by studying the kinetic unfolding and 

refolding of holomyoglobin (hMb) and cytochrome c (cyt c), respectively. The 

noncovalent prosthetic heme group in hMb was shown to drastically affect the unfolding 

pathway.  Cyt c refolding was found to fold in a stepwise manner. The population of a 

misfolded cyt c intermediate was also detected. Results in both cases were in accord with 

published data. 

Many cellular proteins exist as oligomers. Pulsed ·OH labeling method was 

therefore extended to monitor the folding and assembly of a 22 kDa homodimeric 

protein, S100A11. Prior to this study very little information regarding the folding 

mechanism of this protein was available. ·OH labeling reveals that disruption of the 

native dimer is followed by the formation of non-native hydrophobic contacts within the 

denatured monomers. The folding/binding pathway was shown to progress through 

monomeric and dimeric intermediates. 
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In the final section of this study we applied ·OH labeling to a large monomeric 

protein that folds to a metastable state. The folding pathway of the 44 kDa protease 

inhibitor, α1-antitrypsin, was characterized and compared with complementary data from 

hydrogen/deuterium exchange studies. Our results show that the formation of early 

tertiary contacts and specific hydrogen bonds guide the protein towards its active, 

metastable structure. Structural correlation is also seen between a late kinetic species and 

a previously characterized equilibrium intermediate of a pathogenic mutant.  

Overall, the results presented highlight the ability of the technique developed in 

this work to provide in-depth information about the mechanisms of protein folding. 

 

 

 

Keywords: protein folding | covalent labeling | kinetics | hydroxyl radical | folding 

intermediates | rapid mixing | electrospray mass spectrometry | cytochrome c | S100A11 | 

α1-antitrypsin 
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Chapter 1 – Introduction 

1.1 Protein Structure and Folding 

While DNA encodes all of the information necessary for life, proteins are the 

workhorse molecules of the cell. From cytoskeletal support and energy conversion to 

transport and catalysis, the list of cellular tasks performed by proteins is seemingly 

interminable. It is widely accepted that structure and function are intimately connected. 

Protein functionality is achieved by utilizing the 20 naturally occurring amino acids 

which represent a relatively small set of structural building blocks. All amino acids 

(except for proline) have the same basic structure 

 

CH COOHH2N

R

 

 

where R is the side chain. Proline has a secondary amino nitrogen due to bonding with its 

R-group and the resulting conformational strain is responsible for a great deal of 

interesting structural effects (1). While all proteins are polymers of amino acids, most 

must adopt a unique three dimensional structure in order to carry out their specific 

functions (2). It still remains unclear how this protein structure is encoded within a linear 

sequence (3). Four levels of protein structure can be distinguished. 

Primary structure refers to the linear sequence of amino acids. This sequence is 

encoded within DNA and it is assembled on ribosomes (4). With 20 naturally occurring 

amino acids, an astronomical number of potential sequences exist. Only a tiny fraction of 
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these sequences are encoded. Great diversity of function and regulation is obtained 

through protein post-translational modifications (5). Secondary structure refers to the 

organization of local contacts mediated by hydrogen bonds along the peptide backbone. 

α-helices, β-sheets, and β-turns comprise the dominant secondary structural elements (4). 

The three-dimensional orientation of such elements within a single protein chain 

represents its tertiary structure. For many proteins the structural hierarchy stops there. 

However, a considerable number of proteins exist as dimers, trimers, or larger oligomers 

(6). Such association of distinct polypeptide chains, each with its own tertiary structure, is 

referred to as quaternary structure. 

  

1.1.1 Native Protein Structure 

The native structure of a protein is only marginally stable compared to the 

unfolded state. There is a large entropic penalty associated with the transition from a 

disordered chain to one of highly defined structure, as well as an enthalpic penalty for 

disrupting many interactions with the solvent. The protein must overcome these 

unfavourable contributions through intramolecular contacts. Some important examples 

are discussed below: 

 

Hydrophobic interactions. Globular proteins exist in an aqueous environment however, 

many amino acid side chains are hydrophobic. The clustering of said residues in the 

protein interior results in a stabilizing contribution that is proportional to the buried side-

chain surface area (7). This leads to the formation of a hydrophobic core and leaves the 
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hydrophilic residues mostly on the surface where they interact with the solvent. Recent 

experiments have demonstrated that for small-to-medium sized proteins, the hydrophobic 

effect contributes approximately 60% to the overall stability (8). 

 

Hydrogen bonding. Hydrogen bonds require both a donor group and an acceptor group. 

Donors have a hydrogen atom bound to an electronegative heteroatom, eg. -NH, -OH, -

SH, and acceptors have lone electron pairs, eg. C=O. The peptide backbone, as well as 

side chains, of an unfolded protein makes numerous hydrogen bonds with the solvent. 

Upon folding, loss of those contacts must be compensated for with intramolecular 

hydrogen bonds, most of which are found in α-helices and β-sheets. It has been estimated 

that the average hydrogen bond stabilizes a protein by ~2-5 kJ mol
-1

 (9, 10), however this 

bond energy is context sensitive (11). 

 

Salt bridges. The positive charge on the side chains of Arg and Lys, as well as the 

negative charge on those of Asp and Glu, often result in their localization on the protein 

surface. Electrostatic pairing of these side chains is stabilizing. Occasionally such salt 

bridges can also occur within the protein core. Charge-charge interactions on the surface 

are weaker due to solvent screening. While perhaps not as important as other 

intramolecular forces, it has been shown that optimizing the charged interactions on the 

protein surface can increase stability over the wild-type molecule (12).  
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Cation-π interactions. While the positively-charged side chains of Arg and Lys can be 

involved in salt bridges, they are also often found interacting with the π-electrons of the 

aromatic amino acids Phe, Tyr, and Trp. A survey of the structures in the Protein Data 

Bank revealed ~25% of all Trp residues involved in a significant cation-π interaction 

(13). A bias for Arg-Tyr interactions has been shown to exist at protein-protein 

interfaces, with the stabilizing electrostatic energy estimated to be ~10 kJ mol
-1

 (14). A 

recent study found a specific cation-π interaction to be vital for the regulation of integrin 

affinity and function (15). Similar interactions occur between aromatic residues. The 

hydrogens on the aromatic rings are slightly positive. This allows the aromatic side 

chains to interact favourably in an edge-to-face orientation, with the hydrogens of one in 

close proximity to the π-electrons of another. Face-to-face side chain stacking, akin to 

base stacking in nucleic acids, is also a possibility albeit with a slight offset to avoid 

electrostatic clash between the electron clouds. 

 

Disulfide bonds. The thiol side chains of cysteine residues can be oxidized to form a 

disulfide (S-S) bond. These bonds can be intrachain as in lysozyme, or interchain as for 

insulin. Disulfides serve to stabilize the native state by reducing the conformational 

entropy of the unfolded state. Also, residue interactions required in the native state can be 

promoted by disulfide linkages (16). 

 

It has been over 50 years since the first X-ray structure of myoglobin was 

determined (17). Currently the Protein Data Bank contains nearly 80000 protein 

structures, determined mainly by two methods. Approximately 7 out of every 8 protein 
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structures have been solved by X-ray crystallography. Solution NMR has been used for 

~12% of structures.  Crystallography is preferred for large proteins, and NMR is required 

for those with highly dynamic regions. Static X-ray structures (Figure 1.1A) can be 

helpful for visualizing binding interfaces, enzyme active sites, etc. but they are only 

informative regarding native proteins. Partially folded states are often too flexible for a 

detailed structural elucidation by X-ray methods. NMR can characterize these disordered 

proteins, and it is capable of probing dynamic aspects of native proteins (Figure 1.1B).   

 

1.1.2 Protein Folding 

Anfinsen‟s experiments on ribonuclease showed that a denatured protein will 

spontaneously refold to its correct native structure when placed in a suitable solvent 

environment. Hence, the sequence of amino acids contains all of the information needed 

to rearrange from a disordered polypeptide chain into a highly ordered native state (18). 

This observation begs the question: How does a protein “know” its correct secondary, 

tertiary and quaternary structure based only on primary structure? Much progress has 

been made towards answering this question in the decades since Anfinsen‟s discovery 

through experiment and simulation, although many details remain elusive.  

In 1969 Cyrus Levinthal posited that it should take many times the age of the 

universe for a polypeptide chain to find its native conformation based on a random search 

(19). Proteins are continually synthesized in living organisms, and most fold within a few 

seconds. This mismatch of timescales became known as the “Levinthal Paradox”, and it 

provided the basis for what is now known as the “protein folding problem”. 
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Figure 1.1. 3D protein structures. (A) X-ray crystal structure of the bovine β-

lactoglobulin, a protein with a high β-sheet content (PDB ID: 1BEB). (B) Ensemble of 

NMR structures for sperm whale myoglobin (PDB ID: 1MYF).  
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Levinthal assumed that each partially folded conformer was approximately degenerate in 

energy with the unfolded state. The native conformation corresponds to a deep energy 

well which can only be attained by an extensive random search (Figure 1.2A). 

Levinthal‟s proposed solution involved the presence of defined pathways along which 

proteins can fold on a biologically relevant timescale (20). Many different mechanisms 

have been proposed to explain the properties of these putative pathways.  

 

1.1.3 Protein Folding Mechanisms 

The framework model suggests that local secondary structural elements can form 

independently (21). These structural elements would then diffuse and collide, ultimately 

coalescing into native tertiary structure. At the other end of the spectrum is the 

hydrophobic collapse model. This proposal asserts that folding is initiated with an 

extensive collapse of hydrophobic residues, followed by formation of secondary 

structure. The nucleation model took up residence somewhere in the middle and stated 

that partial native secondary structure would serve as a folding nucleus from which 

further structure would propagate (22).  

All three of the proposed models implied the population of semi-folded structures 

(intermediates) along the pathway. Jackson and Fersht, however, reported that folding of 

chymotrypsin inhibitor 2 occurred in a two-state manner, with no detectable 

intermediates (23); a mechanism termed nucleation-condensation. Subsequent ϕ-value 

analysis, which probes the effects of amino acid substitutions on transition state stability, 
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Figure 1.2. Protein folding landscapes. (A) Levinthal folding funnel involves a random 

conformational search for the native state. (B) A rugged free energy landscape that 

funnels partially folded conformations toward the native state (24). 
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confirmed the two-state folding. Recently Fersht and coworkers have proposed a unifying 

mechanism (25, 26), that consists of three basic steps: 1) formation of a nucleus with 

native-like topology, 2) polypeptide chain collapse, and 3) achievement of the native 

conformation through structural consolidation. Under the posited unifying mechanism 

proteins may appear to fold via the nucleation-condensation or framework models 

depending on the stability of their relative folding intermediates and the height of the 

corresponding transition barriers (27). 

The current generally accepted view of protein folding extends Levinthal‟s 

pathway notion by incorporating the presence of many possible routes to the native state 

(28, 29). Support for this view came from studies on ultrafast folding proteins, and the 

finding that the folding rate is proportional to the number of folding routes (30). The 

presence of many possible pathways leading to the native structure forms the basis of the 

folding funnel model (24, 31). This model envisions folding as a conformational search 

on a rugged free energy landscape which is biased towards the native state (Figure 1.2B). 

The population of folding intermediates, or lack thereof, can then be explained by the 

degree of smoothness of the landscape.  

    The energetic bias of the funnel explains, at least partially, how proteins can 

adopt complex structures on a biologically relevant timescale. Another factor that affects 

the folding rate is the amount of native-like structure present in the unfolded state. The 

denatured state ensemble (DSE) of a protein can be highly heterogeneous. However, 

many recent accounts suggest the retention of some residual structure (32-34). This 

would alleviate the difficulties envisioned by Levinthal by limiting the conformations 

populated in the DSE to a small fraction of all possible conformations. 
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1.1.4 Folding Intermediates 

 Determining the mechanism by which a protein attains its unique native state 

requires the structural characterization of the entire folding pathway. As mentioned 

above, ϕ-value analysis has been useful for characterizing transition states. However, it is 

critical to also assess the partially folded states that become populated en route to the 

native state (35). The formation of intermediates for multidomain proteins is well 

established (36) but the case for small proteins remains unclear (37).  

 Many intermediates are formed via productive folding events (38). In addition, 

off-pathway species can become populated, which must then unfold before joining the 

pathway to the native structure (39). The funnel model suggests that many parallel routes 

are available to reach the native state, and that intermediate species may reflect kinetic 

traps (Fig. 1.1B) (31). Wildegger and Kiefhaber have utilized double-jump folding 

experiments to show that lysozyme refolding can proceed directly to the native state, or 

via such a kinetic trap (40). 

Many protein folding transitions are highly cooperative, implying that 

intermediate species cannot be detected. Some proteins do populate equilibrium 

intermediates that are similar to their kinetic counterparts (41), but this does not appear to 

be universal. It is postulated that intermediates are always present (42). However, due to 

their transient nature time-resolved experiments are required for their characterization. 

Detection of folding intermediates has become a fairly common practice, but their 

detailed structural characterization continues to present a challenge. 
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1.1.5 Misfolding 

 Elucidating protein folding mechanisms remains one of the most ardently pursued 

goals in biology. Much of the interest in solving the protein folding problem stems from 

the fact that many diseases result from misfolding (43). Some misfolding diseases, such 

as cystic fibrosis, stem from a loss-of-function mutation which results in an altered 

protein structure. The other main class of folding disorders involves protein aggregation. 

Diseases of this type, i.e. Alzheimer‟s, Parkinson‟s, type 2 diabetes, and prion diseases, 

have elicited intense research efforts from the medical community due to their prevalence 

in the population and the resulting economic pressure (44). Misfolding intermediates can 

be prone to aggregation and are potentially suitable drug targets. However, akin to their 

correctly folded counterparts, the structural characterization of those species remains a 

challenge. A recent combination of experimental and computational approaches allowed 

for a detailed description of a misfolded intermediate in a small protein domain (45). A 

thorough understanding of protein folding mechanisms will facilitate the development of 

targeted therapeutics (46-48). 

 

1.1.6 Structure Prediction and De Novo Protein Design 

 The ultimate goals of protein folding research are related but distinct: 1) 

predicting the tertiary fold of a protein solely from its amino acid sequence, and 2) 

synthesizing a protein to carry out a desired function. While some success has been 

achieved in predicting folding rates from sequences (49), structure prediction is the 

crucial objective. Good agreement between computational modeling and X-ray or NMR 

structures can be achieved for relatively small proteins but large systems represent a 
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challenge (50). Understanding amino acid positioning within a protein active site is 

straightforward, but elucidating how the remainder of the sequence interacts to achieve 

such positioning remains a mystery. Recently, Koder et al. designed a heme-binding 

oxygen transport protein that exhibited many similar characteristics to natural proteins, 

although the engineered molecules exhibited a higher affinity for oxygen than for carbon 

monoxide (51). Successes in the design of proteins with improved or novel functions will 

likely become more common as new aspects of protein folding are uncovered. 

 

1.2 Studying Protein Folding 

 Protein folding is an extremely rapid process, in most cases complete after only a 

few seconds, with some ultra-fast domains requiring only a few microseconds (52). This 

short timescale can complicate measurements, and thus equilibrium studies are often used 

as a substitute. Much information about protein folding pathways has been garnered from 

equilibrium experiments, which monitor protein structure as a function of denaturant; 

frequently used denaturants include pH, chaotropic agents, and temperature. Many salient 

details regarding in vivo protein folding can be uncovered through in vitro kinetic 

experiments. These studies begin with a denatured protein which is exposed to a rapid 

change in environment to trigger folding. Conventional triggers include rapid mixing 

steps, most commonly stopped-flow, to introduce a pH jump or denaturant dilution (53). 

Photochemical and temperature-jump methods have also been described (54). In addition 

to a folding trigger, kinetic studies also require a suitable detection method, some 

examples of which will be discussed further. 
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1.2.1 Optical Methods 

 

Absorption spectroscopy. While UV-Vis absorption spectroscopy is most commonly used 

for protein concentration measurements, it can also be used to monitor time-resolved 

conformational changes. Proteins themselves do not absorb much light in the UV/visible 

range so this is typically only used for those with external chromophores incorporated 

into their structure. Changes in absorption result from alterations to the environment of a 

chromophore. Two intermediates in the folding of cytochrome c after a pH jump were 

detected with absorption spectroscopy, providing evidence for the proposal of a four-state 

mechanism (53). 

 

Circular dichroism. CD refers to the differential absorption of left- and right-handed 

circularly polarized light within a chiral molecule. CD is most often utilized to investigate 

the protein backbone (55). Characteristic CD profiles are obtained for α-helices, β-sheets, 

and random coils. Thus, the secondary structure of a protein can be interrogated in a 

straightforward manner. 

 

Fluorescence spectroscopy. Aromatic amino acid residues are intrinsically fluorescent, 

although usually only tryptophan fluorescence is measured. The emission properties of 

the Trp side chain are highly sensitive to the solvent environment. The λmax in water is 

around 355 nm, while in a hydrophobic environment (such as the protein core) it is 

around 335 nm (56). Interpretation of fluorescence data is greatly simplified in proteins 

which contain only a single Trp residue. Data analysis for proteins with multiple Trp 
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residues can be complicated but single Trp mutants can be used to deconvolute the 

fluorescence signal and localize the structural changes taking place during folding (57). 

 

Fӧrster resonance energy transfer. FRET involves energy transfer between a donor and 

an acceptor. The emission spectrum of the donor must partially overlap with the 

absorption spectrum of the acceptor. After excitation of the donor, fluorescence intensity 

measured from the acceptor reports on their relative distance. FRET is often termed a 

„molecular ruler‟ for this reason. Care must be taken when choosing the fluorophores for 

protein studies, as large bulky dyes can sometimes interfere with folding. The 

incorporation of fluorescent unnatural amino acids represents an interesting alternative 

(58). FRET studies are particularly intriguing as they offer the possibility of monitoring 

the dynamics of single protein molecules (59). 

 

1.2.2 Nuclear Magnetic Resonance Spectroscopy 

 NMR spectroscopy can provide a comprehensive portrayal of protein dynamics at 

the atomic level. NMR active nuclei, typically 
15

N, 
13

C and 
19

F, can be incorporated into 

protein sequences to act as molecular reporters, along with naturally occurring 
1
H, 

through the use of myriad dynamics techniques (60). 1D 
19

F NMR combined with 

stopped-flow mixing allowed the folding of E. coli DFTR, with engineered fluorinated 

tryptophans, to be followed on the order of seconds (61), however 2D experiments are 

more common. Relaxation dispersion measurements have been used to uncover 

unfolding/refolding events in aMb (62) and a transient folding intermediate in a small 

protein domain (63). A recently described method involving in situ rapid mixing and 
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photo-CIDNP spectroscopy allows for structural transitions on the order of tens of 

milliseconds to be characterized (64). This method, which measures the cross-

polarization of amino acid side chains from an activated aromatic residue, has revealed a 

preformed hydrophobic cluster in the unfolded state of a small Trp-cage protein (65). 

Because 
1
H nuclei result in an NMR signal but 

2
H nuclei do not, NMR is a suitable 

detection method for hydrogen/deuterium exchange experiments (see section 1.4.1) and 

has been used to characterize folding intermediates populated as early as ~0.5 

milliseconds (66). 

 

1.2.3 Computer Simulations 

 While experimental methods routinely interrogate folding processes on the 

(sub)millisecond timescale, they struggle to access faster regimes. Computer simulations 

historically have had the opposite problem; accession of biologically relevant timescales 

requires an enormous amount of computing power and time. This is troublesome because 

experimental validation of computational outputs is required. Since the advent of 

molecular dynamics (MD) in the late 1970s (67) much improvement has been made in 

the time resolution of simulated folding studies (68). Recent work from Shaw and 

coworkers has caused a paradigm shift by extending MD timescales by over two orders 

of magnitude (69).  A new supercomputer, ANTON, has allowed for a greater overlap 

between simulation and experiment. Folding trajectories for many small protein domains 

have been simulated for upwards of 1.1 milliseconds, producing structures that are in 

excellent agreement with their experimentally determined counterparts (34).  
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1.3 Mass Spectrometry 

 MS measures the mass-to-charge ratio (m/z) of gas phase ions. MS was 

introduced nearly a century ago. Unfortunately, traditional ionization sources were too 

harsh for the transfer of large, intact biomolecules into the gas phase. This feat was first 

accomplished nearly 25 years ago with the advent of two „soft‟ ionization techniques. 

The 2002 Nobel Prize in Chemistry was awarded for techniques to identify and 

structurally characterize biomolecules of which Koichi Tanaka and John Fenn shared one 

half for their development of MALDI and ESI techniques, respectively. Over the past 25 

years MS has become a widely used technique for the analysis of biological molecules 

(70). A typical mass spectrometer comprises an ion source, a mass analyzer, and a 

detector.  

 

1.3.1 Ionization Techniques 

1.3.1.1 Matrix-Assisted Laser Desorption/Ionization 

 MALDI utilizes a pulsed laser to desorb biomolecular analytes from a solid 

matrix. Organic molecules in the matrix absorb UV photons and desorb from the surface 

taking proteins with them. Charge is then transferred from the matrix molecules to the 

gaseous proteins. Because MALDI is a pulsed ionization method and produces very low 

charge states, it is most often interfaced with a time-of-flight analyzer (71). Tanaka et al. 

were able to detect singly charged proteins upwards of 25 kDa along with multimers up 

to 100 kDa, albeit with greatly reduced sensitivity (72). Around the same time, Karas and 

Hillenkamp showed that singly charged molecular ions for proteins between ~15-70 kDa 
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could be detected (73). MALDI is still routinely used for protein identification, and it has 

also found applications for tissue imaging (74). 

 

1.3.1.2 Electrospray Ionization 

 ESI was first conceived by Dole et al. over 40 years ago (75). An explosion in the 

usage of ESI-MS occurred after Fenn and coworkers demonstrated its utility for studying 

biological macromolecules (76). ESI introduces analyte ions into the MS directly from 

solution and is thus commonly interfaced with liquid chromatography. Analyte solution is 

pumped through a spray needle which is held at a high potential, ~3-5 kV. In positive ion 

mode, enrichment of positive charges occurs at the needle tip resulting in a Taylor cone 

(Figure 1.3). With the help of a heated, concentric nebulizing gas flow, a mist of solvent 

droplets is emitted toward the MS. The droplets shrink through solvent evaporation until 

they reach the Rayleigh limit (77) at which point Coulombic fission occurs. This process 

of evaporation and fission is repeated until naked gas-phase ions are produced (78). Two 

mechanisms have been proposed for this final step. 

 

Ion evaporation model. The IEM was first put forth by Iribarne and Thompson to 

describe how small molecules became ionized from droplets close to the Rayleigh limit 

(79). In this model, solvated ions are ejected from the droplet surface. Computer 

simulations have shown this to be the likely ionization mechanism for small molecules 

and salt clusters (80, 81). Ahadi and Konermann recently utilized a simple MD model to 

show that the ionization of unfolded protein chains likely proceeds via the IEM as well 

(82). 
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Figure 1.3. ESI Process. Simplified schematic representation of the electrospray 

ionization technique. Red objects represent analyte molecules. 
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Charged residue model. The CRM posits that gas phase ions are produced via complete 

solvent evaporation. Folded globular proteins are thought to become ionized by this 

mechanism, as the maximum ESI-MS charge state for a given protein shows good 

agreement with the Rayleigh charge for a water droplet of the same radius (83). Recent 

MD simulations have provided further evidence supporting the notion that ionization of 

folded proteins proceeds via the CRM (82). 

 

1.3.2 Mass Analyzers 

 Once gas-phase ions have been produced and introduced into the MS, they must 

be separated and detected based on their m/z. Various mass analyzers are available, 

including quadrupole ion traps and ion cyclotron resonance cells. The two most common 

are linear quadrupoles and time-of-flight analyzers.  

 

1.3.2.1 Quadrupole Mass Analyzer 

 A quadrupole is a set of 4 parallel cylindrical rods. An RF voltage and a 

superimposed DC voltage are applied to each opposite rod pair (84). For a given voltage 

setting only ions of a certain m/z will be transmitted through the quadrupole. All other 

ions will collide with the rods due to their unstable trajectories. Sequential transmittance 

of all ions in a given m/z range is accomplished by changing the voltages in small steps. 

Quadrupoles exhibit limited resolution and mass range. Therefore, they are often coupled 

to other mass analyzers, such as a time-of-flight unit. In such a situation, the quadrupole 

can be operated in RF-only mode (with no DC voltage). In this case the quadrupole acts 

as an ion guide that allows transmittance of most m/z simultaneously.  
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A benefit of linking two analyzers in tandem is the possibility to carry out 

MS/MS, or tandem-MS, measurements. In these experiments, the first quadrupole 

voltages are „parked‟ to allow transmittance of ions of a certain m/z. These selected ions 

are then fragmented in a collision cell, and the resulting fragments are detected in the 

second mass analyzer. Quadrupole time-of-fight (Q-TOF) mass spectrometers can easily 

be interfaced with liquid chromatography systems and have thus become the workhorses 

of the proteomics and pharmaceutical industries. 

 

1.3.2.2 Time-of-Flight Mass Analyzer 

 Ions are separated in a TOF analyzer based on their m/z. An electric field is 

applied to a packet of ions and this potential energy is transformed into kinetic energy as 

the ions are accelerated through the TOF tube.  
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where L is the path length. A time-to-digital converter is used to transform the measured 

drift times into a mass spectrum. 

The applied electric voltage in the TOF may not affect all ions of a given m/z 

equally, resulting in a distribution of kinetic energies and thus flight times (85). This is 

seen as peak broadening that decreases resolution in the mass spectrum. The issue can be 

addressed by incorporating a reflectron (Fig. 1.3). This device acts as an ion mirror and 

consists of a stack of rings with increasing potential. Ions with larger velocities will 

penetrate deeper into the reflectron, while slower ones will follow a shallower trajectory. 

This change in path length compensates for slight differences in kinetic energy and 

allows all ions of a given m/z to be detected simultaneously, improving peak resolution 

by a factor of ~5. 

 

1.3.3 Protein Folding Studied by Electrospray Mass Spectrometry 

 The protein charge state distribution seen in an ESI mass spectrum has been 

shown to be dependent on its solution phase conformation (86) and this feature has been 

exploited in protein folding studies (87). While equilibrium studies have been performed 

in this way (88), the fast detection of MS provides the opportunity to investigate kinetic 

folding processes (89) and even enzymatic reactions (90). Such time-resolved 

experiments utilize solution-phase mixing interfaced directly with a mass spectrometer 

(91, 92). Additional structural information can be obtained through the incorporation of a 

conformationally sensitive labeling step prior to MS injection. Various such labeling 

strategies will be discussed in the following section. 
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Figure 1.4. Schematic of a Q-TOF. Simple representation of the major components of a 

quadrupole time-of-flight mass spectrometer. The blue line indicates the path travelled by 

ions. 
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 1.4 Protein Labeling 

Most optical techniques only report on global structural features of proteins. To 

garner detailed mechanistic insights into protein structure, dynamics, and folding, 

spatially resolved information is required. There are two general methods that can be 

coupled to MS for such a purpose: hydrogen/deuterium exchange (HDX) and covalent 

labeling.  In broad terms, HDX monitors hydrogen bonding patterns in a polypeptide 

backbone and covalent labeling probes the solvent accessibility of amino acid side 

chains. Thus, results obtained from these two techniques are complementary and can 

provide a comprehensive picture of the protein of interest (93). 

 

1.4.1 Hydrogen/Deuterium Exchange 

The exchange of hydrogens attached to electronegative heteroatoms in proteins 

with deuterium from the solvent was first described by Linderstrøm-Lang in the early 

1950s (94). The kinetics of HDX, and their dependence on temperature and pH have 

since been characterized (95) as well as the effects of neighboring amino acid residues 

(96). The main principle of HDX is that exposed hydrogens will exchange with solvent 

quite rapidly while those involved in hydrogen bonds, as in the case of α-helices and β-

sheets, will exchange much more slowly. Significant mechanistic understanding of HDX 

has come from NMR experiments conducted by Englander and coworkers (97). The 

nuclear spin of hydrogen (
1
H) gives rise to an NMR signal while that of deuterium (

2
H) 

does not, making NMR a preferred readout for hydrogen exchange experiments. Many 

significant discoveries have been made with this method (98). Hierarchical folding 
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pathways for model proteins such as cytochrome c (99) and apomyoglobin (66) have 

been characterized. 

In addition to altering nuclear spin, the exchange of hydrogen for deuterium also 

increases the mass of an analyte. This effect can be exploited for MS experiments (100). 

The classic “bottom-up” approach was first described by Zhang and Smith nearly 20 

years ago (101) and it involves monitoring the mass increase of proteolytic peptides, as a 

function of deuteration time. Bottom-up HDX-MS has been utilized extensively ever 

since (102), including the study of changes in receptor dynamics after drug binding 

protein-interactions (103), the thermodynamic stability of proteins (104), and the cyclic 

motions of molecular machines (105). Pulsed labeling methods have been described 

whereby the hydrogen bonding status of folding intermediates can be reported, often with 

single-residue resolution (106), however structural data should be interpreted with 

caution due to the basic pH required for labeling (107). Despite being widely used, HDX-

MS has two main drawbacks that must be addressed: 1) deuterium scrambling and 2) 

back-exchange.  

Akin to the mechanism of peptide fragmentation (108), deuterium scrambling is 

the process by which protons and deuterons can migrate along the backbone of a 

collisionally activated peptide, thus reducing the measured spatial resolution (109, 110). 

Radical-based fragmentation techniques such as electron capture dissociation (ECD) and 

electron transfer dissociation (ETD) have been described as alternatives to classical 

collision techniques. They have been shown to be less sensitive to neighboring amino 

acids, resulting in a higher sequence coverage (111) as well as having the capability to 

maintain the solution deuteration pattern of small peptides (112). Subsequent extension to 
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intact proteins have shown good agreement with NMR measurements with near single 

amino acid resolution (113, 114). These “top-down“ approaches are conducted by 

fragmentation of intact proteins, and hence they do not require proteolytic digestion. A 

combination of proteolytic digestion and electron-based fragmentation has been termed 

“middle-down“. This approach is capable of measuring accurate deuteration levels with 

amino acid resolution as in “top-down“ experiments but with simplified data analysis due 

to peptide, rather than protein, precursor ions (115).  

Back exchange is another issue that must be considered. In experiments involving 

proteolytic digestion, sample clean-up and peptide separation is performed via liquid 

chromatography (LC) prior to MS analysis. LC is performed with a gradient of aqueous 

and organic solvents which implies that deuterated peptides are in contact with protiated 

water for much of the analysis. This allows deuterium to exchange with hydrogens from 

the LC solvent, thereby diminishing the amount of structural information. The inclusion 

of fully-labeled control samples can correct back-exchange to some extent.  

 

1.4.2 Covalent Labeling 

An entirely different MS-based structural approach follows a strategy where the 

target protein is modified with covalent labels. This provides the opportunity for 

extensive downstream sample handling such as dialysis, lyophilization, and 

chromatography. The amount of labeling achieved at any given site is modulated by both 

the intrinsic reactivity of the amino acid with the label and the solvent accessibility of the 

side chain. Figure 1.5A depicts the typical workflow in a covalent labeling experiment. 

How labeling can report on various protein conformations is shown in Figure 1.5B. 
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Extensive labeling is seen for unfolded proteins, whereas the decreased solvent 

accessibility of the folded state results in fewer modifications. Side chain protection at 

protein-protein binding interfaces results in protection as well. Covalent labels fall into 

two general categories, those that react with specific amino acids and those that exhibit 

more promiscuous reactivity. 

 

1.4.2.1 Specific Labeling 

 Specific labeling reports directly on solvent accessibility since all labeled sites 

will have identical reactivities. Common targets are hydrophilic residues on the protein 

surface such as Lys, Arg, Asp, Glu, and Cys. Predictable mass increases at labeled 

residues can be easily tracked by MS. Many different labeling agents targeting various 

amino acids have been described in the literature (116) but discussion will be limited to a 

select few. 

 

Lysine modification and cross-linking. The positively charged side chain of lysine 

provides an ideal modification target due to its propensity to reside on protein surfaces. 

Acetylation of exposed lysines with MS detection dates back 20 years (117). Most often 

lysine modification is utilized to map protein binding interfaces such as HIV-1 reverse 

transcriptase contacts within the viral RNA:tRNA complex (118). While many lysines are 

solvent exposed, some are globally protected within the protein core. Fitzgerald and 

coworkers monitored the modification of buried lysines as a function of denaturant 

concentration to investigate the thermodynamic stability of proteins in a multicomponent 

mixture (119). The surface affinity and relatively high abundance of lysines has also led 
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Figure 1.5. Covalent labeling. (A) Typical workflow of a covalent labeling experiment. 

Proteins are labeled in solution and digested. Resultant peptides are separated and 

detected with LC-MS. Label site determination is achieved through MS/MS experiments. 

(B) Depiction of how the extent of labeling reports on the degree of side chain burial. 
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to their being used in crosslinking experiments. These studies use bifunctional molecules 

of varying lengths to determine distances between lysines on a protein or within 

interacting proteins (120). Crosslinking data recently provided distance constraints for 

computational modeling that determined the subunit arrangement of a eukaryotic 16-mer 

chaperonin (121). 

 

Carboxylate labeling. Similar to lysine, aspartic and glutamic acid are abundant in 

proteins and most often found on the surface. Mapping protein solvent accessible surface 

area via modification of acidic residues has forged ahead through the efforts of Gross and 

coworkers. The original study used glycine ethyl ester and MS to determine the 

orientation of the FMO antenna protein on a bacterial membrane (122). Recently the 

method has been extended to monitor differences in solvent accessibility of multiple 

conformational states of calmodulin (123). 

 

Thiol labeling. Cysteine residues not involved in disulfide bridges contain a free –SH 

group that is available for modification. Such free Cys residues are rare in most proteins. 

Genetic engineering, however, allows the introduction of additional Cys residues. Due to 

the small, polar nature of the side chain these mutations can be tolerated to a far greater 

extent than Lys, Glu, or Asp (124). While the solvent accessibility of Cys residues as a 

function of denaturant has led to structural characterization of protein folding 

intermediates under equilibrium conditions (125), thiol labeling has predominantly been 

used in kinetic experiments. While many amino acids require extended incubation with a 

labeling reagent, the high reactivity of the -SH allows labeling to be completed in a few 
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milliseconds.  As a result, the temporal changes in Cys labeling have provided structural 

information on the folding pathways of proteins such as barnase and monellin (126-128). 

 

1.4.2.2 Non-Specific Labeling 

 While residue-specific labeling can simplify data analysis the spatial resolution 

often suffers. Increased sequence coverage can be attained through the combination of 

multiple labeling reagents (129). A conceptually simpler method is the use of semi- or 

non-specific labels. Vachet and coworkers have shown that diethylpyrocarbonate (DEPC) 

can modify Ser, Thr, His, and Tyr residues resulting in ca. 25% coverage of an average 

protein. Labeling times as short as a few minutes provide significant modification levels 

with minimal perturbation to protein structure (130). Jumper and Schriemer described a 

method for interrogating protein topography via production of carbene labels by 

photolysis of a diazarine-modified precursor (131). This carbene method provided good 

temporal resolution, as well as the potential to probe every amino acid in a protein 

sequence. By far however, the preferred non-specific labeling method for biomolecular 

structure analysis has been the production of hydroxyl radicals (·OH) (132). 

 

1.4.3 Hydroxyl Radical Labeling 

 In 1978 Galas and Schmitz introduced the term footprinting to describe 

experiments that sought to determine regions of nucleic acids that were protected from 

nucleases by proteins (133); the extension to proteolytic cleavage of proteins came much 

later (134). This term persisted when researchers began to use hydroxyl radicals rather 
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than enzymes to cleave nucleic acids (135). Hydroxyl radical footprinting continues to be 

used to study dynamics of nucleic acids in both equilibrium and time-resolved 

experiments (136, 137),  

The pioneering work of Chance and coworkers showed that ·OH could modify 

solvent exposed amino acid side chains of a protein without backbone cleavage (138). 

The term “footprinting” is now commonly used for hydroxyl radical labeling of protein 

surfaces (139), binding interfaces (140), and folding mechanisms (141). While hydroxyl 

radicals have the potential to modify any of the 20 amino acids, only ~50% are typically 

seen in a protein labeling experiment. The most reactive residues tend to be the sulfur-

containing side chains (Cys and Met), followed by the aromatics (Trp, Tyr, Phe). Other 

commonly oxidized side chains are those of His, Leu, Ile, Val, Pro, Glu, and Arg. The 

oxidation of these side chains can progress through complex mechanisms which have 

been well described (142, 143). The most frequently observed oxidation products involve 

the incorporation of an oxygen atom, resulting in a +16 Da mass shift, although other 

products are possible. Some typical oxidation products are shown below. 
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There are several radical generation approaches for protein labeling studies, such as 

Fenton chemistry (144), electrochemistry (145), and corona discharge methods (146, 

147). Labeling has been shown to be rather insensitive to the method used, however only 

two have really gained a foothold in the field. 

 

1.4.3.1 Radiolysis of Water 

The generation of ·OH directly from water via synchrotron radiation for protein 

structural studies was pioneered by Chance when he utilized the amount of labeling of 

aMb as a function of denaturant to probe its unfolding pathway (148). A series of articles 

by Xu and Chance outlined much of the chemistry involved in ·OH labeling (149-151). 

Also, those authors determined a reactivity series for residue within proteins that was in 
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accord with published rate constants for the free amino acids (152). ·OH labeling via 

millisecond X-ray radiolysis of water has been used by Chance and coworkers to gain 

insights into enzyme mechanisms (153) and the structure/function relationship of integral 

membrane proteins (154). Since access to synchrotron light sources is limited, the Chance 

group has maintained a near monopoly in this field. 

 A water radiolysis method with broader accessibility uses γ-rays to generate ·OH. 

Because of the relatively long labeling time required (minutes), γ-ray radiolysis is well 

suited for equilibrium experiments and has been exploited mainly in differential studies. 

Experiments of this type seek to gain topological information on discrete conformational 

states of a protein. Examples include the calcium induced conformational change of 

calmodulin (155), the effect of heme removal from myoglobin (156), and the prepore to 

pore transition of the protective antigen from Bacillus anthracis (157). 

To overcome the deficiencies of limited synchrotron access and long labeling 

times in γ-ray studies, Sharp and coworkers recently used a pulsed electron gun to 

generate ·OH from water on the submicrosecond timescale (158). This proof-of-principle 

experiment monitored the solvent accessibility of residues within model proteins 

ubiquitin and β-lactoglobulin. The extremely fast labeling time achieved with this method 

is highly desirable for the study of protein folding in a time-resolved manner, however 

this avenue remains unexplored. 
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1.4.3.2 Photolysis of Hydrogen Peroxide  

 Early studies mapped protein surfaces using concentrated (~15% v/v) H2O2 and 

prolonged exposure to low intensity UV light (159). While this method produces 

modified proteins, spurious „background‟ oxidation can occur from the presence of the 

peroxide. More recently, a photolytic approach has evolved for generating radicals from 

dilute (~0.1% v/v) solutions of peroxide via homolytic cleavage with a pulsed UV laser  

(160, 161). Non-irradiated control samples have shown that incubation of the protein with 

such low concentrations of peroxide exhibit very little background oxidation. A seminal 

paper by Hambly and Gross described the pulse-labeling approach in combination with a 

continuous-flow reaction setup (160). This continuous-flow system is preferable to the 

static system of Aye et al. (161) because with a simple plug flow approximation, „single-

hit‟ conditions can be attained. „Single-hit‟ refers to the regime in which each protein 

molecule only “sees” one labeling pulse. This can be achieved by adjusting the flow rate 

and laser frequency such that two adjacent irradiated volumes are separated by a non-

irradiated volume (Figure 1.6). Oxidation has been shown to disrupt protein structure 

(162). A second labeling pulse may therefore modify side chains that were not initially 

solvent exposed, resulting in artifactual data. Plug flow constitutes a useful zero-order 

approximation. However, a more accurate picture of the dynamics within the reaction 

chamber takes into account laminar flow (163). Hambly and Gross also showed that the 

·OH lifetime in solution can be tuned via the addition of radical scavengers, such as 

glutamine. This results in a labeling pulse as short as ~1 µs (160) which is shorter than 

oxidation-induced protein unfolding (164).  
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Figure 1.6. Photolysis experimental setup. Protein and peroxide are mixed and pumped 

through a UV transparent capillary onto which the laser is focused. Proper adjustment of 

flow rate and laser frequency leads to non-irradiated solution separating adjacent 

irradiated volumes. 



35 

 

  ·OH labeling by laser photolysis of peroxide has been used in many recent protein 

structural studies. Most seek to identify differences in solvent accessibility between 

multiple states of a protein. The interface of the carbohydrate-binding, homodimeric 

protein galectin-1 was characterized through comparison of labeling levels for the 

monomers and for the dimer. Results were shown to be in accord with theoretical solvent 

accessibilities calculated from MD simulations (140). Similarly, the conformational 

changes in calmodulin concomitant with peptide binding have been described (165). Pan 

et al. extended the methodology to look at exposed Met residues of the integral 

membrane protein bacteriorhodopsin (BR) (166). 

 The very short labeling pulse achieved in laser photolysis makes it ideally suited 

to investigate rapid, time-resolved changes in protein structure however there is a dearth 

of such studies in the literature. Following work that will be presented later in this thesis, 

Pan et al. used rapid mixing followed by oxidative labeling to explore the BR folding 

mechanism (141). A temperature-jump method has also recently been described that is 

capable of labeling proteins that fold on the sub-millisecond timescale (167).  
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1.5 Scope of Thesis 

 This work extends the photochemical oxidation method developed by Hambly 

and Gross (160) to study protein folding transitions through the combination of 

continuous-flow rapid mixing, pulsed labeling, and MS detection. The extremely short 

radical lifetime makes such a method ideally suited to study rapid structural changes. 

Prior to the work described here, ·OH labeling had only been utilized for equilibrium 

measurements.  

 We will describe the first application of pulsed oxidative labeling to characterize 

transient protein unfolding intermediates, along with a comprehensive data analysis 

strategy to deal with differing peptide reactivities (Chapter 2). The folding pathway of a 

small model protein is then characterized (Chapter 3). In both cases, the labeling data are 

correlated with optical measurements. The approach is extended to monitor the folding 

and assembly of a protein complex (Chapter 4). Finally, we apply oxidative labeling 

method to explore the folding of a large protein with direct implications in human disease 

(Chapter 5). These results are explicitly compared with hydrogen bonding data from 

HDX experiments. 

 The labeling approach introduced here provides an avenue for obtaining residue-

resolved structural information regarding side-chain accessibility during rapid protein 

folding processes, with application to other biomolecular events as well. The combination 

of the resultant labeling data with those obtained from HDX allows for a comprehensive 

view of structural changes that occur during protein folding. 
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Chapter 2 - Structural Characterization of Short-Lived Protein 

Unfolding Intermediates by Laser-Induced Oxidative Labeling and 

Mass Spectrometry 

 

2.1 Introduction 

More than forty years after Anfinsen's seminal studies (1), the mechanisms of 

protein folding and misfolding remain a focal point of research (2-4). The structural 

characterization of partially structured intermediates remains one of the most important 

methods for gaining insights into folding processes. While it is possible to study some 

intermediates under equilibrium conditions (5-7), examination of these species in kinetic 

studies is a more direct approach (8). Unfortunately, experiments of this kind are 

complicated by the very short lifetimes (seconds to microseconds) of these conformers. 

In addition, many transient structures do not become strongly populated during folding 

(9). As a result, questions remain as to whether these elusive species are on- or off-

pathway (10), whether they represent sequential or parallel pathways (11), whether they 

are an impediment to folding (12), or whether they speed up the conformational search of 

the polypeptide chain (13). Other questions are related to possible interactions of 

intermediates with protein cofactors (14). Transiently populated conformers have also 

been shown to be involved in the unfolding of many proteins (15, 16). Optical 

spectroscopy in combination with rapid mixing (17) is a widely used approach for 

monitoring the kinetics of folding and unfolding. However, the information obtained 

from spectroscopic probes is typically limited to global structural features. A more 
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detailed characterization of intermediates has first become possible through the 

combination of heteronuclear NMR and pulsed hydrogen/deuterium exchange (HDX)  

(18, 19). 

 In recent years mass spectrometry-based techniques have emerged that 

complement many of the classical methods for studying protein structure and dynamics. 

For example, electrospray ionization (ESI) charge state distributions are now being 

routinely used for monitoring conformational changes (20-22). ESI-MS also allows 

folding transitions to be studied by measuring the extent of crown ether adduction to 

lysine side chains (23). In addition, ESI-MS provides direct information on protein-

protein and protein-ligand interactions (24-27). Various laboratories have probed the 

structure of transient (un)folding intermediates by amide HDX pulse labeling with MS 

detection (28-30). Spatially-resolved information can be obtained in these experiments 

through the chromatographic separation of protein fragments after peptic digestion (31, 

32). 

 Covalent labeling with MS detection represents another widely used approach 

(33). These experiments are based on the fact that the degree of solvent exposure 

modulates the reactivity of target sites on the protein. Sterically protected sites are labeled 

much less extensively than those that are freely accessible (34). For example, the folding 

mechanism of barstar has recently been studied by thiol pulse labeling of a series of Xaa 

 Cys constructs (35). 

 Considerable efforts are currently being undertaken to develop methods involving 

hydroxyl radicals (·OH) as a covalent probe (36). The attractiveness of ·OH for oxidative 

labeling stems from its small size, its non-selective reactivity, and the fact that it forms 
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stable covalent modifications that are retained during sample processing. Hydroxyl 

radicals react much faster with side chains than they do with the backbone (36), such that 

protein cleavage does not complicate the analysis. The extent to which individual side 

chains undergo oxidative labeling is determined by a combination of solvent accessibility 

and intrinsic reactivity (37). The sulfur-containing residues Cys and Met are most 

reactive, followed by the aromatic side chains Trp, Tyr, and Phe. Also His, Leu, Ile, Arg, 

Lys, Val, Pro, Gln, and Glu represent potential modification sites, whereas the remaining 

residues are less reactive (36). Although OH labeling proceeds through fairly complex 

mechanisms (38) the major pathways result in oxygen incorporation, leading to 

characteristic +16 Da adducts (39). Hydroxyl radicals can be generated in various ways, 

e.g., by using Fenton chemistry (40) or by approaches involving endogenous transition 

metal centers (41), γ- (42) and X-ray radiolysis of water (36), or photoinduced activation 

of H2O2 (43). Techniques involving an electrical discharge (44) or electrochemical flow 

cells (45) have also been described. 

 A particularly interesting strategy is the photolysis of H2O2 into ·OH radicals by a 

nanosecond-pulsed UV laser (46-48). Suitable radical scavengers can reduce the duration 

of the labeling pulse down to approximately 1μs (46). Although the technique seems 

ideally suited for the structural characterization of transient protein conformers, it has 

thus far only been applied for the structural characterization of proteins under equilibrium 

conditions (46-48). 

 Using myoglobin as a model system, this study marks the first application of 

laser-induced OH labeling for the characterization of short-lived protein conformers in 

kinetic experiments. Native holo-myoglobin (hMb, 17568 Da) adopts a compact globular 
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structure involving eight -helices (A-H). The prosthetic heme group is bound in a 

hydrophobic pocket where it forms numerous noncovalent contacts with the protein. The 

central heme iron is coordinated on its proximal side by His93 of helix F, whereas the 

sixth (distal) coordination site is occupied by a water molecule that is hydrogen bonded to 

His64 of helix E (49). Acid-induced denaturation leads to extensive unfolding and 

disruption of the heme-protein contacts. Previous work has demonstrated that this 

conversion to apo-myoglobin (aMb, 16952 Da) is not a simple one-step process, but that 

considerable conformational changes precede the loss of heme (50-52). By using 

continuous-flow mixing in conjunction with laser-induced oxidative labeling and MS-

based peptide mapping, this work provides detailed insights into the kinetic mechanism 

of acid-induced hMb denaturation. 

 

 

2.2 Experimental 

2.2.1 Materials 

Equine skeletal muscle (met)myoglobin, bovine ubiquitin, glutamine and 

angiotensin I were obtained from Sigma (St. Louis, MO). LeuEnk and bradykinin were 

supplied by Bachem (King of Prussia, PA). All chemicals were used without further 

purification.  

 

2.2.2 Optical Spectroscopy 

UV-Vis stopped-flow experiments were carried out on a Biologic SFM 4S/Q 

(Molecular Kinetics, Indianapolis, IN) system operated in absorbance mode. Absorption 
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spectra were recorded on a Cary-100 Varian UV-Vis spectrophotometer (Palo Alto, CA). 

All solutions were identical to those used for oxidative labeling, except for the presence 

of H2O2. 

 

2.2.3 Continuous-Flow Mixing and Radical Labeling  

Kinetic protein unfolding experiments were performed with a custom-built three 

syringe continuous-flow setup (Figure 2.1), which represents a hybrid between the device 

described by Hambly (46, 47), and that employed in our earlier work (51). All 

connections were made of fused silica capillaries (TSP100170 Polymicro Technologies, 

Phoenix, AZ, inner diameter 100 m), and mixing "tees" were manufactured as described 

previously.(51) Syringe 1 contained 40 μM native hMb, 600 mM NaCl, 60 mM 

glutamine and 10 mM sodium phosphate buffer at pH 6.5. This was combined with 0.2% 

(v/v) (ca. 80 mM) H2O2 from syringe 2 at mixer M1. Previous work has shown that the 

mere presence of H2O2 in this concentration range does not affect the structure and 

stability of proteins, as long as no oxidation  reactions  take  place  (53).  Syringes 1 and 2 

were  advanced  at 5 μL min
-1

 using a syringe pump (Harvard Apparatus, Boston, MA). 

After a 4 s pre-mixing step (9 cm distance), the contents of syringe 3 (5 mM HCl in H2O) 

were added in a 1:1 ratio at mixer M2 to initiate unfolding of the protein within the 

reaction capillary. The pH downstream of the second mixer was 3.2 at a total flow rate of 

20 μL min
-1

. A KrF excimer laser (GAM EX 100/125, Orlando, FL) producing 18 ns 

pulses at 248 nm, 16 Hz, and 62.5 mJ per pulse was used to generate hydroxyl radicals 

through photolysis of H2O2 within the reaction capillary. The presence of 15 mM 

glutamine as a radical scavenger in the final mixture leads to quenching of the labeling 
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Figure 2.1. Schematic diagram of the 3-syringe continuous-flow rapid mixing setup used 

for all labeling experiments. Details are provided in the text. 
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SYRINGE 3: HCl 
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reaction within ca. 1 s (47). The laser beam was focused onto the capillary by means of 

a 500 mm convex lens, with a capillary-lens distance of 30 cm. UV transparent windows 

were created by removing the polyimide coating from the reaction capillary using a 

butane torch. The width of the laser spot at the capillary was determined to be ca. 2 mm, 

corresponding to a volume of about 16 nL being irradiated during each laser pulse. As 

previously discussed by Hambly and Gross (46, 47), artifacts caused by protein oxidative 

damage should not occur under these conditions due to (i) the extremely short duration of 

each labeling pulse, and (ii) the fact that no protein molecule is exposed to more than one 

pulse. Irradiation windows were located along the reaction capillary at distances 

downstream of mixer M2 corresponding to 50 ms (2.1 mm), 500 ms (2.1 cm), and 10 s 

(42 cm). The relationship between window position and reaction time is given by 

distance = (flow rate) x (reaction time) / (cross-sectional area). The reaction capillary 

was mounted on a customized sliding cart system that allowed for the reproducible 

switching between window positions. Samples for time zero were produced using the 

procedure outlined above, except that syringe 3 contained H2O instead of HCl solution 

such that triggering of the unfolding reaction was avoided. The use of different solution 

conditions for time zero and for the kinetic samples is of potential concern, since the 

reactivity of hydroxyl radicals may be affected by the solvent environment (37). Control 

experiments were therefore carried out to compare the extent of covalent labeling for the 

model peptides bradykinin, LeuEnk, and angiotensin I. The oxidation levels of all three 

test compounds were found to be virtually indistinguishable with and without HCl 

(Figure 2.2), indicating that the OH intrinsic reactivity is very similar under both 

conditions. This conclusion is consistent with earlier -ray covalent labeling experiments 



60 

 

 

A
R

e
la

ti
v
e
 E

S
I-

M
S

 I
n
te

n
s
it
y

D

m/z

530 535 540 545 550

B

E

648 654 660

C

555 560 565 570 575

F

556 562 568 574

[M+2H
+
]
2+

[M+2H
+
+16]

2+

[M+2H
+
]
2+

[M+2H
+
+32]

2+

[M+2H
+
+16]

2+

[M+H
+
+16]

1+

[M+H
+
]
1+

 

 

Figure 2.2. pH independence of peptide labeling. Bradykinin (A,D), angiotensin I (B,E), 

and leucine enkaphalin (C,F) were mixed with hydrogen peroxide in either phosphate 

buffer at pH 7 (A-C) or 10 mM hydrochloric acid (D-F) and exposed to laser irradiation.  
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(37). Based on these observations the inclusion of non-acidified time zero samples in our 

unfolding experiments is justified. hMb was manually mixed with HCl to characterize the 

endpoint of the reaction. The resulting solution was transferred into syringe 1 after 5 

minutes. Syringe 3 contained glutamine and NaCl, such that the final composition of the 

mixture was the same as for the other kinetic time points. 

 The capillary outflow from a sufficient number of laser shots (typically about 250 

L) was collected in a microcentrifuge tube that contained 12 μL 170 mM phosphate 

buffer and 0.17 μM catalase at pH 6.8. Catalase was employed for inactivating residual 

H2O2, thereby avoiding secondary oxidation reactions (54). Part of each sample was 

retained for intact protein analysis, and the remainder (ca. 200 L) was digested with 

trypsin for 24 h at 37 °C using a 1:20 (w/w) enzyme:myoglobin ratio. The digests were 

lyophilized and resuspended in 200 μL of an aqueous solution containing 120 μM 

bradykinin and 5 μM ubiquitin as internal intensity standards. These samples were flash-

frozen in liquid nitrogen and stored at -80 C until further analysis.  

 

2.2.4 LC/ESI-MS and Data Analysis 

All experiments were performed on a Q-TOF Ultima API mass spectrometer 

(Waters, Milford, MA) equipped with a Z-spray electrospray ionization (ESI) source. 

Spectra were acquired in positive ion mode at a sprayer voltage of 3 kV and a desolvation 

temperature of 150 °C. TOF spectra were acquired in V-mode at a resolution of ca. 

10,000 (fwhm). The mass spectrometer was coupled to a Waters 1525μ HPLC system 

employing either a C4 (Symmetry 300) 2.1 mm x 100 mm reversed-phase column for 

protein analysis, or a C18 (Symmetry 300) 2.1 mm x 100 mm column for peptide 
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analysis. Elution was carried out using a water/acetonitrile gradient in the presence of 

0.05% trifluoroacetic acid at a flow rate of 100 μL min
-1

. The identity of tryptic peptides 

was confirmed by tandem mass spectrometry experiments carried out in data-dependent 

acquisition mode. Spectra for the intact protein are presented as deconvoluted mass 

distributions, obtained by using the MaxEnt software supplied by the instrument 

manufacturer. 

 A number of control experiments had to be carried out in order to characterize the 

performance of the continuous-flow setup (Figure 2.3). Mb samples without both H2O2 

and laser exposure showed minor satellite peaks representing trace impurity adducts, 

which are commonly observed in ESI-MS. The level of protein background oxidation 

caused by peroxide in the absence of irradiation was minimal, as can be seen by 

comparing the two "no laser" spectra in Figure 2.3. Laser exposure of native hMb in the 

presence of H2O2 (with water in syringe 3) leads to a series of + 16 Da adducts in the 

mass distributions. Included in Figure 2 is an overlay of three mass distributions obtained 

by irradiating the solution at the t = 50 ms, 500 ms, and 10 s time points downstream of 

mixer M2. Evidently, the three mass distributions are virtually indistinguishable, 

demonstrating that the kinetic time points are not affected by artifacts due to, e .g., 

irreproducible positioning of the capillary within the laser beam, or differences in the 

light transmission of the three optical windows. In addition, these data confirm complete 

mixing downstream of M2, otherwise the oxidation levels of the three time points would 

be inconsistent due to differences in local protein concentration (55). Proper mixing was 

further confirmed by optical inspection of the tees in control measurements involving 

permanganate solutions and water (data not shown). 
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Figure 2.3. Deconvoluted ESI mass distributions of myoglobin, illustrating the results of 

various oxidative labeling control experiments. H2O was used instead of HCl in syringe 

3, i.e., unfolding was not triggered for any of the experiments shown here. Further details 

are provided in the text. 
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Similar to previous studies in other laboratories (36), the oxidation levels of 

specific protein regions were monitored by tracking the intensity of unmodified tryptic 

peptides as a function of time t. The reasons for choosing this strategy are outlined in the 

Results and Discussion section. Signal intensity values for each unmodified peptide were 

determined as ratio R of the peptide:bradykinin peak heights from the extracted ion 

chromatograms. This procedure of relating measured peptide intensities to the internal 

bradykinin standard compensates for possible sensitivity fluctuations of consecutive 

LC/MS analyses. The experimental error of the measured R values was found to be  5%, 

determined by comparing the bradykinin signal intensity to that of a second internal 

standard (ubiquitin) in a series of runs. A slight complication is the extremely high 

reactivity of the Met side chains in peptides T7 and T17, which resulted in very low 

signal intensities of the unoxidized species even at time zero. This behavior is consistent 

with the results of earlier work, which found extensive oxidation even for deeply buried 

Met residues (43). For the purpose of data analysis this problem can be overcome in the 

current study by simply considering the +16 Da versions of T7 and T17 as "unmodified" 

peptides. 

 The relative signal intensities measured for each peptide were used for calculating 

normalized oxidation levels according to  
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R(t) is the relative signal intensity of a particular unmodified peptide at unfolding time t, 

R(0) is the corresponding value of the time zero control (native protein), and R() is that 

of the final time point (5 min, after unfolding has gone to completion). 

 Except for the use of logarithms, Equation 2-1 mimics the framework commonly 

employed in HDX/MS measurements (56). Importantly, the incorporation of logarithms 

for the strategy used here ensures that the data analysis is independent of experimental 

parameters, e.g., the duration of OH exposure, the radical concentration, and the intrinsic 

reactivity of individual protein segments. Elimination of these factors removes possible 

ambiguities as to how they might affect the measured data. To see why these parameters 

cancel out we have to consider that the signal intensity R for each unmodified protein 

segment (equivalent to a tryptic peptide) depends on both the unfolding time t and the 

labeling time , so R = R(t, ). During labeling the hydroxyl radical concentration 

decreases with a pseudo-first order rate constant a due to reactions with the glutamine 

scavenger and other solutes according to )exp(][.)]([. 0  aOHOH  (46). The 

oxidation kinetics are therefore governed by 

 

  ),()exp(])[.(
),(

0int 



tRaOHtk

d

tdR
     (2-2) 

 

where the second-order rate constant  


n

i ikk
1int represents the intrinsic reactivity of 

each segment as the result of n oxidative reaction pathways. A key element in Equation 

2-2 is the conformational term (t), which reflects the solvent exposure of the protein 

segment as a function of unfolding time, with 0  (t)  1 (37). Complete protection from 
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radical attack corresponds to (t) = 0, whereas for full solvent exposure (t) = 1. 

Separation of variables yields 
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where R(t,) represents the peptide intensity after oxidative labeling has gone to 

completion. Because [OH]0 exceeds the protein concentration by at least two orders of 

magnitude (46), and because t  >> a
-1

 Equation 2-3 can be treated under pseudo-first 

order conditions, resulting in 
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This is equivalent to 
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where R(t) = R(t,). When substituting this expression into Equation 2-1 it is seen that  
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In other words, the normalized oxidation level as defined in Equation 2-1 provides direct 

information on the solvent exposure of the individual protein regions. All other 

parameters that could potentially complicate the analysis (R0, kint,  [OH]0, a) have been 

eliminated. 

 

2.3 Results and Discussion 

2.3.1 Kinetics of Myoglobin Unfolding  

Prior to studying the acid-induced denaturation of hMb by laser-induced oxidative 

labeling, the reaction kinetics were monitored by stopped-flow spectroscopy. Earlier 

studies of this process had been carried out in the absence of salts (51, 57), whereas the 

current work employs a relatively high ionic strength (150 mM NaCl). A pH jump from 

6.5 to 3.2 under these conditions results in dramatic changes in the Soret region of the 

heme absorption spectrum (Figure 2.4A). The decay of the native heme-protein complex 

can be tracked at 409 nm, whereas accumulation of protein-free heme is observable as a 

slow absorption increase at 341 nm (Figure 2.4B). As reported previously (51, 57) the 

formation of an unfolding intermediate is clearly seen at 441 nm, where the kinetics 

exhibit a characteristic rise, followed by an absorption decrease. The shape of this trace 

reveals that the intermediate is strongly populated for reaction times around 500 ms. The 

data measured at 409 and 441 nm are well described by bi-exponential fits with apparent 

rate constants of about 10 s
-1

 and 1.4  s
-1

 (see figure caption for details). In contrast, the 

341 nm trace exhibits a conspicuous "hook" at early reaction times, requiring the 

inclusion of a third exponential with 59 s
-1

. This feature reveals the presence of an 

additional "early" intermediate, that is formed within tens of milliseconds after acid 
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Figure 2.4. (A) Absorption spectra of native hMb at pH 6.5, and of the acid-denatured 

protein at pH 3.2. (B) Kinetics following a pH jump from 6.5 to 3.2 monitored by 

stopped-flow spectroscopy. Open symbols represent experimental data ("thinned" by a 

factor of 10 - 40). Data for 341 and 441 nm have been rescaled as indicated, data for 341 

nm have additionally been shifted by -0.2 to reduce overlap. Solid lines are fits to the 

experimental data. Fitted parameters in s
-1

 are 341 nm: k1 = 59, k2 = 8.3, k3 = 1.9; 409 nm: 

k2 = 11; k3 = 1.5; 441 nm: k2 = 10; k3 = 1.4. 
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exposure (58). In salt-free solution only the "late" (500 ms) intermediate is observable 

(51, 57). The presence of an additional kinetic species under the high salt conditions used 

here is consistent with the well-known fact that ionic strength effects can cause profound 

changes in the folding behavior of proteins (59).  

 

2.3.2 Laser-Induced Oxidative Labeling  

Unfolding time points were selected for oxidative labeling with the aim of 

characterizing the two unfolding intermediates that were detected in the stopped-flow 

experiments of Figure 2.4. Thus, the reaction mixture was exposed to a microsecond OH 

pulse at t = 50 ms or t = 500 ms. Data for t = 10 s were included for comparison, in 

addition to time zero and 5 min controls. Deconvoluted mass distributions of the intact 

protein are depicted in Figure 2.5. The relative contribution of covalent +16 Da adducts 

for t = 50 ms is much higher than for the native protein at t = 0, and the extent of labeling 

increases further with increasing reaction time. Also shown in Figure 2.5 is the fraction of 

unmodified protein, Fu, as a function of time. Fu is defined as Au/Atot, where Au is the peak 

area corresponding to the unmodified protein, and Atot is the total area of the unmodified 

protein plus that of all oxidation products (integrated between 16943 and 17100 Da) (36, 

55). These data reveal that acid-induced unfolding goes to completion within ca. 10 s. 

The trends in Figure 2.5 reflect the fact that the overall solvent exposure of side chains 

increases as the protein unfolds, thereby enhancing the susceptibility of reactive sites to 

undergo oxidative labeling (37). However, very little structural information can be 

garnered from measurements on the intact protein. A more thorough characterization of 

the unfolding mechanism requires spatially resolved experiments. 
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Figure 2.5. Deconvoluted ESI mass distributions obtained by exposing hMb to laser-

induced oxidative labeling at different times after a pH jump from 6.5 to 3.2. Scaling was 

done by normalizing the most intense peak in each distribution to unity. Data for t = 10 s 

have been omitted to prevent cluttering. Notation: 0, 1, 2, ... indicate the number of 

incorporated oxygen atoms (+16 Da adducts). The inset shows the fraction of unmodified 

protein, Fu, calculated as Fu = Au / Atot, where Au is the integrated area of the unmodified 

peak, and Atot is the area of the entire mass distribution. 
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2.3.3 Peptide Mapping 

Tryptic digestion of the protein following oxidative labeling results in a host of 

peptides which are labeled to various degrees. Ideally, it would be desirable to employ 

tandem  mass  spectrometry  for  monitoring  the  oxidation  level  at  every  reactive  site 

as a function of unfolding time. Unfortunately, such a strategy is associated with 

considerable difficulties. "Singly" oxidized tryptic fragments represent a heterogeneous 

mixture of isobaric compounds, where collision-induced dissociation patterns and yields 

are strongly dependent on the location of oxidation sites (60). The problem is even more 

pronounced for peptides carrying multiple modifications. Quantification of differently 

labeled forms of the same peptide is difficult because the species do not co-elute due to 

oxidation-induced alterations in hydrophobicity, an effect that is coupled with changes in 

ionization efficiency (61). While most reaction paths result in the incorporation of 

oxygen atoms, there are also competing processes that lead to the formation of products 

different from the canonical +16 Da modifications (39). Tracking all of these species in a 

quantitative fashion is an exceedingly complex task. In addition, oxidation at Arg and 

Lys residues enhances the occurrence of missed cleavages, thereby modulating peptide 

signal intensities in ways that are difficult to predict. 

 In order to avoid all these complications we chose a more straightforward 

approach and monitored the depletion of unmodified peptides in the digests, instead of 

tracking the accumulation of oxidation products. Similar strategies were used in earlier 

OH footprinting work (36). For the experiments of this study peptide signal intensities R 

were measured relative to an internal standard, thereby compensating for possible 

sensitivity fluctuations of the LC/MS analysis procedure (see Experimental section). 
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Analogous to traditional HDX/MS experiments (31), the spatial resolution of the method 

used here is determined by the size of the hydrolysis products. Tryptic digestion of 

myoglobin resulted in 12 detectable peptides, covering 89% of the protein sequence 

(Figure 2.6). The few fragments not observed by LC/MS were small and hydrophilic, and 

thus likely did not adhere to the C18 column. Figure 2.7 exemplifies some of the data 

obtained using the described mapping strategy. Many peptides exhibit a behavior similar 

to T3 (Figure 2.7A), where the signal intensity decreases to less than 15% of its initial 

value within 500 ms. These peptides cover regions of the protein that become exposed 

early during the denaturation process. In contrast, T10 (Figure 2.7B) exhibits a much 

slower decay, which reflects a substantially higher protection from OH attack due to the 

retention of folded structure at t = 500 ms. 

 A comprehensive view of the structural changes following the pH jump is 

obtained by plotting normalized oxidation levels (Equation 2.1) of the 12 peptides as a 

function of unfolding time (Figure 2.8). Labeling differences are clearly apparent at 500 

ms, where three peptides (T2, T10, and T13) exhibit oxidation levels that are 

considerably lower than those of the other protein regions. These three peptides also 

show below-average labeling at 50 ms; their behavior is highlighted by the blue boxes in 

Figure 2.8. It is interesting that T16 represents an additional strongly protected region at 

early times (t = 50 ms, red box in Figure 2.8). This peptide, however, is fully exposed at 

500 ms. T7 exhibits unique kinetics in that it loses most of its protection immediately 

after onset of the reaction. The remaining peptides exhibit an intermediate behavior. 

 For the data depicted in Figure 2.8 all oxidation levels were calculated using the 

logarithmic expression of Equation 2.1. Instead, one might choose an alternative  



73 

 

 

  
 

 
  
 
 

 

                       A               B         C 
                                                                             

1
GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI RLFTGHPETL 

      T1            T2        T3 
     

             D           E 
 
41
EKFDKFKHLK TEAEMKASED LKKHGTVVLT ALGGILKKKG 

T7       T8                 T10 
   

         F      G       
 
81
HHEAELKPLA QSHATKHKIP IKYLEFISDA IIHVLHSKHP 

            T13                       T16 
  

                H 
 
121
GDFGADAQGA MTKALELFRN DIAAKYKELG FQG 

           T17             T18       T19       T21 
            

 

 

 

 

Figure 2.6. Amino acid sequence of horse myoglobin (pdb code 1WLA). -helices are 

indicated as square boxes (A - H). Tryptic peptides (T1 - T21) used for data analysis are 

represented by double-headed arrows. 
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Figure 2.7. Relative intensities of the unoxidized tryptic peptides T3 (A) and T10 (B) for 

unfolding times of 0 s (solid line), 500 ms (dashed line), and 5 min (solid line). 
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approach where oxidation levels are defined more simply as [R(t)-R(0)] / [R()-R(0)]. 

The temporal progressions obtained in this way are similar to those of Figure 2.8, and the 

conclusions reached would not change (data not shown). Nonetheless, we feel that the 

strategy based on Equation 2.1 is preferable because it facilitates the data interpretation in 

terms of solvent exposure, while other experimental factors are being eliminated (see 

Experimental section). The time profiles depicted in Figure 2.8 were found to be highly 

reproducible in repeat measurements. 

 

2.3.4 Kinetic Unfolding Mechanism of hMb  

The oxidation level progressions of Figure 2.8 reflect the temporal sequence of 

events during hMb unfolding. It is instructive to consider these data within the context of 

the native protein structure (Figure 2.9). For t = 50 ms many regions are already 

extensively unfolded (marked orange in Figure 2.9). However, partial protection is 

retained in helices B (T2, blue), E (T10, blue), F (T13, blue), and G (T16, red). Helices E 

and F are the main constituents of the heme binding pocket, and also G makes direct 

contact with the heme. Helix B is packed against E in the native protein. This BEFG core 

breaks down in a step-wise fashion. At t = 500 ms the side chains of helix G (red) are 

completely exposed to the solvent, whereas the BEF domain (comprising all the blue 

segments in Figure 2.9) still retains protection. These data are consistent with a kinetic 

unfolding pathway that involves an "early" and a "late" intermediate: 
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Figure 2.8. Normalized oxidation levels of tryptic peptides plotted as a function of 

unfolding time t, calculated based on Equation 1. Blue boxes highlight three peptides (T2, 

T10, and T13) that retain considerable protection from OH attack at 50 ms and 500 ms. 

The red box highlights T16, which is highly protected at 50 ms, but not at 500 ms. Three 

peptides are not shown to reduce cluttering of the Figure: T1 (with a time profile similar 

to T18), as well as T8 and T17 (both of which have time profiles similar to T3). 
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Figure 2.9. Crystal structure of native hMb (pdb code 1WLA) with its eight α-helices A-

H. Regions that unfold first are shown in orange. Tryptic peptides T2, T10, and T13  

represent regions that retain significant protection 500 ms after the onset of unfolding 

(marked in blue). T16 (red) corresponds to an additional protected region for t = 50 ms. 

The designation of red and blue segments matches that of Figure 7. Sections not covered 

by peptide mapping are depicted in gray. The heme group is shown in magenta. 
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[ABCDEFGH heme]  [aBcdEFGh heme]  [aBcdEFgh heme]  abcdefgh + heme 

 native   early intermediate            late intermediate             unfolded 

                                            (~50 ms)   (~500 ms)  

 

Upper case letters in this Scheme indicate partially structured -helices, lower case letters 

represent unprotected regions, and square brackets stand for heme-bound states. The 

proposed scenario, where unfolding proceeds through two intermediates, is consistent 

with the stopped-flow results of Figure 2.3. 

 The retention of structural elements in the vicinity of the heme binding pocket 

strongly suggests that protein-cofactor interactions play a dominant role in determining 

the unfolding pathway of hMb at low pH. This view is supported by the fact that no 

intermediates are observed when unfolding is carried out at basic pH, where the heme is 

highly soluble and immediately dissociates from the protein (52). In contrast, the low 

solubility of heme under the acidic conditions used here (62) delays the release of the 

cofactor. As a result of residual porphyrin-protein interactions, regions close to the heme 

do not unfold as rapidly as those that are more remote. Further support for this 

mechanism comes from the observation that helix D (T7), representing an element that is 

far removed from the heme, is the first to lose all its protection (Figures 2.8, 2.9). The 

persistence of heme-protein interactions during the early stages of hMb unfolding had 

also been proposed earlier (50, 51). This work, however, provides the first direct proof of 

a heme-mediated core that is more resistant to acid-induced unfolding than the remainder 

of the protein.  
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2.4 Conclusions 

This study demonstrates the first application of laser-induced oxidative labeling 

for monitoring the kinetics of a protein unfolding transition, and for characterizing the 

structures of short-lived protein conformers. Heme-protein interactions that are retained 

during the initial stages of unfolding appear to play a major role in determining the 

unfolding mechanism of hMb. The relatively stable BEF(G) core identified in this work 

for the unfolding of the holo-protein is totally different from the AGH motif that features 

so prominently in structural studies of aMb (7, 63). The observation that cofactors can 

have dramatic effects on protein energy landscapes and (un)folding mechanisms is 

consistent with previous reports on other systems (14). 

 From a more general perspective, it appears that laser-induced oxidative labeling 

represents a highly promising technique for mechanistic studies on protein 

conformational transitions. Considering the very short duration of the labeling pulse (on 

the order of 1 s) (47), it should be possible to employ this method in combination with 

sub-millisecond mixing or photochemical triggering (64). Experiments of this kind could 

provide detailed structural insights into the very earliest stages of folding and unfolding. 

Work in this direction is currently ongoing in our laboratory and will be reported 

elsewhere. 
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Chapter 3 - Time-Dependent  Changes  in  Side  Chain  Solvent 

Accessibility During Cytochrome c Folding Probed By Pulsed Oxidative 

Labeling and Mass Spectrometry 

 

3.1 Introduction 

Protein folding research is vital for the ongoing improvement of biomolecular 

structure prediction algorithms (1), and it provides valuable information regarding a 

number of diseases that are linked to misfolding and aggregation (2-4). Monitoring the 

temporal evolution of protein structure during folding is challenging because transiently 

populated conformers may not accumulate (5), a behavior that favors apparent two-state 

transitions (6). The rapid time scale of folding represents another experimental difficulty 

(7). Equilibrium studies sometimes allow the characterization of partially folded species 

that may resemble short-lived intermediates (8, 9), however, kinetic experiments remain 

the most direct approach for gaining insights into time-dependent structural changes. 

Rapid-mixing, as well as photochemical and temperature-jump events have been used as 

folding triggers in kinetic investigations (10). Short-lived folding intermediates have been 

detected and characterized using a range of spectroscopic techniques (11), and Ф-value 

analyses (12-14) yield information on transition states.  

 Cytochrome c (cyt c) serves as an important folding model system (15-18). The 

native protein adopts a compact globular fold and forms a hydrophobic binding pocket 

that accommodates the heme prosthetic group. Cyt c comprises three major helices (N-

terminal, C-terminal, and 60's), two minor helical segments, and a short anti-parallel -
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sheet (residues 37-40 and 57-59). Other regions of the polypeptide chain are arranged in 

loops. The heme is covalently linked to C14 and C17 via thioether bonds, and the heme 

iron is axially coordinated by H18 and M80 on its proximal and distal sides, respectively 

(19, 20).  

 The presence of the heme allows aspects of the cyt c structure to be interrogated 

using simple spectroscopic probes (21). Soret absorption measurements provide 

information on the heme environment, and the iron-M80 bond gives rise to an absorption 

band at 695 nm (A695) (22). Fluorescence quenching of W59 by the heme represents a 

measure for the overall protein compactness (23, 24). Heme ligands can be identified by 

resonance Raman spectroscopy (16, 24, 25). Other probes include circular dichroism 

spectroscopy for monitoring changes in helicity (26), and small-angle X-ray scattering 

which reports on the overall dimensions of folding intermediates (27, 28). Changes in 

protein compactness have also been monitored on the basis of electrospray ionization 

mass spectrometry (ESI-MS) charge state distributions (29, 30). Intramolecular distances 

can be probed by energy transfer measurements using protein constructs that carry 

additional chromophores (31). Pulsed hydrogen/deuterium exchange (HDX) in 

combination with NMR spectroscopy (9, 32-35) or ESI-MS (36, 37) represents an 

important tool for monitoring H-bonding patterns.  

 A wealth of information regarding the cyt c kinetic folding mechanism has been 

gathered over the years (15-18). The polypeptide chain undergoes a significant 

contraction during the first 100 s (16, 28). This initial step may represent a barrier-

limited (38) hydrophobic collapse with little secondary structure formation (26), or a 

nonspecific response to the change in solvent conditions (39). Formation of the three 
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major helices occurs on a time scale of several milliseconds (32, 38). Concomitantly, a 

"N/C intermediate" is formed that exhibits native-like hydrophobic contacts between the 

N- and C-terminal helices (40, 41). Although this intermediate is thought to represent an 

on-pathway species (42), its structure can be modulated by the solvent conditions. At 

neutral pH the distal (M80) binding site on the heme iron becomes coordinated by a non-

native ligand, requiring the occurrence of a rate-limiting dissociation step in the 2 - 10 s
-1

 

range (43) before folding can proceed. H33 has been shown to be the main culprit, 

whereas H26 plays a minor role (43). Some misligation by the N-terminus may occur as 

well (42, 44). These misligation barriers on the folding pathway cause the N/C 

intermediate to accumulate, thereby facilitating its structural characterization (32). After 

barrier crossing, the protein folds to its native state within ~1 s (32, 34), although some 

molecules may still undergo transient aggregation or proline mis-isomerization (42). 

Misligation can be suppressed by conducting the experiments at pH  5 (45, 46) where 

H33 and H26 are predominantly protonated. Folding under these conditions is 

dramatically accelerated (46, 47). Misligation may also be suppressed through addition of 

free imidazole (31, 46).  

 Despite these previous insights, several aspects of the cyt c folding mechanism 

remain incompletely understood (48, 49). These include the significance of sub-

millisecond conformational changes (39), and the question of parallel folding vs. a 

sequential foldon-mediated pathway (50, 51). Also, uncertainties remain regarding the 

number, origin, and structures of folding intermediates, as well as their degree of 

structural heterogeneity (31, 32). No experimental method is capable of tracking the exact 

conformational changes for every single residue during folding. On the contrary, most 
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spectroscopic techniques only provide relatively global information. Even apparently 

specific probes such as A695 can be ambiguous because of background interferences (22). 

HDX, while being exquisitely sensitive for monitoring the formation of H-bonds, usually 

yields only indirect information on tertiary interactions and solvent accessibilities (52). 

For these reasons, multiple probes that report on complementary structural aspects are 

generally required for a thorough characterization of folding mechanisms (48). 

 The aim of the current work is to examine the kinetic mechanism of cyt c folding 

from a hitherto unexplored perspective, i.e., by directly monitoring the solvent 

accessibility of individual residues in a time-dependent manner. A brief hydroxyl radical 

(OH) pulse is applied at selected time points during folding, thereby inducing side chain 

oxidative modifications that can be probed by ESI-MS. Analogous to other covalent 

labeling strategies (53), these experiments are based on the premise that the oxidation 

susceptibility of each residue is modulated by its degree of solvent exposure, subject to a 

hierarchy of intrinsic reactivities (54). Numerous labeling reagents have been described 

(55, 56), but with few exceptions (57) the reaction rates of those species are far too slow 

for kinetic studies. Oxidative modifications, in contrast, are formed on a microsecond 

time scale when using a pulsed UV laser for OH production by photodissociation of 

H2O2 (58-60). OH can react with more than half of the twenty amino acids, such that 

detailed conformational data are obtainable (61-65). A considerable number of earlier 

studies have employed OH labeling for characterizing protein structures at equilibrium 

(58-65), but the potential of this approach for kinetic experiments remains largely 

untapped (Chapter 2). The present work demonstrates the use of laser-induced OH 

labeling for monitoring conformational changes of cyt c during pH-jump-induced 
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folding. The solvent accessibility data obtained in this way are complementary to 

information previously obtained using other experimental approaches. 

 

 

3.2 Materials and Methods 

3.2.1 Materials 

Oxidized (ferri) horse heart cyt c (104 residues, 12360 Da), horse muscle 

myoglobin, catalase, glutamine, and bromocresol purple were obtained from Sigma (St. 

Louis, MO). Bradykinin was supplied by Bachem (King of Prussia, PA). All chemicals 

were used without further purification.  

 

3.2.2 Optical Spectroscopy 

UV-Vis stopped-flow experiments were carried out on a Biologic SFM 4S/Q 

(Molecular Kinetics, Indianapolis, IN) system operated in fluorescence mode, employing 

2-syringe mixing in a 1:1 volume ratio. Excitation was at 280 nm, and the integrated 

fluorescence emission was collected for em > 320 nm using a cut-on filter. Syringe 1 

contained 20 μM cyt c, 30 mM glutamine, 300 mM NaCl and 10 mM HCl at pH 2. 

Syringe 2 contained 10 mM NaOH and 0.2 M phosphate buffer, adjusted to result in 

either pH 5 or pH 7 after mixing. Both syringes were advanced at 1.4 mL s
-1

. 

  

3.2.3 Continuous-Flow Mixing and Oxidative Labeling 

Folding experiments with oxidative labeling were performed using a custom built 

two-syringe continuous-flow device described previously (Chapter 2) with minor 
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modifications. Syringe 1 contained 20 μM cyt c, 30 mM glutamine, 300 mM NaCl, and 

HCl at pH 2. Folding of the protein was triggered by combining this solution with NaOH 

and 0.2 M phosphate buffer from syringe 2 at a capillary mixer in a 1:1 volume ratio, 

resulting in a final pH of 7, and a protein concentration of 10 μM. Transient aggregation 

phenomena have previously been shown to be negligible in this concentration range.(42) 

Syringe 2 also contained 0.1% (v/v) (ca. 40 mM) H2O2. Both syringes were advanced 

simultaneously at 70 μL min
-1

 using a syringe pump (Harvard Apparatus, Boston, MA). 

A KrF excimer laser (GAM EX 100/125, Orlando, FL) producing 18 ns pulses at 248 nm, 

92 Hz and 63 mJ pulse
-1

 was used to generate OH by photolysis of H2O2 within the 

reaction capillary. Glutamine acts as a radical scavenger that quenches the labeling 

reaction on the time scale of 1 s (59). Oxidative labeling was performed at different 

time points after initiation of folding by irradiating the reaction mixture at suitable 

positions downstream of the mixer. On the basis of a plug flow approximation (66, 67) it 

can be determined that reaction times of 10 ms, 0.1 s, and 1 s correspond to distances 

between mixer and radiation spot of 3 mm, 3 cm, and 30 cm, respectively. Effective 

mixing and reproducible labeling was confirmed at all three time points using myoglobin 

as a test system, following a procedure outlined previously (Chapter 2). In addition, the 

mixer performance was verified optically in pH jump experiments on bromocresol purple 

(35). To characterize the endpoint of the reaction, the contents of syringe 1 were 

manually mixed with NaOH and phosphate buffer in a microcentrifuge tube. The 

resulting solution was transferred into syringe 1 after 5 minutes. Syringe 2 contained 

H2O2 in water, such that the final composition of the mixture was the same as for the 

earlier time points. 



92 

 

250 L portions of capillary outflow were collected 3 s after mixing in a 

microcentrifuge tube that contained 12 μL 170 mM phosphate buffer and 0.68 μM 

catalase at pH 7. Catalase was employed for inactivating residual H2O2, thereby avoiding 

secondary oxidation reactions (68). Part of each sample was retained for intact protein 

analysis, and the remainder (ca. 225 L) was digested with trypsin for 24 h at 37 °C 

using a 1:20 (w/w) enzyme:protein ratio. The digests were lyophilized and resuspended 

in 200 μL of an aqueous solution containing 20 μM bradykinin and 5 μM ubiquitin as 

internal intensity standards (69, Chapter 2). These samples were flash-frozen in liquid 

nitrogen and stored at -80 C until further analysis.  

 

3.2.4 LC/ESI-MS 

All experiments were performed on a Q-TOF Ultima API mass spectrometer 

(Waters, Milford, MA) equipped with a Z-spray ESI source. Spectra were acquired in 

positive ion mode at a sprayer voltage of 3 kV and a desolvation temperature of 200 °C. 

TOF spectra were acquired in V-mode at a resolution of ca. 10,000 (fwhm). The mass 

spectrometer was coupled to a Waters Acquity UPLC system employing either a C4 

(BEH300) 2.1 mm x 50 mm reversed-phase column for protein analysis, or a C18 

(BEH300) 2.1 mm x 100 mm column for peptide analysis. Elution was carried out using 

a water/acetonitrile gradient in the presence of 0.1% formic acid at a flow rate of 100 μL 

min
-1

. The identity of tryptic peptides was confirmed by tandem mass spectrometry 

experiments carried out in data-dependent acquisition mode. Spectra for the intact protein 

are presented as deconvoluted mass distributions, obtained by using the MaxEnt software 

supplied by the instrument manufacturer. 
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 Oxidation sites for each tryptic peptide were determined in off-line MS/MS 

experiments by directing the UPLC eluent into a TriVersa NanoMate (Advion, Ithaca, 

NY) chip-based ionization source. The incoming flow was split such that ~0.3% was sent 

directly to the mass spectrometer while the remainder was collected in 1 minute fractions 

in a 96-well plate. After fraction collection the plate was flash-frozen, and its contents 

were lyophilized. The samples in each well were then resuspended in 50 μL 2% aqueous 

acetic acid such that all samples could be sprayed under identical source conditions from 

the chip-based nanosprayer (1.6 kV, 0.3 psi). 

 

3.2.5 Fraction Unmodified and Background Correction 

Relative signal intensities of unlabeled tryptic peptides R(t) were generated by 

dividing the UPLC/MS peak heights of each peptide by the peak height of the bradykinin 

internal standard for each folding time t (69, Chapter 2). Two types of R(t) values have to 

be distinguished: (i) R
app

(t), the apparent value measured after oxidative labeling; (ii) 

R
bgr

(t) the corresponding value for samples that had undergone exactly the same 

treatment, except that the H2O2-containing solutions were not exposed to laser irradiation. 

Background corrected "fraction unmodified" values Fu
corr

(t) for each peptide can then be 

determined as (70)  

 

   
)(

)(
)(

tR

tR
tF

bgr

app
corr

u        (3-1) 

 

3.2.6 Data Analysis 

Previous work from our laboratory employed a strategy where solvent 
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accessibility values were reported on a relative scale, using data obtained for the unfolded 

and the refolded protein as reference points (Chapter 2). As discussed above, labeling of 

cyt c at pH 2 under the conditions used here resulted in excessive oxidation and backbone 

cleavage. This behavior precludes the acquisition of useful data for the unfolded protein 

and necessitates the use of a modified data analysis strategy. The value of Fu(t) for a 

specific protein segment (represented by a tryptic peptide) can be modeled as (Chapter 2) 

 

   1

0int ])[.(exp)(  aOHtktFu       (3-2) 

 

where the second-order rate constant  


n

j jkk
1int represents the intrinsic reactivity of 

the segment as the result of n oxidative reaction pathways, [OH]0 is the initial hydroxyl 

radical concentration generated by the laser pulse, and a
-1

  1 s (59) is the effective 

labeling time. The most salient term for the interpretation of folding experiments is (t) 

which represents the solvent accessibility (more accurately, the OH accessibility) of the 

protein segment at folding time t. A complete lack of solvent accessibility due to burial of 

the segment inside the protein corresponds to  = 0. On the other hand, segments that are 

completely unprotected due to extensive unfolding are characterized by  = 1. For the 

current work we express the relative solvent accessibility rel(t) of each protein segment 

by comparing it to that of the refolded protein at t = 5 min according to 

 

   
min)5(

)(
)(






t
trel        (3-3) 
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On the basis of equation 3.2 it is seen that rel(t) can be obtained directly from the 

measured Fu(t) values as 

   
min)5(ln

)(ln
)(

corr

u

corr

u
rel

F

tF
t       (3-4) 

 

rel(t) = 1 applies in the case of a segment that has the same solvent accessibility as in the 

refolded protein, whereas rel(t) > 1 represents an accessibility that is greater than for t = 

5 min. 

 

 

3.3 Results and Discussion 

3.3.1 Background Oxidation 

OH-induced oxidative labeling gives rise to the formation of covalent +16 Da 

adducts that can be easily identified in the ESI mass distribution of a protein. Less 

abundant reaction products corresponding to other mass shifts may be formed as well 

(61). Ideally, protein oxidation would occur exclusively during the ~1 s labeling pulse 

(59, 60), but a certain level of background oxidation is usually unavoidable. This spurious 

labeling has to be minimized as much as possible. Background oxidation can potentially 

occur (i) during isolation and storage of the protein (71), and (ii) upon contact with H2O2 

in the reaction mixture before and after application of the laser pulse (68). Mass analysis 

of the protein after refolding in H2O2-free solution reveals that the first of these 

contributions is negligible for the experiments of this work (Fig. 3.1A, solid line). 
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Figure 3.1. (A) Deconvoluted ESI mass distributions of cyt c, demonstrating the extent 

of background oxidation in the absence of UV laser irradiation. Solid line: pH-jump-

induced folding (pH 2  pH 7) in the absence of H2O2. Dashed line: pH-jump-induced 

folding (pH 2  pH 7) in the presence of 0.05% (v/v) H2O2. Dotted line: folding 

triggered by a 4.2 M  0.7 M GdnHCl jump in the presence of 0.005% (v/v) H2O2. (B) 

pH jump-induced folding as in panel A, but using myoglobin as test protein. Notation: 0, 

1, 2, ... indicate the number of incorporated oxygen atoms (+16 Da adducts).  
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Most previous cyt c studies employed guanidinium hydrochloride (GdnHCl) as 

denaturant. Initial test experiments for this work therefore used a GdnHCl concentration 

jump as folding trigger, without laser irradiation. Unfortunately, background oxidation 

under these conditions is very significant (Fig. 3.1A, dotted line). This behavior is 

attributed to the well-known peroxidase activity of cyt c that causes OH-mediated self-

oxidation in the presence of H2O2, without requiring UV photons (72, 73). Previous 

studies have demonstrated that peroxidase activity is enhanced in the presence of 

GdnHCl (74, 75). In an effort to reduce background oxidation, we next tested the use of a 

pH jump from 2 to 7 as folding trigger (24). Undesired oxidation under these GdnHCl-

free  conditions  is  greatly  suppressed,  despite  the  use  of  a  tenfold  higher  H2O2 

concentration (Fig. 3.1A, dashed line). A low level of peroxidase-mediated cyt c 

background labeling persists even in the pH-jump experiments, evident from a 

comparison with a myoglobin control for which virtually no oxidation is observed (Fig. 

3.1B). These myoglobin data also confirm the absence of artifactual protein oxidation 

during storage of the flash-frozen samples (76). Myoglobin does not possess peroxidase 

activity under the conditions used here due to heme precipitation at pH 2 (77). The 

findings of Fig. 1A prompted us to base the cyt c refolding experiments of this work on a 

pH jump protocol, rather than using a change in [GdnHCl] as folding trigger. The 

remaining low-level inadvertent oxidation was dealt with by using a background 

correction protocol (Methods Section, eq. 3-1) (70). 

 



98 

 

3.3.2 Stopped-Flow Kinetics 

Prior to discussing the results of oxidative labeling, it is instructive to examine the 

pH jump behavior of cyt c by fluorescence spectroscopy. As reported previously (78, 79), 

equilibrium unfolding occurs with a transition midpoint around pH 2.5 (Fig. 3.2A). At pH 

2, the protein has been shown to be extensively disordered (80). The greatly increased 

heme-W59 distance in acid-unfolded cyt c disrupts energy transfer quenching, thereby 

forming the basis for the fluorescence intensity changes seen in Fig. 3.2 (23, 38). Both 

H18 and M80 become displaced from their ligation sites at pH 2 (80), and the heme iron 

adopts a 5-coordinate form with water as the fifth ligand (16).  

 A pH jump from 2 to 5 causes a ~85% burst in W59 fluorescence, followed by a 

decay that is well described by apparent rate constants on the order of 100 s
-1

, 10 s
-1

, and 

1 s
-1

 (see Fig. 3.2B caption for details). Considerably slower folding kinetics with a 

reduced burst amplitude of ~75% are observed for a pH 2  pH 7 jump (Fig. 3.2B). This 

difference manifests itself in a ca. three-fold amplitude increase for the 10 s
-1

 and 1 s
-1

 

phases. The slower folding kinetics for the pH 2  pH 7 jump can be attributed to heme 

misligation that causes the N/C intermediate to accumulate, as discussed in the 

Introduction (32, 34, 40-47). The cyt c behavior displayed here is very similar to earlier 

kinetic data (24, 34), and the purpose of highlighting these stopped-flow data here is to 

emphasize the consistency of our pH-jump conditions with earlier GdnHCl results. In the 

following, we will focus on folding of the initially acid-unfolded protein at pH 7. 
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Figure 3.2. (A) Acid-induced equilibrium unfolding of cyt c monitored by tryptophan 

fluorescence spectroscopy. Vertical dotted lines indicate initial and final conditions of 

kinetic pH jump measurements. (B) Folding kinetics following a pH jump from 2 to 7, 

and from 2 to 5, monitored by stopped-flow spectroscopy. The data were normalized to 

the fluorescence intensity of unfolded cyt c at pH 2. Solid lines are tri-exponential fits to 

the experimental data. Apparent rate constants (and amplitudes) at pH 7 are: k1 = 130 s
-1

 

(0.086), k2 = 10 s
-1

 (0.098), k3 = 2.3 s
-1

 (0.038). At pH 5: k1 = 111 s
-1

 (0.12), k2 = 13 s
-1

 

(0.028), k3 = 0.91 s
-1

 (0.0071). 



100 

 

3.3.3 Laser-Induced Oxidative Labeling 

Cyt c was exposed to laser-induced oxidative labeling at different time points (10 

ms, 0.1 s, and 1 s) following a pH 2  pH 7 jump, using a custom-built continuous-flow 

mixing device. Deconvoluted mass distributions of the intact protein are depicted in Fig. 

3.3. Data for a 5 min native control are included as well. The extent of covalent labeling 

is highest for 10 ms, and decreases with increasing reaction time. These trends reflect the 

overall decrease in solvent accessibility as the protein folds, thereby reducing the 

susceptibility of side chains to undergo labeling (81). 

 Unfortunately, it was not possible to obtain satisfactory reference data for the 

unfolded initial state at pH 2. Labeling under these conditions causes severe oxidation, 

resulting in mass distributions with poor signal-to-noise ratio (not shown). In comparison, 

the 10 ms time point in Fig. 3.3 represents a significantly lower oxidation level. This 

behavior attests to the substantial collapse of the polypeptide chain early during folding, 

which  is  also  evident  from  the  burst  in  fluorescence  quenching (Fig. 3.2B) (16, 28). 

In addition, some of the protection at 10 ms may be a remnant of residual structure in the 

unfolded state (82). Based on the extensive oxidation of the protein at pH 2, however, it 

appears that acid-denatured cyt c is quite disordered (80), implying that the relative 

contribution of compact conformers in the pH 2 ensemble is low. 

 

3.3.4 Peptide Mapping and Tandem Mass Spectrometry 

The data of Fig. 3.3 reveal the occurrence of dramatic time-dependent changes in 

global protein structure. A more detailed characterization of the cyt c folding mechanism 

requires tracking the behavior of individual residues and protein segments. Prerequisite  
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Figure 3.3. Deconvoluted ESI mass distributions of intact cyt c obtained by laser-induced 

oxidative labeling at different time points following a jump from pH 2 to pH 7. Scaling 

was done by normalizing the unoxidized peak in each distribution to unity. 
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for this strategy is the identification of modification sites by peptide mapping and tandem 

MS (MS/MS). Tryptic digestion of cyt c resulted in 11 detectable peptides that cover 

84% of the protein sequence (Fig. 3.4). The few unobservable fragments are small and 

hydrophilic, and thus likely do not adhere to the C18 column. 

 Typical MS/MS data of tryptic peptides after labeling at 10 ms are exemplified in 

Fig. 3.5. Collision-induced dissociation (83) of (T20 + 16) results in unmodified y1 and y2 

ion signals. Fragments y3 to y6 are shifted by 16 mass units, thereby pinpointing Y97 as 

the oxidation site in this peptide (Fig. 3.5A). The situation is somewhat more complex for 

the heme containing species T5 (Fig. 3.5B). Observation of a (b4 + heme + 16) fragment, 

along with unmodified free heme reveals incorporation of an oxygen atom in the range of 

residues 14 to 17. Based on the intrinsically high reactivity of thioether groups, these data 

strongly suggest the occurrence of oxidative modifications at C14 and/or C17, rather than 

at the fairly nonreactive A15 and Q16 (54). T8 appears with a +5 Da modification which 

is typical for OH-induced opening of an imidazole ring (61). MS/MS confirms H33 to be 

the site of modification in this peptide (Fig. 3.5C). Other oxidation sites were identified 

in a similar fashion, namely F46 and Y48 (T10), W59 (T12), M65 and Y67 (T13), Y74 

(T15), M80, as well as I81 (T16). These results reflect the high intrinsic reactivities of 

aromatic and sulfur-containing side chains (61). Many of the oxidation sites found here 

have previously been identified in γ-radiolysis experiments on native cyt c (84). Peptides 

T1 (GDVEK) and T22 (ATNE) did not provide unambiguous results, preventing the 

determination of oxidation sites in these two segments. Low level oxidation at residues 

other than those listed above cannot be excluded. 
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Ac-1GDVEKGKKIF VQKCAQCHTV EKGGKHKTGP

31NLHGLFGRKT GQAPGFTYTD ANKNKGITWK

91REDLIAYLKK ATNE

T1 T4 T5

T8 T10 T12

T13 T15 T16

T20 T22

61EETLMEYLEN PKKYIPGTKM IFAGIKKKTE

heme

 

 

Figure 3.4. Amino acid sequence of horse cyt c (19). Rectangles indicate helical regions. 

Also shown are tryptic peptides (T1, T4, ...) used for the analyses of this work. The N-

terminal acetyl group is denoted as Ac. 
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Figure 3.5. Tandem mass spectra of selected oxidatively modified peptides. (A) MS/MS 

of [T20 + 16]; (B) MS/MS of [T5 + 16]; (C) MS/MS of [T8 + 5]. Peaks are labeled using 

standard b and y ion notation. Also indicated in each panel is the peptide sequence, 

oxidation sites are underlined. 
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3.3.5 Relative Solvent Accessibilities 

It is customary to report the degree of oxidation in OH labeling experiments as 

fraction unmodified (Fu) (61, 81). An Fu value of unity represents a complete lack of 

oxidation, whereas in the case of extensive labeling Fu << 1. The current work employs 

the notation Fu
corr

 to emphasize that the reported data have been corrected for background 

oxidation. Plots of Fu
corr

 vs. folding time t for all eleven tryptic peptides reveal large 

differences (Fig. 3.6A). It is tempting to immediately contemplate the implications of 

these data in a structural context, but prior to taking this step a few additional 

considerations are required.  

 The oxidation behavior of each segment (represented by a tryptic peptide) is 

governed by a factor (t) that reflects its solvent accessibility at folding time t, and a term 

kint describing its intrinsic reactivity. Accordingly, the rate constant kox of a segment for 

reaction with OH may be expressed as kox = (t) × kint (61, 81, 85). The value of (t) can 

range  from  unity  for  full  solvent  exposure,  down  to  (t) = 0  for  regions that do not 

undergo oxidation as a result of complete steric shielding. The rate constant kint of each 

segment is determined by its amino acid composition. The value of this rate constant 

reflects the reactivity in the hypothetical case of complete exposure, i.e., for (t) = 1. For 

an n-residue segment kint may be approximated as  


n

j jkk
1int , where kj are the rate 

constants of individual residues for reaction with OH.  

 Values of kint, estimated on the basis of published free residue data (54, 61), are 

plotted for each tryptic peptide in Fig. 3.6B. Not surprisingly, the peptide with the largest 

kint (T5) exhibits the lowest Fu
corr

 values in Fig. 3.6A. This behavior highlights the fact 

that the different intrinsic reactivities of the various peptides can be an impediment for  
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Figure 3.6. (A) Oxidation behavior of tryptic peptides during folding at pH 7, expressed 

as fraction unmodified (Fu). Groups of bars represent data obtained for folding times of t 

= 10 ms, 0.1 s, 1 s, and 5 min. (B) Intrinsic reactivity kint for each peptide, estimated as 

indicated in the text. (C) Solvent accessibility rel(t) of individual peptides, relative to the 

refolded protein at t = 5 min. Data points were obtained as an average of three 

independent experiments, each of them with its own background correction. Error bars 

indicate standard deviations. 
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the data interpretation, unless they are being dealt with properly. We emphasize that the 

kint data of Fig. 3.6B represent an approximation because they are based on kj values that 

will be somewhat different in a polypeptide context from those tabulated for the free 

residues (54, 61). To circumvent possible ambiguities the current work does not rely on 

published kj values for extracting structural information. Instead, the Fu
corr

(t) progressions 

of Fig. 3.6A are used for calculating solvent accessibilities rel(t) relative to the 5 min 

native control (Methods Section, eqs. 3-3, 3-4). This strategy ensures that the kint values 

cancel out, such that the labeling behavior of the different peptides can be compared on a 

uniform scale. After this transformation, rel(t) = 1 represents the case where a segment 

exhibits the same solvent accessibility as in the native protein, and rel(t) > 1 for 

segments that are more accessible than in the native state. 

  Relative accessibilities rel(t) for all tryptic peptides are depicted in Fig. 3.6C. In 

every single case rel is highest for the 10 ms time point, and then decreases to unity for t 

= 5 min. Yet,  considerable  differences  are  apparent  for  the  temporal  profiles  of  the 

individual segments. Early during folding the relative accessibilities of regions located 

towards the center of the protein sequence (T10 - T15) are severalfold higher than in the 

native state. In contrast, N- and C-terminal regions exhibit fairly low rel values for all 

time points studied. The calculated error of rel(t) becomes unacceptably large for 

peptides that have Fu
corr

(5 min) very close to unity. This behavior is caused by a 

mathematical singularity during the logarithmic normalization of eq. 3-4 at ln(1) = 0. 

Fortunately, for the data set considered here this problem is encountered only for a single 

peptide (T4). 
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3.3.6 Conformational Changes during Folding 

For interpreting the measured solvent accessibility data it is convenient to map the 

rel(t) values of Fig. 3.6C to the crystal structure of native cyt c (19). The resulting 

pictorial representations (Fig. 3.7) take into account the fact that the rel(t) progressions 

are dominated by the behavior of relatively few oxidizable residues, most of which were 

identified by MS/MS (Fig. 3.5). The side chains of these structural probes are highlighted 

in Fig. 3.7 using a color scheme that ranges from highly accessible (red, rel(t) > 3.5) to 

native-like (blue, rel(t) < 2). Only T1 and T22 have been colored in their entirety 

because the oxidation sites for these two segments could not be uncovered. 

 Previous work has demonstrated the accumulation of an N/C intermediate during 

the first few milliseconds of cyt c folding at neutral pH (34, 36, 40, 41), which then 

remains the dominant kinetic species up to at least 100 ms (32). Consistent with those 

earlier findings, oxidative labeling at 10 ms (Fig. 3.7A) and 100 ms (Fig. 3.7B) reveals 

very low solvent accessibilities for T1 and T22 as marked by the blue color, suggesting a 

stabilization of the N- and C-helices by mutual docking. Regions that are remote from the 

chain termini retain extensive solvent exposure during this time, as seen by the very high 

rel values of F46, Y48, and Y74 (red in Fig. 3.7A). Interestingly, W59 also remains 

highly accessible up to at least 100 ms (red in Figs. 3.7A, B) despite the ca. 85% drop in 

fluorescence intensity (Fig. 3.2B) which implies a native-like heme-W59 orientation and 

distance. The persistence of a high solvent accessibility for W59 under these conditions 

suggests the presence of major packing defects in the collapsed core (26) of the N/C 

intermediate. 
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Figure 3.7. Structural changes of cyt c during refolding at 10 ms (A), 0.1 s (B), and 1 s 

(C) after a pH jump from 2 to 7. Major oxidation sites are color-coded according to the 

relative solvent accessibility rel(t) of the corresponding peptides (based on the data in 

Fig. 6C), using the color scheme outlined along the bottom of the figure. 
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The interactions between the N- and C-helices in native cyt c are mediated by an 

intricate network of hydrophobic contacts (19, 40). Earlier studies have not unequivocally 

determined whether all aspects of this network become fully developed already at the 

N/C intermediate stage. Y97 represents a key residue close to the center of the helix 

interface. Fig. 3.7A shows this residue in yellow, highlighting the fact that its solvent 

accessibility at 10 ms is significantly higher than in the native state. Inspection of Figs. 

3.7B, C reveals that Y97 retains an elevated (green) rel value up to at least 1 s. These 

observations point to the occurrence of structural reorganization events at the N/C helix 

interface throughout much of the folding process. 

 Previous work (32, 34, 42-44) has shown that during the first ~ 100 ms of folding 

H33 is the dominant iron ligand on the distal side of the heme, where it occupies the 

position held by M80 in the native protein. The occurrence of this misligation implies 

that H33 has to reach around to the distal face of the porphyrin plane. Interestingly, this 

conformation is associated with very low accessibilities for both the displaced M80 

ligand and the adjacent I81 (blue in Fig. 3.7A, B). We attribute the considerable 

protection of these residues to side chain crowding and concomitant exclusion of solvent 

on the distal side of the heme, caused by encroachment of the non-native ligand. H33 

remains fairly accessible at 10 ms (yellow in Fig. 3.7A). This pattern is consistent with a 

structural arrangement where one face of the imidazole ring pushes against M80 and I81, 

while the other face remains solvent accessible. As the transient H33-iron bond gets 

disrupted, the imidazole ring can move to its native position where it interacts with the 

free terminus of the C-helix. It appears that that this move facilitates the gradual 

consolidation of the N/C helix interface. This interpretation is supported by similarities in 
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the accessibility progressions of H33 and Y97, both of which switch from yellow to 

green on the same time scale (Fig. 3.7A, B). 

 Earlier studies proposed that cyt c folds along a foldon-mediated pathway (50, 

51), where the initial formation of N/C helical interactions (foldon 1) is followed by 

sequential open-to-closed transitions of four additional foldons, until ultimately the native 

state has been reached. For the protein orientation used in Fig. 3.7 this stepwise structural 

consolidation is thought to occur in a "top to bottom" fashion, where regions close to the 

top (N and C-helices) fold first and regions close to the bottom fold last (50, 51). Overall, 

the solvent accessibility patterns uncovered in this work are in agreement with those 

earlier proposals. Specifically, each of the three time points displayed in Fig. 3.7 exhibits 

a rel(t) polarity, where residues with low accessibilities tend to be located towards the 

top of the figure, and highly exposed side chains closer to the bottom. The one exception 

to this trend is the low solvent accessibility of M80 and I81, but as discussed this 

phenomenon is attributed to distal crowding caused by H33 heme misligation. 

 Another contributing factor to the polarity in solvent accessibility could be the 

positioning of the protein's four proline residues (P30, P44, P71, and P76). Proline 

isomerization can be rate-determining during folding (42, 86, 87), and it is interesting to 

note that all four Pro residues are located  in the "bottom" part of the native cyt c 

structure, in close spatial proximity to residues that retain the highest solvent accessibility 

at 1 s (orange in Fig. 3.7C). 
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3.4 Conclusions 

This work marks the first application of laser-induced oxidative labeling in 

combination with rapid mixing for exploring the kinetic mechanism of protein folding. 

An earlier pulsed OH labeling study from our group focused on protein denaturation, did 

not involve MS/MS mapping of oxidation sites, and employed a continuous-flow device 

with a lower time resolution (Chapter 2). 

Oxidative labeling provides information on the solvent accessibility of individual 

residues, reflecting the degree of side chain packing and burial. The insights obtained in 

this way are complementary to those from stopped-flow spectroscopy and pulsed HDX, 

the latter being the method of choice for probing H-bonding patterns during folding (9, 

32-35). Some information on the solvent accessibility of individual foldons can be gained 

from m-values measured by native state HDX (51, 88). In contrast, the approach used 

here directly probes the degree of exposure for specific side chains under non-equilibrium 

conditions. Pulsed OH labeling can be conducted at neutral pH, whereas pulsed HDX 

generally requires non-physiological (highly basic) conditions which may lead to 

experimental ambiguities as pointed out by others (32, 89). Structural artifacts caused by 

covalent modifications of the protein are negligible due to the rapid time scale of the 

oxidation reactions (59, 66). Instead of using a pulsed laser for the production of OH by 

photolysis of dilute H2O2 it might also be possible to conduct kinetic experiments on 

purely aqueous solutions using a pulsed electron beam (64). 

The solvent accessibility patterns uncovered here during cyt c folding are 

consistent with formation and docking of the N- and C-terminal helices as early as 10 ms 

after a pH 2  7 jump. However, structural consolidation of the helix/helix interface 



113 

 

extends up to at least 1 s. Initial heme misligation leads to distal encroachment of H33. 

This induces a very low solvent accessibility for M80 and I81 early during folding, even 

though the M80-iron coordination bond has not formed yet. The hydrophobically 

collapsed core of the protein exhibits packing defects that persist up to at least 100 ms, as 

seen by the labeling behavior of W59. 

In addition to the pH 2  7 investigations discussed above, we also attempted to 

characterize the cyt c folding behavior by oxidative labeling in pH 2  5 jump 

experiments where misligation is suppressed (data not shown). Unfortunately, the limited 

time resolution of the mixing setup used here precluded meaningful measurements under 

those much faster conditions. However, it should be possible to combine the labeling 

technique used here with other types of continuous-flow mixers that provide access to the 

sub-millisecond range (90). Work in this direction is currently ongoing in our laboratory 

and will be reported elsewhere. 
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Chapter 4 - Temporal Development of Protein Structure During 

S100A11 Folding and Dimerization Probed by Oxidative Labeling  

and Mass Spectrometry 

 

4.1 Introduction  

Protein folding is a spontaneous process that is driven by the free energy 

difference between the native and the unfolded states (1). The mechanisms of folding 

have been a focal point of research for many years (2-6). Common features begin to 

emerge (7, 8), aided by a "new view" that envisions conformational trajectories as biased 

conformational diffusion on a funneled energy landscape (9-11). Interest in protein 

folding is fuelled by the realization that not all polypeptide chains fold correctly under all 

conditions. Misfolding and aggregation have been implicated in a considerable number of 

diseases (12). 

 The bulk of the existing protein folding literature focuses on the behavior of 

monomeric polypeptide chains. Yet, the majority of cellular proteins are oligomers, 

consisting of two or more noncovalently bound subunits (13). Relatively little is known 

about the folding and assembly of these multi-subunit systems. The transition from 

disordered monomers to a native complex involves the formation of both intra- and 

intermolecular contacts, thereby adding another layer of complexity to the protein folding 

problem (14, 15). Homodimers are of particular interest because they constitute the most 

common type of quaternary structure (16). Studies conducted at equilibrium can provide 
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glimpses on certain aspects of coupled folding/binding processes (17). The temporal 

sequence of events, however, can only be explored in time-resolved experiments (18).  

 Akin to investigations on monomeric proteins (19-21), the detection and structural 

characterization of kinetic intermediates provides key insights into the folding/assembly 

mechanisms of protein complexes. In many instances these transient species facilitate the 

formation of native multi-subunit systems (22, 23). In other cases intermediates may 

represent kinetic traps (24), or branching points that can lead to aggregates (25). 

Regardless of their mechanistic role, a thorough understanding of intermediates is a 

prerequisite for deciphering the self-assembly of multi-component systems. 

 The canonical view for folding/assembly reactions of dimeric proteins is that 

individual subunits first fold and then associate to yield the native quaternary structure 

(26). This type of process may be described by a three-state mechanism 2 MU  2 MF  

DN, where MU and MF represent unfolded and folded monomers, respectively, and DN is 

the native dimer. For example, superoxide dismutase (27) and HIV-1 protease (28) 

display this kinetic behavior. However, other scenarios are possible as well. Some 

proteins first establish intermolecular contacts, before the subunits attain their native fold 

(e.g., 2 MU  DI  DN, where DI is a dimeric intermediate). Even apparent two-state 

behavior (2 MU  DN), as well as more complicated mechanisms have been observed 

(reviewed in ref. (13)). 

 A general problem with kinetic protein folding investigations is the rapid time 

scale of these processes. Lifetimes of folding/assembly intermediates are often on the 

order of milliseconds to seconds. Stopped-flow circular dichroism (CD) and fluorescence 

spectroscopy are standard approaches for studies in this area (27, 28). Unfortunately, 
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these global optical probes cannot provide detailed structural information. Pulsed 

hydrogen/deuterium exchange (HDX) has been widely used for exploring the kinetics of 

hydrogen bond formation in monomeric proteins (20, 21), but the application of this 

technique to oligomeric systems is scarce (29). Moreover, the non-physiological pH (or 

pD) during pulsed HDX can lead to non-trivial phenomena (20, 30). 

The current work demonstrates the application of an alternative technique, pulsed 

oxidative labeling, for monitoring structural changes during folding and assembly of a 

dimeric protein. This strategy involves protein exposure to a brief pulse of hydroxyl 

radical (OH) at selected time points after initiation of the reaction. Oxidative labeling 

causes covalent modifications at solvent accessible side chains, usually resulting in +16 

Da mass shifts that are detectable by mass spectrometry (MS) (31). Buried regions are 

protected from ∙OH attack, such that the oxidation pattern is determined by the protein 

structure and interactions at the time of the labeling pulse. Of the many methods for ∙OH 

production (31), the photolysis of dilute H2O2 by a pulsed UV laser is particularly 

suitable for time-resolved studies, because it provides a labeling period as short as 1 s 

(32). In contrast to many other covalent probes (33), the reactivity of ∙OH is quite 

nonspecific such that multiple types of residues can be monitored (31). Solvent 

accessibility patterns measured in this way are complementary to HDX data (34) and, 

advantageously, oxidative modifications can be introduced at neutral pH. The potential of 

OH labeling for time-resolved investigations is only beginning to emerge (Chapter 3) 

(35-38), and never before has this approach been applied to rapid self-assembly processes 

of multi-subunit proteins. 
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 The S100 family comprises a number of highly conserved EF-hand calcium 

binding proteins (39) that are involved in various processes such as tumor suppression 

(40), cytoskeleton rearrangement (41), and DNA repair (42). S100A11, like many other 

S100 proteins, forms a compact homodimer (Fig. 4.1A) (43). Each subunit consists of 

101 residues that fold into four helices, termed I-IV (Fig. 4.1B). The calcium binding 

sites are formed by helix-loop-helix motifs of helices I and II, as well as III and IV. The 

hydrophobic dimerization interface comprises elements of helices I and IV from both 

subunits. Folding and dimerization occur spontaneously for both the calcium-bound and 

the apo-forms (43). The dissociation constant of calcium-free S100A11 is in the sub-μM 

range at physiological ionic strength (44). 

 The acid-denatured state of S100A11 has been characterized by electrospray 

(ESI) MS, CD, and NMR spectroscopy (45). These techniques revealed that acid 

exposure induces complete dimer dissociation. The free subunits exhibit a greatly 

diminished NMR chemical shift dispersion at pH 2, indicating major perturbations in 

tertiary structure. However, the preservation of some tertiary interactions could not be 

excluded. In addition, the monomeric state at pH 2 retains native-like helicity. 

 Refolding and assembly of the native dimer can be triggered by a pH jump. Time-

resolved ESI-MS has previously been used to examine the mechanism of this process at 

the intact protein level (45). It was found that the reaction proceeds through a burst-phase 

monomeric intermediate. Pulsed HDX suggested the formation of additional transient 

species, although the isotope exchange data were convoluted and did not provide clear 

insights into the reaction mechanism (45). These difficulties may be attributable to the 

retention of native-like secondary structure in acid-denatured S100A11, which makes it  
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Figure 4.1. (A) Structure of the native S100A11 homodimer in its calcium-free form (44) 

with α-helices I-IV (I'-IV' for the second subunit). Highlighted residues are involved in a 

hydrophobic cluster that persists in the unfolded state (see text). (B) Sequence and α-

helices. Tryptic peptides (T1-T11) are indicated by solid lines. Selected chymotryptic 

peptides are indicated as dashed lines. Detected oxidation sites are marked in bold. 
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challenging to differentiate kinetic species on the basis of their hydrogen bonding 

characteristics. 

 In this work we demonstrate that folding and dimerization of apo-S100A11 are 

accompanied by major changes in side chain solvent accessibility. Monitoring these 

changes by pulsed oxidative labeling with MS detection provides detailed insights into 

the kinetic reaction mechanism. In addition to the burst-phase monomeric intermediate, 

the process involves a semi-native dimeric species. This dimer intermediate exhibits 

disordered peripheral regions while the protein-protein interface appears to be native-like. 

The methodology used here should also be suitable for monitoring other biochemical 

self-assembly processes.  

 

 

   

4.2 Materials and Methods 

 

4.2.1 Materials 

Recombinant rabbit S100A11 was expressed and purified as described (43). The 

pseudo-wild type C9S variant was used to avoid possible obstacles presented by 

intermolecular disulfide bridging (46). The expected molecular mass for the monomer is 

11 281 Da, which matches the measured value within experimental error of  1 Da. This 

mass reflects the natural isotope abundance, whereas previous MS studies from our 

laboratory used uniformly N15-labeled samples (45). Protein cartoons refer to the first 

frame of pdb file 1NSH (43), depicting the most representative structure of the NMR 



128 

 

ensemble. Folding/assembly experiments were carried out on the apo-protein, i.e., 

without adding Ca
2+

 salts. Bovine liver catalase, bovine pancreas α-chymotrypsin, 

glutamine, and bromocresol purple were obtained from Sigma (St. Louis, MO). 

Bradykinin was supplied by Bachem (King of Prussia, PA) and sequencing-grade trypsin 

was purchased from Promega (Madison, WI). All chemicals were used without further 

purification.  

 

4.2.2 Continuous-Flow Mixing and Oxidative Labeling 

Kinetic protein folding experiments with oxidative labeling were performed using 

a two-syringe continuous-flow mixing device similar to that employed for previous work 

(Chapter 3). Both syringes were advanced simultaneously at 70 μL min
-1

 using a syringe 

pump (Harvard Apparatus, Boston, MA). Syringe 1 contained acid-denatured S100A11 

(50 μM, expressed on a monomer basis), 30 mM glutamine, 300 mM NaCl, and HCl at 

pH 2. Protein folding and dimerization was triggered by combining this solution with 

NaOH and 0.2 M phosphate buffer from syringe 2 (pH 7.5) at a homemade capillary 

mixer in a 1:1 volume ratio, resulting in a final pH of 7, and a protein concentration of 25 

μM. Under these conditions virtually all of the S100A11 will dimerize after equilibration 

(44). The outlet of the mixer was connected to a reaction capillary with i.d. 100 m. 

Syringe 2 also contained 0.4% (v/v) (ca. 160 mM) H2O2. A KrF excimer laser (GAM EX 

100/125, Orlando, FL) producing 18 ns pulses at 248 nm, 92 Hz, 63 mJ, and an 

irradiation spot width of ca. 2 mm was used to generate OH by photolysis of H2O2 within 

the reaction capillary. Glutamine acts as a radical scavenger that quenches the labeling 

reaction on a time scale of 1 s (32). Following initiation of folding, oxidative labeling 
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was performed at different time points by irradiating the reaction mixture at suitable 

positions downstream of the mixer. Average reaction times of 10 ms, 0.2 s, and 0.8 s 

correspond to distances between mixer and irradiation spot of 3 mm, 6 cm, and 24 cm, 

respectively (47). Effective mixing and reproducible labeling was confirmed as described 

previously (Chapters 2, 3). In addition, the mixer performance was verified optically in 

pH jump experiments on bromocresol purple (21). 

250 L portions of capillary outflow for each irradiated sample were collected ~1 

s after mixing in microcentrifuge tubes that contained 13 μL ~150 mM phosphate buffer 

and 1.4 μM catalase at pH 7. Catalase was employed for deactivating residual H2O2, 

thereby suppressing undesired secondary oxidation (48, 49). The extent of secondary 

oxidation was further reduced by flash-freezing all samples in liquid N2 immediately after 

collection, and by storage at -80 C until further analysis. Inspection of the dashed 

spectrum in Fig. 4.2D confirms that the combination of these measures reduces 

background oxidation to very low levels. 

Part of each sample was retained for intact protein measurements, and the 

remainder (ca. 225 L) was digested with trypsin at pH 7 and 37 °C for 24 h using a 1:20 

(w/w) enzyme:protein ratio. The digests were lyophilized and resuspended in 200 μL of 

water containing 10 μM bradykinin as an internal intensity standard (Chapters 2, 3)(50). 

Non-irradiated control samples were collected for every measurement by using the same 

solution conditions and mixing sequence, except that the laser was switched off. 

Unfolded (t = 0) samples were prepared by mixing the contents of syringe 1 with 

H2O2 in HCl, and the solution was irradiated at pH 2. The labeled samples were then 

collected in a tube containing NaOH and phosphate buffer, resulting in a pH 7 mixture.  
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This allowed for catalase deactivation of residual peroxide, followed by tryptic digestion 

analogous to the time-resolved experiments described above. Alternatively, t = 0 samples 

were digested overnight at pH 7 with chymotrypsin using a 1:60 (w/w) enzyme:protein 

ratio at 30 °C to aid in oxidation site determination within helix IV. Earlier work revealed 

that oxidation rates are not strongly affected by the acidity of the solution, thereby 

allowing a direct comparison of samples labeled at pH 2 and pH 7 (Chapter 2). For 

studying the t = 5 min endpoint of the reaction, the contents of syringe 1 were manually 

mixed with NaOH and phosphate buffer. The resulting solution was transferred into 

syringe 1 after 5 minutes. Syringe 2 contained H2O2 in water, such that the final 

composition of the mixture during labeling was the same as for all other time points. 

 

4.2.3 LC/ESI-MS 

All experiments were performed on a Q-TOF Ultima API mass spectrometer 

(Waters, Milford, MA) equipped with a Z-spray ESI source that was operated at 3 kV. 

The instrument was coupled to a Waters Acquity UPLC system employing either a C4 

(BEH300) 2.1 mm x 50 mm reversed-phase column for intact protein analyses, or a C18 

(BEH300) 2.1 mm x 100 mm column for peptide measurements. Elution was carried out 

using a water/acetonitrile gradient in the presence of 0.1% formic acid at a flow rate of 

100 μL min
-1

 and an injection volume of 10 L. The identity of tryptic peptides was 

confirmed by MS/MS. Spectra for the intact protein (Fig. 4.2) are presented as 

deconvoluted mass distributions, obtained by using the MaxEnt software supplied by the 

instrument manufacturer (51). 

 Oxidation sites for each tryptic peptide were determined in off-line MS/MS 
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experiments by directing the UPLC eluent into a TriVersa NanoMate (Advion, Ithaca, 

NY) chip-based nanoESI source. The incoming flow was split such that ~0.3% was sent 

directly to the mass spectrometer while the remainder was collected in 1 minute fractions 

in a 96-well plate. After fraction collection the plate was flash-frozen, and its contents 

were lyophilized. The samples in each well were then resuspended in 50 μL 2% aqueous 

acetic acid such that all of them could be sprayed under identical source conditions (1.6 

kV ESI voltage, 0.3 psi nitrogen backing pressure). 

 

4.3.4 Data Analysis 

A key parameter for quantifying the extent of oxidation within any given protein 

segment (represented by a tryptic peptide) is the fraction unmodified Fu, defined as (31) 

 

   
oxu

u
u

II

I
F


        (4-1) 

 

where Iu and Iox are the LC-ESI/MS peak intensities (in units of counts s
-1

) of the 

unmodified peptide and its oxidation product(s), respectively. For the current work the 

determination of Iu was based on the most intense isotope peak for each peptide, which 

happens to be the monoisotopic signal for most protein segments. Integrated isotope 

cluster areas may be used instead of intensities, but the latter approach has the advantage 

that it avoids complications in differentiating between low-abundance isotopologues and 

baseline noise. 

 Care was taken to suppress the extent of secondary oxidation as much as possible 

(see above). Nonetheless, low levels of background oxidation cannot be ruled out. A 

background correction was therefore applied to all data. Let us first consider the 
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hypothetical case where normalized peak intensities Ru and Rox are used instead of Iu and 

Iox, where Ru + Rox = 1 for each spectrum. In this case it can stated that (52)  
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where Fu
corr

 reflects the actual extent of laser-induced labeling, corrected for background 

oxidation. The superscript app refers to spectra measured after laser exposure, whereas 

bgr signifies the corresponding non-irradated background (control) data. With (1 - Rox
bgr

)  

= Ru
bgr

 it is found that  
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Because the actual measured peak intensities Iu are proportional to the corresponding 

normalized values Ru one can also express the last equation as 
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Unfortunately, Fu
corr

 values determined on the basis of eq. 4-4 are vulnerable to possible 

run-to-run sensitivity drifts of the mass spectrometer. This problem is circumvented in 

the current work by using a slightly modified strategy. A constant amount of the internal 

standard bradykinin was added to all samples, which appears as a signal IBK in all of the 

data sets. Relative peak intensities ru for each unmodified tryptic peptide can then be 

determined as ru = Iu/IBK,. These ru values are directly comparable across different runs, 

because any sensitivity drifts cancel out as they affect both the tryptic peptides and the 

internal standard. Background-corrected fraction unmodified values were therefore 
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determined in the present work as 
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An additional advantage of using eq. 4-5 is that it remains valid even in cases where 

certain oxidation products of a peptide go undetected. Also, eq. 4-5 does not rely on any 

assumptions regarding the ionization efficiencies of peptides and their oxidation 

products. 

Normalized oxidation levels (NOL) for each peptide at refolding time t were calculated 

according to (Chapter 2) 
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NOL = 1 reflects the case where a protein segment has the same solvent accessibility as in 

the acid-unfolded (t = 0) state. Conversely, segments that are protected to the same extent 

as in the refolded (t = 5 min) protein are characterized by NOL = 0. Error bars in the NOL 

data of Fig. 4.4 represent standard deviations of triplicate measurements, each with its 

own background correction. 
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4.3 Results and Discussion 

 

4.3.1 Pulsed Oxidative Labeling 

Structural changes taking place during S100A11 folding and assembly were 

monitored by exposing the protein to a microsecond OH pulse at various time points 

during the reaction. To facilitate comparisons with previous ESI-MS measurements (45) 

the protein was labeled at either t = 10 ms, 200 ms, or 800 ms following a pH jump from 

2 to 7. Native control samples, corresponding to t = 5 min, were included to represent the 

reaction endpoint. Mass distributions recorded at the intact protein level reveal that the 

transition from denatured monomers to the native dimer is associated with dramatic 

changes in solvent accessibility. The extent of covalent +16 Da adduction is highest for t 

= 10 ms (Fig. 4.2A). As indicated above, the protein is known to form a burst-phase 

monomeric intermediate at this time point, although the structure of this species remains 

unexplored (45). With increasing reaction time the labeling level gradually decreases 

(Figure 4.2B, C), reflecting the progressive protection of side chains from the solvent. At 

800 ms (Fig. 4.2C) dimerization has gone to completion (45). The transition from this 

time point to the refolded protein (t = 5 min, Fig. 4.2D) is nonetheless accompanied by a 

further decrease in the extent of labeling. 

 The mass distributions of Fig. 4.2 were acquired using a denaturing LC/MS 

eluent. For this reason all spectra correspond to monomeric S100A11, regardless of the 

oligomerization state at the time of labeling. The data obtained in this way reflect 

changes in solvent accessibility averaged over all monomer and dimer conformers that 

are present at a given reaction time. Also included in Fig. 4.2D are spectra for two control 

samples. The dotted line represents native S100A11 that had not undergone a  
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Figure 4.2. Deconvoluted mass distributions obtained by pulsed oxidative labeling at 

different time points during folding. (A) 10 ms, (B) 200 ms, (C) 800 ms, (D) 5 min. In 

(A) the unoxidized protein is marked as “0”. Oxidative +16 Da modifications are marked 

as 1, 2, etc. Included in (D) is the spectrum of a native control that was labeled without 

prior unfolding (dotted line). Also shown (D, dashed line) is the spectrum of an unlabeled 

control. 
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denaturation/refolding cycle prior to labeling. The resulting mass distribution is virtually 

indistinguishable from that of the refolded protein at t = 5 min, confirming that formation 

of the native complex indeed goes to completion in our kinetic experiments. Fig. 4.2D 

also shows the mass distribution of a sample that did not get exposed to laser irradiation. 

Evidently, only a low level of background oxidation occurs for this non-labeled control. 

The time-resolved data discussed below were nonetheless subjected to a background 

correction, as described in Materials and Methods. 

 

4.3.2 Peptide Mapping and Oxidation Site Determination 

Ascertaining structural details about the folding and assembly process requires 

spatially-resolved labeling experiments. To identify the side chains that govern the 

protein oxidation behavior we conducted MS/MS-based peptide mapping on acid-

denatured S100A11 that had been pulse-labeled. Tryptic digestion resulted in nine 

peptides (denoted as T1, T2, etc. in Fig. 4.1B) that cover 95% of the sequence. The 

remaining 5% correspond to two short segments (T6 and T9) that were not detected in 

our mapping procedure. Fig. 4.3 exemplifies typical MS/MS data, obtained by subjecting 

T2+16 to collision-induced dissociation. Analysis of the tandem mass spectrum reveals 

that the chosen precursor mass encompasses two isobaric peptides, both of which carry a 

single oxidative modification. The presence of +16 Da peaks for y3 to y9, along with 

unmodified y1 and y2 ions identifies F17 as one of the oxidation sites. In addition, the 

spectrum shows unmodified y1 through y9 ions, in combination with a b2+16 signal. 

These signals, along with the high intrinsic reactivity of Ile relative to Ser (31), pinpoint 

I10 as the second site of oxidation. In a similar fashion, tryptic peptide mapping and  
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Figure 4.3. Representative MS/MS spectrum of [T2+16]. Peaks are marked using 

standard b and y ion notation. Detected oxidation sites (I10 and F17) are underlined. 
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MS/MS of the remaining peptides revealed 17 additional oxidation sites. The 

considerable size of one particular peptide (T10, 31 residues) made it challenging to 

determine possible oxidative modifications in the vicinity of helix IV. Chymotrypsin 

digestion was therefore carried out, which covers the T10 region with three smaller 

fragments (Fig. 4.1B). Two more oxidation sites, L71 and F73, were detected in this way. 

Taken together, the 21 identified modification sites (highlighted in bold, Fig. 4.1B) form 

a comprehensive set of structural probes that report on changes in solvent accessibility 

during S100A11 folding and dimerization. This group of residues encompasses F, M, L, 

P, H, R, Y, I, and C, all of which have been shown to be highly reactive in earlier OH 

labeling experiments on different proteins (31). Oxidation at these sites was found to be 

associated with +16 Da modifications under the conditions of our work. The formation of 

additional low abundance products cannot be excluded. 

 

4.3.3 Denatured Monomeric State 

As noted earlier, monomeric S100A11 at pH 2 does not adopt a random coil 

conformation but retains residual structure (45), not unlike many other denatured proteins 

(53, 54). Clues to the location of structured elements in S100A11 come from the 

positioning of oxidized and non-oxidized residues in the free subunits (Fig. 4.1B). 

Phenylalanine exhibits one of the highest intrinsic reactivities with OH (31). Thus, it is 

not surprising that numerous oxidized Phe residues were detected. Of the seven 

phenylalanines covered by peptide mapping, only one (F76) is protected from oxidation. 

F76 is in close vicinity to several other intrinsically reactive side chains that also remain 

unlabeled (L77, L79, I80, L83). These five residues are part of helix IV, and in native 
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S100A11 they form a hydrophobic core that is shielded from the solvent (highlighted in 

Fig. 4.1A). The fact that all five residues remain unlabeled at pH 2 indicates that they 

continue to be protected from the aqueous environment in the acid-denatured state (55). 

Because L77 and I80 are positioned at the dimerization interface, their lack of oxidation 

at pH 2 suggests that the acid-denatured monomers possess a hydrophobic core which is 

structurally somewhat different from that of the native dimer. A similar situation exists in 

helix I where L13, I14 and V16, residues also located at the dimer interface, are protected 

from oxidation at pH 2. The most likely scenario is re-packing of the nonpolar side chains 

of helix I (L13, I14, V16) against those of helix IV (L77, I80). In other words, our data 

suggest that the monomeric protein at pH 2 compensates the loss of intermolecular 

hydrophobic contacts by forming intramolecular contacts between helices I and IV. The 

consequences of such partially non-native structural features for the assembly mechanism 

will be considered below. 

 

4.3.4 Time-Dependent Peptide Solvent Accessibilities 

A comparison of the time-dependent changes in solvent accessibility for the 

various protein segments becomes possible by displaying their normalized oxidation 

levels (NOL) (Fig. 4.4, eq. 4-6 of Materials and Methods). NOL = 1 represents the case 

where a segment has the same accessibility as in acid-denatured S100A11, whereas NOL 

= 0 signifies that protection has reached the native state level. Fractional NOL values 

correspond to solvent accessibilities in-between these two cases. In Fig. 4.4 peptides are 

grouped into three categories according to the appearance of their NOL profiles. Also 

shown are the locations of individual peptides in the context of the native S100A11 dimer  
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Figure 4.4. Normalized oxidation levels (NOL) of protein segments (tryptic peptides T1, 

T2, ...) as a function of folding time t. Dashed lines are included to facilitate data 

comparison, they do not represent a theoretically expected time course. Cartoons 

highlight the locations of peptides (purple) within one subunit of the native dimer. All 

data points represent averages of three independent measurement. Error bars indicate 

standard deviations. In (C), error bars are shown for T4 only, while others have been 

omitted for clarity. Note that the time axis is not linear. 
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structure. Panel A represents two segments that retain relatively high oxidation levels at t 

= 10 ms, 200 ms, and 800 ms. In comparison, the peptides in Fig. 4.4C have significantly 

lower NOL values at all three time points. The remaining two segments, T2 and T10 (Fig. 

4.4B) show an interesting behavior where NOL at t = 10 ms is quite high, and comparable 

to the panel A data set. At longer reaction times these two peptides switch towards the 

low NOL values exhibited by the segments in panel C. This transition from high to low 

oxidation is particularly pronounced for T2, which is among the most protected segments 

at the 200 and 800 ms time points. Inspection of the structural cartoons of Fig. 4.4 reveals 

that T2 and T10 encompass the dimerization interface, i.e., helices I and IV.  

 

4.3.5 Folding and Assembly of S100A11 

The structural changes taking place during folding and dimerization were 

visualized by mapping the NOL data of Fig. 4.4 onto the native protein structure, using a 

five-step color scheme to signify the extent of oxidation at reactive side chains (Fig. 4.5). 

For the acid-denatured monomers all 21 oxidation sites are shown in red (NOL = 1), 

whereas the five non-oxidizable residues involved in the partially non-native hydrophobic 

core are displayed in blue (Fig. 4.5A). 

 After 10 ms S100A11 is known to adopt a monomeric intermediate (45). A major 

NOL drop to values around 0.5 at this time point has occurred for Y20, H26, P53, L56, 

and P97, all of which are colored yellow in Fig. 4.5B. When inspecting the locations of 

these sites it is apparent that they are distant from the dimerization interface. The labeling 

behavior throughout the rest of the protein at 10 ms remains close to that of the acid-
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Figure 4.5. Structural changes during folding and dimerization measured by pulsed oxidative labeling. (A) acid-denatured protein (t = 

0), (B) 10 ms, (C) 200 ms, (D) 800 ms, (E) native protein at t = 5 min. Normalized oxidation levels (NOL) are visualized using a five-

level color code. The onset of dimerization is indicated in (C) by showing the second subunit in light gray. Dimerization is complete 

for (D), (E). Oxidation sites are highlighted for one subunit only. 
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denatured state, reflecting the lack of protein-protein interactions that keeps many 

residues at the dimerization interface solvent exposed. 

 Further protection at Y20, H26, P53, L56, and P97 is evident at 200 ms. In Fig. 

4.5C these residues are depicted in green. At the same time, notable protection starts to 

appear for residues at the dimerization interface, including I10, F17, F73, H88, and F91. 

The labeling behavior at these sites is consistent with partial dimerization, as previously 

seen by time-resolved ESI-MS at this time point (45). An overall compaction starts to 

affect the entire protein at 200 ms, evident from the lack of "red" side chains in Fig. 4.5C. 

The onset of dimerization is symbolized by displaying the second subunit in light gray.  

Subunit association is known to be complete after 800 ms (45). Oxidative labeling 

at this time point results in NOL values close to zero for many side chains (blue in Fig. 

4.5D), indicating that their solvent accessibilities are native-like. These residues include 

all those in the vicinity of the dimerization interface (helices I and IV), consistent with 

steric shielding from OH attack due to mutual protection of the two subunits. 

Interestingly, however, side chains in helices II and III retain significant exposure at 800 

ms (F35, F38, M39, F46, M59, M60, green and yellow, Fig. 4.5D). This behavior implies 

the presence of a transient intermediate at 800 ms that is dimeric, yet retains non-native 

elements. This dimer represents a previously unidentified species on the kinetic 

folding/assembly pathway of S100A11. It exhibits strong protection throughout helices I 

and IV and in the dimerization interface. In contrast, the helix II/III regions retain 

elevated solvent accessibilities. Structural consolidation of these remaining non-native 

regions ultimately leads to the fully folded S100A11 complex (Figure 4.5E). 



144 

 

 It is interesting to note that a dimeric intermediate has also been observed for the 

closely related S100B, albeit under equilibrium conditions. Tryptophan substitutions 

suggested involvement of A6 and T81 of S100B in subunit interactions (56). These 

positions correspond to S9 and A86, respectively, in the C9S variant of S100A11 used 

here (57). Neither S9 nor A86 were found to be labeled in our experiments due to their 

low intrinsic reactivities (31). However, the neighboring I10, C87 and H88 were found to 

be oxidizable (Fig. 4.1B). At a folding time of 10 ms, these three residues exhibit very 

high labeling levels (red in Fig. 4.5B). In contrast, at 800 ms they are strongly protected 

(blue in Fig. 4.5D). These observations provide further support that S100A11 exists as a 

monomer intermediate at 10 ms, while forming a dimeric intermediate at 800 ms. 

 

 

4.4 Conclusions 

The current work provides insights into the structural changes taking place during 

a biomolecular self-assembly process. Using the notation outlined in the Introduction, the 

transition from acid-denatured monomeric S100A11 to the native dimer may be 

portrayed by a simplified pathway scheme 

 

2 MU → 2 MI → DI → DN 

 

Describing kinetic folding/assembly processes in terms of pathways has a long history 

(13, 27, 28). However, past descriptions of this type were based largely on spectroscopic 

data that provided limited structural information. Here we demonstrate that pulsed OH 
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labeling yields distinct conformational features of the participating species by reporting 

on side chain solvent accessibilities as a function of reaction time. 

 Earlier kinetic studies on S100A11 had already presented evidence for the 

formation of a monomeric burst-phase intermediate MI (45). The oxidative labeling data 

of this work reveal that solvent exclusion in this transient conformer mainly affects 

elements that are distant from the dimerization interface (Fig. 4.5B). At a later stage 

S100A11 forms a dimeric species DI with native-like protein-protein interactions (helices 

I/IV), whereas regions in the periphery (helices II/III) remain partially disordered. A 

similar species has been shown to be populated in equilibrium experiments on S100B 

(56). The observation that S100A11 forms both a monomeric and a dimeric intermediate 

in our kinetic experiments implies that folding and protein-protein binding are 

intertwined processes, where one cannot go to completion without the other. This finding 

contrasts earlier proposals, where the presence of fully folded monomers is considered to 

be a general prerequisite for the assembly of native protein complexes (26). 

 It is interesting to consider why dimerization of S100A11 takes place on a time 

scale of hundreds of milliseconds, whereas some other systems can establish protein-

protein contacts much more rapidly. For example, formation of a dimeric intermediate 

occurs close to the diffusion limit for the Trp repressor from E. coli (58). Our results 

suggest that the relatively slow association kinetics of S100A11 are caused by the 

partially non-native hydrophobic core of the monomeric subunits. Yeast two-hybrid 

assays on S100A4 have revealed that residues of helix IV corresponding to F76, L77, 

L79, I80, and L83 in S100A11 play a key role for the dimerization process (41). Partial 

shielding of these residues by elements of helix I as indicated by oxidative labeling 
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therefore represents an initial impediment to subunit association. Whether the subsequent 

dimerization step follows an induced-fit scenario, or whether it involves equilibrium 

shifts of conformational populations (14) cannot be decided from our data. 

 The solvent accessibility maps of Fig. 4.5 are akin to frames of a "molecular 

movie" that depicts structural changes during folding and assembly of a protein complex. 

The earliest possible reaction time point that could be monitored with the system 

employed here is around 10 ms. Based on the short (~1 s) duration of the OH labeling 

pulse, it should be possible to extend the time frame of these experiments to much faster 

processes by using improved mixing schemes or temperature-jump devices (36). Work in 

this direction is currently ongoing in our laboratory, as well as elsewhere (35). It is hoped 

that these efforts will help pave the way towards a better structural and mechanistic 

understanding of rapid biomolecular processes. 
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Chapter 5 - Folding Mechanism of α1-Antitrypsin to Its Metastable 

Active State: Insights from Pulsed Oxidative Labeling and Mass 

Spectrometry 

 

 

5.1 Introduction 

Determining the mechanisms by which proteins attain their biologically active 

conformation from an initial disordered strcucture remains an ardently pursued goal. 

Interest in this area stems in large part from the numerous diseases that have protein 

misfolding implicated as a causative factor (1). Studying protein folding in a cellular 

context is complicated by factors such as molecular crowding, chaperone activity, and co-

translational events (2). Computational methods have improved dramatically in recent 

years, but remain limited to very fast folding proteins (3) and require experimental 

validation. In vitro studies using simplified experimental systems have provided a wealth 

of insight (4). One of the most direct routes to understanding folding mechanisms 

involves the structural characterization of transient intermediates formed along the 

pathway to the native state (5). Unfortunately, such experiments are complicated by the 

fleeting nature of intermediates which precludes the application of classical high 

resolution techniques. Optical readouts are widely used for kinetic folding experiments, 

but the extent of structural information obtainable in this way is usually limited (6). 

Pulsed hydrogen/deuterium exchange (HDX) is a powerful tool for monitoring secondary 

structure by reporting on hydrogen bond formation in a spatially-resolved fashion (7, 8). 
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 Mass spectrometry (MS)-based techniques are becoming widely used for studying 

protein structural changes (9). Mapping protein solvent accessibility at amino acid 

resolution is possible via covalent labeling methods (10). The combination of MS with 

hydroxyl radical (·OH) labeling is a particularly powerful approach (11). These 

experiments rely on the premise that solvent-exposed side chains readily react with ·OH, 

whereas burial dramatically reduces the extent of labeling. The lifetime of the ·OH in 

solution can be reduced to ~1 us through the addition of suitable scavengers (12), 

implying the absence of structural artifacts casused by oxidation-induced conformational 

changes under “single hit” conditions (13). Most ·OH labeling applications to date have 

investigated structural changes under equilibrium conditions (14). Due to the short 

duration of the labeling pulse, ·OH-based methods are well suited for time-resolved 

experiments. However, this particular application is only beginning to be realized (15, 

16).  

Members of the serine protease inhibitor (serpin) superfamily, of which α1-

antitrypsin (α1AT) is the archetype, share a common structural core comprising three β-

sheets and eight or nine α-helices (Figure 5.1). Serpins are involved in the regulation of 

proteolytic cascades, such as those taking place during inflammation and thrombosis 

(17). Point mutations can give rise to serpin polymerization via a domain swap 

mechanism, leading to various disease phenotypes (18). The serpin inhibitory function is 

based on a suicide substrate mechanism. Cleavage of the reactive center loop (RCL) by a 

target protease results in a long-lived complex that has Ser195 of the protease covalently 

linked to Met358 of α1AT via an ester bond. This is followed by insertion of the cleaved 

RCL into β-sheet A as a new strand (A4), in between strands A3 and A5. Loop insertion  
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Figure 5.1. X-ray crystal structure of human α1-antitrypsin in the metastable (active) 

conformation (PDB ID: 1QLP (19)) α-helices (a-i) are shown in blue and β-sheets A, B, 

and C are depicted in green, purple, and yellow respectively. Component strands in each 

β-sheet are labeled X1, X2, etc. where X = A, B, C. The reactive center loop (RCL) is 

shown in red.  



155 

 

is concomitant with translocation of the protease to the opposite pole of α1AT (top to 

bottom of Figure 5.1)(20). The loop-inserted conformation shows an increased 

thermodynamic stability compared to active α1AT, revealing that the active conformation 

represents a metastable state (21). Importantly, the RCL can also insert without prior 

cleavage to give an enzymatically inactive (“latent”) state (22). It is an interesting 

question how α1AT folds to its metastable, active state while avoiding its 

thermodynamically preferred, loop-inserted latent conformation (17). 

While there exist many equilibrium studies on α1AT folding in the literature (23-

25), accounts of the time-dependent folding mechanism are sparse. Most small proteins 

fold to their native state on the order of several seconds or less, however folding of α1AT 

is remarkably slow. Kim and Yu have employed ANS fluorescence to show that the 

initial fast phase of α1AT folding, collapse of a hydrophobic core, occurs ca. 5 s post 

denaturant dilution (26). Intrinsic fluorescence from Trp194 and Trp238 was also used to 

define an intermediate phase (τ = 200-500 s) and a slow phase (τ = 1000-3000 s). A 

recent HDX study by Tsutsui et al. proposed a folding mechanism in which early 

formation of strands C1 and B4 anchor the RCL, rendering it incapable of inserting into 

β-sheet A (27). 

In this work, we complement the results of Tsutsui et al. (27) monitoring temporal 

changes in solvent accessibility of side chains during α1AT folding using pulsed ·OH 

labeling. The earliest stages of folding involve a near-global collapse and the formation 

of a central folding nucleus which sequesters regions of β-sheet A. Such quarantine 

disfavors loop insertion and allows strand C1 to form and restrict RCL movement, as 

proposed by Tsutsui et. al. (27). While formation of secondary structure lags behind the 
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formation of tertiary contacts early on, good agreement is seen between the HDX and 

·OH labeling data at late folding times. A late kinetic folding intermediate is populated 

consisting of a solvent-inaccessible core very similar to a previously characterized 

equilibrium polymerogenic intermediate (28).  

 

 

 

5.2 Materials and Methods 

 

5.2.1 Materials  

Recombinant human α1-antitrypsin was expressed and purified as described (29). 

R101H and E376D substitutions were utilized to facilitate purification. The expected 

molecular mass for the monomer is 44 291 Da, which matches the measured value within 

experimental error of  1 Da. Bovine liver catalase, bovine pancreas α-chymotrypsin, 

glutamine, leucine enkephalin, and bromocresol purple were obtained from Sigma (St. 

Louis, MO). Bradykinin was supplied by Bachem (King of Prussia, PA) and sequencing-

grade trypsin was purchased from Promega (Madison, WI). All chemicals were used 

without further purification.  

 

 

 

5.2.2 Continuous-flow Mixing and Oxidative Labeling 

Kinetic protein folding experiments with oxidative labeling were performed using 

a two-syringe continuous-flow mixing device similar to that employed for previous work 

(Chapter 4). For early (0.5 and 7 s) reaction times, the mixer was used for both folding 

initiation and labeling. Later reaction times (2 min, 10 min, 30 min, and 24 hr) employed 
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off-line, manual mixing to trigger folding followed by labeling using the mixing device.  

For 0.5 and 7 s time points, syringes 1 and 2 were advanced at 2.5 and 47.5 μL min
-1

, 

respectively, using a syringe pump (Harvard Apparatus, Boston, MA). Syringe 1 

contained 200 μM α1AT denatured in 6 M GdnHCl, 10 mM phosphate buffer (pH 7.8), 

and 50 mM NaCl. Protein folding was triggered by combining this solution with 

phosphate buffer (pH 7.8) from syringe 2 at a homemade capillary mixer in a 1:19 

volume ratio, resulting in a final denaturant concentration of 0.3 M and a protein 

concentration of 10 μM. The outlet of the mixer was connected to a reaction capillary 

with i.d. 100 m. Syringe 2 also contained 15.8 mM glutamine and 0.105% (v/v) (ca. 30 

mM) H2O2. A KrF excimer laser (GAM EX 750, Orlando, FL) producing 18 ns pulses at 

248 nm, 72 Hz, 37 mJ, and an irradiation spot width of ca. 1 mm was used to generate 

OH by photolysis of H2O2 within the reaction capillary. Glutamine acts as a radical 

scavenger that quenches the labeling reaction on a time scale of 1 s (12). Following 

initiation of folding, oxidative labeling was performed at different time points by 

irradiating the reaction mixture at suitable positions downstream of the mixer. Average 

reaction times of 0.5 s and 7 s correspond to distances between mixer and irradiation spot 

of 5.3 cm and 74.2 cm, respectively. Effective mixing and reproducible labeling was 

confirmed as described previously (Chapters 2 and 3). In addition, the mixer performance 

was verified optically in pH jump experiments on bromocresol purple in the presence of 

GdnHCl (7). 

For 2, 10, and 30 min time points, 200 μM α1AT denatured in 6 M GdnHCl was  

diluted into 10 mM phosphate buffer (pH 7.8) to trigger folding. Resultant was a 

denaturant concentration of 0.4 M and a final protein concentration of 13.34 μM. For 
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each labeling time, a fraction of this mixture was loaded into syringe 1. The second 

syringe contained 10 mM phosphate buffer (pH 7.8), 60 mM glutamine and 0.4% (v/v) 

H2O2. Syringes 1 and 2 were advanced at 75 and 25 μL min
-1

, respectively, using a 

syringe pump (Harvard Apparatus, Boston, MA) resulting in mixing at the homemade 

capillary mixing device. The solution was irradiated for 2 min with the KrF excimer laser 

at a window 74.2 cm downstream of the mixing point. Because folding was initiated via 

offline mixing, measured folding times were actually between t and t + 2 min. 

Efficient absorption of the 248 nm photons by GdnHCl precluded the labeling of 

an unfolded sample in 6 M denaturant. An acid-denatured sample was not feasible due to 

the polymerization propensity of α1AT at low pH (30). Due to the long lag phase during 

refolding, the 0.5 s sample served as the 'unfolded‟ control. A refolded sample, however, 

was included to mark the endpoint of the folding process. This sample was prepared in 

the same manner as the 2, 10, and 30 min samples and then was loaded into syringe 1 and 

subjected to laser irradiation after 24 hr of folding. Refolded α1AT under the conditions 

used here has been shown to maintain 70% inhibitory activity, indicating the majority 

remains in the monomeric, active conformation (27). 

200 L portions of capillary outflow for each irradiated sample were collected in 

microcentrifuge tubes that contained 15 μL 10 mM phosphate buffer and 1.4 μM catalase 

at pH 7.8. Catalase was employed for deactivating residual H2O2, thereby suppressing 

undesired secondary oxidation (31, 32). The extent of secondary oxidation was further 

reduced by flash-freezing all samples in liquid N2 immediately after collection, and by 

storage at -80 C until further analysis.  

Each sample was dialyzed overnight against 10 mM phosphate buffer (pH 7.8) for 
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further GdnHCl dilution to facilitate protease digestion.  The resulting solutions were 

split, with half being digested with trypsin at pH 7.8 and 37 °C for 24 h using a 1:20 

(w/w) enzyme:protein ratio and half being digested with chymotrypsin at pH 7.8 and 30 

°C for 24 hr using a 1:60 (w/w) enzyme:protein ratio. The digests were lyophilized and 

resuspended in 50 μL of water containing 0.5 μM bradykinin as an internal intensity 

standard (33)(Chapter 4). Non-irradiated control samples were collected for every 

measurement by using the same solution conditions and mixing sequence, except that the 

laser was switched off. 

 

5.2.3 LC/ESI-MS  

Peptide mapping experiments were performed on a Q-TOF Ultima API mass 

spectrometer (Waters, Milford, MA) equipped with a Z-spray ESI source that was 

operated at 3 kV. The instrument was coupled to a Waters Acquity UPLC system 

employing a C18 (BEH300) 2.1 mm x 100 mm column for peptide measurements. 

Elution was carried out using a water/acetonitrile gradient in the presence of 0.1% formic 

acid at a flow rate of 100 μL min
-1

 and an injection volume of 10 L. The identity of 

tryptic and chymotryptic peptides was confirmed by MS/MS. 

 Oxidation sites for each tryptic and chymotryptic peptide were determined using a 

Synapt mass spectrometer (Waters, Milford, MA), operating in either data-dependent 

acquisition (DDA) mode or in MS
E
 mode, coupled to a Waters Acquity UPLC system. 

For DDA experiments, fragmentation of the two most abundant eluent precursor ions was 

performed in the trap using optimized collision energies. Five rounds of iterative 

exclusion were used to ensure maximal sequence coverage (34) and data were analyzed 
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using Peaks (BSI Solutions, Waterloo, ON) (35). For MS
E
 experiments, the trap was 

maintained at 6 V during the low-energy scans and was ramped from 14 to 34 V in the 

high energy scans. Leucine enkephalin (m/z 556.2771
1+

) was used as a lock mass. Data 

were analyzed using the ProteinLynxGlobalServer software package provided by the 

manufacturer. All oxidation site assignments were verified manually. 

 

5.2.4 Data Analysis 

In accordance with our previous studies, oxidation levels of specific protein 

segments were observed by following the intensity of unmodified tryptic peptides as a 

function of folding time, t (Chapters 3 and 4). Relative signal intensities of unlabeled 

proteolytic peptides, Ru
app

(t), were generated by dividing the UPLC/MS peak heights of 

each peptide by the peak height of the bradykinin internal standard for each folding time t 

(33)(Chapter 2). Peak heights were utilized rather than peak areas to negate 

complications associated with separating low abundance isotopologues from baseline 

noise. The resulting signal intensities were corrected for trace amounts of background 

oxidation by 

 

bgr

u

app

ucorr

u
R

R
R        (5-1) 

 

where Ru
bgr

  is the bradykinin corrected peak height of the corresponding protein segment 

found in the unlabeled control sample. Normalized oxidation levels (NOLs) for each 

peptide were calculated using the corrected relative signal intensities according to  
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Ru
corr

(t) is the background corrected, relative signal intensity of a particular unmodified 

peptide at folding time t, Ru
corr

(0.5 s) is the corresponding value of the “denatured” 

control (t = 0.5 s), and Ru
corr

(24 hr) is that of the refolded control sample (t = 24 hr). 

Equation 5-2 provides direct information on the solvent exposure of individual tryptic 

peptides at a given folding time (Chapter 2). Error bars shown in Fig. 5.3 were calculated 

using the standard deviation of triplicate measurements. 

 

 

 

 

5.3 Results and Discussion 

 

5.3.1 Peptide Mapping and Oxidation Site Determination 

α1AT was initially unfolded in 6 M guanidinium hydrochloride (GdnHCl) at pH 

7.8 for 2 hr. Folding was initiated via a denaturant dilution from 6 M to 0.3 M GdnHCl. 

This ensured that the protein was far below the folding transition midpoint (23). We 

subjected α1AT to oxidative labeling at 7 s, 2 min, 10 min, and 30 min after GdnHCl 

dilution. To mark the endpoint of the reaction, a sample corresponding to t = 24 hr was 

also prepared. The strong absorption of the 248 nm photons by concentrated GdnHCl 

precluded the labeling of fully denatured α1AT. However, the fact that early collapse of 

the protein is so slow (26) justifies the use of t = 0.5 s samples as a “pseudo-unfolded” 

reference state. 
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To garner detailed insights into protein structural changes accompanying folding, 

spatially resolved labeling data are required. Tryptic digestion of α1AT after ·OH 

exposure resulted in 28 observable peptides. Two such segments (spanning residues 40-

135) were exceedingly long, necessitating the usage of chymotrypsin to obtain 7 shorter 

peptides. With this combination of trypsin and chymotrypsin, 33 peptides covering 93% 

of the sequence were detected (Figure 5.2). The remainder of the sequence comprises 

small, hydrophilic segments that likely did not adhere to the C18 column. Residue-level 

mapping of oxidation sites was performed via MS/MS experiments on a pulse labeled 0.5 

s refolding sample. Typical spectra utilized for oxidation site determination are shown in 

Figure 5.3. The presence of b5-H2O+16 and y4+16 peaks in Fig 5.3A, coupled with the 

b4-H2O peak and absence of a y4 peak, lead to the assignment of Y160 as the modified 

residue. The interpretation of the spectrum shown in Fig. 5.3B is more complex. This 

results from the simultaneous fragmentation of two isobaric peptides. The y2+48 ion 

indicates that C232 has been fully oxidized to the sulfonic acid. The b3+16 peak indicates 

a modification between L224 and M226. The y9+64 peak leads to M226 as an oxidation 

site but the presence of a y9+48 ion necessitates a second site carrying a +16 Da 

modification. Since oxidation of glycine leads to backbone cleavage, the remaining 

oxidation site is localized to L224. A total of 69 side chains were found to be oxidized, 

which is considerably more than a previous study of native α1AT (36). The locations of 

the oxidation sites within the α1AT structure are mapped in Figure 5.4.  
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1EDPQGDAAQK TDTSHHDQDH PTFNKITPNL AEFAFSLYRQ LAHQSNSTNI

51FFSPVSIATA FAMLSLGTKA DTHDEILEGL NFNLTEIPEA QIHEGFQELL

101HTLNQPDSQL QLTTGNGLFL SEGLKLVDKF LEDVKKLYHS EAFTVNFGDT

151EEAKKQINDY VEKGTQGKIV DLVKELDRDT VFALVNYIFF KGKWERPFEV

201KDTEEEDFHV DQVTTVKVPM MKRLGMFNIQ HCKKLSSWVL LMKYLGNATA

251IFFLPDEGKL QHLENELTHD IITKFLENED RRSASLHLPK LSITGTYDLK  

301SVLGQLGITK VFSNGADLSG VTEEAPLKLS KAVHKAVLTI DEKGTEAAGA
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Figure 5.2. Amino acid sequence of the α1-AT construct used in this work. Secondary 

structure elements are depicted in colors corresponding to those in Fig. 5.1. Proteolytic 

peptides used for kinetic analysis are shown as double-headed line segments and labeled 

sequentially (P1, P2, etc.). Solid lines indicate peptides from tryptic digests and 

chymotryptic peptides are shown as dotted.   
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Figure 5.3. Tandem-MS spectra of oxidatively modified proteolytic α1AT peptides. Most 

major peaks are labeled using standard b- and y-ion notation. (A) MSMS of [P13+16]. 

(B) MSMS of [P20+64].  
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Figure 5.4. Amino acid side chains determined to be oxidized in denatured α1AT 

mapped onto the native crystal structure (PDB ID: 1QLP (19)). Sites are shown as 

magenta spheres and broadly grouped according to amino acid type. 
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5.2.2 Time-Dependent Peptide Solvent Accessibilities 

Determination of temporal changes in peptide solvent accessibilities is facilitated 

by examining their normalized oxidation levels (NOLs). NOL = 1 signifies solvent 

accessibility identical to that found in the 0.5 s reference sample, while NOL = 0 

indicates an accessibility matching that of the refolded α1AT. Solvent accessibility levels 

intermediate to these two endpoints are characterized by 0 < NOL < 1. The resulting 

temporal NOL profiles can be broadly clustered by oxidation behavior.  Segregation of 

curves into multiple panels (A-H) was done to reduce clutter and does not imply 8 

distinct kinetic regimes. Figure 5.5A represents protein segments that become 

significantly protected after 7 s of folding and progress rapidly to native-like NOL values. 

Intermediate NOL progressions are depicted in panels B-G. Of note are P2 and P22 (Fig. 

3C) which attain over half of their native state solvent accessibility after 2 min of folding, 

but show only modest decreases at 30 min. The seemingly stepwise decrease in 

accessibility of the protein segments in Fig. 5.5E is also notable. After a rapid collapse 

between 0.5 and 7 s, very little change in accessibility is observed in the 2 min sample. 

Similar plateaus in oxidation level can be seen between 10 and 30 min of folding. The 

peptides shown in panels F and G, while exhibiting temporally distinct protection 

patterns, are those with the highest solvent accessibility after even 30 min, whereas 

nearly all other segments have reached native-like levels. Interestingly, P31 (Fig. 5.5H) 

exhibits the highest solvent accessibility as late as 10 min after onset of folding, but is 

among the most native-like segments at 30 min.  

Interpretation of the conformational changes during α1AT folding is facilitated by 

mapping the NOL values from Figure 5.5 onto the crystal structure of the protein (Figure  
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Figure 5.5. Normalized oxidation levels (NOLs) of α1-AT proteolytic peptides as a 

function of folding time. Peptides are broadly grouped according to kinetic behavior. All 

data points are averages of triplicate measurements. Error bars are shown for only one 

peptide per panel for clarity. In panel F, two traces have been omitted to reduce clutter: 

P18 and P29, which exhibit virtually identical behavior to P30 and P16, respectively.  
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5.6, A-D). While peptide oxidation behavior was attributed to the modification of a 

subset of reactive residues (Fig. 5.2, bold), entire proteolytic peptides are colored in Fig. 

5.6 to reduce clutter. All modified residues that were detected are shown with respect to 

their locations within the crystal structure in Fig. 5.4. For comparative purposes, recent 

kinetic HDX data of Wintrode and coworkers (27) are also mapped onto the α1AT crystal 

structure (Fig. 5.6, E-H). 

 

5.2.3 The Denatured State 

To fully understand the folding pathway of a protein, it is instructive to 

characterize the initial state. A previous tyrptophan fluorescence study reported residual 

structure around W238 in the urea denatured state of α1AT (24). In the native state, the 

side chain of W238 sits in a hydrophobic pocket consisting of I229 and H231 from strand 

B1 and V364 from strand C1. I229 and V364 have been shown to be critical for proper 

α1AT folding (37). H231 and W238 were found to be oxidized after only 0.5 s of folding 

(Fig. 5.4) and continue to exhibit extensive solvent accessibility after 7 s (Fig. 5.6A). 

This finding implies residual water access in the hydrophobic core as a result of 

incomplete side chain packing.   

 

5.2.4 α1AT Folding Mechanism 

For the following discussion it is helpful to conduct a side-by-side comparison of 

our ·OH labeling data with the HDX results of Tsutsui et al.(27)(Fig. 5.6). As seen in Fig. 

5.6A, a near-global decrease in solvent accessibility has occurred at t = 7 s, indicating a 

rapid collapse of the protein chain. This observation is in agreement with previous  



169 

 

    

> 80% 60-80% 40-60% 20-40%

7 s

2 min

10 min

30 min

·OH HDX

< 20%

NOL or %HDX

A

B

C

D

E

F

G

H

 

Figure 5.6. Structural changes during α1AT folding probed with pulsed oxidative (·OH) 

labeling after (A) 7 s, (B) 2 min, (C) 10 min, and (D) 30 min of folding.  

Hydrogen/deuterium exchange (HDX) levels at corresponding folding times from ref. 

(27) are shown on the right (E-H) for comparison. Both NOLs and HDX levels are 

depicted using a five color code. 
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reports (26). It has been shown that collapse precedes secondary structure formation (38). 

Interestingly, HDX reveals no stable hydrogen bonding at this time point (Fig. 5.6E)(27). 

While the specificity of protein collapse remains up for debate (39), the formation of a 

structural folding core (Fig. 5.6A, yellow) is concomitant with the incipient collapse seen 

for α1AT. The core consists of protein segments comprising helices b and c, and strands 

A2 and A3. These elements are non-contiguous (Fig. 5.2) but it is apparent from the 

structure in Fig. 5.6A that they form multiple tertiary contacts. Since no stable secondary 

structure exists on this time scale (Fig. 5.6E), we postulate that the early formation of 

tertiary contacts between helices b/c and A2 and A3 allow the strands to be sequestered, 

which disfavors RCL association with β-sheet A. This is crucial since the 

thermodynamically preferred conformation of α1AT has the RCL inserted into sheet A, 

although such a state is enzymatically inactive.   

 A further decrease in accessibility is observed for much of the protein sequence 

after 2 min of folding (Fig. 5.6B). Notable exceptions include strand B4 along with 

helices g and h, segments which were previously proposed to be significantly involved in 

the residual structure found in the denatured state (24). This provides further evidence 

that the residual structure contains non-native side chain packing. Helices b and c have 

attained further protection from modification while A2 and A3 exhibit levels similar to 

those found in the 7 s sample, indicating that the helices form the foundation of the 

folding core seen in Fig. 5.6A. While B4 is among the most solvent exposed regions after 

2 min it, along with C1, are the first to acquire stable secondary structure (Fig. 5.6F, 

yellow). Tsutsui et. al. propose that the early formation of these elements locks the RCL 

in a conformation that is unable to insert into the yet unformed A-sheet, signifying the 
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crucial step in maintaining α1AT in its metastable form (27). Previous work has also 

shown strand C1 to be critical to maintaining the active, native structure of α1AT (37, 

40). 

The interpretation that helices b and c form a folding nucleus gains traction when 

the NOL values for the 10 min folding time point are structurally mapped (Fig. 5.6C). 

Helices b and c have reached native-like NOL levels (blue in Fig. 5.6C), while those of 

the majority of all other segments remain elevated. From the orientation shown in Figure 

5.6C, a back-to-front folding sequence becomes apparent. While helices b and c are 

native-like, strands A2 and A3 exhibit slightly elevated accessibilities (coloured green). 

These two strands form tertiary contacts early during folding with helices b and c. 

Ultimately helix f (coloured yellow) packs on the front side of β-sheet A, but after 10 min 

displays significantly higher accessibility than A2 and A3 indicating that such packing is 

far from native. From the orientation shown in Fig. 5.6C, the temporal folding of the 

bottom half of α1AT can be said to progress via a back-to-front pathway where the 

packing of helices b and c is native-like, A2 and A3 are slightly less native, and helix f is 

even more disordered. 

 Fig. 5.6D further exemplifies the proposed back-to-front folding progression as 

the majority of the back side of the protein exhibits native-like accessibility (colored 

blue), while those elements packed onto the front show slightly elevated accessibility 

levels (green). It also becomes apparent that β-sheet B is virtually native after 30 min of 

folding, while sheets A and C continue to exhibit non-native accessibilities. A possible 

explanation for these data is the antiparallel nature of sheet B. Antiparallel sheets have a 

tendency to fold faster than parallel sheets (41). Sheet B is the sole continuously 
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antiparallel sheet in active α1AT; sheet A only becomes antiparallel once the RCL inserts 

as the sixth strand. Helix f also displays elevated solvent accessibility at 30 min. 

Conformational flexibility in this region has been shown to be indispensible to the serpin 

inhibitory mechanism as it sterically blocks protease translocation in the native state (42). 

I157 and V161, both of which were found to be oxidized, have been shown to be crucial 

to α1AT stability by forming hydrophobic contacts with strands A2 and A3 (43). The 

non-native accessibility in this region indicates that the packing interface has not yet fully 

formed. While hydrogen bond formation lagged behind tertiary packing for much of the 

folding progression, both the backbone and side chains display native-like structure in 

many regions after 30 min (Fig. 5.6D, H). Further structural consolidation of all these 

elements lead ultimately to native-like packing in the refolded sample. 

 

5.2.5 Implications for α1AT Aggregation 

Serpin polymerization has been linked to diseases such as emphysema, cirrhosis 

and dementia (44). A crystal structure of a self-terminating dimer of antithrombin has 

shed light into the polymerization mechanism and a potential polymerogenic folding 

intermediate has been suggested based on limited proteolysis (45). In the intermediate 

state, it is proposed that the contiguous segment from strand A6 to strand C1, consisting 

of A5, helix i and the RCL (Fig. 5.2), is unfolded. This region can then insert as strands 

A4 and A5 in a second monomer and so on. The same contiguous elements postulated to 

be unstructured in the polymerogenic intermediate, helix i-A5-RCL-C1, exhibit elevated 

solvent accessibilities and non-native hydrogen bonding in the kinetic intermediate 

formed at 30 min (Fig. 5.6D, H). Krishnan and Gierasch have utilized PEGylation to 
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probe the solvent accessiblity of engineered Cys residues within α1AT as a function of 

denaturant concentration (28). In the intermediate state populated near 1.5 M GdnHCl, 

mutated Cys sites exhibited a range of accessibilities. Figure 5.7A shows regions that 

were determined to be solvent inaccessible (dark gray) and those that were found to be 

easily modified (white). The structural core of the 30 min kinetic folding intermediate 

characterized in our study (Fig. 5.7B, blue) bears remarkable similarity to the equilibrium 

species. Resemblance between equilibrium and kinetic intermediates has previously been 

observed for small proteins such as ribonuclease H (46) and apomyoglobin (47). 

Krishnan and Gierasch also investigated the solvent accessibility of the polymerogenic Z-

form of α1AT (containing an E342K mutation) and reported similar solvent accessibilities 

to those of the native protein (28). Although wild-type α1AT is not known to polymerize 

under physiological conditions, when destabilized it may populate an intermediate with 

similar topology to that of the Z-form. Our findings allow for the proposal that a 

comparable folding intermediate may also be populated during kinetic refolding. 

While it has long been known that mutated α1AT forms polymers in vivo (48), it 

has recently been proposed that the strand A4/A5 domain swap may not be the true 

mechanism, but rather a consequence of in vitro chemical denaturation (18). This 

assessment builds on previous work which showed that antibodies specific for α1AT 

polymers formed in vivo react with polymers fromed via heating, but not by incubation 

with GdnHCl (48). Yamasaki et. al. crystallized an α1AT trimer that reacted strongly with 

antibody and revealed a C-termainal domain (C1/B4/B5) swap (18). The serpin folding 

pathway is thought to pass through a branch point at which an intermediate capable of 

folding to the native state or forming polymers is populated. It has been proposed that the  
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Figure 5.7. Comparison of structural cores of α1AT folding intermediates exhibiting 

native-like solvent accessibility. (A) Structural core, depicted in dark gray, of the 

equilibrium intermediate of α1AT populated at 1.5 M GdnHCl probed by PEGylation of 

engineered cysteine residues by Krishnan and Gierasch (28). (B) Structural core, shown 

in blue, of the kinetic intermediate of α1AT populated after 30 min of folding, probed by 

pulsed oxidative labeling. These regions correspond to those colored blue in Figure 5.6D. 

In both (A) and (B) solvent accessible regions are shown in white. 
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outcome of the intermediate is determined by a competition between burying the C-

terminus into the core and completion of β-sheet A (18). Our ·OH labeling data suggest 

that helices b/c sequester strands A2 and A3 via tertiary contacts early during folding 

(Fig. 5.6A). This association prevents further formation of the A sheet and thus renders 

the RCL incapable of insertion. This interpretation is complemented by HDX data which 

show the C-terminus is among the first regions to form stable hydrogen bonds (Fig. 

5.6F)(27). After 30 min of folding, the C-terminus shows both native-like solvent 

accessibility and hydrogen bonding while much of β-sheet A exhibits non-native levels 

(Fig. 5.6D, H). We propose that the early segregation of strands A2 and A3 allow time 

for the C-terminus to fold and begin insertion into the protein core. Since the formation of 

β-sheet A is compromised, RCL insertion is blocked. This virtually negates 

polymerization via C-terminal domain swapping and promotes the folding of  α1AT to its 

metastable, active state. 

 

 

5.4 Conclusions 

Folding to a metastable state, rather than the thermodyamic product, is essential 

for serpin function. Previous kinetic studies have indicated that α1AT folding is quite 

protracted. Tryptophan fluorescence and HDX data reveal that α1AT only attains its 

active structure after ~1 h (26, 27). This work utilized hydroxyl radical labeling to gain 

insights into changes in side chain solvent accessibility as a function of folding time. 

Comparison of our ·OH labeling results with previously published HDX data (27) allows 

the proposal of a mechanism by which α1AT becomes kinetically trapped in its 

metastable state.  
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 An initial structural collapse occurs within the first ~10 s (26) although this 

transpires in the absence of any stable hydrogen bonding (27). We find that the early 

collapse is accompanied by significant solvent protection within helices b and c. Through 

tertiary contacts, these early-forming helices sequester strands A2 and A3. This collapse 

of β-sheet A renders it unavailable for RCL insertion. The solvent accessibility of many 

parts of β-sheet A remains elevated even after 30 min of folding. A structural core, 

characterized by native-like solvent accessibility, becomes apparent on a similar 

timescale. This core shows high similarity to that of a previously characterized 

polymerogenic equilibrium unfolding intermediate of α1AT (28). 

 Tsutsui et al. monitored secondary structure formation during α1AT folding with 

HDX (27). The formation of strand C1, on a timescale of minutes, was proposed to 

anchor the RCL in an open conformation which is unable to insert into sheet A. Our ·OH 

labeling data suggest that early contacts between helices b/c and strands A2/A3 disfavor 

RCL insertion by delaying structural consolidation of sheet A. These interactions provide 

the time necessary for strand C1 to form. Hydrogen bond formation lags behind side 

chain protection for much of the folding pathway. However, unconsolidated hydrogen 

bonding after 30 min occurs in regions which also exhibit elevated solvent accessibility. 

 Overall, our study demonstrates the ability of ·OH labeling to characterize 

partially structured species along the folding pathway of α1AT. The combination of 

complementary labeling techniques (·OH labeling and HDX) can provide a 

comprehensive view of structural changes occuring during folding.   
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Chapter 6 – Conclusions 

6.1 Summary 

 The detailed characterization of transient folding intermediates provides 

mechanistic insights into the structural transitions of proteins however such experiments 

are complicated by the short lifetimes of these species in solution. A novel method for 

studying protein folding reactions was introduced in this work. Continuous-flow rapid 

mixing was utilized in conjunction with pulsed oxidative labeling and mass spectrometry. 

This allowed for changes in side-chain solvent accessibility to be measured in a temporal 

fashion. The experiments yield data that are complementary to those acquired by HDX 

studies and other experimental approaches. The applicability of pulsed oxidative labeling 

for studying protein unfolding (Chapter 2), protein folding (Chapters 3 and 5), and 

coupled folding/assembly processes (Chapter 4) was demonstrated. 

 The aim of the work in Chapter 2 was to assess the applicability of pulsed 

oxidative labeling combined with rapid mixing for studying a protein unfolding reaction. 

A rigorous data analysis method was devised such that oxidation patterns of peptides 

with differing reactivities with ·OH could be compared on the basis of solvent 

accessibility. Time-resolved labeling data in conjunction with stopped-flow absorbance 

measurements provided insights into the unfolding mechanism of myoglobin. Structural 

characterization of two folding intermediates revealed that  the heme binding pocket 

remains relatively intact even after 500 ms, which was in agreement with a previous 

proposal (1). This was the first instance in which pulsed oxidative labeling had been 

utilized to study a protein unfolding transition in a time-resolved fashion. 
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 The folding kinetics of acid-denatured cytochrome c have been shown to be 

dependent on the final buffer pH, with a misfolded intermediate structure populated when 

refolding takes place at neutral pH (2).  The intention of Chapter 3 was to structurally 

characterize folding intermediates along the folding pathway of cyt c and compare the 

results to previous studies. The time resolution of the rapid mixing setup was improved 

five-fold compared to the work in Chapter 2. This improvement allowed for the 

observation of heme misligation from a distant histidine. The misligating residue blocks 

solvent accessibility of the native methionine residue early during folding. It was also 

seen that the N- and C-terminal helices became protected from oxidation within 10 ms of 

folding, which correlated with an intermediate structure characterized by HDX 

measurements (3). Although fluorescence measurements indicated the folding was 

largely complete, the oxidation kinetics revealed packing defects in the hydrophobic core 

persisting up to 1 s. This study marked the first utilization of pulsed oxidative labeling in 

conjunction with rapid mixing to examine a protein folding pathway. 

Folding and binding are closely intertwined processes for protein complexes (4). 

The main objective of the work in Chapter 4 was to gain mechanistic insights into the 

folding and assembly pathway for a 22 kDa homodimer. S100A11 folding had been 

studied previously with time-resolved ESI-MS (5), however very few in depth structural 

details were garnered. The application of pulsed oxidative labeling allowed for the 

temporal changes in solvent accessibility of 21 side chains to be monitored. Oxidation 

patterns revealed the presence of a non-native hydrophobic core within the monomeric 

subunits in the unfolded state. A monomeric intermediate was identified after 10 ms of 

folding, followed by the onset of dimerization after 200 ms. Binding was complete, 
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indicated by oxidation levels within the interface comparable to the native state, after 800 

ms although elevated accessibility was observed in regions distant from the binding 

surface. These data indicated the population of a dimeric folding intermediate, 

challenging the conventional paradigm in which dimerization ensues only after complete 

subunit folding. Such a finding is supported by studies on various proteins with 

alternative folding mechanisms (6). This study was the first to show sufficient structural 

detail could be obtained by pulsed oxidative labeling to resolve folding and binding 

events of a protein complex. 

 The native state of a protein has long been thought to represent the 

thermodynamic product of the folding reaction, populating the global free energy 

minimum (7). Recently, the notion that native, functional proteins are only metastable has 

been gaining momentum (8). This has been spurred by the finding that even globular 

proteins can form aggregates under physiological conditions (9). For the serine protease 

inhibitor α1AT, metastability is required for function. Previous work utilized HDX to 

monitor backbone hydrogen bonding as a function of folding time (10) and the work in 

Chapter 5 aimed to elucidate complementary information regarding side-chain solvent 

accessibility. An early collapse of the protein structure after 7 s of folding was 

accompanied by significant solvent protection in helices b and c. These fast forming 

elements sequestered strands from β-sheet A preventing formation of the reactive loop 

(RCL) insertion site. These interactions allow for β-sheets B and C to form and lock the 

RCL into position away from the A-sheet, which exhibits non-native solvent accessibility 

even after 30 min of folding. This series of tertiary contacts allows α1AT to fold into its 

active state rather than its thermodynamic product. A solvent inaccessible core was 
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formed after 30 min and displayed a striking resemblance to a previously characterized 

polymerogenic equilibrium intermediate (11).  

  

 

6.2 Future Work 

6.2.1 Sub-millisecond Folding Studies 

While mechanistic details garnered from protein folding studies have been 

plentiful, most experiments have been limited in time resolution to the millisecond 

regime. However, many folding events occur on a sub-millisecond or faster timescale 

(12, 13). Studies probing such fast folding events typically employ a rapid folding trigger, 

such as a temperature (T) jump (14), ultra-rapid mixing (15), or photochemical methods 

(16). Unfortunately, the most commonly used detectors report only on global structural 

features.  

Computer simulations provide the gold standard for atomic-level resolution of 

folding events on a rapid timescale (17). However, structural predictions from molecular 

dynamics only gain relevance when evaluated in conjunction with suitable experimental 

data (17, 18). With a protein folding “speed limit” proposed to be on the order of a few 

microseconds (19, 20), new detection methods with high structural and temporal 

resolution are required. Pulsed oxidative labeling conducted under suitable conditions 

utilizes a labeling pulse of ~1 μs (21). ·OH labeling has been used in combination with a 

T-jump system to probe the folding of barstar on the submillisecond timescale (22, 23). 

Such an experiment unfortunately relies on the protein of interest being unfolded with 

chemical denaturants at temperatures that can reach far below 0 °C. Pulsed ·OH  labeling 
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combined with suitable ultra-rapid mixing devices (15, 24), is potentially a more 

universal method to provide detailed structural insights into even the earliest stages of 

protein folding. 

 

6.2.2 Comparison of Native and “Diseased” Protein Folding 

 A mutation in a coding sequence of DNA often leads to the incorporation of an 

incorrect, or deletion of a correct, amino acid into a growing protein chain. Such a 

mutation has the potential to change the structure and/or function of the translated 

protein. Many diseases are resultant of a protein misfolding and either losing 

functionality or gaining aberrant activity (25). An examples of this type of „single 

mutation‟ disease is cystic fibrosis (ΔF508 in the cystic fibrosis transmembrane 

conductance regulator). A second type of misfolding disorder results from protein 

aggregation. Diseases of this type, such as Alzheimer‟s, Parkinson‟s, and prion diseases, 

are characterized by the amyloid plaques of misfolded protein that become deposited over 

time (26). Aside from the pathogenicity of the amyloids themselves, aggregating proteins 

can upset cellular proteostasis by overwhelming repair machinery, rendering the cell 

unable to mitigate the effects of additional misfolded proteins (27-30). 

  Determination of how the folding of mutant and aggregating proteins differs from 

that of their wild-type counterparts represents a crucial step on the path to therapeutic 

intervention. Insights into the differential folding mechanisms could be garnered from 

studies utilizing the radical labeling method described herein. Such results could uncover 

misfolding intermediates that may be used as drug targets (31) to reverse, or avoid, 

diseased phenotypes. 
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6.2.3 Chaperone-mediated Folding 

Protein folding has been shown to be a spontaneous process in vitro (7). However, 

in vivo, many unfolded or misfolded proteins require assistance in attaining their native, 

functional fold. This role is often filled by proteins and protein complexes called 

chaperones (32) and they perform not by correctly folding a target protein, but by 

preventing incorrect interactions within and between polypeptides. Their action generally 

increases the yield of a folding reaction but can also affect the rate. There are two main 

classes of chaperones, each with distinct function and structural features. The heat-shock 

proteins (HSPs) are monomeric (MW ~ 40-100 kDa) and are involved in de novo folding, 

refolding and assembly of protein complexes. Chaperonins are large, double-ring 

complexes (MW ~ 0.8-1 MDa) that globally encompass target proteins for folding (32). 

 A recent study showed that the introduction of the chaperone SecB induced 

changes in the folding pathway of the maltose-binding protein (33). Alternatively, 

previous work by Radford and coworkers utilized tryptophan fluorescence and pulsed 

HDX-MS to show that lysozyme refolding was accelerated by the chaperonin GroEL but 

the folding mechanism remained unchanged (34). Structural characterization of 

chaperone-mediated folding pathways should also be possible with pulsed oxidative 

labeling, and using a small HSP rather than a chaperonin would simplify data analysis as 

all proteins in solution will be labeled. Slight experimental alterations need to be made to 

account for the presence of the chaperone as the extent of labeling has been shown to be 

dependent on total protein concentration (35). A significant hurdle for such an 

experiment continues to be the maintenance of an unfolded target protein and a folded 

chaperone protein under the same solution conditions. Examples in the literature are 
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sparse and generally involve the use of mildly denaturing conditions (36) or destabilized 

mutant proteins (37). Addressing this issue for a protein of interest could pave the way 

for structural studies by oxidative labeling on its chaperone-assisted folding.  

 

6.2.4 Co-translational Protein Folding 

 All cellular proteins are translated on the ribosome. Much effort has recently been 

put forth to determine whether folding can occur before the entire protein has been 

released from the ribosome (38). As an example, covalent modification of engineered 

cysteine residues has indicated that side-chain interaction with the ribosomal exit tunnel 

may have implications for folding (39). Such co-translational folding studies indicate that 

protein folding reactions which occur on the ribosome can be distinct from those 

observed in the more commonplace in vitro study of bulk solution (40, 41). 

Studying co-translational folding kinetics of proteins in vitro would be a difficult 

task due to the requirement for all the cellular translational components. A modified 

approach was recently described that explores the folding status of translation-arrested 

nascent polypeptide chains of different lengths attached to ribosomes (42). Eichmann et 

al. used NMR spectroscopy to probe the degree to which the SH3 domain of α-spectrin 

folds after various intervals of translation. Utilizing a similar method for production and 

purification of ribosome-stalled nascent chain complexes would provide an avenue to 

probe the solvent accessibility of partially folded ribosome-bound protein chains by ·OH 

labeling. 
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