
Western University Western University 

Scholarship@Western Scholarship@Western 

Electrical and Computer Engineering 
Publications 

Electrical and Computer Engineering 
Department 

5-2024 

Factors Influencing Performance of Students in Software Factors Influencing Performance of Students in Software 

Automated Test Tools Course Automated Test Tools Course 

Susmita Haldar 
Western University, shaldar@uwo.ca 

Mary Pierce 
Fanshawe College of Applied Arts and Technology, MPierce@fanshawec.ca 

Luiz Fernando Capretz 
Western University, lcapretz@uwo.ca 

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub 

 Part of the Software Engineering Commons 

Citation of this paper: Citation of this paper: 
Haldar S., Pierce M., Capretz L.F., Factors Influencing Performance of Students in Software Automated 

Test Tools Course, 17th IEEE International Conference of Software Testing, Verification and Validation 
Workshops (ICSTW-2024) , Toronto, Canada, pp. 331-338, IEEE Express, DOI: https://doi.org/10.1109/
ICSTW60967.2024.00064, May 2024. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICSTW60967.2024.00064
https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

Factors Influencing the Performance of Students in 
Software Automated Test Tools Course 

 

Susmita Haldar 
School of Information Technology 

Fanshawe College 
London, Canada 

shaldar@fanshawec.ca 

Mary Pierce 
Faculty of Business, 

Info Technology and Pt Studies 
Fanshawe College 
London, Canada 

mpierce@fanshawec.ca 

Luiz Fernando Capretz 
Department of Electrical and Computer Engineering 

Western University 
London, Canada 
lcapretz@uwo.ca 

 

 

Abstract—Formal software testing education is important for 
building efficient QA professionals. Various aspects of quality 
assurance approaches are usually covered in courses for training 
software testing students. Automated Test Tools is one of the 
core courses in the software testing post-graduate curriculum 
due to the high demand for automated testers in the workforce. 
It is important to understand which factors are affecting student 
performance in the automated testing course to be able to assist 
the students early on based on their needs. Various metrics 
that are considered for predicting student performance in this 
testing course are student engagement, grades on individual 
deliverables, and prerequisite courses. This study identifies the 
impact of assessing students based on individual vs. group 
activities, theoretical vs. practical components, and the effect of 
having taken prerequisite courses in their final grade. To carry 
out this research, student data was collected from the automated 
test tools course of a community college-based postgraduate 
certificate program in software testing. The dataset contained 
student records from the years 2021 to 2022 and consisted 
of information from five different semesters. Various machine 
learning algorithms were applied to develop an effective model 
for predicting students’ performance in the automated software 
testing tools course, and finally, important features affecting 
the students’ performance were identified. The predictive per- 
formance model of the automated test tools course that was 
developed by applying the logistic regression technique, showed 
the best performance, with an accuracy score of 90%. 

Index Terms—Software Testing Education, Automated Testing, 
Selenium, Quality Assurance, Student Engagement 

 
I. INTRODUCTION 

Software testing is critical to delivering software with fewer 
defects and in turn with good quality. Industries rely on their 

QA team to verify that the software has been fully tested. Man- 
ual testing can be very labor-intensive, monotonous, and error- 

prone. As a result, to ensure the delivery of quality products, 
workplaces focus on automating manual test scripts to increase 
test coverage. Automated testing requires specialized skills 
in addition to having the mindset of a manual tester, which 
includes an understanding of coding concepts, knowledge of 
the IT domain, and a basic understanding of software testing. 
However, a software testing career is a less favorable choice 

within the software engineering domain [1]. Capretz et al. [2] 
conducted a study on the software testing profession, where 
they identified the factors that motivate or demotivate software 

testing professionals to sustain their software testing career and 
found that only 25% of the selected respondents from Canada 
were motivated to take software testing as a career option. 
Therefore, when choosing from among the few experienced 
QA professionals, companies want to ensure that these indi- 
viduals can recommend the required tools for automating the 
manual testing effort and develop and execute automated test 
scripts to ensure higher test coverage. 

To bridge this gap, the post-graduate certificate program in 
software testing offers a dedicated course in automated test 
tools which is worth four credits and can be taken in the 
second level of a two-level postgraduate program. Students 
are only permitted to take this course after completing prereq- 
uisite courses containing foundation-level concepts in software 
testing and JAVA programming language. The college needs 
to be careful to choose only the prerequisite courses that are 
essential for students’ learning. Keeping unnecessary prereq- 
uisites in a course can demotivate students who are ready to 
take on challenges of advanced concepts. It can also affect 
the student retention strategy as the students will be restricted 
from taking this course if they have failed the prerequisite 
courses in level one. On the other hand, exceptional students 
may want to take on a challenge by taking an advanced course 
in their program to keep them motivated without waiting for 
completion of the prerequisite courses. 

If only theoretical concepts are taught in a software testing 
course, the student’s knowledge may be far from the real- 
world expectations [3]. At the same time, teaching hands-on 
problems only may not cultivate the critical thinking strategies 
required for developing an effective automated software testing 
(AST) solution. In addition, instructors need to understand 
whether practical exercises are affecting the students’ final 
grades compared to assessments on theoretical quizzes or 
assignments to customize the course delivery to meet the needs 
of the students. 

Student engagement factors such as the number of times the 
student logged into the learning management system, and the 
number of video recording contents completed by the student 
can assist the instructor and the academic advisor in guiding 
the students to focus on studying. The number of assignment 
submissions, and quiz submissions demonstrates whether the 

https://doi.org/10.1109/ICSTW60967.2024.00064
mailto:shaldar@fanshawec.ca
mailto:mpierce@fanshawec.ca
mailto:lcapretz@uwo.ca


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

student missed tests or assignments because of being ignorant 
about them. This research will also assess the contribution of 
student engagement to students’ final grades. A minimum C 
grade is desirable as a cumulative GPA lower than a C grade 
can impact their academic standing status. 

Teaching students AST concepts, techniques, and theories 
is a challenging task, especially where the focus is also on vo- 
cational learning outcomes, and essential employability skills 
in addition to course learning outcomes. Software engineering 
students often do not gain the essential skills and knowledge 
they need to succeed in the IT industry [4]. Although most 
Computer Science programs offer some testing concepts in 
their programs, they often fail to remain aligned with the 
realities of the IT industry [5]. 

Applying machine learning algorithms, this paper will in- 
vestigate whether students’ performance in automated software 
testing tools course can be predicted based on their assessment 
from milestone deliverables, their engagement in class, prereq- 
uisite courses, etc. 

The rest of this paper is organized as follows. Section II 
provides background on Software Testing education, highlight- 
ing automated software testing education. Section III describes 
how the AST course has been structured, and provides the 
methodology for developing the model for predicting students’ 
performance on the AST tools course. Section IV presents the 
results of this study. Finally, section V provides analysis and 
discussion. This is followed by the paper’s conclusions and 
suggestions for future work in section VII. 

II. BACKGROUND AND LITERATURE SURVEY 
A. Software Testing Education 

There has been an emphasis on considering software testing 
in the Software Engineering or Computer Science curriculum. 
Garousi et al. [6] conducted a study on the state of software 
testing education in Canadian and American universities and 
identified the strengths and areas for improvement. As part 
of their recommendations, they encouraged a systematic soft- 
ware testing curriculum. They also remarked that Computer 
Science and software engineering graduates need to be able 
to perform testing and quality assurance tasks on the software 
they produce after graduation. They found that even some 
top university programs were not offering any courses in the 
software testing domain. 

B. Automated Software Testing Education 
Teaching only certain testing techniques may not provide 

the skillset to apply automated testing skills in the industry. 
As a result, teaching automated test tools as a separate course 
can give proper emphasis to the professors to teach students 
how to utilize various AST tools effectively instead of focusing 
on manual testing only. Barrett et al. [7] surveyed 25 courses 
offered by 14 universities in Sweden. From their analysis of 
the basic curriculum, it appears that utilization of AST tools 
was incorporated with other components in the majority of the 
courses, but it appears that automated testing was not offered 
as a separate course in most of these selected universities. 

C. Student Performance Prediction 

Student performance prediction is an emerging research 
area, but this approach has not been applied to software 
testing students, even though this control group can demon- 
strate different characteristics than others. For instance, in 
previous studies, one of the challenges shown with teach- 
ing software testing was keeping students’ motivation in 
testing courses alive compared to their motivation in other 
subjects [8], [9]. Different researchers applied various tech- 
niques for teaching software testing, such as using a game- 
based approach [10], [11], utilizing free and open-source 
software [12], and using Selenium [13] for creating automated 
test solutions [14], etc. 

Mohammaed et al. [15] applied the Apriori rule-based algo- 
rithm to identify the relationship between student engagement 
and student performance. They found that highly engaged 
students were performing well in the courses. 

Burman et al. [16] applied a multi-class Support Vector 
Machine (SVM) classification model to classify the learners 
in the categories of high, average, and low, according to their 
academic scores. They then applied linear kernel and radial 
basis kernel. RBF produced better results than the linear kernel 
for predicting students’ performance and the Radial Basis 
Function kernel gave more accurate results than the Linear 
Kernel, which showed an accuracy of approximately 91%. 

Bhutto et al. [17] applied logistic regression and SVM 
for student performance prediction. They obtained 73% and 
70% accuracy using logistic regression and SVM respectively. 
Bujang et al. [18] used Decision Tree, SVM, Naive Bayes, 
KNN, Logistic Regression, and Random Forest(RF) on the 

course grade datasets of real students, incorporating 1282 
records. They proposed a multiclass prediction model to 

reduce the over-fitting and miss-classification results caused 
by imbalanced multi-classification, based on the Synthetic 

Minority Oversampling Technique (SMOTE). Their proposed 
model, integrated with RF, gave the highest F1 score of 99.5%. 

Khan et al. [19] used data mining techniques based on 
LMS activity logs and applied a rule-based algorithm for 

predicting student performance. They found that there is a 
considerable correlation between student performance and 

several different factors, such as resource views, activity gaps, 
grades from the previous semester, grades from prerequisite 
courses, and evaluations of first-term tests. In this research, 
we will also look at student engagement metrics to evaluate 
student performance in the automated software testing tool 
course. Professors and academic advisors can use this study to 
spot students who need extra assistance so they can intervene. 
Shi et al. [20] analyzed the characteristics of college stu- 

dents’ learning behaviors and explored the predictive learning 
effect by constructing a machine learning model of learning 
effect based on information literacy learning behavior char- 

acteristics. Out of several algorithms, they attempted, the RF 
model showed the best performance with a value accuracy 
of 92.50%, Precision of 84.56%, Recall of 94.81%, F1-Score 
89.39%, and Kappa coefficient of 0.859%. 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

 
 

Fig. 1. Methodology applied for predicting the final performance of students of Automated Test Tools course 

 
Jayasundara et al. [21] conducted a study on building an 

explainable boosting student performance model with a dataset 
from university entrance exam performance. They considered 
the interpretability of the model by demographic information 
such as gender, caste, parent’s education, and previous educa- 
tional background. The accuracy of the developed model had 
a maximum F1 score of 77% on predicting average grades 
for students while the other categories such as good, bad, and 
excellent grade detection rates were relatively low. 

This research will contribute to the software testing educa- 
tion community by helping us to understand which factors are 
important for a course in automated testing. 

III. METHODOLOGY 

The methodology of the program has been demonstrated in 
Fig. 1. The first step was to collect the data and apply feature 
engineering and pre-processing. Selected machine learning 
algorithms were applied for the student performance model 
development. The performance of the developed models was 
evaluated according to the selected criteria. On the best- 
performing model, the SHAP technique was applied to un- 
derstand the feature importance of the model. The details are 
described below. 

A. Data Collection 

The development of the model was initiated with data 
collection from the one-year postgraduate software testing 
certificate program available under the Department of Infor- 
mation Technology at Fanshawe College of Applied Arts and 
Technology located in London Ontario. Automated Test Tools 
is a second-level course among a total of 11 courses available 
in the program. The data was collected from various sources, 
especially from the database where grading information is 
stored. The dataset was anonymized due to having protected 
information. Student-related information, such as date of birth, 
actual student ID, etc., was removed from the dataset. The 
dataset consists of students from five different semesters, and 
the duration represents the classes taken during the pandemic 
when the classes were taken online. The total sample size of 
the dataset is 223. 

This work utilized established machine learning algorithms 
applicable to classification problems with mid-sized datasets. 

The expected output was split into five different categories 
which are D, B, C, A, and A+. 

B. Feature Selection 
The evaluation strategy of the Automated Test Tools course 

has been illustrated in Table I. 
 

TABLE I 
PRIMARY DISTRIBUTION OF GRADE COMPONENTS 

 
Grade Item Submission Type Type of assignment Worth 

Research Projects Group submission Practical focused 45% 
In-class exercises Individual submission Practical focused 15% 

Quizzes Individual submission Theory focused 40% 

 

The research projects are worth 45% of the final grade and 
are conducted over the semester through group collaboration. 
Forty percent of the overall grade is taken from class tests, 
and the remaining 15% is dedicated to in-class exercises. 
The research projects are divided into three projects with the 
same teams of 3-4 students working together on the projects, 
for the full term. This research work evaluation is often 
split between 40% on projects which require teamwork, and 
5% on individual class attendance based on the professor’s 
interest. The research projects consist of three group projects 
reflecting the development of automated test solutions. The 
projects involve software testing-related activities starting from 
gathering requirements, designing, and implementing an au- 
tomated regression suite repository using an open-source tool 
called Selenium IDE [22], moving forward with automated test 
data generation using available open-source tools, and finally 
building automated test solution using Selenium WebDriver, 
JUnit [23] and TestNg [24] and deploying the code in DevOps 
tool Jenkins [25]. 

Table II shows a sample rubric of how Project 1 worth 
around 13.33% is being evaluated. The following are the 
mapped course learning outcomes for this project: 

• Discuss what it means to implement an AST solution. 
• Describe the benefits of implementing AST. 
• Design an automated testing strategy for a baseline soft- 

ware application. 
As the description suggests, the research projects require 

the technical knowledge to explore various options for imple- 
menting an effective AST solution. The group projects give 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

TABLE II 
RUBRICS FOR PROJECT 1 WHICH IS A GROUP PROJECT FOR IMPLEMENTING AUTOMATED TESTING SOLUTION USING SELENIUM IDE 

 
 

Criteria Excellent Average Poor 
 

SUT Selection The selected website was an excellent 
candidate because of the opportunity to 
test various features, and the justification 
of selection was provided in detail. 

The selected website was considered aver- 
age as it offers some features for testing, 
but with a limited scope. The document 
lacks sufficient reasoning for its selection. 

The selected website was a poor candi- 
date for this AST project due to not hav- 
ing enough testable features. The docu- 
ment did not provide proper justification. 

 

Requirements 
Traceability 
Matrix 

The RTM was very thorough and demon- 
strated how requirements are linked to the 
test cases. 

Some requirements are mapped to test 
cases. 

The creation of RTM was done poorly. 

 

Selection of Test- 
cases 

Efforts in creating the testcases is very 
prominent, and a sufficient number of 
testcases were attempted. 

Testcase selection is showing an average 
effort. 

Not enough test cases were automated. 

 

Test Scripts Doc- 
ument 

Actual results for all the scenarios - com- 
pleted and traceable. 

Actual results for major scenarios - com- 
pleted and traceable. 

Actual results for scenarios - Incomplete 
or not traceable. 

 

Automated 
Scripts 

Automated tools were used comprehen- 
sively, and results were generated cor- 
rectly. 

Automated tools were used okay, and most 
of the results were generated correctly. 

Automated tool was insufficiently used, 
resulting in incomplete results. 

 

Documentation Carefully followed all instructions, ad- 
hering to document format/presentation, 
spelling, and grammar standards, includ- 
ing providing sufficient screenshots. 

Followed most provided instructions, doc- 
ument format/presentation, spelling, and 
grammar including providing some screen- 
shots. 

Did not follow instructions, and the doc- 
ument did not contain all the requested 
contents. 

 

Source Code Source code is submitted and accom- 
panied by thorough documentation and 
clear explanations, ensuring a compre- 
hensive understanding of its functionality 

Source code was submitted, but the source 
code is somewhat comprehensive. 

Source code was not submitted or the 
submitted source code is of poor quality, 
and not comprehensive. 

 

Critical thinking 
& problem 
solving skills 

The implemented solution demonstrates 
excellent critical thinking and problem- 
solving skills. 

The implemented solution demonstrates 
somewhat critical thinking and problem- 
solving skills. 

The implemented solution demonstrates 
limited critical thinking and problem- 
solving skills. 

 
the students exposure to the practical aspects of software au- 
tomation through collaboration, interaction, and brainstorming 
with team members, and the successful implementation of the 
projects. 

Grade items on the test, worth 40% of the total mark, 
assess students on their understanding of theoretical concepts 
of software testing and are equally distributed among four 
different tests. The tests are individual deliverables and usually 
have multiple-choice questions along with a few scenario- 
based questions. The in-class exercises, which entail 15% of 
the final grade, let the students compare manual and automated 
efforts, implement automated solutions using an open-source 
tool called Katalon Recorder [26], and finally write test cases 
using Selenium WebDriver [13]. 

As part of data preparation and preprocessing activities, the 
percentage of research scores, test scores, and in-class exercise 
scores were calculated for each student, and the percentage 
scores were considered. Next, the system also contains infor- 
mation about how many times the student accessed the course 
page, how many of the available content or videos have been 
reviewed by the students, the number of assignments submitted 
in the course, and the number of quizzes completed. These are 
indicators of student engagement. For instance, the number 
of available content modules students are completing, along 
with their positive motivation towards completing the available 
recorded video lectures, may demonstrate that students are 
engaged in this course. 

Afterward, the student’s grades in the two prerequisite 
courses were added to the dataset. As discussed in previous 
sections, an interest of this study was to assess whether the 
grade in the prerequisite courses assisted with the student’s 
performance prediction. The students’ past failure history in 
the pre-requisite courses was calculated and considered as a 
separate input feature for developing the predictive model. 
A value of 1 indicates the student needed to retake the 
prerequisite course, and 0 indicates the student was able to 
pass the course with a single attempt. 

The prerequisite course ’Test Methodology’ gives students 
a background in quality assurance methodologies, includ- 
ing black-box, white-box, grey-box, unit, and other testing 
methods. The other prerequisite course is ’Coding for Tests’. 
This course examines the practices and procedures related to 
creating and debugging software. This course also prepares the 
student to write code, using a procedural approach initially, 
and then migrating to an object-oriented approach. The final 
feature list has been demonstrated in Table III. This table 
shows the 12 features selected as input for developing the 
model that would predict the letter-grade-category field. 

 
C. Data Pre-processing 

The data cleaning step verified the dataset for any null or 
redundant values. The data was split into 70% for training and 
30% for testing to ensure that both training and testing datasets 
contained representation from each selected grade category 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

TABLE III 
AUTOMATED TEST TOOL - STUDENT PERFORMANCE DATA 

 
Feature Name Type Description 

ContentCompleted Numeric The total number of views of the contents that were uploaded to the course home page. 
QuizCompleted Numeric Total number of quizzes completed. Students are required to write four quizzes. 
#OfAssignmentSubmissions Numeric Total number of assignments submitted. 
CourseAccess Numeric Number of times the student has accessed the course home page. 
CodingforTest score Numeric Students’ grade in the prerequisite course of ”Coding for Test”. This course gives exposure to writing code 
TestMethodology score Numeric Students grade in the prerequisite course of ”Testing Methodology Course”. This course introduces the student 

to a myriad of QA methodologies, including black-box, white-box, grey-box, unit, and other testing methods. 
Retook TestMethodology Numeric A value of 0 if the student never failed prerequisite ”TestMethodology course”, and 1 otherwise. 
Retook CodingForTest Numeric A value of 0 if the student never failed prerequisite ”Prerequisite Coding for Test course”, and 1 otherwise. 
TestScore Numeric Total score in the number of tests taken in the course. This is worth 40% of the final grade. 
ResearchScore Numeric Total score on research projects. The research projects are done in group settings. 
InClassExerciseScore Numeric Total score on in-class exercises done as independent assignments, and worth 15% of the final grade. 
MidtermScore Numeric The total score is a summation of all the assignments done before the midterm reporting deadline. This may 

reflect the score in tests, research, and in-class exercises that are completed before the midterm due date. 

 
of D, C, B, A, and A+. The training and testing data was 
normalized using RobustScaler [27], a functionality available 
from the scikit-learn library of Python, to scale features using 
statistics that are robust to outliers. RobustScaler removes the 
median and scales the data according to the quartile range. 

 
D. Applied Machine Learning Algorithms 

As our dependent variable consists of different categories, 
including A+, A, B, C, and D, we have applied machine learn- 
ing algorithms that apply to common classifiers that work for 
multi-classification problems. The multi-classification problem 
has more than two possible classes or variables. 

In literature, Alamri et al. [28] surveyed various machine 
learning algorithms that have been employed in explainable 
student performance studies, and it appears that the Decision 
Tree Algorithm and rule-based algorithms have been suc- 
cessful in developing the models for multi-class classification 
problems. In a similar vein, this study also considered the 
explainability of the model in terms of feature selection and 
investigated the effectiveness with simpler machine learning 

classification problems. Similar to logistic regression, the one- 
vs-rest technique was used. [32] 

Decision Tree Classifier can be applied in both binary and 
multiclass classification problems. This algorithm is useful 
for relatively small datasets that have a simple underlying 
structure, and this model is easily interpretable [33]. 

Random Forest [34] is an ensemble classification tech- 
nique. This algorithm constructs many decision trees like a 
forest with random attribute values. 

Deep Feed-Forward Neural Network [35] is the simplest 
type of artificial neural network that has various applications in 
machine learning. DFNN is a suitable candidate for multiclass 
classification and works with larger datasets. 
E. Evaluation Metrics 

We have used the traditional evaluation methodology for 
comparing the effectiveness of the selected multi-class classi- 
fication models which are Accuracy, Precision, Recall, F1- 
Score, ROC AUC Score. 

Accuracy It is the ratio of correctly predicted instances to 
the total instances. 

techniques of Logistic Regression [29], SVMs [30], and Ran- 
dom Forest Model, and then moved to the complex technique 

Numberof CorrectPredictions Accuracy = 
TotalNumberof Predictions 

(1) 

of DFFN (Deep Feed-Forward Neural Network). Our study 
compared these classification algorithms in their ability to 
detect student performance. 

Logistic Regression predicts the probability that an instance 
belongs to a particular class [31]. The target variable has 
five different ordinal grade categories. Multiclass Logistic 
regression is extended from a binary classification using one 
versus all or one versus rest method. One-vs-rest (OVR) 
classifier involves training a single classifier per class, with 
the samples of that class as positive samples and all other 

Although accuracy is considered an important metric for 
measuring the performance of a problem, additional measures 
are required to ensure the result is not biased toward predicting 
a single category of students. To ensure the reliability of the 
model, all different types of grades should be predicted. The 
following evaluation metrics were considered in addition to 
accuracy. Precision is the ratio of true positive predictions 
to the total positive predictions. It focuses on the accuracy 
of positive predictions. Precision has been defined by the 
following equation: 

samples as negatives. 
Support Vector Machine SVM is a supervised learning 

TruePositives 
Precision = 

TruePositives + FalsePositives 
(2) 

technique that aims to classify the data. It uses a hyperplane 
for dividing the dataset into classes with a gap as wide as 
possible known as a margin. For considering this multiclas- 
sification problem with predicting the selected five types of 
grades, the problem was broken down into multiple binary 

Recall is the ratio of true positive predictions to the total 
actual positive instances. It measures the ability of the model 
to capture all positive instances. 

TruePositives 
Recall = (3) 

TruePositives + FalseNegatives 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

Model Name 

Logistic 
Regression 

 
SVM 

Best Parameter 

C: 120, class weight: balanced, max iter: 
1000, multi class: multinomial, penalty: l2, 
solver: lbfgs. 

estimator C: 23, estimator gamma: 0.05, esti- 
mator kernel: rbf. 

Random Forest max depth: 30, min samples leaf: 1, 
min samples split: 5, n estimators: 100. 

Decision Tree criterion: entropy, max depth: None, 

Deep Neural Net- 
work 

min samples leaf: 1, min samples split: 
2, splitter: best. 

batch size: 40, epochs: 700, model activation: 
relu, model dropout rate: 0.2, 
model hidden units: (45, 36, 27, 18), 
model optimizer: adam. 

F1 score is the harmonic mean of precision and recall. It 
provides a balanced measure between precision and recall. 

F 1Score = 2 × Precision + Recall (4) 
Precision × Recall 

AUC ROC curve is a graphical representation of the model’s 
ability to distinguish between positive and negative instances. 
The AUC (Area Under the Curve) summarizes the ROC curve 
into a single value. ROC AUC score is a single number that 
summarizes the classifier’s performance across all possible 
classification thresholds. 

F. Feature Importance 
After the best model is selected, the features that contributed 

to the model’s development will be analyzed based on a 
model-agnostic approach. To rely on the model interpretation, 
SHapley Additive exPlanations (SHAP), a game-based theory 
approach has been used to explain the machine learning 
model [36]. Finding a consistent and impartial explanation 
of how each characteristic affects the model’s prediction is 
commonly accomplished through the use of SHAP values. 
The significance of each feature in a model is assigned by 
SHAP values, which are based on game theory. How strong 
the influence is shown by its magnitude. 

IV. RESULTS 
Table IV demonstrates the parameters that were selected for 

each of the selected algorithms after applying hyperparameter 
tuning using the grid-search algorithm. 

 
TABLE IV 

HYPERPARAMETERS UTILIZED IN THE MACHINE LEARNING MODELS. 
 

 

Table V summarizes the result of applying the selected 
algorithms. Logistic Regression outperformed all other models 
in multiple evaluation metrics. The logistic regression model 
had the highest value for accuracy, precision, recall, and 
F1 Score, and the second highest score for ROC AUC score. 
The next best-performing model was the Deep Feed Forward 
Neural Network with an accuracy score of 85% compared to 
90% from Logistic Regression, a precision value of 83% which 
is less than a precision value of 89% from Logistic Regression, 

and an equal value with Random Forest classifier. The Recall 
and F1 Score of the DFNN network are in second position 
compared to other models presented in this study. 

The AUC ROC score of the DFNN model was the highest 
among all models, which means it detected the prediction from 
each of the categories. The Random Forest algorithm had a 
score of about 80% in all the evaluation metrics but had a 
slightly lower score than DFFNN and lower than Logistic 
Regression in all categories of evaluation metrics. SVM and 
Decision Tree classifiers were the poorest performers com- 
pared to Logistic Regression, with a score of between 70% to 
79% in all categories except the AUC ROC score. 

We, therefore, considered the Logistic Regression model the 
best-performing model because although the ROC AUC score 
is slightly lower than the DFNN model with a value of 98% 
compared to 99%, all other evaluation metrics achieved higher 
values for the Logistic Regression model. 

For verifying the feature importance, the SHAP method 
has been applied to the best-performing Logistic model. The 
generated summary plot of SHAP values has been shown in 
Fig. 2. The X-axis of the bar graph shows the mean absolute 
SHAP values while the y-axis demonstrates the feature contri- 
butions from highest to lowest ranking. The feature importance 
is calculated based on the aggregated values of student records 
from five different semesters. The legend shows the instances 
taken from the five different selected student grades which are 
A+, A, B, C, and D. By examining these colored segments, 
we can understand how each feature influences the model’s 
predictions for each category. This detailed visualization al- 
lows interpretation of feature importance, shedding light on 
the specific role of each feature in differentiating between 
each grade type, and we can thus understand how each feature 
influences the model’s predictions. 

This bar graph shows that the highest contributor to the final 
grade is the research score, followed by the test score, and in- 
class exercise score. As these scores are direct components of 
the final grade, these features contribute the most to the model 
aligning with the expectation. 

Although the research score has the highest impact on 
the model contribution, observing at a more granular level 
shows that for students with A+ grades, the testing score was 
more important than the research score. On the other hand, 
for students with a D grade, the highest impact came from 
research scores. 

The next important feature shown in the bar graph of this 
student performance model is the midterm score. This feature 
is not a direct component of the final grade but is an indication 
of a student’s progress in the middle of the term. Satisfactory 
or unsatisfactory status is provided based on the accumulated 
score from other components until the midterm grade submis- 
sion time. The midterm grade is usually reported between the 
6th to 7th week of a 15-week term. This result illustrates how 
the student’s performance at the halfway point of the term 
contributes to predicting the student’s final grade. The result 
shows the midterm score is one of the important, but not the 
most important contributors. This could be due to the first 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

TABLE V 
RESULT OF RUNNING THE CLASSIFIERS 

 
Model Name Accuracy Precision Recall F1 Score AUC 
Logistic Regression 90% 89% 90% 89% 98% 
SVM 75% 70% 75% 72% 97% 
Decision Tree Classifier 78% 77% 78% 77% 77% 
Random Forest Classifier 84% 83% 84% 82% 97% 
Deep Feed Forward Neural Network 85% 83% 85% 84% 99% 

 

 
 

Fig. 2. Feature Importance from SHAP model 

 
several weeks of the classes delivering fundamental concepts. 
More challenging concepts and assignments are available in 
the second part of the course due to the requirement of 
understanding advanced concepts. 

The next attribute of the student’s grades prediction model 
is their prerequisite test methodology. This is not a direct 
component of the final grade. However, as this course pro- 
vides a foundation-level knowledge of testing, the student’s 
competency in this course was measured using their grades and 
appears to affect students’ outcomes in the AST tool course. 

However, the score of the prerequisite course is not the 
primary contributor as the students can still manage to do 
well in research work through group studies, independent work 
toward tests, and by being attentive during in-class exercises. 
At the same time, this prerequisite course cannot be waived 
from the course since the SHAP model demonstrates one of the 
important indicators of this model. Also, not having enough 
background in this prerequisite course may set the students to 
achieve the learning objective of this course. 

The next three features reflecting student engagement are 
the number of assignment submissions, course access, and 
content completed in order of feature contributions to this 
model respectively. If the students don’t submit all their 
assignments as expected, that means they were not regular in 
class. Hence, the strong students will try to abide by the due 
date and submit their assignments accordingly. However, the 
students who skip their assignments entirely may be indicating 

that they are not serious about their grades. The course 
access attribute demonstrates the number of times the student 
accessed the course home page. This set of students’ records 
reflects when the students were moved to virtual classes. Most 
of the students were attending the synchronous lectures, and 
being up to date with the lectures can assist with their overall 
performance in the course. After the synchronous lectures, 
professors used to post the video lectures and other materials 
for students to review. This next feature shows that students’ 
completion or review of the content also helped with their 
overall performance, and vice versa. 

Another component that was used for developing this model 
was the grade in their prerequisite coding for tests course 
where the JAVA programming language was introduced. The 
Coding for Test course did impact the students’ overall per- 
formance prediction, but except for students who received D 
grades, it appears the priority is on the student’s background 
in the prerequisite testing methodology course compared to 
the Coding for Test course. In this course, through group 
research projects, students review and practice skills learned 
in the coding for test course. The score on the research project 
is important as the weight of this component in the final 
grade is 45%. The SHAP model also conforms to this by 
showing the research score as the strongest contributor to this 
course. As the students need to do coding in the automated 
test tools course, they will certainly suffer in the automated 
testing course without prior knowledge of coding. 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

QuizCompleted is an attribute from the student engagement 
category. Although this factor impacts the outcome of the 
student performance prediction model, it is not one of the 
major contributors. The reason could be that the majority of 
the students don’t skip their quizzes as each of the tests is 
worth 10% of their total score. In exceptional scenarios, they 
request a rescheduling of the exam. 

The last two factors affecting this model are the students 
who had a history of failure in the prerequisite courses of 
test methodology and coding for tests respectively. As the 
students cannot take the automated testing course without 
passing these two prerequisite courses, the previous failure 
history on these courses does not significantly impact this 
student performance model. The main factors are whether the 
students work hard towards their group projects, study for 
their tests, and participate effectively in their in-class exercises, 
followed by their previous background in testing methodology 
courses and engagement towards their course material. 

V. ANALYSIS AND DISCUSSION 
The performance of the student performance prediction 

model is comparable to other previous studies. For instance, 
the student performance model developed by Burman et 
al. [16] showed that the best-performing model had an ac- 
curacy of 91% whereas our implementation using the logistic 
regression model showed an accuracy of 90%. However, the 
other evaluation criteria such as precision, recall, F1-Score, 
and ROC AUC score were not measured in Burman et al.’s 
study. Since the result contains multiple grade categories, we 
wanted to ensure all different grade categories have been 
represented properly through evaluation criteria in addition 
to accuracy. The precision, recall, F1-Score, and ROC AUC 
scores of the developed models are 89%, 90%, 89%, and 
98% respectively. These high scores bring confidence in the 
developed model. 

Bujang et al. [18] achieved an F1 score of 99.5% compared 
to the score of 89% from our best-performing model. In 
their study, the oversampling strategy was used to generate 
more data for each different great category. Without applying 
oversampling techniques, we were able to achieve closer to 
the 90% range for the F1 measure. This study was able to 
predict how the prerequisite courses and course engagements 
can also impact the student’s academic performance compared 
to other studies. 

The SHAP explanation from the obtained model shows that 
students can learn effectively when they work in a group 
setting by viewing the highest ranking in research projects. An 
independent study on gaining theoretical background is also 
important because it can lead to doing well in research work. 
Student engagement through in-class activities is important for 
students’ success in their courses. The practical components 
applied during in-class exercises use open-source tools in 
addition to in-house applications when validating the selected 
software being tested. This combined approach of theory with 
hands-on experience is developing effective QA professionals 
to be ready for the job market. 

VI. THREATS TO VALIDITY 

This work was based on the accumulation of data over 
five semesters during the pandemic period. The ability to 
provide more data including from the post-pandemic period 
may help us to generalize the findings. In addition, depending 
on the program, and student enrollment requirements, the 
prerequisite requirements can vary. This study was based 
on a postgraduate certificate program where students usually 
have an IT background with a diploma in the business or IT 
domain with or without a combination of work experience. 
This finding may vary slightly for students taking software 
testing courses without any Computer Science background. 

 
VII. CONCLUSION 

This study investigated the performance of the student 
performance prediction model of the software automated test- 
ing tool from the software testing post-graduate certificate 
program. Software performance prediction is an emerging 
research area, but this has not been applied to assessing aca- 
demic performance in the software quality assurance domain. 
Software testing students show different personality traits and 
often have less motivation toward a software testing career 
compared to other software engineering students. 

Five different machine learning algorithms were attempted, 
and logistic regression performed best out of these models, 
with scores close to the 90% range in accuracy, precision, 
recall, F1 score, and ROC AUC score. This study has found 
that a student’s regular submissions of deliverables, engage- 
ment in class, and background in the testing foundation and 
programming concepts–along with dedication to the group 
and independent work with a hybrid knowledge in theory 
and practical concepts on developing effective software testing 
solutions—helps with performance prediction. 

This study can be extended by investigating whether other 
prerequisite courses should be added to this course. This could 
be achieved by assessing the grades of other level-one courses 
in the program. Few other courses in level one cover a curricu- 
lum consisting of soft skills such as communications, academic 
integrity, and applied project management. Our future software 
testing professionals will require both soft skills and technical 
skills to enable them to be ready for the real world. 

Finally, this study was able to develop an effective student 
performance model for software-automated test tools courses 
with the capability of explaining important factors for predict- 
ing student performance. 

 
ACKNOWLEDGMENT 

The authors would like to acknowledge Dr. Dev. Sainani, 
the associate dean of the School of Information Technology 
of Fanshawe College for supporting this research work. The 
authors would like to extend their thanks to Learning Systems 
Services, Robert R Downie, the Institutional Research Depart- 
ment, and the REB board of Fanshawe College for assisting 
with the data collection process. 

https://doi.org/10.1109/ICSTW60967.2024.00064


17th IEEE International Conference of Software Testing, Verification and Validation Workshops (ICSTW-2024) 
Toronto, Canada, pp. 331-338, DOI: https://doi.org/10.1109/ICSTW60967.2024.00064, May 2024 

REFERENCES 

[1] R. d. S. Santos, L. F. Capretz, C. V. C. de Magalha˜es, and 
R. Souza, “Myths and Facts about a Career in Software Testing: 
The Perspectives of Students and Practitioners,” in 2023 IEEE 35th 
International Conference on Software Engineering Education and 
Training (CSEE&T), Aug. 2023, pp. 120–120, iSSN: 2377-570X. 
[Online]. Available: https://ieeexplore.ieee.org/document/10229341 

[2] L. F. Capretz, P. Waychal, J. Jia, D. Varona, and Y. Lizama, “Studies on 
the Software Testing Profession,” in 2019 IEEE/ACM 41st International 
Conference on Software Engineering: Companion Proceedings (ICSE- 
Companion), May 2019, pp. 262–263, iSSN: 2574-1934. [Online]. 
Available: https://ieeexplore.ieee.org/document/8802688 

[3] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S. 
Souza, “Testing Education: A Survey on a Global Scale,” in 
Proceedings of the XXXIV Brazilian Symposium on Software 
Engineering, ser. SBES ’20. New York, NY, USA: Association 
for Computing Machinery, Dec. 2020, pp. 554–563. [Online]. 
Available: https://dl.acm.org/doi/10.1145/3422392.3422483 

[4] D. Oguz and K. Oguz, “Perspectives on the gap between the software 
industry and the software engineering education,” IEEE Access, vol. 7, 
pp. 117 527–117 543, 2019. 

[5] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic software 
testing education,” in Proceedings of the 50th ACM Technical 
Symposium on Computer Science Education, ser. SIGCSE ’19. New 
York, NY, USA: Association for Computing Machinery, 2019, p. 414–
420. [Online]. Available: https://doi.org/10.1145/3287324.3287461 

[6] V. Garousi and A. Mathur, “Current State of the Software 
Testing Education in North American Academia and Some 
Recommendations for the New Educators,” in 2010 23rd IEEE 
Conference on Software Engineering Education and Training, 
Mar. 2010, pp. 89–96, iSSN: 2377-570X. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5463575 

[7] A. A. Barrett, E. Paul Enoiu, and W. Afzal, “On the 
Current State of Academic Software Testing Education in 
Sweden,” in 2023 IEEE International Conference on Software 
Testing, Verification and Validation Workshops (ICSTW), Apr. 
2023, pp. 397–404, iSSN: 2159-4848. [Online]. Available: 
https://ieeexplore.ieee.org/document/10132264 

[8] D. Towey and T. Y. Chen, “Teaching software testing 
skills: Metamorphic testing as vehicle for creativity and 
effectiveness in software testing,” in 2015 IEEE International 
Conference on Teaching, Assessment, and Learning for 
Engineering (TALE), Dec. 2015, pp. 161–162. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7386036 

[9] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a software 
testing course with code defenders,” in Proceedings of the 50th ACM 
Technical Symposium on Computer Science Education, 2019, pp. 571– 
577. 

[10] B. S. Clegg, J. M. Rojas, and G. Fraser, “Teaching 
Software Testing Concepts Using a Mutation Testing Game,” 
in 2017 IEEE/ACM 39th International Conference on Software 
Engineering: Software Engineering Education and Training 
Track (ICSE-SEET), May 2017, pp. 33–36. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7964327 

[11] J. Andrews, “Killer app: A eurogame about software quality,” in 2013 
26th International Conference on Software Engineering Education and 
Training (CSEE&T), 05 2013, pp. 319–323. 

[12] L. Deng, J. Dehlinger, and S. Chakraborty, “Teaching Software 
Testing with Free and Open Source Software,” in 2020 IEEE 
International Conference on Software Testing, Verification and 
Validation Workshops (ICSTW), Oct. 2020, pp. 412–418. [Online]. 
Available: https://ieeexplore.ieee.org/document/9155837 

[13] SeleniumHQ, “Selenium webdriver: From foundations to framework,” 
https://www.selenium.dev/documentation/en/webdriver/, Open Source 
Community, 2022. 

[14] I. S. Elgrably and S. Ronaldo Bezerra Oliveira, “Model for 
teaching and training software testing in an agile context,” 
in  2020  IEEE  Frontiers  in  Education  Conference  (FIE), 
Oct. 2020, pp. 1–9, iSSN: 2377-634X. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/9274117 

[15] A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Relationship 
Between Student Engagement and Performance in E-Learning Envi- 
ronment Using Association Rules,” in 2018 IEEE World Engineering 

Education Conference (EDUNINE), Mar. 2018, pp. 1–6. [Online]. 
Available: https://ieeexplore.ieee.org/abstract/document/8451005 

[16] I. Burman and S. Som, “Predicting students academic performance using 
support vector machine,” in 2019 Amity international conference on 
artificial intelligence (AICAI). IEEE, 2019, pp. 756–759. 

[17] E. S. Bhutto, I. F. Siddiqui, Q. A. Arain, and M. Anwar, “Predicting 
students’ academic performance through supervised machine learning,” 
in 2020 International Conference on Information Science and Commu- 
nication Technology (ICISCT), 2020, pp. 1–6. 

[18] S. D. A. Bujang, A. Selamat, R. Ibrahim, O. Krejcar, E. Herrera- 
Viedma, H. Fujita, and N. A. M. Ghani, “Multiclass Prediction Model 
for Student Grade Prediction Using Machine Learning,” IEEE Access, 
vol. 9, pp. 95 608–95 621, 2021, conference Name: IEEE Access. 
[Online]. Available: https://ieeexplore.ieee.org/document/9468629 

[19] M. Khan, S. Naz, Y. Khan, M. Zafar, M. Khan, and G. Pau, “Utilizing 
machine learning models to predict student performance from lms 
activity logs,” IEEE Access, vol. 11, pp. 86 953–86 962, 2023. 

[20] Y. Shi, F. Sun, H. Zuo, and F. Peng, “Analysis of learning behavior 
characteristics and prediction of learning effect for improving college 
students’ information literacy based on machine learning,” IEEE Access, 
vol. 11, pp. 50 447–50 461, 2023. 

[21] S. Jayasundara, A. Indika, and D. Herath, “Interpretable Student 
Performance Prediction Using Explainable Boosting Machine for Multi- 
Class Classification,” in 2022 2nd International Conference on Advanced 
Research in Computing (ICARC), Feb. 2022, pp. 391–396. [Online]. 
Available: https://ieeexplore.ieee.org/abstract/document/9753867 

[22] Selenium, “Selenium IDE,” https://www.selenium.dev/selenium-ide/, 
Year. 

[23] J. Team, JUnit 5 User Guide, JUnit Contributors, 2022. [Online]. 
Available: https://junit.org/junit5/docs/current/user-guide/ 

[24] C. Beust and A. Popescu, TestNG: The Testing Framework for Java, 
TestNG Team, 2022. [Online]. Available: https://testng.org/doc/ 

[25] J. Community, Jenkins Documentation, Jenkins Project, 2022. [Online]. 
Available: https://www.jenkins.io/doc/ 

[26] Katalon LLC, “Katalon Recorder,” https://www.katalon.com/, Year. 
[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander- 
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine 
Learning Research, vol. 12, pp. 2825–2830, 2011. 

[28] R. Alamri and B. Alharbi, “Explainable Student Performance Prediction 
Models: A Systematic Review,” IEEE Access, vol. 9, pp. 33 132– 
33 143, 2021, conference Name: IEEE Access. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/9360749 

[29] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic 
regression. John Wiley & Sons, 2013, vol. 398. 

[30] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support 
vector machines,” IEEE Intelligent Systems and their Applications, 
vol. 13, no. 4, pp. 18–28, 1998. 

[31] S. Menard, Applied logistic regression analysis.  Sage, 2002, no. 106. 
[32] S. Suthaharan and S. Suthaharan, “Support vector machine,” Machine 

learning models and algorithms for big data classification: thinking with 
examples for effective learning, pp. 207–235, 2016. 

[33] B. Charbuty and A. Abdulazeez, “Classification based on decision 
tree algorithm for machine learning,” Journal of Applied Science and 
Technology Trends, vol. 2, no. 01, pp. 20–28, 2021. 

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 
2001. 

[35] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” IEEE 
Potentials, vol. 13, no. 4, pp. 27–31, 1994. 

[36] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting 
model predictions,” in Advances in Neural Information Processing 
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, 
S. Vishwanathan, and R. Garnett, Eds.  Curran Associates, Inc., 2017, 
pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a- 
unified-approach-to-interpreting-model-predictions.pdf 

https://doi.org/10.1109/ICSTW60967.2024.00064
http://www.selenium.dev/documentation/en/webdriver/
http://www.selenium.dev/selenium-ide/
http://www.jenkins.io/doc/
http://www.katalon.com/
http://papers.nips.cc/paper/7062-a-

	Factors Influencing Performance of Students in Software Automated Test Tools Course
	Citation of this paper:

	Susmita Haldar
	Mary Pierce
	Luiz Fernando Capretz

