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Abstract 

This dissertation explored the relationship between internal and external visualizations and 

the implications of this relationship for comprehending visuospatial anatomical information. 

External visualizations comprised different computer representations of anatomical 

structures, including: static, animated, non-interactive, interactive, non-stereoscopic, and 

stereoscopic visualizations. Internal visualizations involved examining participants’ ability to 

apprehend, encode, and manipulate mental representations (i.e., spatial visualization ability 

or Vz). Comprehension was measured with a novel spatial anatomy task that involved mental 

manipulation of anatomical structures in three-dimensions and two-dimensional cross-

sections. It was hypothesized that performance on the spatial anatomy task would involve a 

trade-off between internal and external visualizations available to the learner.  

Results from experiments 1, 2, and 3 demonstrated that in the absence of computer 

visualizations, spatial visualization ability (Vz) was the main contributor to variation in 

spatial anatomy task performance. Subjects with high Vz scored higher, spent less time, and 

were more accurate than those with low Vz. In the presence of external computer 

visualizations, variation in task performance was attributed to both Vz and visuospatial 

characteristics of the computer visualization. While static representations improved 

performance of high- and low-Vz subjects equally, animations particularly benefited high Vz 

subjects, as their mean score on the SAT was significantly higher than the mean score of low 

Vz subjects. The addition of interactivity and stereopsis to the displays offered no additional 

advantages over non-interactive and non-stereoscopic visualizations. Interactive, non-

interactive, stereoscopic and non-stereoscopic visualizations improved the performance of 

high- and low-Vz subjects equally.  

It was concluded that comprehension of visuospatial anatomical information involved a 

trade-off between the perception of external visualizations and the ability to maintain and 

manipulate internal visualizations. There is an inherent belief that increasing the educational 

effectiveness of computer visualizations is a mere question of making them dynamic, 

interactive, and/or realistic. However, experiments 1, 2, and 3 clearly demonstrate that this is 
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not the case, and that the benefits of computer visualizations vary according to learner 

characteristics, particularly spatial visualization ability. 
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Preface 

 

 

 

 

“ Wisdom is not a product of school but of the lifelong attempt to 

acquire it.” 

                                                          - Albert Einstein, 1954 
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Chapter 1  

 

1 General Introduction  

 

1.1 Medical Education  

The primary goal of medical education is to teach students how to perform clinical 

procedures with minimum risks and maximum benefits to patients. Since patients are 

three-dimensional (3-D) entities, healthcare and medical education often involve learning 

and applying 3-D information (Marks, 2000). A cornerstone in the foundation begins in 

anatomy courses, where, in addition to terminology, students learn visuospatial 

information, including the shape of anatomical structures, their position in 3-D space, and 

their location relative to other structures. When carrying out medical procedures, often 

the internal structures of the patient’s body are not directly visible, so that medical 

professionals have to rely on internal or mental representations of visuospatial anatomical 

information. 

 

1.2 Anatomy Education  

Given the importance of visuospatial information in medicine, educators have 

endeavoured to find ways of helping students acquire visuospatial anatomical knowledge. 

Traditionally, anatomical learning took place in the dissection room, supplemented by 

anatomy textbooks and atlases (McLachlan and Patten, 2006). It is a widely held 

perception that the process of dissection or inspection of prosected specimens provides 

unique views of anatomical structures that facilitates mental construction and mapping of 

the body’s visuospatial information (McLachlan et al., 2004). Given sufficient time, 

adequate facilities, and an appropriate student-cadaver ratio, cadaveric dissection is 

regarded as an effective learning tool (Prentice et al., 1977). Unfortunately however, 
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many medical schools in both the United States and Canada have experienced a decrease 

in curriculum hours compounded by a scarcity of donated bodies and reduced supply of, 

and demand for, instructors who can teach gross cadaveric dissection (Collins et al., 

1994; Cottam, 1999; Drake et al., 2009; Gregory et al., 2009). These conditions, in turn, 

have resulted in either an unacceptable student-cadaver ratio or the elimination of 

dissection altogether. In the former scenario, dissection becomes an inefficient learning 

tool, and in the latter condition the elimination of dissection precipitates total reliance on 

other forms of instruction in anatomy (Prentice et al., 1977; Rizzolo et al., 2006)   

With the development in graphical technologies and widespread availability of 

computers, computerized representations of anatomy have become prevalent in all levels 

of medicine and allied health sciences – from undergraduate anatomy education to 

surgical training. Compared to real world objects, computer visualizations offer 

advantages in terms of accessibility, convenience, cost, safety, and versatility (Aziz et al., 

2002; McLachlan et al., 2004; McLachlan and Patten, 2006). As a result, medical 

education has begun a dramatic shift towards introducing computer visualizations into its 

learning program with the intention that they will “enhance” or “amplify” cognition 

(Keehner et al., 2008; AFMC, 2010). The ability to communicate anatomical information 

visually has extended from static (or non-dynamic) to animated (or dynamic) 

representations, non-interactive to interactive displays, and non-stereoscopic to 

stereoscopic visualizations (Khalil et al., 2005; Luursema et al., 2006). Many benefits 

have been claimed for interactive and dynamic visualizations. These include the belief 

that (a) 3-D visualizations are better than 2-D images, (b) animations are better than static 

representations, (c) interactive visualizations are better than non-interactive ones, and (d) 

virtual reality simulations based on stereoscopic images are better than animations 

(Scaife and Rogers, 1996).  

Such generalizations about the benefits of technologically-advanced visualizations over 

simple static representations beg the question however, what is actually gained 

cognitively from having more explicit, dynamic and interactive representation of 

information (Scaife and Rogers, 1996)? Why, for example, should an animation of an 

anatomical structure that rotates in response to user interaction be more effective at 
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facilitating the acquisition of visuospatial anatomical knowledge than static diagrams 

available in traditional anatomy textbooks or atlases? Why not the other way around, 

where static diagrams are more effective than animations or non-interactive visualizations 

are better interactive ones?   

Despite much optimism about their educational potential, our understanding of the 

instructional value of different computer visualizations is relatively limited. Within 

cognitive science, there is mounting evidence that the effectiveness of instructional  

visualizations depends on how well their design reflect human cognitive architecture 

(Mayer, 2005). Specifically, the educational value of these visualizations depends on 

whether learners have enough cognitive resources (i.e., working memory and long-term 

memory) to construct, maintain, and integrate information in the external display 

(Sweller et al., 1998; Mayer, 2005). Therefore, within cognitive science there has been a 

move towards examining the relationships between external visualizations and internal 

thought process and to explore a full range of factors that affect learning from computer 

visualizations (Zhang and Norman, 1994; Zhang et al., 2002; Hegarty et al., 2007; 

Keehner et al., 2008). A striking finding from cognitive research studies is that computer 

visualizations are not equally effective for all learners, and that task performance often 

involves a tradeoff between internal and external resources available to the learner. On 

the one hand, different characteristics of the learner (e.g., prior knowledge, spatial ability, 

and motivation) can mean that more or less cognitive resources are devoted to the main 

instructional task. On the other hand, different characteristics of the external computer 

visualization can mean that more or less task load is carried out internally.  

 

1.3 Overview of Dissertation  

The purpose of this dissertation is to explore the relationship between internal and 

external visualizations and the implications of this relationship for comprehending 

visuospatial anatomical information. The move towards understanding how anatomical 

knowledge is constructed through the interaction of internal and external visualizations is 

a substantial move away from the traditional approach to cognition, which assumes that 
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cognition is exclusively in the mind, and external objects, if they had anything to do with 

cognition at all, are at most peripheral aids (Zhang and Norman, 1994). Giving external 

computer visualizations a more central functional role in relation to internal 

visualizations allows us to account more adequately for how the representational system 

works (Scaife and Rogers, 1996). The value of this approach is that it allows us to focus 

our attention more on the properties of the internal and external visualizations and 

cognitive processing involved when interacting with visual representations. In addition to 

enabling us to better understand the cognitive value of different graphical representations, 

this approach also allows us to begin to assess more effectively how instructional 

innovation in anatomy education should be approached.  

The remainder of this dissertation is divided into five chapters: 

Chapter 2 is the literature review. It begins with an operational definition of 

‘visualization’ and outlines the differences between internal and external visualizations. 

Next, the properties of external computer visualizations used in anatomy courses (static, 

dynamic, stereoscopic, monocular, interactive, and non-interactive) are described 

followed by a review of previous research studies evaluating their educational 

effectiveness. Finally, the role of internal spatial visualization ability, a sub-factor of 

spatial ability, is examined along with a review of previous literature describing its role in 

anatomy education.  

Chapters 3 – 5 are three experiments in this dissertation. Experiment 1 examines whether 

spatial visualization ability influences performance on a novel spatial anatomy task and 

whether the effects of spatial visualization ability could be modulated through instruction 

with different computer visualizations. Experiment 2 examines the problem solving 

strategies of individuals with high and low spatial visualization ability in order to 

determine whether differences in strategies contribute to differences in anatomy task 

performance. Experiment 3 examines whether increasing the realism of the display will 

inherently improve the educational effectiveness of the computer visualization.  

Chapter 6 is the general discussion and conclusion. Here, explanations for the patterns of 

performance observed in experiments 1, 2, and 3 are proposed and their implications for 
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anatomy education are offered. Finally, recommendations for future experimentation are 

provided.  
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Chapter 2  

 

2 Literature Review  

 

2.1 Visualization  

The New Oxford American Dictionary defines “visualization” as the process of “forming 

a mental image” or “making (something) visible to the eye” (McKean, 2005). In 

cognitive science, these are two entirely difference constructs. The former, called an 

internal visualization, is a representation in the mind of an individual derived from 

imagery or imagination (Hegarty, 2004b); the latter, called an external visualization, is a 

representation in the environment that can be perceived by an individual (Hegarty, 

2004b). For example, an image of the human heart printed in an anatomy textbook or 

atlas is an external representation of the heart; it is not the heart reduced in size and 

transposed onto a 2-D surface, but only a physical copy of what the heart looks like from 

a particular vantage point. Similarly, if one has ever dissected the heart and can envision 

what the heart looks like, from whichever perspective one wishes, then one is relying on 

an internal or mental representation of the heart. The heart is not physically in one’s head, 

but rather a mental image of the heart accessed from memory.   

One key feature of external visualizations is that they can provide valuable assistance for 

learning. This assistance, called “cognitive support,” can occur through a number of 

mechanisms that reduce demands on the learner’s working memory and allow an effortful 

internal cognitive process to be offloaded onto a less effortful external perceptual-motor 

process (Tory and Moller, 2004; Keehner et al., 2008b). There are many tools that can 

support or augment the learning process, the most common of these being visual and 

aural representations. This dissertation focuses particularly on visual representations, 

specifically computer - generated visual representations, or simply computer 

visualizations.    
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2.2 External visualizations  

Throughout history, advancement in technology has significantly improved our ability to 

create external representations of anatomy. While cadaveric dissection has been 

acknowledged as the paradigm of anatomy teaching since the 16th century, access to 

dissections was limited due to the lack of fresh bodies and the lack of effective 

preservation techniques (Olry, 2000; McLachlan and Patten, 2006). As a result, external 

representations in the form of physical models with fine anatomical details were created 

as alternative teaching aids. These had the advantages of being more widely available and 

were not at risk of decay. In the 17th and 18th centuries, anatomical models were made 

from available materials such as wax, ivory and cardboard (Olry, 2000). Starting in the 

early 20th century, plastic or polychromatic rubber became the material of choice for 

creating anatomical models (Olry, 2000). In recent years, computers have changed the 

way we create and use anatomy representations. Because of computers, anatomical 

representations can be created automatically at time of use, can be made dynamic and 

interactive, can be used anywhere, with or without an internet connection, and can be 

stored on almost any network - capable devices ranging from desktop computers to tables 

and smartphones.  

 

2.2.1 Computer visualizations  

While not yet mainstream in medical education, many prototypes and first-generation 

computer visualizations are emerging in anatomy courses, with content directed at target 

audiences ranging from undergraduate anatomy students to residents in advanced medical 

training programs. Examples of these include the human head (Nguyen and Wilson, 

2009), pelvis (Venuti et al., 2004; Sergovich et al., 2010), mediastinum (Conley et al., 

1992), semicircular canal (Nicholson et al., 2006), vasculature (Petersson et al., 2009), 

and ankle (Sora et al., 2007). Many of these visualizations are rendered directly from 

human data including CT, MRI, and cryosections obtained from the Visible Human 

Project (Spitzer et al., 1996). As a result, they offer highly detailed views of the inner 

body that are not generic representations (McGhee, 2010; Tam, 2010). 
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Computer visualizations can be classified in many ways. Commonly, they are described 

in terms of features such as their modality (text or picture), abstraction (iconic or 

symbolic), sensory channel (auditory or visual), dimensionality (2-D or 3-D), dynamism 

(static/non-dynamic or dynamic), or interactivity (active or passive) (Ainsworth and 

VanLabeke, 2004). Different types of external computer representations of anatomy vary 

in terms of how much information they represent about the human body, in how 

explicitly that information is represented, and in the type of mapping between the 

external representation and its referent (i.e., the represented structure) (Hegarty and Kriz, 

2008).  

 

2.2.1.1 Modality: text versus pictures 

Comparisons of information processing requirements of text and pictures have been used 

to explain why pictorial representations can have advantages over text for presenting 

certain types of information to learners. Texts are descriptive representations consisting 

of symbols describing an object, such as spoken or written words and mathematical 

expressions (Schnotz and Kürschner, 2008). Symbols are signs that have no similarity 

with the content they represent. For example, the word ‘heart’ has no similarity with a 

real heart. It is a symbol, and it’s meaning is based on a convention. In a sentence like, 

“the resting heart beats 70 times per minute”, nouns (such as ‘heart’) are symbols for 

objects and events; verbs (such as ‘beats’) are symbols for actions, and adjectives (such 

as ‘resting’) are symbols for attributes. Pictures, on the other hand, are depictive 

representations consisting of icons (Schnotz and Kürschner, 2008). Icons are signs that 

are associated with the content they represent through common structural features. A map 

of Canada or a picture of the human body are examples of depictive representations that 

have some similarity with the corresponding referent (Schnotz, 2005).  

One advantage of pictures over texts is that they can make complex information easier to 

comprehend. Specifically, they are useful for communicating cause-and-effect 
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information (e.g., turning a key can unlock a door), organizing information to reduce 

search efforts (e.g., a map or flowchart), and representing relationships amongst elements 

that are difficult to explain verbally (e.g., a Venn diagram) (Zhang and Norman, 1994). 

Another advantage of pictures is they can promote parallel processing by the visual 

system, which can increase the bandwidth of information extraction. According to the 

modality principle (Lowe, 2004), under certain, well-defined conditions, presenting some 

information in visual form and other information in auditory form can effectively expand 

working memory capacity and so reduce the effects of excessive cognitive load. Finally, 

pictures can be used to drive cognitive behaviour without conscious awareness (Zhang 

and Norman, 1994; Zhang, 1997). For example, physically salient cues, such as bright 

colors, labels, and motion, can be added to the display to draw learners’ attention towards 

important concepts or features, increasing the likelihood that these features will be 

brought into the information processing system (Desimone and Duncan, 1995).  

The comparisons of text and pictures referred to above concern the way their different 

visuospatial characteristics impact on information processing requirements such as search 

and the detection of relationships (Lowe, 2004). It is possible to take this theme one step 

further and make similar comparisons between static and dynamic, and 2-D and 3-D 

visualizations.  

 

2.2.1.2 Dynamism: static versus dynamic  

A static (or non-dynamic) image printed in an anatomy textbook or atlas can explicitly 

represent the parts of the human body. This type of image is commonly used to show 

anatomical structures (e.g., muscles of the lower limb) from one of six canonical 

orientations: anterior (or front), posterior (or back), superior (or top), inferior (or bottom), 

left–lateral (or left-side), or right–lateral (or right-side). The image itself is isomorphic to 

its referent (i.e., the muscles), in the sense that the shapes of the objects represented in the 

image correspond to the shapes of the muscles, and the spatial relations between the 

objects correspond to spatial relations between the muscles (Hegarty and Kriz, 2008).  
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An animation is the prototypical example of a dynamic visualization (Hegarty, 2004b). A 

traditional animation consists of a sequence of frames that play at a constant rate; each 

frame image exists only transiently to be replaced by subsequent frames (Ainsworth and 

VanLabeke, 2004). In contrast to a static image, an animation can explicitly represent 

both the parts of the human body and how those parts change with respect to time (e.g., 

how muscles contract and relax). Hence, in an animation, the movements of objects are 

isomorphic to the movements of parts in the human body (Hegarty and Kriz, 2008). In 

addition to portraying a visible sequence of events in real time, or proportional to real 

time, animations can also be used to increase depth information in the display (e.g., by 

having the muscles rotate in virtual space). The multiple views provided by rotating an 

object may more accurately depict the visuospatial properties of anatomical structures 

(Garg et al., 1999).  

 

2.2.1.3 Dimensionality: 2-D versus 3-D 

The human body is a 3-D entity (actually, 4-D if time is included), in that it has a length, 

width, and height. When looking at an image (static or dynamic, 2-D or 3-D) there are 

visual cues incorporated in the image that the brain attends to. The visual system relies on 

these cues to infer the visuospatial properties of objects within the field of view, in this 

case, anatomical structures. These depth cues are typically divided into two broad 

categories - monocular cues that require the visual input of one eye and binocular cues 

that require the visual input of two eyes (Schwartz, 2010).  

Monocular cues can be broken down into two categories depending on whether they can 

be reproduced in a 2-D static picture (called pictorial cues) or a 3-D dynamic picture 

(called motion cues). Pictorial cues are listed in Table 2.1 and include relative size, 

familiar size, linear perspective, texture, interposition (or occlusion), light, shading, and 

shadow (Schwartz, 2010). Most of these cue properties are based on the concept that the 

size of the retinal image of an object is proportional to the object’s size and inversely 

proportional to the distance of the object. Hence, an object that casts a smaller retinal 

image is perceived as being farther away than an object that casts a larger retinal image. 
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The incorporation of pictorial depth cues to a 2-D flat surface can create a sense of depth 

where none previously exists. 
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Table 2.1: Monocular pictorial depth cues (Schwartz, 2010) 
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Motion cues include multiple forms of parallax. The perception of motion can be thought 

of simply as a change in the visual direction of an object as a function of time when one, 

then another, retinal locus is stimulated by its image (Steinman and Garzia, 2000). If the 

observer is moving relative to a stationary object, the resulting movement is called 

moving-viewer motion parallax (Bowman et al., 2005). If the observer is stationary but 

the object is in motion (e.g., it is rotating or translating), the resulting movement is called 

stationary-viewer motion parallax (Bowman et al., 2005). In both cases, objects will 

move at different speeds on the retina depending on their distance from the observer. 

Objects closer to the observer will appear to move faster than objects farther away. The 

sequence of images in Figure 2.1 illustrates motion parallax as a visual cue. The 

incorporation of motion depth cues to a display (e.g., having an object rotating in virtual 

space) can provide a 3-D impression of an object that better communicates its 

visuospatial properties (Keehner et al., 2008b). Because these motion-based depth cues 

depend on the object’s ability to move and not on whether the movements are actively 

controlled by the learner, this type of spatial information is made available regardless of 

whether a visualization’s level of interactivity is passive or active (Keehner et al., 2008a; 

2008b). 

 

 
Figure 2.1: Motion-parallax as a visual cue. As the observer moves from left to right, the 
tree closest to the observer appears to move the most, while the tree farthest away appears 
to be moving the least. 
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Binocular cues exist because of the differential location of the two eyes. On average, the 

human eyes are separated by approximately 6.4 cm in the horizontal direction (Ware, 

2004). Due to this separation, the two eyes receive slightly different images of the 

external environment and the brain uses the disparity between these images to recover 

information about the relative distance or depth of objects in the visual world (Steinman 

and Garzia, 2000). This process is called stereopsis and its sole basis is the horizontal (or 

binocular) disparity between the two retinal images (Poggio and Poggio, 1984). There 

are, of course, several cues to depth, like texture gradients, shading, and motion parallax, 

which are based on the visual input of only one eye. However, stereopsis is the most 

important and accurate of them, especially when it comes to depth perception in close 

visual field (Ware, 2004).  

While stereopsis occurs naturally in animals with overlapping visual fields (Ware, 2004), 

the effect can be achieved using a standard computer monitor coupled with stereo glasses. 

The monitor is used to generate and display the disparate images (one for each eye) while 

the stereo glasses are used to filter the screen images so that each eye receives only one 

screen image. Bowman et al. (2005) recommends a monitor with a high refresh rate (100 

Hz or better) because the display of the two images reduces the refresh rate by 50%. The 

stereo glasses can either be active or passive. Active (or shutter) stereo glasses are 

synchronized to open and close their shutters at the same reduced refresh rate as the 

monitor (Bowman et al., 2005). Passive stereo glasses are based on polarization or 

spectral multiplexing. Polarization multiplexing filters the overlaid images with polarized 

filters that run in opposite directions (e.g., one filter could be horizontally polarized while 

the other is vertically polarized). Spectral multiplexing (or anaglyph stereo) displays the 

two overlaid images in two different colours (e.g., blue and red). The coloured filters are 

used so that light from any colour other than the filter’s colour is washed out. Although 

active stereo produces the highest stereo quality, it is expensive and requires 

synchronization between the glasses and the images generated on the monitor. Passive 

stereo is relatively inexpensive but the colour filters reduce the overall quality of the 

images (Bowman et al., 2005).   
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2.2.1.4 Interactivity: interactive versus non-interactive  

If the visualization does not allow any mode of interaction other than watching, then it is 

passive interaction. Many of the highly useful static and dynamic computer visualizations 

used in anatomy courses support passive interaction only (Garg et al., 1999; Luursema et 

al., 2008). If the visualization allows viewer control over the presentation of information, 

then it is active interaction. Betrancourt (2005) distinguished broadly between two 

categories of active interaction: control and interactivity. “Control” refers to the 

capability of the viewer to act on the pace and direction of the presentation sequence 

(e.g., play, pause, rewind, etc.). “Interactivity” refers to the capability of the viewer to 

alter parameters (e.g. viewpoints) of the object in the visualization, allowing for 

exploration from different perspectives. 

The ability to interact with computer visualizations can be achieved through various input 

hardware, ranging from the traditional desktop devices such as keyboards, 2-D mice and 

trackballs to more sophisticated devices that track users’ hand motion. Many different 

characteristics can be used to describe input devices. One of the most important 

characteristics is the number of degrees of freedom (DOF) that the input device allows. A 

degree of freedom may be defined as the number of independent dimensions of the 

motion of a body (Bowman et al., 2005). A traditional 2-D mouse, for example, allows 

for translation along two perpendicular axes (up/down along the y-axis and left/right 

along the x-axis). Since the movement along the axes is independent of each other, a 

traditional mouse has two DOF. A tracker, on the other hand, allows for translation along 

three perpendicular axes (up/down along the y-axis, right/left along the x-axis, and 

forward/backward along the z-axis) as well as rotation about these axes (pitch, yaw, roll). 

Since the movement along each of the three axes is independent of each other, a tracker 

has six DOF. Typically a device’s DOF gives an indication of how complex the device is 

and the power it has in accommodating various interaction techniques.  

Another way of characterizing input devices is by the input type and frequency of data 

(i.e. reports) they generate. Data reports are composed of discrete components, 

continuous components, or a combination of both components. Discrete input device 

components typically generate a single data value (e.g., Boolean value or an element 
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from a set) based on the user’s action (e.g., key presses) and produce a discrete (or 

stepped) system response (e.g. making a menu selection or following a hyperlink). 

Continuous input device components generate multiple data values (e.g., real-value 

numbers, pixels, coordinates) in response to a user’s action and produce a flow of system 

responses (Bowman 2005). This mode of interaction is important for direction 

manipulation interfaces, where there is a short “cognitive distance” between a user’s 

action and the system’s feedback, resulting in a feeling of first-personness or direct 

engagement with the object displayed (Hutchins et al. 1985). In many cases, input 

devices combine discrete and continuous components, providing a larger range of device-

to-interaction technique mapping (Bowman et al., 2005).  

In summary, computer visualizations used in anatomy courses vary widely in the type of 

depth cues incorporated in the display and the degree to which they permit interactive 

control by the user. A static image provides a 2-D representation of a 3-D object. 

Pictorial depth cues such as shading, shadow, and texture gradient are applied to a 2-D 

surface, creating a sense of depth where none previously existed. An animation of an 

object rotating in virtual space provides a 3-D impression of the object. The incorporation 

of motion parallax enables multiple views of the object, which better communicates the 

visuospatial information of anatomy (Keehner et al., 2008b). The incorporation of 

computer-implemented stereopsis enhances depth information, especially at near 

distances, by providing the left and right eye of the viewer with two images, representing 

two perspectives of the same object, with a minor deviation equal to the perspectives that 

both eyes naturally receive in binocular vision (Bowman et al., 2005). Computer 

visualization can be made interactive through a number of input devices ranging from 

keyboard presses to trackers with six DOF (Bowman et al., 2005). 
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2.2.2 Comparative research studies  

 

2.2.2.1 Static representations versus animations  

Intuitively, one might expect that animations will offer advantages over static 

representations, especially since the additional depth cues incorporated in these displays 

better communicate the visuospatial properties of anatomical structures (Keehner et al., 

2008b). At best, static depictions, such as illustrations or photographs printed in anatomy 

textbooks, can present implicit representations only of dynamic or visuospatial 

information. They therefore require learners to infer the situational dynamics or spatial 

properties, respectively (Lowe, 2004). This can be seen as imposing a processing burden 

on the information processing system. In contrast, animations have the advantage of 

being able to present the dynamic or spatial content explicitly such that there is an 

isomorphism between the content being represented in the dynamic display and its 

referent (Lowe, 1999; 2004). Thus, when learning with animation the majority of 

learners’ working memory resources could be devoted to comprehending the content 

directly. However, initial research comparing the educational effectiveness of animations 

and static depictions failed to show clear advantages for animated displays. For example, 

Tversky et al. (2002) reviewed over 20 studies comparing learning from static 

representations and animations. In the majority of the studies, including those in the 

domain of physics, biology, and mechanics, there was no advantage of animations over 

static representations. In cases where there was an advantage, further examination 

revealed lack of equivalence between the animated and static displays in both content and 

procedures, such that the animation conveyed more information or interactivity was 

involved. In contrast, Hoffler and Leutner (2007) published a meta-analysis of 26 studies 

comparing animations and static representations in an attempt to identify factors 

responsible for successful learning with animations. Their analysis revealed an overall 

advantage of animated over static representations. The analysis further revealed that 

animations are more effective than static representations only when they are 

representational (i.e., where the topic to be learned is explicitly depicted in the animation) 

rather than decorative (i.e., where the animation is used to motivate the learner) in nature. 
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The analysis also showed a larger benefit of animations over static representations when 

the target knowledge was procedural-motor knowledge rather than problem-solving 

knowledge or declarative knowledge. 

In the specific domain of anatomy, Hariri et al. (2004) compared the utility of interactive 

animations and static representations for learning shoulder joint anatomy. Students 

received ten-minute learning sessions with either a simulator that provided dynamic 

graphic display and haptic feedback or static textbook images. Subsequently, students 

had to identify anatomical structures videotaped during a shoulder arthroscopy. They 

found that the animation had no instructional advantage over the textbook images. Keedy 

et al. (2011) compared the value of interactive animations and static representations for 

learning hepatobiliary anatomy. Students studied hepatobiliarly anatomy with either a 

learning module comprised of text, still images, and interactive animations or a learning 

module comprised of only text and still images. Following the learning module, students 

completed a satisfaction survey and a nine-item anatomy knowledge test. They found 

higher satisfaction ratings for the interactive animations; however, the animations had no 

instructional advantage over the textbook style approach.  

Despite their seemingly endless pedagogical potential, it is clear from initial research that 

there is not a simple advantage of animations over static representations. A common 

response to this result is to assume that the animations used in these research studies were 

poorly designed, so that the solution is to improve the design of the animations (Kriz and 

Hegarty, 2007). Several researchers have suggested principles for the designing of 

effective animations, including adding binocular depth cues to increase the depth and 

accuracy of the display (Luursema et al., 2006; Luursema et al., 2008) and adding 

interactive control to engage learners in the learning process (Hegarty, 2004b; Schwan 

and Riempp, 2004).  
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2.2.2.2 Stereoscopic versus non-stereoscopic visualizations  

In education, it is often assumed that increasing the realism of a display will inherently 

improve its educational effectiveness (Scaife and Rogers, 1996). If this is the case, then 

computer visualizations that better communicate the visuospatial properties of anatomy 

should assist learners in constructing a more accurate mental representation of anatomical 

structures. Since stereopsis offers the advantage of improved depth perception and 

accuracy (especially in close proximity to the viewer), one might expect that it will have 

instructional advantages over monocular displays. To date, only two studies have 

examined the contribution of stereopsis on virtual anatomy learning. In the first study, 

participants learned abdominal anatomy through interaction with a stereoscopic 

animation or non-stereoscopic static representations (Luursema et al., 2006). Anatomy 

competency was measured with a task that involved identification of abdominal 

structures in 2-D cross-section and localization of corresponding plane/level of selected 

cross-sections. The authors found that the stereoscopic animation had an overall 

instructional advantage over non-stereoscopic static representations for both 

identification and localization problems. In the second study, interactivity was omitted 

and participant’s learned abdominal anatomy via stereoscopic animation or non-

stereoscopic animation (Luursema et al., 2008). The authors found that computer-

implemented stereopsis improved performance on the localization task but not the 

identification task.   

Although few studies have examined the instructional value of stereoscopic displays for 

learning anatomical information, plenty of studies have examined the usefulness of these 

displays on surgical skill training. However, these studies have yielded inconsistent 

results as to the benefits of computer-implemented stereopsis. Some studies found clear 

advantages for stereoscopic displays. Peitgen et al. (1996), for example, examined the 

effects of computer-implemented stereopsis on laparoscopic task performance. 

Performance time and accuracy were recorded. Compared to the non-stereoscopic 

display, the stereopscopic display improved performance (both speed and accuracy) on 

the surgical task. Falk et al. (2001) and Byrn et al. (2007) examined the impact of 

stereopsis on the performance of surgeons using the da Vinci Robot System. Performance 
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time and accuracy were measured. In both studies, stereoscopic displays improved task 

performance (speed and accuracy) compared to non-stereoscopic displays.  

By contrast, other studies found that the addition of stereopsis offered no additional 

advantages over monocular displays. Hanna et al. (1998) examined the impact of 

computer-implemented stereopsis on laparoscopic cholecystectomy for symptomatic 

gallstone disease. The addition of stereopsis to the display did not offer advantages over 

the non-stereoscopic display. Furthermore, surgeons reported adverse symptoms 

immediately after the operations with both systems; however, the score for visual strain, 

headache, and facial discomfort were higher with the stereoscopic display. Roach et al. 

(2012) evaluated the impacts of stereopsis on the acquisition of new surgical skills - the 

rhombic flap and double z-plasty procedures. Students’ technical skills (i.e., dexterity, 

respect for tissue, instrument control, time and progressive thought) were assessed with a 

five-point Global Rotating Scale. The stereoscopic display did offer additional training 

advantages over the non-stereoscopic display.  

Finally, in some cases, computer-implemented stereopsis hinders task performance. 

Wentink et al. (2002) compared a standard laparoscopic viewing system comprised of a 

monocular endoscope with a high-resolution monitor with three advanced laparoscopic 

viewing systems (including a stereoscopic 3D endoscope system) in a laparoscopic 

training experiment. Performance time was obtained. The time on the task was 

significantly greater with the stereoscopic viewing system than with the standard viewing 

system. Therefore, compared to the standard system, task performance (as measured by 

time on task) actually decreased.      

 

2.2.2.3 Interactive versus non-interactive visualizations  

Like films, animations and static representations (monocular or stereoscopic) are mass 

media presentations that do not address the needs of a single viewer, rather a general 

audience. Typically, the cognitive characteristics of audience members will vary (Schwan 

and Riempp, 2004). Examples of such differences include prior knowledge, motivation, 
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and abilities. Hence, it is impossible for traditional animations or static images to take 

these individual differences into account. Here, interactivity comes into play. The 

advantage of interactivity is that it enables the viewer to adapt the presentation to his/her 

individual cognitive needs by actively deciding “what” is presented on the screen and 

“when” it is presented (Schwan and Riempp, 2004). It is tempting to assume, then, that 

making visualizations more effective in anatomy education is merely a question of 

making them more interactive. However, studies examining the educational value of 

interactive visualizations have demonstrated mixed results.  

Some studies found significant advantages for interactivity. Mayer and Chandler (2001) 

showed that learners who had simple control over the pace of an animation (i.e., pause, 

play) not only found the material more enjoyable but also performed better on transfer 

tests (i.e. test of deep learning) than learners who had no control over the presentation. 

Schwan and Riempp (2004) demonstrated that having complete control over the pace and 

direction of an animation (i.e., stop, replay, reverse or change speed) accelerates the 

process of skill acquisition (i.e., tying a nautical knot). Subjects with complete control 

over animations had a better understanding of the depicted processes than subjects with 

no control. By contrast, subjects with no control needed substantially more time than 

subjects with control to acquire procedural skills. In the context of anatomy education, 

Luursema and Verwey (2011) examined the contribution of interactivity to learning 

abdominal anatomy. Students received three-minute learning sessions with a stereoscopic 

abdominal model. Half the students had active control over the rotation of the model (by 

using a mouse) while the other half witnessed the active participants’ explorations. After 

the study phase, an anatomical knowledge test consisting of identification questions 

(identify structure in 2D cross-section) and localization questions (localize the plane/level 

of selected cross-sections) assessed participants’ learning. Active exploration provided a 

small but significant benefit over passive exploration.  

By contrast, other studies found no additional advantages of interactive over non-

interactive visualizations. Keehner et al. (2008a) conducted a series of experiments 

examining the effects of interactive visualizations on a task requiring participants to infer 

and draw cross-sections of an unfamiliar three-dimensional (3-D) object. In experiment 1, 
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they contrasted the performance with an interactive visualization to that with a non-

interactive visualization. In experiment 2, they used a yoked design to observe the effects 

of interactivity while controlling for visual input in interactive and non-interactive 

conditions. In experiment 3, they contrasted an interactive visualization with a non-

interactive visualization that was designed to model the visual information accessed by 

the most successful interactive participants in earlier experiments. In experiment 1, 

interactivity produced better performance than passive viewing, but the advantage of 

interactivity disappeared in experiment 2 when the visual input for the two conditions 

was equalized through the yoked design. In experiment 3, non-interactive participants 

who watch optimal movements of the visualization performed as well as interactive 

participants who manipulated the visualization effectively and better than interactive 

participants who manipulated the visualization ineffectively. The results suggest that 

interactivity per se is not the critical factor in the performance of the cross-section task. 

Instead, the quality of the visual information available predicts success on the task, 

regardless of whether participants have control over it.  

 

2.2.3 Summary  

Despite their seemingly endless pedagogical potential, it is clear from initial research that 

there is not a simple advantage of animations over static representations, stereoscopic 

over non-stereoscopic displays, and interactive over non-interactive visualizations. Yet, 

most educators continue to believe making computer visualizations more dynamic and 

interactive will enhance their educational effectiveness (Hegarty, 2004b). By focusing on 

improving the methods by which visual information is communicated, these educators 

automatically assume a bottom-up model of learning (Kriz and Hegarty, 2007). 

According to this model, learning is primarily a function of encoding information from 

the external display, so that improving characteristics of the display will, by necessity, 

improve learning. In contrast, less attention has been given to how the learning process is 

affected by learners’ abilities, skills, goals, and prior knowledge, that is, top-down 

influences on comprehension (Kriz and Hegarty, 2007; Hegarty and Kriz, 2008). 

Therefore, the next section of this literature review focuses on an important learner 
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characteristic that has been found to influence anatomy learning through traditional 

methods and more recently from computer visualizations.  

 

2.3 Internal visualizations 

While technology has significantly improved our ability to create external visualizations, 

our ability to internally visualize has probably not changed significantly over the last few 

decades. Internal visualization has been an important topic of research in cognitive 

science since the 1800s (Hegarty, 2004a; Zacks and Michelon, 2005). Studies of internal 

visualization often involve examining people’s ability to construct, inspect, and transform 

mental representations (Hegarty, 2004a). In the working memory literature, the internal 

visualization system is collectively known as the visuospatial sketchpad (Baddeley, 

1992). In the human intelligence literature, internal visualization ability is also called 

spatial ability (Carroll, 1993; Hegarty, 2004a).   

 

2.3.1 Spatial visualization ability (Vz)  

Generally, the process of constructing and maintaining internal visualization is 

considered a visual process, involving the visuospatial sketchpad of working memory 

(Clark and Paivio, 1991; Baddeley, 1992; Mayer and Sims, 1994; Miyake et al., 2001). 

Processing information in the visuospatial sketchpad is strongly influenced by spatial 

ability (Miyake et al., 2001), which Carroll (1993) defines as individuals’ abilities in 

searching the visual field, apprehending the forms, shapes, and positions of objects as 

visually perceived, forming mental representations of those forms, shapes, and positions, 

and manipulating such representations ‘mentally’ (Carroll 1993, p. 304). My simply 

stated, an internal representation of a perceived object or scene must be created and 

maintained in such a way that mental manipulations are possible.  

As the acts of creating, maintaining, and transforming internal visualizations all require 

different but important abilities, several sub-factors of spatial ability have been identified 
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and together they form the broad concept of spatial ability. These sub-factors are: (a) 

Visualization (Vz), the ability to apprehend, encode and manipulate visuospatial 

representations, often involving rotation in two or three-dimensions; (b) Spatial relations 

(SR), speed of manipulating simple visuospatial representations by transformation; (c) 

Closure speed (CS), speed in retrieving visuospatial representations from long-term 

memory when presented with incomplete, disguised or obscured forms of those 

representations; (d) Closure flexibility (CF), speed of identifying given visuospatial 

patterns in a complex visual environment; and (e) Perceptual speed (P), speed of making 

correct comparisons when given a number of alternative patterns (Carroll, 1993).  

Although there are several sub-factors of spatial ability, the one that has been shown to be 

most relevant to anatomy education is visualization ability (Vz), or more commonly 

known as spatial visualization ability. The main difference between spatial visualization 

ability (Vz) and spatial relations ability (SR) (which also requires mental transformation) 

is that SR problems are solved more rapidly than Vz problems, and the tests themselves 

are administered in a format that emphasizes speed in the former case and both speed and 

accuracy in the latter case (Mumaw and Pellegrino, 1984). The second difference 

involves the stimulus and its complexity. A gross index of complexity is the number of 

individual stimulus elements or parts that must be stored and processed in working 

memory (Mumaw and Pellegrino, 1984; Pellegrino et al., 1984). SR problems, although 

varying among themselves in complexity, involve less complex stimuli than Vz 

problems. Therefore, SR problems usually require a single mental transformation, while 

Vz problems require a sequence of transformations (Pellegrino et al., 1984)  

The remaining three factors (CS, CF, and P) do not play significant roles in visualization 

research and are rarely assessed. Perceptual speed (P) involves speed or efficiency in 

comparing figures or symbols or finding a figure or symbol. The difference between P 

and Vz is that P problems require no mental transformations and typically rely more on 

visual than spatial processing (Hegarty and Waller, 2006). Closure speed (CS) and 

closure flexibility (CF) involve speed or efficiency in identifying a stimulus (or part of a 

stimulus) that is either embedded in or obscured by visual noise (Hegarty and Waller, 

2006). In the case of CF, the examinee is given information about the target stimulus in 
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advance. He or she needs to hold the given information in working memory while 

attempting to identify it from a complex pattern. In the case of CS, the examinee is not 

given information about the stimulus pattern (usually a familiar object) in advance. He or 

she needs to access the representation quickly from long-term memory. The difference 

between CS, CF, and Vz is that the former two factors require no mental transformation 

and rely on storage and retrieval of information from memory.  

 

2.3.1.1 Measures of Vz  

The ability to apprehend, encode, and manipulate visuospatial representation is often 

measured using tasks such as the Paper Folding Test (French et al., 1963) and the Mental 

Rotations Task (Vandenberg and Kuse, 1978). In the Paper Folding Test (French et al., 

1963), the subject must imagine that a sheet of paper has been folded in a certain way, a 

hole is punched through all thicknesses of the paper at a certain point, and the sheet is 

unfolded. The folding and punching are indicated on the left side of the vertical line, and 

the subject must select which of the five unfolded sheets on the right of the vertical line is 

the result. In the Mental Rotations Task (Vandenberg and Kuse, 1978), the subject must 

imagine rotating three-dimensional block figures. The target/criterion figure is 

represented on the far left, and the subject must determine as quickly and accurately as 

possible which two of the four option figures on the right are rotations of the target 

figure.  

Detailed analysis of the different tests of Vz suggest that they have a least two aspects in 

common – each seems to require the execution of a series of mental transformations in 

two- or three-dimensions, and in each, intermediate products must be stored temporarily 

in visuospatial working memory during the processing of other information (Salthouse et 

al., 1990; Carroll, 1993; Hegarty et al., 2007). For example, in the mental rotations task, 

two or more of the block figures must be rotated in order to determine whether the blocks 

are rotations of the target. Furthermore, the orientations of various parts of a block have 

to be remembered while other parts are rotated. 
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2.3.1.2 Individual differences in Vz  

Like any ability, Vz varies significantly within the general population. Some people can 

store and process visuospatial information with ease, while others have difficulties 

performing these cognitive processes. Cognitive analysis of performance on tests of Vz  

suggests that differences in Vz reflect variations in speed of processing visuospatial 

information (Mumaw and Pellegrino, 1984; Salthouse, 1996), visuospatial working 

memory capacity (Shah and Miyake, 1996; Miyake et al., 2001), and strategies for 

processing visuospatial information (Just and Carpenter, 1985; Cohen, 2005). Compared 

to low Vz individuals, high Vz individuals are faster at carrying out mental operations, 

have more working memory resources for storing and processing visuospatial 

information, and adopt more efficient strategies for solving Vz problems.  

 

2.3.1.3 Vz and anatomy education  

Spatial visualization ability (Vz) is a subfactor of spatial ability that is relevant to many 

disciplines of science, including biology (Russell-Gebbett, 1984; Rochford, 1985; 

Russell-Gebbett, 1985; Macnab and Johnstone, 1990; Eun-mi et al., 2003), chemistry 

(Carter et al., 1987; Pribyl and Bodner, 1987; Coleman and Gotch, 1998; Eun-mi et al., 

2003), and physics (Kozhevnikov et al., 2007). As applied to anatomy education, Vz 

tasks often involve imagining the shape and relation of anatomical structures in both 

three-dimensions and two-dimensional cross-sections. Russell-Gebbett (1984) identified 

two skills often used by secondary school pupils to understand three-dimensional 

structures in biology. These discrete skills include the ability to infer the shapes of cross-

sections of anatomical structures and the ability to understand the spatial relationships 

among the internal parts in the anatomical cross-sections. Further analysis revealed that 

these skills were positively correlated with success on 3-D biology problems (Russell-

Gebbett, 1985). Rochford (1985) found a positive correlation between Vz and 

achievement among medical students at the University of Cape Town. High Vz students 

achieved consistently higher marks than low Vz students on both practical anatomy 

examinations and multiple-choice anatomy questions classified as being spatially three-
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dimensional. Recently, Lufler et al. (2012) found similar results when assessing medical 

students at Boston University School of Medicine. High Vz students achieved 

consistently higher marks than their low Vz counterparts on both practical and written 

examinations.  

In addition to practical anatomy task performance, Vz has also been correlated with 

functional anatomy task performance (Guillot et al., 2007), cross-sectional anatomy task 

performance (Cohen and Hegarty, 2007; Hegarty and Kriz, 2008), and surgical task 

performance (Wanzel et al., 2002). Findings such as these suggest that there is a strong 

visuospatial component to the way anatomical information is mentally represented. It also 

implies that low Vz individuals will have a harder time constructing, maintaining, and 

manipulating internal visualizations of anatomy.  

In many of these studies, however, performance on the anatomy tasks may reflect other 

abilities or competencies in addition to Vz. For example, in Cohen and Hegarty’s (2007) 

cross-sectional study, participants were given an egg-shaped object with a transparent 

exterior that revealed an internal network of duct-like structures. In the experimental 

trials, a superimposed vertical or horizontal line on the printed images indicated where 

participants should imagine the object had been sliced. An arrow indicated the orientation 

from which the participants were to imagine the cross-section. Participants were asked to 

draw the cross-section that would result if the object were sliced at the line and viewed 

from the perspective of the arrow. In this study, performance on the task might reflect 

drawing ability rather than spatial visualization. Similarly, in Guillot et al. (2007) study, 

participants were asked to relate written anatomical questions to visual images, and 

performance on the task might reflect verbal comprehension rather than spatial anatomy 

comprehension. Based on these findings, more research is needed to establish the 

relationship between Vz and visuospatial anatomy task performance.  

While Vz is shown to predict anatomy learning through traditional methods, more 

recently it has also been shown to influence anatomy learning from computer 

visualizations (Garg et al., 1999; 2001; 2002; Huk, 2006; Hoffler and Leutner, 2011). 

However, there are disagreements as to possible aptitude-treatment interactions. For 
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example, some studies have demonstrated that instruction with animations (compared to 

static representations) augments the performance of high Vz individuals more than low 

Vz individuals. Garg et al. (1999; 2001; 2002) conducted a series of experiments 

comparing the usefulness of animation and static representations for learning wrist bone 

anatomy. In the first experiment, students received three-minute learning sessions with 

either an auto-rotating animation (anatomy self rotating at 10° intervals in the horizontal 

plane) or static key-view representations (anatomy self rotating by 180° in the horizontal 

plane) (Garg et al., 1999). In the second experiment, students were allowed active control 

over the presentation. Those using the animation were allowed to actively rotate the 

anatomical structures through the multiple views, while those viewing the static images 

were restricted to rotating the structures in the anterior and posterior views (Garg et al., 

2001). In the third experiment, both groups were again allowed active control over the 

presentation. The rotation was unconstrained for participants viewing the animation but 

restricted to a “wiggle” (+/- 10° rotation around the anterior and posterior orientations) 

for those viewing key-view representations (Garg et al., 2002). After each study phase, an 

anatomical knowledge test assessed participants’ learning. Overall, the authors found that 

animation had no instructional advantage over the key-view images. Further analysis 

revealed that animations hinder anatomy learning for individuals with poor Vz. For these 

students, learning was only effective if the display was restricted to a simple depiction 

entailing just two cardinal views. Findings such as these suggest that animations might 

actually impair spatial understanding for low Vz individuals. More recently, Huk (2006) 

examined the impact of interactive 3-D models on learning about the structure of plant 

and animal cells. Test scores in a subsequent knowledge acquisition test demonstrated a 

significant interaction between Vz (high, low) and learning with interactive animations. 

While high Vz learners did better with the animation than without them, the opposite was 

true for low Vz learners, whose performance was poorer in the presence of the animation. 

By contrast, other studies have shown that instruction with animations (compared to 

static representations) augments the performance of low Vz individuals more than high 

Vz individuals. Hoffler and Leutner (2011) conducted two experiments to evaluate the 

role of Vz in learning from an instructional animation versus a series of static images. In 

both studies, test scores in a subsequent knowledge test revealed significant interaction 
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between Vz and type of visualization. When learning with static images, Vz correlated 

with learning outcomes; students with high Vz performed better than those with low Vz. 

When learning with animations, however, learning outcome was independent of Vz; 

students with low Vz performed just as well as their high Vz counterparts.  

 

2.3.2 Summary  

Spatial visualization ability (Vz), which can be seen as a measure of internal visualization 

(Hegarty, 2004a), is correlated with performance on a number of anatomy tasks; 

however, its role in visuospatial anatomy task performance is still unclear. Furthermore, 

instruction with different computer visualizations modulates the effects of Vz on task 

performance; however, there are disagreements as to the aptitude-treatment interaction 

between Vz and format of the computer visualization.  

 

2.4 Overview of empirical chapters 

How does Vz influence performance on visuospatial anatomy tasks? What is the 

relationship between internal Vz and external computer visualizations (animation versus 

static representations, interactive versus non-interactive displays, and stereoscopic versus 

non-stereoscopic visualizations)? The purpose of chapters 3 (experiment 1), 4 

(experiment 2), and 5 (experiment 3) is to provide answers to these research questions.   

Across all the experiments, Vz was assessed with the standardized Mental Rotations Task 

(Vandenberg and Kuse, 1978; Peters et al., 1995). The Mental Rotations Task was chosen 

because it displays high internal consistency (Kuder-Richardson 20 = 0.88) and test-retest 

reliability (0.83) (Vandenberg and Kuse, 1978). Furthermore, administration of the 

Mental Rotation Task to university students, high school students, and elementary 

students revealed that it can be completed by most students in 10 minutes (Vandenberg 

and Kuse, 1978).  
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Across all the experiments, comprehension of visuospatial anatomical information was 

measured with a novel spatial anatomy task. The spatial anatomy task was designed to 

assess participants’ ability to construct, maintain, and transform mental representations of 

a group of tubular anatomical structures in both three-dimensions and two-dimensional 

cross-sections. The spatial anatomy task consists of 30 multiple-choice questions – 10 

involving the mental rotations of the anatomical structures in three-dimensions (Figure 

2.2), 10 involving the identification of the anatomical structures in two-dimensional 

cross-sections (Figure 2.3), and 10 involving the localization of planes or levels 

corresponding to selected cross-sections (Figure 2.4).  

 
Figure 2.2: Example of a mental rotations task question 



33 

 

 
Figure 2.3: Example of an identification task question 

 
Figure 2.4: Example of a localization task question 
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Experiment 1 examines whether Vz influences performance on the spatial anatomy task. 

Performance measures include scores as well as time spent on the anatomy task (in 

seconds). Experiment 1 also examines whether the effects of Vz could be modulated 

through instruction with different computer visualizations, specifically static 

representations versus animation and interactive versus non-interactive displays. Because 

the spatial anatomy task used to measure visuospatial anatomy comprehension involves 

complex manipulations in two- and three-dimensions, it is amenable to a range of 

strategies. Therefore, experiment 2 examines the problem solving strategies of 

individuals of high- and low- Vz in order to determine whether differences in strategies 

contribute to differences in anatomy task performance. Experiment 3 examines whether 

increasing the realism of the display (i.e., through computer implemented stereopsis) will 

inherently improve the educational efficacy of the computer visualization. 

 

2.5 Overall aims and hypotheses  

The first challenge of this dissertation was to examine the contribution of Vz to 

performance on the spatial anatomy task. Given that the spatial anatomy task involves 

encoding, storing and mentally manipulating visuospatial information in three-

dimensions and two-dimensional cross-sections, it was hypothesized that individuals with 

high Vz would perform significantly better on the anatomy task than those with low Vz.   

The second challenge of this dissertation was to examine the relationship between 

different external computer visualizations and internal Vz. Hegarty (2004a) proposed that 

there are at least three possible ways in which external visualization can relate to internal 

visualizations. One possibility is that the use of external visualizations depends on the 

ability to internally visualize. In this case, some minimal level of spatial visualization 

ability is required to benefit from the external visualization. A second possibility is that 

external visualizations can substitute for lack of internal visualization ability. In this 

situation, the external visualization acts as a cognitive prosthetic for individuals who have 

difficulties constructing an adequate internal representation to perform a task. A third 

possibility is that external visualizations augment internal cognition. In this circumstance, 
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the external visualization provides information or insights that are additional to those that 

can be inferred from internal visualizations.  
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Chapter 3  

 

3 Experiment 1 † 

 

3.1 Introduction  

Anatomy has always been regarded as an essential requirement in medical education 

(Drake et al., 2009). In anatomy courses, students not only learn anatomical terminology 

but also visuospatial information such as the size, three-dimensional (3-D) shape, 

orientation, and spatial location of structures in the body. When carrying out medical 

procedures, often the internal structures of the patient’s body are not directly visible, so 

that medical professionals have to rely on internal or mental representations of 

visuospatial anatomical information. 

Internal spatial visualization ability  

Generally, learning visuospatial information is considered a visual process, involving 

visuospatial working memory (Miyake et al., 2001). Processing information in 

visuospatial working memory is strongly influenced by spatial ability, which Carroll 

(1993) defines as individuals’ abilities in searching the visual field, apprehending the 

forms, shapes, and positions of objects as visually perceived, forming mental 

representations of those forms, shapes, and positions, and manipulating such 

representations ‘mentally’. Although there are several subcomponents of spatial ability, 

the one that has been of special interest to medical educators is spatial visualization 

ability (Vz), which refers to the ability to apprehend, encode, and mentally manipulate 

spatial forms in two- and three-dimensions (Carroll, 1993).  

                                                
†
 A version of this chapter has been published (Nguyen, N., Nelson, A, Wilson, TD (2012). Computer 

visualizations: Factors that influence anatomy comprehension. Anat Sci Educ 5(2): 98-108.) 



45 

 

Previous research studies have found Vz to be highly correlated with performance on a 

number of anatomy tasks, including practical anatomy tasks (Rochford, 1985; Lufler et 

al., 2012), functional anatomy tasks (Guillot et al., 2007), cross-sectional anatomy tasks 

(Cohen and Hegarty, 2007; Hegarty et al., 2009), and surgical tasks (Anastakis et al., 

2000; Wanzel et al., 2002). Across all of these studies, individuals with high Vz 

performed significantly better than those with low Vz. While Vz has been shown to 

influence performance on a wide variety of anatomy tasks, its impact on visuospatial 

anatomy task performance has not been investigated.  

External computer visualizations  

Computer visualizations are increasingly common in education across a range of subject 

disciplines, including anatomy. The ability to communicate anatomical information 

visually has extended from static (or non-dynamic) to animated (or dynamic) 

representations, and from non-interactive to interactive displays (Khalil et al., 2005). 

Many benefits have been claimed for animations and interactive visualizations. These 

include the idea that animations are superior to static representations and that interactive 

visualizations are better than non-interactive displays (Scaife and Rogers, 1996). 

However, previous research comparing the instructional value of animations (versus 

static representations) and interactive visualizations (versus non-interactive displays) 

have failed to demonstrate an overall advantage for animations and interactive 

visualizations (Garg et al., 1999; Garg et al., 2001; Garg et al., 2002; Tversky et al., 2002; 

Keehner et al., 2008a; Luursema and Verwey, 2011). A striking finding from these 

studies is that benefits of animations and interactive visualizations vary according to 

learner’s Vz. However, there are disagreements as to the aptitude-treatment interaction. 

For example, some studies found that animations augmented task performance of high Vz 

individuals more than low Vz individuals (Garg et al., 1999; Huk, 2006), while others 

showed that animations improved task performance of low Vz individuals more than high 

Vz individuals (Hoffler and Leutner, 2011). Finally, some studies established that 

animations did not improved task performance of high- or low-Vz individuals (Keedy et 

al., 2011).  
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Experiment 1 had two aims. The first was to determine whether spatial visualization 

ability (Vz) influences performance on a visuospatial anatomical task. The second was to 

determine whether the implementation of animation (compared to static representation) 

and interactive visualization (compared to non-interactive displays) are useful for low Vz 

individuals as opposed to high Vz individuals or whether the contrary is the case. We 

hypothesized that Vz will positively influence comprehension of visuospatial anatomical 

information – individuals with high Vz will perform better on a spatial anatomy task than 

those with low Vz. Next, we hypothesized that instruction with animations will augment 

the performance of high Vz individuals more than low Vz individuals. Finally, we 

hypothesized that instruction with interactive visualizations will augment the 

performance of low Vz individuals more than high Vz individuals.  

 

3.2 Materials and methods 

3.2.1 Participants 

Sixty students, staff, and faculty (31 females; 29 males, mean age = 25.6 years) from the 

University of Western Ontario participated in the study. The study was approved by the 

Ethics Review Board at The University of Western Ontario. Informed consent was 

obtained from all participants. Participation in the study was completely voluntary and 

participants could opt out at any time during the course of the study.  

 

3.2.2 Instructional materials  

A computer-generated visual representation of a group of anatomical structures (i.e., the 

aorta, trachea, and esophagus) was developed for the study (Figure 3.1, left side). The 

anatomical model was developed using cross-sectional images of a human male subject 

from the Visible Human Project (Spitzer et al., 1996) and segmentation procedures 

reported previously (Nguyen and Wilson, 2009). In addition to the anatomical model, a 

geometrical cube model was also developed and would later serve as the control 

condition in the study phase of the experiment (Figure 3.1, right side). For ease of 
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distribution and display, both the anatomical and geometrical models were exported onto 

Unity (Unity Technologies, San Francisco, CA), an integrated game development tool for 

creating and viewing interactive contents and real-time 3-D animations. Within Unity, six 

separate files were created to display the visual contents. The first was a dynamic video 

(animation) depicting multiple views of the anatomical model rotating continuously in 

the x-, y-, and z-axes. The second depicted static representations of the anatomical model 

in the six canonical orientations, similar to the ones printed in anatomy textbooks and 

atlases. The third depicted static representations of the geometrical model in the six 

canonical orientations. The fourth, fifth, and sixth were similar to the first three, except 

participants were allowed active control over the presentation of information using the 

four arrow keys on the keyboard.  

 

 
Figure 3.1: Screenshot of the anatomical and geometrical models. The anatomical model 
was reconstructed from cross-sectional images of a human male from the National 
Library of Medicine Visible Human Project (Spitzer et al., 1996). 
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3.2.3 Performance measures 

Mental Rotations Task (MRT). An electronic version of the MRT (Vandenberg and 

Kuse, 1978; Peters et al., 1995) was used to assess participants’ Vz. The task consisted of 

24 items. Each item was made up of one target figure, two correct alternatives (i.e. 

rotated images of the criterion figure), and two distractors (i.e. rotated mirror images of 

the criterion or of one or two of the other criteria). Participants had to determine as 

quickly and accurately as possible which two of the four test figures are rotations of the 

target figure. Participants were given 360 seconds to complete as many questions and 

possible. A single credit was given if both correct stimuli were identified; zero credits 

otherwise. The maximum score a participant could get on the MRT was 24.      

Spatial Anatomy Task (SAT). An electronic version of a novel task pertaining to the 

visuospatial properties of the anatomical model was developed to assess comprehension 

of visuospatial anatomical information. The task consisted of 30 multiple-choice 

questions - 10 involving the mental rotations of the anatomical model, 10 involving the 

identification of the model in 2D cross-sections, and 10 involving the localization of 

planes or levels corresponding to selected cross-sections. For each group of questions, 

participants were given 180 seconds to complete as many questions as possible. A 

countdown timer appearing on the top right-hand corner of the computer screen recorded 

the amount of time participants spent on the task. For the mental rotations questions, a 

single credit was given if both correct stimuli were identified. For the identification and 

localization task questions, a credit was given for each correct answer. The maximum 

score a participant could receive on the SAT is 30. The maximum time a participant 

could spend on the SAT is 540 seconds.  

 

3.2.4 Study design  

The research design is illustrated in Figure 3.2 and described below. The entire study 

took approximately 45 minutes to complete. Participants were tested individually. All 

participants completed two pre-tasks, a study phase, and a post-task.  
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Figure 3.2: Flowchart illustrating the procedure for the study. All participants had to 
complete two pre-tasks (i.e., the mental rotations task and pre-spatial anatomy task), a 
study phase, and a post-task (i.e., the post- spatial anatomy task). 

 

Pre-tasks. At the start of the study all participants completed the MRT and SAT. Based 

on the scores obtained in the MRT, participants were allocated to one of two spatial 

visualization ability groups – low Vz (N = 30, lower median group) or high Vz (N = 30, 

higher median group).  

Study Phase. Participants in each spatial visualization ability group were randomly 

assigned to one of three dynamic visual groups – animated, static, or control, and then to 

one of two interactive groups – interactive or non-interactive. Participants in the animated 

group watched an animation of the anatomical model continuously rotating around the x-, 

y-, and z-axes, while those in the static group viewed static representations of the 

anatomical model switching between the six canonical views. Participants in the control 

group were not exposed to the anatomical model. Instead, they viewed static images of 
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the geometric model switching between the six canonical views. Within each visual 

group, non-interactive participants either viewed an animation of the anatomical model 

self-rotating in the x-, y-, and z-axes or static images of the anatomical or geometric 

model switching between the six canonical views. Interactive participants, on the other 

hand, had active control over the rotation or viewpoints of the visualization using the four 

arrow keys on the keyboard. The duration of exposure to the anatomical and geometric 

models was the same for all participants (150 seconds).  

Post-task. Subsequently, the same spatial anatomy task administered to participants 

before the study phase was used again to assess spatial anatomical knowledge. However, 

the order of the questions was changed to prevent memorization of answers.  

 

3.2.5 Data analyses  

Descriptive statistics for the MRT, pre-SAT, and post-SAT were computed.  

Separate Pearson’s (r) correlations were used to examine the relationship between MRT 

scores and pre-SAT scores, and between MRT scores and amount of time spent on the 

pre-SAT (seconds). Subsequently, separate t-tests were used to determine whether pre-

SAT scores and amount of time spent on the pre-SAT were significantly different for 

participants of high- and low-Vz.  

Separate 2x3x2 completely randomized factorial (CRF) analyses were used to determine 

whether there were any significant interactions between Vz (high, low), dynamism 

(control, static, animated), and interactivity (interactive, non-interactive) on post-SAT 

scores and total time spent on the post-SAT. Covariates appearing in the CRF analyses 

were scores and amount time spent on the pre-SAT, respectively.   

 

3.3 Results 
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Descriptive statistics for the MRT, pre-SAT, and post- SAT are presented in Table 3.1.  

 

 
MRT score Pre-SAT 

score 
Time spent on 
the pre-SAT 
(in seconds) 

Post-SAT 
score 

Time spent on 
the post-SAT (in 

seconds) 
 

High Vz 14.03 ± 3.51 18.03 ± 4.87 467 ± 60.70 20.20 ± 4.91 412.60 ± 62.25 

Low Vz 6.50 ± 2.30 12.04 ± 4.73 521 ± 26.42 16.73 ± 4.56 490.40 ± 48.22 

Table 3.1: Descriptive statistics for the MRT, pre-SAT, and post-SAT for high Vz (N = 
30) and low Vz (N = 30) subjects. 

 

Figure 3.3 shows a scatter plot of pre-SAT scores as a function of MRT scores. The 

correlation between the two variables was positive (r = 0.64) and significant, r2 = 0.41, p 

< 0.05. Figure 3.4 shows a scatter plot of time spent on the pre-SAT as a function of 

MRT scores. The correlation between the two variables was negative (r = - 0.67) and 

significant, r2 = 0.45, p < 0.05.  
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Figure 3.3: Scatter plot representing the relationship between pre-spatial anatomy task 
scores and mental rotations task scores. The correlation is positive (r = 0.64) and 
significant (r2 = 0.41, p < 0.05). 
 

 
Figure 3.4: Scatter plot representing the relationship between time spent on the pre-
spatial anatomy task (in seconds) and mental rotations task scores. The correlation is 
negative (r = - 0.67) and significant (r2 = 0.45, p < 0.05). 
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T-test analyses revealed significant differences on both pre-SAT scores, t (58) = 4.54, p < 

0.05, and amount of time spent on the pre-SAT, t (58) = -4.50, p < 0.05, for participants 

of high- and low-Vz. Those with high Vz scored higher on the pre-SAT (M = 18.03 ± 

4.87) than those with low Vz (M = 12.04 ± 4.73) . Those with high Vz also spent less 

time on the pre-SAT (M = 467 ± 60.70) than those with low Vz (M= 521 ± 26.42). 

The F-statistics for the CRF analysis of post-SAT scores (with pre-SAT scores as a 

covariate) are listed in Table 3.2. The CRF analysis revealed a significant interaction 

effect between Vz and dynamism of the display.  

 

Effect F-statistics 

Vz F (1, 48) = 0.273, p > 0.05 

Dynamism F (2, 48) = 0.279, p > 0.05 

Interactivity F (1, 48) =1.01, p > 0.05 

Vz x dynamism* F (2, 48) = 3.38, p < 0.05 

Vz x interactivity F (1, 48) = 0.905, p > 0.05 

Dynamism x interactivity F (2, 48) = 0.217, p > 0.05 

Vz x dynamism x interactivity F (2, 48) = 0.06, p > 0.05 

Table 3.2: F-statistics for CRF analysis of post-SAT scores (with mean pre-SAT score as 
a covariate).  
*p < 0.05  
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Table 3.3 and Figure 3.5 show the mean post-SAT scores for all dynamism by Vz level 

combination. Following the significant interaction, simple effect tests revealed significant 

differences in post-SAT scores for high and low Vz participants viewing the static 

geometric model (p < 0.05) and the dynamic anatomical model (p < 0.05), but not for 

those viewing the static anatomical model (p > 0.05). For the static geometric model, 

those with low Vz scored significantly higher on the post-SAT (M = 20.63 ± 1.09) than 

those with high Vz (M = 16.91 ± 1.10). For the dynamic anatomical model, those with 

high Vz scored significantly higher on the post-SAT (M = 18.55 ± 1.08) than those with 

low Vz (M = 17.48±1.10). For the static anatomical model, post-SAT scores were not 

significantly different for high Vz (M = 19.14 ± 1.10) and low Vz (M = 18.09 ± 1.09) 

individuals.  

 

Spatial visualization 

ability (Vz)  

Dynamism Mean score ± standard error 

High Vz Control* a 16.91 ± 1.10 

Static Anatomical Model a 19.14 ± 1.10 

Dynamic Anatomical Model** a 18.55 ± 1.08 

Low Vz Control* a 20.63 ± 1.09 

Static Anatomical Model a 18.09 ± 1.09 

Dynamic Anatomical Model** a 17.48 ± 1.10 

Table 3.3: Mean post-SAT scores for all dynamism by Vz level combination. Simple 
effect tests revealed significant differences in post-SAT score between high- and low-Vz 
participants viewing the static geometrical control model (*) and the dynamic anatomical 
model (**). a Covariates appearing in the model are evaluated at a mean pre-SAT score 
of 15.22 
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Figure 3.5: Profile plot of mean post-SAT scores as a function of dynamism of the visual 
display. The plot shows an interaction between Vz and dynamism of the visual display. 
The two lines represent the high and low-Vz groups. The crossing of the lines indicates 
an interaction effect. Simple effect tests revealed significant differences in post-SAT 
score between high- and low-Vz participants viewing the static geometrical control 
model (*) and the dynamic anatomical model (**). 

 

The F-statistics for the CRF analysis of time spent on the post-SAT (with time spent on 

the pre-SAT scores as a covariate) are listed in Table 3.4. The CRF analysis revealed a 

significant interaction effect between Vz and dynamism of the display.  
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Effect F-statistics 

Vz* F (1, 48) = 6.59, p < 0.05 

Dynamism F (2, 48) = 1.15, p > 0.05 

Interactivity F (1, 48) = 2.66, p > 0.05 

Vz x dynamism F (2, 48) = 1.26, p > 0.05 

Vz x interactivity F (1, 48) = 1.78, p > 0.05 

Dynamism x interactivity F (2, 48) = 0.78, p > 0.05 

Vz x dynamism x interactivity F (2, 48) = 1.23, p > 0.05 

Table 3.4: F-statistics for the CRF analysis of time spent on the post-SAT (with time 
spent on the pre-SAT scores as a covariate).  
*p<0.05 
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The CRF analysis of time spent on the post-SAT (with time spent on the pre-SAT as a 

covariate) revealed a significant main effect of Vz. Table 3.5 and Figure 3.6 show the 

mean times spent on the post-SAT (seconds) as a function of dynamism of visual display. 

Across all levels of dynamism, individuals with high Vz spent less time on the post-SAT 

than those with low Vz.  

 

Spatial visualization 
ability (Vz)  

Dynamism Mean time (seconds)  ± 
standard error 

 

High Vz Control a 430.49 ± 17.86 

Static Anatomical Model a 426.24 ± 16.99 

Dynamic Anatomical Model a 438.36 ± 16.66 

Low Vz Control a 441.12 ± 17.18 

Static Anatomical Model a 492.24 ± 17.28 

Dynamic Anatomical Model a 478.46 ± 16.84 

Table 3.5: Mean time spent on the post-SAT for all dynamism by Vz level combination.  
a Covariates appearing in the model are evaluated at a mean pre-SAT time of 494.52 
seconds. 



58 

 

 
Figure 3.6: Profile plot of mean times spent on the post-SAT as a function of dynamism 
of the visual display. The plot shows a main effect of Vz on the amount of time spent on 
the post-spatial anatomy task. The two lines depict the high and low Vz groups. The 
parallel lines indicate no interaction effect. Participants with high Vz spent less time on 
the post- SAT than those with low Vz. 

 

3.4 Discussion   

Recall, experiment 1 had two aims. The first was to determine the role that spatial 

visualization ability (Vz) plays in comprehending visuospatial anatomical information. 

The second was to determine whether the implementation of animation (compared to 

static representation) and interactive visualization (compared to non-interactive displays) 

are useful for low Vz individuals as opposed to high Vz individuals or whether the 

contrary is the case. 

Effects of spatial visualization ability (Vz)  

Since a thorough knowledge of human anatomy must include visuospatial information, 

and learning visuospatial information is influenced by one’s Vz, we predicted that Vz 

would have positive effects on spatial anatomy comprehension. The results of this 

experiment supported this hypothesis by indicating a positive correlation between Vz and 
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SAT score and a negative correlation between VZ and amount of time spent on the SAT. 

Furthermore, significant differences were observed for both score and time spent on the 

task for individuals of high and low Vz. Even without instruction, participants with high 

Vz scored higher and spent less time on the SAT than those with low Vz.  

Effects of dynamism  

Since learners bring different abilities, skills, and knowledge to the learning process, we 

predicted that different types of computer visualizations might be effective for different 

learners. The results of this study supported this hypothesis by indicating an interaction 

effect between Vz and dynamism of the visual display. Static anatomical representations 

augmented learning equally for individuals of high- and low-Vz. By contrast, animation 

of the anatomical model particularly benefited individuals with high Vz, as their mean 

score on the performance task was significantly higher than those with low Vz. When 

viewing the anatomical structures self-rotating in virtual space, participants observed a 

single frame at a time, and once the sequence advanced to the next frame, it was no 

longer available for viewing. Since Vz is related to speed of processing spatial 

information (Salthouse, 1996), this might have affected speed of encoding information in 

the display, such that only participants with high Vz were able to keep up with the pace 

of the animation. Since Vz is related to greater working memory capacity (Just and 

Carpenter, 1985; Shah and Miyake, 1996; Miyake et al., 2001), perhaps only participants 

with high Vz had the cognitive resources to store and process the transient information in 

working memory. Thus, due to the transient nature of the spatial information presented in 

the animation, on the one hand, and the limited capacity and duration of working 

memory, on the other, only those with high Vz benefited from the animation.   

While the animation of the anatomical model had a greater facilitating effect on the 

performance of high Vz individuals, static representations of the geometrical model had a 

greater facilitating effect on the performance of low Vz learners. This result was not 

expected, as the geometric cube model was irrelevant and unrelated to the items on the 

spatial anatomy task (which were based on the anatomical model) and therefore should 

not have affected task performance. One possible explanation for this result is that 
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perhaps the canonical views of the geometric model compensated for inefficient mental 

rotation. Since individuals with low Vz are likely to be less efficient and less accurate in 

mental animation, the canonical views of the geometric model might have acted as 

cognitive reference orientations that were later used to guide the mental rotation of the 

anatomical structures (presented in the performance task) in a more direct and more 

efficient manner. Hence those with low Vz benefited more from the cognitive reference 

orientations than those with high Vz, who presumably do not need the reference 

orientations because they can manipulate mental objects with ease. This assumption is in 

line with results from a previous study comparing the learning of bone (vertebra) 

anatomy with and without orientation references (Stull et al., 2009). Stull and colleagues 

found that orientation references (in the form of visible lines overlapping the vertebra’s 

major axes) not only helped learners manipulate computer representations of the vertebra 

during the learning process, but also helped learners develop mental representations of 

the bone. Furthermore, the orientation references elevated learning by low spatial ability 

individuals to a level near that of high spatial ability individuals. Thus, spatial orientation 

references acted as a cognitive prosthetic for those with low spatial ability and assisted 

them with manual and mental manipulations of the vertebra.  

Effects of interactivity  

In addition to predicting an interaction effect between Vz and dynamism of the visual 

display, we hypothesized to find an interaction between Vz and interactivity of the 

visualization, such that interactive visualizations will compensate for low Vz. The results 

of this study showed no significant advantage of interactivity on SAT performance. There 

are several potential reasons for why we found no advantage of interactivity. One 

possible factor is the nature of the user control interface. The key-press control system 

used to manipulate the visualization was not intuitive, and as such it is possible that 

merely operating it produced additional cognitive demands on interactive participants, 

counteracting any potential benefits from active control. Keehner et al. (2008b) suggest 

that a more naturalistic control interface that allows the manipulations made by the users 

to be exactly mirrored in the movements of the visualization should be especially 

beneficial in helping learners create an integrated spatial mental representation of any 
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object they are viewing. Another possible factor is how participants interact with the 

visualization. Some authors suggest that spatial anatomical information is not 

remembered in 3-D, but rather in specific 2-D cardinal views, and that unfamiliar 

orientations are recognized by mental rotation of these 2-D views (Garg et al., 1999; 

2001; 2002). Therefore, the quality of the information that learners acquire from 

computer visualizations depends not just on whether learners are allowed active control 

over the visualization, but also on how they interact with the visualization and whether 

the manipulated views are in line with how spatial information is stored in working 

memory (Keehner et al., 2008a). Thus, we suggest that future research in this field move 

beyond simply comparing interactive with non-interactive visualizations to examining 

how learners interact with visualizations and what factors affect the usefulness of these 

visualizations.  

Limitations and future directions   

We recognize that this study has some limitations. Most notably, the geometric control 

model had an effect on spatial anatomy comprehension. This result was not expected, as 

the geometrical model was unrelated to the spatial anatomy task. Further experiments 

assessing the educational value of static and dynamic visualizations should adopt a 

control model that is not just unrelated to items on the performance task, but also rely on 

separate cognitive mechanisms for processing the information in working memory. For 

example, verbal reading tasks and arithmetic problem-solving tasks are unrelated to the 

spatial anatomy task and require a separate verbal channel for processing the linguistic 

and numerical information. We predict that these tasks can be used as the control models 

to keep participants occupied during the same time frame in which the static and 

animated anatomical models are being examined while eliminating any possible 

interaction with the visual information presented. A second limitation is that the key-

press control interface used to manipulate the visualization was not intuitive; in that, the 

actions produced by pressing the four arrow keys did not mirror the movements of the 

anatomical and geometric models. Further experiments assessing the educational value of 

interactive visualizations should adopt a more naturalistic user control interface such as 

motion trackers or data gloves that allow for translation along three perpendicular axes 
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(x, y, and z) as well as rotation along these axes (pitch, yaw, roll). These six-degrees of 

freedom input devices have the power to accommodate for more interaction techniques 

and has the potential to shorten the cognitive distance between the user’s action and the 

system’s feedback. Finally, further experiments are also warranted to increase the number 

of participants. For this study 60 participants were assigned to 12 groups, resulting in 

only 5 participants in each experimental group. Such an increase in sample size would 

enhance the ability to generalize our results.  

 

3.5 Summary   

Experiment 1 demonstrated that spatial visualization ability (Vz) positively influences 

performance on the spatial anatomy task (SAT). Individuals with high Vz scored higher 

and spent less time on the SAT than those with low Vz. Experiment 1 also demonstrated 

that the effects of Vz on SAT performance could be modulated through instruction with 

different computer visualizations. Static representations of the anatomical model 

switching between the six canonical views improved SAT scores of high- and low-Vz 

subjects equally. Animation of the anatomical model rotating in virtual space augmented 

SAT scores of high Vz subjects more than low Vz subjects. Interactive and non-

interactive visualizations enhanced SAT scores of high- and low-Vz subjects equally.  
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Chapter 4  

4 Experiment 2  

 

4.1 Introduction  

All medical professions depend on a comprehensive knowledge of human anatomy, 

which includes visuospatial concepts such as the shape of anatomical structures, their 

position in 3-D space, and their location relative to other structures (Marks, 2000; 

Hegarty et al., 2007). Learning visuospatial information is considered a visual process, 

involving the visuospatial working memory (Clark and Paivio, 1991; Baddeley, 1992; 

Mayer and Sims, 1994; Miyake et al., 2001). Processing information in visuospatial 

working memory is strongly influenced by spatial ability (Miyake et al., 2001). Spatial 

ability refers to an individual’s ability in searching the visual field, apprehending the 

forms, shapes, and positions of objects as visually perceived, forming mental 

representations of those forms, shapes, and positions, and manipulating such 

representations ‘mentally’ (Carroll, 1993). In other words, an internal representation of a 

perceived object or scene must be created and maintained in such a way that mental 

manipulations are possible.  

As the acts of creating, maintaining, and manipulating internal representations all require 

different but important abilities, several sub-factors of spatial ability have been identified 

and together they form the broad concept of spatial ability. These sub-factors include: 

spatial visualization (Vz), spatial relations (SR), closure speed (CS), closure flexibility 

(CF), and perceptual speed (P) (Carroll, 1993). Although there are several sub-factors of 
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spatial ability, the one that has been shown to be most relevant to anatomy education is 

spatial visualization ability (Vz). Spatial visualization ability (Vz) has been shown to 

influence success in anatomy and proficiency in anatomically demanding fields such as 

surgery and radiology. Rochford (1985) found positive correlations between Vz and 

achievement among medical students at the University of Cape Town. High Vz students 

achieved consistently higher marks than low Vz students on both practical anatomy 

examinations and multiple-choice anatomy questions classified as being spatially three-

dimensional. Lufler et al. (2012) found similar results when assessing medical students at 

Boston University School of Medicine. More recently, Nguyen et al. (2012) demonstrated 

that Vz made significant contributions to performance on a novel spatial anatomy task 

that required mental manipulations in two- and three-dimensions. High Vz subjects not 

only scored higher on the anatomy task but they also spent less time on the task than low 

Vz subjects. Findings such as these suggest that there is a strong spatial component to the 

way anatomical information is mentally represented. It also implies that low Vz 

individuals may have greater difficulty acquiring, representing, and manipulating mental 

representations of anatomy.  

While the positive influence of Vz on anatomy task performance is known, the causes are 

less well understood. Anecdotal evidence suggests that differences in task performance 

may be due to strategic differences in the way high- and low-Vz learners approach 

perceptual and transformation processes such as: (a) sectioning, visualizing a given 

section through an object, (b) translating, perceiving the apparent changes in the shape of 

an object when it is rotated in three-dimensions, (c) rotating, retaining in imagination the 

relative positions of the structures of a given body undergoing rotations in space, and (d) 
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visualizing, synthesizing mentally the orthogonal sections of a given object to form an 

image of the whole (Rochford, 1985). However, to the best of our knowledge, no 

investigators have empirically tested the idea that individuals with differing Vz approach 

visual problems differently.  

The purpose of experiment 2 was to examine the problem solving strategies of learners in 

order to determine whether differences in perceptual and transformation strategies 

between high- and low-Vz subjects contribute to spatial anatomy comprehension. Owing 

to the complex visual nature of the spatial anatomy tasks, we hypothesized that high Vz 

subjects will adopt more flexible and more efficient problem solving strategies that will 

lead to better performance (i.e., higher scores, less amount of time spent the task, and 

lower susceptibility to errors) than low Vz subjects. The results of this study provide 

further insights into the processing commonalities and differences among learners beyond 

the classification of Vz, and help elucidate what, if anything, high- and low-Vz learners 

do differently while approaching spatial anatomy task problems.  

 

4.2 Material and methods 

4.2.1 Participants 

Forty-two students from The University of Western Ontario participated in the study 

(Female = 24; Male = 18; Mean age = 25.38 ± 5.86 years). This study was granted ethics 

approval by The Research Ethics Board at The University of Western Ontario. There 

were no exclusion criteria for this study. Participation in the study was completely 

voluntary and students could opt out at any time during the course of the study.  
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4.2.2 Performance measures  

Mental Rotations Task (MRT). The MRT (Vandenberg and Kuse, 1978; Peters et al., 

1995) was used to assess participants’ Vz. The task involved mentally rotating three-

dimensional block figures. The test consisted of 24 items. Each item was made up of one 

target figure and four option figures (two were rotated images of the target and two were 

distractors). Participants had to determine as quickly and accurately as possible which 

two of the four option figures were rotations of the target figure. Participants were given 

360 seconds to complete as many questions as possible. A credit was given if both correct 

stimuli were identified. The maximum score a participant could receive on the MRT was 

24.      

Spatial Anatomy Task (SAT). The same spatial anatomy task used in experiment 1 was 

used again in experiment 2 to assess comprehension of visuospatial anatomical 

information. The task consisted of 30 multiple-choice questions - 10 involving the mental 

rotations of the anatomical structures, 10 involving the identification of the structures in 

two-dimensional cross-sections, and 10 involving the localization of planes 

corresponding to selected cross-sections. For each group of questions, participants were 

given 120 seconds to complete as many questions as possible. A countdown timer 

appearing on the top right-hand corner of the computer screen recorded the amount of 

time participants spent on the task. For the mental rotations questions, a single credit was 

given if both correct stimuli were identified. For the identification and localization task 

questions, a credit was given for each correct answer. The maximum score a participant 

could receive on the SAT was 30. The maximum time a participant could spend on the 

SAT was 360 seconds.  
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Self-reflective questionnaire. A 22-item questionnaire was used to collect general 

information about how participants approach answering the SAT questions, including 

strategies used during mental transformation as well as strategies used while answering 

the questions. The questionnaire consisted of 21 multiple-choice questions and one 

opened-ended question (i.e., question 2). The questions were based on previous pilot 

testing of students to determine common language and approaches used while answering 

the SAT. Example items from the self-reflective questionnaire are provided below.  

Q1. When answering the mental rotations task questions: 
a. I imagined rotating all 3 tubes in my mind when making the comparison  
b. I imagined rotating 2 of the 3 tubes in my mind when making the comparison  
c. I imagined rotating 1 of the 3 tubes in my mind when making the comparison  
d. I imagined rotating part(s) of 1 or more tube(s) when making the comparison (e.g., the curvature 
of the blue tube, or the ‘Y’ shape branch coming off the blue tube) 
e. Other (explain)_________________________________________________ 

 
Q2. Please explain or mark on the image below which tube(s) or tube feature(s) you used when 
making the comparison.  

 
______________________________________________________________ 
______________________________________________________________ 
______________________________________________________________ 

 
 

Q16. When answering the identification task questions: 
a. I was more concerned with getting the right answers than I was about the time limit  
b. I was more concerned with getting all the answers completed than I was about getting the correct 
answers  
c. I did not care how I did it 
d. Other (explain)_________________________________________________ 

 
Q20. When answering the localization task questions: 
a. I used movements of my body (e.g., finger, head, hand) and/or pencil to help me with the task  
b. I did not use movements of my body (e.g., finger, head, hand) and/or pencil to help me with the 
task  
c. Other (explain)_________________________________________________ 

 
 



71 

 

4.2.3 Study design  

Participants were tested on an individual basis at a computer in a quiet laboratory setting. 

All participants completed the MRT as a baseline measure of Vz, and then the SAT and 

self-reflective questionnaire. Matlab (The MathWorks, Natick, MA, USA) was used for 

implementation of the MRT and SAT. Participants’ responses to individual items on 

MRT and SAT were automatically recorded. The amount of time (in seconds) spent on 

the SAT was also recorded. Upon completion of the MRT and SAT, all participants 

completed a pencil and paper version of the self-reflective questionnaire.  

 

4.2.4 Data analyses  

Separate Pearson’s correlation analyses were used to assess the relationship between 

MRT scores and the three measures of SAT performance – scores, time spent on the task, 

and accuracy of responses. “Accuracy” is operationalized here as the number of SAT 

questions solved correctly divided by the number of questions attempted. For example, if 

a participant attempted 6 questions and received 3 correct then the accuracy for this 

participant was 0.5 or 50%.   

Based on the obtained MRT scores, participants were allocated to one of two spatial 

visualization ability (Vz) groups – low Vz (N = 21, lower median group) or high Vz (N = 

21, higher median group). Subsequently, separate t-test analyses were used to determine 

whether SAT scores, time spent on the SAT, and accuracy of SAT responses were 

significantly different for high and low Vz subjects. Bonferroni corrections were 

performed to counter the effects of multiple t-tests.  
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Responses to the self-reflective questionnaire (i.e., all questions except question 2) were 

examined and multiple-choice questions with more than two option choices were pooled 

to produce two response categories. For example, question 1 had the following five 

option choices before pooling (i.e., options a, b, c, d, and e). After pooling options b’, ‘c’, 

‘d’, and ‘e’ into a single category, question 1 had the following two option choices:  

Q1. When answering the mental rotations task questions: 
a. I imagined rotating the entire tube figure in my mind when making the comparison  
b. I imagined rotating part of the tube figure in my mind when making the comparison  
 

Subsequently, separate chi-square (χ2) tests were used to determine whether responses to 

any of the pooled items on the self-reflective questionnaire were significantly different 

for high- and low Vz-subjects. The χ2 tests were carried out twice –with and without 

Bonferroni corrections. Without Bonferroni corrections, a p-value of less than 0.05 was 

considered significant. With Bonferroni corrections, a p-value of less than 0.0024 ( = 

0.05 divided by 21 comparisons) was considered significant. Yate’s (continuity) 

corrections were used when the expected frequency of a cell was too small (i.e., less than 

5) in order to reduce the chances of a type 1 error (i.e., rejecting the null hypothesis when 

it is true).   

Finally, responses to question 2 on the self-reflective questionnaire were examined 

qualitatively in order to determine which feature(s) of the anatomical model was used to 

assist with the mental rotations.   
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4.3 Results 

 

Descriptive statistics for the MRT and SAT are presented in Table 4.1.  

 

 MRT score SAT score Time spent on the 
SAT 

(in seconds) 

Accuracy of SAT 
responses 

High Vz 16.69 ± 4.33 18.48 ± 5.22 312.71 ± 41.66 0.74 ± 0.15 

Low Vz 7.48 ± 2.87 12.67 ± 4.75 342.07 ± 26.29 0.61 ± 0.15 

Table 4.1:  Descriptive statistics for the MRT and SAT for high Vz (N = 21) and low Vz 
(N = 21) subjects.  

 

 

Correlations between MRT scores and the three measures of SAT performance are 

presented in Table 4.2. The analyses revealed a significant positive correlation between 

MRT scores and SAT scores, a significant negative correlation between MRT scores and 

time spent on the SAT, and a significant positive correlation between MRT scores and 

accuracy of SAT responses.  
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 SAT scores Time spent on the 
SAT (seconds) 

Accuracy of SAT 
responses 

 

 

Mental rotations task  

(MRT) scores 

 

0.72* 

 

- 0.70* 

 

0.52* 

Table 4.2: Correlations between mental rotations task (MRT) scores and SAT scores, 
amount of time spent on the SAT, and accuracy of SAT responses.  
* p< 0.05 

 

T-test analyses revealed significant differences on SAT scores, t (40) = -3.77, p < 0.05, 

length of time spent on the SAT, t (40) = 2.73, p < 0.05, and accuracy of SAT responses, 

t (40) = -2.86, p < 0.05, for high- and low-Vz subjects. High Vz subjects scored 

significantly higher, spent significantly less time, and were more accurate than low Vz 

subjects.  

The numbers of responses for each answer option as selected by high- and low-Vz 

subjects for each multiple-choice question posed on the self-reflective questionnaire are 

presented in Table 4.3.  Before correcting for multiple comparisons, χ2 tests revealed an 

overall ability difference for question 5, χ2(1)= 6.46, p < 0.05, and question 16, χ2 (1)= 

4.86, p < 0.05. For question 5, significantly more of the low Vz than high Vz subjects 

reported using movements of body parts and/or surrounding objects while solving the 

SAT problems. For question 16, significantly more of the low Vz subjects than high Vz 

subjects stated they were more concerned about time; that is finishing all task questions, 

than they were about answering the questions correctly. After correcting for multiple 

comparisons, χ2 tests revealed no ability differences for any of the questions posed.  
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When answering the mental rotations task questions: 
 

High Vz 
subjects 
(N=21) 

Low Vz 
subjects 
(N=21) 

Q1 a. I imagined rotating the entire tube figure in my 
head when making the comparison 

12 13 

b. I imagined rotating part of the tube figure in my 
head when making the comparison 

9 8 

Q3 
 

a. I imagined rotating the tubes  20 16 
b. I imagined rotating myself  1 5 

Q4 
 

a. I thought through the steps verbally in my mind 
(e.g., “rotate tube to the right then up”)  

2 7 

b. I relied mainly on visualizing the figures and did 
not talk to myself through the steps    

19 14 

Q5 * a. I used movements of my body (e.g., finger, head, 
hand) and/or objects around me to help me with the 
task  

4 12 

b. I did not use movements of my body (e.g., finger, 
head, hand) and/or objects around me to help me 
with the task 

17 9 

Q6 
 

a. I scanned the option figures systematically (e.g., 
trying the first, then the second, etc.) 

17 16 

b. I scanned the option figures in a haphazard non-
systematic way  

4 5 

Q7 
 

a. I always compared the option figures to the target 
figure 

9 9 

b. I did not always compare the option figures to the 
target figure (e.g., Once I found a match I compared 
the rest of the option figure to the match instead of 
the target)  

12 12 

Q8 
 

a. I developed a specific approach to solving the 
questions  

12 10 

b. I had no specific approach and tried a number of 
different approaches 

9 11 

Q9 
 

a. I was more concerned with getting the right 
answer than I was about the time limit 

19 16 

b. I was more concerned about the time limit than I 
was about getting the correct answers 

2 5 

When answering the identification questions: 
 

High Vz 
subjects 
(N=21) 

Low Vz 
subjects 
(N=21) 

Q10 
 

a. I performed the initial mental manipulation (e.g. 
slice, rotate, etc.) on the intact tube figure  

20 19 

b. I performed the initial mental manipulation (e.g. 
slice, rotate, etc.) on a cross-section   

1 2 

Q11 
 

a. I imagined rotating the tubes  19 15 
b. I imagined rotating myself  2 6 

Q12 
 

a. I scanned the cross-sections systematically (e.g., 
trying the first, then the second, etc.) 

20 20 
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b. I scanned the cross-sections in a haphazard non-
systematic way  

1 1 

Q13 
 

a. I thought through the steps verbally in my mind 
(e.g., “slice then rotate”)  

5 6 

b. I relied mainly on visualizing the images and did 
not talk myself through the steps  

16 15 

Q14 
 

a. I used movements of my body (e.g., finger, head, 
hand) and/or objects around me to help me with the 
task 

5 9 

b. I did not use movements of my body (e.g., finger, 
head, hand) and/or objects around me to help me 
with the task 

16 12 

Q15 
 

a. I developed a specific approach to solving the 
questions  

18 13 

b. I had no specific approach and tried a number of 
different approaches 

3 8 

Q16 * 
 

a. I was more concerned with getting the right 
answer than I was about the time limit 

21 15 

b. I was more concerned about the time limit than I 
was about getting the correct answers 

0 6 

When answering the localization questions: High Vz 
subjects 
(N = 21) 

Low Vz 
subjects 
(N = 21) 

Q17 
 

a. I performed the initial mental manipulation (e.g. 
slice, rotate, etc) on the intact tube figure  

4 5 

b. I performed the initial mental manipulation (e.g. 
slice, rotate, etc.) on a cross-section   

17 16 

Q18 
 

a. I thought through the steps verbally in my mind 
(e.g., “slice then rotate”)  

4 6 

b. I relied mainly on visualizing the images and did 
not talk myself through the steps  

17 15 

Q19 
 

a. I scanned the horizontal/vertical lines 
systematically (e.g., trying the first, then the second, 
etc.) 

20 16 

b. I scanned the horizontal/vertical lines in a 
haphazard non-systematic way  

1 5 

Q20 
 

a. I used movements of my body (e.g., finger, head, 
hand) and/or objects around me to help me with the 
task 

2 7 

b. I did not use movements of my body (e.g., finger, 
head, hand) and/or objects around me to help me 
with the task 

19 14 

Q21 
 

a. I developed a specific approach to solving the 
questions  

19 14 

b. I had no specific approach and tried a number of 
different approaches 

2 7 

Q22 
 

a. I was more concerned with getting the right 
answer than I was about the time limit 

21 17 

b. I was more concerned about the time limit than I 
was about getting the correct answers 

0 4 
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Table 4.3: Responses for each answer option as selected by high- and low-Vz subject for 
each multiple-choice question posed in the self-reflective questionnaire.  
* p<0.05 without correcting for multiple comparisons 

 

Question 2 revealed that participants relied on distinguishing features of the anatomical 

figure to assist with the mental rotation task problems. Specifically, they were attentive to 

the curvature of the blue tube (i.e., the arch of the aorta), the three branches arising from 

the curvature (i.e., the brachiocephalic, common carotid, and subclavian arteries), the 

branching of the white tube (i.e., bifurcation of the trachea), the thickness of the terminal 

ends of the white tube (the primary bronchi), and/or the relative position of the orange 

and blue tubes (i.e., relation between the esophagus and descending aorta). 

 

4.4 Discussion   

The purpose of experiment 2 was to examine the problem solving strategies of learners in 

order to determine whether differences in strategies between high- and low-Vz subjects 

contribute to differences in spatial anatomy comprehension. Because the anatomy task 

used to measure visuospatial anatomy comprehension involved complex manipulations in 

two- and three-dimensions, it is amenable to a range of strategies. Therefore, we 

predicted that differences in strategic approach to particular questions on the SAT would 

be another important source of individual differences in SAT performance. Strategy 

reports established that there were in fact a number of different ways subjects approached 

answering the SAT questions. However, χ2 analyses (with Bonferroni corrections) of the 

multiple-choice questions revealed that differences in problem solving strategies did not 
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contribute to individual differences in SAT performance. Therefore, in the absence of 

instructional aids, Vz is the main source of variation in SAT performance.   

Consistent with experiment 1, experiment 2 demonstrated that Vz positively influenced 

SAT performance. High Vz subjects scored significantly higher and spent significantly 

less time on the anatomy task than their low Vz counterparts. In addition to scores and 

amount of time spent on the SAT, we included accuracy of response (or proportion 

correct) as a third measure of performance. Accuracy data revealed that high Vz subjects 

solved more of the attempted questions correctly than low Vz subjects.  

Although chi-square analyses with Bonferroni corrections revealed no significant 

differences in the problem solving strategies between high- and low-Vz subjects, chi-

square analyses without Bonferroni corrections did provide some interesting trends. First, 

low Vz subjects were more likely to use movements of body parts and/or surrounding 

objects while solving the mental rotations problems. Second, low Vz subjects were more 

concerned about time, that is finishing all task questions, than they were about answering 

the identification questions correctly. The tendency for low Vz subjects to offload 

cognitive work onto external perceptual-motor processes suggests that they may have 

difficulties with storage or transformation of mental representations, which may 

contribute to their poor task performance. Furthermore, low Vz subjects may be more 

prone to errors while performing the anatomy task, as suggested by their tendency to 

focus on the quantity, rather than the quality, of their answers. Further studies with large 

sample sizes are needed to determine whether these strategies actually contribute to 

differences in task performance.     
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Limitations and future directions  

We recognize that experiment 2 has some limitations. First, after correcting for multiple 

chi-square test analyses, a p-value of less than 0.002 ( = 0.05 divided by 21 comparisons) 

was needed to detect a significant difference. As a result, the chances of finding a 

difference on any of the multiple choice questions posed on the self-reflective 

questionnaire was extremely low, especially with such the small sample size (i.e., N = 

42). Future studies are warranted to decrease the number of questions posed on the self-

reflective questionnaire and/or increase the sample size in order to enhance the ability to 

detect strategy differences between high- and low-Vz individuals. Future studies are also 

warranted to increase the sample size. With a larger sample size, it is possible to partition 

subjects into three Vz groups (high, intermediate, and low) and then removing the 

intermediate group in order to achieve a larger spread between individuals of high- and 

low-Vz. Such an approach should increase the chance of finding strategy differences 

between high and Vz individuals.  

 

4.5 Summary   

Experiment 2 demonstrated that Vz influences performance on the SAT. In addition to 

scoring higher and spending less time on the task, high Vz subjects also solved more of 

the attempted questions correctly than their low Vz counterparts. Although there were 

differences in the ways subjects approached answering the SAT, these differences did not 

contribute to the variations observed in SAT performance. Therefore, in the absence of 

instructional aids, Vz is the main contributor of variations in SAT performance.  
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Chapter 5  

 

5 Experiment 3 

 

5.1 Introduction  

Stereoscopic displays have found their way into wide variety medical fields including 

anatomy teaching and training, diagnosis, preoperative planning, and minimally invasive 

surgery (Beurden et al., 2009). Although there is substantial evidence that stereoscopic 

displays benefits the execution of surgical tasks (Peitgen et al., 1996; Falk et al., 2001; 

Byrn et al., 2007), there is limited evidence that they facilitate the acquisition of 

visuospatial anatomical knowledge. The purpose of experiment 3 was to examine the role 

of computer-implemented stereopsis in comprehending visuospatial anatomical 

information. 

Experiment 1 demonstrated that the effects of spatial visualization ability (Vz) on spatial 

anatomy task performance could be modulated by instruction with different computer 

visualizations. While static representations of the aorta, trachea, and esophagus 

augmented the SAT scores of high- and low- Vz subjects equally, animations of these 

structures rotating in virtual space enhanced the performance of high Vz subjects more 

than low Vz subjects.  

Both the static representation and animation used in experiment 1 relied on monocular 

depth cues for inferring the visuospatial information of anatomy. These cues require the 

visual input of one eye and are generally broken down into two categories depending on 

whether they are present in a static picture (called pictorial cues) or a dynamic picture 

(called motion cues) (Schwartz, 2010). Pictorial cues include relative size, familiar size, 

linear perspective, texture, interposition, light, shading, and shadow, while motion cues 

include motion parallax. The perception of depth from monocular cues is based on the 

concept that the size of the retinal image of an object is proportional to the object’s size 
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and inversely proportional to the distance of the object (Schwartz, 2010). Hence, an 

object that casts a smaller retinal image is perceived as being farther away than an object 

that casts a larger retinal image. 

While the visuospatial information of anatomy was noted monocularly in experiment 1, it 

is generally enhanced when viewed binocularly, especially at near distances. On average, 

the human eyes are separated by approximately 6.4 cm in the horizontal direction (Ware, 

2004). Due to this separation, the two eyes receive slightly different images of world and 

the brain uses the disparity between these images to recover information about relative 

depth and distance of objects in the visual world (Steinman et al., 2000). This process is 

called stereopsis and its sole basis is the horizontal disparity between the two retinal 

images (Poggio and Poggio, 1984). While stereopsis occurs naturally in animals with 

overlapping visual fields (Ware, 2004), the effect can be achieved using a standard 

computer monitor with a high refresh rate (100 Hz or better) coupled with stereo-glasses 

(Bowman et al., 2005). The monitor is used to display the disparate images (one for each 

eye) while the stereo glasses are used to filter the screen images so that each eye receives 

only one screen image. 

Stereo glasses can either be active or passive (Bowman et al., 2005) in their approach to 

keeping left and right eye visual input separate. Active (or shutter) stereo glasses are 

synchronized to open and close their shutters to match the images generated on the 

screen. Passive stereo glasses are based on polarization or spectral multiplexing. 

Polarization multiplexing filters the overlaid images with polarized filters that run in 

opposite directions (e.g., one filter could be horizontally polarized while the other 

vertically polarized). Spectral multiplexing (or anaglyph stereo) displays the two overlaid 

images in two different colours (e.g., blue and red). The coloured filters are used so that 

light from any colour other than the filter’s colour is washed out. Although active stereo 

produces the highest stereo quality, it is expensive and requires synchronization between 

the glasses and the images generated on the monitor. Passive stereo is relatively 

inexpensive but colour polarization reduces the overall quality of the images.  
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The purpose of experiment 3 was to examine the role of computer-implemented 

stereopsis in spatial anatomy comprehension. Since the additional depth cues 

incorporated in stereoscopic displays better communicate the visuospatial properties of 

anatomical structures, we hypothesized that stereoscopic displays will augment spatial 

anatomy task performance. The resolution of this question has important implications for 

the way anatomical information is best presented in learning situations. Furthermore, it 

provides a rational basis for discussing and implementing stereoscopic displays in 

anatomy courses. 

 

5.2 Materials and methods 

5.2.1 Participants 

A total of 40 undergraduate and graduate students from The University of Western 

Ontario participated in the study (Female = 22, Males = 18; Mean age = 25.45 ± 6.0 

years). Participants were selected from a pool of 42 potential participants on the basis of 

their stereoscopic vision (see below). This study was granted ethics approval by The 

Research Ethics Board at The University of Western Ontario. Participation in the study 

was voluntary and students could opt out at any time during the course of the study.  

 

5.2.2 Instructional materials  

The object of instruction used in experiment 3 was the same as that used in experiments 

1. The object is a computer-generated representation of the aorta, trachea, and esophagus. 

Four separate computer files were developed to show the visuospatial properties of the 

anatomical structures. The first was an animation of the anatomical structures rotating 

continuously in the x-, y-, and z-axes. The second showed static representations of the 

anatomical structures switching between the six canonical orientations. The third and 

fourth were similar to the first two files except anaglyph stereo was implemented and red-

cyan stereo glasses were needed to view the content.  
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5.2.3 Performance measures 

Stereovision Test. The Stereo Butterfly Test (Stereo Optical Co., Inc., Chicago, IL) was 

used to assess participants’ stereopsis. The test was presented with the use of polarized 

glasses at approximately 16-inch testing distance. Participants were asked to examine a 

random dot pattern without the help of any monocular depth cues. Intact stereopsis was 

recorded if the participant reported seeing a butterfly. Participants who did not have intact 

stereopsis were excluded from the study.  

Mental Rotations Task (MRT). The MRT (Vandenberg and Kuse, 1978; Peters et al., 

1995) was used to assess participants’ Vz. The task involves mentally rotating three-

dimensional block figures. The test consisted of 24 items. Each item was made up of one 

target figure and four option figures (two are rotated images of the target and two are 

distractors). Participants had to determine as quickly and accurately as possible which 

two of the four option figures were rotations of the target figure. Participants were given 

360 seconds to complete as many questions as possible. A credit was given if both correct 

stimuli were identified. The maximum score a participant could receive on the MRT was 

24.      

Spatial Anatomy Task (SAT). The same anatomy task used to assess spatial anatomical 

comprehension in experiments 1 and 2 was used again in the present study. The task 

consisted of 30 multiple-choice questions - 10 involving the mental rotations of the 

anatomical structures, 10 involving the identification of the structures in two-dimensional 

cross-sections, and 10 involving the localization of planes corresponding to selected 

cross-sections. For each group of questions, participants were given 120 seconds to 

complete as many questions as possible. A countdown timer appearing on the top right-

hand corner of the computer screen recorded the amount of time participants spent on the 

task. For the mental rotations questions, a single credit was given if both correct stimuli 

were identified. For the identification and localization task questions, a credit was given 

for each correct answer. The maximum score a participant could receive on the SAT was 

30. The maximum time a participant could spend on the SAT was 360 seconds.  
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5.2.4 Study design  

The research design is illustrated in Figure 5.1 and described below. The entire study 

took approximately 30 minutes to complete. Participants were tested on an individual 

basis at a computer in a quiet laboratory setting. All participants completed three pre-

tasks, a study phase, and a post-task (see below for details). Matlab (The MathWorks, 

Natick, MA, USA) was used for implementation of all phases of the study. Participants’ 

responses to individual items on MRT and SAT were automatically recorded. The 

amount of time (in seconds) spent on the SAT was also recorded. 

 
Figure 5.1: Flowchart illustrating the procedure for the study. All participants had to 
complete three pre-tasks (i.e., the stereovision test, mental rotations task and spatial 
anatomy task), a study phase, and a post-task (i.e., the spatial anatomy task). 
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Pre-tasks. Forty-two students completed the stereovision test, MRT and SAT at the start 

of the study. Of the 42 students, two lacked stereopsis and were excluded from the study. 

Based on the scores obtained on the MRT, the remaining 40 students were allocated to 

one of two spatial visualization ability (Vz) groups – low Vz (N = 20, lower median 

group) or high Vz (N = 20, higher median group).  

Study Phase. Participants in each Vz groups were randomly assigned to one of two 

binocular display groups (non-stereoscopic or stereoscopic) and then to one of two 

monocular display groups (static, animated). Participants in the non-

stereoscopic/animated group watched an animation of the anatomical model continuously 

rotating around the x-, y-, and z-axes, while those in the stereoscopic/animation group 

watched the anaglyph version of the animation. Participants in the non-stereoscopic/static 

group viewed static representations of the anatomical model switching between the six 

canonical views, while those in the stereoscopic/static group viewed the anaglyph version 

of the static representations. The duration of exposure to the anatomical model was the 

same for all participants (150 seconds).  

Post-task. Subsequently, the same spatial anatomy task administered to participants 

before the study phase was used again to assess spatial anatomical knowledge. However, 

the order of the questions was changed to prevent memorization of answers.  

 

5.2.5 Data analyses  

Descriptive statistics for the MRT, pre-SAT, and post-SAT were computed. Separate 

2x2x2 completely randomized factorial (CRF) analyses were used to determine whether 

there were there any main or interaction effects between Vz (low, high), binocular 

displays (stereoscopic, non-stereoscopic), and monocular displays (static, animated) on 

post-SAT scores and total time spent on the post-SAT. Covariates appearing in the CRF 

analyses were mean scores and mean time on the pre-SAT, respectively.   
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5.3 Results 

Descriptive statistics for the MRT and SAT are presented in Table 5.1.  

 

 MRT score Pre-SAT 
score 

Time spent on 
the pre-SAT(in 

seconds) 

Post-SAT 
score 

Time spent on 
the post-SAT (in 

seconds) 

 

High Vz 16.50 ± 4.44 17.85 ± 5.93 311.84 ± 42.55 20.25 ± 4.43 297.62 ± 44.07 

 

Low Vz 7.35 ± 2.89 13.40 ± 4.91 340.69 ± 26.72 16.90 ± 4.93 307.33 ± 38.62 

 
Table 5.1: Descriptive statistics for the MRT, pre-SAT, and post-SAT for high Vz (N = 
20) and low Vz (N = 20) subjects. 

 

The F-statistics for the CRF analysis of post-SAT scores (with pre-SAT scores as a 

covariate) are listed in Table 5.2. The CRF analysis revealed a significant interaction 

effect between monocular and binocular displays. 

 

Effect F-statistics 

Vz  F (1, 32) = 0.09, p > 0.05 

Monocular displays F (1, 32) = 1.01, p > 0.05 

Binocular displays F (1, 32) = 0.64, p > 0.05 

Vz x monocular displays  F (1, 32) = 2.14, p > 0.05 

Vz x binocular displays F (1, 32) = 0.04, p > 0.05 
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Monocular displays x binocular displays  F (1, 32) = 7.93, p < 0.05* 

Vz x monocular displays x binocular displays F (1, 32) = 1.45, p > 0.05 

Table 5.2: F-statistics for completely randomized factorial analysis of post-SAT scores.  

 

Table 5.3 and Figure 5.2 show the mean post-SAT scores for all monocular by binocular 

display level combinations. Following the significant interaction, simple main effect tests 

revealed a significant difference in post-SAT scores for subjects viewing the non-

stereoscopic animation and non-stereoscopic static representations, but not for those 

viewing the stereoscopic animation and stereoscopic static representations. For the non-

stereoscopic displays, subjects viewing static representations scored significantly higher 

on the post-SAT than those viewing the animation. For the stereoscopic displays, mean 

post-SAT scores were not significantly different between subjects viewing the static 

representations and those viewing the animation.  

 

Binocular displays Monocular displays 

 

Mean score ± standard error  

Non-stereoscopic  Static  a 21.18 ± 1.14* 

Dynamic a 16.83 ± 1.10* 

Stereoscopic   Static  a 17.07 ± 1.08 

Dynamic  a 19.22 ± 1.07 
Table 5.3: Mean post-SAT scores for all binocular by monocular display level 
combination.  
a Covariates appearing in the model are evaluated at a mean pre-SAT score of 15.22 
* p< 0.05 
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Figure 5.2: Profile plot of mean post-SAT scores. The plot shows an interaction between 
monocular (static and dynamic) and binocular (non-stereoscopic and stereoscopic) cues. 
The two lines represent the static and dynamic groups. The crossing of the lines indicates 
an interaction effect. 

 

F-statistics for the CRF analysis of time spent on the post-SAT (with time spent on the 

pre-SAT as a covariate) are shown in Table 5.4. The analysis revealed a significant three-

way interaction effect between the factors. Table 5.5 and Figure 5.3 show the mean time 

spent on the post-SAT for all monocular display by binocular display by Vz level 

combination. Following the significant interaction, simple main effect tests revealed a 

significant difference in the amount of time spent on the post-SAT for high and low-Vz 

subjects viewing the non-stereoscopic static representations. High Vz subjects spent 

significantly less time on the post-SAT than their low Vz counterparts.   
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Effect F-statistics 

Vz  F (1, 32) = 1.77, p > 0.05 

Monocular displays F (1, 32) = 1.12, p > 0.05 

Binocular displays F (1, 32) = 0.04, p > 0.05 

Vz x monocular displays  F (1, 32) = 0.06, p > 0.05 

Vz x binocular displays F (1, 32) = 0.20, p > 0.05 

Monocular displays x binocular displays  F (1, 32) = 1.49, p > 0.05 

Vz x monocular displays x binocular displays F (1, 32) = 7.24, p < 0.05* 

Table 5.4: F-statistics for completely randomized factorial analysis of time spent on the 
post-SAT.  
* p< 0.05 

 

Binocular displays Monocular 
displays 

Spatial visualization 
ability (Vz) 

 

Mean time ± standard 
error 

 

Non-stereoscopic 

Static   Low Vz a 335.56 ± 12.90* 

High Vz a 296.69 ± 12.77* 

Animated Low Vz a 315.15 ± 12.90 

High Vz a 329.10 ± 12.71 

 

Stereoscopic 

Static Low Vz a 320.26 ± 12.86 

High Vz a 337.71 ± 13.00 

Animated Low Vz a 326.19 ± 12.78 

High Vz a 290.79 ± 13.09 
Table 5.5: Mean time spent on the post-spatial anatomy task (SAT) for all binocular cue x 
monocular cue x spatial visualization ability (Vz) level combination.   
a Covariates are evaluated at a mean pre-SAT time of 326.28 seconds.  
*p < 0.05 
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Figure 5.3: Profile plot of mean time spent on the post-SAT. There was a three-way 
interaction between spatial visualization ability (high, low), monocular depth cues (static, 
animated), and binocular depth cues (non-stereoscopic, stereoscopic). The two plots 
represent the non-stereoscopic (above) and stereoscopic groups (below). The two lines 
represent the high Vz and low Vz groups. The crossing of the lines indicates an 
interaction effect. 
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5.4 Discussion 

The purpose of this study was to examine the role of computer-implemented stereopsis in 

spatial anatomy comprehension. Compared to the monocular depth cues offered by 

conventional animations and static representations, the binocular depth information 

afforded by stereoscopic animations and static representations more accurately 

communicate the depth and three-dimensionality of anatomical structures. As a result, it 

was hypothesized that instruction with stereoscopic displays will improve SAT 

performance. However, the results of this study did not support this hypothesis, as both 

SAT scores and time spent on the anatomy task were not significantly different for 

subjects who received instruction with stereoscopic displays and those receiving 

instruction with the non-stereoscopic displays.  

This finding contradicts the results of earlier studies that found stereoscopic feedback 

benefits the execution of surgical tasks (Peitgen et al., 1996; Falk et al., 2001; Byrn et al., 

2007) and acquisition of anatomical knowledge in virtual learning environments 

(Luursema et al., 2006; Luursema et al., 2008). There are two possible reasons for this 

contradictory result. First, previous studies assessing the role of stereopsis used active 

shutter techniques to generate the stereoscopic image while the present study used 

passive anaglyph method. The anaglyph method has the advantage of being inexpensive 

and easy to use (i.e., does not require synchronization of the stereo glasses with the 

images generated on the screen); however, the stereo image produced is poor quality and 

does not retain the original colours (Bowman et al., 2005). Thus, the reduced quality 

stereo images generated in this study might have masked any potential benefits of 

stereopsis. Second, previous studies assessing the role of stereopsis often used 

performance tasks that required reaching and grasping movements (i.e., prehension), 

while the present study used a performance task that required no reaching and/or 

grasping. Therefore, it appears that stereopsis contributes positively to visuomotor task 

performance but not visuospatial task performance. This assumption is supported by a 

number of studies that found binocular depth cues play a critical role in the programming 

and execution of prehension (Servos et al., 1992; Bradshaw and Elliott, 2003), and 

prehension is crucial to surgical procedures.     
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While the present study failed to show a main effect for stereopsis, two significant 

interaction effects were found. The first was a two-way interaction between binocular and 

monocular displays on SAT score (see Table 5.3 and Figure 5.2). In the absence of 

stereopsis, individuals viewing the static representations scored significantly higher than 

those viewing the animation. However, when stereopsis was implemented, the 

instructional advantage that static representations had over animation disappeared, and 

those viewing the animation had similar post-SAT scores as those viewing the static 

representations. The second interaction effect was a three-way interaction between Vz, 

binocular and monocular cues on the amount of time spent on the post-SAT (see Table 

5.5 and Figure 5.3). In the absence of stereopsis, high Vz subjects viewing the static 

representations spent significantly less time on the post-SAT than their low Vz 

counterparts. However, the addition of stereopsis to the static representations eliminated 

the time difference between high- and low-Vz subjects, as those with low Vz spent 

approximately the same amount of time on the anatomy task as those with high Vz. 

Concerning the animations, there was no difference in the amount of time spent on the 

post-SAT for subjects viewing the non-stereoscopic animation or those viewing the 

stereoscopic animation (see Table 5.5 and Figure 5.3). Taken together, the results of this 

study demonstrate that instruction using stereopsis alone did not contribute to post-SAT 

performance; however, in situations where there was a difference in post-SAT score (see 

Table 5.3 and Figure 5.2) or time spent on the post-SAT (see Table 5.4 and Figure 5.3), 

the implementation of stereopsis to the display abolished the difference and brought 

students’ performance to a similar level.   

Limitations and future directions 

This study has some limitations. First, the lower quality stereo images generated by 

anaglyph stereo technique might have eliminated any potential benefits of stereopsis. 

Hence, further studies are warranted to determine whether the stereo images produced by 

other stereo projection methods such as active shutter or autostereoscopic techniques 

contribute to performance on the spatial anatomy task. Active shutter stereo has the 
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advantage of producing high quality stereo images and autostereoscopy has the advantage 

of displaying the images without the use of special headgear or stereo glasses (Bowman 

et al., 2005). We speculate that the stereo images produced by active shutter stereo and 

autostereoscopic stereo will contribute positively to performance on the SAT. Second, the 

material used in this study (aorta, esophagus, and trachea) contains little visuospatial 

information as it consists essentially of three tubes. The authors suggest further studies be 

conducted to examine the contribution of stereopsis to learning more spatially complex 

areas in the body, such as the head and neck or abdomen. Finally, further experiments are 

also warranted to increase the number of participants. For this study 40 participants were 

assigned to 8 experimental groups, resulting in five participants in each experimental 

group. Such an increase in sample size would help to validate our results.  

 

5.5 Summary   

In conclusion, stereoscopic displays can potentially improve many aspects of medicine, 

from anatomy education to surgical training. Although there is substantial evidence that 

stereoscopic viewing benefits the execution of surgical tasks, there is limited evidence 

that it facilitates the acquisition of spatial anatomical knowledge. The present study 

revealed that stereoscopic displays had no additional advantages over non-stereoscopic 

displays. Further experiments with larger sample size are needed to confirm the results of 

this study. Further experiments are also needed to determine whether stereopsis 

contributes to learning more spatially complex areas in the body. The results of these 

experiments can be used to provide a rational basis for discussing the implementation of 

stereoscopic visualizations into anatomy education.  



97 

 

5.6 References   

 

Beurden MHPHv, Hoey Gv, Hatzakis H, Ijsselsteijn W. 2009. Stereoscopic displays in 
medical domains: A review of perception and performance effects. SPIE 7240. 

Bowman D, Kruijff E, LaViola J, Poupyrev I. 2005. 3D User Interfaces: Theory and 
Practice First ed. Redwood: Adison-Wesley. 

Bradshaw MF, Elliott KM. 2003. The role of binocular information in the 'on-line' 
control of prehension. Spatial Vis 16:295-309. 

Byrn JC, Schluender S, Divino CM, Conrad J, Gurland B, Shlasko E, Szold A. 2007. 
Three-dimensional imaging improves surgical performance for both novice and 
experienced operators using the da Vinci Robot System. Am J Surg 193:519-522. 

Falk V, Mintz D, Grunenfelder J, Fann JI, Burdon TA. 2001. Influence of three-
dimensional vision on surgical telemanipulator performance. Surg Endosc 
15:1282-1288. 

Luursema J, Verwey W, Kommers P, Annema J. 2008. The role of stereopsis in virtual 
anatomical learning. Interacting with Computers 20:455-460. 

Luursema JM, Verwey WB, Kommers PAM, Geelkerken RH, Vos HJ. 2006. Optimizing 
conditions for computer-assisted anatomical learning. Interacting with Computers 
18:1123-1138. 

Peitgen K, Walz MV, Walz MV, Holtmann G, Eigler FW. 1996. A prospective 
randomized experimental evaluation of three-dimensional imaging in 
laparoscopy. Gastrointestinal Endoscopy 44:262-267. 

Peters M, Laeng B, Latham K, Jackson M, Zaiyouna R, Richardson C. 1995. A redrawn 
Vandenberg and Kuse Mental Rotations Test - different versions and factors that 
affect performance. Brain Cognit 28:39-58. 

Poggio GF, Poggio T. 1984. The analysis of stereopsis. Annu Rev Neurosci 7:379-412. 

Schwartz SH. 2010. Visual Perception: A Clinical Orientation Fourth ed. New York, NY 
McGraw-Hill Medical   



98 

 

Servos P, Goodale MA, Jakobson LS. 1992. The role of binocular vision in prehension: a 
kinematic analysis. Vision Research 32:1513-1521. 

Steinman SB, Steinman BA, R.P. G. 2000. Foundations of Binocular Vision: A Clinical 
Perspective. New York McGraw-Hill  

Vandenberg SG, Kuse AR. 1978. Mental rotations, a group test of three-dimensional 
spatial visualization. Percept Mot Skills 47:599-604. 

Ware C. 2004. Information Visualization: Perception for Design (Second Edition) San 
Francisco, CA Morgan Kaufmann. 

 

 

5.1  

 

 



99 

 

Chapter 6  

 

6 General discussion  

The overarching aim of this dissertation was to explore the relationship between internal 

and external visualizations and the implications of this relationship for comprehending 

visuospatial anatomical information. Four factors were examined – three are properties of 

computer visualizations used in anatomy courses and one is an inherent property of the 

learner. In regards to computers, dynamism (static versus animated), interactivity 

(interactive versus non-interactive), and stereopsis (stereoscopic versus non-stereoscopic) 

were examined. On the learner side, spatial visualization ability (Vz) was explored. In all 

three experiments the same experimental approach was used, Vz was assessed with the 

standardized Mental Rotations Task (MRT) (Vandenberg and Kuse, 1978; Peters et al., 

1995) and comprehension of visuospatial anatomical information was measured with a 

novel Spatial Anatomy Task (SAT).  

 

6.1 Empirical contributions 

Experiment 1 (Chapter 2) established that Vz positively influences performance on the 

SAT. High Vz subjects scored significantly higher and spent significantly less time on the 

SAT than low Vz subjects. Experiment 1 demonstrated that instruction with different 

computer visualizations modulates the effects of Vz on SAT scores. While static 

representations benefited high and low Vz subjects equally, animations particularly 

benefited high Vz subjects, as their mean score on the SAT was significantly higher than 

the mean score of low Vz subjects. Finally, experiment 1 revealed that interactive 

visualizations offered no additional advantages over non-interactive displays. Both 

interactive and non-interactive displays provided the same benefits to high- and low-Vz 

subjects.    
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Experiment 2 (Chapter 3) explored the problem solving strategies of high- and low-Vz 

subjects in order to determine whether differences in strategies contributed to differences 

in SAT performance. Experiment 2 reaffirmed that Vz is a strong predictor of success on 

the SAT. In addition to scoring higher and spending less time on the SAT, high Vz 

subjects were also more accurate than low Vz subjects. Strategy reports revealed that 

there were in fact a number of ways to approach solving the SAT problems; however, 

differences in strategies did not contribute significantly to differences in SAT 

performance. Therefore, in the absence of external computer visualizations, Vz is the 

main contributor of variation in SAT performance.   

Experiment 3 (Chapter 4) examined whether improving the depth and realism of 

computer visualizations (i.e., through computer-implemented stereopsis) would 

inherently improve its educational effectiveness. Although there is substantial evidence 

that stereoscopic feedback benefits the execution of surgical tasks (Peitgen et al., 1996; 

Falk et al., 2001; Byrn et al., 2007), results from experiment 3 revealed that stereopsis 

alone did not improve SAT performance.  

Effects of Vz  

Given that the spatial anatomy task involved encoding, storing and mentally manipulating 

visuospatial information in three-dimensions and two-dimensional cross-sections, it was 

hypothesized that individuals with high Vz would perform significantly better on the 

SAT than those with low Vz. The results of experiments 1 and 2 supported this 

hypothesis by indicating a positive correlation between Vz and SAT score, a negative 

correlation between Vz and amount of time spent on the SAT, and a positive correlation 

between Vz and accuracy on the SAT. Individuals with high Vz scored higher, spent less 

time, and were more accurate than those with low Vz.  

Effects of dynamism  

Intuitively, one might expect that animations will offer advantages over static 

representations, especially since the additional depth cues incorporated in these displays 

better communicate the visuospatial properties of anatomical structures (Keehner et al., 
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2008b). However, experiment 1 demonstrated that animations did not offer additional 

advantages over static representations, and that the effectiveness of animations depended 

on participant’s Vz. Experiment 1 revealed that static anatomical representations 

augmented performance equally for participants of high- and low-Vz. By contrast, 

animation of the anatomical model particularly benefited participants of high Vz, as their 

mean score on the SAT was significantly higher than those with low Vz.  

Since Vz is partially related to speed of processing visuospatial information (Salthouse, 

1996), this might have affected speed of encoding information in the animation, such that 

only participants with high Vz were able to keep up with the pace of the animation. Since 

Vz is partially related to greater working memory capacity (Just and Carpenter, 1985; 

Shah and Miyake, 1996; Miyake et al., 2001), perhaps only participants with high Vz had 

the cognitive resources to store and process the transient information in working memory. 

Thus, due to the transient nature of the visuospatial information presented in the 

animation, on the one hand, and the limited capacity and duration of working memory, on 

the other, only those with high Vz benefited from the animation.   

Effects of interactivity  

Intuitively, one might also expect that interactive visualizations will offer advantages 

over non-interactive displays, especially since interactivity enables the viewer to adapt 

the presentation to his or her own cognitive needs by actively deciding what is presented 

on the screen and when it is presented (Schwan and Riempp, 2004). However, 

experiment 1 demonstrated that interactive visualizations did not offer additional 

advantages over non-interactive displays, and that instruction with interactive and non-

interactive visualizations improved performance equally for high- and low-Vz subjects.   

One possible reason for not finding an advantage for interactivity is the nature of the user 

control interface. The key-press control interface implemented in experiment 1 was not 

intuitive, and as such it is possible that merely operating it produced additional cognitive 

demands on interactive participants, counteracting any potential benefits from active 

control. Keehner et al. (2008b) suggest that a more naturalistic control interface that 

allows the manipulations made by the learner to be exactly mirrored in the movements of 
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the visualization should be especially beneficial in helping learners create an integrated 

visuospatial mental representation of any object he or she is viewing. Another possible 

reason for not finding an advantage for interactivity is the quality of the visuospatial 

information received from active control. Keehner et al. (2008a) proposed that the quality 

of the information that learners acquire from computer visualizations depends not just on 

whether learners are allowed active control over the visualization, but also on how they 

interact with the visualization and whether the manipulated views are in line with how 

visuospatial information is stored in memory. Some authors suggest that visuospatial 

information is not remembered in 3-D, but rather in specific 2-D views in the canonical 

orientations, and that unfamiliar orientations are recognized by mental rotation of these 2-

D views (Garg et al., 1999; 2001; 2002). Therefore, permitting interactivity does not 

guarantee that users will discover the most effective way to manipulate the visualization 

to achieve the most task-relevant information.  

Effects of stereopsis  

Intuitively, one might expect that stereoscopic displays will offer additional advantages 

over non-stereoscopic display, especially because the binocular information offered by 

stereoscopic displays increases the realism and three-dimensionality of visuospatial 

anatomical information (Scaife and Rogers, 1996). However, experiment 3 demonstrated 

that stereoscopic visualizations did not offer additional advantages over non-stereoscopic 

displays, and that instruction with stereoscopic and non-stereoscopic displays improved 

performance equally for high- and low-Vz subjects. One possible reason for not finding 

an instructional advantage for stereoscopic displays is the quality of the stereo images 

produced by the anaglyph technology. Although anaglyph stereo has the advantage of 

being inexpensive and easy to use, colour polarization reduces the colour quality of the 

stereo images (Bowman et al., 2005). Thus, the poor quality stereo images produced in 

experiment 3 might have masked any potential benefits of stereopsis.  

 

It is important to acknowledge that the results observed in experiment 3 are specific to 

performance on the SAT, which required mental manipulation of visuospatial anatomical 
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information. This does not imply that stereopsis would not facilitate performance on 

another task. For example, previous studies assessing the role of stereopsis often used 

performance tasks that involved reaching and grasphing movements (i.e., prehension) 

(Peitgen et al., 1996; Falk et al., 2001; Byrn et al., 2007). In all of these studies, the 

implementation of stereopsis augmented task performance. Therefore, it appears that 

stereopsis contributes positively to visuomotor task performance but not visuospatial task 

performance.  

 

6.2 Contributions to anatomy education  

One of the biggest challenges in education is the tendency for educators to assume that 

the newest and latest technology is going improve pedagogy over historically salient 

practices. For example, when motion picture was developed, Thomas Edison advocated,  

 “I believe that the motion picture is destined to revolutionize our educational 

system and that in a few years it will supplant largely, if not entirely, the use of 

textbooks.”  - Thomas Edison, 1922 (cited in Cuban, 1986, p. 9)  

More recently in medical education, similar claims have been made for dynamic, 

interactive, and stereoscopic computer visualizations. There is an inherent belief that 

increasing the educational effectiveness of computer visualizations is a mere question of 

making them dynamic, interactive, and/or realistic. However, experiments 1, 2, and 3 

clearly demonstrate that this is not the case, and that the benefits of computer 

visualizations vary according to learner characteristics, particularly spatial visualization 

ability. What this suggests is that the value of computer visualizations, either static 

pictures or technologically-advanced animations, cannot be assessed adequately on the 

basis of our intuitions alone. Instead, visualizations, and their incorporation into 

curricula, need to be tested both empirically and qualitatively for impact on student 

learning in order to provide a rational basis for discussing their implementation in 

anatomy courses. 



104 

 

There is increasing evidence that instructional value of computer visualizations depends 

on how well its design reflects our understanding of human cognitive architecture 

(Chandler, 2004; Plass et al, 2009). Extensive research demonstrates that working 

memory and long-term memory and the interaction between these two memory structures 

plays a crucial role in learning (Sweller et al., 1998). In the domain of anatomy 

education, research indicates that Vz plays an important role in acquiring anatomical 

knowledge. Therefore, instructional techniques in anatomy not only need to be sensitive 

to the severe limitations of working memory but also need to be aware of variations in 

learners’ ability to apprehend, encode, and manipulate mental representations. As 

anatomy educators we need to be aware of these cognitive limitations in order to guide us 

in the design, evaluation, and selection of computer visualizations that are appropriate for 

the individual learner, educational setting, and/or problem-solving task in question.  

Given the importance of spatial visualization ability in the comprehension of visuospatial 

anatomical information, questions arise about the extent to which spatial visualization 

ability is mutable. There is evidence that spatial visualization ability could be improved 

through practice (Peters et al., 1995; Lufler et al., 2012) and training (Terlecki et al., 

2008). Therefore, early testing of anatomy students for their spatial visualization abilities 

would allow intervention with the appropriate training tools that are recommended to 

help reduce the gap between high- and low-Vz learners. This would ensure that all 

learners, whatever their innate Vz, have the best chance to acquire sufficient 

understanding of visuospatial anatomical information.    

 

6.3 Future directions  

The approach taken to understand anatomy comprehension through the interaction of 

internal and external visualizations has exposed a number of potential avenues for further 

research. Below is a list of potential topics for future research in this field. 

One potential future direction is to compare the effects of different user control 

interfaces. As mentioned in the literature review, the ability to interact with computer 
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visualizations can be achieved through various input devices, ranging from traditional 

key button presses to a more naturalistic interface such as six degrees of freedom motion 

trackers that allow the manipulations made by the user to be mirrored by the movements 

of the visualization. Hutchins et al. (1985) used the term direct manipulation to refer to 

this type of natural interface. The term directness refers to the feeling that results from 

interaction with a user control interface. Directness can be broken down into two distinct 

features, distance and engagement. Distance involves the notion that there is a gulf 

between the learner’s goal (i.e., the task the learner has in mind) and the way the task can 

be accomplished with the interface. A short distance means that the translation is simple 

and straightforward; in that, the learner’s thoughts and goals are readily translated into 

physical actions by the system, and that the system’s output matches the thoughts and 

goals of the learner. Engagement, on the other hand, involves a feeling of first-personness 

or direct engagement with the object of interest. According to Hutchins et al. (1985), an 

interface introduces a gulf between the learner’s goals and the system’s output, and 

cognitive resource is needed to deal with this gulf. Direct manipulation interface can 

bridge this gulf by providing immediate feedback and control, as well as a sense of direct 

engagement with the object. As a result, when the learner performs operations on the 

object, the impact of those operations on the object is immediately visible. Therefore 

research comparing the effectiveness of different user control interfaces can be used to 

guide the selection of appropriate user control interfaces that will aid comprehension of 

visuspatial anatomical information.  

A second potential direction is to examine the effects of different computer visualizations 

on other aspects of performance such as motivation. One of the main appeals of 

animations and stereoscopic display is that they are novel, aesthetically appealing, 

attractive, and therefore can pique a person’s curiosity. According to Malone (1981), 

curiosity is one of the three most important characteristics of intrinsically motivating 

instructional environments; the others two factors being challenge and fantasy (Malone, 

1981). Intrinsic motivation is described as the motivational value of the content itself 

without the provision of external incentives to induce participation (Rieber, 1991). In 

other words, a person must be willing to engage in the instructional activity without 

external incentives such as grades, money, or status. Measures of continuing motivation, 
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such as choosing to either return to an instructional task in a free-choice situation, or the 

expressing desire to do so have been used successfully to estimate the constructs of 

intrinsic motivation (Kinzie and Sullvan, 1989; Rieber, 1991).  

Finally, an important issue for future research is the influence of learner characteristics on 

comprehension. In this dissertation, the focus was Vz, which is one of five sub-factors of 

spatial ability. It would be warranted to examine whether the remaining four factors – 

spatial relations, closure speed, closure flexibility, and perceptual speed – influence 

performance on the spatial anatomy task. Another learner characteristic that might 

influence anatomy task performance is prior knowledge. Experienced or high-knowledge 

learners are considered learners who have substantial previously acquired knowledge in a 

specific domain (Kalyuga, 2005). At the perceptual level, prior knowledge can influence 

how a learner directs his or her visual attention while viewing a visual display. For 

example, whereas a low-prior knowledge (or novice) learner may direct his or her 

attention towards features of display that are physically salient (i.e., larger or brighter) but 

not directly relevant to the learning task, a high-prior knowledge learner may direct his or 

her attention to only features of the display that are relevant to the learning task (Kriz and 

Hegarty, 2007; Hegarty and Kriz, 2008). At the cognitive level, prior knowledge can 

influence how information is treated in working memory. Human working memory is 

severely limited in duration and capacity when dealing with new and unfamiliar 

information (Sweller et al., 1998; Kalyuga, 2008). However, in familiar domains, the 

available knowledge stored in long-term memory (in the form of knowledge structures 

called schemas) allows us to combine or ‘chunk’ large amounts of information and treat it 

as a single element, thus reducing working memory limitations (Sweller et al., 1998; 

Kalyuga, 2008). In many learning situations, instructional tools that help high-knowledge 

learners may not help or even hinder low-knowledge learners, and vice-versa.  

 

6.4 Conclusion  

In anatomy, any display (e.g., static diagrams or animations) that depicts the human body 

is an external visualization of the body. In contrast, cognitive processes such as 
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apprehending, encoding, and manipulating mental representations can be thought of as 

manifestations of internal spatial visualization ability. Thus, visuospatial anatomy 

comprehension can be framed in terms of the interplay between the perception of external 

visualizations and the ability to maintain and manipulate internal visualizations. In the 

absence of external computer visualizations, spatial visualization ability is the main 

contributor of variation in spatial anatomy task performance. In the presence of external 

computer visualizations, task performance depends on the interaction between spatial 

visualization ability and visuospatial characteristics of the external visualization. As we 

continue to design computer visualizations for anatomy education, it is important to 

recognize that dynamic, interactive, and stereoscopic visualizations may not always be 

better than static, non-interactive, and non-stereoscopic displays. Therefore, anatomy 

educators need to move beyond the presumption that technologically-advanced 

visualizations are superior to simple images, to assessing what conditions must be in 

place for these visualizations to be effective.  
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Appendix C: Instructions for the Spatial Anatomy Task - Mental Rotations 
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Appendix D: Spatial Anatomy Task - Mental rotations questions 
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Appendix E: Instructions for the Spatial Anatomy Task - Identification 

 
 

 
 
 
 



122 

 

 

 
 

 



123 

 

 
Appendix F: Spatial Anatomy Task - Identification 

questions
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Appendix G: Instructions for the Spatial Anatomy Task - Localization 

 
 

 
 
 

 



129 

 

 

 
 

 



130 

 

 
Appendix H: Spatial Anatomy Task - Localization 

questions
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Appendix I: Self-reflective questionnaire 
 

Participant #:____ 
Self-reflective Questionnaire 

 
 
The following 22 questions involve self-analysis about the processes and strategies used 
while answering the spatial task questions. Please select the most appropriate answer for 
each of the following questions.  
 
Questions 1-9 are related to the mental rotations task. Recall: this task consisted of 10 
problems. Each problem was made up of 5 figures (shown below). Your task was to 
select the 2 figures that are rotated versions of the target. You were given 2 minutes to 
complete as many questions as possible.  
 

 
 

Answers: ‘a’ and ‘d’  
Q1. When answering the mental rotations task questions: 
a. I imagined rotating all 3 tubes in my mind when making the comparison  
b. I imagined rotating 2 of the 3 tubes in my mind when making the comparison  
c. I imagined rotating 1 of the 3 tubes in my mind when making the comparison  
d. I imagined rotating part(s) of 1 or more tube(s) when making the comparison (e.g., the 

curvature of the blue tube, or the ‘Y’ shape branch coming off the blue tube) 
e. Other (explain)_________________________________________________ 
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Q2. Please explain or mark on the image below which tube(s) or tube feature(s) you used 

when making the comparison.  
  

 
 
 ______________________________________________________________ 
 
 ______________________________________________________________ 
 
 ______________________________________________________________ 
 
Q3. When answering the mental rotations task questions: 
a. I imagined rotating the tubes 
b. I imagined rotating myself  
c. I imagined rotating both the tubes and myself 
d. Other (explain)_________________________________________________ 
 
Q4. When answering the mental rotations task questions: 
a. I thought through the steps verbally in my mind (e.g., “rotate tube to the right then up”)  
b. I relied mainly on visualizing the figures and did not talk myself through the steps  
c. Other (explain)_________________________________________________ 
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Q5. When answering the mental rotations task questions: 
a. I used movements of my body (e.g., finger, head, hand) and/or objects around me to 

help me with the task  
b. I did NOT use movements of my body (e.g., finger, head, hand) and/or objects around 

me help me with the task  
c. Other (explain)_________________________________________________ 
 
Q6.  When answering the mental rotations task questions: 
a. I scanned the option figures for the most likely match and then made my choices  
b. I scanned the option figures systematically, trying the first, then the second etc.  
c. I scanned the option figures in a haphazard nonsystematic way  
d. Other (explain)_________________________________________________ 
 
Q7. When answering the mental rotations task questions: 
a. I always compared the option figures to the target figure  
b. Once I found a match, I compared the rest of the option figures to the match instead of 

the target 
c. I did a bit of both  
d. Other (explain)_________________________________________________ 
 
Q8. When answering the mental rotations task questions: 
a. I developed a specific approach to solve the questions 
    explain _______________________________________________________ 
b. I tried various approaches to solve the questions 
    explain _______________________________________________________ 
c. I had no specific approach  
d. Other (explain)_________________________________________________ 
 
Q9. When answering the mental rotations task questions: 
a. I was more concerned with getting the right answers than I was about the time limit  
b. I was more concerned with getting all the answers completed than I was about getting 

the correct answers  
c. I did not care how I did it 
d. Other (explain)_________________________________________________ 
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Questions 10 -16 are related to the identification task. Recall: this task consisted of 10 
problems. For each problem you were given an image of the tubes with a superimposed 
horizontal (or vertical) line and an arrow pointing towards the line (shown below). Your 
task was to choose (from 4 answer choices) the correct cross-section that would result if 
the tubes were sliced at the line and you were looking at the resulting cross-section from 
the direction of the arrow. You were given 2 minutes to complete as many questions as 
possible.  
 

 
Note: The cross-sections are grayscale images. The circles represent the sliced tubes. The 
letters inside the circles represent the tube colour, B=blue, O=orange, and W=white. 
 

Answer: ‘d’  
10. When answering the identification task questions: 
a. (1) I sliced the tubes, (2) rotated the resulting image to match the orientation of the 

cross-sections, and (3) selected a cross-section 
b. (1) I rotated the tubes to match the orientation of the cross-sections, (2) sliced the 

tubes, and (3) selected a cross-section 
c. (1) I selected a cross-section, (2) rotated the cross-section to match the line on the tube 

image, (3) repeated steps (1) and (2) until I found the correct cross-section 
d. Other (explain)_________________________________________________ 
 
Q11. When answering the identification task questions: 
a. I imagined rotating the tubes  
b. I imagined rotating myself  
c. I imagined rotating the tubes and myself 
d. Other (explain)_________________________________________________ 
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Q12. When answering the identification task questions: 
a. I scanned the cross-sections for the most likely match and then made my choice 
b. I scanned the cross-sections systematically, trying the first, then the second etc.  
c. I scanned the cross-sections in a haphazard nonsystematic way  
d. Other (explain)_________________________________________________ 
 
Q13. When answering the identification task questions: 
a. I thought through the steps verbally in my mind (e.g., “slice then rotate”)  
b. I relied mainly on visualizing the images and did not talk myself through the steps  
c. Other (explain)_________________________________________________ 
 
Q14. When answering the identification task questions: 
a. I used movements of my body (e.g., finger, head, hand) and/or objects around me to 

help me with the task  
b. I did not use movements of my body (e.g., finger, head, hand) and/or objects around 

me to help me with the task  
c. Other (explain)_________________________________________________ 
 
Q15. When answering the identification task questions: 
a. I developed a specific approach to solve the problems 
    explain _________________________________________________ 
b. I tried various approaches to solve the problems  
    explain _________________________________________________ 
c. I had no specific approach  
d. Other (explain)_________________________________________________ 
 
Q16. When answering the identification task questions: 
a. I was more concerned with getting the right answers than I was about the time limit  
b. I was more concerned with getting all the answers completed than I was about getting 

the correct answers  
c. I did not care how I did it 
d. Other (explain)_________________________________________________ 
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Questions 17-22 are related to the localization task. Recall: this task consisted of 10 
problems. For each problem you were given a cross-section of the tubes (shown below). 
Your task was to choose (from 4 answer choices) the correct horizontal or vertical line 
that represents the level at which the cross-section has been taken. You were given 2 
minutes to complete as many questions as possible.  
 

 
Answer: ‘b’  

 
Q17. When answering the localization task questions: 
a. I imagined rotating the cross-section to match the orientation of the lines  
b. I imagined slicing then rotating the tubes to match the orientation of cross-section   
c. I imagined rotating then slicing the tubes to match the orientation of the cross-section 
d. Other (explain)_________________________________________________ 
 
Q18. When answering the localization task questions: 
a. I thought through the steps verbally in my mind (e.g., “rotate then superimpose”)  
b. I relied mainly on visualizing the images and did not talk myself through the steps  
c. Other (explain)_________________________________________________ 
 
 
Q19. When answering the localization task questions: 
a. I scanned the horizontal/vertical lines for the most likely match and then made my 

choice 
b. I scanned the horizontal/vertical lines systematically, trying the first, then the second 

etc.  
c. I scanned the horizontal/vertical lines in a haphazard nonsystematic way  
d. Other (explain)_________________________________________________ 
 



141 

 

Q20. When answering the localization task questions: 
a. I used movements of my body (e.g., finger, head, hand) and/or pencil to help me with 

the task  
b. I did not use movements of my body (e.g., finger, head, hand) and/or pencil to help me 

with the task  
c. Other (explain)_________________________________________________ 
 
Q21. When answering the localization task questions: 
a. I developed a specific approach to solve the problems  
    explain _________________________________________________ 
b. I tried various approaches to solve the problems  
    explain _________________________________________________ 
c. I had no specific approach  
d. Other (explain)_________________________________________________ 
 
Q22. When answering the localization task questions: 
a. I was more concerned with getting the right answers than I was about the time limit  
b. I was more concerned with getting all the answers completed than I was about getting 

the correct answers  
c. I did not care how I did it 
d. Other (explain)_________________________________________________ 
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Appendix J: Answer key to the Spatial Anatomy Task questions 

 

 
Spatial Anatomy Task 

 
 

Mental 
rotations 

 

 
Identification 

 
Localization 

 
1ad 
2ab 
3bc 
4cd 
5ac 
6bd 
7ab 
8ab 
9ad 
10bc 

 
1a 
2c 
3b 
4c 
5d 
6a 
7b 
8c 
9a 
10c 

 

 
1c 
2c 
3b 
4b 
5c 
6c 
7d 
8c 
9c 
10c 
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