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Investigating Continual Learning Strategies in
Neural Networks

Christopher Tam
Electrical and Computer Engineering
Western University
London, Canada
ctam86@uwo.ca

Abstract—This paper explores the role of continual learning
strategies when neural networks are confronted with learning
tasks sequentially. We analyze the stability-plasticity dilemma
with three factors in mind: the type of network architecture used,
the continual learning scenario defined and the continual learning
strategy implemented. Our results show that complementary
learning systems and neural volume significantly contribute
towards memory retrieval and consolidation in neural networks.
Finally, we demonstrate how regularization strategies such as
elastic weight consolidation are more well-suited for larger neural
networks whereas rehearsal strategies such as gradient episodic
memory are better suited for smaller neural networks.

Index Terms—neural networks, continual learning, comple-
mentary learning systems

I. INTRODUCTION

Humans have the distinct ability to continually acquire
knowledge throughout their lifetime. This ability, aptly re-
ferred to as lifelong learning, is enabled by a rich set of
neurocognitive mechanisms that allow us to consolidate new
information without forgetting previously learnt concepts. This
is to say that the process of learning new information does not
significantly interfere with our ability to recall old information.
In contrast, current machine learning algorithms are unable to
process novel streams of data without forgetting previously
learned patterns. This is referred to as catastrophic forgetting.
The problem of artificial intelligence (AI) systems learning
over time by accommodating new knowledge and retaining
previously learned patterns is referred to as continual learning,
and has been a long-standing challenge for machine learning
and neural networks [1]. This paper investigates continual
learning strategies to overcome catastrophic forgetting in neu-
ral networks with three factors in mind: the type of net-
work architecture used, the continual learning scenario defined
and the continual learning strategy implemented. Specifically,
we will be comparing a multi-layer perceptron network to
a convolutional neural network architecture in the task-IL,
domain-IL and class-IL continual learning scenarios using
regularization and memory-based continual learning strategies.
The code used to produce this paper can be found here.

Luiz Fernando Capretz
Electrical and Computer Engineering
Western University
London, Canada
Icapretz@uwo.ca

II. BACKGROUND WORK

A. Catastrophic Forgetting and Continual Learning

A well known constraint for artificial and biological neural
systems is the stability-plasticity dilemma [2]. This dilemma
expresses the trade-off between the integration of new knowl-
edge and the stability required to prevent forgetting previously
acquired knowledge in a neural system. On one hand, exces-
sive plasticity will result in previously encoded information
being overwritten as learning takes place whereas excessive
stability will prevent the uptake of new information in the
system. Between the two ends of the spectrum, McCloskey
and Cohen showed that artificial neural networks (henceforth
referred to as neural networks) lean heavily towards plasticity,
producing a phenomenon known as catastrophic forgetting
[3]. Catastrophic forgetting is defined as the complete or
significant forgetting of previously learned information by a
neural network trained to learn new information. Richardson
and Thomas showed catastrophic forgetting to be present in a
variety of neural networks, from standard back-propagation
networks to unsupervised self-organizing map networks to
connectionist models of sentence acquisition [4]. Catastrophic
forgetting frequently occurs when neural networks are trained
using a different distribution of data than the distribution the
network had previously been trained on. In this case, new
data instances differ significantly from previously encountered
examples. New information causes the network to partially
or completely overwrite the embedded representations from
previously learned data, producing a ‘catastrophic forgetting’
effect of those previously learned patterns. This problem has
stood in the way of building lifelong learning systems capable
of learning from a continuous stream of information where
new information becomes available over time and the number
of tasks to be learned is not predefined [5]. In order for
continual learning systems to succeed, it is critical that the
accommodation of new information should not produce the
problem of catastrophic forgetting.

B. Three Continual Learning Scenarios

Continual learning research has garnered plenty of attention
and has resulted in a wide variety of experimental protocols
being used. This has led to confusion, as some methods are



shown to perform well in certain experimental settings but
dramatically fail in others. For example, the elastic weight
consolidation algorithm presented by Kirkpatrick et al. [6]
claims state-of-the-art performance in it’s paper but was re-
ported to show significant performance issues compared to
the brain-inspired rehearsal approach of ven de Ven et al. [7].
In order to better compare methods for reducing catastrophic
forgetting, this report will use a framework consisting of three
distinct continual learning scenarios proposed by Van de Ven
and Tolias [8]. This framework focuses on the problem in
which a single neural network sequentially learns a series of
tasks. Each continual learning scenario is distinguished by
a task requirement and the amount of data available at test
time. Figure 1 presents the three continual learning scenarios
in order of increasing difficulty.

Scenario Required at test time

Task-IL Solve tasks so far, task-ID provided
Domain-IL  Solve tasks so far, task-ID not provided
Class-IL Solve tasks so far and infer task-ID

Fig. 1. Overview of the three continual learning scenarios proposed by [8].

1) Task-Incremental Learning (Task-IL): In the task-
incremental learning scenario, after learning a set of tasks the
network is always informed about which of the learned tasks
needs to be performed at test time. Given the availability of
task identifiers, it is possible to train a network with task-
specific components. This enables architectures such as a
multi-headed output layer, where the network shares learning
resources in the hidden layers but uses task specific output
units at test time.

2) Domain-Incremental Learning (Domain-IL): In the
domain-incremental learning scenario, the network is not
informed about which task needs to be performed at test time.
The network needs to perform the proposed task correctly
despite not having information about the task identifier, but
does not need to correctly infer the task identifier. This
scenario is representative of problems where the structure of
the tasks is always the same, but the input distribution is
changing.

3) Class-Incremental Learning (Class-IL): In the class-
incremental learning scenario, the network must be able to
solve the learned tasks as well as infer which class the task
belongs to at test time. This scenario represents the most
difficult problem and reflects the most common real-world
problem of incrementally acquiring new knowledge.

C. Strategies for Continual Learning

Continual learning algorithms for neural networks are heav-
ily inspired by our understanding of learning in biological
neural systems. In [9], McClelland et al. proposed a theory
for complementary learning systems in biological connec-
tionist models which ended up becoming the basis for a
computational learning framework for memory consolidation

and retrieval. At the heart of this framework is the interplay
between episodic and semantic memory which has since
provided important insights into the mechanisms of memory
consolidation in neural networks. Many learning systems have
taken inspiration from this interplay in order to address the
problem of catastrophic forgetting in neural networks. We refer
the reader to Lesort et al. [10] for a comprehensive overview
of continual learning strategies.

1) Regularization Approaches: Several approaches intro-
duce a regularization term into the loss function in order
to mitigate the effect of catastrophic forgetting. One way of
doing this has been to regularize network parameters during
training on each new task to constrain the movement of
weights in a way that minimizes the amount of forgetting. This
strategy is used in the Elastic Weight Consolidation (EWC)
[6] and Synaptic Intelligence [11] algorithms. In both of these
methods, estimates for the importance of parameters relevant
to previously learned tasks are calculated and parameters are
regularized proportional to their relative importance. This has
the effect of slowing down learning for parts of the network
which are important for previous tasks. Another class of
regularization techniques is aimed at preventing activation
drift primarily through means of knowledge distillation. One
instance of this strategy is the Learning without Forgetting
[12] algorithm which computes the output (probabilities) of
old tasks for every piece of data in the new task and treats the
response as a ’pseudo label”. The network is then trained again
to optimize all the tasks using the pseudo labels generated for
the old tasks and the real labels for the new task. The goal
here is to prevent the representations of previous data from
drifting too far away while learning new tasks.

2) Rehearsal Approaches: Another approach to catas-
trophic forgetting is to store data from previous tasks. Re-
hearsal methods keep a small number of “exemplars” or
generate synthetic representations of the data previously en-
countered in order to prevent the forgetting of previous tasks.
This approach largely draws on inspiration from the gen-
erative role of the hippocampus for the rehearsal of previ-
ously encoded experiences. Shin et al. [13] proposed a dual-
model architecture consisting of a deep generative model
and a task solver. Modelling the rehearsal process of the
hippocampus, their architecture sampled training data from
previously learned experiences to generate pseudo-data to
be interleaved with the data from new tasks. In this way,
there was no requirement to explicitly revisit old training
samples for experience rehearsal and therefore reduced the
cost requirements of working memory. More recently, Lorez-
Paz and Ranzato [14] proposed Gradient Episodic Memory
(GEM), a rehearsal method which yields positive knowledge
transfer to previous tasks. GEM features an episodic memory
storing a subset of previously seen examples from a given task.
GEM requires far more memory than typical regularization
approaches but has produced better results in single pass
settings.



III. TASK PROTOCOL

The core aim of this paper is to differentiate between three
continual learning scenarios and to provide a comprehensive
analysis of the performance of the discussed continual learn-
ing strategies. We adopted the widely recognized permuted
MNIST task protocol as our reference dataset. Permuted
MNIST, an altered version of the traditional MNIST dataset,
contains 70,000 handwritten digits (0-9), split into 60,000
training and 10,000 testing images. Distinctively, permuted
MNIST allows the generation of new tasks by random pixel
permutation of each digit. Within the continual learning land-
scape, tasks are spawned by randomly reordering the 784
pixels of the original 28x28 grey-scale images, which were
subsequently tensor-transformed and normalized to a mean of
0.1307 and standard deviation of 0.3081. Thus, every fresh
task poses a ten-way classification challenge.

IV. MODEL ARCHITECTURES

A multi-layer perceptron (MLP) network and a convo-
lutional neural network (CNN) were used as the network
architectures for comparison. For each network architecture,
hyperparameters were tuned using a grid-search. The highest
average accuracy across all tasks from the grid-search of
each network architecture were reported in the final evaluation
results.

A. Multi-layer Perceptron Network

The multi-layer perceptron network consisted of a hidden
layer of 512 nodes as the first layer. This was followed by a
ReLU non-linearity layer and then by a dropout layer with a
probability of 0.5. The network was optimized using stochastic
gradient descent and was minimized using the multi-class
cross entropy loss function. A summary of the multi-layer
perceptron network used is given Table I(a).

B. Convolutional Neural Network

A convolutional neural network with two convolutional
layers and two fully connected layers was used. For each
convolutional layer, a kernel of size 5 and a ReLU non-
linearity was used. The two convolutional layers produced
6 and 16 output channels, respectively. Each convolutional
layer was followed by a max pooling layer. In the two
fully connected layers, 120 and 105 hidden units were used.
The network was optimized using stochastic gradient descent
and minimized the multi-class cross entropy loss function. A
summary of the convolutional neural network is given in Table
I(b).

V. CONTINUAL LEARNING SCENARIOS

As discussed in Section II-B, we are interested in investigat-
ing three continual learning scenarios. For each scenario, both
network architectures are evaluated using 3-tasks and 10-tasks.
Our goal is to observe how each strategy generalizes to more
tasks. In this section we define what each of the continual
learning scenarios looks like in the context of permuted
MNIST. An overview of the scenarios under permuted MNIST
is provided in Figure 2.

Task 1
(permutation 1)

0] /]2]3]4]
BaEIEA

Task 2
(permutation 2)

Task 10
(permutation 10)

Task-IL Given permutation X, which digit?
Domain-IL  With permutation unknown, which digit?
Class-IL Which digit and which permutation?

Fig. 2. Permuted MNIST continual learning scenario proposed by [8].

A. Task-Incremental Learning (Task-IL)

Under Task-IL, task identities are always known and shown
at test time. Given an image and a task identity, the network
must be able to correctly identify which digit the image
represents. Setting up Task-IL involves assigning a progressive
task identity to each of the permutations starting from 0. A
network is then consecutively trained on all tasks starting from
task O to task 2 or 9. After training on each task identity is
complete, an evaluation loop is run to test the networks ability
to recall all previously seen tasks. Since the output of the
network was always an integer between 0 and 9 inclusive, 10
units were used as output layer for architectures in the Task-IL
scenario.

B. Domain-Incremental Learning (Domain-IL)

In Domain-IL, task identities are irrelevant at test time. Task
identities are neither given nor expected to be inferred by the
network. Given only an image, the network must be able to
correctly identify which digit the image represents. Under the
permuted MNIST task protocol, a network will alway predict
an integer between O and 9 inclusive for this scenario. The
challenge is that for each evaluation step, a random bag of
digits from all previously seen permutations will be presented.
As such 10 units were used as the output layer for architectures
under this scenario.

C. Class-Incremental Learning (Class-IL)

In Class-IL, task identities exist but are not provided at test
time. Given an image, the network must be able to correctly
identify which digit the image represents as well as correctly
infer which permutation the image belongs to. This additional
requirement prompted an adjustment to the labelling process
of input and output classes. For each permutation, class labels
were generated starting from the integer where the previous
permutation ended. For instance, permutation 1 classes were
labelled [0...9], permutations 2 classes were labelled [10...19],
etc. At test time, these labels can be viewed as representing
the m-th digit (ones column) from the n-th permutation (tens
column). As a result, 30 and 100 units were used in the output
layer for 3- and 10-task scenarios compared to the previous
two scenarios.



TABLE I
MODEL SUMMARIES

(a) MLP (b) CNN

Layer (type) Output shape  Param # \ Layer (type)  Output shape Param #

Linear-1 [-1, 512] 401,920 Conv2d-1 [-1, 6, 24, 24] 156

ReLU-2 [-1, 512] 0 Conv2d-1 [-1, 16, 19, 19] 2,416

Dropout-3 [-1, 512] 0 Linear-3 [-1, 120] 155,640

Linear-4 [-1, 10] 5,130 Linear-4 [-1, 105] 12,705
Linear-5 [-1, 30] 3,180

Total trainable params 407,050 \ 174,097

VI. CONTINUAL LEARNING STRATEGIES
A. Naive Strategy

In the naive strategy, a network is sequentially trained on
all tasks. With each new task it encounters, the network fine-
tunes it’s weights to fit the new data. This is where the most
amount of catastrophic forgetting occurs and will be used as
a lower bound in our comparison.

B. Elastic Weight Consolidation

The regularization approach selected was Elastic Weight
Consolidation (EWC) [6]. In this strategy, a regularization
term is added to the loss function which penalizes changes
to parameters estimated to be important to previously learned
tasks. The regularization strength of the loss function is
controlled by a hyperparameter A\, where

Ltotal = Lcurrent + )\Lregularization
We used grid search to find the optimal value of A.

C. Average Gradient Episodic Memory

For the rehearsal approach, we used the Average Gradient
Episodic Memory (AGEM) [15] algorithm. AGEM is similar
to the GEM algorithm discussed in Section II-C2 but requires
less memory by storing the average gradient vector computed
from the individual gradients of task loss for all previously
seen tasks at each weight update. This is in contrast to GEM,
where each task specific gradient vector has to be stored.
The AGEM algorithm was tuned using two hyperparameters
which varied the number of patterns to store in memory
per experience, and number of patterns from each memory
sample to consider when computing the reference gradient.
The optimal values of these hyperparameters were found using
grid search as well.

VII. MODEL TRAINING AND HYPERPARAMETER TUNING

Each continual learning strategy (naive, regularization and
rehearsal) was trained and evaluated on each of the continual
learning scenarios (Task-IL, Domain-IL and Class-IL) for each
network architecture (MLP and CNN) using 3- and 10-classes.
Each configuration trained using 2,000 iterations per task to
minimize the multi-class cross entropy loss funtion using the
SGD-optimizer with a learning rate of 0.01 and momentum
of 0.9. The hyperparameter search for each of the methods is
given in Table II.

VIII. RESULTS

A tabular summary of the evaluation results is given in Table
II. Our results suggest that complementary learning systems
do indeed contribute to improving memory consolidation and
retrieval in neural networks. In Figures 3 and 4 we find
that continual learning strategies consistently outperform the
naive strategy in all experimental conditions. Furthermore, the
MLP network outperformed the CNN in all continual learning
scenarios and for all strategies. The network architectures
had been initialized so that the MLP had just over double
the number of trainable parameters of the CNN, as shown
in Table I. This suggests that larger networks may have a
higher capacity to continually learn than smaller networks. It’s
possible that MLPs are simply more effective than CNNs for
continual learning, but both architectures scored similarly in
the 3-Class scenario before departing significantly in the 10-
Class scenario. This leads us to believe the CNN is capable
of continually learning and that the inability to scale to
a higher number of classes is due to the limited number
of trainable parameters. Finally, the MLP results show that
EWC and AGEM performed similarly in the Task-IL and
Domain-IL scenarios but EWC dominated in the Class-IL
(hardest) scenario. Similar results were produced in the CNN
architecture but in reverse, with AGEM dominating EWC in
the most difficult scenario. This suggests that regularization
techniques may not be as effective as replay approaches in
smaller neural networks with fewer parameters, and indicates
a trade-off between the strengths of these two strategies. Since
EWC learns new tasks while trying to avoid changes to pa-
rameters which are sensitive to previous tasks, it is very likely
that this algorithm suffers in networks with fewer parameters
to regularize. Because AGEM keeps a memory of each of
the previous tasks by storing the gradients computed from
the previously seen tasks loss functions, AGEM is designed
to be more performant in architectures with fewer internal
parameters but with more memory-bandwidth. These results
also provide a more granular view of the effectiveness of the
two learning algorithms in the context of the continual learning
scenario at hand. It may be such that the desired use-case for
the neural network falls into the 3-Class Domain-IL scenario,
in which case a smaller network such as the CNN may be
satisfactory.



TABLE II
HYPERPARAMETER VALUES

EWC AGEM
Hyperparameter ~ Value \ Hyperparameter Value
A [0.001, 0.01, 0.1] | Patterns per experience  [10, 30]
Sample size [50, 250, 500]
TABLE III

AVERAGE ACCURACY OF EACH CONFIGURATION AFTER COMPLETING ALL TASKS.

MLP
Task-IL Domain-IL Class-IL
Approach Method | 3-Class  10-Class | 3-Class  10-Class | 3-Class  10-Class
Baseline Naive 93.89%  85.16% 93.80%  91.30% 93.49%  91.30%
Regularization ~EWC 97.24%  96.22% 97.22%  96.89% 96.62%  95.26%
Replay AGEM | 98.12% 97.36% 97.51% 97.33% 97.17%  91.15%
CNN
Task-IL Domain-IL Class-IL
Approach Method | 3-Class  10-Class | 3-Class  10-Class | 3-Class  10-Class
Baseline Naive 55.74%  28.90% 52.92%  31.29% 31.40%  9.38%
Regularization ~EWC 89.07%  52.12% 89.74%  52.18% 82.86%  19.90%
Replay AGEM | 98.32%  52.45% 91.81%  56.40% 83.25%  37.18%

IX. DISCUSSION

Convergence in neural networks signifies the network’s
ability to arrive at a stable solution during the learning phase.
It’s an essential attribute because a network that fails to
converge might not generalize well or might even fail to
learn. In the context of our results and the continual learning
strategies under study, the following section dives deep into
analyzing any convergence-related issues.

A. Variability in Convergence Due to Network Size

An interesting observation arises when comparing the MLP
and CNN architectures. The MLP, with its larger parameter
set, appears to exhibit faster convergence in many scenarios
compared to the CNN. This suggests that larger networks
might possess an inherent ability to converge more rapidly,
perhaps due to their expansive search space in parameter
tuning. However, this could also render them more susceptible
to local minima, which may not represent the global optimal
solution.

B. Task Complexity and Convergence

As the task’s complexity increases from 3-Class to 10-
Class scenarios, there’s an evident strain on the network’s
convergence ability. In particular, the CNN, with its limited
trainable parameters, struggles significantly in the 10-Class
scenario, suggesting that task complexity can heavily influence
the rate and stability of convergence.

C. Replay Techniques and Stable Convergence

Replay strategies like AGEM, by design, hold promise
in offering a more stable convergence. By storing gradients
from previously seen task loss functions, they aim to ensure
that the network does not stray too far from its previous

learning. However, the potential downside could be a slower
convergence rate as the network continuously tries to balance
its learning from multiple tasks.

X. CONCLUSION

In this paper we investigate the role of continual learning
strategies to overcome catastrophic forgetting in neural net-
works with three factors in mind: the type of network archi-
tecture used, the continual learning scenario defined and the
continual learning strategy implemented. Our results show that
neural networks with a higher number of trainable parameters
are more successful at continually learning than are neural net-
works with fewer trainable parameters, suggesting that neural
volume may play a role in a networks ability to consecutively
learn new tasks. However when working with networks with
fewer trainable parameters, we see an advantage in using
memory-based continual learning strategies which rely on
storing representations from previous tasks in memory. As
the number of trainable parameters grows, regularization-based
strategies begin to dominate indicating a trade-off between the
availability of trainable parameters and dependency on external
memory. This supports the work proposed by McClelland et al.
[9] in the role of complementary learning systems as a basis for
improving memory consolidation and retrieval and contributes
an analysis of which types of complementary learning systems
benefit from certain network configurations.

XI. FUTURE WORK

In Section VIII we raised the possibility that MLP network
architectures may be better suited for continual learning than
CNN architectures. This work may be extended to investigate
the strengths of various continual learning strategies between
network architectures by holding the number of trainable



Fig. 3. MLP: Average accuracy computed after training on each task under
different learning scenarios.
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parameters constant. Similarly, a comparison of the strengths
of various continual learning strategies for a given network
architecture would benefit applications where the network
architecture is pre-determined or fixed. One may also ex-
tend this methodology to other classes of continual learning
strategies such as generative replay and architecture-based
approaches, and other types of network architectures for a
more comprehensive survey.
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