Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1972

Differential Rings: Embedding Theorems And
Related Ideals

Jay Ladd Delkin

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Delkin, Jay Ladd, "Differential Rings: Embedding Theorems And Related Ideals" (1972). Digitized Theses. 624.
https://irlib.uwo.ca/digitizedtheses/624

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,

wlswadmin@uwo.ca.


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/624?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/




CANADIAN THESES
'ON MICROFILM

' BIBLIOTHEQUE
~ \NATIONALE
- DU CANADA -

THESES CANADIENNES
SUR MICROFILM

e

NL-101(1/66)

172




DIFFERENTIAL RINGS:

EMBEDDING THEOREMS AND RELATED IDEALS

by

Jay Ladd Delkin

Department of Mathematics

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Canada

July 1972

© Jay Ladd Delkin 1972



ABSTRACT

The concept of a differential ring, as a system for

which one has operations of addition, multiplication, and
derivation, is defined and discussed. For some differential
rings this derivation is inner and is consequently definable
in terms of the other operations of the system. Given an
associative differential ring K, Ore has shown that there
exists a ring K(w), the ring of the "noncommutative
polynomials" in w over K, which extends the ring K and for
which the derivation initially given in K has been extended
to an inner derivation in the larger ring.

The construction of analogous extensions K(w) is
carried out for rings K which are not (necessarily) associa-
tive, and, even considering only associative K, in a more
detailed manner than has been done before. One proceeds by
stipulating which properties one would like such an embedding
ring to satisfy and the realization of this ring K(w) is
then shown in terms of operators acting on a (nonassociative)
module.

It is next shown that, if K satisfies certain basic
conditions, K(w) admits of no proper ideals. Relaxing the
conditions on K renders possible the existence of ideals of
K; along these lines, a result on the existence of ideals

given by Amitsur is generalized and proved,

iii



If K is a division ring, then K(w) may be extended to
a division ring K(w,w—l), which, for associative K, includes,
as a proper subring; a division ring extension defined by
Ore. The construction of K(W,W_l) is quite similar to the
construction of K(w), in terms of operators on a module.

The divisibility conditions on K(w,w ~) correlate

with certain conditions on the module. By introducing an
operation of multiplication in the module, one forms a ring
extension of K in which extension all linear differential
equations in K have solutions. Continuing along these lines,
one constructs a ring T which is closed with respect to linear

differential equations (as, analogously, an algebraically

closed field is closed with respect to algebraic equations).

iv
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CHAPTER 1

INTRODUCTION TO DIFFERENTIAL ALGEBRA

l.1 Its Genesis.

The subject of differential algebra is & branch of
algebra which arises from sources both in analysis and in
algebra. The central idea of differential algebra is to
develop an algebraic theory of differentiation and to study
systems in which such an algebraic differentiation has been
defined. The concept of the derivative, as the result of a
differentiation operation, arises in elementary calculus., It
is this fundamental concept of the derivative which, from the
point of view of differential algebra, is to 5e considered in
an algebraic context.

Analysis may be considered to contain two principal
ingredients: topology and algebra. In studies of the con-
cept of differentiation as it is usually defined (whether
involved with the simple derivative or with the related con-
cepts of differential, partial derivative, left and right
derivatives, etc.), one finds both the topological and the
algebraic aspects interwoven. The idea of the limit of the
ratio of finite differences is topological; the sum and
product laws for derivatives (as given precisely in Section
1.2 below) are algebraic. If one now abstracts from all

considerations of a topological nature, the operation of



differentiation becomes a purely algebraic mapping subject
to certain algebraic laws. The sum and product laws in par-
ticular require no topology for their formulation and may be
formulated (as will be seen) in a more general context than
is usually done. From such considerations as here suggested,
one is led to the subject of differential algebra which then
has its most natural genesis in analysis. Thus differential
algebra arises from the attempt to treat the process of
differentiation in analysis in a purely algebraic manner,.
It may be remarked that a considerable amount of elementary
calculus can be developed without explicit reference to
limits or other topological notions, but with the sole use
of algebraic laws (which could be postulated initially, rather
than derived from topological considerations). In differ-
ential algebra one merely proceeds further along these lines.
However, in spite of what has just been stated, it is
not necessary to approach the subject of differential algebra
through the medium of analysis. Differential algebra also
arises quite naturally in algebra itself, quite apart from
any reference to analysis, and one has simply to recognize
this fact. In the theory of associative rings, the commu-
tator or Lie product cb-be of arbitrary elements b and ¢ of
such a ring may be considered to denote a departure (if any)
from commutativity, this commutator being zero when c and b
commute. Holding either b fixed or ¢ fixed, the commutator
defines on the elements of the ring a unary operation which
may be shown by routine computations to satisfy the sum and

product laws for derivatives; this example is that in (5)



of Section 1.2 below. It is then only natural to regard
this type of mapping as a differentiation or, as one gener-

ally says in algebra, a derivation. This particular type of

derivation is called an inner derivation. However one

approaches the subject of differential algebra, it is
inevitable that the sum and product laws must play an
essential role in the central concept of a derivation.
Precise definitions are given in Section 1.2 below. In
line with the terminology of analysis, the image of an

element under a derivation mapping is called its derivative.

As has already been stated, differential algebra is
a branch of algebra; and algebra is the study of algebraic
systems. An algebraic system {S;Ol,...,On} is an abstract
set of elements on which certain operations, Ol""’on’ have

been defined.

In order to pursue differential algebra in a profitable
way, it is desirable to fix one's attention on a particular

type of algebraic system in which one can perform two binary

operations called addition and multiplication, and one unary

operation called derivation, in accordance with the approp-

riate rules pertaining to such operations. The type of alge-
braic system selected for this purpose is defined in Section
1.2 below.

1.2 Basic Definition and Examples.

Although the subject of differential algebra is
sometimes studied in a more general context as discussed in
Section 1.4 below, for the purpose of this thesis differential

algebra is restricted to a study of differential rings. A



differential ring may be regarded as an ordinary ring to
which a derivation has been added as an operator, as wili
be seen in the formal definition below. While rings with
an "involution" - also a unary operator - have been studied
extensively, insofar as the writer is aware this is the
first time that differential rings - as rings with the
unary differential operator - have been studied in a way
that is at all comparable. Other studies of differential
rings or algebras have studied more general types of systeus,
of which differential rings are but a special case, Or else
have involved themselves with matters somewhat "tangent" to
the central core of the subject.

The term "ring" invariably means, throughout this
thesis, either an ordinary ring or a differential ring (as

the context may dictate) for which multiplication need not

necessarily be associative.

Definition: A differential ring {K;+,+,'} is a set

K in which are defined the two binary operations of addi-

tion (+) and multiplication (+) and the unary operation of

derivation ('), subject to the following conditions:

(1) {K;+} is an abelian group.

(2) Multiplication is (left and right) distributive with
respect to addition. Thus the mapping of b to e¢b or
b to be, for fixed c and with D ranging over K, is an
endomorphism of the group {K;+}.

(3) For arbitrary b,c e K
(i) (b+c)' = b'+c'. This property is called the Sum

Law and shows that the derivation is an



endomorphism of {K;+}.
(ii) (be)' = be'+b'c. This property is called the

Product Law.

Upon deleting or ignoring the derivation operator, the
differential ring becomes an ordinary ring, defined by condi-
tions (1) and (2). It is convenient to use the symbol K to
denote either the ring {K;+,+}, the differential ring
{K;+,¢,'}, or, on occasion, just the set K of the ring, as
the context may dictate.

Powers of an element b € K are defined inductively:

% = 1 (if K contains 1), b% = b,..., b**% = (bI)b, this
definition being meaningful even if the multiplication of K
is nonassociative. The symbol b' denotes the derivative of
b € K (the result of differentiating b or applying the deri-
vation mapping to b); more generally, b(i) denotes the ith
derivative of b in accordance with the inductive definition:

b(o) = b and b(l+l) = (b(l))'. It may be observed that this

definition implies that b(l) = b'. DNotations Db'', b''', ....
may also be used, as in elementary calculus, to indicate these
higher derivatives of b. On occasion, the derivation ' will
also be denoted by the lower case letter d, with di(b) b(i)
for b € K.

Many of the familiar concepts of ring theory carry
over with appropriate modifications to the theory of differ-
ential rings. In place of ideals and homomorphisus, one now
has differential ideals and differential homomorphisms. A

differential homomorphism of a differential ring {K;+,+,'}

is a homomorphism of the underlying ring {K3;+,,} which
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commutes with the derivation; the special property of an ideal
which is the kernel of a differential homomorphism (i.e., a
differential ideal) is that it is closed with respect to the
derivation (as shown by Kaplansky [T]). It is natural to
pursue differential ring theory along lines which parallel
those of ordinary ring theory, asking the analogous guestions
about differential rings that one asks about ordinary rings.
Thus one might try to find structure theorems and study
extensiogs, radicals, and related concepts. There is a dis-
cussion of some of these matters in Kaplansky [7T], including
the Galois theory of differential field extensions and matrix
representation of Galois groups. This thesis, however, does
not concern itself directly with topics of the kind discussed
by Kaplansky.

Some examples of differential rings follow. In the
first three examples, the derivation is the usual differentia-
tion operator of analysis.

1. The ring of all polynonials in one variable over the
real or complex numbers.

2. The ring of all infinitely differentiable real-valued

functions on the real numbers.

3. The ring of all analytic functions on the complex
plane.

Y., An arbitrary ring K, in which the derivation is defined
by ¢! = 0 for all c e K.

5. An arbitrary associlative ring K, in which the (inner)
derivation is defined by c' = tc-ct for some fixed element

t ¢ K. This type of ring, as well as those of (4), (7), and



(9), includes cases when the differential ring K is finite.
If K is commutative, then tec-ct = 0, and this example reduces
to that of (k) above;

6. An arbitrary Lie ring K, in which the derivation is
defined by c¢' = tc (or c¢' = ct) for some fixed element t ¢ K.
This type of derivation is salso called an inner derivation
because of the genesis of the Lie product as a product commu-
tator in an associative ring. Routine computations (using
the Jacobi and antisymmetric Lie ring laws) show that the sum

and product laws are satisfied, as required for a derivation.

T. The algebra K over a field F with basis elements 1, i,
and J where 12 = j2 = -1, ij = ji = 0, i' = Js J' = -i, and,
for all ¢ ¢ F, ¢' = 0. These rules suffice to define XK as a

differential ring. Moreover, K is nonassociative because
(ii)J = -J whereas i(ij) = 0. It may be shown in this case
that the underlying ring K is actually a Jordan algebra. It
may be observed that types (4), (8), and (9) also include
examples of nonassociative differential rings.

8. The ring R defined from an arbitrary ring K in the
manner described below. Let the elements of R be the
ordered pairs (a,b) of elements a,b e K. Equality is defined
by: (a,b) = (c,d) if a = ¢ and b = 4. Addition and Multi-
plication are defined respectively by: (a,b)+(c,d) =

(a+c,b+d) and (a,b)(c,d) = (ac,ad+bec). Derivation is defined

by: (a,b)' = (0,b). Routine computations show that the sum
and product laws for the derivation are satisfied as well as
the usual ring properties, and so R is a differential ring.

If X is the field of real numbers, then R is the well-known



system of the Clifford numbers. If K is an arbitrary field,

then R is an algebra over K with basis elements 1 = (1,0) and

v = (0,1) where v2 0.

9. The ring R defined from a differential ring K as in

(8), except that derivation is defined by: (a,b)' = (0,a').
Agnain, routine computations show that the necessary condi-
tions for a differential ring are satisfied by R. This
example is that of Jacobson [6].

10. The differential ring of polynomials over a field F
in a single indeterminate, as given by Kurosh [15].

1.3 Historical Prelude.

The literature on derivations in algebra tends to
divide ilself into three main classes: the work of Ritt,
Kolchin, and others in differential algebra with its origin
in analysis; miscellaneous material on derivations in an
algebraic context; and the work initiated by Oysten Ore.
There is also additional material in the literature further
removed from the subject of differential algebra as conceived
in this thesis, but still within the broad general context
of the subject.

Differential algebra first developed from the works
of Ritt [20-21] and Kolchin [8-14], and this in turn arose
from the classical theory of differential equations.

Typical of these early papers i1s Ritt's paper on differential
equations from the algebraic standpoint [20], although in
this paper differential algebra had barely emerged from anal-
ysis as a subject in its own right.

Ritt, Kolchin, and others with similar motivations and



background noticed that much of classical differential
equations theory, especially the theory of linear homo-
geneous differential equations, is algebraic in nature. 1t
was then a relatively easy step to a consideration of formal
differential equations defined in differential rings from
which all topological considerations have been omitted;
these differential rings were originally taken to be commu-
tative and associative so as to be interpretable as rings of
functions. Seidenberg [25] and others used these formal
differential equations to define algebraic differential
manifolds. Such writers have generally studied in the con-
text of the classical differential theories of analysis but
with the cmission of all topological considerations.

From the point of view of algebraic analysts such as
Ritt and Kolchin, the elements of a differential ring are
(implicitly) functions. Abraham Robinson, in two bPapers on
what he calls local differential algebra [22-23], proceeds
further along the lines indicated by Ritt and Kolchin and
considers certain types of homomorphisms which have the same
effect as the classical substitution of particular values
into the argument of a function. From a consideration of
such homomorphisms, Robinson can, in effect, perform these
substitutions without having to postulate explicitly that
the elements of the differential ring be functions. Robtinson
applies these methods and considerations to the boundary
value problems of differential equations.

Many writers discuss derivation algebras on arbitrary

rings, or on special classes of rings, and others discuss
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certain classes of derivations. But such matters are not a
part of what is considered here to constitute differential
algebra. Derivation algebras are algebras whose elements

are themselves ring derivations, with the operations of addi-
tion and Lie multiplication defined on the derivations.
Differential algebra, however, concerns itself with differ-
ential rings of abstract elements where 8 unary operation of
derivation has been postulated as one of the operations of
the ring. It hes already been noted that in differential
ring theory as opposed to ring theory in general, all homo-

morphisms must be differential homomorphisms (with the under-

standing, however, that there are important examples of.
differential rings for which every ordinary homomorphism is
also a differential homomorphism). Much of the material
that has appeared in the last thirty years on derivations
in algebra has little direct bearing on the subject of
differential algebra as conceived in this thesisy this is
especially true of a large amount of material that properly
belongs to Lie theory.

1.4 Noncommutative Polynomials and other Algebraic Approaches.

The work of Oysten Ore is considered here. As indi-
cated in his paper [16], Ore's original motivations were
those of Ritt and Kolchin; however, his later work proceeds
in a new direction and is developed from strictly algebraic
premises.

In his paper [17] on this subject, Ore constructs a
ring of noncommutative polynomials as generalized polynomials

over an arbitrary associative division ring. It is here that



Ore first develops his theory from a strictly algebraic
point of view. In this baper, certain types of generalized
polynomials in one indeterminate are constructed, subject to
certain initially postulated conditions. These include the
possibility that every polynomial can be put into a
"canonical form with the coefficients from the division
ring on the left (or right) as well as the postulated exist-
ence of a well-behaved degree function. Involved in his
construction is af"conjugacy" mapping and a generalized
derivation mapping (this generalized derivation not always
satisfying the product law). Ore observed that, if his con-
Jugacy mapping is taken to be the identity mapping, then his
generalized derivation is indeed an ordinary derivation (as
~defined in Section 1.2 above).

Amitsur, Cohn, and Smits ggsume a generally nontrivial
conjugacy mapping in discussing Ore's construction or gener-
alizations thereof. However, unless the contrary is expli-
citly stated, in any reference here to Orels conjugacy
mapping the identity mapping will be understood. With this
assumption of a trivial conjugacy mapping, Ore's polynomials
are then polynomials in an indeterminate or element w, over
an associative division ring K, with the important rule
wb-bw = b' holding for all b e K.

From the point of view of differential algebra and of
this thesis, a ring X is initially given as a differential
ring on which a derivation has been postulated. Ore's point
of view, however, was that b' is a convenient name given to

the difference wb-bw as a function of b, and this function

11
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is discovered to satisfy the requirements for a derivation.
Ore's paper is primarily devoted to the Division and
Euclidean algorithms, factorization, and other related matters
in his ring of noncommutative polynomials. One of the points
of contact of Ore's work with this thesis, however, is that
the derivation defined in the basic ring K is extended to an
inner derivation given by wu-uw = u' for all u in the poly-
nomial ring. This ring of noncommutative polynomials is
denoted by the symbol K(w), the notation indicating that

K(w) is the rihg extension of K defined, with the appropriate
rules of operation, by the adjunction of w.

Most recent writers dropped the condition of divisi-
bility, requiring principally that K be associative.
Naturally one does not obtain all of Ore's particular
results with the use of these more general rings K.

Jacobson and Amitsur investigated the problem of
finding ideals in K(w) for associative K, all ideals in K(w)
being also differential ideals. Jacobson showed [4L] that if
K is an associative division ring of characteristic zero,
then either K(w) is simple or there must be an element
t e K such that t behaves like the w of K(w): that is,
tb-bt = b? for all b € K. Amitsur showed [1] that Jacobson's
result holds also for simple associative rings of character-
istic zero (simple in the ordinary rather than in the
differential sense). It was further shown by Amitsur that
the proper ideals of K(w), for the case of a simple assocla~-
tive ring K, are generated by the monic elements in the center

of K(w) and of degree greater than zero. Amitsur also
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characterized these ideals in terms of what he calls uni-
versal differential equations in K, these being equations
satisfied by all elements of K; and, conversely, he showed
that these ideals determine all universal di fferential
equations. For an arbitrary associative differential ring
K with identity, Amitsur and others observed that K(w) may
be constructed as the ring of endomorphisms of {K;+} gener-
ated by the left multiplications (the mappings ¢ to be for
fixed b and arbitrary c in K) and the derivation mapping.
In this construction each element b ¢ K is identified with
the left multiplication that maps each ¢ to be, whereas w
is the derivation mapping itself.

Cohn [2] showed that any associative ring with a
degree function that satisfies certain basic properties must
be a (generalized) Ore ring K(w) for some ring K. It is
important to note here, however, that this result depends
on the assumption of a (generally) nontrivial conjugacy
mapping.

Smits, in his two papers [26-27], generalizes the
Ore construction for rings with a derivation which is
nilpotent (a derivation such that, for some n, c(n) = 0 for
all c in the ring), by adjoining an element W_l to the Ore
polynomials, This element w—l serves as the multiplicative
inverse of w in the generalized system.

Finally, Qureshi [19] constructs a generalized ring
extension for generally nonassociative K, which includes
the constructions of Ore and Smits as special cases.

Qureshi, in [18], also postulates linear independence and a



generalized derivation and shows that these assumptions
lead to the Ore polynomials.

Whereas the writers noted in the preceding discus-
sions used the Ore construction of K(w) only with K under-
stood to be associative (with the exception of Qureshi's
~generalized construction which includes the Ore polynomials),
Schafer [24] (without relating to the work of Ore) specifi-
cally set out to define a more general concept of inner

derivation which would reduce to the usual notion in the

important special cases of the associative and Lie rings

(the examples of (5) and (6) in Section 1.2 above). His

inner derivation concept is discussed at length in Section 1.5
below.

A parallel subject of difference algebra has been
developed by certain mathematicians, though this subject
has no connection with the material of this thesis.
Difference algebra and differential algebra can be related
by means of exponential mappings and other methods which
properly belong to Lie theory.

Other people have studied generalizations of differ-
ential algebra: with types of generalized derivations
that are not closed with respect to the given ring (as
suggested by the differential of a function in analysish
or which satisfy a more general form of the product law
(such as the generalized derivations of Ore's polynomials
or the exterior derivative of Exterior Algebra); or with
differential rings with more than one derivation given

(as suggested by the partial and directional derivatives

1k
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of analysis). Further removed from the subject of this
thesis, but still within the general context of the broader
subject, are various differential operators; these operators
include the differential mapping of a differential group

(as applied mainly in algebraic topology, where it is a
boundary operator in homology theory) .

1.5 Embedding Problems and Nonassociative Inner Derivations.

An inner derivation for an associative or Lie ring is

an operation that is easily described because it is definable
in terms of the usual operations one already has in the ring.
If the derivation operator of an associative differential
ring is inner, then (as has already been noted in the case
of Ore's work) every ideal of the ring must be closed under
the derivation, and hence is & differential ideal (as
remarked above in Section 1.2). Moreover, every formal
differential equation in a ring of this kind is simply an
ordinary algebraic egquation; this fact is of theoretical
interest despite its apparent uselessness in the actual
solution of these equations. Because of the simplifications
inherent in the inner derivation concept, it is appropriate
to consider the possibility of extending derivations to
inner derivations (in the sense made precise below).

For an associative ring K, the following question
is answered in the affirmative by the noncommutative poly-
nomial construction of Ore: Is it possible to extend K to
a differential ring S in which the derivation is inner and
such that this derivation induces (as its restriction to K)

the given derivation in K7 Specifically, is it possible to



find a differential ring 8 subject to the conditions:

(1) K is a differential subring of § (i.e., K is a subring
of S and the value of a derivative b' of b ¢ K is
independent of whether b is regarded as an element
of K or of §);

(2) The derivation in 8 is inner, so that x' = WX=XW
for some fixed w € S and all x € 57
The answer to this question provides a solution for

an embecding problem for the associative ring K. To ask

the analogous question of rings which are not assumed to
be associative, one must first define a more general concept
of "inner derivation" for rings. For a general ring K, it
i1s not appropriate to define an inner derivation as a simple
mapping of x to wx-xw: because, unless K is associative,
the product law for derivatives may not be valid. The
product law requires that

wixy)-(xy)w = (wx—xw)y+x(wy—yw), for x,y,w € K,
and equality is clear only in those cases where w, X, and y
comprise an associating triplet.

Schafer was the first person to consider a general
concept of "inner derivation" to apply to rings that are
not necessarily either associative or of the Lie type. His
motivating interests are clear from his paper [24]. 1In
both the associative and the Lie cases, the set E of all the
inner derivations in a ring T is closed with respect to the
operations of addition and Lie multiplication. This is
equivalent to stating that this set E of endomorphisms is

a Lie ring. Schafer endeavored to have these closure
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properties of E preserved under a more general concept of
"inner derivation" in T and at the same time to have his
definition reduce (as much as possible) to the usual one
in the associative and Lie cases,

In order to include the Lie inner derivations in a
comprehensive definition, it was necessary to involve, in
an essential way, the left and right multiplications (the
mappings of x to bx and of x to xb) in the ring. Accordingly,
Schafer's central idea was to consider the left and right
multiplications of an arbitrary (generally nonassociative)
ring T and to consider further the Lie ring E of endomor-
phisms of {T;+} generated by these left and right multipli-
cations, i.e., the smallest Lie ring containing all left
and right multiplications. A derivation of T is then said
to be "inner" in Schafer's sense if it is contained in this
Lie ring E of endomorphisms, the inner derivations constitut-
ing a Lie subring of E. Schafer shows in his paper that
his definition agrees precisely with the usual definition
of a derivation given for Lie rings, and that it almost
agrees with that given for associative rings. Unfortunately,
his definition renders as inner some associative ring
derivations which are not inner by the usual commutator
definition. Jacobson [5] and others obtain some results
pertaining to Schafer's inner derivation concept.

There is, however, no need in this thesis to be bound
by Schafer's desire to leave the usual Lie ring concept of
inner derivation intact. Moreover, by making the concept

more refined, one may hope to obtain more results in the
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way of structure. It is very desirable, however, to have an
inner derivation reduce to the commutator type mapping in
the associative cases without any exceptions for which this
is not true.

As the term "inner derivation" is already used by
Schafer and others in connection with rings that may not be
either associative or Lie, the term "strong inner deriva-'
tion" is adopted for the analogous concept that is defined
and used in this thesis. It will be seen that a "strong
inner derivation" is formalix identical with the ordinary
(associative) concept.

Definition: Let T be a ring with an element w that

associates with all pairs of elements of T in the following
sense:
wixy) = (wx)y, x(wy) = (xw)y, x(yw) = (xy)w for all x,y € T.

Then the mapping x'to wx-xw defines a strong inner deriva-

tion in T.

It is not obvious, of course, that such mappings exist
for a given nonassociative ring T, but, if they exist, strong
inner derivations are indeed derivations that satisfy the
sum and product laws as given in Section 1.2. It may further
be shown that these derivations are also inner in the sense
of Schafer, although the converse is not generally true.

If T is associlative, it is clear that the concepts of

inner derivation (as usually defined for associative rings)
and strong inner derivations coincide. A simple computation
shows that the set of strong inner derivations on a ring is

a Lie ring with respect to the usual Lie ring operations
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(i.e., a derivation algebra as discussed in Section 1.3).
However, while such Lie ring closure is of great importance'
in the work of Schafer and others; it is of no special
relevance to this thesis,

Amitsur [1] and others define the concept of
"inner derivation" in still different ways (even in the
case of associative rings), but these definitions are not
used here.

1.6 Basic Goals.

A major task is to solve an embedding problem for s
differential ring K by extending K to a larger ring S, where
K is no longer assumed to be necessarily associative, where
the derivation in XK is thereby extended to a strong inner
derivation in S, and where S and K belong to the same general
class of rings. To illustrate this third matter, one may
point out (for example), that if K is associative, it is
desirable that S also be associative. As it is generally
the case in mathematics that one constructs the smallest
possible system that solves the given problem under consider-
ation, it is further desired that S be minimal, in the sense
that no proper subring of S also suffices to solve this
embedding problem.

If K is associative but has no other special proper
ties (such as being a division ring) that one would wish to
preserve in the embedding ring, this embedding ring S may be
taken to be the ring K(w) of the noncommutative polynomials
of Ore. However, if K is a division ring, whether associa-—

tive or nonassociative, it is desirable that the embedding



ring 8 also be a division ring. Ore, in his paper [1T7],
extended the ring K(w) to a larger division ring in the
case where K is itself an associative division ring. A
more general construction of an embedding division ring
(which, in the case of associative K, will be shown to
include Ore's division ring as a subring) will be carried

out in this thesis.

Under the assumption that K satisfies certain minimal

conditions, the possibility of nontrivial ideals in the
embedding ring K(w) will be investigated. This investiga-
tion will relate to the work of Amitsur and Jacobson, as
discussed in Section 1.3 above.

A (nonassociative) module construction will afford
an actual realization of these embedding rings. It will be
shown that, in the case where K is a division ring with
identity and characteristic zero, the related divisibility
of the embedding ring directly entails results concerning
the solvability of (algebraic) differential equations in K,
or in extensions of K that one naturally defines. This
transition from divisibility in the embedding ring to the
solvability of differential equations is effected in terms

of this module construction.

Theorems are numbered consecutively throughout the
thesis without reference to chapter or section. Lemmas are
considered to be preliminary to theorems and so are labeled

consecutively, in groupings leading up to each theorem. In
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making reference to a lemma, the section that contains the lemma

is ger-rally included only if it is in an earlier grouping.



CHAPTER 2

THE BASIC EMBEDDING PROBLEM

2.1 Preliminary Ring Concepts,

A differential ring K may conveniently be regarded
as a module over the ring of integers, where an expression
of the form nb, for b ¢ K and n an arbitrary integer, has
its usual meaning. If, further, K is of characteristic
zero and {K;+} is a divisible group, then K may also be
regarded as a module over the field of rational numbers,
an expression of the form (m/n)b for m and n integers
(n # 0) being well-defined. If K contains an identity, a
product (m/n)b may also be interpreted as a product within
the ring K rather than as a module product. To obtain this
latter interpretation, the rational number m/n is identified
with the element (m/n)<l ¢ K. It can be easily shown from
linearity properties of the derivative, that if rb ¢ K for
a rational number r, then (rb)!' = rb!',

Any differential ring K may be embedded in a ring
K(1) which contains an identity 1. The procedure is the same
as for an ordinary ring but with a definition given for
derivation in the ring extension. One then lets K(1) con-
sist of the ordered pairs (a,m) for a € K and m an integer,

subject to the following rules:

21
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(a,m) = (b,n) if and only if a = b and m = n.
(a,m)+(b,n) = (a+b,m+n).
(a,m)(b,n) = (ab+na+mb,mn).

(a,m)! = (a',0).

The identity of K(1) is (0,1) and K is effectively
embedded in K(1) by the identification of (a,0) with a.

Inasmuch as the assumption of an identity in K is a
considerable simplifying factor in our discussion and any
ring without an identity can so readily be extended to a
ring with an identity, it is henceforth assumed that the
basic ring K does contain the identity 1.

In a differential ring K the elements whose deriva-
tives are zero are of notable importance. They are called
the constants of the ring. It can easily be shown that the
elements of the form rel for rational r (where these are
defined) are constants.

An element b & K commutes with x ¢ K if bx = xb, and
the subset of K whose elements commute with all elements of
K is (as usual) called the center of K. It will also be

said that an element b associates with elements x and y in

K if each of the following holds: x(yb) = (xy)b,

(xb)y, blxy) = (bx)y, y(xb) = (yx)b, y(bx) = (yb)x,

x(by)

11

b(yx) (by)x. The set of all elements b which associate
with all pairs x,y of elements of K is called the nucleus
of K. The intersection of the center and the nucleus is
called the hub of K.

The nucleus, center, and hub of K are each closed

under the operation of derivation. For example, if b
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belongs to the center, then bx = xb for all x ¢ K. Differ-
entiating each side of this equality and using the product
law for derivatives, one obtains b'x+bx' = x'b+xb'., In
particular, b commutes with x', so that bx' = x'b, whence
b'x = xb'. This means that b' is in the center as desired,
showing closure of the center under derivation. The nucleus
is also closed under derivation, as one differentiates each
equality of association and proceeds (as with the center
above) to obtain the corresponding equality for b'. Thus,
to show that b'(xy) = (b'x)y, one differentiates

b(xy) = (bx)y to obtain b'(xy)+b(x'y)+b(xy")

= (b'x)y+(bx')y+(bx)y'; the conclusion then follows from
b(x'y) = (bx')y and b(xy') = (bx)y'. It now easily follows
that the hub is also closed under derivation.

The usual definition of simplicity is that a ring is
simple if it admits of no nontrivial factor ring., Since by
"ring" may be meant either an ordinary ring or a differential
ring, it is important to note that K may be simple either as
the ordinary ring {K;+,-} or as the differential ring
{K;+,+,'}. (Neither type of simplicity should be confused
with that of "differentiably simple" used by some writers.)

For nonassociative rings, there are two types of
"division ring", depending on whether equations of the
type ax = b and ya = b (for a # 0 and unknowns x and v)
are required to have unique solutions or merely to have

solutions. By division ring in this thesis is meant the

stronger concept: given any elements a and b of the ring

with a # 0, there is exactly one x such that ax = b and
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exactly one y such that ya = b.

For future reference the Leibniz formula for the nth
derivative of a product is given h~nre. This formula is
valid in any abstract differential -ing as well as in the
familiar rings of analysis, and its proof by induction 1is

analogous to the usual one found in analysis texts.

(n)

n . .
(ab) () o (1) (n-1)
i=0
When n = 1, the Leibniz formula reduces to the usual product

law for derivatives.

2.2 Evolution of the Embedding Ring.

It has been observed earlier that the ring of Ore
polynomials provides a solution of the embedding problem

for an associative differential ring K. This polynomial

embedding ring has an inner derivation which induces the
given derivation on the elements of K. In the absence of
associativity in the ring K, it is not immediately clear
that the related embedding problem can be solved in an
analogous manner.

It will be of interest, however, tentatively to suppose
the existence of a ring R with a special element w which
behaves like the w of the Ore polynomial construction for
associative K. Specifically, this would assume that a
derivation exists in R such that u' = wu-uw for all u € R
where, for a € K, a' = wa-aw gives the derivative of a
already defined in K. The immediate plan, therefore, is to
assume the existence of such a ring R, and to explore

elementary consequences of this assumption.



In line with the above remarks, it is now assumed
that K is embedded in a differential ring R (the identity
of R being that of K), and that there exists an element w
in R, but not in X, such that:

(1) w is contained in the nucleus of R.

(2) wu-uw = u' for each u e R.

Property (1) above, as will be recalled, implies that w
associates with every pair of elements of R. This associa-
tive property ensures that wu-uw = u' defines a strong inner
derivation in R. Another consequence of Property (1) is
that, for non-negative integers m and n, (v™) (v") = w .

The existence of a ring R satisfying the above two
properties will be shown in the sequel. The following

results are relative to the assumption that there does

exist such a ring R.

The following lemma shows that powers of w are also
contained in the nucleus of R, thus expanding on Property
(1) above.

Lemma 1l: For all integers n Z_O, w® is contained in the
nucleus of R.

Proof: It must be shown that, for all u,v € R:

(a) (uww™)v = u(vw'v).
(b) (uv)w® = u(vw™).
(e¢) (viu)v = vt (uv).

The proof of (c) is analogous to that of (b), so only the
proofs of (a) and (b) are given.
(a) One proceeds by induction on n.

If n = 0, then W= WO = 1, and the conclusion is clear.
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As an induction hypothesis, one assumes

ulwv) =}(uw1)v for all u,v € R and arbitrary fixed i > O.
- .
It must be shown that u(w' lv) = (uwl+l)v. One knows
- . . . .
that u(w’ lv) = u((wwl)v) = wlwlw v)) = (uw) (wrv) = (Cuw)w®)v

by the associative property of w and an application of the
induction hypothesis to uw, Wi, and v. But ((uw)wi)v
= (u(wwi))v = (uwi+l)v, and so u(wi+lv) (uwi+l)v as
asserted.

(b) This proof is also by induction on n.

If n = 0 then the conclusion is clear.

As an induction hypothesis, one assumes

ulvw®) = (uv)w® for all u,v ¢ R and arbitrary fixed i > O.
It must be shown that u(vwl+l) = (uv)wl+l. One knows
- . . . .
that u(vw— l) = w(v(w'w)) = w( (vwl)w) = (u(vw®))w = ((uv)w™)w

by the associative property of w and an application of the
induction hypothesis. But ((uv)wi)w = (uv)(wiw) = (uv)wi+l,
and so u(vwi+l) = (uv)wi+:L as asserted.

Henceforth, one may write wnuv, uwnv, and uvwn
unambiguously without parentheses.

The principal goal of this section 1s Theorem 1 below
which formalizes the computation of certain basic products
in the assumed embedding ring R. But first some preliminary
lemmas are needed.

Lemma 2: For all a,b € K and integers m,n > O:

(a) (a(bw’) = (ab)wn.

(0) (2™ 1) (pw®) = (aw™) (b )+ (av™) (b1w").

Proof: Part (a) is an immediate consequence of Lemma 1.

The proof of (b) is given.

26
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(aw™ 1) (b?) = ((aw™)w) (bw®) = (av™) (w(bw®)) = (aw™) ( (wb)w®)
= (awm)((bw+b')wn) = (awm)((bw)wn)+(awm)(b'wn)
= (awm)(b(wwn))+(awm)(b’wn) = (awm)(bwn+l)+(awm)(b'wn),

as asserted.

Lemma 2 is g special case of the following lemma,
which gives the formal analogue of the broduct of (single
term) associative Ore polynomials (ref. Ore [17]). =&

symbol (?) has its usual combinatorial meaning, and by

convention, (8) = 1l. Ifi >m, then, by convention,(?) = 0.
Lemma 3: For arbitrary a,b € K and integers m,n > 0:

(aw™) (bw®) =

1

(?)ab(i)wm+n_i
0

le~38

Proof: One proceeds by induction on m, with n arbitrary
but assumed fixed.
The case m = 0 is that of Lemma 2 (a).

As an induction hypothesis, one assumes that the

theorem holds for m = ¢ > 0, so that (awt)(bwn)

t . .
= Z (E)ab(l)wt+n_l.
i=0
It must be shown that (aw'*l)(py?)

t+
= ]
i=0

= (awt)(bwn+l)+(awt)(b'wn)

1 . .
(tfl)ab(l)wt+l+n-1

1

. One knows that (awt+l)(bwn)

1l

t . ot . :
y (E)ab(l)wt+n+l‘l+ y (z)ab(l+l)wt+n_l, by Lemma 2 (b)
i=0 i=0

and the induction hypothesis. Now replace i by i-1 in the

t t) - (tfl)

second summation and recall that (i—l)+(i ;7). Then

(aw® ¥ 1) (pu®)



28

t . . b+l . .
z (F)ab(l)wt+n+l—1+ Z (.t )ab(l)wt+n+l—1
=z i =) i-1

+ . .
+1 -
- 3 (tfl)ab(l)wt+n 1 1+(t)ab(O)Wt+n+l+(t)ab(t+l)wn
L b i 0] t
i=1
t . .
+ +n+1 - + +n+ 1
= (t_l)ab(l)wt n+l-i,  t 1)ab(o)wt n 1+(t+¢)ab(t+l)wn
. i 0 t+1
i=1
t+1 . .
+ -
= 2 (tzl)ab(l)wt n+l l, as asserted.
i=0
Corollary: For any b € K and any integer m 2> 0:
N % (m)b(i)wm—i
= i )

i=0

It is useful to note that this corollary implies

that vy = bw' 4... terms in lower powers of w.
Definition: A canonical polynomial is an element
& i
2 c,w' € R for ci'e K and n > 0. To "put an element u of R

i=0

into canonical polynomial form" means (if possible) to express
u in the equivalent form of a canonical polynomial.

Theorem 1: If an embedding ring R of the type under
discussion exists, the canonical polynomials of R must
multiply according to the rule:

h
i (i+3j-h)_h
Z (i+j—h)aibj wo.
h
J

Proof: Multiplying each aiwl by each bij, for 0 <1 <m

and 0 < J < n, one obtains (by Lemma 3) a sum of terms of
j(k)wl+J_k'

. . . . . h
two canonical polynomials will contain terms in w for

the form (i)aib By Lemma 3, the product of the

0 < h < m+n. To obtain the term in wh for any fixed h in
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this range, one must have i+j-k = h or k = i+j~h, and so
N i (i+J-h) h
the total term in w  is ) (i+j-h)aibj w . The

inequality i+}j > h follows from the inequality k¥ > 0, from
which inequality the indicated ranges of summation follow.

2.3 Definition of the Minimal Embedding Ring.

In this section a differential ring {K(w),+,+,'} is
defined., It will be shown that this ring is indeed a
minimal extension of K such that R = K(w) contains an element
W that satisfies conditions (1) and (2) of Section 2.2 above.
The canonical polynomials of Section 2.2 provide the moti-
vation for the following definitions, although it should be

understood that the assumption of the existence of the

embedding ring R has now been abandoned.

The elements of the set K(w) are defined to be the
g i
polynomials Z a,w in a symbol w with ai € K. The rela-
i=0

tion of equality, and the operations of addition and multi-

Plication in K(w), are defined by the following rules:

n . n .
L a;w = ] bw' if end only if a. = b, for 0 < i < n.

. i i i i — —_
i=0 i=0
The identity 1 € K is identified with the polynomial l'w0='wo.
n ; 1 5 n 5

'Z a W+ z biw = .Z (ai+bi)w .
1=0 1=0 i=0

n ; B m+n m h 5 (i+j-h) h

Z a W b.wd = Z Z z (1+ _h)alb. wo.
i=0 3=0 h=0 i=h-n j=h-i 1 9 J

i>0 0<j<n
It is clear that K is a subsystem of K{(w) under the

identification ¢ = cwo for any ¢ € K, and that the above

rules are in accord with the operations already defined in K.
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The rule of multiplication is that of Theorem 1 and was in
fact motivated by that result (which assumed the existence
of an embedding ring R). For the special case where a; = 0

for i # m and b, = 0 for j # n (and writing a for a and b

J
for bn), one has the rule of Lemma 3 above. In particular,

wb = bw+b' for b € K. It will also be noted that 1 g K is

the identity of K(w), and that w itself is the polynomial
O-w0+l°wl and hence included in the set K(w) - but not in

the basic ring K.

An operation of derivation in K(w) is also required,
but it will be defined later. The following theorem shows
that K(w), with the structure imposed above, is a ring.
Theorem 2: {K(w),+,+} is a ring.

Proof: It is clear that the rule of addition makes the system
an abelian group and that the rule of multiplication exhibits
multiplicative closure. Hence if it is shown that the

distributive laws are valid, the conclusion that K(w) is a

~ring will be valid.

n n . n .
Let u = f a.w , v = Z b.WJ, and t = X C.WJ, including
= j=0 J 3=0 d

zero terms if necessary to ensure identity of ranges of

summation. It is required to show that u(v+t) = uv+ut and
(u+v)t = uv+ut. Using the above definition of multiplica-
tion, and simplifying the notation by the omission of some

of the limits of summation, one obtains:



31

n . n . n . n . n R
u(v+t) = ,X a,w( z b, w9+ z c.wd) = ~z a.w1'<z (b.+c, )wd
izo 1 j20 9 o 9 i= j =

.)(i+j—h)wh

1}

) (i+§—h)ai(bj+c

€i+j—h)wh + 222 (i+§-h)aic§i+j—h)wh

1}
&~
e~
e~

e

+
C Ho
1

ja g

'_l

o'

[

n n . n n
= Z a.w ° Z b.wJ+ Z aiw . Z c.w¥ = uv+ut as asserted.

n
Now write v = z b.w , using the symbol i in place of J.

il
~—1
&~
&1

.
o
He
4
o'
-
0
| o
+
.
1
[ng
=3

1l
1
~1
~~1
e
S
| o
+
[
1
=
=
g
+
1
t~1
o~
=
i
=
H
0
K-
+
[
|
g
=
=

n . n . n . .
= Z a wl- z c.wJ+ E b.wl° c.w'J = ut+vt as asserted.

Theorem 3: The element w is contained in the nucleus of

the ring K(w).

Proof: Specifically, one shows that, for all x,y € K(w):
(1) (wx)y = wixy); (2) (xw)y = x(wy); (3)  (xy)w

= x(yw). Because the distributive laws are valid in the

ring K(w), it will suffice to let x = awm and y = bwn for

a,b € K.
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(1) To show that (wx)y = w(xy):

(wx)y = (w-awm)bwn = (awm+l+a'wm)bﬁn

) mil(m+1) (1) mntl-i, % (B grp (1) men-i
i= i=0

_ [(iii)ab(m+l)wn+(m+l)ab(o)wm+n+l % m+l o () mn+l=iy
m . .

" izo(?)avb(l)wm+n‘l - [(i)ab(m+l)wn+(%)ab(o)wm+n+l

m . . m . .
D erha e L Den A

[(E)ab(m+l) +( ) b(O m+n+l % (i)wm+n+l—i
o T (P aptHlEmroy ¥ (?)a'b(i)wm+n—i

. ntld
b(l)wm n+l-i

i=1 i

(@)ab(i)wm+n+1—i]

]
~1
P

|
=
[

I o~—38

=0

m m
+ +
obtaining: Y (™) (i+1) m+n-i y (i) m+n+1l-1
. i .
i=0 i=0
m m m
. z (m)a'b(l) m+n-i - (m)(ab(l))' m+n-i 2 (m)ab(l) m+n+l-i
. i . i i
i=0 i=0 i=0
B om (i) m+n-i m n
= w* E (i)ab w = w(aw *bw ) = w(xy) as asserted.



(2) To_show that (xw)y = x(wy):

m+1 . .
(xw)y = (aw ew)bw' = (awm+l)(bwn) _— (mTl)ab(l)wm+n+l"l
i=0
= (m+l) b(m+l)wn+(m+l)ab(o) m+n+l % (m+l (i)wm+n+1-i
O —

_ L(m+1) o (0) m+n+l, § (my o (1) min+l-i
= (m) + (7 o) ab .z (i)ab W
i=1
m
£y )ab(l) m+n+l-1i
j=p 171
m . . mt+l X .
= (?)ab(l)wm+n+l_l+ ) (" )ab(l)wm+n+l-l. Now replace i
iso * p=1 74

by i+l in the second summation of the above, obtaining:

% (?)ab(i)wm+n+l_i (@)ab(i+l)wm+n—i

Il ~18

+
i=0
_ m n+l ., n m n, _
= aw (bw +o'w) = aw (webw ) = x(wy) as asserted.
(3) To show that (xy)w = x(yw):
m . .
+n -
(xy)w = (awm°bwn)w = Z (l)wm B=1yy
oo (i) m+n+l-i m n+l m n
= Z (i)ab W = (aw ) (bw Y = (aw ){(bw ew)
i=0
= x(yw) as asserted. This completes the proof of Theorem 3.
The operation of derivation in K(w) is now defined.
Definition: wu-uw = u' for each u ¢ K(w).
Theorem 3 ensures that wu-uw = u' defines a strong
inner derivation in K(w). As noted above, wa-aw = a' for

a € K, a' being the derivative of a already defined in K.

Thus the derivation defined in K(w) extends the original



derivation given in the basic ring K.

It is now possible to sum up the above material in
the following theorem.
Theorem 4: There exists a differential ring R which provides
a solution of the basic embeddiag problem for a given differ-
ential ring K. Moreover, the unique minimal such ring R may
be characterized as a ring of polynomials over K in an
element w such that:
(1) w is in the nucleus of R.
(2) wu-uw = u' for any u € R.
Proof: Let R = K(w). The (1) and (2) follow from Theorem 3
and the definition of derivation. By the development of
Section 2.2, any subring of K(w) which satisfies these two
properties must contain the canonical polynomials and hence
all of K(w), thus establishing minimality. The uniqueness
of R follows primarily from Theorem 1.

It is clear, of course, that the results in Section
2,2 shown to be valid for the assumed embedding ring R are
valid for the ring K(w). In particular, powers of w are
contained in the nucleus of K(w).

Finally, it should be noted that K(w) is formally
the ring of Ore polynomials, as generalized to a basic ring
K no longer assumed to be associative. 1In the sequel, this
ring K(w) is referred to as the ring of the Ore polynomials
based on the given differential ring K.

This section is concluded with a brief note to the
effect that the ring K(w) is a special case of a more general

construction of Qureshi [19]. Qureshi's ring S will be

3k
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expressed in terms of the notation used in this thesis,
One starts with a basic ring K for which k+1 endomorphisms,

fO’ fl, ceey T of {K;+} are defined.

The crux of Qureshi's rule of multiplication is:

k’

nk . .
w'b = ] 8X(b)w’ for b e K and
1=0

i = oo s
Sn(b) ) dl+--§+dn=iFled2 Fdn(b)'
To obtain the Ore polynomials, one takes k = 1, fo(b) =D,
and fl(b) = b, for all b € K. Routine computations show
that, in this case, Si(b) (?)b(n_i), and the corollary to

Lemma 3 above easily follows.

It may be noted, however, that Qureshi is not concerned
with differential rings as such; any derivations that appear
as special instances of his construction are incidental to
his primary goals.

2.4 The K-module M.

A "left K-module" M is constructed in this section,
with K the basic differential ring as described in Chapter 1.

This module M will lead to a realization or representation

of the polynomial ring K(w). Unless K is itself an associa-
tive ring, M will not be a module of the usual kind because
the associativity requirements will not be met; the remain-
ing properties of a left unital (or unitary) module, however,
will be evident from the definition given below. It may

also be noted that the representation of K(w) as a ring of
endomorphisms of {K;+}, as was briefly described in Section

1.4 orf Chapter 1 above, will not be valid if the basic ring



K is nonassociative.

The underlying set of M is the set of all functions
defined on the rational integers, assuming values in K, and
subject to the condition that the values of any function
are zero for all sufficiently large integers. Thus each
element of M may be represented by a symbol
(...,a_e,a_l,ao,al,ae,...), more simply written in terms of
its typical element as (...,ai,...), where each component
8. ¢ K and where there exists an n (depending upon the
element of M under consideration) such that a; = 0 for all
i > n. The basic algebraic structure of the system is
determined by the following properties which constitute the

definition used in this thesis of the system known as a

left K-module.

Equality: (...,ai,...) = (.ousb,5...) 1f &, = b,

i 1
for all 1.
Addition: (...,ai,...)+(...,bi,...)= (...,ai+bi,...),

while subtraction is defined in the analogous componentwise
manner.

Left Multiplication: For arbitrary b e K,

blueesBygeoa) = (...,bai,...).

i

Note that bc(...,ai,...) = (...,(bc)ai,...), whereas
(b(c(...,ai,...)) = (...,b(cai),...); these products are
equal only if, for each i, (bc)ai = b(cai).

In addition to the above properties, which make the
set comprising M into a K-module for a generally nonassocia-

tive ring K, the following unary operation is defined on M:

M—Derivation: (...s8:s+0:)" = (...,ai_l+a&, e )

36
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This M~derivation mapping is not a derivation because
M is not a ring. In the sequel, however, formal analogues
of the sum and product laws for derivatives are established
for this unary operation, and so the notations and termin-
ology of derivatives will be used without special comment.
In particular, one may speak of M-derivatives and, for
n > 0, of nth M-derivatives (the results of applying this
M-derivation n times) where, for any m ¢ M, m(o) = m,

Given an arbitrary (...,ai,...) e M, it is sometimes
convenient to refer to a; as being in the "ith position".
If t is an element of M such that aj = 1 for some fixed |
and ai = 0 for all i # j, this element can be most easily
described by saying that it has 1 in the Jth position and
zeros elsewhere. It is clear from the definition of
M-derivation that the nth M-derivative t(n) of t, for n > 0,
is that element of M which has 1 in the (j+n)th position and
zeros elsewhere. Each operation of M-differentiation shifts
the 1 component one position to the right.

In particular, it is useful to identify a special

element to be labelled z. The element z is defined as that

element of M which has 1 in the zero-th position and zeros

elsevhere. From the above remarks, z(n) is that element with
1l in the nth position and zeros elsewhere (for any n > 0).
The symbol z(_n), for n > 0, is defined to be the element
with 1 in the (-n)th position and zeros elsewhere. This
notation z(—n> for positive n suggests that z is being

"M-integrated" n times, a suggestion that is not inappro-

priate in view of the fact that the nth M-derivative of



(-n)

p is z itself. It now follows that, for any integer
n,z(n) is that element which has 1 in the nth position and
zeros elsewhere. Note, in particular, that z(o) = z,

For each element of M that has only a finite number

of nonzero components, a canonical form is easily obtained.

Thus let m = (...,ai,...) where, for integers k and n, a;= 0

for all i <k and all i > n. Then m can be expressed as
n . .
- . (i) (i) .
the canonical sun Z aiz where aiz is the element of
i=k

M with ai in the ith position and zeros elsewhere.

It is possible to extend the above symbolism in a

bpurely formal way to include arbitrary elements of M. Thus
ifm = (...,ai,...) is any element of M (where, for all
i >n, a; = 0), one has:
n
- - (i)
m = (...,ai,...) = .z a;z .
1==—o0

This indicated sum is, of course, purely formal, with no
implication of convergence in‘any sense of the word.
The above defining properties of M may be restated

in terms of these formal infinite sums as follows:

n . n X
Equality: z a.z(l) = Z b.z(l) if a. = Db,
=gua ity L i L i i i

i=—=c0 i=—o0
for all 1i.
t: (i), % (i) & (1)
Addition: ) a.z + ) b,z = ) (a,+b.)z .
R . i . b i . b i i
1==00 1=~—oc0 1==00
v (1) S (1)
Left Multiplication: b| J a = = ) (ba,)z
iZo {Tme T '
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MoDerivation: ( § a.2(1))r = V. (s sat)gli)
-Derivation; ;Z 8,z = 12 a;, _,*al)z
i=—oo i=—oo
. , -
with an+l 0.

The rule of M-derivation Jjust given is essentially
that given by Jacobson [4] for what he terms a "differential
transformation”, with an associative division ring K acting
on a finite dimensional K-module.

It will now be shown that the operation of
M~derivation in M satisfies the formal sum and product laws
for derivatives.

It may be noted that, for any a,b € K and any integer
n, a(bz®)) = (a0)2(®). This follows from the definition of
z and the obvious equality a(b+l) = (ab)e+l. Henceforth one

(n)

may write absz without ambiguity.

It may also be noted that, for a ¢ K and any integer

(n)+az(n+l).

n, (az(n))’ a'z For az(n) = % aiz(i), where
150
n .
a, = a and a, = 0 for i # n. Then (az(n))' = (ig_ aiz(l))'
+1 .
= nZ (ai—1+a£)z(l) = aﬁz(n)+anz(n+l) a’z(n)+az(n+l) as
i=~—c0

asserted.

The formal sum and product laws for M-derivation
assume the following forms, for all x,y ¢ M and ¢ ¢ K:
(1) (x+y)' = x'+y"',
(2) (ex)?! = c'x+ex’'.

Since any element of M is expressible as an infinite
formal sum of terms where additions and left multiplications

are performed termwise, in order to show the validity of
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these laws it will suffice to let x and y be single terms.

(n) (n)

Thus let x = az and y = bz for a,b ¢ K. Then

eyt = (az™) ) e (2B ) o (g (M ez (0¥) ) (g1 (1) g, (n42)
= (ar+p") 2 a(as0) 2P ) o (a4v) 1204 (a4p) 2 (2L

= ((a+p)2(®)) 1 = (x4y)'. And (ex)' = (c(az'®))

= (eaz™)) 1 = (ea) e icaz ™) o (crarcat)z (P icas (BT

= eraz™ac(as™aa 1)y o (e (™)) ae(az (B = crxrext

as asserted.

2.5 TRealization of the Ring K(w).

The realization of the embedding ring K(w) is now
begun.
First a set S is identified. The elements of S are

the functions f, on M into M, of the following type:

aiél)for m ¢ M.

For n > 0 and a, ¢ K, f(m) =
- 0

(R ga]

i

Thus an element f € S is determined by the value of n and
the choice of elements a, € K. Note that here n must be
non-negative.

The usual functional definitions of egquality and
addition are applied, so that, for all f,g e S:

f = g only when f(m) = g(m) for all m g M;

(f+g)(m) = f(m)+g(m) for all m ¢ M.
It is clear that S is closed under the operation of addition.

It will be useful to formulate a canonical form for

n
a given f ¢ 8. Accordingly, let f(m) = ) a.m , and let
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£, (m) = aim(l) (0 <i <n). Then, from the definition of

n
addition, f = z fi, which is now a sum in S. The function
i=0

fi will be denoted by the convenient symbol aitl; accordingly,

n .
£ = z aitl, and this expression is regarded as the
i=0

canonical form of f.

. n .
Thus .Z (aitl)(m) = _Z a.m(l) for all m ¢ M,

(0)

If n = 0, a function £ ¢ S is such that f(m) = a,m
= agm, where f is the left multiplication by a, € K. In
this case, f = aoto, which may be written simply as ag.
Accordingly, f(m) = ao(m) = agm. A left multiplication f
i1s clearly an endomorphism of the group {M3;+}. It will
also be noted that tl may be written simply as t, and l-ti

simply as £,

If n =1, ay = 0, and a; = l, then f = O-to+l-tl = t,
and f(m) = t(m) = m', with m' the M-derivative of m. In
this case, £ = t is the M-derivation mapping. This element

t is also, by Section 2.4 above, an endomorphism of {M;+}.
Because ti(m) = m(i), £t i really the composite of i
applications of the M-derivation t; it is clear, therefore,
that each ti is also an endomorphism of {M;+}. It is
further clear that aiti, for a; € K, is a composite of the
left multiplication by a; and the mapping ti, and thus an
endomorphism of {M;+}. Thus the elements of S, as finite
sums of the functions aiti for O < i and a; € K, are

endomorphisms of {M;+}.



In view of the basic role played by t in this descrip-
tion, the set S will henceforth be denoted by the symbol
K(t). Further operations of multiplication and derivation
will be defined on this set to obtain a differential ring,
and it will be found that this ring will be an embedding
ring for K isomorphic to the ring K(w) of the Ore poly-
nomials,.

Setting m = z in the definition of equality in K(t),

n n

one finds that aitl = 3 bitl if and only if, for each
i=0 i=0
v i 5 (i)
i, a, = b,. This is because ) (a,t”)(z) = ) a.z .
1 1 . 1 . 1
i=0 i=0

. n )
) (bitl)(z) = 7 biz(l), and equality is termwise in M.
i=0 i=0
From the definition of addition given above, it is clear
n ; B i n i
that ) a,t'+ ) b.tT = ) (a.+v.)t*. (Of course, given two
LB T | , b i 74
i=0 i=0 i=0

elements of S in canonical form, zero terms may be included
in either of them to ensure identity of ranges of summation.)

It can easily be shown that {K(t);+} is an abelian

n .
group with zero, 0 = ) 0.t (for any n > 0), and inverses,
i=0 o
s i = i
- Z ait = Z (—ai)t .
i=0 1i=0

It is not possible to define multiplication in K(t)

simply as the equivalent of the usual composition of functions:

(fg)(m) = f£(g(m)) for all m € M. This is due to the fact
that composition of the functions is an associative opera-
tion, whereas multiplication in the basic ring K is not

assumed to be associative. Thus let a,b,c € K with

L2
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m = cz € M. One finds that a(b(m)) = (a(bec))z, whereas
applying the product ab to m, one obtains (ab)(m)= ((ab)ec)z;
equality of (a(bc))z and ((ab)c)z follows only when a(be)
= (ab)ec, which equality would not generally hold in a non-
associative ring,. Hence, for nonassociative K, K(t) would
not be a ring extension of K as required for an embedding
ring. Therefore it is necessary to give a modified
definition for the "product" of functions in K(t).

The following lemma will ensure uniqueness of products.,

Lemma 1: If h,k € K(t) and h(z) = k(z) then h = k.

n . n .
Proof: Let h = J at', k= J b.t'. Then h(z) = k(z)
i=0 i=0

5 (i) _ % (i)
entails z aiz = 2 b.z s Whereupon, for each i,
i=0 =

ai = bi' The conclusion h = k then follows.

Now let f, g, and h be elements of K(t). Then:

The element h is the product fg if f(g(z)) = h(z).

It is important to note in this definition that g
and h are applied, not to an arbitrary m € M, but to the
special element z. Also, it has not yet been established
that this product fg always exists. However, 1f f is the
left multiplication by a € K and g is the function ti, then,
as an immediate consequence of this definition, the function
ati is indeed the product of a and ti, as one would
naturally expect.

The distributive laws for K(t) are given by the next

lemnma.
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Lemma 2: Let f,g,h € K(t). Then, if the indicated products
are defined, f(g+h) = fg+fh and (g+h)f = gf+hf,
Proof: The conclusion follows from applying both sides of
each asserted equality to z, using the definition of addi-
tion and the fact that these functions £, g, and h are
endomorphisms of {M,+}.

The existence of the product fg for arbitrary elements
f and g of K(t) is shown by the following lemma.
Lemma 3: Given any f,g ¢ K(t) there is an h ¢ K(t) such
that h = fg.
Proof: In view of the distributive laws, it will suffice
to let £ = at™ and g = bt for a,b ¢ K. But, applying the
Leibniz formula of Section 2.1 above, (at™) (pt™(z2))

(at™) (b2(7)) = a(pz(®))(®) - Z i), (n))(n-1)

m . .
- +
= ) (m)ab(l)z(m+n i) . 2 ( )ab( ) mrn- l(z), and hence, by
m n T om (i), m+n-i
the definition of product, (at ) (bt ) ) (i)ab t .
i=0
n m (i), m+n-i
Thus z (i)ab t is the desired element h = fg as
i=0
asserted.
Theorem 5: {K(t);+,+}is a ring isomorphic to the ring

{K(w)3;+,*} of the Ore polynomials of Section 2.3 above. The
left multiplications by a ¢ K constitute a subring of K(t)
isomorphic to the basic ring K, under the natural corres-

pondence of the element a ¢ K with the left multiplication

by a.



Proof: That K(t) is a ring follows from the preceding

lemmas. The asserted isomorphism is naturally given by

n . n .

Yoa,wh o> Y aitl

=0 i=0

for a; € K. Clearly the correspondence is one~to-one. The

rules of addition are formally the same in the two rings and

the isomorphism now follows from the fact that the rules of

multiplication, as given in Lemma 3 of Section 2.2 and at

the end of proof of Lemma 3 above,are also formally identical.
Henceforth, the left multiplications will be

identified with the corresponding elements of K, so that

the basic ring X will be embedded in K(t), or, equivalently,

K(t) will be a ring extension of K.

It remains to define a strong inner derivation in K(t).

Definition: For all u € K(t), u' = tu-ut.

The following is an easy corollary to Theorem 5.

Corollary: {K(t);+,+,'} is isomorphic to {K(w);+,-,'},
n 5 n i
under the natural correspondence X ait > z a;w
i=0 i=0

Henceforth, the differential rings K(t) and K(w) are

identified, so that, in particular, the element t € K(t) is

n .
equated to the element w € K(w) and, in general, ) aitl is

1i=0
n

equated to z aiwl. Thus this section has effected a reali-
i=0

zation of the ring K(w) of the Ore polynomials.

L5



CHAPTER 3

IDEALS OF K(w)

3.1 D-Ideals.

The purpose of this chapter is to study ideals in the
embedding ring K(w) of the Ore polynomials based on a given
ring K. Henceforth, it is assumed that the ring K, and

hence also the ring K(w), is of characteristic zero (with

identity 1).
It will be useful to consider sz mapping D of K(w)

into K(w) defined as follows:
v i & i-1

D( ) a,w) = ) iaiw for a, € K, where, for i = 0,
= i=0

the symbol iaiwi_l is equated to 0.

In particular, if the mapped element consists of a
single term awn, then D(awn) = nawn_l.

It is clear that, for all u,v ¢ K(w), D(u+v) = D(u)+D(v).
This additive property is the Sum Law for derivatives, The
following lemma, showing the Product Law to be valid for this

mapping D, will ensure that D is a derivation.

Lemma 1: For all u,v e K(w), D(uv) = usD(v)+D(u)-v.
Proof: 1Inasmuch as D is additive, it will suffice to
consider single term elements. Accordingly, let u = aw™
and v = by" for m,n > 0 and a,b ¢ K.

L6



One uses the identity (?)n+(m;l)m = (?)(m+n—i).

D(uv) = D(awm.bwn) = DY % (?)ab
1i=0

(i)Wm+n—i)

(™) (m+n-i)ap L) ym¥n-izl

1]
i F =]

(m)Wn—l+mil(m)nab(i)Wm+n~i_l . i (mTl)mab(i)wm+n—i—l

- % (m)nab(i)wm+n-i-l .
i=0 T '

= (aw™) (abw™ 1)+ (mav™ 1) (bw®)
= u*D(v)+D(u)+v as asserted.
It is clear that D is formal polynomial differentia-
tion of ordinary calculus applied to the elements of K(w).
As suggested in Section 1.2 of Chapter 1, the letter
d may be used as an alternative symbol for the derivation

' in either K or K(w). Accordingly:

n . n . n .
a( z a.wh) = Z d(ai)wl = 2 a wl, recalling that

A D-constant is an element u € K(w) such that

D(u) = 0. It is clear that every element a € K is a
D-constant. Conversely, inasmuch as K is of character-
n-1

istic zero, D(aw®) = naw = 0 only when a = 0 or n = 0;
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hence every D-constant is an element of K. On the other

hand, a d-constant is an element u ¢ K(w) such that

d(u) = u' = 0. Since d(w) = 0 and D(w) = 1, w is a
d-constant but not a D-constant.

A D-ideal of XK(w) is a differential ideal of the ring
{K(w)3;+,,D}, or, equivalently, an ideal of {K(w);+,«}
which is closed with respect to the derivation D. If K(w)
has no D-ideals other than itself and the zero ideal, it
is D-simple. One similarly defines the concepts of d-ideal
and d-simple in terms of closure with respect to the
derivation 4.

Trivially, every ideal of the basic ring K is closed
with respect to D. Every ideal of K(w) is similarly closed
with respect to d because d(u) = wu-uw for any u ¢ K(w).
However, it is a nontrivial matter to consider d-ideals of

K and D-ideals of K(w). The words ideal and simple ring

without further qualification will be used relative to
ideals of either K or K(w) which are not necessarily closed
with respect to either derivation (except for 4 in K(w)).
It is of interest to find conditions for the
D-simplicity of K(w). To this end, some preliminary

definitions and lemmas are needed.

n .
Let u = z a.w' for a; € K and a, # 0, where it should be
recalled that this canonical representation of u e K(w) is
unique. The degree of u is n, the largest index i for

which a. # 0, and one writes n = Deg u. The degree of the

1

one exceptional element zero is not defined. It is clear



that Deg uw = 0 if and only if ue¢ K and u # 0. If a, = 1,
n n-l i 0
so that u = v + z a,w', or u = lew =1 if n is zero, then
i=0

u is monic.

The following lemma was proved by Amitsur [1] for a
simple, associative ring K. The simplicity of Amitsur is
here replaced by d-simplicity while K, as usual, is not
assumed to be associative.

Lemma 2: If K is d-simple with I an ideal of K(w) and u

any nonzero element of I, then there exists a monic v ¢ I

where Deg u = Deg v.
- i
Proof: Let u = z a;, v’ for a, e K, a # 0, and let J be
_— 29
the d-ideal generated by a in the basic ring K. Since K

is d-simple, J = K, and so J contains the identity 1.
Hence there exists a finite sequence of elements

8 = S5 S5, Sgse.ves S 0= 1, where each s, ¢ J (i > 1) is
derived from the preceding elements of the sequence by

means of either subtraction (si = s where j,k < i),

37k
left multiplication by an arbitrary element of K, right
multiplication by an arbitrary element of K, or the
derivation 4.

One then constructs another finite sequence of
elements of K(w), u = xl, X5 x3,..., X where each X
is derived from previous elements of this sequence in
precisely the same way (by means of the same operations)
as s, was SO derived in the corresponding sequence in J.

For example, 1if s; = s

then X xj—x ; 1if s. = as,,

3%k K’ i j
then x, = ax,; if s, = s,a, then x, = x.,a; and if
i J i d 1 J

k9



s, = 35, then x, = xj. Then the following three properties

hold:

(1) Each x; € I (in particular, X, = ue I).

(2) Each x. = siwn+...terms in lower powers of w. For
i=1, X, T u~= anwn+... = slwn+... = siwn+...terms in
lower powers of w. If now 5; = sja (for i > 1) and
it has already been established for Sj that the corres-
ponding xj is equal to sjwn+...terms in lower powers
of w, then x; = xja = (sjwn+...)a = sjawn+... = siwn+...
...terms in lower powers of w as asserted. A similar
remark applies if s is obtained from one or more
previous elements in the sequence by means of other
operations in the ideal.

(3) x, is monic, because x = smwn+...terms in lower
powers of w and C. 1. This element X € I is then
the desired v of the lemma, completing proof of Lemma 2.

Lemma 3: If J is a d-ideal of K, then the set I consisting

of the elements 'aniwi e K(w) for a; € J and with n ranging

i=

over the non-negative integers is a D-ideal of K(w).

n . n .
Proof: Let u = Z a.wl e I, v = Z b.wl e I,
—_— i i
i=0 i=0
v i
t = z c,w € K(w) (including zero terms if necessary to
1=0
ensure identity of ranges of summation). Then
s i
u=-v = z (a.-b.)w € I because each a.-b, e J. Moreover,
. i i i i
i=0
tu € I because tu is (by Theorem 1) a sum of terms of the
i (i+j-n) h (i+j-h) .
form (i+j—h)ciaj w , each aj € J (using the

L )c.a€l+J—h) e J.

d-closure of J), and hence each (i+j—h 585
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n .
Similarly, ut ¢ I. Finally, D(u) = iaiwl'le I because
i=0

each iai € J, and the proof of the lemma is complete.
The following theorem gives a necessary and

sufficient condition for XK(w) to be D-simple.

Theorem 6: K(w) is D-simple if and only if K is d-simple.
Proof: Let K be d-simple and let I be a nonzero D-ideal of

K(w). Then there exists a nonzero element u € I of least
degree, so that Deg u < Deg t for all nonzero t & I. By
Lemma 2, there is a monic element v ¢ I where Deg v = Deg u,
and hence v is also of least degree in I. Then

v = wi4...terms in lower powers of w, where n = deg v.

Since I is a D~ideal and hence closed under the derivation

n-1 . .
+...terms in lower powers of w and is an

D, D(v) = nw
element of I. If v were not 1, D(v) would be an element

of I of lower degree than v, contradicting the above defini-
tion of v. Therefore, v = 1, I = K(w), and hence K(w) is
D~simple.

Conversely, let K(w) be D-simple and let J be a non-

zero d-ideal of K. Let I be the set of the elements

t i

z aiw for a; € J and n ranging over the non-negative
i=0

integers. By Lemma 3, I is a D-ideal of K(w), and, since

K(w) is D-simple, I = K(w). Hence 1 = 1.w% ¢ 1. By the

way I is defined, 1 € J and so J = K. Hence K is d-simple.
In the following special case, D-simplicity in K(w)

reduces to ordinary simplicity.



Corollary: If there exists an element x in the center of K

such that x' = 1, then

D(v) = vx-xv for all v € K(w),
and K(w) is simple if and only if K is d-simple.
Proof: Let v = aw  for a e K and n > 0, where it clearly

suffices to consider v as a single~term element of K(w).
Then vx-xv = (aw")x-x(aw®) = a(an+nx'wn—l)—xawn
= (ax—xa)wn+nax’wn-l = naw =~ = D(v) as asserted.

Since 1t is clear that every ideal of K(w) is also
a D-ideal, by (1), K(w) is simple if and only if it is
D-simple. It then follows from the theorem that K(w) is

simple if and only if K is d-simple.

3.2 Preliminary Lemmas.

In the sequel, a study will be made of ideals in K(w).
In particular, the possibility of ideals in K(w) for a
d-simple ring K will be investigated. The D mapping will be
used to prove some resulits which will be needed in the
following section.

(1) (,(3) (5)

Lemma 4%: If a,b,c e X, m,n,t > 0, and a c
(a(l)b(J))c(k)for all integers i,j,k > 0, then

(awm)(bwn'cwt) = (awm-bwn)(cwt)

Proof: It is first shown that the term in WO of
(awm)(bwn-cwt) is equal to the term in w0 of (awm-bwn)(cwt).
(n)bc(i)wn+t—i

(awm)(bwn°cwt) = aw 2 i

- % § (@)(?) (bc(i))(J)Wm+n+t_i_j.
j=0 i=0 9 *



For the term in wo, m+n+t-i-~J) must be 0, and because i < n

and j < m, m+n+t-i-j can only be zero if i = n, §J = m, and

(n))(m)WO

t = 0. Thus the term in w0 must be ("W ™) a(be

m n
(n)y(m)

= a(be . One now obtains, with the aid of the Leibniz

formula:
a(bc(n))(m) = a°

. i
i

le~B

. . m . .
+_ -
(m)b(l)c(m n-i) _ ) (@)a(b(l)c(m+n 1)).
. i
0 i=0
m n t nom (i) m+n-i t
Similarly, (aw <bw )(cw') = ( § (i)ab W )(ew”)
i=0
m m+n-i . . .
m+n-i, ,m i j +n+t-1-]
= 7 Py (ap () (o (9)ymenrteisg
i=0 3=0 J
For the term in WO, m+n+t-i-j must be 0; and because i < m
and j < m+n-i, m+n+t-i-j can only be zero if i+j = m+n
(i.e., J = m+tn-i) and t = 0. Thus the term in w9 must be

ﬁiﬁ (3 (an(H)) (e (mrm=t)y g0 lgo<?><ab(i)><cm*n'i’>.

IlM

Since, by the hypothesis of the lemma, a(b(i)c(m+n—i))
= (ab(i))(c(m+n—i)), these two terms in Wo are equal as
asserted.

The proof of the equality (awm)(bwn-cwt)
= (awm°bwn)(cwt) is now proved by induction on the sum
m+n+t.

If m+tn+t = 0 the m = n =t = 0, w = 1, and the
conclusion follows because &a(bc) = (ab)e.

As an induction hypothesis, one assumes the lemma is

true for all m,n,t such that m+n+t < s for some fixed s > 0.
It must be shown that the lemma is true for m+n+t= s.

Accordingly, let (awm)(bwn-cwt) = (awm°bwn)(cwt)+r,

>3



where the lemma is true if r = 0. Applying the derivation D

to each side of this equality, one obtains:

(mawm_l)(bwn-cwt)+(awm)(nbwn—l-cwt)+(awm)(bwnotcwt—l)

= (mawm—lobwn)(cwt)+awm-nbwn—l)(cwt)+awm-bwn)(tcwt—l)+D(r).
By the induction hypothesis, noting in each case that the

sum of the exponents is less than s, (awm_l)(bwn-cwt)

n-1 m n—l)

-cwt) = (aw <bw

t—l)

(cwt) and

= (awm_l-bwn)(cwth (aw™) (bw ,

(awm)(bwn-cwt—l) = (awm-bwn)(cw . Hence D(r) = 0 and r
is an element of the ring K.

Tpnasmuch as the term in w0 of (awm)(bwn-cwt) is the
same as the term in wo of (awm-bwn)(cwt) and r ¢ K, it must
be that r = 0. This completes the proof of the lemma.
Corollary: With a, b, c, and m, I, t as in the lemnmsa,

(a(i)wm)(b(j)wn.c(k)wt) = (a(i)wm b(j)wn)(c(k)wt)

for all i,J.k > 0.

Lemma 5: If ¢ is in the nucleus of K then, for all n > 0,

cw? is in the nucleus of K(w).

Proof: This follows from Lemma U4, the distributive laws

of the ring, and the fact that the nucleus is closed under

the derivation d.

Lemma 6: If v € K(w) associates with all pairs of elements
of K, then so does D(v).

Proof: The assumption is that, for all a,b € K,

(va)b = v(ab), (av)b = a(vb), and (ab)v = a(bv). The

corresponding equalities for D(v) follow Dby differentiating

each of these three equalities of association and then using

the fact that D(ec) = 0 for any ¢ € K. For example, in the
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case of the first equality of association: (va)b = v(ab),
and on applying D to both sides,
(D(v)ea)b+(veD(a))b+(va)(D(Dp))

= (D(v))(ab)+v(D(a)eb)+v(asD(b)), whereupon, because a and
b are D-constants, (D(v)e.a)b = (D(v))(ab), as asserted.
Lemma 7: An element v ¢ K(w) associates with the pair

u,y ¢ K(w) if and only if nv associates with this pair of
elements for each nonzero integer n.

" Proof: If v associates with u and y, then v(uy) = (vu)y,
u(vy) = (uv)y, and u(yv) = (uy)v. The corresponding

equalities for nv follow from multiplying each of these

three equalities of association by the integer n, recalling

that K(w) is a vector space over the integers.
Conversely, let one of these equalities of associa-
tion fail to hold; without loss of generality, suppose

that v(uy) # (vu)y. The v(uy) = (vu)y+t for t # O.

Multiplying by n, one obtains n(v(uy)) n((vu)y+t), and
hence (nv)(uy) = ({(nv)u)y+nt. Since t # 0 and the ring has
zero characteristic, it is clear that nt = 0. Hence
(nv)(uy) # ((nv)u)y, so that nv fails to associate with

u and y.

Lemma 8: If v associates with all pairs of elements of K,

then v is in the nucleus of K(w).

n .
Proof: Let v = z aiwl for a; e K. One applies the
i=0
n .
operator p® to v and obtains D' ( 2 aiwl) = Dn(anwn+...terms
1i=0

in lower powers of w) = n!an. By Lemmas 6 and T, a,

55



associates with all pairs of elements of K. By Lemma 5,
anwn must also associate with all pairs of these elements.

n-1 .
It is then clear that v=anwn + z aiwl must associate with
i=0

all pairs of elements of K.

n-1 .
An application of L to ) aiwl leads to the con-

i=0

clusion that the coefficient a_1 also associates with all
pairs of elements of K. In this manner, one successively

finds that each of the coefficients, a s & a a

n-1°* “n-2°°"""°> 70°?

associates with all pairs of elements of K. By Lemma 5,
each aiwi is contained in the nucleus of K(w). The con-
clusion that v is in the nucleus of XK(w) follows from
taking the finite sum of the aiwi.

Note: Example T of Section 1.2, illustrates the fact that
even a nonassociative ring K may have a nontrivial hub,
namely the field F, which field may be arbitrarily chosen.
It follows easily from Lemma 5 that the hub of K(w) will
include all the polynomials in w with coefficients in the
hub of K. These remarks indicate that Lemmas 4 through 8
above may apply in nontrivial circumstances.

3.3 Generators of Ideals.

Amitsur [1] obtained the result that, if K is a
simple associative ring, then:
(1) Every nonzero ideal I of K(w) is generated by a monic

element v in the center of K(w) which is of least

degree in I.
(2) Conversely, if v is a monic element in the center of

K(w), then v generates an ideal I of K(w) of which it
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is an element of least degree.

Theorem T below is the analogous statement for a
d-simple ring K with identity and of characteristic zero
which need not be associative. It will be noted that a
ring K may be d-simple or even simple, and yet admit of
zero divisors. Example T of Section 1.2, is an example of such
a ring.

Lemma 1: If a d-constant v ¢ K(w) commutes with all a ¢ K,
then v is in the center of K{w).

Proof: It will suffice to -let v = bw and to show that
(aw™)v = v(aw™) for all a ¢ K and integers m. Since

v' = 0, it follows that b' = 0, and the commutativity of

a with v says that a(bw?) = av = va = (bw")a.

(@)ab(i)wm+n-i

m
’ Then (aw™)v = (aw™)(bw®) = 2
=0

i

(0) m+n +n m

= (§>ab W = abw 0 o= (a(bw"))w" = ((bwHa)w

(bw™) (aw™) = v(aw™) as asserted.

Lemma 2: If I is any nonzero ideal of K(w) and v is a
monic element of I such that Deg v < Deg u for all nonzero
uw e I, then v is in the hub of K(w). Conversely, any monic
v in the hub of K(w) belongs to an ideal I such that

Deg v < Deg u for all nonzero u e I.

n-1

Proof: Let v = w+ Z ciwl e I for c; € K, where I is a
i=0

nonzero ideal of K(w) and where v is of least degree in 1.

(If n = 0, then v is Jjust 1.)

(1) v commutes with each a e XK.

The properties of I as a two-sided ideal require that
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n n .

va-av € I. Then va-av = w a-aw +...terms in lower powers

n n .
of w, where w a = aw +...terms in lower powers of w3 hence
n n . .

va-av = aw -~aw +...terms in lower powers of w. From this
1t follows that Deg (va-av) < n or va-av = 0. But v is of

- least degree in I, requiring va-av = 0, and heunce va = av

as desired for commutativity.

n-1 . n-1
For v' = wv-vw I, and v' = (Wn+.2 c.wl)' = Z clw

. i . i

i=0 i=0

i

which must be zero because v' would otherwise be an element
of I of lower degree than wv.

From Lemma 1, one concludes that v is in the center
of K(w). It remains to show that v is contained in the
nucleus of K(w). By Lemma 8 of Section 3.2, it will suffice
to show that v associates with all pairs of elements of K.
Specifically, it will be shown that (ab)v = a(bv) for
a,b € K, while analogous calculations establish the other
two laws of association: (av)b = a(vb) and (va)b = v(ab).
It is clear that (ab)v-a(bv) € I. Recalling that w- is in
the nucleus of K(w), and using the definition of multiplication
of canonical polynomials, (ab)v-a(bv) = abw -abw +...terms

in lower powers of w. But, as in the proofs of (1) and (2)

above, the minimal degree of v requires (ab)v-a(bv) = 0,
and hence that (ab)v = a(bv) as asserted.
n nol i
Conversely, let v = w + ) c,w" Dbe in the hub of K(w).
i=0

Let I = {ulu = xv for x € K(w)}, the set of all left

K(w)—multiples of wv,. To show that I is an ideal, it
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suffices to show closure with respect to subtraction and
left and right multiplication by elements of K(w).

If xv, yv € I and x,y ¢ K(w), then xv-yv = (x-y)v ¢ I.
This shows closure with respect to subtraction.

If xv € I and x,y ¢ K(w), then (xv)y = x(vy) = x(yv)
= (xy)v ¢ I, as v is in the hub of K(w). This shows closure
with respect to right multiplication. And y(xv) = (yx)v g I

establishes closure with respect to left multiplication.

These calculations show that I is an ideal. Let
m .
X = z biwl for bie K, bm # 0, be any nonzero element of
i=0
) m+n .
K(w). Then the left multiple xv = bmw +.,.terms in lower

powers of w, and hence will be of degree greater than or
equal to n (the degree of v). Hence v is an element of

least degree as asserted. This completes the proof of the

lemms.
The proof Jjust completed entails a result of some
n n-l i
interest in itself; 1f v = w + Z c,w is a monic element
i=0

of least degree in an ideal I of K(w), then the coefficients
c, are d-constants and lie in the nucleus of K(w).

Lemma 3: If I is any nonzero ideal in K(w) for a d-simple
ring K, then I is principal and is generated by its unique
monic element of least degree.

Proof: The existence of a monic element v of least degree

in I is an immediate consequence of Lemma 2 of Section 3.1
above. If v were not unigue, the difference V-V, of two such

monic elements of least degree would yield an element of

the ideal of smaller degree.



It will be shown that any element u ¢ I is &a left
multiple of v. The proof parallels that for the polynomials

of elementary algebra.

n-1 . t
Let v = w o+ E ciw1 and u = z b.w~ where t > n,
i=0 i=0 -
_ t~n t-n n-. .
b, # 0. Ify = b W v, then y = (btw Y(w )+...terms in

lower powers of w. Since ug I and y ¢ I, it follows that

u-y ¢ I. But u-y = btwt—btwt+...terms in lower powers of w,

requiring Deg (u-y) < Deg u. ©Now let ry = u, q; = btwt~n,

and r. = u-y, so that r. = v+r., where Deg r

1 0 qq 1 < Deg r, or

1 0

H
1l

. . = + =
Algorithmically, one gets ry q2v r2, r2 q3v+r3,

..., and, after a finite number of steps, a remainder

la
]

0 is obtained. Then u = (ql+q2+...+qk)v and the lemma
has now been established.
The above two lemmas now lead to the following
composite results.
Theorem T7: If K is d-simple, then:
(1) Every nonzero ideal I of K(w) is generated by a monic
element v in the hub of K(w) which is of least degree
in I.
(2) Conversely, if v is a monic element in the hub of
K(w), then v generates an ideal I of K(w) of which
it is an element of least degree.

Definition: If r,s ¢ K(w) and s is contained in

the ideal generated by r, then r divides s. If r divides

elements s and t, then r is a common divisor of s and t.

If r is a common divisor of s and t and is divisible by any
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common divisor of s and t, then r is a greatest common

divisor of s and t.
(0re [17] defines a concept of greatest common right
divisor, but this is not the same concept as that used here.)

As a corollary to Theorem T, one has:

Corollary: Let 1 be the ideal generated by elements s and t
of K(w). Then the unique monic element v which also

generates I is a greatest common divisor of s and t.

Proof: Since v divides each element of I, in particular v
divides s and t. Hence v is a common divisor of s and t.
Let r be any common divisor of s and t. Then s and t are
contained in the ideal J generated by r. Since s and t
generate I, it is clear that I € J. Hence the element

v € I is also contained in J, and hence r divides v. Thus
it has been established that v is a greatest common divisor
of s and t.

If r divides s, it need not be the case that s is a
multiple of r, in the sense of being of the form s = Xr oOr
s = rx for some x € K(w). All one can say is that s 1is
contained in the ideal generated by r or, equivalently,
that every ideal which contains r also contains s. But
let I be the ideal generated by r. Then I is also generated
by a monic v in the hub of K(w), and it is clear that (1)

v divides r and r divides v, and (2) v divides s e K(w) if
and only if r divides s. From the proof of Lemma 2 above,
it is clear that v divides s if and only if s is a left

multiple sv of v.
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It is shown in Section 3.4 below that there exist
nontrivial ideals of embedding rings K(w) for certain
d-simple rings K.

3.4 Existence of Ideals.

Theorem 8 below asserts a necessary and sufficient
condition for the existence of nontrivial ideals in the
embedding ring K(w), for a d-simple ring K with identity
and of characteristic zero.

The associative version of the following lemma was
proved by Jacobson [4]. The omission of the associativity
requirement for K renders necessary an sadditional clause
in the statement of the lemma.

It will first be noted that, if K is d-simple, then
any nonzero integer n has an inverse n - € K; this inverse
exists because n is a d-constant in the hub of K and
generates the entire ring. Thus for d-simple K, the rings
K and K(w) are vector spaces over the rational numbers.
Lemma L: If XK is d-simple and K(w) is not simple, then

there exists an element t in the nucleus of K where

a' = ta-at for all a ¢ K.
Proof: Let I be a proper, nonzero ideal in K(w). Then I
is generated by a monic element v of least degree.

n-1 .
Then v = wn+ z ciwl for ci € K and n > 1.
i=0 ~ o

For all a ¢ K, va-av ¢ I. Expanding av and va, one obtains:

n n-1 . ;
av = aw +ac W +...terms in lower powers of w, and

n-1

n n
W a+cn 1 v at+... = aw +na'w

n—l+ n—l+

c aw ...terms

n-1

va

in lower powers of w.



n-1 n-1 n-1

Subtracting: va-av = na'w +c aw -ac W +.o.
124
’ n-1 n-1

= (na'+c a=—ac )Wn—l

+,..terms in lower powers of w.
n=1 n-1

Hence va-av is either zero or of degree less than n. But
va~av ¢ I, v is of least degree in I, and Deg v = n. It
follows that va-av can only be zero and, therefore, each

coefficient of the canonical form of va-av must be zero.

. - _ _
In particular, na c,_j@-ac 0.

One concludes that, for all a ¢ K, a' = ta-at where
t = —n—l

c .
n-1

As noted in Section 3.3 above, each . of the canonical

form of such a monic generator v is contained in the nucleus

of K. Hence t = —n_lc
n-1

is contained in the nucleus of K
as asserted. This completes the proof the lemnma.

The significance of this lemma is that, if K(w) admits
of a nontrivial ideal I for a d-simple ring K, then the
construction of the embedding ring K(w) is redundant.

Because K(w) is constructed for the purpose of extending the
derivation in the basic ring to a strong inner derivation in

a larger embedding ring. If now K(w) has a nontrivial ideal

I and K is d-simple, then, by the lemma Jjust proved, the deri-
vation in K is already a strong inner derivation and there

is no embedding problem to be solved.

The monic generator v of a nontrivial ideal I of K(w)
need not be of degree one. But if it 1s, then v = w+co, and
t = -1 Cy = ~Cgs SO that ¢y = -t and v = w-t generates the

ideal I. However, it is easy to show that v2, for example,

will generate an ideal I in which no element is of
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degree one. These remarks suggest the following lemma as

a converse to Lemma I,

Lemma 5: If K is d-simple and if there is an element t in
the nucleus of K such that a' = ta-at for all a ¢ K, then

w-t generates a proper ideal in K(w).
Proof: By Theorem 7, 1t suffices to show that w-t is in the
hub of K(w).

To show that w-t is in the nucleus of K(w) it
suffices (since w is contained in this nucleus) to show that
t is in the nucleus of K(w). Specifically, it must be shown
that, for all x,y e K(w): x(yt) = (xy)t, x(ty) = (xt)y, and
t(xy) = (tx)y. It will suffice to let x = aw and y = bw"
for a,b ¢ K. Each of these laws of association now follows
directly from Lemma 4 of Section 3.2 together with the fact
that t' = tt-tt = 0 and hence that all higher derivatives

of t are also z~2ro.

It remains to show that w-t is in the center of XK(w):

for all x ¢ K(w), x(w-t) = (w-t)x. Let x = aw" for a & K.
By the rule of multiplication, i = twm+mt'wm_l+... = twm,
because t' = 0.
Then x(w-t) = aw (w-t) = awm+l—awmt = awm+l—atwm
= awm+l+(ta—at)wm—tawm = awm+l+a'wm—tawm = (aw+a')wi-taw™
= waw -taw’ = (w-t)aw" = (w-t)x as asserted.
Two examples of this lemma may be given:
1. Let the basic ring be any arlitrary ring L (of charac-

teristic zero and with identity), and let L(t) be the
embedding ring as constructed above with t playing the role

of w. Write K = L(t), and let K(w) be, as usual, the
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embedding ring of K. Then a' = ta-at for all a ¢ K, and w-t
generates a proper ideal in K(w). If L is d—simple; K will
also be d-simple.
2. Let the basic ring K be that of Example 7 of
Section 1.2, except that here F is a noncommutative field
(for example, the ring of quaternions). Any t € F will be
in the nucleus of K, and a' = ta-at defines a strong inner
derivation in XK. Then w-t generates a proper ideal in K(w).
It can be shown that K is d-simple.

Of course, in each of these examples, the derivation
in K is already a strong inner derivation, so that there
was no embedding problem to be solved.

Lemmas 4 and 5 are combined in the following theorem:

Theorem 8: If K is d-simple, then either:
1. K(w) is simple, or
2. There exists t in the nucleus of K where
a' = ta-at for all a ¢ K and w-t generates a

proper ideal of K(w).



CHAPTER L4

EMBEDDING IN A DIVISION RING

m

4.1 The Operator ) aiwl.
S P2 .

Throughout this chapter, the basic ring K is a

division ring., This means that, for any b € K and nonzero

a € K, there is exactly one x € K such that ax = b and
exactly one y £ K such that ya = b. As in the preceding
chapter, it is assumed that K has an identity and is of
characteristic zero (though, in general, a nonassociative
division ring need not have an identity). Because K is a
division ring, it must now also be an algebra over the
rational numbers and admit of no proper zero divisors,

A primary task is to solve an embedding problem for
the division ring K by means of an embedding ring which is
also a division ring. As discussed in Section 1.6, it has
been seen to be desirable to have certain basic properties
of the ring K (here the property of divisibility) preserved
in an embedding ring. Specifically, one wants to find an
embedding ring L such that:

(1) K is a subring of L, 1In particular, the derivation
of the ring K is the derivation of the ring L as

restricted to the subset K.

(2) L is itself a division ring.
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This embedding problem will be solved by extending
the Ore polynomial ring K(w) to a division ring L.

Ore [17] extended K(w) to a division ring for an
associative division ring K. His construction is based
on the model of the usual quotient field construction from
a given integral domain.

The construction of a division ring given in this
thesis involves infinite sums and therefore yields a
division ring of greater cardinality than that one based
on the Ore construction. However, the present construction
will be seen to involve a natural extension of the material
of the preceding sections, especially of the rule of
multiplication of canonical polynomials given in Chapter 2
above. The division ring thus obtained will also be of
interest in its own right, being basically a generalization
of the classical field of formal power series. In the
special case of the derivation in K being nilpotent (though
involving a "generalized derivation" rather than a derivation
in the sense of this thesis), the construction in this thesis
coincides with that of Smits [26], the assumption of nil-
potency eliminating the need for infinite sums. However,
it is not difficult to show that (using the word
"derivation" in the strict sense defined in Chapter 1),
there do not exist any division rings of characteristic
zero with nilpotent derivation.

In the sequel it will be shown that, in the case
of associative K, Ore's division ring is a subring of the

division ring constructed in this thesis.
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To initiate the task set out above, one must define
an element v Y as the inverse of the element w € K(w).
Lemma 1 below will lead the way to such a definition.

The left K-module M of Chapter 2 should be recalled

at this time. Each element of M is of the form

n .
2 ciz(l) where c, € K and n is any integer. The element
i =

w of the ring K(w) is the M-derivation mapping. Let

-1 ] -1 . .
u = nz b z(l). Then w(u) nz . (l>)' ? (1)

. = u' = ( b,z = a,.z
. i . . i
i == 1=~ i=—c0
where a. = b, .+b! for i < n and a_ = D . In particular,
i i-1 "1 n n-1
o+
w(z(n)) = (z(n ) o= z(n 1) for any integer n.
Lemma 1l: For each v ¢ M, there is exactly one u ¢ M such
that u' = v.
o (i)
Proof: Let v = ) &,z with a, ¢ K. To show the
—_— sE 1 i
et (1)
existence of the desired element, consider u = . z biz

1=-00

where the bi are defined inductively as follows, bi—l being

defined in terms of bi:

bn—l = an.
= ~h! 1 ! = s
bi—l a, bi’ or, eguivalently, bi—l+bi a;, 1 < n.
It is clear from the definition of M~-derivation that u' = v.

To show the uniqueness of this element u, let
1! = k! = v for some k g M. If m = u-k, then
m' = (u-k)' = u'-k' = 0. The argument will be complete

if one shows that m can only be zero.

n-1 .
If m is not zero, then m = z ciz(l) for c, € K,
1= -0

where, without loss of generality, the coefficient Ch 1 of

the highest term can be assumed to be nonzero. Then
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n ;
m' = z d.z(l) where d, = ¢, .+c! for each i < n and
. & i 1 i-1 i
1=
dn = C.qr But since m' is zero, it follows that
dn = 0 = Cho1® contradicting the assumption that -1 # 0.
Definition'of'w'l: w-l is the mapping of M such that
W‘l(v) = u where u' = v. Clearly, w(w_l(v)) = w_l(w(v)) = v

for all v ¢ M, so that w—l is the mapping that is inverse
to w. This operator w—l may appropriately be referred to

as M-integration.

Lemma 1 is now seen as asserting that each element

of M has a unique M-integral.

As was seen to be the case for the M-derivation
mapping w, the following lemma shows that w_l is also an

endomorphism of {M;+}.

Lemma 2: For all u,v e M, vl (utv) = v (w)+w L (v).
Proof: Let k = w—l(u+v)—w_l( v), so that
-1 -1 -1 . .
w (utv) = w (u)+w ~(v)+k. Applying w to each side of

this equality and using the fact that w is an endomorphism,
one obtains u+v = u+v+w(k) and hence w(k) = 0. Then
w—l(w(k)) = w_l(O), whereupon k = 0 by Lemma 1 (unigqueness

of the M-integral) and the lemma has been established.
(n)

The symbolism z was introduced in Chapter 2 to

denote that element of M with 1 as its nth component and

zeros elsewhere. It was observed that, if n is positive,

.(n)

b is the nth M-derivative of z. It may rnow be observed

(n)

that, if n is negative, z is the (-n)th M-integral of

z, the result of -n applications of w—l to z. Such



symbolism may now be extended to arbitrary elements of M.

One may write v(n)
(n) _ (0) _

where v € M and n is any integer., If

(n)

n =0, then v v.e If n is positive, then v

is the nth M-derivative of v, the result of n applications

(1) 55 the (-n)th

of w to v. If n is negative, then v
M-integral of v, the result of -n applications of w—l to v.
It is Lemma 1 which makes this symbol v(n) meaningful for

arbitrary n < 0.

As was done in Section 2.5, one can now form finite

& i

linear combinations z a v, the summation permissible between
i=k

arbitrary integers k and n. Thus, for each v ¢ M,

Vo, i v (i)

) &, W (v) = ) a; v . One makes the analogous definitions

= i=k

of equality and addition as in Section 2.5 for these more
general functions, these definitions being the usual ones
for mappings. It is easily seen that two such sums are

equal as functions only if their corresponding terms are

equal, and that they add termwise. As a corollary to Lemma 2,
n .

each mapping of the form z aiwl is an endomorphism of
i=k

{M;+}.

The following lemma will be useful in the sequel.

n .
Lemma 3: If v = z c.z(l) for ¢, € K, then, for any
—_— sE o 1 i
(¢) _ %%, (4)
integer t, there exist di g K such that v = Z diZ
i=—o

(where any of the coefficients c;, or di may possibly be

zero) .

This lemma may alternatively be stated as follows:



(s)

For any integer t, if v has no nonzero terms in z" for

(t) (s)

s >n, then v has no nonzero terms in z for s > n+t.

Proof: If t = 0, the lemma is clear. If t > 0, then

v(t) = wt(v), where each application of the operator w is

an M-differentiation. From the rule for M-differentiation,
BT ()
w(v) = e,z for e, € K where e ., = c , as stated

iz~

(for t = 1) in the lemma; the general case (t > 0) follows
by induction. Similarly, if t < O, then it sufficies to look
at a simple application of the inverse operator w_l, and the

proof for this case (t = -1) is analogous. An inspection of

(t)

the leading coefficients of v and v

cal, and from this one concludes that the effect of applying

wt to v is to shift the leading coefficlient of v by t places.

m ,
Definition: The mapping Z aiwl, on M into M, with
i=Z—00

a, € K and m an arbitrary integer, is described as follows:

n .
For any ) b 21 ¢ M owith b, e K,
l:—OO l
m . n . m+n
) a.w( ) b.z(l)) = ) e z(h), where, for each h, c
. i . i & h h
]==00 i=—00 h==o

i=h-n i

. . (n) T i, ¥ (i)

is the coefficient of =z in Z a,w ( z b,z ). The
h-m
(

_l).

set of these mappings will be denoted by K(w,w

To see how this definition applies, the computation
m

. . i . .
of the special case l a;w (z) is now carried out. One
i==0

show them to be identi-

T1



(n)

must compute the term in z for each h < m. By the
m .
definition just given, the term in =z ) of .} a.w (z) is
i=-o *
m 0]
the same as the term in z(h) of ) a wh( ) b.z(l)),
. i . i
» i=h-0 i=h-m
where b, =1 and, for i # O, b, = 0. But
v LCT b0 T oot R
z a.w () b,z ) = () a,w)(z) = ) a.z , and the
. i . i . i . i
i=h-0 i=h-m i=h i=h

term in z(h) is ahz(h). By letting h range from -« to m,

m . m X
one finds that ) a,w (z) = ) a.z(l), which result extends

iZ—w T i=—w ©
the corresponding result in Section 2.5. More generally,

m i m .
one finds that z a.wl(z(n)) = z a.z(n+l).

. & i . i

i=—o0 i=w=o

5 i, (1)
To determine | a,w ( ) b,z ) one must, in
iZ—w T iz T

j (k)

effect, find each (aij)(bkz for every j and k, and

then "add together the results". This is the motivation

behind the definition given above. Lemma 3 ensures that

(h)

there are at most a finite number of terms in each z .

If all but a finite number of the a; are zero, this

m .
e s i .
"infinite sum" operator z a,w reduces to a finite sum
i=—o

operator of the type previously considered, because, as the
following lemma shows, in this case the definition given
above agrees with the definition previously given for

these finite sums. It will suffice to consider the term in

(h)

2 for arbitrary h.

T2



Lemma 4: Let s <m, t <n, a,,b,e K, a, = 0 for all i < s
and b, = 0 for all i < t Then Z a.w ( Z b,z )
iZeo © iZee T

i=s * i=t *
Proof: It will be shown that, for all h < m+n, the term in

m . n .
z(h) of z aiwl( Z b.z(l)) is equal to the term in z(h) of

. . i
1= woo 1= =00
m n
z z (1)
i=s i=t
By the definition given above, the term in z(h) of
m . 1 .
Y a,w( ) b.z(l)) is the term in z(h) of
iZe0 T i=oc T
m i n (1)
2 a,w ( z biz ). By including zero terms if necessary
i=h-n '  i=h-m

in the given finite summations, one may write
i_ 5 i S (i) _ 7§ (i)
z a.w. = Z a.w and z b,z = z b.z where s¥ < g,
i jSgw T . i s -

. n
t¥ < t, s¥ < h-n, and t¥ < h-m. Then z aiwl( z b,z

m i n . m . n .
= E a.w 2 blz(]")) = 2 a Wl( z b,Z(l))+S, where S
= ji=t % i=h i=h-m
(3)

J

is a sum of terms of the form aiwl(bJ } and either

i < h-n or j < h-m (or both). In either case (since also

i <mand j <n), h > i+j. The lemma will be established

(h)'

if it can be shown that S has no nonzero terms in 2z
But since w is the M-derivation operator, each

a.wl(bjz(J)) = ai(bjz(J))(l). By Lemma 3, this element has

1
(k)

no nonzero terms in z for any k > i+j; it follows



(h)

(choosing k¥ = h) that S has no nonzero terms in z as

asserted.
m

Definition: The degree of ) aiw1 for a, e K and
i=-w
&, # 0 is m. It will also be convenient to refer to the

degree of an element of M; accordingly, the degree of

n .
z ciz(l) for c, € K and c, # 0 is n. As in Chapter 3

i==—00
above, one writes Deg u or Deg v for u ¢ K(w,w_l) or v £ M,

4.2 The Ring K(w,w’l).

The elements of the system K(w,w—l) are the operators

aiwl defined in the preceding section, for arbitrary

e~ B

i==0o0
a; € K and integer m. An operation of addition is defined
below. In order to complete the construction of this

system as a ring, the operation of multiplication must also

be defined, but this will be deferred until later.

T i T (i)
Since 'z a v (z) = .z a,z and
1:.—(!) 1‘:_00
7 i v (1)
Y b.w (z) = ) b.z for a,,b, € K, it is clear from
. i . i i’ i
i= o0 i=—c0

the component-wise definition of equality in M that

m . m .
) a.w (z) = ) b.w (z) if and only if, for each i,
i=wo0 1 i=-—c0 1
m 5 m 5
a. = b.. It follows easily that Z a.w(v) = Z b.w (v)
i i . i . i
iS00 1 =~—00
for all v ¢ M if and only if, for each i, a, = b It is
m 5 m i
therefore natural to define: z a.w = z b.,w” if, for
i =—o0 1 i=—o0 1
each 1, a;, = bi.> (It is also understood that zero terms

can be added to an operator without altering its value.)

Th



5

The following lemma will serve as the basis for a

definition of addition in K(w,w'l).

Lemma 1: For all v e M, ai,bi e K:

m i m 5 n 5

Z a, W (v)+.2 b, W (v) = .Z (ai+bi)w (v).

i=—o0 iz e i==00
n .

Proof: Let v = Z ciz(l) for ci e K. The term in z(h) of
i=woo

n i m (1) n i m (1)
of Y oa,w ( ) c.z )+ ) bow ( Y e,z ), and the
. i . i , i X i
i=h-m i=h-n i1=h-m i=h~n

h)

term in z of the right side is the term in z( of

n . m .
z (ai+bi)wl( z c.z(l)). The conclusion now follows
i=h-m i=h-n

from the known equality of these finite sums, letting h

range from - to m+n.

m . m . m .
Definition: ) a, v+ ) b.wh = ) (a.+b.)w" for
) . i , i ti

ai,bi € K. It is clear that the definitions of equality
and addition given for these operators are the usual
functional definitions and thus extend the definitions
given earlier for finite sum operators. It is also clear
from the above definitions and the obvious existence of
the zero element and negatives that {K(w,w_l);+} is an
abelian group.

The following lemma shows that the elements of

-1 . . . o .
K(w,w —) satisfy linearity conditions, i.e., are endomor-

phisms of {Mj;+1}.



m . m . m .
Lemma 2: ) a.wo(u)+ z a. v (v) = z a.w (u+v) for
i=—0 * iz~ - i ==00 +
arbitrary u,v € M, a; € XK.
S (i) E (1)
Proof: Let u = ) Db,z and v = ) ¢,z , with
iZeoo iz—c T

bi,ci e K, adding zero terms if necessary to ensure identity

of ranges of summation. Then the term in z(h) of the left

(n)

side of the asserted equality is the term in z of

n . n (1) m ) n (1)
% aiwl( =g_ b.z ")+ E aiwl( =g_ c.z *’) and the term

. . i . .
i=h-n i n i=h-n i m
in z(h) of the right side is the term in z(h) of
T i, ¥ (i)
z a.w ( E (b.+c. )z ). The conclusion now follows
. i . i i
i=h-n i=h-m

from the known equality of these finite sums, letting h
range from -« to m+n.

To extend the material of Section 2.5 of Chapter 2
4“0 these more general mappings, it is necessary to state
and prove a variation of the L,eibniz formula; this is done
in Lemma L4 below (see Section 2.1),

Definition: Let n be any integer (possibly zero or

negative) while i is a non-negative integer. Then the
symbol (?) denotes the number n(n-1)...(n-i+1l)/i! if i > O,
and the number 1 if i = 0.

This is an extension of the usual definition for
positive n, though in the present usage only the i need
be non-negative.
Lemma 3: For all integers n and all positive integers 1,

(M+(2) = (T,

T6
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Proof: If i = 1, the conclusion is clear, so let i > 1.

Then (?)+(ifl) = n(n-1)...(n-i+1)/i'+n(n-1)...(n-i+2)/(i-21)"!

n{n-1)...(n-i+2)((n-1i+1)+i)/i?

= (n+1)n(n-1)...(n-i+2)/5! = (*}1),
Lemma 4: For all a € K and arbitrary integer n,
[ 0]
(az)(n) = 3 (Mg (i), (n-1)
i=o *
Proof: This formula is known to be true for n > 0; it will

be shown, by induction, to be true also for n < 0.
Ifn =0, then the result is trivial in this case.

As an induction hypcthesis, one assumes that, for a

(o0}

)(n+l) - 2 (nfl)a(i)z(n-i+1)

5 , this being
i=0

fixed n < 0, (az

the assertion of the lemma for n+l.
It must be shown that the lemma is valid for n, on

the assumption that it is valid for n+l: effectively that

(az)(B*1) 4 § (B (i), (n-1)

the M-integral of i Z , Or,
i=0

(o]
equivalently, that w( )

_ E (nzl)a(i)z(n-i+l)
i=0

By either Section 2.5 of Chapter 2 (or directly from

the definition given in Section 4.1l above),

(3)a (1), (nmi),
0 i

(?)a(i)z(n_i+l)

w3 (2yal),(m1)y
=0 i

18
he~18

0
Replacing i by i-1 in the first summation, the two

infinite sums become:
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1 1

E (. )a(i)z(n—i+l)+ E (g)a(i>z(n_i+1)
=1 7t i=0

i

[(ifl)+(§)]a(i)z(n—i+l)+(g)a(0)z(n—o+l)

I
lle—1 8

i=1
= iEl(n;l)a(i)Z(n—i+l)+a(0)z(n+l) - izo(nzl)a(i)z(n_i+1)’
whereupon w( § (P)a(i)z(n‘i)) = ; (nfl)a(i)z(n-i+1)
i=o0 * ij=o 1

as asserted.

The generalization of Section 2.5 of Chapter 2 is
now carried out for the more general infinite mapping.
In order to regard the system K(w,w—l) as a ring which

extendes the rings K and K(w), it is necessary to define

products in K(w,w_l). The definition given here extends

that given in Section 2.5,

Definition: Let f, g, and h be elements of K(w,w_l)

Then h is the product of f and g if f(g(z)) = h(z).
As shown for the finite sum operators in Section 2.5,
it is true here as well that this product, where defined,

must be unique. Henceforth, the usual multiplicative nota-

tions will be used.
Lemma 5: For a,b € K and m and n arbitrary integers

(possibly negative), the product (aw™)(bw") is defined,

(o]

and equal to Z (?)ab(l)wm+n—l.
i=0
Proof: The proof is similar to Lemma 3 of Section 2.5, but

using Lemma 4 in place of the (usual) Leibniz formula.



The following lemma shows that the operation of
multiplication is closed in K(w,w_l), that for all pairs of
elements, f,g ¢ K(w,w—l),'the product fg exists (uniquely).
Lemma 6: For any f,g ¢ K(w,w_l) there is a (unigue)

h ¢ K(w,w_l) such that fg = n.
Proof: By Section k.1 above, the element g(z) ¢ M is
determined. Moreover, by aepplying the mapping f to.g(z),

the element f(g(z)) € M is determined. As an element of M,

n . )

i X
Z C.2Z for some integer n ang Ci e K. Thus,

. 1
iseow

f(g(z))

if h =

ciwi > K(W,W—l), h(z) = f£(g(z)). By the
i

-0

e

definition of a product, h is &2 product of the pair (f,g)
and hence (because, as noted above, products are unique)
h is the product of this pair.

The following lemma elaborates and clarifies the

infinite sum mapping as defined in Section h.o1.

Lemma 7: For ai’bi € K and m and n integers,

m . n m+n m h 5

i i+j-h h
Z aiwl( Z biz( )) = Z Z Z (1+ h)a b( J- ) ( )
i=eow i=ww h=—ow i=h-n j=h-1i J- J
h-~ m<j<n

Proof: One shows that the term in z(h) of

m n

i (i) L (i+j-h) ,(B) i

iz-maiw ('Z_mbl ) is Z 1+J h)a ; » summing

i and j over the ranges indicated above.

By the definition given in Section L.l the term in

(h)

Z of

79
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m . n ( ) ( )

Z aiwl( z biz /) is identical to the term in z\h of
i=e—o00 i=—0

m . n (.)

z aiwl( Z biZ t7), TFor each i (h-n < i < m) and each
i=h-n i=h-m - -

J (h-m < J < n), it follows from Lemma 5 that

aiwi(bjz(j)) - (aiWi)(bjWJ)(Z) - tzo(i)aibgt)wi+j—t(z)
= ] (i)aibgt)z(i+j_t). For the terms in z(h) of the one
=0

general summand, one considers values of t for which

i+j-t = h, or, equivalently, t = i+j-h, so that the terms

i (i+j-h)_(h)
i+j_h)aibj z .
one sees that i+j > h. The total term in z(h)

in z(h) are of the form ( Since t > 0,

for the

~given expression is then the finite sum

i (i+j-h)_(n) . .
) (i+j—h)ai ; z for h-n < i < m, h-m < j< 1, and

i+j > h, from which inequalities the indicated ranges of

summation follow.

With this result at hand, it is now easy to see how

products must be computed for elements of K(W,w—l).
Theorem 9: The system {K(W,W—l);+,'} is a ring which

extends K, with multiplication in the ring given by:

% i % i min % % i (i+j-h)_h
( a, v )( b.w') = (..7 .)a.b iy
+j- | >
i=-o * iz~ * p=— i=h-n J=h-i i+j-h" 1 J
h-m<j<n

for ai,bi ¢ K and m and n arbitrary integers.

Proof: With i and ranging over the indicated values, one

sees that



81

m i n i m ;0
(] aw)CL vw)(z) = ] aw (] bow(z))
i=Z a0 i= 0o iz2—o00 i=—o
m ;. - (1) m+n m h 5
= a.w ( b,z ) = (. Ja.b,(i+j-h) (n)
iz-w 1 iz—w hz—m i=g—n j=g—i itd-h" iy z
h—mijip
m+n m h s, s
= 7 - Y (.. %) (l+J_h)wh ). Hence
h=-c i=h-n j=h-i =+ J-B 17J
h-m<j<n
m . n . m+n m h . .y s
( a.w)( b.w') = (. .+ )a.bgl+J_h)wh
iz—w * iz—w * hz—w i=g—n j=g—i itd-h"iTg
h—mij<n

as asserted.
To complete the proof that K(W,W—l) is a ring, it

must be verified that the distributive laws are valid:

f(g+h) = fg+fh and (g+h)f = gf+hf for any f,g,h ¢ K(w,w-l)

But this follows from Lemma 2 above and an argument which

parallels that of Lemma 2 of Section 2.5.
-1
)

4.3 The Differential Ring K(w,w

In order to regard K(w,w-l) as a differential ring,
-1
)

one must define an operation of derivation in K(w,w

For this purpose, it is shown in Lemma 4 below that w is

contained in the nucleus of K(w,wnl).
Lemma 1: For ai’bi € K, m n, and h integers, and h < m+n,
h v iy, © i
the term in w of ( z a.w ) Z b,w ) is equal to the term
iZ- T i=-c T
h v i & i
in w oof () a,w ) ) b.w).
. i . i
i=h-n i=h-m
Proof: This follows from the definition given in Section 4.1

above, and a proof analogous to that of Theorem 9.



It may be noted that

m ) n .
+

( Z a.w)( Z b.wl) = (M)a b(o)wm i = a b wm+n+B, where

{2 cw 1 = 1 0 mn mn

B ¢ K(w,w—l) is zero or of degree less than m+n.

Lemma 2: Let u,v ¢ K(w,w "), u # 0, v # 0. Then
Deg uv = Deg u + Deg v.
m 5 n 5
Proof: Let u = .Z a, W, v = .z b.w", a # 0, b # 0.
== i==c0
m+n
Then uv = ambnw +B for B zero or of degree less than m+n.

But K, as a division ring, contains no zero divisors,

whereupon a # 0 and bn # 0 imply ambn # 0. Hence ambn #0

and Deg uv = Deg u + deg v.

Lemma 3: For x = aw’, y = bw", and a,b ¢ K, (wx)y = w(xy),
(xw)y = x(wy), and (xy)w = x(yw).

Proof: The proof is similar to that of Theorem 3 above,

with Lemma 5 of Section 4.2 in place of Lemma 3 of

Section 2.5 in the earlier proof.

Lemma L: The element w is contained in the nucleus of
K(w,w—l).
Proof: It is shown that (wu)v = w(uv) for u,v ¢ K(w,w—l),

while analogous proofs establish the other two laws of

association.
m .
Let u = Z a.wl and v =
j=a—o0 J

a. # 0, and b # 0. It is to be shown that, for h < m+n+l,

b.wJ for a,,b, € K,
d 17

| b~

-0

the term in Wh of (wu)v is equal to the term in Wh of w(uv).
m i h-n-2 5 n P
Let Q = Z a.w , R = Z a,wo, S = z bjw )

i=h-n-1 * i=—o j=h-m-1

82



h-m-2 .
and T = Z bjWJ, where Deg Q = m, either Deg R < h-n-1

j:.'oo

or R = 0, Deg S = n, and either Deg T < h-m-1 or T = 0.

Then u = Q+R, Vv s+T, and (wu)v = (wQ)s+(wQ)T+(wR)sS+(wR)T.

It follows from Lemma 2 (recalling that Deg w = 1)

that:
Either (wQ)T = 0 or Deg (wQ)T < l+m+(h-m-1) = h.
Either (wR)S = 0 or Deg (wR)S < 1+(h-n-1)+n = h.
Either (wR)T = 0 or Deg (wR)T < l+(h-n-1)+(h-m-1) < h.
Hence only the summand (wQ)S of (wu)v can contribute
to terms in wh. It follows that the term in wh of (wu)v is

equal to the term in w2 of (wQ)S where one notes that

m n .
(1) (wq@)s = o ) ((W)(aiwl))(b.wJ).
i=h-n-1 j=h-m-1 J

Similarly, w(uv) = w(QS)+w(QT)+w(RS)+w(RT), where only the

summand w(QS) can contribute to terms in wh. Hence the term

in wh of w(uv) is equal to the term in Wt of w(QS) where
m n i ;
(2) w(Qs) = ) Lo (w)((agw) (b ,wo)).
i=h-n-1 j=h-m-1 J
The conclusion now follows from (1) and (2) and

Lemma 3.

Definition For all v € K(w,w_l), the derivative

v! = wv-vw.

Since w is contained in the nucleus of K(W,W—l),
the mapping of v to v' is a strong inner derivation. This
definition clearly extends the definitions previously given

for the rings K and K(w).
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Lemma 5: The element w_l is contained in the nucleus of

-1

K(w, ).
Proof: Let u,v ¢ K(w,w—l). It is shown that (uv)w—l= ulvw
(uw-l)v = u(w—lv), and (w_lu)v = w_l(uv).
(1) To show that'(uv)w—l = u(wal).

t i v i-1 1
Let v = ) a,w , v¥ = ) a.w . Then v¥*w = v, v¥ = yy —,

. i ) i

i=woo iz—w
and (uv)w—l = (u(v*w))wnl = ((uv*)w)w—l = (uv*)(ww‘l) = yv#*
= u(vw'l) as asserted.

-1 -1

(2) To show _that (uw “)v = u(w ~v).

m i m 1
Let w = ) bw, u*= J b w'"". The u*w = u, ana

i =woo 1 i=—=00 L
(uw—l)v = ((u*w)w_l)v = (u*(ww—l))v = u¥y = u*((ww_l)v)

-1 _ -1 -
= u¥(w(w "v)) = (u*w)(w ~v) = u(w v) as asserted.

-1 -1,

(3) To show_that (w "uw)v = v (uv).

The proof of this is analogous to that of (1).

The following lemma states that not only w but arbi-
trary integralpowers‘of w are contained in the nucleus of
K(w,w—l). This lemma, together with Lemmas 7 and 8 below,
will establish that, if K is associative, K(w,w-l) is also

associative; this result is stated and proved below as

Theorem 10,

Lemma 6: For any integer n, whois contained in the nucleus
of K(w,w_l).

Proof: This follows from Lemmas 4 and 5 by induction

arguments analogous to that of Lemma 1 of Section 2.2,



1

Lemma T7: Let K be associative. Then, for u,v ¢ K(w,w ),
a e K, (au)v = a(uv).

m 5 n i
Proof: Let u= ) b.,w and v = y c.w for b,,c., e K.
— . i . i i*7i

1=~=00 1==—00

It is shown that, for h < m+n, the term in wh of (au)v is
equal to the term in Wl of a(uv).

But, by Lemma 1, the term in Wl of (au)v is equal to

m . n .
the term in w? of (1) ( 2 abiwl)( 2 ciwl), and the term
i=h-n i=h-m

in w' of a(uv) is equal to the term in W of

m . n .
(2) a(( .} bv.w)( ) ciwl)). Tt will suffice to show that
i=h- h

However, (1) is a finite sum of terms of the form

. oo . . Iy
(ab.wl)(c.wj) = 2 (1)(ab.)c§k)w1+J_k, (2) is a finite sum
i J L 'k 1
k=0
. . oo . (k) {9k
of terms of the form a((b.w )(c.w9)) = a ) (2)p, e wtTITE,
i J L k1]
k=0
. (k) _ (k)
and equality follows by (abi)cj = a(bicj ) for each

choice of i,j,k because K is assumed to be associative and
these are products in K.

Lemma 8: Let K be associative. Then

(awm°bwn)cwt = awm(bwn-cwt) for arbitrary integers m,n,t
and a,b,c e K.

Proof: The fact that powers of w are contained in the

—l)

nucleus of K(w,w is used throughout.

Let the symbol di denote the element (?)c(l). Then,



directly from the rule of multiplication, it follows that

o0 -
wie = z diwn_l. This equality will be assumed in what
i=0
follows.
m n t m n t m n t
(aw ebw Jew = ((aw <bw )e)w = (((aw"™b)(w"))e)w

((aw™) (w7e))w” = (J((aw™) (a,w?71)))u®

J(aw™) (a,w""*7Y), omitting the limits of the summation.

Applying Lemma 7 twice, one obtains:

Z(awmb)(diwn+t—i) = g Z(me)(diwn+t—i))

a Z((wm)(bdiwn+t'i)) = Z(awm)(bdiwn+t_i)

(3(av™) (va v 1))’ = (J(an™) ((0) (a,w" ) ))wt

(Caw™) ((B) (w2e)))u® ((aw™) ((bw™) (c)))w®

awm((bwn-c)wt) = awm(bwn-cwt) as asserted.

Theorem 10: If K is associative, then K(w,w_l) is

assoclative.
Proof: Let A,B,C € K(w,w ~), and D = A(BC)=(AB)C. Tt is
required to show that D = 0.

n . n .
It may be assumed that A = Z a.wl, B = Z b.wl,

n .
and C = Z ciwl, for ai,bi,ci € K, where one can without

i=—o

loss of generality assume identity of ranges of summation
(by including zero terms if necessary).

Let k be a variable integer less than n. In terms
of any given value of k, let:

k-1 k-1 . k-1
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Then A = A_+A B = B0+B

otAq» and C = C +Cl.

12 0
It follows that D = A(BC)-(AB)C

= (AO+A1)((BO+B1)(CO+Cl)) - ((AO+A1)(BO+B1))(C +cl).

0
By Lemma 2 (that degrees add), it follows that

D = Al(BlCl)—(AlBl)Cl+...terms in degrees less than 2n+k.
10 and Cl are finite sums, it follows from
Lemma 8 that Al(BlCl) = (AlBl)Cl. Hence Deg D < 2n+k, or

But since Al, B

d = 0.
As k approaches -», 2n+k approaches -«, Hence D,

if not zero, is of degree less than any integer. Since this

is impossible, one can only conclude that D = 0 and hence

that A(BC) = (AB)C.

b.4 Divisibility in K(w,w T)

The following theorem shows that K(w,w—l) is a divi-
sion ring, and thus satisfies the conditions for an embedding
ring as stated in Section 4.1. It will be noted that, with
the exception to be noted below, it is henceforth assumed
that K is (generally) nonassociative.

Theorem 1l1l: Yor any nonzero u ¢ K(w,w_l) and arbitrary

_1)

v e K(w,w , there is exactly one x € K(W,W—l) such that
ux = v, and exactly one y € K(w,w_l) such that yu = v,
Proof: The equation ux = v is considered here; the equation

yu = v and the corresponding proof of the existence and

uniqueness of the element y are analégous. Let



m . n X
_ i . _ i
u = iz a,w with a # 0 and Vv _;Z b, W (ai,bi e K).

Because K is a division ring and e # 0, there is an

element c ¢ K such that a_c = b . Let Q, = ¢ W .
n-m m n-m n 0 n-m

n—m) n-m)

Then uQ, = (amwm)(c W

+B and (a w)(c w
n-m m

n
= b w +C
n-m n

where B and C are either zero or of degrees less than m.

If v = v where

n-1

- i 3
vq 2 S, W for appropriate s; € K (some or all of the 5,

one now sees that vo—uQO = v

0°? 12

i=-x
possibly zero).

In general, however, by defining analogous guantities

Ql, Q2, ceos, and Vo v3,..., one obtains successively:

v0 = uQO+vl.
vl = qu+v2.
Vo = uQ2+v3.
Vi T UQitViag

where, if the (n-i)th term of v, be denoted by tn_.w

(all the terms in higher powers of w being zero),

. n-1 .
Q. = ¢ wi ™Y and a c . =+t .. (Each v, = ) £, wY
i n-m-i m m-n-i n-i i j2—o0 J
for appropriate tj £ K where tn—i may be zero.)
T m-1i nam j
Let x = E c Wt = z c.wY where j = n-m-i.
. n-m-i .
i=0 Jj=—00
One now shows that ux = v by showing that, for all h < n,

the term 1in wh of ux is equal to the term in wh of v.

The term in wh of ux is equal, by Lemma 1, Section 4.3,
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h nom J n-h n-me-i
to the term in w of ul z c,w') = u J . )
_& J b5 n-m-1
Jj=h-m =0
n-h
= u(.g Qi) = u(QO+...+Qn_h) = uQO+...+uQn_h
i=0
= (vo—vl)+(vl—v2)+...+(vn_h—vn_h+l) = VeV b
n-(n-h+1) . h-1 «
But v . .4 = ) t v o= ) t, W for appropriate
k== o k=m0

tk e K, and it is clear that this sum does not contribute
any term in wh. Hence the term in wh of ux is equal to the
term in wh of v as asserted. It remains to show the
uniqueness of this right quotient x.

If this right quotient were not unique, then there
would exist elements x and y such that ux = uy and x # y;
and hence, because u(x-y) = 0, u and x-y would be zero
divisors. It suffices, therefore, to show that K(w,w—l)
can contain no divisors of zerc. But this follows from

1y, u # o,

Lemma 2 of Section 4.3 above: if u,v e K(w,w
and v # 0, then Deg uv is defined and hence uv # 0.

For the remainder of this section, the basic ring K is
assumed to be associative. Ore [16] indicates an embedding
of certain types of noncommutative integral domains in
division rings. As applied in his paper [17] to his ring K(w)
of noncommutative polynomials, this results in an embedding
division ring R. It will be shown here that R can be
isomorphically embedded in the ring K(w,w_l) constructed
above, as understood for an associative ring K.

In his paper [1T7], Ore shows that, given any nonzero

elements g,r € K(w), there exist nonzero s,t € K(w) such



that gs = rt. As an application of this general principle,

and given nonzero v,v, € K(w) and (possibly zero) u, € K(w),

1 1

the existence of nonzero V,V,,Y € K(w) and X € K(w) such
that vVl = le and vX = ulY will be assumed throughout the
following discussion (X will be zero if u, = 0).

The elements of R are equivalence classes [u,v] of
ordered pairs (u,v) for u,v ¢ K(w), v # 0. As a result of
Ore's construction, the following rules apply:

Equality: [u,v] = [ul,vl] if and only if uv, = u,V.

Addition: [u,v] + [ul,vl] = [uVl+ulV,vVl].

Multiplication: [u,v][ul,vl] = [uX,le].

(It is not necessary to treat the operation of derivation
separately, the derivation being inner in the case under
discussion and therefore expressible in terms of the other
operations - as discussed in Chapter 1.)

The basic ring K is isomorphically embedded in R
by the correspondence u * [u,1l].

Let S be the subset of K(w,w_l) consisting of all
products of the form uwv™t for u,v € K(w), v # 0. Then

{s;+,*} is a ring, isomorphic to the ring R, this isomorphism

being given by [u,v] +> av™ L,

It is first shown that this correspondence is one to
one. Tha% it is also an isomorphism will follow from the
homomorphism properties shown below.

Let [u,v] = [ul,vl]. Then uV, = u, v, uv. (vv

) -1 -1 -1 _ -1 -
= ulV(vVl) = ulV(le) s uVlVlv ulVV v.~, and so
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uv™t = ulvzl. Conversely, let uwv ™t = ulvil. Then
uVlVElv—'l = ulVV"lvil, uVl(vVl)—l = ulV(vVl)—l, uv, = u v,
and [u,v] = [ul,vl].

It remains to show that:

(1) uv‘l+ulv1l = (uVl+ulV)(vVl)~l, and

(2) (uv—l)(ulVIl) = (uX)(le)_l,

and the isomorphism (and the fact that S is a ring) will

be established.

-1 -1 _ -1 -1 -1 -1
But uv +ulvl = uVlVl v +ulVV vl

uv )—l

-1 -1 _ -1
l(vVl) +ulV(le) = uVl(le) +ulV(le

il

-1 -1
V)(le) = (uVl+ulV)(vVl) as asserted. Also

_l)le = uv_lulY = uv ivy = uX, hence

(uVl+ul

by (u, v

(uv 1V

(uv™1)

-1, _ -1
(ulvl ) = (uX)(le) as asserted.

It is easy to see, however, that the cardinality of

K(w,w?l)

is larger than that of R. For K(w,w—l) consists of
infinite sums, whereas R consists only of equivalence classes
of ordered pairs of K(w). Therefore, the (to within
isomorphism) embedding of R in K(w,w_l) is proper.
This same cardinality argument shows that K(w,w_l),
even in the case of a nonassociative K, is not the smallest
division ring extension of K. It is easy to give an inductive
definition of this smallest division ring D (basically, one
postulates that, for all u,v € D, utv, u-v, uv, and left and

right quotients of u by v also belong to D), and it is seen

that the cardinality of D is that of K.



CHAPTER 5

APPLICATIONS TO LINEAR DIFFERENTIAL EQUATIONS

5.1 Construction of a Factor Module.

The following lemma is, in effect, a translation of
Theorem 11 from the language of the ring K(W,W_l) and its
ring operations to the language of the module M and the

mappings defined upon it.

Lemma 1: For any nonzero v g K(W,W—l) and any t € M, chere

is exactly one s € M such that v(s) = t.

Proof: Let t = ) b,z and p = ) b,w for b, € K.
{Zco T {Zeo T 1

Then t = p(z). By Theorem 11, there exists k € K(w,w_l)
such that vk = p, and by the definition of multiplication

in K(w,w—l), v(k(z)) = p(z). Let s = k(z). Then

v(s) = p(z) = t, and the existence of s has been established.
It remains to show that this element is unique.

If now there is also y € M such that v(y) = t, let
y = X a.z and q = Z a,w for a;, € K. Then

— 00 i=—00

viy) = v(g(z)) =t = p(z), va = p = vk, and hence, by

)
o
—_

]
~

Theorem 11, g = k. Then y = q(z) = 5, and uniqueness

has been established.

An application to linear differential equations in
K of the above lemma will be made later in this chapter.

As a preliminary to this investigation, a factor module M¥
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will be constructed. An operation of multiplication will

be defined so that M¥ will have the structure of a differen-
tial ring. It will then be seen that linear differential
equations in the basic ring XK will have solutions in the
extension M¥,

One considers M as a K(w) module rather than merely
as a K module. As shown in Chapter 2, u(m) is a (unique)
element of M for any m ¢ M and u ¢ K(w), and M satisfies
the conditions for a left (nonassociative) K(w) module.

Let H be the subset of M consisting of the elements

Y a;z for arbitrary n > 0 and a; ¢ K. It is clear from
i=1
the definitions given in Chapter 2 that H is closed under
the operation of addition and (since the application of
the operator w does not add terms of lower degree) the
mappings by K(w), and is thus a sub-K(w)-module of M.

The symbol M¥* is used to denote the factor module
M-H. The elements of M¥* are the cosets m+H for m € M. The

following rules are the usual ones associated with a factor

(s+t)+H and

module: For s,t € M, u g K(w), (s+H)+(t+H)

w(s)+H = s'+H,

u(s+H) = u(s)+H. As for derivation, w(s+H)
so that one conveniently extendes the earlier terminology,
referring to w(s+H) as the M¥-derivative of s+H and writing
w(s+H) = (s+H)"'.

There is a natural homomorphism h which maps each
m € M to the corresponding h(m) = m+H € M¥, where, for all
s,t ¢ M and u € K(w), it follows (from the above rules)

that h(s+t) = h(s)+h(t) and h(u(s)) = u(h(s)). The symbol



r(l) is used to denote the coset z(l)+H =_h(z(l)) for any

integer i, where it is clear that r(l) is the zero coset H

n(z(0)) o (0) _

for all 1 > 0. 1In particular h(z) = .

n(z(1)y o (1)

» and, for finite sums generally,

. X 0 .
h( E aiz(l)) = o rt) (= 7§ air(l) if n > 0). ©Now
1=% i=t -

i

I~ B

i=t

h( E a z(i)) = E a z(i))+H (= 3 a z(i)+H if n > 0)

Loy Loey Loay 20,
=00 1==—00 = em 00

and one makes the following formal definition:

0 0

(i) - (i)

z (aiz +H) = ( z a2 )+H.

-0 i= e

Hence, in view of the definition of r(l),

1= i
The following properties follow readily from the
corresponding properties of M (as given in Chapter 2) and

the fact that h is a module homomorphism; together, these

properties completely characterize the module M%¥. Let
ai,bi,c,ei e K:
2 (1) _ 9 (i)
1. Y a,r = ) b, T if and only if, for each i,
i = oo i=—
a, = b
i i

(Elements of M are in the kernel H if anad only if
their homomorphic images are equal.)

0 . 0 . 0 .
2. ) air(1)+ ) bir(l) = ) (ai+bi)r(l).
i:_.oo i=awc0 i=—o0
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0 0
3. c( z air(l)) =.»Z cair(l).
1= i=—o
0 R 0 .
L, W(.Z eir(l)) = Z (ei_l+e£)r(l).
i=—=o0 i=—o0

In computations, the element r ¢ M¥ is handled in the same
manner as the element z € M from which it is mapped, except
that r(i) = 0 for all i > O,

Lemma 2: For any nonzero v g K(w) and arbitrary m ¢ M¥,
there exists y ¢ M¥ such that v(y) = m.

Proof: Let m = h(t) for t ¢ M. By Lemma 1, there exists
an s ¢ M such that v(s) = t. Let y = h(s). Then

v(y) = v(h(s)) = n(v(s)) = h(t) = m, and the lemma has

been established.

5.2 Differential Extensions of K.

The differential ring K{x} is the ring of formal

power series in a symbol x over K. The elements of this
o .
. . i .
ring are the series z a,x for a; € K, and these series
i=0

obey the following familiar rules for formal power series,
together with (L4) which defines derivation in the system.
(See Kaplansky [T7] for a similar, but somewhat different

definition.)

oo . [e0]
i .
1. z a,x = Z b.xT if and only if, for each i, a.= b,.
LB 71 i i i
i=0 i=0
[e0] [e0] (00
2 Y oa,xT+ Y ob,x* = Y (a,+b )x"
. i N & i
i=0 i=0 i=0
o] [e0] [eo] .
3 ( Z aixl)( z bixl) = Z 2 ajbkxl.
i=0 i=0 i=0 j+k=i



fa?)xl.
i

i~ §

((i+l)ai

0 +1

b, a( § agxt) = (] e xt)t =
i=0 i=0 ~ i

If all but & finite number of the coefficients a; are zero,

oo . n .
then z aixl reduces to a polynomial Z aixl for some n > 0.
i=0 0 i=0 o
In particular, Z aixl = aoxo = a5 € K, and, as a special
i=0
00 . [+5] i
case of (3), cf z aixl) = Z ca;x" for ¢ ¢ K. It will be
i=0 i=0
n n-1
noted from (4) that, for any n > 0 and a ¢ K, d(x ) = nx .
That {K{x};+,.} is a ring follows from the usual
proof given in analysis texts. It must be shown that the

mapping d is a derivation, and K{x} will then be seen to
be a differential ring extension of K. The sum law for
derivatives is clear from the definition given, and the

product law is derived in the following lemma:

Lemma 3: For all u,v ¢ K{x}, (uv)' = u'v+uv'.
0 . o0 .
Proof: Let u = ) a.x> and v = ) b.x" for a,,b. ¢ K. Then
—_— ) i i i i°7i
1=0 i=0
uv = .2 . z_.ajbkx = -Z c,x” where c, = z_.ajbk and
i=0 j+k=i i=0 Jtk=1i
c. = a.b, = ) a b, .
PR gakEiar 3 gegsia ST

As a result of (4), the term of (uv)' in x* is

. . . i
(i+1)ec,  .x'+clx™ = z (i+1)a Db, x*+ Z (a,b )'x
i+1 i Srtoia] s t j4E=1 J k
= ) (s+t)a_b x4 ) (alb +a.b')xi
s+tEi+l 8T gak=g K K

t s €

- i 1 ' '
= z' sasb X+ Z. ta b, x + 2_,(ajbk+ajbk)x
s+t=1+1 s+t=1i+1 Jtk=1i
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= 2 sa b, x + z ta_ b, x + ) (a!b +a b!)x

lgskivr 5% 1<efier SV geges JEOJE

0<t<i 0<s<i’
s+t=1+1 s+t=i+1
Now let s = j+l1, t = k in the first summation, and
let s = j, t = k+1 in the second summation. Then the term
in x- of (uv)' equals (summing over j,k such that j+k = i).
j+ + +a! + 1) xt
2((J l)aj+lbk (k+l)ajbk+l ajbk ajbk)x
i i

= i+ +a! +b)! .

Y03 ag, al)byx +y aj((k+l)bk+l bt )x
Hence, by (3) and (4) above,

v iy, oW i
1 = : '
(uv) () (Gi+l)ay o +af)x7)( ] Dox7)
i=0 i=0
[ . oo .
i ) CeveEy oy .

+ (izoaix )(iZO((1+l)bi+l+bi)x ) u'v+uv' as asserted.

It will be shown in Lemma 3 below that K{x} and M¥
have the same structure as K(w)-modules. For the purpose
of exhibiting an isomorphism between K{x} and M¥, the follow-
ing symbolism will be used:

For arbitrary i < O, let the symbol vy denote
(1/(-1)1)x"t.

0
It is clear that, for e, € K, 2 e.v; denotes an

Il

arbitrary element of K{x}. Let -i, and, for all k > O,

0 0 .
let a, = (l/k!)e_k. Then d(iz—meiyi) = diz_wei(l/(Ai)l)x—l)
= d(jzoe_j(l/j!)xj) = d(JZOaij) = jZO((j+l)aj+l+aj)xj

((j+1>(1/(j+1>z>e_j_l+<(1/j:)elj>)xj

]
IHe~18

0

9T
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o 0 .
- s 1 1 J - ' iYL

_Z (1/31) (e J_l+e_J)x L ey qre)(1/(-1)1x

J=0 1=—o

0
= 1

L ley_greldyy -

i=—o0

If one now writes w(u) = d(u) = u' for u e K{x}, it

is clear that K{x} is a K(w)-module under the rule:

Lemma Y4: M¥ and XK{x} are isomorphic as K(w)-modules, where

the M¥-derivation w of M¥ corresponds to the derivation 4 of

K{x}. This isomorphism ¢ is given by:
0 (1) 0
¢(.Z 8, r ) = .z a;y; for a, e K.
i=—00 izZ~m
Proof: The defining properties of the two systems M¥ and
K{x}, as K(w) modules, are the same. In particular, as the

above computation shows,

g 5 (1)
a( ) e.y,) = 'Z (e, ;*elly; +— L ey _j*el)r

—00 i=—0

1 . . . .
= w 2 e.r , as required for this isomorphism,
i=—00

One defines multiplication in M¥ by the rule:
km = 9" (¢(k)¢(n)) for k,m e M*. Hence ¢(uv) = ¢(u)¢(v),
and it is clear that this rule of multiplication renders
M¥ and K{x} isomorphic as rings. Henceforth, M¥ and K{x}

are identified, and r(l) = (l/(-i).')x_l for i < 0 gives

the relation between the derivatives of r and the powers
of x. This common system will be denoted by M¥. Since M¥

is now a ring and not merely a module, every M¥-derivative



is now a general (ring) derivative. In effect, M¥ has been
given the structure of a ring by means of defining an opera-
tion of multiplication for which the M¥-derivation, already
defined in M¥, satisfies the product law for derivatives.

It is now possible to give an application (to linear
differential equations in the basic ring K) of the corollary
to Theorem 11 (in the form given in Lemma 1 above).

Lemma 5: For any integer n and any ai,b ¢ K such that
T (1)

a, # 0, there exists y ¢ M¥ such that 2 a8,y
i=0

= b,
Proof: By Lemma 2, there exists y € M¥ such that

n .
E aiwl(y) = b (recalling that K is a subring of M¥ = K{x},
i=0 :

and hence that b € M¥). Since w is the operation of

n . n
derivation in M¥, } aiwl(y) = aiy(l) = b as asserted.
i=0 i=0

Temma 5 asserts that any linear differential equation
in K has a solution in the ring extension M¥, Results that
have some resemblance to that of this lemma (such as

Liouville and Picard-Vessiot extensions of differential

fields) have been studied by Kolchin [8, 9, 10] and Ritt [21].

These earlier field extensions, however, are more like
classical algebraic extension fields and not as general as
the solution ring considered here.

It is now desired to improve on the result of Lemma 5
by extending the division ring K to a division ring T in
which every linear differential equation in T has a solution
in T, without the necessity of having to extend T to a

larger system.
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The ring M¥ = K{x} is extended to the ring K{x,x—l},
m .
the elements of which are the sums ,2 aixl for ai ¢ K and n
i=n

an arbitrary integer (possibly negative). This ring is the
formal analogue of the usual field of formal power series,
except that assumptions of commutativity and associativity

are no longer made, with the following rules:

© . 0 .
i _ i, . i _
1. .Z a x’ = ‘Z b.x” if and only if, for each i, a; = b,.
i=n i=n
o © . 0
i i i
2 _2 a X+ y b, X" = ) (a.+bi)x .
i=n i=n i=n
o] 0 o]
i iy _ i
3. (.2 a;x )(.2 b, X ) = .E . _.ajbkx
i=n i=n i=2n j+k=1i
[o ] 1 00 . 0 .
= Ly = i ! 1
L, d('z a;x ) ('z a;x ) .z ((1+l)ai+l+ai)x .
i=n i=n i=n

That 4 is a derivation follows from the proof of
Lemma 3 (as suitably modified for the more general lower
limits of summation).

That K{x,x_l} is a division ring follows from

repeating the proof of Theorem 11 for the ring K(w,w_l),
with the element x playing the role of the element W_l and
the element x_l that of w in the earlier proof. Thus one

lets the u of the earlier proof be here the element

m . n .

2 a.x—l and v be the element z b.x—l.
iz T iZ-c0
Lemma 6: The basic ring K may be extended to a division ring

Kl in which every linear differential eguation in K has a

solution in Kl'
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Proof: This follows from Lemma 5 and the above construc-
tion of K{x,x—l}, where Kl = K{x,x—l} includes the structure
M¥* of the lemma.

Let x be an infinite sequence of alge-

10 Xps Xgs oo
breically independent variables over K. Define the sequence
of division rings KO’ Kl’ K2, .+« by repeated applications

Then every linear

. -1
b =
of Lemma 6, where L Ki{xi+l’xi+l}'

differential equation in Ki has a solution in

L (i =1,2,3,...), and K, = K. Let T =U K,. Then T
i

is a differential ring since it is the "direct limit" of

a sequence of differential rings (ref Gratzer [3]).

Theorem 12: The ring T satisfies the following properties:

1. T is a differential division ring.

2. K is a differential subring of T.

3. Every linear differential equation in T (of the
T (1) _

form ) a.y = b for a.,b € T, a_ # 0) has a
se0 1 i n

solution y ¢ T.
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Proof: Any equation of the form ax = b or ya = b, with a,b € T,

has a solution in T because there exists a division ring

K CT, with minimal j, that contains a,b. Hence T is a
division ring and (1) is proved. Since K = KO’ it is trivial
that K is a (differential) subring of T as asserted in (2).

In order to establish (3), consider an arbitrary equation

n .
Z aiy(l) = b for a,,b ¢ T, a/ # 0. It must be shown that
i=0

there exists a solution y € T, and for this purpose it

will suffice to show that, for some j, this equation has a



102

solution in Kj' Consider the set of the coefficients
{ao,...,an,b} of this equation. Since the Ki are nested,
it is clear that one can find an upper bound t such that
ao,...,an,b € Kt' It is now seen that this equation is in

the ring Kt’ and therefore has a solution y € Kt+l' The

proof is now completed by letting j = t+1.
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