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ABSTRACT

This thesis is concerned with the development and
testing of methods for the measurement of electrical and
thermal conductivities of ion-selective membranes, and an
interpretation of the results cbtained. Three types of
membranes were studied: porous glass, cellulose and poly-
vinylbenzenesulfonate.

The electrical conductivity was measured in
directions parallel and perpendicular to the membrane
surface. The perpendicular method involved the optimum
placement of the electrodes in relation to the membrane
surface. A theory for the correction of overlap between
the membrane and the cell faces was investigated. A method
using mercury electrodes in contact with the membranes was
also studied. It was found that, for polyvinylbenzene-
sulfonate membranes, the whole of the membrane's voiume was
available for conduction, rather than only the part occupied
by water as is predicted by pore models of membranes. An
anisotropy of the electrical conductivity was observed in
porous glass and polyvinylsulfonate membranes which was

ascribed to their method of manufacture.
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An apparatus to measure the thermal conductivity
was designed. A complete theory of its opération was
developed and tested, including a method for correcting for
thermal resistances at the membrane surfaces. It was found
for polyvinylbenzenesulfonate membranes that the membranes
behaved as a random mixture of a resin phase and a water
phase with an anomalously high conductivity, possibly due to
orientation of the water by the electrical double layer
within the membrane. The concentration dependence of the
conductivity of these membranes was found to be more
complicated than a swelling effect. The temperature
dependence of their thermal conductivity suggested that

relatively short chain segments made up the membrane matrix.
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CHAPTER 1

INTRODUCTION

Research info the transport properties of ion-
selective membranes has shown promising results in several
fields of technology [1,2]. The use of membranes in fuel
cells, in some types of electrochemical batteries and in
electrodialysis makes the investigation of their properties
a worthwhile project. A systematic study of ion-selective
membranes can lead to the ability to prepare membranes with
properties suitable to many desired applications [3,4].
Also, the characterization of simple artificial membranes
can lead to an understanding of the behaviour of the complex
cell membranes that are necessary for life [5]. Therefore,
a systematic study of the properties of several types of
membranes, and a complete descfiption of their properties
and the interrelations among these properties will be a
major step in the understanding and exploitation of ion-
selective membranes.

The purpose of this work was the study of some
methods of measuring two of the properties of ion-selective
membranes and the testing of these methods on three types
of artificial membranes. Particular attention was paid to

1



the methods employed so that reliable and accurate results
could be obtained for all types of membranes. The first
property studied, the electrical conductivity, is an import-
ant fundamental and practical characteristic [6]. It is
involved in the interpretation of many transport phenomena
across membranes. The thermal conductivity, the second
property studied, is of fundamental importance in theories
of energy transfer [7].

Before describing the types of membranes that were
used, it is necessary to define what is meant by a membrane.
According to Lakshminarayanaiah [8], an ion-selective
membrane is a phase "acting as a barrier to the flow of ionic
species present in the liquids and/or vapors contacting the
two surfaces". In the case of ion-exchange membranes, the
barrier behaves in the following way. The membrane is
composed of polymer chains, crosslinked to form a matrix [9].
To the chains are attached charged groups, either negative
as is the case with the membranes that were used here, or
positive. The matrix is therefore characterized by the
degree of crosslinking of the chains, by the capacity of
the membrane which is related to the number of charged
groups present, and by the water content which is related

to the space available within the matrix structure through



which the ions and molecules pass during migration [10].
When an electrolyte is added, the ions with the same charge
as the fixed groups in thé membrane, called co-ions, will
be excluded to an extent governed by the concentration of
the external solution and the nature of the membrane. This
is the basis of the model first proposed by Donnan [1l1l].
For very low concentrations of external electrolyte, the
co-ions will be completely excluded from the membrane. As
the concentration increases, the number of co-ions will be
equal to the number of counter-ions (those ions with a charge
opposite to that on the membrane) minus the number of charges
on the membrane matrix itself. In membranes with no ion-
selective properties, there can be no distinction made
between the positive and negative ions, since there are no
fixed charges. When an electrical potential difference is
applied across the membrane, flows of ions and solvent
molecules are created. The ion flows are related to the
electrical mobilities of the ions in the membrane, and to
the ion-selective nature of the membrane itself. The
electrical conductivity, related to this current flow, [6]
is therefore of fundamental importance in understanding the
properties of ions in the membrane matrix.

The thermal conductivity is related to the struc-



ture of the membrane matrix. In it is involved the excit-
ation of sections of the polymer network by thermal energy
[12]. The thermal conductivity is then dependent on the
amount of crosslinking of the polymer chains, how the
membrane was originally polymerized, and the number of
fixed charges causing electrical repulsions within the
membrane. Since the membranes are equilibrated in an
electrolyte, the thermal conductivity should also depend on
the amount of electrolyte that is present within the
membrane, by analogy with calculations on membranes swollen
by non-electrolytes [13];

Tt is therefore essential that accurate and
reliable methods be developed to measure the electrical and
thermal conductivities of ion-selective membranes so that
these properties may be used for characterization and as
basic quantities in theories of membrane transport.

Ton-exchange properties have been recognized
since the middle of the nineteenth century [14]. Soils and
clays with these properties were found and the responsible
substances isolated [15]. Ion-exchange materials were first
fabricated at the beginning of this century tl6]. By 1914,
detailed studies of the passage of current through membranes

were being made; With the development of synthetic ion-



exchange resins in 1950 [17,18], a wide variation of the
properties of the membrane, both physical and chemical,

could be achieved and it became more feasible to use these

to make a systematic study of the properties of membranes

and to use this knowledge for studying the more complex
problems of natural membranes. In the last 20 years a great
deal of effort has been devoted to this field. The published
work in the field up to 1969 has been surveyed by
Lakshminarayanaiah [8,19].

Three types of ion-selective membranes were used
in this work. They were chosen so that a wide spectrum of
paysical and chemical properties could be covered. The
first type was a crosslinked copolymer of styrene and
p-vinylbenzenesulfonic acid [4,20]. Membranes of this type
have a high capacity (fixed charge density) and are inter-
mediate in their tensile strength. The second, cellulose
gel membranes, [21] have an intermediate capacity and a
relatively low tensile strength. The third kind of membrane,
porous glass, [22] has a low capacity and high tensile
strength.

This thesis is divided into eight chapters. The
second deals with the theories of transport in membrane

systems. The third deals with the experimental methods



which are used frequently throughout the balance of this
work. The next three chapters deal with the electrical
conductivity of membranes. Chapter IV discusses types of
cells which were designed to measure the electrical
conductivity, X, perpendicular to the surface of the membrane.
All of these cells were based on a design first used by
Manecke and Bonhoeffer [23] and later modified by Lorimer

et al [21]. Menbranes were used which had a larger diameter
than the electrodes in the cell and theoretical calculations
[24] were used to account for any current flow through the
part of the membrane that was not between the electrodes.

The four cells used were similar, but the electrode size
varied, as did the distance between the electrodes and the
membrane surface. The fourth cell used mercury rather than
platinum electrodes. This technique was used by Subrahmanyan
[25] for the measurement of electrical conductivity. Chapter
V deals with the electrical conductivity, k,, of a membrane
parallel to its surface. Measurements of this type have
been attempted by Hills [26] and Lorimer [21] using membrane
rods or strips. All dimensions of the membrane must be
known accurately for the success of their method. Therefore,
a new type of cell was designed, based on a theory of

van der Pauw [27]. This theory relies only on a precise



measurement of the thickness of the sample. The sample can
be any shape as long as the thickness is uniform and there
are no isolated holes. Chapter VI compares the results
obtained normal to the membrane surface to those measured
parallel to the surface. If the membrane is homogeneous,
the two results should be the same, and the ratio of the
two electrical conductivities will be unity. I£, however,
the two results are different, an anisotropy can be defined
as

o = I (K: - K//)/(K// + K:_l_)l' [I-l]

-t

Such an effect may be caused by a surface layer on the
membrane with properties different from the body of the
membrane, or by some other structural peculiarity of the
membrane.

Chapter VII is concerned with the thermal conduct-
ivity of ion-selective membranes. No measurements of this
type have been reported before. Since it was impossible to
insure the absence of contact films between the membrane
and the heat source used, a complete theory of the apparatus
was derived to take into consideration the existence of a
reproducible contact film. The method was tested using
polytetrafluoroethylene discs with a silicone oil film on

the surface. It was then used for measurements on menmbranes.



These results were correlated to the swelling of membranes,
since the thermal conductivity and the degree of swelling
both reflect similar aspects of the polymeric structure of
the membrane.

Chapter VIII is a summary of the results obtained

and the possible explanations for these results.



CHAPTER II

THEORIES OF TRANSPORT IN MEMBRANES

l. Introduction

A complete theoretical description of the transport
of ions and molecules in membranes can be considered to
comprise, ideally, the following two steps:

1. Macroscopic transport equaticas are formulated
in such a way that sigﬁificant transport coefficients are
defined and related to experimentally-accessible quantities.

The most comprehensive theory available for this
purpose is the thermodynamics of irreversible processes,
which was first applied to membrane phenomena in a systematic
way by Staverman [28]. Two versions of the irreversible
thermodynamic theory are in use: one dealing with discont-
inuous systems and one with continuous systems. The dis-
continuous version, as applied to membrane phenomena, has
been reviewed in a number of places [8,19,29-34] and is
valuable because of its simple and straightforward descript-
ion of experimentally-observed phenomena. The continuous
version is necessary for the proper consideration of the

processes taking place within the membrane, and has also

9
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been reviewed [29-31,34]. Some authors have considered in
detail the relation between these two versions [29,30,31,34].
older continuous theories of transport in membranes may be
classified as approximations to the more rigorous irrever-
sible thermodynamic theory. Reviews on these aspects are
also available [19,35].

2. Molecular models that are in accord with
current theoretical ideas in electrolyte and polymer theory
are constructed, and calculations of the macroscopic trans-
port coefficients are carried out and compared with experiment.

In general, progress in this direction has been
slow and uncertain, because of the inherent complexity of
the simplest models and the complicated nature of the
necessary molecular theories of equilibrium and transport.
Approximate theories [36,40] of this type are useful as
guides for the prediction and correlation of membrane
properties.

In this chapter, the irreversible thermodynamic
theory will be discussed in detail, and molecular theories

will be surveyed briefly.
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2. IrféVérsible'Thermodynamics of Transport in Membranes

(a) Discontinuous Systems

(i) General Relations

The thermodynamics of irreversible processes
relates the driving forces (or affinities) applied to a
membrane to the fluxes of solute or solvent that result.
These processes are irreversible in a thermodynamic sense.
If a process in a system is reversible, the change in the
entropy of the system is exactly equal to the heat flow
from the surroundings, Q, divided by the absolute temperature,
T. That is,
AS = Q/T . [IT-1]
However, the processes that are being considered here are
irreversible. In this case the entropy change is greater
than that predicted for a reversible change [29]. 1In other
words, the entropy change consists of two parts. One part
is an external part that is egual to the value for the
reversible process. The second part is an internal
production of entropy caused by the presence of irreversible
processes:
AS' = Q/T + A8 [II-2]
It is this second term that characterizes irreversibility.

During the nineteenth century, several phenomeno-
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logical laws were developed for specific irreversible
processes. These laws gave the flux produced as being
directly proportional to the applied force. Thus, Ohm's

law gives the flow of current as proportional to the applied
voltage, Fourier's law gives the heat flow as proportional
to the temperature gradient, and Fick's law gives the
diffusion flow of matter as proportional to the concentration
gradient. If more than one of these forces are applied
simultaneously, the resulting flows will be dependent on

all of these forces. In membrane systems, the affinities
actually used in experiments are differences in various
intensive quantities. Research has been devoted to four of
these affinities: an electrical potential difference (AE),
a pressure difference (AP), a concentration aifference (AC)
which is related to a difference in chemical potential (Au),
and finally, a temperature difference (AT). (See [19] for
examples.) For each of these affinities, there is an assoc-
iated flux. For example, if oniy an electrical potential
difference is acting on the membrane, there will be a
current flow across the membrane. In this situation, the
electrical conductivity and the transport numbers of ions
and the solvent can be measured. Similarly, a pressure

difference will cause a streaming potential and a temperature
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difference will cause thermoosmosis, among other effects.

In the most general case, any force can give
rise to any flow. For instance, a voltage applied across
an ilon-selective membrane results in a flow of matter,
both solute and solvent. Therefore, a theory is needed that
relates the fluxes to all of the forces. A general theory
was developed by Onsager [41] in 1931. He showed that if
" there are n independent fluxes, Ji' and a corresponding
affinity Xi for each flux, then the fluxes and forces are

related by the following equation:

n

= % = -
Iy 521 Lo X k = 1,2,3....n). [II-3]

The fluxes and forces are chosen so that they satisfy the
relation

= T -
ds/dat ¥ IX, [II-4]

where ds/dt is the rate of entropy production due to the
irreversible processes that are occurring in the system.
Further restrictions can be placed on equation [IXI-3] with
the use of Onsager's reciprocal relations:

Ly = Iy - [II-5]

These relations have been tested and confirmed experimentally

in a number of cases [42].
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In order to obtain expressions suitable to the
conditions of the experimental measurements, a suitable
model must be constructed. It consists of two reservoirs I

and II separated by a membrane as shown in Figure [II-1].

Reservoir I Reservoir II

membrane
FIGURE [II-1]

This system is discontinuous as defined by de Groot [29,30]
since the physical properties are not continuous functions
of the spatial co-ordinates but are discontinuous at the
membrane boundary. The differences between continuous and
discontinuous treatments of membrane systems will be
discussed later. The two reservoirs have volumes VI and

VII, electrical potentials EI and EII, and masses nI and

nII. No chemical reactions are to take place in the system.

Since the system is closed, the total mass of each
component must be céhstant, and the law of conservation of
mass is given by

I

II
dnk + dnk = 0 (k

I

1,2.....1) [II-6]
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and ant + an™t = o, [II-7]

and r is the number of components in the system.

The change in the energy of each reservoir consists
of two partsi that part which is exchanged with the surround-
ings, deU' and that part which is exchanged with the other
reservoir, diU. The total energy change for the first
reservoir can therefore be expressed as

aut = 4 Ut + a.ut [II-8]
e 1

and by a similar equation for the second reservoir. Since
the energy of the system only changes if energy is exchanged
with the surroundings and not simply moved from one reservoir
to the other, the law of conservation of energy can be
written as

qut + a,ut

I
o
L]

[II-9]

Now, if the two reservoirs are considered
separately, they are open systems. Suppose that a heat flow
dg per mole into an open system at pressure P causes a molar
increase in energy of dU and an amount of work -Pdv to be
done on the system. v is the molar volume. Then the first
law of thermodynamics can be written

dg = dU + Pdv . [II-10]

The enthalpy of the system can now be defined as
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H = nh = U+ PV [TI-11]
where n is the total number of moles in the system. Each
reservoir is at uniform electrical potential so that there
is no electrical work term in the equation for each reservoir
separately. We obtain from equations [II-10] and [II-11] and

the relation d0 = ndd,

I I

@t = avt + pav’ - n'an [II-12]

and a similar expression for reservoir II.
If the total system is considered however, then
electrical work is done moving dnk moles of each component k

between the reservoirs. This work is equal to

T II. IT I. I
kgl sz(E dn, "~ + E dnk). [II-13]

With the aid of egquation [II-8], this becomes

r

I I, . II
z - -
Zq 7 FE E-)dn, - [II-14]

The factor F is the Faraday constant (96,487 J mol~!) and
Zy is the signed charge ("valence") of component k.

The total heat transferred between reservoirs can
now be calculated from eguations [II-12] and [II-14].

I r
I + .2, 2 F(EII - EI)dnII

=1 %k e [TI-15]

a0 = du + pravt + plav

where the total energy change, dU, is the sum of the energies

of each reservoir, and the enthalpy terms cancel one another.
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The heat absorbed by the two reservoirs can be
split into the part absorbed from the surroundings and the
part absorbed from the other reservoir, in the same manner
as the energy change in equation [II-8]:

a5t = aor + 4.8, [II-16]

and similarly for reservoir II. The heat and the energy
received by the total system can now be expressed as
@ = a8 +d440 [II-17]

a vt +davuvt. [II-18]
e e

du

If these two expressions are substituted into equation [II-15],
then we obtain

deéI + deGII = deUI + deUII + pravt + prlavtt

r
+ 5y kFE dnk + kgl kFE dnk [1I-19]

The sizes of the two reservoirs are independent and thus this
equation can be separated into an equation concerning each
reservoir only:

= 2 -
deQ d U + P dV + szE dnk [II-20]

and a similar expression for the second reservoir. The last
equation is concerned only with changes taking place between
the reservoir and the surroundings. If the relations between

external and internal quantities are used, then equations
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may be obtained for the changes between the two reservoirs.
Therefore, if equations [II-12], [II-16], [II- 8] and [II-20]
are employed, the following result is obtained for reservoir I:

a.0 = 4.t - nlan® -
1 1

[Ind N>

1.1
z, FE" dn)_ [II-21]

k=1

With the help of equation [II-9], and the equation for

reservoir II,

=T T I I I ~II
by
diQ + k=l(h + szE )dnk + diQ

r

II II I
+ kEl(h + szE )dnk = 0 [II-22]

In order to establish the relationship between the
fluxes and the forces in the system, an expression for the
entropy production (equation [II-4]) must be obtained. This
can be done by applying the second law of thermodynamics,
using Gibbs' equation and considering each reservoir

separately. For reservoir I, the result obtained is

I_ T I I..T r 1.1
= - T -
T 3ds du” + P av <21 pkdnk [II-23]

where S is the entropy as before, and Mo is the molar
chemical potential of component k. The total change in

entropy for the system is the sum of the two separate

entropies:

as = (auT + pravt)/rt + (autt + pTravtly it
ey
I.1,T II. IT, II
- kzl (denk/T + }«Lk dn-k /T7). [II-24]
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If equations [II-7], [II-8] and [II-9] are now employed,

then
ds = (deUI + PIdvI)/'I'I + (dleUII + PIIdvII)/TII
r
I I1 I IT, IT I, T I
+ (/7 - 1/T )diU + kEl(“k /T - pk/T )dnk '

[II-25]
and the application of equations [Ii-20], [II-21] and [II-25]
leads to
ds = deGI/TI + de(SII/TII + diGI/TI + ciiﬁII/TII
+ (hIan/TI + hIIanI/TII

r
IT, 1T I, 7T I
= - -
+ 2 (uk /T p.k/T ) dnk . [II-26]

. . =1
Equation [II-22] can now be used to substitute for diQ I,

giving
ds = deGI/TI -+ deGII/TII + (diéI + hIan)(l/TI—l/TII)
r r
IT, IT I, T I II I I, IT
2 —-— 2 — ]
+ k=l(“k /T pk/T )dnk + 2 sz(E E )dnk/T

[ITI-27]
The entropy change in the system consists of two parts, as
indicated in equation [II-2]. The external part is the

entropy exchanged with the surroundings:
as = agl/rt + a gt et © [1I-28]

The internal part is due to the irreversible processes which

are taking place inside the system. Equation [II-27] gives
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this as
d;s = (dic’zI + hIan)(l/TI - l/TII)
iy
II, II I, 7T II I II I
X - -
+ k=1[(“k /T pk/T + sz(E E7))/T ]dnk.

[TI-29]
The internal entropy changes for each reservoir can be
separated in equation [II-29]:

I ~, I I_I1,1 I ~1_1,1
- - = -
dis diQ/T + h™dn™ /T k21 pkdnk/T [II-30]

with a similar result for reservoir II (using equation [II—6])

and where

~

My

by + % FE [II-31]

is the electrochemical potential.

The forces that are acting on this system are a
temperature difference and a difference in electrochemical
potential. Since the general Onsager theory of irreversible
processes assumes that the forces are caused by small changes
of the state variables from their equilibrium values, the
forces are best expressed in their infinitesimal form [21].

Therefore, the forces can be written

x. = - R R = S S S 2
= - aT/T? [II-32]
X o= - @it Tt = - a@/m

- &5, /T + [ dT/T? [1I-33]
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The force is always taken as acting from reservoir II to

reservoir I. Equation [II-29] now becomes
as = - (a0 + nfanlyar/r® + I, d (7. /)ant [II-34]
i i k=1 ¢/ My

The entropy production is the time derivative of the internal

part of the entropy change:

a,s/at = - (a,8%/at + nlan'/at)ar/T® - kél a (Y, /1) dn, /at
[II-35]

The time rate of change in the heat absorbed is the heat flow,

Jé, and the time ?ate of change in the number of moles, n,

is the flow of matter, ;k'

along with equations [II-32] and [II-33] leads to the

The use of this information,

following result:
r )
t = z -
dis/d JéXu + k=1(hxu + Xk)Jk [IT-36]
The chemical potential is a function of temperature,

pressure and composition:

du, = du (T) - s 4T [II-37]

where dpk is a function of temperature, pressure and
composition, and dpk(T) is a function of pressure and
composition only. If these equations are incorporated into

equation [II-36], the following result is obtained:

r ~
diS/dt = Jun + kél Jk(dpk(T) - (hk - h)ar/T)/T [II-38]
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where ﬂk(T) contains the electrical term as was the case
with Ek' Now equation [II-3] can be employed to obtain the
phenomenological equations. The Onsager coefficients are
chosen so that a factor of T is incorporated into the

entropy production:

r
Jo= - kgl Ly, (0 (1) - (b - h)dT/T) - Lida/T [II-39]
r
= - = o - - - -
I, Kol qu(dpk(T) (hy h)dT/T) qudT/T [II-40]

The phenomenological coefficients obey Onsager's relations
as stated in equation [II-5].
The total transported heat of component k, Qk'

can be defined now by the egquation
r

) = ., = z ) 11-41
qu qu k=1 Qkle [ ]
and, using the nomenclature recommended by Tyrrell [43],

equations [II-39] and [II-40] become

r

I = - Ep Lik(dﬁk(T) + (@ - hy + h)dT/T) [TI-42]
r
Jq = - k,§=l Qijk(d,uk(T) - (hk - h)ar/T) - qudT/T
[II-43]

When the temperature difference is zero, the quantity Qk is

just the heat flow accompanying a unit flow of matter.

The heat of transfer, Qw

! is defined by the eqguation

Q. = Q. -h. , [IT-44]
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and can be easily substituted into equations [II-42] and
[II-43] above.

These equations describe a system made up of a
membrane between two electrolyte reservoirs under conditions
of a concentration difference, an electrical potential
difference, a temperature difference, and (implicit in

dﬁ%(T)) a pressure difference.

(ii) Measurement of Electrical Conductivity

In this thesis, measurements of electrical
conductivity were made under the conditions dp = 0, 4T = o,
dpk =0, k=1,2,.....r, and dE # 0. The electrical current
density is

r

= % -
I F Lz, z.J [ITI-45]
so that, from equation [II-42], under the above restrictions,

r
= _ = 2
I = ,k=1 ijijkF dE

li]

- LEdeE [II-46]

The electrical conductivity, Kk, of a membrane of

thickness 4 may then be defined as
K = I&/(-AE) = LEJLF2 [II-47]

where AE is the difference in electrical potential across

the membrane. The equivalence of LE in equations [II-46]



and [II-47] follows by considering thin slices of homogen-
eous membrane of thickness dif. For each slice, LE will be
the same, so that integration of Kk = Id4/(-dE) by adding up
contribution to dE from each slice gives equation [II-47].
Heterogeneous membranes will be considered later. Other
electrical conductivities, for example, the conductivity at
zero volume flow, can be defined [44]. With careful experi-
ments, using small direct current voltages in a cell with
the same solution at the same temperature and pressure on
each side of the membrane, equation [II-46] will hold, but
volume flow can occur. If alternating voltages are used,
even if there are differences in concentration, pressure and
temperature across the membrane, there is no volume flow.
However, if the measured conductivity is independent of
frequency, it should be identical with the direct current
conductivity given by equation [II-46], since on each half
of the alternating current cycle, equal and opposite volume
flows can occur without hindrance. Experiments to test this
point have been reported by Meares and Ussing [45], who
found the values measured at 1000 kHz to be essentially the
same as those from a direct current method for various

concentrations of sodium ions.

24
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(iidi) Measurement of Thermal Conductivity

For thermal conductivity measurements, the membrane
is enclosed by an impermeable heat source and an impermeable
heat sink. The membrane is therefore a closed system and no

net flow can occur. The total volume flow is

LT, [11-48]

where Vi is the partial molar volume of species i. At

dpi(T,P) = 0, equations [II-42], [II-43] and [II-45] give

J, = - ;pdp - LPEdE - LPTdT/T
I/F = -~ LPEdP - LEdE - LETdT/T [II-49]
Jé = = LPTdP - LETdE - LTdT/T
where r r
= PN V.V = DY .
Lp i,%=1 Vi'kx ik Log i =1 Vi%Fhix
Y r
= = v = Z
Lpp = 4 ,%=1 Vi%lix Ler i,%=1 %% ik
5 (h 5
= - - I-
LT qu i,k=1 QkLik k h) [T 0]

Since there is no net electric current, dE may be eliminated
using equation [II-45]. And for no volume flow, a pressure
difference given by the first of equations [II-49] arises as

a consequence of the temperature difference and Jq becomes

= 2 2 - 2
Jq "[(LPT'LPELET/LE) /(LP'LPE/LE) (L LET/LEﬂdT/T

[TI-51]
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The thermal conductivity under these conditions is

_ 2 2 _r2 _
kT = —(LPT-LPELET/LE) /(LP—L?E/LE) + (LT LET/LE) [ITI-52]

If the terms concerning the pressure are negligible (see
page 184) and kT is independent over a finite range T to
T + AT, then reasoning analogous to that leading to
equation [II-47] gives

r .
kp = (Bog = 4,31 QinLij)&/T [II-53]

The thermal conductivity defined here is called the
"external” thermal conductivity by Haase [13], a definition
which will be examined in more detail below.

(iv) Heterogeneoﬁs Membranes

Kedem and Katchalsky [46] have considered
electrical conductivities in membranes composed of series
and parallel elements, under very general conditions where
net volume flow may or may not occur. For the case of no
volume flow, their equations take on the simple forms expected
for electrical resistors in series or parallel.

Suppose a membrane is made up of p homogeneous
elements that are parallel to the direction of the flow.
Of a total cross-sectional area A, the rth element has an
area Ar. The total current is the sum of the individual

currents ir' so that the total current per unit area is
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p P
= g 1 = 2 Z
1 r=1 lr/A r=1 Ar:[r/A r=1 0rIr’

[II-54]

where o, is the fraction of the surface occupied by element
r. Since the elements are in parallel, the voltage across
each one is identical and equation [II-47] becomes, for

each element

n

= F2' = -
Kr &j,k=l ZjZijkdE, [ITI-55]

and from eguations [II-54] and [II-55],

p

Kp = r§_1 o K [II-56]

where Kp is the total conductivity across this membrane.

If the conductivity is measured at right angles to
the previous direction, it will become a series of layers.
If there are s layers in series in any membrane, each with
a thickness Lr, then the total potential difference will be
the sum of the potential differences across each element r.
The current densities will be the same since the cross-
sectional area of each element is identical and it is
assumed that there are no contact effects at the ends of the

elements. Then, using equation [II-47], the result for each

element is

n
- _ = r _
I/F = 5,51 2475y ¢ [II-57]
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and

= F? % " -
Ko B 5 =1 DB, [II-58]

where Ksr is the conductivity of the rth element. Using
equation [II-57], the total series electrical conductivity
is given as

S

s
= z = = K -
l/Ks r=1 Ks/Ksr r=1 Lr/4 sr [11-59]

where Ks is the fraction of the total length of the menbrane
that is occupied by element r.

These results suggest that an anisotropy of the
electrical conductivity of a membrane can be caused by the
existence of layers of different conductivity. This aniso-
tropy can be characterized by measuring the electrical
conductivity in perpendicular directions.

(v) Other Transport Coefficients for Membranes

For flows of charged (ionic) constituents, the
mass transport number #k of constituent k can be defined as

the flux of k divided by the total flux of charge:
r
= 2 = = = i p—
t J'k/i=l 2. 3. dp = 4T du; =0, i =1,2....r

[II-60]
With the use of this equation, along with eguation [II-44],

equation [II-42] becomes

r
~ ¥*
I/F = = kEl tk(dpk(T) + (Qk + h)dr/T - L, FAE . [II-61]



This equation can be used to eliminate dE from the flux

equation to give
r

~ 3%
- _ T _
3, €, I/F - B My (L (1) + (@ + B)AT/T) [II-62]
and
r r 5
Iy = xE1 6 QL/F = 5 ay Ay (G (T) ‘+ (h~h, ) 4T/'T)
r
- - p¥ -
(qu 3,%=1 QijtjtkLE)dT/T [II-63]
where
T A o TR [II-64]

These equations will be used below in the discussion of

ionic mobilities.

(b) Continuous_ Systems

(1) Gehérai Reiétibns

When considering transport through membranes from
the point of view of discontinuous systems, the membrane
was treated as a "black box“'in which the details of the
transport processes occurring inside it were not considered.
If we wish to look at processes inside the membrane, two
extra features are needed. First, a suitable model must be
constructed which contains sufficient detail to account for
observed phenomena. Secondly, a general theory which

describes the behaviour with time of a "macroscopic" element

29
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of the volume in the system must be set up. This volume
element contains a large enough number of molecules that its
motion in time can be considered to be continuous, and will
be called a "hydrodynamic" volume element.

From the equations of conservation of mass, of
balance of forces and of energy flow in such a system, plus
the use of the Gibbs equation, the rate of production of
entropy and the equations for the flux of matter and heat can
be derived in forms analogous to the equations found above
for discontinuous systems. Three important differences
appear, however. First, gradients replace differences, so
that the forces causing flows are the local values of the
gradients of chemical potential, pressure, temperature and
electrical potential at given locations in the system.
Secondly, the fluxes of matter are defined relative to the
motion of the centre of mass of the system:

J, = ci(§_7_i - v), i=1,2.....1, [I1-65]
where c, and v, are the concentration and velocity of
substance i, and v is the velocity of the centre of mass of
the system:

r r
= .z (.2, c.). [II-66]

< 121 %%/ (5 ¢

It should be noted that gi, Vs and v are vectors. Thirdly,

the coefficients Lij’ in the analog to equation [II-39],
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r

Jgo= - k§1 Lik(v“k(T) - hva/T) - Liqu/T. [TI-67]

are local values which hold for flows measured relative to
the centre of mass only. The term in h is dropped from
equation [II-67] because of the definition of the heat flow
in a continuous system [43].

If mechanical equilibrium is established rapidly
in comparison with other processes, then a general theorem
(Prigogine's theorem) shows that the rate of production of
entropy due to irreversible processes is independent of the
choice of reference velocity [29]. Thus, fluxes

may be used in conjunction with a convenient choice of yr'
For ease in relating the theory to experimental results, v.
is chosen to be zero relative to the coordinates of the
laboratory; that is, in membrane systems, zr is taken to be
the velocity of the membrane, which in most cases is zero
relative to the laboratory. Prigogine's theorem requires
some modification if the 'temperature difference across the
membrane is not zero, but holds rigorously if a modified

heat flux

. r
Jg = J - .X_ h.J.. [II-69]
e - i=1 i1

is used in place of gﬁ. The expression for the rate of
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entropy production is unchanged by using this transformed
heat flux. If there are no fluxes of matter present, then
J = gﬁ. The flow equations can now be put into a partic-

—q .
ularly useful form:

J? = c¢,(v, - v )
—i i=—i —r
r-1 N .
= - 321 L (ij(T) + QjVT/T) i=1,2,...r-1 [II=-70]
r—l r-1
] = - + by
Qﬁ 3, k 1 (Qk hk)vuk(T) (qu 5, k=1 3 k k)vT/T

[ITI-71]
Note that the coefficients sz and Q? have values that
depend on the choice of the frame of reference.

(ii) Measurement of Electrical and Thermal Conductivities

By definition, and using equations [II-70] and [II-71]

for continuous systems, the local electrical conductivity is

r-1

K = - I/VE = F? j,§=l zjsz’Jfk = FlL

vui = ¢yP = yT = 0,i=1,2,...n,

[TI-72]
and the thermal conductivity is
s *

Ry = IS Tgg T gkt %%t

J, = 0, i = 1,2,....r. [II-73]
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Since the electric current is defined as

r r

I = z = % - -
L = F oy %39 F Bz, -v), [1I-74]

then for electrolyte systems in general, with zr = 0 (that
is, the charge of the frame of reference, usually the

solvent), conservation of charge gives the relation

r

iZp 28 = O, [II-75]

so that the current density, and hence the electrical
conductivity is independent of the choice of the frame of
reference. In‘a membrane, however, the membrane matrix
carries the charge Zrcr' so that

r-1

PH = -
z + 121 z,c. 0. [ITI-76]

Thus, from equation [II-71], using the velocity of the

membrane v, as the reference velocity,

r-1
= by -
L= Fyms -
r-1
= F ,XZ_ z.c.,v, [IT1-77]

i=1 "iTi—i
if y. = 0. The transport coefficients will always refer to
2 frame of reference fixed on the membrane. qu however,
does not involve the frame of reference.
The conductivities defined above are local values,

or "internal" conductivities according to Haase [13]. Their
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relation to the external quantities, which are the quantities

accessible to experiment, will be discussed in section (c),

(ii) below.

(iii) Flows Relative to the Sbiﬁent:

CénVéétive Contributiohs

Sometimes two reference velocities are used in

describing transport in membranes. This choice has been

discussed extensively (see the summary by Helfferich [47])
but in a less general way than given here.

In agueous electrolyte systems, ionic mobilities
(related to the phenomenological coefficients in section
(d)) are almost always referred to the solvent water as a
frame of reference, and tabulated values are almost
invariably referred to this frame. Let us suppose that, in
a membrane, the mobilities retain their values relative to
the solvent. Since the solvent can move relative to the
membrane, the mobilities measured relative to the membrane
will be eqgual to the mobilities in free solution plus a
correction factor for the nconvection" of the solvent. Of
course, equality of the mobilities in the membrane (even if
they were referred to the solvent) and in the external
solution would not be expected to hold unless the paths and

interactions of ions in the membrane were essentially those



in bulk solvent. However, no assumptions of this kind are

necessary in a general description of these so-called

"eonvection" contributions to transport coefficients.

Let component r be the membrane, and component o

be the single solvent. Then equation [II-65] becomes

3> o= e, (v, - V)
—i it=—i -t
and
3 = c.(ii.-V)
- it—i -o
so that
o= J? + I c /c
=i —i -0
and
r : 4 _
F = PP +3c /e =0
- e ~0 r’' o -

where the superscript r refers to the membrane as

reference frame, the superscript (or subscript) o refers to

the solvent, and

r
I, = Coly, -x)

Since, from equations [II-3], [II-32] and [II-33]

r-1
r

gy = - .z

r ~ r
. + L,
I, 5Z1 Lij vpj(T) qu vT/T

[II-78]

[II-79]

[II-80]

[I1-81]

the

[II-82]

[IT-83]

where the summation does not include the membrane phase r

and similarly

[II-84]
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where the solvent does not enter the summation, therefore,

from equations [II-83], [II-84] and [II-81],

. E LF Wo(m -1 vor o= - 3 1O, Vo (T) - IO vT/T
j=1 "1ij j iq j=1 7ij "7j ig
- _§ -, Vo, (T) - nr vT/T [ITI-85]
=1 "o 7j oq
Therefore, take
W A [II-86]
ig ig od
o, = 10, + I-, [II-87]
ij ij ij

For the case of electrical conductivity, the conductivities

relative to the membrane and the solvent are

r-1
r _ 2 r = 2.t -
K F 1,31 ZiZjLij FoLg [II-88]
r-1
k° = F2, % gz.2.1°, [II-89]
i,j=1 i §7ij
so that
r o r-1 r
= CHEEDY -
K K + F i, 5% zizjciLoj/co [TI-90]
But, eguation [II-60] gives
r-1
r r
= O, = ot -
5£1 z:j o oLE ' [IT-91]

and from equation [II-76], using Zrcr as the charge on the
membrane in this case, equation [II-89] becomes

r o 2 r o r r
= - c t L = K - K -
K K F z C o E/co zrcr to/cO [IT-92]

36



37

For a cation exchange membrane, z. is nega;ive, and tz is
almost always positive. Thus, the conductivity relative to
the membrane will be larger than that relative to the solvent
by the term _Zrchrtz/co' called the "convection conductivity"
[47].

The situation with qu is much more complicated

because of the way the heat flow is defined.

() MdbilifiesAin Menmbranes

In general, the mobility of a species i is
defined as the velocity of i per unit potential gradient.
. . s E _.
We shall consider electrical mobilities u, first. Thus, for

VP = VT = vu, = 0,

ui = - (y - v') /VE [II-93]

Dividing the top and bottom of this equation by sy and
using the definitions of gi and the transport number ti,
the result obtained is

X r r r
. = . F . = . . o -
u; L F/c, ik /Fo, [II-94]

As above, the mobility relative to the membrane
can be considered to be made up of a mobility relative to

the solvent plus a convective contribution:

u? = u? + % Z.Lr.F/c
i i j o7 o
= u° + trKr/Fc
i o o
- WO & o [II-95]

i o
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From this follows the very important relation
o
u +u = u = 0 [II-96]

that is, the mobility of the solvent relative to the
membrane is equal and opposite to the mobility of the
menbrane relative to the solvent. If, for example, theoretical
expressions or experiment give the mobility of a polyelectro-
lyte molecule in solution as independent of molecular weight,
then the mobility of water in a membrane composed of the
polyelectrolyte should be equal and opposite, if other effects
such as cross-linking of the molecules to form the membrane
are negligible.

Completely analogous results hold for the thermal

mobility, uiq'

(d) Relations between Discontinuous and Continuous Systems

If linear relations between local fluxes and
forces at a point inside a membrane can be written, and
similar relations can be written for a membrane phase of
arbitrary size using fluxes and forces measured in the phases
external to the membrane, the two descriptions should be
related. Theoretical investigations of the relations
between the continuous and discontinuous descriptions have

been described by Kirkwood [5], de Groot and Mazur [30] and
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Caplan and Mikulecky [32]. We take a simplified point of
view here.

Consider a system composed of a circular capillary
connecting two reservoirs. The reservoirs are at different
temperatures, pressures and compositions, and the capillary
walls carry fixed charges. If the diameter of the capillary
is large compared to molecular dimensions, the concept of
a hydrodynamic volume element at a point inside the
capillary is valid, and local fluxes and forces can be
defined. Axial gradients of temperature, pressure and
composition will exist in the capillary. Radial gradients
will also exist, because of the electrical double layer. If
there is local thermodynamic equilibrium at any cross-
section of the capillary, the flux observed externally will
be the total flux over any cross-section of the capillary,
under steady-state conditions, and the axial concentration
éradient will be

bci/bx = dci/& [11-97]

where Ei is the average concentration across the capillary,
X is measured along the length { of the capillary, and dci

is the infinitesimal difference in external concentration

across the capillary. Similar equations hold for the

average local pressure, temperature and electrical potential.
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The "external"” Lij is then related to an average

Lé;), averaged over a radial plane in the capillary, by

&Lij = Lii) [IT-98]
Similar considerations will hold for membranes of structure
more complex than a single capillary.

If the external difference in concentration is
finite, then equation [II-98] no longer holds, and we can no
longer expect the fluxes observed externally to be linear
functions of'the forces measured externally.

If a steady state does not exist, but thermodynamic
equilibrium is established rapidly at any given cross-section
of the capillary relative to the relaxation time for the
transport processes which are taking place, the average

coefficients Lii) are of use, and equation [II-98] should
again hold for infinitesimal external differences.

For heterogeneous membranes, equation [II-98] can
be written for each homogeneous part. If the diameter or
length of the capillary is so small that the concept of a
hydrodynamic volume element is no longer valid, the dis-
continuous description of transport processes is the only
useful one.

Equation [II-98] may be used to relate "external"

and "internal" mobilities, provided these quantities are
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independent of the magnitude of the "external" forces; i.e.
if measurements are made so that the electrical mobility,

for example, is obtained for the limit dE - O.

(e) ThévOnSager Relations

Two points of view may be taken concerning the
Onsager reciprocal relations. They may be considered as
postulates to be checked experimentally. Evidence for the
correctness for electrokinetic and other electrochemical
processes has been reviewed by Miller [42]. The reciprocal
relations can also be deduced from theory. Onsager's proof
[41] assumed: (1) microscopic fluctuations as the ultimate
source of irreversible phenomené: (2) the time symmetry of
physical laws (principle of microscopic reversibility) :
(3) the relaxation of microscopic fluctuations is described
by macroscopic phenomenological laws. The third assumption
of Onsager has been criticized, and alternate derivations
based on the master eguation of irreversible statistical
mechanics [48] and on the fluctuation-dissipation theorem

[49] have been described.



42

3. Miérbscopic Theories of Transport inAMémbranés

(a) Double Layer Theories

The simplest microscopic picture of a membrane is
a random collection of polymer chains carrying fixed charges,
with counter-ions and co-ions near the chains. Even this
model is difficult to describe mathematically, and several
more specific models have been proposed.

Kobatake and Fujita [37] assumed that the membrane
could be represented by a capillary with fixed charges on
its walls, while Deryagin and his co-workers [39] used a slit
instead of a capillary. Both solved the linearized Poisson-
Boltzmann equation, and used a mixture of thermodynamic and
hydrodynamic theory to calculate the transport coefficients.
The condition that the concentration of mobile ions in the
capillary or slit is much greater than the concentration of
fixed charges was also used. This condition, along with
the linearized Poisson-Boltzmann equation, makes their
calculation of interest only for menbranes of very low
charge density.

Dresner [36] used the rigorous solutions of the
non-linear Poisson-Boltzmann equation for a capillary and
for a charged rod to make similar calculations, but assumed

a salt-free membrane; i.e., one with only fixed charges and
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counter-ions present. These computations still require
rigorous comparison with experiment.

Double layer theories are closely connected with
the theory of the equilibrium properties of membranes. The
simplest equilibrium theory, that of Donnan (see Introductioh)
has been modified by including double layer contributions
and contributions from the elastic free energy of the polymer
network. One such theory is that of Rice and Harris [50].

This aspect of ion exchange has been reviewed by ([51].

(b) Activated TransportiTheoriés

Danielli [52] and Eyring and his co-worker [53]
have discussed the application of the theory of absolute
reaction rates to transport in membranes. For a brief
review, see [19]. The phenomenological coefficients Lij
become combinations of rate constants in this theory, and
little is gained except for a rather more pictorial concept

of transport.

(c) Thermal Conductivity

Haase [13] has discussed models for the interpre-
tation of the thermal conductivity in systems consisting of
a membrane and a non-electrolyte, and a few tentative
measurements have been correlated with theory. No theory

or measurements for electrolyte membrane systems have been
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developed, but data and qualitative theories for solid high

polymers [12] may be useful additional guides.



CHAPTER IIT

GENERAL EXPERIMENTAI. METHODS

1. Types of Menmbranes

(a) Polyvinylbenzenesulfonate membranes

The membranes of this type used were described by
Brydges, Dawson and Lorimer [4]. Data for the membranes
used are given in Table [IIT-1]. The density and heat
capacity were determined for membranes equilibrated in
conductivity water.

Before a membrane was used for a measurement, it
was soaked for several days in the potassium chloride
solution which was to be used in the measurement. This was
done in order to equilibrate the membrane with that particular
solution. When a membrane was to be used for measurement at
a different concentration of electrolyte, it was first
removed from the old solution, any excess solution on its
surface was wiped off using tissue ('Kimwipe') and it was
then soaked for several days in several changes of the new

solution.
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(b) Cellulose membranes

Textile cellulose, 8 percent by weight cellulose
(degree of polymerization 250) was supplied by Courtaulds
(Canada) ILimited, Cornwall, Ontario. The method used for
the preparation of the ceilulose membranes was similar to
the one described by Lorimer, Boterenbrood, and Hermans [21].
The mold consisted of a Plexiglass ring placed between two
porous porcelain plates. The ring was placed on one of the
porcelain plates (presoaked in conductance water in order to
remove any air bubbles) and viscose was poured into the
resulting container. Any air bubbles in the viscose were
then removed and the second porcelain plate, again presoaked
in conductance water, was carefully placed on top of the
Plexiglass ring, making sure that no air bubbles were
introduced in the process. This assembly was immersed in an
ammonium sulfate solution, 15 percent by weight, for 24 hours,
when coagulation of the cellulose had taken place. The
cellulose membrane was then removed from the mold and boiled
in another portion of the same solution for 15 minutes. The
resulting product was then washed with conductivity water to
remove the previous solution. Cellulose menbranes of various
thicknesses and diameters were prepared by changing the

dimensions of the Plexiglass ring used in the mold. The
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menbranes of this type used in this work are shown in
Table III-2].

The preparation of these membranes for use in
measurements was the same as that used for the polyvinyl-
benzenesul fonate menbranes in the preceding section. 2All
cellulose membranes used were prepared from the same sample

of Textile viscose.

(c) Porous Glass Menbranes

Porous glass sheets (Corning type 7930 porous
Vycor) were supplied by the Corning Glass Company, Corning,
New York. All samples supplied were 0.48 cm thick. Two
different methods were used to cut circular sections from
the sheets. 1In one method a rotating table was used and an
abrasive cutter was clamped above it. When the table was
rotated, the blast of abrasive from the nozzle of the
instrument provided a circular cut of the desired size.
A motor was used to turn the table so that the cut would be
uniform. Circular pieces were also cut using a glass drill.

Glass cutting equipment was also used in order to
cut the sheets parallel to their faces so that pieces of
different thicknesses could be obtained. The membranes
were then cleaned by warming them in a solution containing

nitric acid and a small amount of potassium chlorate [54].
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TABLE [III-1]
PHYSICAL CHARACTERISTICS OF POLYVINYLBENZENESULFONATE MEMBRANES

NUMBER THICKNESS CAPACITY¥ WATER HEAT DENSITY¥
CONTENT* CAPACITYT

cm meq/g dry g/g dry J gt g cm™3

0.163 1.72 0.856 0.599  1.123
8 0.058 1.74 0.500 0.567  1.166

0.056 1.77 0.788 0.636  1.140
11 0.065 2.47 1.358 0.724  1.128
12 0.076 2.24 0.710 0.620  1.lsl
13 0.061 2.30 0.826 0.644  1.156
17 0.051 1.03 0.232 0.472

* i.e. for 1 g of dry membrane in the ' -form,
+ for 1 g of water-swollen membrane in the Kt -form.

+ for 1 cm® of water-swollen membrane in the K+—form.

TABLE [III-2]
DIMENSIONS OF CELLUILOSE MEMBRANES

(water-swollen)

NUMBER THICKNESS DIAMETER
cm cm
1 0.112 2.50
2 0.183 2.50
3 0.232 2.50
4 0.315 2.50
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Aé with the other types of menmbranes described
previously, the porous glass membranes were equilibrated in
the appropriate potassium chloride solutions for 24 hours
before any measurement was taken.

The apparent capacity of porous glass was estimated
by discontinuous acid-base titration [55] and was found to
be 0.023 meq/gm of water-saturated glass at pH 6, which is
approximately the pH of solutions equilibrated with atmos-

pheric COz.

2. AEEaratus

(a) Water

Water was obtained during the first part of this
research from the regular city supply and later from a pre-
distilled supply on tap, which had an electrical conductivity
of about 2 x 10~°% o~ em™'. 1In both cases, this water was
redistilled using a Corning water still (model AG-2). The
final product, which was used in the preparation of all
solutions, had an electrical conductivity in the range of

1 -2x 10"° 0™t em™?:

(b) Solutions
Quantities of reagent grade potassium chloride

were recrystallized once from conductivity water prepared



above and dried at 150°C for 24 hours. It was then placed
in a platinum crucible which had been previously heated
under an atmosphere of dry nitrogen to constant weight in
a tube furnace. The potassium chloride was then fused in
the same furnace under a stream of dry nitrogen. The
crucible and its contents were then cooled in a desiccator
and then- were weighed on a Mettler (model H) balance,
previously used for weighing the crucible alone.

One litre flasks were fitted with male glass
joints. Glass caps would then fit over these to seal the
container. These flasks were washed with conductivity
water and dried at 110°c whenever they were recharged with
new solution.

The amount of conductivity water required to give
the desired concentration, calculated by the method below,
was added to the flask. This amount was determined by
weight using a Mettler top loading balance (model K7),
weighing the water inside the solution flask. The crucible
containing the potassium chloride was then added, forming a
solution of the proper concentration.

The weight of the water required for one litre of
solution is given to a sufficiently good approximation by

W = (1000 - V

1) 0y, ¢ [III-1]
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where vKCl is the partial molar volume of potassium chloride,
C its molar concentration and Py the density of water. The
observed weight of water is given by

Woe = W- (O.880)pa\_7w , [III-2]
taking the density of the balance weights, p e @s 8.4 g cm—3
as is specified in the Mettler balance instructions. The
partial molar volume of potassium chloride was taken from
MacInnes [56]. The density of water at 25°C and that of
moist air was taken from the Handbook of Chemistry and
Physics (45th edition, pages 2129 and 2136 respectively).

The potassium chloride was fused in quantities of
such a size that about 650 cm® of solution resulted. The
concentrations were reproducible to * 0.01 percent when
measured by conductivity. This accuracy was confirmed by
the reproducibility of the results using solutions made at

different times.

(c¢) Thermostats

Glass tanks with a capacity of about 20 litres
were used as containers for the constant teﬁperature baths.
Two types of circulators were used to control the temperature:
a Bronwill Constant Temperature Circulator made by Bronwill

Scientific Division, Will Corporation; and a Haake-Universal-
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Thermostat Unitherm, Haake Corporation K. G., Berlin.
These circulators were used interchangeably and their
performance was found to be equivalent.

The temperature could be maintained constant to
within 0.01°C. The cells were either equilibrated with the
thermostatic bath or constant temperature water from the
thermostatic bath was circulated through them, using the
pumping facility on the circulator. In this case; the water
was first passed through copper tubing within the bath in
order to ensure that small local temperature variations
caused by the heater of the circulator were removed. For
the thermal conductivity cell, an auxilliary pump was used
to ensure an adequate flow of water at constant temperature.
This pump was placed in the iine after the cell so that it

would not affect the temperature of the water.

(a) Resistance Measurements

The resistance measurements were made using a
Janz-McIntyre bridge [57] which incorporated a General Radio
Company Impedance Comparator, type 1605-As5 for the ratio
arms, power supply and phase-sensitive detector. The
variable arm of the bridge was composed of precision decade
resistors varying in value from steps of 0.01 ohms to steps

of 10,000 ohms. The bridge was calibrated by measuring the
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resistances of several type 500 (General Radio Company,
Concord, Mass.) standard resistors, which, in turn, had
been compared with Leeds and Northrup Company standard
resistor number 1594832 in a direct current potentiometer
circuit. The results are shown in Table [II-3]. The
accuracy of the resistors was found to be always better than
0.01 percent. A four leads method [58] was used when
experimental measurements were being taken to insure that
any resistance due to the leads to the cell would be

cancelled out.

(e) Téﬁbef&fufe>Measurément

Copper-constantan thermocouples were used for
temperature measurement in the thermal conductivity cell [59].
To prepare the thermocouple, the insulation was stripped from
the end of each wire, the endswere wound together, and a
small amount of soft solder applied to hold them. The
voltage drop was measured with a Sargeant recorder, model SR,
placed in the copper side of the thermocouple.

All thermometers and thermocouples were calibrated
against a 0.01 degree mercury-in-glass thermometer certified

by the National Bureau of Standards.



CHAPTER IV

ELECTRICAL, CONDUCTIVITY PERPENDICULAR TO THE MEMBRANE SURFACE

1. Theory

Most attempts to measure the electrical conductivity
of a membrane normal to its surface have inherent inaccuracies.
This has been caused by the failure to take into account the
"overlap" of the membrane surface with the measuring cell.
That is, when a membrane is placed between two electrodes,
its diameter is made larger than that of the electrode
chambers so that it can be supported directly between them.
The part of the membrane which is not directly between the
electrodes will cause a distortion of the current lines [60].
This causes a lowering of the resistance across the cell.,
Therefore, the results will produce a value for the
electrical conductivity that is higher than the actual value,

It is very difficult to cut a membrane in such a
way that it is exactly the same size as the measuring
electrode. If it is slightly smaller at any point, errors
due to the leakage of current past the membrane may be very

important. It may also not be desirable to do so if contact

between the membrane and the electrodes is not wanted.
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Therefore, if the overlap is to be accounted for, it should
be done so mathematically. This problem has been solved
for the type of apparatus used in this research by Barrer,
Barrie and Rogers [24] using methods described by Tranter
[61]. The boundary conditions for the problem are shown in
Figure [IV-1] on a cross—section of a cylindrically symmet-
rical membrane. The electrodes are situated at z = 0 and

z = 1 and extend from r = 0 to r = a. The shaded areas are
the boundaries of the membrane.

The major difficulty in solving the equations for
this system lies in the mixed boundary condition along the
surface of the membrane. If a constant flux is assumed
along the meMbraﬁe surface, the concentration will vary with
r. But if the concentration is taken to be constant, the
flux will vary with r. The problem is to apply both
conditions simultaneously. The problem is treated by first
obtaining a solution of Laplace's equation using the boundary
condition of constant flux per unit area to derive an
expression for the mean concentration over the face z = 1.
This result can then be related to this constant concentration
c [24].

The solution of the problem gives the following

result for the resistance across the cell:
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R = [4/ma®k][1l - 16Sn/n?] [IV-1]
where ¢ is the thickness of the membrane sample, a is the
radius of the electrodes and «k is the electrical conductivity

of the membrane. The quantity Sn is defined by the following

equation;
= 3 1 Ii(ga) ' "
o= q§1,3,5,,,, q® (K1(qa)) [T1(ap) Ky (qo)
-~ I (qu) Ky (gB) ] [IV-2]

in which Ij (x) and K3 (x) are modified Bessel functions of

the second kind with argument x and
a = mna/t, B = mb/4. [IV=3]

The quantity g is an index which takes all odd values of the
positive integers.

Equation [IV-1l] makes it possible to calculate the
resistance across the membrane from its electrical conduct-
ivity. If, however, there is an electrode chamber between
the electrode and the membrane that has been filled with
electrolyte, then there will be an extra resistance that
must be added to the result. In this case, equation [IV-1]
becomes

— 2 —
R = Ro + leff/[ﬂa K] [IV-4]

where RO is this extra resistance and leff is the effective



FIGURE [IV-1]

ELECTRICAL CONDUCTIVITY CELL
BOUNDARY CONDITIONS
FOR

THEORY

The cell is cylindrically symmetrical in r.
The hatch marks designate the outer edge of the cell, and

the broken lines represent the electrodes.
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FIGURE [1V-1]
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thickness of the sample and is defined, from equation [IV-1]
as _

1o = 401 - 16sn/m%) . [IV-5]
This addition to the theory involves an approximation
because the theory has been derived with the electrodes in
contact with the membrane surface. It can be expected
that the error introduced in the result will be small if
cither the thickness of the electrode chamber is small in
comparison to the thickness of the membrane, or the
resistance of the electrode chamber is small compared to
that of the membrane. In both of these cases, the extra
resistance Ro will be small compared to the total resistance
across the cell.

From equation [IV-4] it can be seen that a plot of
the resistance across the membrane against the effective
thickness of the membranes as calculated from the theory
should give a straight line whose slope, m, is proportional
to the inverse of the electrical conductivity: .

m = 1l/mna’k, [IV-6]
and whose intercept, Rb' is the resistance across the

electrode chambers of the cell.



2. General Experimental Methods

Each cell design used was similar and a common
method was used for the confirmation of the validity of the
theory, and the acquisition of data.

Plexiglass test rings, similar to those used by
Lorimer et al, [21] were manufactured in order to test the
operation of each cell, There were twelve rings, three of
which had approximately the same thickness (1), in four
different diameters (b). These dimensions are shown in
Table [IV-1].

When a measurement was to be made, the appropriate
test ring was placed into the cell and the two halves of the
cell fitted together on an O-ring seal. The basic design of
all cells is shown in Figure [IV-2] and is similar to the
design used by Lorimer et al [21]. The major variations
from the basic design are in the region of the electrodes.
The inside of the ring was filled with potassium chloride
solution of known concentration, either using filler holes
into the electrode chambers, or by adding the solution
before the cell was fitted together. Great care was taken
to ensure that no air bubbles were trapped inside the test
ring. The resistance across the cell could then be measured

and the results from several test rings plotted against
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TABLE [IV-1]

DIMENSIONS OF TEST RINGS

NUMBER THICKNESS RADIUS
(cm) (cm)
1A 0.187 1.907
1B 0.250 1.904
1c 0.293 1.906
1D 0.460 1.903
2A 0.181 1.271
2B 0.249 1.270
2C 0.290 1.271
2D 0.472 1.270
3A 0.182 0.633
3B 0.246 0.633
3C 0.292 0.633

3D 0.462 0.631
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FIGURE [IV-2]

ELECTRICAL CONDUCTIVITY

BASIC CELL DESIGN

The body of the cell was constructed of Plexiglass.
The grooves in the cell faces were accurately machined in
order to accommodate O-rings used for sealing the cell

and for preventing leakage from the electrode chambers

between the membrane and the cell face.
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FIGURE [Iv-2]

O-ring GROOVES

\

PLEXIGLASS CELL BODY
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their effective thicknesses as calculated from equation
[IV-5]. This method was used to test all cell designs
except the last one (Cell Design IV) in which no direct
method of testing could be used. The resistance between
the cell and the constant temperature bath was‘measured to
ensure that very little leakage to the bath took place. In
all cases, this resistance was very large, of the order_of
107 Q.

This method thus employed a "liquid membrane"
composed of potassium chloride solution of an accurately
known concentration and therefore with an accurately-known
electrical conductivity. The application of the theory to
the results obtained from the test rings to calculate the
electrical conductivity, therefore, will confirm or deny
the applicability of the theory to the cell design.

When a membrane was to be measured, it was placed
in the cell so that it was as nearly centred on the electrodes
as possible. The two halves of the cell were pushed together
until the membrane made contact with both halves. This could
be observed by the wetting of the sides of the cell by the
electrolyte in the membrane. The electrode chambers, if
there were any, were then filled with potassium chloride

solution of the same concentration as that used to soak the
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membrane.

The cell was first equilibrated in a constant
temperature bath. All cells were designed so that they
could be immersed completely, except for the filler holes
which were ex?eqded by means of Plexiglass tubing about 3 cm
above the cell. All measurements were then taken at a
Celsius temperature of 25.00 % 0.01 X. Thermal equilibration
usually took from 15 to 30 minutes each time a new membrane
was placed in a cell.

The values for leff for both the test rings and the
membranes and for each cell were obtained by use of a
Fortran IV computer program; This program first calculated
the modified Bessel functions to a sufficient accuracy,
either by using the actual series expansion for the Bessel
function for a value of the argument below 10, or by a
suitably good approximation for values of the argument above
10 [62]. These were then used to calculate the series for
Sn, including a number of terms predetermined to give the
required accuracy. The value of the effective thickness,
leff' could then be obtained using equation [IV-5]. The
computer program used for these calculations is shown in

Appendix I.
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3. Cell Design Number I

(a) Design

The first cell with which measurements were taken
is shown in Figure [IV-3]. This diagram is a cross-section
of the cell and is drawn to scale. The electrodes were
recessed from the surface of the membrane creating electrode
chanbers approximately 6 mm deep. These chambers were filled
by means of filler holes from the outside. The electrodes
were made of 0.025 cm platinum foil soldered onto brass plugs
which screwed into place in the Plexiglass body of the cell.
After they had been placed in position, the electrodes were
platinized electrolytically using a standard platinizing
solution at a current of about 50 milliamperes for six
minutes for each electrode [63]. A handle made of brass was
attached to the exterior of the cell to facilitate the

suspension of the cell in the constant temperature bath.

(b) Experimental

The resistance was measured for all test rings
using the method described previously. Each resistance
measurement was taken at four different frequencies: 1, 2,

5 and 20 kHz. Potassium chloride solution of a concentration

of 0.1158 N was used for all measurements.



FIGURE [IV-3]

CELL DESIGN NUMBER I

Cell is drawn to scale.

The cell body is constructed of Plexiglass.

The cross-hatched areas are made of brass.

The dashed lines indicate the positions of the filler holes
and of the bolts used for holding the cell halves

together.
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FIGURE [IV-31]
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To demonstrate the current distribution in the

cell, a two dimensional analog was constructed by cutting a
piece of Teledeltos paper into the battern shown in Figure
[IV-4]. The electrodes shown were made of copper foil and
were held onto the paper with Melton Silver solution grade
EM55 obtained from Melton Metallurgical Laboratories, Poole,
England. The percentage of potential difference between the
electrodes was plotted with a Field Plotter, Servomex

Controls Limited type FD 92.

(c) Results

The resistance measurements obtained from the test
rings are given in Table [IV-2] and plotted in Figure [IVv-5].
The raaius of the electrodes in the cell were measured and
found to be 0.478 cm. The theoretical electrical conductivity
of the potassium chloride solution was 0.01516 ohm~* cm—1
at 25°c [64].

The percentage potential difference across the
Teledeltos paper is plotted in Figure [IV-4] showing the

positions on the paper where the readings were taken.

(d) Discussion

The results obtained for the test rings give a
family of straight lines which have a common origin but

slightly different slopes. As the overlap becomes larger,
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FIGURE [IV-4]

POTENTIAL MAP FOR ANALOG OF

CELL DESIGN NUMBER I

Diagram is one-half the actual size.

The interior of the diagram is Teledeltos paper, and the
cross-hatched sections represent the electrodes.

The lines represent lines of constant potential, and the
numbers show the percentage of the total potential drop

which takes place to the left of that line.
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FIGURE [IV-4]
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TABLE [IV-2]

MEASUREMENTS ON TEST RINGS --- CELL I
NUMBER leff/cm R/Q
1A 0.164 134.0
1B 0.215 138.2
1C 0.245 140.9
1D 0.343 149.3
2A 0.162 134.3
2B 0.214 138.7
2¢ 0.243 141.3
2D 0.351 150.6
3A 0.163 134.6
3B 0.212 139.0
3C 0.246 141.9
3D 0.357 151.5
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FIGURE [IV-5]

MEASUREMENTS ON TEST RINGS

CELL DESIGN NUMBER I

e Ring series # 1 RO = 119.42
o Ring series # 2 Ro = 119.90
o) Ring series # 3 Ro = 119.84

The slopes for these lines are shown in Table [IV-3]
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the slope of the line more closely approaches the correct

value. This trend is shown in Table [IV-3]. 1In these data,
it is assumed that the electrical conductivity is correct
and the effective diameter of the electrodes (that is, the
diameter that the electrodes would be if the slope agreed
with the theoretical value) is calculated. The larger the
diameter of the test ring, the larger is the overlap

(defined as the difference between the test ring (or

membrane) diameter dividedlby the electrode diameter, (b-a)/a)

and the calculated diameter of the electrodes is closer to

the actual diameter.

TABLE [IV-=3]

EFFECTIVE ELECTRODE RADIUS FOR DIFFERENT RING SERIES

RING SERIES OVERIAP SIOPE 1/km d= (4/mkm) */2
(b-a)/a m cm cm
ohm/cm

1 2.868 95.99 0.6872 0.935

2 1.579 91.01 0.7248 0.961

3 0.284 88.13 0.748 0.976
DIRECT 0 86.58 0.985
ELECTRODE
MEASUREMENT
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The cause for the discrepancy between the experi-
mental results and the theory is almost certainly caused by
the finite thickness of the electrode chambers. The theory
used was derived with the electrodes in contact with the
surface of the membrane. The approximation of using electrode
chambers between the membrane and the electrodes will be good
as long as the potential is constant on the interface between
the membrane and the electrode chamber.

A two dimensional analog of the situation in the
cell is shown in Figure [IV—4]; The copper electrodes
represent the electrodes in the cell and the electrode
section represents the electrode chambers. The wider section
in the middle represents the membrane; As can be seen by
the plot of the potential lines, there is a large bulge of
these lines in the vicinity of the membrane-electrode chamber
interface. The line for 50 percent potential difference is
not exactly in the middle because the analogs of the two
electrode chambers were not exactly the same sigze,

This distortion of the lines of potential makes it
very evident that the boundary condition for constant pot-
ential has been violated for this cell design, and therefore

either the theory or the cell design must be altered.
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4. Cell Design Number II

(a) Design

This cell was designed in order to approximate the
boundary conditions as closely as possible. This design is
shown in Figure [IV-6] and is identical with the previous
cell with the exception of the region in the vicinity of
the electrodes. The electrodes were made of 0.20 cm platinum
wire, cut and polished to make electrodes of that diameter.
They were placed in the cell so that they were flush with
the face of the cell. Therefore, there would be very little,
if any, resistance due to the solution between the membrane
and the electrodes. Filler holes were no longer required.
Platinized electrodes could no longer be used since the
platinum blacklwould be removed by the physical contact with
the membrane. Therefore, the electrodes were left with

shiny platinum faces.

(b) Experimental

Plexiglass test rings were again used to test the
cell. Since there were no filler holes, the cell was filled
in the following way. Excess potassium chloride solution was
ring to be used. The two halves of the cell were then put

together, keeping the test ring centred in the cell and



FIGURE [IV-6]

CELL DESIGN NUMBER IT

The cell is drawn to scale.
The body of the cell is constructed of Plexiglass.

The black areas represent the platinum wires used for the

electrodes.

73



73a

FIGURE [Iv-6]
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making sure that no air bubbles became trapped inside the
test ring. The excess solution was then removed through a
small hole drilled into the membrane chamber through the top
of the cell.

The resistance was measured for the test rings
using concentrations of potassium chloride solution of
0.1 N and 0.05 N. All resistance measurements were taken

at four different freguencies of 20, 5, 2, and 1 kHz.

(c) Results

A strong dependence of the measured resistance on
frequency was found. A typical set of measurements is
shown in Figure [IV-7].

In order to obtain a result free from the polar-
ization effect observed, the curve was extrapolated in the
following way. According to [65], we can expect that a
relationship of the following form holds for shiny platinum
electrodes:

R = R_+ K/w [IV-7]

where R is the resistance across the cell measured at

ffequency w, R is the resistance across the cell at very

high frequency, and both k and n are constants.
Transposing R_to the left hand side and taking

logarithms of the equation gives the result



FIGURE [IV-7]

FREQUENCY DEPENDENCE
OF
RESISTANCE
CELL DESIGN NUMBER II

TEST RING 2D
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log[R - Rw] = log k - nlog w. [IV-8]
If the resistance has been measured at three

different frequencies, a, b, and c, and the values obtained
for the resistances were Ra' Rb’ and R.c respectively, then
these values can be substituted into equétion [IV-8] to give
three equations and three unknowns, R , k, and n. By sub-
tracting the first equation obtained in this way from the
second and the third, k is eliminated and the problem is

reduced to two equations and two unknowns:s:

109[(Ra - Rw)/(Rb - R )] = nlog b/a
[IV-9]

log[(Ra - Rm)/(Rc - Rﬁ)] nlog c¢/a

From these two equations, a value can be found for
R_ by successive approximations. A value is assumed for R_.
This is substituted into the left-hand side of equation
[IV-9]. By substituting the values for the frequencies
into the right-hand side of this equation gives the result
v = n where y is a known quantity.

This value can now be substituted into equation
[IV-9] for n and antilogarithms taken to yield the following
result:

(R, - R (R, -R) = Se& = p [1V-10]

Again, p is a known quantity. This equation is now solved
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for a new value of resistance at very high frequency, R':
oo}

' = —_ . -
R PR, - R_ [IV-11]

In this way, a new value of R.c° has been generated and can be
resubstituted into equation [IV-9] to obtain a better approx-
imation. This iterative procedure can be carried on until
the desired degree of precision has been obtained.

The value of the resistance at very high frequency
was calculated by this method using a Fortran IV computer
program. The initial value for R _was calculated by assuming
a linear relationship between the resistance and the inverse
of the frequency for the data ocbtained at 20 and 5 kHz. The
iterative procedure described above was repeated until the
resistances obtained at 20, 5 and 2 kHz agreed to within 0.01
ohm when put into equation [IV-9]. The deviation of the
resistance at 1 kHz was then calculated. It was in general
lower than the value predicted by the linear relationship
for the other fregquencies by about 1.5 percent.

The results for test rings using 0.1 N potassium
chloride solution are given in Table [IV-4] and plotted in
Figure [IV-8]. The value of the power of the frequency in
equation [IV-7] fell consistently between the values of 0.8
and 0.9. The results at very high frequency are given,

along with results at 20 kHz with the electrodes platinized.
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The resistances at very high frequency for one series of
test rings using 0.05 N potassium chloride solution are
also given in Table [IV-4]. These fesults are plotted in

Figure [IV-9].

(d) Discussion

The values obtained for the electrical conductivity
of potassium chloride solutions were in good agreement with
literature values [64]. For unplatinized electrodes the
value of the electrical conductivity is 0.01228 ohm~! cm~*
for 0.0l N potassium chloride solution compared to an
accepted value of 0.01218 ohm~! cm—?! [64]. The intercept
was found to be -25.3 ohm, indicating that the electrodes
protruded slightly out of the face of the cell. For platin-
ized electrodes, the electrical conductivity was found to be
0.01209 ohm™* cm~! and the intercept was -44.1 ohm. The
increase in the size of the negative intercept is the
addition of material to the electrodes by the act of platin-
ization. The value of the electrical conductivity for the
0.05 N potassium chloride solution was found to be
0.00663 ohm~* cm~*. (Literature value, 0.00667 ohm™*
cm—t.) The electrodes had been removed and replaced

before these readings were taken and the value of the

intercept, 2.5 ohm, shows that the electrodes were very
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TABLE [IV-4]

MEASUREMENT: ON TEST RINGS =--- CELL II
1 __/cm R /Q R _/Q th/ﬂ
eff © ©

0.05 N KC1l 0.1 N KCl 0.1 N Kcl
0.1070 245.7 223.6
0.1207 281.3 256.5
0.1274 296.9 275.3
0.1429 334.6 311.7
0.1053 488.0 240.9 218.6
0.1215 559.5 280.7 257.1
0.1270 588.7 294.9 271.8
0.1433 662.9 337.0 310.6
0.1057 242.0 220.9
0.1200 278.1 256.7
0.1272 297.9 272.8
0.1430 335.0 308.6

Resistance at 20 kHz
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FIGURE [IV-8]

TEST RING RESULTS
CELL DESIGN NUMBER II

0.1 N RC1

O Test ring series # 1
® Test ring series # 2

& Test ring series # 3

For very high frequency using shiny platinum electrodes,
R, = -25.30 m= 2.49 x 10° 0 cm-?t
For 20 kHz using platinized platinum electrodes,

R, = -44.1 Q m=2.53 x 103 Q em™?
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FIGURE [IV-9]

TEST RING RESULTS
CELL DESIGN NUMBER II

0.05 N KC1

Results are for Test ring series # 2, at very high frequency
using shiny platinum electrodes.

R = 2.50Q m = 4.62 x 103 0 cm™?
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nearly flush with the faces of the cell.

This cell was designed in order to duplicate the
boundary conditions in the theory for the overlap estimation
as closely as possiblé. It does this, as shown by the
results obtained. However, this design leads to some
experimental and computational difficulties.

Firstly, the cell is difficult to £fill when being
tested with the test ring in place since there are no filler
holes and no easy way to incorporate them into the design.

The major problem, however, with this cell design
is the polarization of the electrodes. Not only is the
resistance due to polarization large when compared to the
actual resistance being measured, but also this value is
continually changing at any given frequency. The values of
k and n in equation [IV-8] change continually. Therefore,
although the cell may be in thermal equilibrium, the
resistances at the measured frequencies will continue to
change with time. Therefore, not only is there no easy way
to tell if the cell is in actual thermal equilibrium, but,
since the measurements cannot be taken simultaneously, an
additional error is involved, caused by the time needed in

order to take these readings.
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The final problem is the method used to estimate
the polarization. The resistance at very high freqguency was
calculated so that the resistances at 20, 5 and 2 kHz would
simultaneously satisfy equation [IV-8]. The resistance
measurement at 1 kHz, however, was consistently lower than
the value predicted by the calculated value of R . This
probably results in only a small error in the result for
the resistance at very high frequency since the resistance
is proportional to a negative power of the frequency and
consequently this point is a large distance from the inter-
cept. A large error in this point will therefore cause only
a small error at the intercept. It is nevertheless a
problem in the interpretation of the data and indicates a
problem with the theory used. It is therefore desirable to
platinize the electrodes so that these polarization effects

can be minimized,

5. Cell Design Number III

(a) Design

The third cell design was an attempt to incorporate
the best features of the two previous designs, platinized
platinum electrodes and electrodes close to the membrane
surfaces. Cell Design Number III is shown in Figure [IV-10].

It again employs the same basic cell design, identical with
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cell number I except in the region of the electrodes. The
electrodes were made by Engelhard Industries of Canada Ltd.
to special order. They were 1.410 cm in diameter and were
made out of 52 mesh platinum wire gauze. A circular piece of
platinum foil was attached to the back of the outer edge of
the electrodes to add to their rigidity. The electrodes
were placed about 0.1 cm from the inner face of the cell so
that they would not be in contact with a membrane and there-—
- fore could be platinized. However, they were still close
enough to the membrane face so that no significant deviation
from the theory of overlap should occur. Each electrode was
fastened at its centre to a 0.15 cm platinum wire by means of
a pressure weld. This wire was attached to a copper wire
outside the electrode chamber area as shown in the diagram.
Filler holes were drilled into the electrode chambers behind
the mesh electrodes and these were used to fill the cell with

solution.

(b) Experimental - Test rings

This cell was tested extensively using the test
rings and concentrations of potassium chloride solutions of
0.1 N, 0.05 N, 0.01 N, and 0.005 N. For the second and
fourth concentrations, the first two series of test rings

was used. For the other concentrations, only the second
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FIGURE [IV-10]

CELL DESIGN NUMBER III
cell is drawn to scale.
cell body is made from Plexiglass.
cross-hatched areas designate brass (or copper) parts.
black sections and electrodes are made from platinum.
dashed lines indicate filler holes, screw locations

and the bolts for joining the cell halves.



85a

I
5

FIGURE [IV-10]

A A4y 4




86

series of test rings was employed. In all the results
obtained, the electrodes were platinized in the same way as

was described for cell design number I.

(c) Results - Test rings

The results for the test rings for all concentrations
of potassium chloride solution are shown in Table [IV-5].
Figure [IV-11l] plots the results for 0.1 N and 0.05 N pot-
assium chloride solution while Figure [IV-12] shows the

results for 0.01 N, and 0.005 N potassium chloride solution.

(d) Discussion = Test rings

The results obtained for the electrical conductivities
of the potassium chloride solutions agree very well with the
literature values [64] over the complete range of concentra-
tions studied. These values, experimental and from the
literature, along with the values for the intercept, are
given in Table [IV-6].

From the results obtained, it is evident that the
cell design meets the requirements of the theory for the
estimation of overlap for potassium chloride solution over

the range of concentrations studied.



TABLE [IV-5]

MEASUREMENTS ON TEST RINGS ~=—- CELIL ITI
NUMBER le £ f/ cm R/Q
0.1 N 0.05 N 0.0l N 0.005 N
1a 0.1677 33.10 307.6
1B 0.2240 38.35 353.7
1c 0.2561 41.56 382.1
1D 0.3833 53.59 494 .3
2A 0.1686 17.85 33.22 154.8 308.2
2B 0.2216 20.42 38.18 180.4 351.2
2C 0.2576 22.38 41.93 195.0 386.3
2D 0.3769 28.54 52.84 252.3 489.6
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FIGURE [IV-11]

RESULTS ON TEST RINGS
CELL DESIGN NUMBER III

0.1 N KC1

The results are for Test ring series # 2.

0.05 N KC1
0 Test ring series # 1

® Test ring series # 2

The slope and intercept values for these data are given in

Table [IV-6].
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FIGURE [IV-12]

RESULTS ON TEST RINGS
CELL DESIGN NUMBER III

0.01 N KC1

The results are for Test ring series # 2.

0.005 N KC1

® Test ring series # 1

® Test ring series # 2

The slope and intercept values for these data are

given in Table [IV-6].
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TABLE [IV-6]

ELECTRICAIL CONDUCTIVITIES AND INTERCEPTS --- CELL III

NORMALITY | SIOPE, | INTERCEPT CONDUCTIVITY/Q™* cm™*
KCl Q cm~?t Q EXPERIMENT | LITERATURE [64]
0.1 51.85 9.00 0.0121 0.01218
0.05 94,22 17.41 0.00665 0.00669
0.01 445.4 81.11 0.00141 0.001413
0.005 867.9 161.34 0.000720% 0.0007168

% corrected for conductivity of solvent

(e) Expérimeﬁﬁai —'Mémbraﬁés

The three different types of membranes were used
for measurement in this cell. The membrane to be measured
was placed into the cell and the two halves of the cell were
s1id together until the presence of a slight pressure was
observed on the sides of the membrane as the moisture in
the membrane wetted the faces of the cell. The electrode
chanbers were filled with the same concentration of potassium
chloride solution in which the membrane had been equilibrated.

The results on all types of membranes were taken

in concentrations of potassium chloride solution of 0.1 N,
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0.05 N, and 0.01 N.
The results for polyvinylbenzenesulfonate membranes
were obtained by the use of membrane number 17 in Table [III-1].

(£) Results'- Membfanes

The results obtained for the membranes at the
three concentrations are given in Table [IV-7].  Those for
cellulose and polyvinylbenzenesulfonate are plotted in
Figure [IV-13] and those for porous glass are plotted in
Figure [IV~14]. The value of the resistance for the electrode
chambers was taken from the values of R.0 obtained from the

test rings as shown in Table [IV-6].

TABLE [IV-7]

MEASUREMENTS ON MEMBRANES =-~- CELL IIT

MEMBRANE KC1l CONCENTRATION CONDUYCTIVITY
(™! cm™t)
CELLULOSE 0.1 N 7.12 x 1073
0.05 N 3.79 x 10~3
0.01 N 0.945 x 1073
P.V.B.S. #17 0.1 N 1.77 x 1072
0.05 N 1.29 x 1072
0.01 N 1.48 x 10~?
POROUS GIASS 0.1 N 1.35 x 1073
0.05 N 0.728 x 1073%
0.01 N 0.280 x 10737

#% corrected for the conductivity of the solvent
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(g) Discussion - Membranes

The uncertainty in the results obtained for
polyvinylbenzenesulfonate membrane was very large. This
effect is caused by the low resistance across this type of
membrane, which was only about 10 percent of the total
resistance reading. The rest of the resistance is due to
the electrode chambers. Not only would this situation cause
a large error in membrane resistances, but it would again
cause a problem with the application of the overlap theory
as was discussed earlier in this chapter. This situation
causes the lines of constant potential to bend and the theory
will be violated.

However, in the case of using membranes with a
relatively high resistance when compared to the resistance
of the electrode chambers, the cell design gave entirely
satisfactory results. This was the case when the test rings
were used as well as when cellulose and porous glass membranes

were being measured.



FIGURE [IV-13]

ELECTRICAL CONDUCTIVITY OF MEMBRANES

CELL DESIGN NUMBER III

data for potassium chloride solution [64].
results for cellulose membranes.

results for polyvinylbenzenesulfonate membranes.
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FIGURE [IV-14]

ELECTRICAL CONDUCTIVITY OF MEMBRANES

CELL DESIGN NUMBER III

The results shown are those obtained for porous glass membranes.
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6. Cell Design Number IV

(a) Deéign

This cell was a modification of cell design number
I. Tt was the same in all features except that the electrode
chambers were filled with mercury, similar to a method
described by Subrahmanyan [25]. The platinum electrodes
were left in place and used as the method by which contact

between the mercury and the external circuit was achieved.

(b) Experimental

The membrane to be measured was prepared as usual
and placed in the cell in the same manner as in cell number
III. Mercury, equilibrated in the appropriate potassium
chloride solution for 24 hours was then put into the
"electrode chambers". The cell was then brought to thermal
equilibrium and resistance measurements taken. All mem-
branes were equilibrated in 0.1 N, 0.05 N, and 0.01 N pot-

assium chloride solutions for measurement.

(c) Results
The results for the same membranes as were measured
in cell number III are shown in Table [IV-8]. The total
resistance across the cell when the polyvinylbenzenesulfonate

membrane was being measured was only about 4 ohms and the



TABLE [IV-8]

ELECTRICAL CONDUCTIVITIES OF MEMBRANES

CELL DESIGN NUMBER IV

96

Membrane KC1l concentration Electrical
conductivity

Q= em—?)

cellulose 0.1 N 7.05
0.05 N 3.62
0.01 N 0.930

porous glass 0.1 N 1.26
0.05 N 0.713
0.01 N . 0.271

P.V.B.S. #17 0.01 N 1.35

* corrected for the conductivity of the solvent.

X

X

X

10-3

10~3
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bridge would not balance because of capacitance effects.

In order to obtain readings, a calibrated 100 ohm resistance
was placed in series with the cell. This amount was then
subtracted from the reading obtained from the bridge. A
polarization effect was observed for the polyvinylbenzene-
sulfonate membranes. The data were, therefore, extrapolated
to very high frequency in the same manner as the results for
cell design number II. They could then be treated in the
same way as the other results. A small variation in the
values at different frequencies was found with time, but
after temperature equilibration, the effect on the extrapol-
ated value was negligible, and the readings at different
frequencies could be taken with almost no change in these
values during the time required to take the measurements.
Polyvinylbenzenesulfonate membranes with a variety of
properties were measured. The results are shown in Table

[Iv-9].

(d) Discussion

The results obtained by this method for the
cellulose and porous glass membranes were approximately 2
percent lower than those obtained using cell number III.
This discrepancy could be caused by various additive errors

such as the measurement of the size of the electrodes in
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the cells. Since this quantity is squared in the analysis
of§ﬁﬁe data, a small error in its measurement would be
magnified. However, Subrahmanyan [25] also found results
for the same kind of method to be lower than those reported
for the same kind of membrane by others [66]. The effect,
then, may be peculiar to the method.

A problem with polarization is again evident.
But in this case, it occurs only when the resistance across
the membrane is very small. The results for polyvinyl-
benzenesulfonate are subject to little error from overlap
since this cell design duplicates the boundary conditions of
the theory as closely as possible. The interpretation of

these results will be dealt with in the next section.

7. Interpretation of the Conductivity of Membranes

From equation [II-80], the flux gﬁ of an ion 1i,
relative to the membrane is related to the flux gg relative
to the solvent by

J. = I +e.J /c [IV-12]
—i =i i—o" o

If only electrical forces are present, equations [II-60] and
[IT-82] give

o)
ti = ti + cito/cO [IV-13]
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The ion (equivalent) conductance is

a a
M, = zitiK/| zil c, [IV-14]

in an arbitrary frame of reference a, so that

a
= K —
Xi ki + Zito /zico [IV-15]

The electrical conductivity of the membrane is, from
equation [II-92]
K = Elzilciki = %lzilciki + ?ZicitoK/co [IV-16]
‘ The measurements in Table [IV-9] are for an
external salt concentration of 0.1 N, while the fixed charge
concentrations in the membranes are of the order of 2 N.
Donnan exclusion therefore indicates that essentially only
counterions 1 are present in the membrane, and thus, from
[IV-16]
K = |zi|cik?/(l - zicito/co) [IV-17]
The concentration cj is the concentration of ions which
contribute to the conductivity. If C. is the stoichiometric

concentration of counterions, an apparent counterion conduct-

ance may be defined as
) . o -
Ay . = K/Izllcc = clkl/cc(l - zlclto/co) [TV-18]

The concentration c. may be calculated in two ways.

(a) 1If cé is the number of moles of counterions per
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unit volume of water in the salt-free membrane,

, -
c = d X/w
c o /

where X is the capacity (mol/g dry) and w is the water
content (g/g dry) of the membrane and do is the density of
water.

The data in Table [IV-9] can be used to calculate
Ay = Klzllcé, which is found to be accurately proportional

to the volume fraction of water Vo' in the membrane ([4]:
v, = wdr/(do + wdr) [IV-19]

where dr is the density of the dry membrane: dr = 1;25 g cn—3

[41.
(b) If . is the number of moles of counterions per

unit volume of the whole membrane,

=4 - = 4 -
c, Xdr(l vo) C.V, [IVv-20]

The values of A calculated using this value of c, are
constant for all of the membranes used (see Table [IV-9]).
We conclude that the whole of the membrane is accessible for
the transport of ions, and not just the solvent portion of
the membrane. This conclusion is at variance with pore
models of membrane which continue to be popular (e.g. [67,
68]). However, pore models ignore the kinetic motion of

the polymer matrix [12]. The role of this factor will be
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discussed below.

To proceed further with this interpretation, we
need a microscopic model of a membrane. Katchalsky [69]
has.reviewed the use of a rigid charged rod as a useful
model of a polyelectrolyte molecule in solution. We take as
a model of a membrane a network of charged rods joined in
series and parallel. Mazur and Overbeek [70] have shown in
general that any model of this type will give transport
equations of the form predicted by irreversible thermo-
dynamics. polyelectrolyte theory provides two features of
t+his model which are of value. First, there is a fraction
@, of the counterions which is osmotically active [69].
The value of © is determined by the charge density of the
rod; i.e., some counterions are sO strongly bound to the
rod by the high electrostatic field that they do not
contribute to the thermodynamic properties of a polyelectro-
lyte solution. We shall assume that this fraction also
applies to conductance, SO that ci = C- Secondly, liguid
flow will occur parallel to the charged rods, since the
flow is induced by the interaction of the applied electric
field and the electric field of the double layer. Ion flow
should also be parallel to the rods, on the average, since

the distribution of counterions is determined by the field

102
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of the double layer. We thus have randomly-oriented regions
about the randomly-oriented network of charged rods, in
which flow of ions and liquid occurs. A simple calculation
[69] gives the effective ion conductance for this arrangement.
The component of the field along a rod which makes an angle
6 with the field is Ecos§. The component of the mobility
along the rod is ucosf§. If we average over all angles
which give contributions in the direction of the field, the

average velocity is
v = (uE/2) Izﬂcosze sing dp = uE/3 [IV-21]
0

so that the effective conductance is K?/3.
When these factors are introduced into equation

[IV-18], we find (with z; = +1)
’ [o)
A = oAi/3(1 - mccto/3co) [TVv-22]

For polyvinylbenzenesulfonate membranes of the
type used here, Stewart and Graydon [71] found experimentally
that toMoX/Q = ccto/co was almos# constant for membranes
with capacities of 1 to 4 meq g"1 in contact with sodium
chloride solutions of concentrations from 0 to 4 M. Mo is
the molecular weight of the solvent. The value of ccto/cO
rose from about 0.4 for low values of X to 0.6 for high

values, with most values being about 0.5. Since ccto/co
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is the fraction of the total water in the membrane transported
by electro-osmosis, it is reasonable to assume that this
fraction depends only on the charge density along the éhain,
and not on the nature of the counterion.

The observed ratio ki/%? = 0.190 (taking K? =
73.52 for K+, the value at infinite dilution in water [721).
With ccto/c0 = 0.5, equation [IV-22] gives ¢ = 0.44. The
polyvinylbenzenesulfonate membranes used here have degrees
of ionization of 0.21 to 0.37 (defined as the number of
sulfonate groups divided by the total number of vinyl groups).
For this degree of ionization, data on polyelectrolyte
solutions [69] give ¢ = 0.3 to 0.5. The value of ¢ is not
very sensitive to the value of x?. Even if X? = 51.20, the
value for K+ in 2 N potassium chloride solution, is used
[73], ¢ increases only to 0.58.

Equation [IV-18] contains an electro-osmotic
contribution to condudtance, which is analogous to the
electrophoretic effect on a polyion in solution. A relax-
ation effect, caused by retardation of the motion of the
counterions in the double layer by the high electric field,
should also occur. Attempts to include an approximate
relaxation effect [69] in equation [IV-18] lead to negative

values of p. We conclude that the mobility of the counter-
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ions close to the polymer chains is very small; i.e., the
relaxation effect is very large.

The above model also indicates that the'counter-
ions follow the thermal motion of the polymer chains, so
that the whole volume of the membrane is available for
conduction. The membrane therefore behaves as a poly-
electrolyte solution, and not as a two-phase system. While
the model is a simple one, it is more realistic for poly-
vinylbenzenesulfonate membranes than are capillary models,
and it gives results which are consistent with current ideas
on the structure of polyelectrolyte solutions.

Similar calculations can be done for the cellulose
and porous glass membranes using equati&n [IV-17]. The data
used are shown in Table [IV-10]. The values for the water
transport, the water content and for the internal concentra-
tions are taken from Brydges [73]. The value for the elect-
ro-osmotic term is always small compared to unity so this
term could be ignored and the value of g calculated from the
equation

» = k/ (§|leci>\i) [TV-23]

The value of ¢ obtained for cellulose is greater
than unity. This is possible [69] if there are solvent-

counterion interactions.



OSMOTIC COEFFICIENTS FOR CELLULOSE AND POROUS GLASS

MEMBRANE

CELLULOSE

POROUS
GLASS

cext

0.05

0.01

0.01

TABLE [IV-10]

K X 10°

7.05
3.62
0.930

0.271

97

40

0.1

0.056

0.0143

0.104

_—
Co

0.05
0.085

0.012

# vValues obtained or estimated from [731

106

1.6

1.3

1.7
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The value for porous glass is much smaller than
expected. It is probable that only the volume of water in
the membrane should be used to determine the internal con-
centrations. This method gives a more reasonable value of
® = 0.4. In this case it is more realistic to use a pore
model of the membrane, since the membrane is very rigid and

motion of the polymer chains will be severely limited.

8. Comparison With Other Work

Measurements of the electrical conductivity per-
pendicular to the membrane surface have been reported by
other authors. Their methods have some similarities to those
used in this work.

Breslau and Miller [68] have used a cell desién
similar to our cell number I. It suffers from the same
problems as those pointed out for our cell. It has large
electrode chambers which tend to make the measured resistance
across the cell much larger than the actual resistance
across the membrane. Also, no overlap correction has been
made for the larger size of the membrane as compared to the
electrodes.

Subrahmanyan [25] has used a method which was the

basis of our cell number IV. Several suspected problems in
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his design were removed. The large volume of mercury used
as the electrodes could cause large capacitance effects in
the apparatus hindering resistance measurements. Also,
there was no mention of egquilibration of this mercury in the
same solution as the membrane. This omission could cause

spurious solvent flows into the liquid electrodes.



CHAPTER V
ELECTRICAL CONDUCTIVITY PARALLEL TO MEMBRANE SURFACE
1. Thédrx

A theory has been developed by van der Pauw [27]
for the measurement of the Hall effect and the specific
resistivity of semiconductors of an arbitrary perimeter but
of uniform thickness. If a meﬁhod employing this theory is
used, the only dimension that is required for the measure-
ment of the specific resistivity, and therefore of the
electrical conductivity; is the thickness; The shape of the
sample is not restricted in its other two dimensions.

The following two conditions must be met if the
theory is to hold rigourously. The electrédes must be at
the circumference of the sample, and the contact between the
electrodes and the sample must be sufficiently small.
Secondly, there cannot be isolated holes in the sample.

The basic theory is first derived for a sample
in the form of a semi-infinite plane of uniform thickness.
Along the edge of the sample are placed four electrodes,
designated P, Q, R, and S. The distances between each pair

of electrodes are a, b, and ¢ respectively. The problem is
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diagrammed in Figure [V-1].
It is first necessary to show that the following

relationship holds:

exp (- nRPQ'RSd/p) + exp (- ﬂRQR,SPd/p) = 1, [v-1]

d is the thickness of the sample, , is the specific

resistivity, and R are quantities with dimen-

PQ,RS’ RQR, SP

sions of resistance which are obtained by dividing the

potential difference between the first two electrode posi-

110

tions indicated in the symbol, by the current passed between

v,
rl

the second two positions;
The validity of this equation can be shown by
solving the flow equation for the conditions required for
the measurement of the "resistances". Since the problem is
cylindrically symmetrical and is uniform in the z direction
across the thickness, the solution of Laplace's equation

that gives the distribution of potential [75] is

2 _ 10 oV ) = -
v'v = 0, or T or ( r T 0 [V=2]
av _ _dav _ Jp
or T3 T Qdinr T Ld [V-3]

where V is the potential, j is the current entering the
sample at P (for the first resistance measurement) and

leaving it at Q, as shown in Figure [V-1], The potential
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FIGURE [V-1]

SEMI-INFINITE PLANE
FOR

VAN DER PAUW THEORY
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at position R under these conditions is

= iﬁ. - -

VR d[lnrlQ lnr|P] [Vv-4]
= Jp -

VR ] in b/(a + b) [v-5]

similarly, the potential at position S can be found to be

VS = %% inb + c)/(a + b + c) [v-6]

The potential difference can now be calculated by subtract-
ing eguation [V-6] from equation [V-4]. To obtain the
resistance required in equation [V=1], this potential
difference is divided by the current, j.

p (a + Db) (b + c)

Roo,rs ~ Ta " v +b +c)

[v-71

The quantity RPQ,RS is referred to as a resistance, but it
must be understood that it is not a conventional resistance.
Usually, both the potential difference and the current are
measured between the same two points. In this case, the
positions across which the potential difference is measured
are independent of the positions of the current electrodes.

In a similar manner, the other resistance required
can be obtained. In this case, the current is passed.
petween positions Q and R, while the potential difference is
measured from position P to S.

o (a + b) (b + c) )
RQR,SP T ud In ac [v-8]
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This equation, and equation [V-7] can now be substituted
into equation [V-1] and the following result is obtained:
(b(a+b +¢c) +ac)/(a+Dd)(b+c) = 1. [v-9]
By rearrangement of this equation, it is easy to see that
the left hand side is indeed equal to unity, and therefore
equation [V-1] does hold for a semi-infinite plane.

Now, from van der Pauw [27], the following equat-
ion is eguivalent to equation [V-1] and is more convenient
for obtaining the specific resistivity and therefore_the
electrical conductivity from experimental resultsi

G R
(RAB,CD RBC,DA)

21n2

f (R / ) [v-10]

— a :
P m a8, cD’ “BC, DA

where f is a function of the ratio of the resistances only

and is satisfied by the following relationship:

R + R = Ing oSk 2 [V-11]

AB,CD BC,DA
In order to apply the theory to slabs of arbitrary
shape, the technique of conformal mapping is introduced.
Two facts are necessary to justify this step in the theory.
Firstly, Riemann's Mapping Theorem [76] states that it is
always possible to find an analytic function that will map
a semi-infinite plane into a plane of arbitrary shape.

Secondly, ILaplace's equation is invariant under conformal



114

transformation [77]. This means that the potentials at
corresponding points on the transformed problem will be
identical to those on the semi-infinite plane. 1In the light
of these facts, it can be seen that the theory is completely
general for samples of arbitrary shape, subject to the

restrictions enumerated earlier.

2. Cell Design

The design of the cell used for these measurements
is shown in Figure [V=-2]. The cell body was constfucted of
Plexiglass and the two halves of the cell were fitted to-
gether with a double O-ring seal in the same manner as all
the cells used for the perpendicular measurement of elect—
rical conductivity in the preceding chapter. The cell was
cylindrically symmetrical, with the exception of four holes
drilled into the side of Ehe cell around the circumference
to accommodate the electrodes. In the left half of the cell,
the electrode chamber was U-shaped in cross section so that
thé cell could be used for different sizes of membranes by
altering the thickness of the membrane chamber. The elect-
rodes could slide to within 1.5 cm of the centre of the cell
so that a sample of any size larger than 3 cm in diameter

could be used.



115

The probe electrodes, supported on polytetra-
fluoroethylene plugs, are shown in Figure [V-3]. A double
O-ring seal was used to hold the electrodes in the electrode
chanbers, so that they could slide back and forth in the
electrode chamber. They cbuld therefore make contact with
samples of different diameters.

Two separate electrodes were constructed in each
probe electrode, a larger one which was used.as a current
electrode, and a smaller one, bent so that it was very close
to the larger electrode, to be used for the measurement of
potentials. In this way; the problem of any polarization of
the potential electrodes by the current was overcome [65].
Both electrodes were made from silver wires which were
cemented in place with epoxy resin cement. These wires were
ied through the probe and attached to a larger copper wire
so that electrical connections could be made more easily.
One of the silver wires was insulated with a piece of poly-
tetrafluoroethylene spaghetti so that the two electrodes
were isolated from one another. Four identical probe elect-
rodes were made for simultaneous use in the four electrode

chambers in the cell.
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FIGURE [V-2]

CELL DESIGN

MEASUREMENT PARALLEL TO THE MEMBRANE SURFACE

The diagram is drawn to scale.

The cell is made completely of plexiglass.

The O-ring seal is identical to those in Chapter IV.

The dashed lines show the position of one of the electrode

chambers and of the tightening bolts.

FIGURE [V-3]
PROBE ELECTRODES

The diagram is drawn twice actual size.

The body of the electrode was made from polytetrafluoro-
ethylene.

The black regions are made from silver wire.

Grooves in the side were made accurate dimensions in order
to accommodate O-ring so that they would make a sliding

seal when placed into the electrode chambers of the cell.
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3. Experimental

(a) Method of Measurémeﬁt

The electrodes were chloridized by passing a
current of about 1 mA through 0.1 N hydrochloric acid
solution for .approximately 1 hour using the electrodes as
the anode and a piece of platinum wire as the cathode [78].
All the electrodes wefe joined together so that they would
be chloridized simultaneously. They were then allowed to
equilibrate for three days in distilled water, and then for
several hours in the same solution that was used for the
equilibration of the membrane, before any measurements were
made.

The circuit used for taking measurements is shown
in Figure [V-4]. Ri was a large resistance used for limiting
the current flow to about 10 mA. RS was a decade resistance
box with decade steps from 0.1 to 1000 ohm across which the
voltage drop was measured in order to determine the current
accurately. 81 was a double pole, double throw switch used
for selecting either the decade resistance box, or the pot-
ential electrodes for determination of the potential differ-

ence. S, allowed the current flow through the cell to be

reversed. Sz was a switch for opening the circuit.
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FIGURE [V-4]
EXPERIMENTAL SET-UP

S1 is the potential measuring switch. In the up position,
the potential across points C and D on the sample is
measured. In the down position, the potential across
Rs (standard resistor) is measured to determine the
current.

S2 is the current controlling switch. In the up position,
current is allowed to flow between points A and B on
the sample. InAthe down position, current flows through
RS for current measurement.

S3 is a switch used to arrest current flow.

R, is a large resistor used for changing the magnitude of

the current.
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(b) Testing of Theory

The cell's operation and its agreement with pre-
dicted results were tested with potassium chloride solution.
Spacers were placed between the two halves of the cell,
along the outside edge so that a space was left inside the
cell. This space was filled with potassium chloride solu-
tion of a known concentration. Readings were then taken in
the following way. A current of about 10 mA was passed
between the larger electrodes on two of the probe electrodes
and the potential difference across the smaller electrodes
on the other two probes was measured. The switch S, was
then reversed, reversing the current, and another potential
difference reading was taken. Half of the difference between
these two readings was taken as the potential difference due
to the current. This method was found to give reproducible
results for a variety of current strengths. The size of the
current was then obtained by changing the position of switch
S; and measuring the potential difference across the known
resistance Rs. One current electrode was then interchanged
with one potential electrode and the measuring process was
repeated. Potential difference measurements were taken
using a type K-3 universal Potentiometer made by the Leeds

and Northrup Co., Philadelphia.
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Results were obtained for several different
thicknesses of potassium chloride solution by varying the

thickness of the spacers at the edge of the cell.

(¢) Membranes

The membrane to be measured was placed into the
cell and the two halves were fitted together so that the
sample was held snugly. The probe electrodes were then
adjusted so that all electrodes were in contact with the
sample. Measurements were then made in the same manner as
was used with the potassium chloride solution; Samples of
cellulose membranes, porous glass membranes and polyvinyl-
benzenesul fonate membranes were measured in this way. In
all cases both the membrane and the probe electrodes were
equilibrated in the appropriate potassium chloride solution

for several hours before any measurements were taken.

4. Results

(a) Testing of Theory

Measurements were made using potassium chloride
solutions with concentrations of 0.05 N and 0.005 N. Six
different thicknesses of the solution chamber were used.

Because of the design of the cell, excess solution

was required to fill up the space left for the manipulation
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of the electrodes. Therefore, the thickness of the solut-
ion layer in the cell was not uniform, as is required by
the theory [27]. This excess solution would conduct current
and reduce the potential difference across the cell, giving
a conductivity which was higher than would be expected.

This effect was accounted for in the following
way. It was assumed that ﬁhe excess solution constituted
an additive constant to the thickness of the potassium
chloride solution sample. This is a valid assumption if
the excess constituteé a reasonably small fraction of the
total thickness of the sample. If the thickness then, is
broken into two parts, equation [V-10] becomes

p = A(d + 4') [Vv-12]

where d is the actual thickness of the sample as measured,
d’ is the part of the thickness contributed by the excess

solution, and A is given by

R P
i AB,CD
A = (R + R ) f<___’__.> [V—l3]
21n2 AB,CD BC,DA RBC,DA

and is a function only of the resistances to be measured.
Rearranging equation [V-12] gives

Lo 2.9 - 144 xa [V-14]
A ) 0

Therefore, if the inverse of A is plotted against the

thickness of the sample, the slope will be the electrical
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conductivity of the sample; that is, of the potassium
chloride solution.

The results are tabulated in Table [V-~1] and
plotted in Figure [V-5]. For 0.05 N potassium chloride
solution at a Celsius temperature of 22 K, using a linear
least squares fit for the data, a value for the electrical
conductivity of 0.00645 ohm-! cm~* was obtained and for
0.005 N potassium chloride solution at 23 K, a value of
0.000694 ohm~1 cm‘l.was found. The comparable literature

1

values are 0.00642 and 0.000694 ohm™* cm™ respectively [64].

(b) Membranes

The results obtained for cellulose membranes,
porous glass and polyvinylbenzenesulfonate membranes are
shown in Table [VI-1] in the next chapter, along with the
corresponding results normal to the membrane surface. No
extra manipulation of the data was required since the non-
uniformity of the sample thickness is peculiar to the use

of liquid samples.

5. Discussion

The operation and theory of this type of cell
appears to give good results. The difficulties in testing

resulted from the necessity of using a liquid standard, but



THICKNESS

(cm)

——== 0,005
0.655
0.585
0.505
0.425
0.345

0.270

TABLE [V-1]

TESTING OF CELL WITH KC1l

R'AB,CD

(ohm)

N at 22.0°C ———e

367.0
408.3
453.8
532.4
643.5

788.4

RBC,DA

(ohm)

556.8
620.9
705.5
824.3
1000.8

1241.2

———= 0.05 N at 23°C ——ex

0.655

0.575

0.490

0.410

0.330

0.250

0.175

36.60

41.60

46.66

53.90

65.09

82.35

113.01

58.42

65.72

75.66

88.30

106.51

135.33

187.13

0.9852

0.9850

0.9834

0.9837

0.9834

0.9825

0.9815

0.9822

0.9803

0.9794

0.9794

0.9793

0.9788

paPP

(ohm-cm)

1352.3
1344.6
1304.7
1285.4
1264.2

1220.1

138.4
137.3
133.2
129.3
125.7
120.7

116.3

app

(ohm—t)

4.844

4.353

3.871

3.306

2.729

2.213

47.33

41.89

36.79

31.71

26.25

20.71

15.05
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FIGURE [V-5]

TESTING OF ELECTRICAL CONDUCTIVITY CELL
WITH

POTASSIUM CHLORIDE SOLUTION
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even with the extra correction factor, the agreement
appears to be quite acceptable.

A comparison of the results obtained for membranes
from the two methods so far described can also give some
indication of the acceptability of not only this method, but
the method for the measurement of electrical conductivity
perpendicular to the membrane surface. This can only be
done with some discussion of the anisotropy of the membranes,

however, and this will be done in the next chapter.

6. Comparison with Other Work

Few results for tﬂe electrical conductivity
parallel to the membrane surface are available; Meares and
Ussing [14] have performed both alternating and direct
current measurements using methods described by Hills,
Jakubovic and Kitchener [80], and by Lorimer [21]. The
major difference between their method and ours is the
membrane shape. Their membrane must be cut into a strip of
uniform and accurately known dimensions. In the method

used in this work, only the thickness need be uniform.



CHAPTER VI

"ANISOTROPY OF MEMBRANES

1. Theory
The anisotropy, o, of the electrical conductivity

of a membrane can be defined as follows:

o = Py pJ_ - Sa e [VI-1]
p// + pJ_ KJ. + K/[

where p, 1is the specific resistivity of the membrane parallel
to its surface, and p, is the specific résistivity measured
perpendicular to the membrane surface, and K, and K, are
similarly defined electrical conductivities. The value of
this anisotropy can vary from zero, when the electrical con—
ductivity is the same in both directions, to 1, when the
electfical conductivity is very small in one direction com-
pared to the other. A plot of the anisotropy as a function
of the ratio of fhe specific resistivities is shown in

Figure [VI-1]. The allowable values of the anisotropy fall

on the curve.

2. Reshlts

The results obtained for the electrical conduct-

ivity normal to the membrane surface in chapter IV are

126
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FIGURE [VI-1]

GRAPH OF ANISOTROPY
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given in Table [VI-l] along with the results obtained

parallel to the surface of the membrane from chapter V.
From these measurements, the values for the anisotropy have
been calculated, tabulated in Table [VI-1l] and their loca-

tions plotted in Figure [VI-1].

3. Discussion

The value obtained for the anisotropy for cellulose
menmbranes was zero within the errors of the measurement.

This result would be expected from the manner in which the
membranes were prepared (slow coagulation of viscose between
porous porcelain sheets). The results show that they were
uniform throughout. The results for these membranes are
additional proof of the validity of the theories and appara-
tus used for both methods of measurement since the results
not only agree independently with potassium chloride solution
standards, but are consistent with each other.

The polyvinylbenzenesulfonate membranes do show
anisotropy. The possible causes for this may be found in
their method of manufacture. First, the menbranes, poly-
merized thermally, would polymerize initially at the outer
surface and then inward, toward the centre of the membrane.
This suggests the possibility of a surface layer with
properties different from those of the bulk of the membrane.

Observations of the physical appearance of the membranes
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and their behaviour in liquids (they tend to assume a
saddle-shaped configuration) support this idea. However,
this model of the membrane will always result in a value
of the anisotropy for the ratio pL/p” greater than unity,
in contradiction to the results obtained here.

The second model of the membrane is concerned with
the mobilities of the ions through the membrane; Since the
membranes are polymerized from the outer edge inward, the
polymer chains constituting the body of the membrane could
become oriented across the narrowest dimension of the mem-
brane possibly because of monomer flow during polymerization.
This situation would allow a greater mobility of the ions in
this direction compared with a direction perpendicular to it.
As was shown in equation [II-56], the electrical conductivity‘
is proportional to the sum of the mobilities of the ions in
solution. This model can be thought of, then, as a large
number of parallel elements across the narrowest dimension
of the membrane so that their ends form the surfaces of the
membrane. The anisotropy, in this case, would be in the
direction obtained in the experiments. The actual situation
is most likely a combination of these two models, with the

second one predominating.
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The porous glass membranes also showed anisotropy.
This was probably also due to their methqd of preparation.
Close ihspection of all samples showed a fine line
running through this type of membrane parallel to its
faces. This type of porous glass is prepared by leaching
a scft glass with a solution of phosphoric and hydrofluoric
acids [79]. Since the product comes in sheets, the
leaching would proceed predominantly from the large faces
toward the centre of the sheet. The line in the membrane
is likely caused by the overlapping of the leaching process
from both sides of the sheet. Because this leaching was
in one direction, it would be expected that the passage
of a current should be more easy in this direction than
in a direction perpendicular to it since the pores in the
membrane would be‘largely oriented across the thickness of
the sample and ions would be able to pass more easily in
this direction. Therefore, in this case as well, the
electrical conductivity could be expected to be, and is,
larger in the direction perpendicular to.the surface of
the membrane than in the parallel direction.

No values for the anisotropy of membranes have
been reported previously. In order to calculate it, independ~

ent measurements both perpendicular and parallel to the
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membrane surface must be made. This is the first time
that results have been obtained in both directions on the

same membranes, and therefore made this calculation

possible.



CHAPTER VII

THERMAL CONDUCTIVITY

1. Theory

(a) Introduction

The methods of measurement of the thermal conduct-
ivity in non-conductors usually rely on the difference of
the thermal conductivity between the sample and the metal
blocks which are used as the heat source and the heat sink
[81-83]. A temperature gradient is set up across the sample
and the heat flow across that sample is dependent upon the
thermal conductivity of the sample.

The major problem encountered in the use of this
method is a contact resistance between the sample and the
metal blocks [84]. That is, the heat flow between the block
and the sample is not continuous because of the presence of
a small contact film between them. This causes an increase
in the apparent temperature gradient across the sample since,
in practice, this measurement can only be made with reason-
able accuracy in the metal block. The resulting calculated
value of the thermal conductivity will be lower than the
actual value;

133
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The most common method of minimizing this error
is the application of bressure across the sample between the
heat source and the heat sink. This should tend to reduce
the size of the contact films and therefore make the metal-
to-sample contact more closely perfect. For a solid sample,
this method will work if the pressure required is not large
enough to distort it. For ion-selective membranes, however,
this is not acceptable. The menmbranes are saturated with
solution and any excess bressure applied will not only
squeeze the membrane and possibly change its characteristics,
but will also squeeze some of the solution out of the mem-
brane into the metal-sample interface. Therefore, applied
pressure will probably not improve the.thermal contact and
may even make it worse. Theories are needed, then, to not
only describe the operation of any apparatus used, but also
to account for the presence of contact films between the
sample and the heat source and heat sink,

A large number of possible steady state and non-
steady state methods were investigated theoretically.
Initially experiments were conducted using a steady state
method. A series of thermocouples was Placed along the side
of the heat sink. The end farther from the sample, and the

heat source, were kept at constant temperatures. A plot of
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the temperature as a function of the distance from the
sample along the heat sink then gave the required inform-
ation for the calculation of the thermal conductivity.
Several difficulties were found in this method. The time
required to reach a steady state was long (about 2 hours)
and therefore, there was a danger that the membrane would
lose some of its solution due to evaporation during this
time. This would change the characteristics of the sample
and the results would be meaningless. Also, a large portion
- of the temperature drop was across the sample, leaving only
about 10 percent of it along the length of the heat sink.
This would have the effect of making the contributions of
any uncertainties in the readings along the heat sink ten
times as large. Difficulties were also encountered in keep-
ing all of the thermocouples insulated from one another.
Therefore, this method was discarded.

A non-steady state method was adopted finally and

will be described in section (b) below,

(b) Thébf&vbf“TherméinConduétiﬁity'AﬁpérathS

This method applies a constant temperature to the
top of the sample and the change in the temperature of a
heat sink is measured as a function of time. The theory of

this cell is similar to a problem studied by Carslaw and
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FIGURE [VII-1]

THERMAL CONDUCTIVITY CELL

BOUNDARY CONDITIONS
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FIGURE [VII-1]
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Jaeger [85], and involves a composite cylinder as shown in
Figure [VII-1l]. It is assumed that there is no radial heat
flow. The top segment represents the sample and is defined
by the quantities Ti, Ci, pi, ki, and Di, where.T is the
temperature, C is the heat capacity, p is the density, k is
the thermal conductivity and D is the thermal diffusivity
which is defined as

D = k/Cp [VII-1]
and the subscript refers to the sample section of the
cylinder. The second segment represents the heat sink and
is defined by the quantities T,, C,, 02 ké and Dé.

In order to solve this problem, boundary conditions
must first be set up and then the flow equation solved. The
first condition is the condition at the beginning of the
experiment:

Thus, the experiment starts out with the entire apparatus

at a uniform temperature, TO. The rest of the boundary
conditions are shown in Figure [VII-1]. At any time after
the start of the experiment, the heat source is at a temper-
ature Ts. Because of the presence of a contact film between
the heat source and the first segment of the composite cylin-

der (the sample segment), a radiation boundary condition is
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used [86]:

_'f/l "’kl le/bX

t > 0, x B (T_ - Ty ) [VII-3]

where
H = x'/4a', [VII-4]

and k' is the thermal conductivity of the contact film which
has a thickness 4’.
A similar boundary condition applies on the other

side of the sample segment:
= k(Ty - Tp)/d = H(Ty - T2)  [VII-5]

This boundary condition requires that thé heat flow out of
the sample segment is identical to the heat flow into the
heat sink segment. That is, there should be no heat loss in
the contact film between the two segments of the composite
cylinder.

The final boundary condition concerns the other
end of the heat sink (the second segment of the cylinder).
It requires that no heat is lost out of the end of the heat
sink:

£ > 0, x = a, ks dTa/dx = O [VII-6]

The problem can now be solved by applying these

conditions to the one dimensional heat flow equation,
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dT/ot = (k/Cp)d°T/0x? [VII-7]

The time dependence can be removed from this equation to
make its manipulation less tedious with the use of the
Laplace Transform [87]. The Laplace Transform of a time

dependent function f(t) is defined by the egquation
F(p) = [Texp(-pt) £(t) at [VII-8]

where £ is a function of p; and p is a number whose real
part is positive and large enough to make the integral in
equation [VII-8] convergent.

If both sides of the heat flow equation are multi-
plied by [exp(—ét)] and then integrated from zero to infinity

with respect to time, the following result is obtained:

. e 82 b |
= xp (ptiat = 5 Lo [BUn exp(-pt) at [VII-9]
_ Cp Ox _
t=0 t=0

Tf the left hand side of this equation is integrated by
parts, and equation [VII-8] employed, the result is the

transformed heat flow equation.
T-T_ = (k/Cpp) dz(ﬁ—i‘o)/dx2 [VII-10]

T is the transformed temperature, and Eo is the transformed
temperature at the beginning of the experiment.
The general solution of this equation for a

composite cylinder is the following [88] :
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—_ = -+ i . '=’ —
T,-T Aicosh(qix) Bi51nh(qlx) i 1,2 [VII-11]

i/z
(pcipi/ki) . [VII-12]

Q.
I

The subscript i refers to the segment of the cylinder in

which the temperature is being measured. This means that
there are four constants, Ai, A,, Bi, and Bé, that must be
determined by using the boundary conditions. The equations

for these must be transformed in the same way as the flow
equation. If this is done, the transformed boundary conditions

are found to be:

(1) t=0, -t<x<a, T-= Eo =T /P [VII-13]
2) t>0, x=-4, -k dF;/dx = H' (Fg - T1) [VII-14]
(3) £ >0, x =0, -kidT,/dx = -k»dT,/dx

= H(T; - Ty) [VII-15]
(4) t>0, x=a, ko, dT/dx® =0 [VII-16]

The first condition has already been used in order to
obtain equation [VII-10] and make it satisfy the initial
conditions. The other three equations are sufficient to
evaluate the four constants since the third condition is
actually two equations.

Applying boundary condition (4) to equation [VII-11]

gives the result
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B = =A; sinh(gja)/cosh(gsa) [VII-17]

Boundary condition (3) is applied to give the following:

-k3d1By = =k2g2Bx = H(A3-34;), [VII-18]

and finally, the second boundary condition can be applied to

give the result

-k1qi [-Aisinh (gy4) + BicoshKQi&)]

= H'[Es—io-A;cosh(qi&) + B;sinh(qi&)] [VII-19]

[kiqisinh(qi&) + H'cosh(qi&)]Ai

= H’[TS—TO] + [quicosh(qi&) + H'sinh (gi4)] [VII-20]

Equation [VII-18] gives an expression for Bé:

B = =H(A1-Az)/k2q2 , [VII-21]
which can be substituted into equation [VII-17] to give

H(Ai—Az)/kzqz = Azsinh(gza)/cosh(gza) [VII-22]

Ai = Aj(kags sinh(gpa)/H cosh(gsa)) [VII-23]

Again, from equations [VII-17] and [VII-18], an expression
for Bi can be obtained in terms of A,.

Bi = ~gAgsinh(gsa)/cosh(gsa) [VII-24]
where

o = kaQa/Kiqy [VIT-25]
Now, the substitution of equations [VII-23] and [VII-24]

into equation [VII-20] gives an expression which determines
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Ap in terms of the characteristic properties of the system:
Az[kiqisinh(qii) + H'cosh(qi&)][kéqzsinh(qéa)/H cosh(gza) + 1]
= H'[T_-T ] -A, [kiqgicosh (qud) + H’sinh(qi&)]><
csinh(qza)/cosh(qéa) ’ [VII-26]
A, = (TS—TO) cosh(qga)/{[kiqisinh(qi&)/H' + cosh(qi&)]
[kgqgsinh(qga)/H + cosh(gza)] + [kiqicosh(qi&)/H'
+ sinh(Qi&)] osinh (gza)} [VII-27]

Thus, the equations for the temperature in each segment can

be written down:

Ty T |
- _° = {[cosh(gza) + k2qgzsinh(qgza)/H]cosh (g2Bx)
TS—TO
- sinh(qgza)sinh(g28x)1/Q [VII-28]
52—50 ) _ :
—— = [cosh(qgza)cosh(qgzx) - sinh(qgza)sinh(qgzx)]1/Q
T -
s © [VII-29]
where
Q = [kiqisinh(qi&)/H' + cosh(qi&)][kéqésinh(qza)/H
+ cosh(gza)] + osinh(qza)[kiqicosh(qi&)/H’
+ sinh(g12)] [VII-30]
and

B = qi/qz = [Da/Dl'll/2 [VII-31]
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The next step in the solution is the transform-
ation of these equations back into their original time de-
pendent form. This is accomplished by means of the inversion
theorem of the Laplace Transform [87]. Its application to
the result for the temperature in the second segment of the

composite cylinder gives the following:

g :
s "o Ytiew :
Ty-T = - I exp (pt)cosh (g, [a-x] )dp/pPQ [VII-32]
(o] 2T['l 'Y"im

The limits of the integration are such that the quantity p
is integrated over all imaginary space at some arbitrary
constant real value. This equation can be solved by the
implementation of Cauchy's theorem of Residues [89]. This

theorem can be expressed by the equation
§cf(p)dp = 2nia_, [VII-33]

where the integral is taken around a closed curve and a_i
are the residues of the integral, calculated from the

equation

a., = lim (p-a)f(p) [VII-34]
p~a

and a is any point at which the argument of the integral,
f(p), becomes infinite.
Since the temperature in the heat sink is what is

important as far as experimental measurement is concerned,
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Tz—TO will be calculated by this procedure. For equation
[VII-32], there are two poles at which the residue must be
calculated. One is at p = 0, and the other is at the roots
of the equation Q = 0. At p = 0, ifequation [VII-12] is
employed in Equation [VII-32] to convert each p to qé and
the limit then taken as g, approaches zero (an egquivalent
condition), then the result obtained is

' _ lim 2 . l2
a., quo[quZ(Ts_To)/zﬂl q2Dz]

(TS—TO)/ZTri [VII-35]

The evaluation of the residues at the other poles is more
tedious. Let the roots of the equation Q = 0 be iym. Then,
from equation [VII-12],

p = —'YIang . [VII-36]

The subscript, m, identifies each of the infinite number of
roots of the equation being considered. By using equation
[VII-12], the equation to be solved at each of these roots is

1im (T‘s—'I'o)e'xp (3D, t) (2q,Dz)cosh (g [a-%] )

(a_i) = .
qz*lYm

(Q2—iYm)

21 iq% D,Q
[VII=37]

IL'Hopital's rule [90] is now used. For an equation similar

to that above, the following reiétionship is obtained:

1

13 . _i f = lim
im (g2 Ym) (q2) . d(1/£(g2))/dq,
qa~iy L

[VII-38]
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From equation [VII-37], the function required for equation

[VII-38] is
(TS~Tb)eXP(q§DQt)cosh(q2[a—x})
fgz) = ; [ViI-39]
21ig,Q
Thus
d(1/£(q2)) /42

= [2ni/(Ts-To)]{exp(-éénzt)g/cosh(qz(a-x))
- 2q§D5tQ exp (-g2D, t) /cosh (g2 (a-x) )
- qa(a-x)Qsinh(qz(a—x))exp(-quét)/cosﬁé(qg(a—x))
+ [d2 exp(—ngzt)/cosh(qz(a—x))]dQ/dqé} [VII-40]

When this equation is substituted into equation [VII-38] and
the 1limit taken as the root involved is approached, the first
three terms in the above eguation vanish and the final result

for the residue at the mt‘h root is

(a'_;)m = (TS—TO)COSh(iYm[a-X])exp(-Y;pzt)/(—2ﬂym(dQ/dqa))_
[VII-41]

where the derivative is evaluated at iym and

)

O | gEL 4 g)ed 2 'u
= [B(H' + L)31n(Bym&) + B r cos(Bym%)]

dds

F(vy.) =
m
kéYm
>< [COS(Yma) - sin(yma)

+ gacos(vma)[kicos(ymP&) + sin(ymp&)]
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Yﬁpk;
+ [cos(ymp&) - Sin(YmP&)] ><
[a(52-+ 1)sin(y_a) + 2 cos (y_a)
H m m )

k' Ymﬁzk;*
+ osin(y_a) [p (ﬁ-}- + &)cos(ymg&) - = sin(y 8¢)]

[VII-42]
The summation of the residues, according to equation [VII-
32], gives the equation for the temperature in the heat
sipk, Tz-TO-

T —
2 To

o v
= -2 2 - -
TS_TO 1 2m=l exp ( ympzt)cos(ym[a x])/YmF(Ym) [VII-43]

(ym) are the roots of the equation
’ ’
[1 - BYmkl tan(YHP&)/H 1i1 - ymkg tan(yma)/H]
_ _ i
- ctan(yma)[symkl/H + tan(ymB&)] = 0 [VII-44]

The inversion theorem is applied in a similar
manner to the temperature in the sample segment to obtain

the following expression:

T]‘. ~-T @
o 2 2
= -2 L -
" 1 2m=l exp ( yngt)[(cos(yma)
s ©
k2 Y.

- g n sin(Yma))cos(ymﬁx) + sin(yma)sin(ymax)].

[VII-45]



147

Equations [VII-43] and [VII-45] are the complete solution
to the problem of heat flow in a composite cylinder with

one end insulated and the other at a constant temperature.

(c) Appfoximafioné to the Tﬁeory

The solution obtained for the thermal conductivity
apparatus is theoretically correct, but several approxi-
mations can be made in order that it be of most use for the
interpretation of experimental data.

The measurements of the temperature difference
are to be made between the heat source at a constant temper-
ature (TS—TO) and the heat sink at a temperature of TZ-TO.
Therefore, T2-Tg is the quantity that will be used for the
calculatidn of the thermal conductivity and the approxi-
mations are therefore applied to it.

The first approximation to be made is the assump-
tion that only the first root of equation [VII-44] is
important when T2 is calculated. Equation [VII-43] can then
be written as

AT

- A exp(- y>Dat) [VII-46]

where

AT = TS-Tg [VII-47]
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and A is a constant depending on the characteristics of the

system and the position in the heat sink at which the temp-

erature is measured:

A = 2cos(y[a=x])/vF(y) [VII-48]

The‘temperature difference between the heat source and the
heat sink decays exponentially as a function of time towards
zero. If logarithms are taken of both sides of equation
[VII-47], it is found that the logarithm of the temperature
difference is directly proportional to the time from the
beginning of the experiment; Thus, a plot of the logarithm
of AT against the time will give a straight line relation-

ship in which the slope, m, is related to the value of vy.

In (AT)

In (A[T,-T]) - v2D,t [VII-49]
m = - Y2D2 [VII-50]

This equation can therefore be used to obtain a
value which can be substituted into equation [VII-44] to
solve that equation for the thermal conductivity of the
sample, ki. However, because no direct value for H and H’
is known, and because of the difficulties in evaluating this
equation, further approximations must be made.

Equation [VII-44] is the equation which is manip-

ulated since it relates the experimental slope (through



149

equation [VII-50]) to the thermal conductivity of the
sample, ki. If it is assumed that the thicknesses of the
contact films is small, then both H and H’' will become large
(ffom equation [VII-4]) and equation [VII-44] can be approx-
imated by

1 -~ ctan(ya)tan(ygs) = O [VII-51]

Tn order to take into account the presence of
boundary layers, the approximation is treated in a different
manner. It is first assumed that ypi4 is small compared to
unity, and that tﬁerefore the tangent of this quantity can
be replaced by the guantity itself. If this approximation

is used in equation [VII-44] then the following is obtained:

. o a :
tan (va) [kaY (B‘ kKaty” _ 1) - GBY(]—{-J‘- + &)]
H H’ H'
B2k v
HI

-1 [VITI-52]

This equation can now be manipulated by the use of equations

[VII-25], [VII-31] and [VII-50], to obtain the following:

- ' 4 1 1 Cipidm
(mk2C292)1/2 [E:.+ Ej-+ 5 -i%ET—] tan (va)
Cyp1dm

Hl

= 1 - [VII-53]

From this equation, several further approximations can be

made. Firstly, the term [&C;pim/HH'] is small compared to
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the other terms in the factor since both H and H' are large.
Also m is small compared to both unity and 4. Therefore
this term can be neglected. And, since m is small and H is
large compared to unity, the term [Cipi&m/H'] can also be
neglected. By adding these approximations, equation [VII-
53] becomes

-

. . ) &- 1 .
(mk202p2)1/2 [i-;‘ + = + E:l tan(ya) = 1. [VII-54]

Now, in order to determine the actual thermal conductivity
it must be realized that the measurements have assumed that
the sample fills the entire space between the heat source
and the heat sink,vincluding any boundary 1ayers; Therefore,
the apparent thermal condﬁctivity is measured across three
segments in series, but uses the thickness of only the
sample segment. We can therefore define an "apparent
thermal conductivity" to account for the effect of the

contact films. From equation [VII-54],

l/kapp = 1/ki + (1/H' + 1/H)/%. [VII-55]

This equation can now be resubstituted into equation [VII-

54] to obtain the result:

Kapp ° ?(Czpzmké)l/z tan (a[mCapa2/k211/2) [VII-56]

Thus, an equation has been obtained which relates the

measured thermal conductivity to the constants of the
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system. From this, with the use of Equation [VII-55], the
true thermal conductivity of the system can be found from

a plot of 1/k as a function of the sample thickness.
app P _

2. cell Design

Two different cells were used for the measurement
of the thermal conductivity. One was made of brass which
was silver plated in order to prevent corrosion on the
surfaces which would be in contact with the sample. This
apparatus was used for the measurement of the thermal con-
ductivity of polytetrafluoroethylene. waever) for ion-
selective membranes, it appeared that the potassium chloride
solution corroded even the silver surfaces of the heat source
and heat sink. Therefore, a new cell was constructed of
stainless steel. The design and operation of these cells
were similar and the cell shown in Figure [VII-2] was the
stainless steel model.

The heat sources in both designs were kept at
constant temperature with water from a thermostatic bath.
The water was brought through copper tubing down the middle
of the heat source to within a few millimeters of the
bottom. The bottom plate was made as thin as possible

(about 1 mm) so that the face of the heat source in contact



FIGURE [VII-2]

THERMAL CONDUCTIVITY APPARATUS

The diagram is drawn to one-half actual size.

The large cross-hatched area is made from foamed poly-
urethane.

The recorder is located in the copper side of a copper-
constantan thermocouple.

The heat sink and heat source are constructed of either

silver-plated brass oOr stainless steel.
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with the sample would be at the same temperature as the
water. In the stainless steel model, only that part of the
heat source below the inlet and outlet tubes was constructed
of stainless steel. Above this, brass was used; Each heat
source was equipped with a rod at the top where ring-shaped
weights could be placed in order to supply enough pressure
to achieve a reproducible contact film. Five weights of
about 200 gm each were made for this purpose;

A stainless steel heat sink was made. It was
8.030 cm long and solid except for a small héle (about 1 mm
in diameter) for the thermocouple drilled close to the end
farther from the sample and 10 mm deep; The sample end was
machined as smooth as possible; This block, both heat
sources and the brass heat sinks were 25.0 mm in diameter.
Three brass heat sinks were constructed. These were 8.26 cm,
4.54 cm, and 3.33 cm long. As before, a small hole for the
thermocouple was drilled in each block. Thgse were 6.665
cm, 3.190 cm and 2.235 cm from the sample end of the blocks.
All three blocks were silver plated before they were used.

Polyurethane foam (Uniroyal 'vVibrafoam') was used
as the insulation for the apparatus. A piece of glass
tubing, 25.0 mm in outside diameter, formed the middle of

the mold; It was sprayed with a polytetrafluoroethylene



154

spray so that the foam would not stick to it as the foam
set. After the foam had set, the glass tubing was removed.
A small hole was made in the insulation so that a thermo-
couple could be threaded through it and fitted into the
small hole in the heat sink. The heat sink was then pushed
into place in the bottom of the hole in the insulation with
the thermocouple in place. A sample could now be placed on
the top of the heat sink, and the heat source fitted on top
of the sample to completely assemble the apparatus.

When the thermal conductivity was to be measured
at elevated temperatures, the apparatus was inserted into a
large glass tube to protect it from the water and the entire
assembly was immersed in a thermostatic bath at the same
temperature as the heat sink at the start of the experiment.
A beaker was used té'protect the bottom of the cell, and into
it were placed several lead weights so ﬁhat the apparatus
would not float.

A cutter was constructed of brass that would cut

samples that were 25.0 mm in diameter.
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3. Measurement of the Constants of the System

(a) Heat'Caﬁécify and Déﬁsiﬁz

The density of the two heat sinks and of the
membranes was measured by first weighing them in air and
then in water. Correction was made for the small piece of
platinum wire used to hold the sample in the water. The
density could then be calculated by the use of Archimedes'
principle.

The heat capacities of the heat sinks were measured
in the following way. A sample of the heat sink material
was heated to a certain known temperature; A known amount of
conductivity water was placed in a Dewar flask and the drift
in its temperature was measured for several minutes. The
sample was then placed into the water in the Dewar flask
and the temperature change recorded until the drift was
again constant. The témperature before and after the inser-
tion of the sample was then extrapolated back to the mid-
point of the temperature rise and the temperature difference
between the two states at this point was noted. The experi-
ment was repeated using water of the same volume as the
original sample as a sample, the same amount of water in the
Dewar flask, and the sample at a temperature high enough to

make the final temperature approximately the same as that
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when the actual sample was used. The heat gained by the
water was then calculated, and that lost by the water
sample so that the heat gained by the Dewar flask could be
accounted for. This quantity corrected for the 2xXact temp-
erature rise plus the heat gained by the water when the
metal sample was used was equal to the heat lost by the
metal sample. Since its weight and the temperature change
is known, the heat capacity of the metal could be easily
calculated. |
The temperatures of both the sample block and the
water in the Dewar were recorded, by means of thermocouples,
on a dual channel recorder; The sample used for the brass
apparatus was the smallest heat sink. For the stainless
steel apparatus, it was a small piece of the metal, weighing
about 10 grams, from the block from which the apparatus was

constructed.

(b) calibration of Recorder and Thermocouple

A Sargeant recorder, model SR, was used for all
measurements of thermal conductivity. In ordef to calibrate
this recorder, the circuit shown in Figure [VII-3] was used.
A small potential difference was measured across a precision

decade resistance box; The resistance was changed by steps
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and at each step the deflection of the recorder caused by
that potential difference was noted. The potential differ-
ence for full scale deflection was measured on a potentio-
meter. Since the resistance across the variable resistance
was directly proportional to the potential difference, a
relationship between the potential difference and the deflec-
tion of the recorder in scale divisions over the complete
range of measurement was obtained.

One copper-constantan thermocouple was used in
each of the two thermal conductivity apparatus; In order to
calibrate the thermocouple, one junction was placed in a
constant temperature bath at about 25;Ooc; The other
junction was placed in a second thermostatic bath and close
to it, the bulb of a N.B.S. precision thermometer number
37183 readable to i 0.02 degrees. The temperature of this
second bath was then varied in steps of about 0.4 degrees.
The bath was allowed to equilibrate and a reading taken
from both the thermometer and the recorder which measured
the potential drop across the thermocouple. The process
was continued until a full scale deflection was obtained on

the recorder.
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FIGURE [VII-3]

RECORDER CALIBRATION CIRCUIT
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FIGURE [VII-3]
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4, Polytetrafluoroethylene

(a) Expérimehtai

The appropriate silver plated brass block, with
the thermocouple in place, was put into the apparatus. A
copper-constantan thermocouple was used for all measurements.
The heat source was then placed in position so that it made
contact with the heat sink. Water, at the temperature for
fhe beginning of the experiment, was circulated through the
heat source and the system was allowed to equilibrate. The
heat source was then removed and a disc of polytetrafluoro-
ethylene (Cadillac Plastics) (25;0 mm in diameter and of a
known thickness), with a drop of silicone oil placed on each
side, was placed on the top of the heat sink. The heat
source was then replaced so that it made contact with the
top of the sample, and several of the brass weights were
placed on top of the heat source. The temperature of the
water circulating in the heat sink was then raised 8 to 10
degrees. This was accomplished by bringing constant temper-
ature water from another thermostatic bath at a higher temp-
erature. This experimental set-up is shown in Figure [VII-4].
The temperature difference between the heat source and the
heat sink was then recorded as a function of time on a

Sargaent recorder. The recorder was run on the 1.25 mv



FIGURE [VII-4]

EXPERIMENTAL SET-UP

THERMAL CONDUCTIVITY CELL

Si, S>, S3 and 84 are clamps to control the water
flow, If Si and Sé are closed, and S3; and Sg are
open, water at temperature Ti will be pumped

through the heat source. 1If Si and Sé are opened
while S3 and S4 are closed, then water at temper-
ature T, will begin to circulate through the heat

source.
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FIGURE [VII- 4]
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scale fully attenuated so that the full scale deflection
was caused by a signal of 0;404 mv. The recorder was
calibrated as was described previously;

Six different thicknesses of polytetrafluoro-

ethylene were measured in this manner.

(b) Results

The time dependence of the temperature difference
across the sample and the heat sink was found to be, as
expected, logarithmic. A typical curve obtained from the
measurements conducted on a sample is shown in Figure [VII-5]
and tabulated in Table [VII-1].

The calibration of the recorder revealed that,
because of the small signal being measured, the potential
was not a linear function of the scale divisions of the chart
paper. Therefore, a curve was fitted to the voltage-scale
division curve by use of a Fortran IV, non-linear least
squares routine. In this method, the functional relation-
ships could be arbitrarily chosen. Sine and exponential
terms were used in order to take into account certain trends
and irregularities that appeared in the curve. The following

result was obtained:



TABLE [VII-1]

COMPARISON BETWEEN THEORETICAIL AND THEORETICAL CURVES

P.v.B.S. #l in Oool N. Kcl

162

T = 412.5 [1.05392 exp(-4.238 tx 10™%) - 0.08698 exp (-0.01078 t)]

10

15

20

25

30

35

40

45

50

RECORDER READING /mv

EXPERIMENTAL

404.0
404.0
389.8
344.7
303.2
264.9
233.5
206.0
.183.3
163.5
146.0

131.4

TERM 1
437.0
413.7
388.5
342.2
301.4
265.1
233.5
205.7
177.0
159.4
140.5

123.7

THEORETICAL
TERM 2

35.9
7.1
1.4

.04

TOTAL,
401.1
406.6
387.1
342.2
301.4
265.1
233.5
205.7
177.0
159.4
140.5

123.7
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FIGURE [VII-5]

TYPICAL CURVE

THERMAL CONDUCTIVITY CELL

The results shown are for polyvinylbenzenesulfonate
membrane #1 equilibrated in 0.01 N potassium chloride
solution.

The experimental results are shown as points on the graph.

The theoretical results were obtained from the equation
T = 412.5 [1.05392 exp (~4.238x10~%)

- 0.08698 exp(-0.01078t)]
which was obtained from equation [VII-43] and the

data obtained. It is shown as a solid curve on the

graph.
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T = 99.271/x%® - 25.245/x + 1.2902x% + (0.02769x) 2
+ (0.016687x)° + (0.0101791x)% + 3.1127 sin (0.064981x)
+ 0.76764 sin(0.139626x - 2.23402)

+ 2.3664 exp(0.46x - 90.08) [VII-57]

where T is thé temperature measured by the thermocouple in
millivolts and x is the deflection of the recorder pen in
scale divisions. The maximum deviation from the experi-
mental curve by this equation was about 1 scale division
and considerably better than this along most of the curve.
This was more than adequate for the analysis of results.
It was also found that the point at which the recorder was
zeroed did not affect this calibration;

The calibration of the thermocouple against
temperature showed that the relationship between the poten-
tial difference across the thermocouple and the temperature
was linear to within the accuracy of the measurements. This
calibration is shown in Figure [VII-6], and in Table [VIiI-2].

The results from the six different thicknesses of
polytetrafluoroethylene, measured using all three silver-
plated brass blocks are shown in Table [VII-3]. A plot was
made of the reciprocal of the apparent thermal conductivity
against the inverse thickness of the samples, in order to

obtain the intercept of equation [VII-55], the inverse of
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TABLE [VII-2]

THERMOCOUPLE CALIBRATION

TEMPERATURE TEMPERATURE TEMPERATURE
(scale divisions) /mv /OC
4.2 7.0 0.23
21.3 32.7 0.78
30.3 45,5 1.13
36.3 53.8 1.36
45.3 65.2 1.67
53.0 73.5 1.90
61.3 85.0 | 2.19
68.3 98.0 2.48
75.0 108.1 2.73
83.3 121.0 3.06
97.5 141.8 3.59
102.8 150.0 3.78
111.3 165.5 4.17
128.3 190.4 4.77
133.3 197.6 4.97
150.3 225.0 5.69

163.5 246.2 6.30



the actual thermal conductivity of polytetrafluorocethylene.
This graph is shown in Figﬁre [VII-7]. The value obtained

was 0.301 J m~t* g—? KL,

TABLE [VII-3]
* RESULTS FOR POLYTETRAFLUOROETHYLENE -

a=8.26cm|{ a=4.54 cm| a=3.33 cm

166

t/cm 4™t /om™t k k-~ k k-t k k~t
0.154 6.4 | 0.282 | 3.55 | 0.281 | 3.56 | 0.280 | 3.58
0.102 9.8 0.267 | 3.74 | 0.268 | 3.75 | 0.276 | 3.63

0.0803| 12.5 0.265 | 3.78 | 0.266 | 3.76 | 0.269 | 3.72
0.0566| 17.7 0.253 | 3.95 | 0.250 | 4.00 | 0.251 | 3.98

0.0398| 25.2 0.239 | 4.19 | 0.237 | 4.23 | 0.235 | 4.26

0.0267 37.5 —— ——— | 0.212 4;72 0;216 4.63

(c¢) Discussion

The agreement of the results obtained from the
thermal conductivity cell and the theory derived for it, as
shown in Figure [VII-5] was very good. Only in two places
did the graph deviate from an exponential relationship. As
the run was started, a flat portion was observed. This
could be taken into account by the higher terms of the
theory (with H = H' and very large) in equation [VII-45].

When the theoretical curve was corrected for these terms,
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FIGURE [VII-6]

THERMOCOUPLE CALIBRATION
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FIGURE [VII-7]
RESULTS
THERMAL CONDUCTIVITY

POLYTETRAFLUOROETHY LENE

(O 8.26 cm heat sink

4.54 cm heat sink

[ 3.33 cm heat sink

(@ indicates coin&idental results

for the first two heat sinks
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this region of the theoretical curve coincides with experi-
mental results. BAbout two minutes after the start of a run,
the effect of these higher terms in the equation was neglig-
ible. The curve again deviated from the predictions when
the temperature difference between the heat source and the
heat sink approached zero. The temperature was greater than
expected, likely because of radial heat losses, losses
through the thermocouple and losses through the bottom of
the heat sink. This deviation was not obsérved for at least
25 minutes after the experiment was started; Therefore, a
time of at least 23 minutes was always available for -obtain-
ing a useful curve.

The results were analysed in the following way.
Points were read from the chart paper at equal time intervals
of 12, 30 or 60 seconds( depending on the time required for
the experiment. The logarithms of these points were fitted
by computer with a linear least squares program and the
slope of the logarithm against time plot was obtained, and
the thermal conductivity calculateé from equation [VII-56].

The temperature difference at the beginning and
the end of each time inte;val used for the measurement was

recorded, and from this the temperature difference across

the sample was calculated using equation [VII-43]; The



temperature of the sample was then taken as the average of
the initial and final temperature difference, subtracted
from the temperature of the heat source; |

A statistical analysis of the results showed a
maximum standard error in the slope of the logarithm of
tem?erature versus time plot of about 2 percent and an
average of about 1 percent. The correlation coefficient
for the results was consistently near'0;998;

values of the thermal conductivity of polytetra-
fluoroethylene reported in the literature vary from .20 to

.30 7 mt s~* x-! [84,91,99]. Hsu et al [91] found that

the value depended on the source of the material as well as

the amount of annealing to which it was subjected. When
this is taken into consideration, our value of 0.301 J m—t

s~ =1 is in good agreement with other work.

5. MEMBRANES

(a) Cellulose Membranes

(i) Experimental

The stainless steel apparatus was used for the
measurement of membranes. As in the previous procedure
the samples were cut into discs, 25.0 mm in diameter, and

placed between the heat sink, with temperature To’ and the

170
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heat source at a temperature TS, about 8 to 10 degrees
higher.

The thermal conductivity of cellulose membranes
of various thicknesses was measured in this way; One
membrane was measured after equilibration in wvarious
concentrations of potassium chloride solution.

(ii) Results

The results of the apparent thermal conductivity
of cellulose as a function of thickness are shown in
Table [VII-4]. The membranes were equilibrated in 0.1 N
potassium chloride solution. As with the polytetrafluoro-
ethylene, the inverse of the apparent thermal conductivity
was plotted as a function of the inverse of the thickness
of the sample, as shown in Figure [VII-8] together with the
results for polytetrafluoroethylene. This again gave a
straight line as predicted from equation [VII-55]. The
result obtained for the true thermal conductivity from the
inverse of the intercept was 2.00 J m~! s~! K™'. fThe results
of the thermal conductivity as a function of external con-

centration are shown in Table [VII-5].



THERMAL CONDUCTIVITY OF CELLULOSE

0.1 N POTASSIUM CHIORIDE SOLUTION

TABLE [VII-4]

k/J m ts~ig"?

2/cm

0.113 0.598
0.183 0.778
0.232 0.866
0.315 0.980
l/kapp = 0.667 f 01113/L

k = 2.00 Jm?*

s g™

&—1/cm_i
8.93
5.46
4.31

3.17

TABLE [VII-5]

THERMAL CONDUCTIVITY AS A FUNCTION OF CONCENTRATION

CONCENTRATION
0.0 N
0.005 N
0.01 N
0.05 N
0.1 N

POLYVINYLBENZENESULFONATE

Jm ts™t
0.235
0.241
0.246
0.253

0.254

Kl

Jm~s K

CELLULOSE

1_-1 -

0.786

0.774

0.778

the cellulose membrane of thickness 0.183 cm was used;

172
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FIGURE [VII-8]

THERMAL CONDUCTIVITY

CELLULOSE MEMBRANES
AND

POLYTETRAFLUOROETHYLENE DISCS

The membranes were equilibrated in 0.1 N potassium

chloride solution.
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(iii) Discussion )

Estimation of the contact film thickness in the
cases studied indicated that the values obtained were much
larger than should be expected. For the case of silicone
oil on polytetrafluoroethylene, the thickness was determined
by micrometer measurements to be about 0.002 cm. This was
about 50 times smaller than the result obtained from the
slope of the inverse of the thermal conductivity against
inverse thickness graph. This apparent discrepancy can be
explained from the method by which the heat source was made.
Since a fluid flow was used, a thermal diffusion layer
between this fluid and the sample must be set up [92]. It
is this layer which is allowed for by the theory. This
film should be independent of the nature of the membrane
but dependent on the flow velocity of the water in the
heater block.

For cellulose membranes, the slope of this graph
was about 1.13x10"% 7! m® sK as was shown in Figure [VII-8].
Therefore, if it is assumed that H’ is much larger than H
(that is, the layer next to the heater block much larger
than the layer on the other side of the sample) then H’ is

the right order of magnitude for forced convection of a

fluid of velocity u onto a surface of diameter & [91].
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1
H’ 0.008 (u/s)? [VII-58]

u H'%5/64 x 107 = 7.1 5 cm/sec [VII-59]

The water in the heat source was brought through a % inch
'pipe, which corresponds to a flow rate of about 4.5 cm® st
for the experimental values of H' and §. This value is in
good agreement with the actual flow rate used in the experi-
ments, 5.0 cm® s—i.

The same type of heat source was used for the
experiments with polytetrafluoroethylene; and comparable
flow rates were used. However, the slope of the line in
Figure [VII-8] is significantly differént from the result
for cellulose membranes. The difference in the materials in
the contact films should account for only a small portion of
this difference. The prcbable answer for the discrepancy
lies in the actual manufacture of the two heat sources.

The silver-pléted brass heat source used for the
polytetrafluoroethylene measurements was constructed from
one piece of brass hollowed out from the bottom, and a brass
disc soldered onto the bottom to complete the reservoir. A
piece of brass tubing was then inserted through a hole in

the side of the heat source, and pushed in until its end was

situated close to the bottom of the heat source. Because
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-

this necessitated bending the tubing, it is likely that the
end of the tube was close to one side of‘the disc at the
bottom, and at an angle off the perpendicular; This would
result in a non-uniform flow onto the bottom of the heaf
source and therefore less efficient heat transfer. The
uneven temperature profile across the bottom of the heat
source is probably not important, since the thermal conduct-
ivity of the brass disc is much larger than that of the
sample, and any temperature variations will be minimized
before they enter the sample segment of the apparatus.

The stainless steel heat source was made in two
pieces. The upper half, made of brass, was constructed with
the brass tubing in place, and the lower half was soldered
on so that the tube was centred in the heat source, and was
perpendicular to the bottom. The resulting improvement of
the flow properties of the water could account for the large
reduction in the slope of the line for cellulose membranes
in Figure [VII-8].

It is now possible to estimate the true thermal
conductivities of other types of membranes. Since the slope
of the graph is due almost entirely to the nature of the
heat source and not the contact films, it can be assumed

that this slope will stay the same for all other types of
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membranes. Secondly, ahy discrepancy caused by the
contact films for cellulose membranes should be approx-
imately the same for other membranes, since these contact
films will consist of the same material, i.e. potassium

chloride solution.

(b) ?bfbﬁéuéiéséméhd'Polyvinylbenzeneéulfohéte'Mémbranes

(i) Experimental

The stainless steel heat source was used for all
membrane measurements. Two porous glass membranes of
slightly different thicknesses and polyvinylbenzenesulfonate
membranes of varying capacity and water content were measured.
One of these membranes was measured at temperatures from 25
to 45°c.

(ii) Results

The results obtained for porous glass membranes
are shown in Table [VII-6]. The acﬁual thermal conductivity
was calculated from equation [VII-56] using the slope
obtained from the cellulose results, and the change in the
thermal conductivity predicted by these results was compared
to the actual change.

The results for polyvinylbenzenesulfonate membranes
were corrected for contact films by using the slope obtained

from the cellulose data. The thermal conductivity results



TABLE [VII-6]
THERMAIL CONDUCTIVITY OF POROUS GLASS
C; = 0.60 cal./gm

01 = 2.07 gm./cm®

k -1_=1_.-1 -1 -1 S-1 -
4/cm app/J m s K 47" /cm kapp /msKJ
0.490 1.728 = .05 2.151 0.579
0.465 1.674 = .1 2.041 0.598

Experimental change in ];;;p= 0,019 *msK
Expected change (using slope from cellulose data)
= 0.012 J"'msK

k = 2.94 J mrs—ix™?

TABLE [VII-7]

(>N

5

A
¥

THERMAIL CONDUCTIVITY AS A FUNCTION OF WATER CONTENT

AND CAPACITY FOR POLYVINYIBENZENESULFONATE

178

1

Membrane Volume fraction* Capacity’ Degree of k/J m-lg-ix-?t

Resin /meq gm~* Swelling
1 0.483 1.72 2.08 0.933
9 0.504 1.77 1.99 0.808
11 0.370 2.47 2.71 1.380
12 0.530 2.24 1.89 0.767
13 0.492 2.30 2.04 0.933
17 0.775 1.03 1.29 0.245

. . +
% calculated for membranes in their H form
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obtained as a function of external concentration of pot-
assium chloride solution using membrane 17 are shown in
Table [VII-5] and are plotted in Figure [VII-9].

Polyvinylbenzenesulfonate membranes of varying
volume fractions of resin were measured; The results,
after being corrected using equation [VII-56], are shown in
Table [VII-7], and plotted in Figure [VII-lO];

The temperature dependence of the thermal conduct-
ivity of polyvinylbenzenesulfonate membrane number 17 was
measured between 25° and 45°C. These results, are tabulated
in Table [VII-8] and plotted in Figure [VII-11].

(iii) Discussion

The thermal conductivity of polyvinylbenzene-
sulfonate membranes increases with the volume fraction of
water to values that are above the value for water alone.
Considering the membrane as two separate phases, one of
water and the other the membrane resin, leads to a maximum

value for the conductivity [93].

= + - -
kmax vrkr (1 Vr)kw [VII-60]

where kr is the thermal conductivity of the polymer resin,
kw is that for water, and vr is the volume fraction of

resin, This equation predicts values for the conductivity



FIGURE [VII-9]

THERMAL CONDUCTIVITY

FUNCTION OF CONCENTRATION

POLYVINYLBENZENESULFONATE

MEMBRANE 17
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FIGURE [VII-10]

THERMAL CONDUCTIVITIES OF MEMBRANES

O polyvinylbenzenesulfonate membranes
pure polystyrene

water

Curve I -~ maximum conductivity possible for membranes
with water in its ordinary state.

Curve II - Theoretical conductivities for a random
mixture of resin and “oriented water"

(see text)
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THERMAL CONDUCTIVITY AS A FUNCTION OF TEMPERATURE

m/°¢C

27.7
28.35
30.7
32.6
33.8
35.7
38.35
41.9
42.8
44 .7
44.8
45.1
47.3

48.1

TABLE [VII-8]

k/J m-ig-ix~

0.219
0.229
0.245
0.261

0.268

- 0.268

0.268
0.247
0.271
0.278
0.280
0.260
0.268

0.273
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FIGURE [VII-11]

THERMAL CONDUCTIVITY
OoF
POLYVINYILBENZENESULFONATE

AS A FUNCTION OF TEMPERATURE

0.1 N potassium chloride solution
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that are intermediate to the values for pure water and for
pure resin. The values obtained, however, are above this
maximum.,

The application of Irreversible Thermodynamics
leads to a term involving the pressure difference set up
across the membrane as was derived in equation [II-52].

This term, however, is always negative and cannot account for
the discrepancy unless a convective conductivity is set up
from a flow caused by this pressure difference. The size of
this pressure difference, calculated from measurements of
thermo-osmosis and mechanical permeability on these membranes
is found to be negligible [94], and therefore is not likely
to cause such a large effect.

Another possible explanation involves errors in
the measuring system itself. According to Tye [95], large
errors are possible in thermal conductivity measurements.
However, the consistent smoothness of the results and the
apparent agreement with the value obtained for pure poly-
styrene obtained by others [99], 0.12 J m'ls'lK‘l, suggests
that this is not the case.

Finally, the increased thermal conductivity could

be explained by the nature of the water present in the

membrane. The presence of the electrical double layer (or
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surface forces on the resin matrix) would tend to order the
water molecules causing the thermal conductivity to increase.
If the membranes are treated as a random mixture of two
phases, then an expression can be derived to relate the
thermal conductivity to the thermal conductivity of the two
phases and to their volume fractions [93,97]; This equation
assumes that the single phases in the correct proportions
are embedded in a random mixture of the same two phases
which has a conductivity equal to the conductivity of the

two-phase assembly which is being calculated.

k = {(2—3vr)kw + (l+3vr)kr + [((2—3Vr)kw + (l+3vr)kr)2
1
+ Skrkwjz}/4 [VII-61]

If this equation is used to fit the results for polyvinyl-
benzenesulfonate , as is shown in Figure [VII-10],
the value for the thermal conductivity of the resin agrees
closely to that for polystyrene, but the value for the water
phase is 2.85 J mn~ts-1x~1, compared to a reported value for
water of 0.61 J m~ts~ix~?i [98]._ The value for ice is 2.25
J mis7ix™t at 0°c increasing to 2.85 J m~ts~'x"! at -50°C
[96]. These data suggest a highly ordered orientation of

water within the membranes causing a substantial increase

in the thermal conductivity of this phase; Other models
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that embedded one phase in a continuous second phase were
not successful in fitting the experimental results. This
suggests that the two phases, water and resin, can be
treated as continuous throughout the membrane.

The variation of the thermal conductivity of poly-
vinylbenzenesulfonate membranes with concentration is plotted
in Figure [VII-9]. Since the menbranes swell as the concen—
tration of external electrolyte becomes smaller, it would be
expected that this effect would cause the conductivity to
decrease with increasing concentration since this represents
an increase in the volume fraction of resin; However, the
results in Figure [VII-10] show an exactly opposite trend.
It appears that this concentration effect is caused by more
than just the swelling of the membranes;~

The temperature variation of the thermal conduct-
ivity of a polyvinylbenzenesul fonate membrane is shown in
Figure [VII-11]. This variation is smooth between 20o and
4500 and shows no abrupt transitions. According to
Ueberreiter gE;gl_[lz], this suggests that the membrane
matrix is constructed in such a way that the main body of
the system is composed of short vibrating chain segments.

If these segments were long, there would be abrupt transi-

tions in the thermal conductivity when a high enough
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temperature was reached to excite these chains. For short
chain segments, there would be a gradual excitation of the
chains at different temperatures and the thermal conductivity
against temperature curve would be smooth. Independent
experiments using a differential scanning calorimeter to
measure the relative heat capécity with temperature showed

no abrupt changes, supporting this conclusion;



CHAPTER VIII

SUMMARY

The purpose of this work was to find suitable
methods for the measurement of the electrical and thermal
conductivities of ion selective membranes with a wide range
of physical properties and to use these methods to determine
these two quantities for several types of membrane.

Several different kinds of apparatus were used for
the measurement of the electrical conductivity perpendicular
to the surface of the membrane. It was found that the best
condition for measurement was the use of platinized platinum
electrodes which were very close to, but did not tduch the
surface of the menbrane. If shiny platinum electrodes were
used which touched the surface of the membrane, large and
unpredictable polarization effects made the acquisition of
accurate results difficult. A technique using mercury elec-
trodes in contact with the membrane was also studied and
found to be useful. TFor the measurement of ion-selective
membranes with a high electrical conductivity, polarization
effects were once again encountered. These effects intro-
duced a capacitance large enough to make balancing the

188
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bridge impossible. If, however, a standard 100 ohm resistor
was put in series with the cell, the readings were reasonable
and the polarization effects were not as large as for the
previous method.

Both of these methods worked well with an elect-
rical conductivity of the same order of magnitude and lower
than the electrical conductivity of the supporting electro-
lyte. For higher values of the electrical conductivity, the
error in the results became fairly large. For the mercury
electrode cell, this increase in error was caused by the
polarization effects notea above; These could be accounted
for to a reasonable extent and the values obtained should be
accurate to within one percent. The platinized platinum
electrode cell suffered from another problem. There was a
small amount of electrolyte between the electrodes and the
membrane. For highly-conducting membranes, tﬂe resistance
of the electrolyte became much larger than the resistance
across the membrane itself. Therefore, the total error in
the measurement of the total resistance across the cell
waé imposed on a small portion of the total measurement.
Also, any small error in reproduciné‘the exact amount of

pressure and therefore any squeeze on the membrane will

produce a large error in the measurement. The percentage
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error was therefore greatly increased. The errors involved
could be as high as 35 percent.

Therefore, only the use of the mercury electrode
cell was feasible for high electrical conductivity. The
precision of the two apparatus at low conductivities was
found to be equivalent.

A theory to take into account any part of the
membrane not between the electrodes was also tested. It was
found to work well if the electrodes were sufficiently close
to the faces of the membrane (with several millimeters). If
the electrodes were too far away, the electrical conductivity
calculated was a function of the fraction of the surface not
between the electrodes and was lower than the expected value.

With the aid of irreversible thermodynamics, it
was found that the proper treatment of the electrical con-
ductivity in cellulose and polyvinylbenzenesulfonate mem-
branes assumes that the entire area of‘the membrane is
available for ion transport. This idea is in variance with
current pore models which do not allow for motion of the
chains in the membrane matrix. For porous glass, a much
more rigid membrane, a pore model was found to be more
adequate, suggesting that the actual situation can vary

between these two extrema.
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A method for the determination of the.electrical
conductivity parallel to the membrane surface was also
studied. It relied on the thickness of the sample and not
on all three dimensions as with previous types of cells.

In this method, two measurements were required using four
electrodes, and a theory based on the mapping properties of
Laplace's equation. The cell was found to work well for all
types of membranes.

The anisotropy of the electrical conductivity of
the three types of membranes was studied. The electrical
conductivities perpendicular and parallel to the membrane
surface were obtained using the methods described above.

The cellulose membranes were found to show no anisotropy.
The anisotropy of porous glass and pblyvinylbenzenesulfonate
membranes could be explained by their methods of manufacture.

A method was developed for measuring the thermal
conductivity of ion-selective membranes, taking into account
any contact layers produéed on the faces of the membrane as
measurements were being taken. A complete theory of the
apparatus was derived and appropriate approximations made in
order to make the theory useable. The theory and cell were

tested using polytetrafluorocethylene discs and it was found

that the values obtained could adeguately account for
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contact resistances. Using several thicknesses of the
polytetrafluoroethylene, the linear relationship that was
expected between the inverse of the apparent thermal con-
ductivity and the inverse of the thickness of the discs was
found. The results showed a precision of within 2 percent.
Tt was found that a large part of the slope of this line
was caused by thermal convection across the heat source
from the circulated water. This problem could be corrected
by either an improved heat source design or a faster flow
of circulated water. The smaller value of the slope would
then give results with less inherent error.

The thermal conductivity of cellulose was measured
for various thicknesses of this membrane and the corres-
ponding graph of the inverse thermal conductivity versus
inverse thickness was plotted. It was then assumed that the
slope of this line could be used for all membranes in order
to calculate the true thermal conductivity when contact
films were absent.

The thermal conductivity of cellulose was found
to be independent of the concentration of the supporting
electrolyte.

The thermal conductivity of porous glass was

determined at two slightly different thicknesses and these
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results confirmed, within experimental error, the assumption
concerning the slope of the inverse thermal conductivity
curve.

The thermal conductivity of the polyvinylbenzene-
sul fonate membranes was measured as a function of the
volume fraction of resin. The results suggested that the
water within the membrane behaves anomalously because of
the orientation of water molecules within the electrical
double layer of the membrane matrix. When an appropriate
value of the thermal conductivity of the water in the
membrane is used, the results show good agreementuwith
theory for a random mixture of two phases.

The thermal conductivity of polyvinylbenzene-
sulfonate membranes was measured as a function of external
concentration of electrolyte. This effect was not explain-
able by the swelling of membranes and was thought due to
more complex factors. It was found that the thermal con-
ductivity increased smoothly with temperature, indicating
relatively short chain segments Within the membrane.

Thus, methods for measuring the electrical and
thermal conductivities of ion-selective membranes have been
found and established as acceptable and accurate methods.

These quantities were measured for several varieties of



ion-selective membranes in an attempt to characterize
these systems and to prove the operation of the cells.

The use of these results with others obtained for these
menbranes should be useful in the constructing of a theory
for membranes and in the manufacture of membranes with

specified properties for specific purposes.
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APPENDIX I

CALCUIATION OF THE CORRECTION FACTOR FOR MEMBRANE
OVERLAP IN ELECTRICAL CONDUCTIVITY CELLS USING
THE FORMULA

R = RO + L+(1.0 - (16.0/PI*%2) *SN)
SN = SUM OVER ODD POSITIVE INTEGERS, Q, OF

(1/0%+%2) % (I1 (ALPHA) /I1 (BETA))*

(I1 (BETA) *K1 (ALPHA) ~I1 (ALPHA) *K1 (BETA) )

ALPHA = PI*A/L |
BETA = PI%*B/L
'A' IS THE RADIUS OF THE ELECTRODES
'B' IS THE RADIUS OF THE MEMBRANE
',' IS THE THICKNESS OF THE MEMBRANE
T1(X) AND K1 (X) ARE MODIFIED BESSEL FUNCTIONS OF

THE SECOND KIND.

NUMBERS CONCERNING K1 (X) MUST BE CALCULATED IN
DOUBLE PRECISION SINCE THE FINAL RESULT IS ABOUT
1.0E-08 TIMES THE IARGEST TERM. DOUBLE PRECISION

GIVES 16 FIGURES.
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DOUBLE PRECISION DANB2, DBNB2, DAN, DBN, DANEXP,
1 DBNEXP, FACIN, GAB2, GBB2, TERMKA; TERMKB, AIPRTI1,
2 DCOUNT, AKPRT1l, AKPRT2, BKPRT1l, BKPRT2, ANFAC,

3 ANFAC1, BIPRT1

READ VALUES FOR PI¥A/I, AND PI*B/IL

READ (5,1) ALPHA, BETA
FORMAT (2F8.5)
IF (ALPHA.LT.0.1) STOP

WRITE (6,14)

FORMAT (1H1, 33H ALPHA BETA CORRECTION )
TRMSN1 = 0.0
TRMSN2 = 0.0

DO IOOP TO CALCUILATE THE TERMS IN THE SUMMATION IN

THE EQUATION.

Do 3 N=1, 15, 2
E=N
ALPHAN = ALPHA*E

BETAN = BETA¥E
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DIFF = 0.0
IF (ALPHAN.LT.10.0) GO TO 4

IF (BETAN.GT.10.0) GO TO 5

IF THE ARGUEMENT IS LESS THAN 10;0, THE BESSEL
FUNCTION IS CALCULATED USING A SERIES EXPANSION TO

AN ACCURACY OF 6 FIGURES.

ANFAC = 1.0DO

ANEXP = EXP (ALPHAN)

BNEXP = EXP (BETAN)

DANB2 = DBLE (ALPHAN) /2.0DO
DBNB2 = DBLE (BETAN) /2.0DO0

DAN = 2.0DO*DANB2

DBN = 2.0DO*DBNB2

DANEXP DEXP (DAN)

DBNEXP

DEXP (DBN)
FACIN = 0.0DO

GAB2 DLOG (DANB2) + 0.5772156649015329

Il

GBB2 = DIOG (DBNB2) + 0.5772156649015329

TERMIA = (ALPHAN/2.0)/ANEXP
TERMKA = (1.0DO/DAN + DANB2% (GAB2 - 0.5D0))*DANEXD
TERMIB = (BETAN/2.0)/BNEXP
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TERMKB = (1.0D0/DBN + DBNB2* (GBB2 - 0.5D0) ) *DBNEXP

ATPRT1 1.0D0

BIPRT1 = 1.0D0

CORFAC

BETAN

DO LOOP FOR CALCUIATING THE TERMS IN THE

SERIES EXPANSION OF BESSEL FUNCTIONS;

DO 5 I=1,30

COUNT = I,

DCOUNT = DBLE (COUNT)

ANFAC = ANFAC*DCOUNT

ANFAC1l = ANFAC¥* (DCOUNT + 1.0DO)
FACIN = FACIN + 1,0D0/DCOUNT
IF (ALPHAN.GT.10.0) GO TO 6

AKPRT1 = GAB2 -~ FACIN - 1.0D0O/(2.0DO*DCOUNT + 2.0DO)

AIPRT1 = {(DANB2** (2,0D0*DCOUNT + 1.0D0) ) /ANFAC1) /ANFAC
TERMIA = TERMIA + AIPRT1/ANEXP

AKPRT2 = AKPRTI1*DANEXP

TERMKA = TERMKA + AKPRT2#*AIPRT1

¥*TEST*¥ ENSURES THE CONVERGENCE OF THE BESSEL

FUNCTIONS
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TEST = AIPRT1*ANEXP

IF (BETAN.GT.10.0) GO TO 3

BKPRT1 = GBB2 - FACIN - 1.0D0/(2.0DO*DCOUNT + 2.0DO)
BIPRT1 = ((DBNB2¥*¥* (2,0D0*DCOUNT + 1.0D0O))/ANFACL)/ANFAC
TERMIB = TERMIB + BIPRT1/BNEXP

BKPRT2 = BKPRT1*DBNEXP

TERMKB = TERMKB + BKPRT2%*BIPRT1

IF (ALPHAN,.LT.BETAN) GO TO 7

GO TO 3

TEST = BIPRT1*BNEXP

IF (TEST.LT.1.0E-06) GO TO 5

WRITE (6,8)

FORMAT (1HO, 45HBESSEL FUNCTION HAS NOT CONVERGED IN
1 30 TERMS)

IF (ALPHAN.LT.10.0) GO TO 9

IF THE ARGUEMENT IS GREATER THAN 10, THE BESSEL
FUNCTION IS CALCULATED BY A POLYNOMIAT,
APPROXIMATION (ABRAMOWITZ AND STEGUN [62])

ACCURATE TO AT LEAST 5 FIGURES.

CORFAC = BETAN -~ 0.90*ALPHAN
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**¥CORFAC** ENSURES THAT THE NUMBERS CALCULATED
DO NOT EXCEED THE UPPER LIMIT OF NUMBER MAGNITUDE

IN THE COMPUTER--- ABOUT 10%%38.

IF (CORFAC.GT.40.0) GO TO 10

TENTHA = 0O.l0*ALPHAN
TNAEXP = EXP (TENTHA)
AB375 = ALPHAN/3.75

AB200 = ALPHAN/2.0

AFFACI = 0.39894228 - 0.03988024/AB375 - 0.00362018/
1 AB375%¥2 + 0.00163801/AB375%*3 - 0.01031555/AB375%%4
2 + 0.02282967/AB375%%5 ~ 0,02895312/AB375%%6

3 + 0.01787654/AB375%%7 - 0,00420059/AB375%#g

TERMIA

AFFACI/ALPHAN*#0,5

AFFACK

1.25331414 + 0.23498619/AB200

1 - 0.03655620/AB200#%2 + 0.01504268/AB200%%3
2 - 0.00780353/AB200%*%*4 + 0;00325614/A3200**5
3 - 0.00068245/AB200%*%6

TERMKA = AFFACK/ALPHAN#*%0.5

DIFF = BETAN - ALPHAN

IF (DIFF.GT.7.0) GO TO 10

IF (BETAN.LT.10.0) GO TO 11

TNBEXP = EXP (CORFAC)
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BB375 BETAN/3.75

BB200 = BETAN/2.0

BFFACI = 0.39894228 - 0.03988024/BB375

1 - 0.00362018/BB375%%2 + 0.00163801/BB375%%3
2 - 0.01031555/BB375%%4 + 0.02282967/BB375%%5
3 - 0.02895312/BB375%%6 + 0:01787654/BB375**7
4 - 0.00420059/BB375%%8

TERMIB = BFFACI/BETAN¥*%*0,5

BFFACK = 1.25331414 + 0.23498619/BB200

1 - 0.03655620/BB200*%2 + 0,01504268/BB200%%*3
2 - 0.00780353/BB200*%4 + 0.00325614/BB200%%5
3 - 0.00068245/BB200%%6

TERMKB = BFFACK/BETAN*¥*0.5

CONTINUE

CAICULATION OF THE CORRECTION FACTOR

TRMSN1 = TRMSN1 + TERMIA¥*TERMKA/E#*%2

IF (DIFF.GT.7.0) GO TO 3

TRMSN2 = TRMSN2 + (TERMIA%#2)*TERMKB* (TNAEXP/TNBEXP)
1 #%2/ (TERMIB*E%%2)

CONTINUE

SN = TRMSN1 - TRMSN2

FCNCOR = 1.0 — 16.0%SN/(3.14159%%2)
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WRITE (6,12) ALPHA, BETA, FCNCOR
FORMAT (2F10.6, F15.10)
GO TO 13

END
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