
CNN-LSTM vs ANN: Option Pricing Theory 

Edward Chang 

Faculty of Engineering 

Western University 

London, Canada 

echang49@uwo.ca 

 

Abstract – The modern derivatives market has 

been steadily growing since the development of the 

first accurate option pricing model by Fischer 

Black, Robert Merton, and Myron Scholes. Since 

then, there have been many different approaches to 

more accurately price options like the binomial 

option pricing model and approaches using 

technology such as machine learning. There are 

many different research papers on option pricing 

with artificial neural networks (“ANN”) but not 

many with other neural network types. We 

contribute to the existing literature by developing a 

convolutional neural network – long short-term 

memory (“CNN-LSTM”) model to price options 

and compare it to an ANN model. The results from 

this paper show that the CNN-LSTM model 

performed much better than the ANN model for 

pricing options. It is proposed that the model is 

improved to reach a greater accuracy when 

predicting option prices. 

 

Index Terms – Option Pricing Theory, 

Convolutional Neural Network, Long Short-Term 

Memory, Artificial Neural Network, Black-Scholes 

Model 

 

I. INTRODUCTION 

In today’s financial markets, commodities are 

traded between the buyers and sellers in many 

different forms. The rudimentary commodity that is 

traded between buyers and sellers in the financial 

markets are stock while an example of an advanced 

commodity is options. An option is a contract between 

the buyer and seller which gives the buyer the right to 

buy or sell a certain stock at a given price. European 

options allow the option to be exercised on a certain 

date whilst American options allow the option to be 

exercised on or before a certain date. For a buyer to 

gain the right to buy or sell a certain stock at a certain 

price, the buyer must pay a premium to purchase the 

contract. The option premium must be priced 

accordingly to eliminate possibilities of arbitrage. 

Pricing option premiums based on the calculated 

probability that the contract will finish in the money at 

expiration is called ‘Option Pricing Theory’ [1]. 

 

While there are many different models to price 

options, most of them follow a mathematical formula 

to price options. With the recent developments in the 

field of artificial intelligence, machine learning can be 

used to determine option prices. Artificial neural 

networks (ANN) could be used to determine an 

accurate result for option premiums but may not be as 

good compared to other types of neural networks due 

because an ANN cannot associate data with relation to 

time. Creating a convolutional neural network – long 

short-term memory (CNN-LSTM) model allows for 

prediction using feature extraction with respect to 

time-series data. 

 

II. RELATED WORK 

There have been other research papers that delve 

into how artificial intelligence can be used to help 

price options. As the Black-Scholes option pricing 

model (BSOPM) is widely regarded as accurate option 

pricing formula, models use it to compare their 

accuracy. 

 

A. Stock Option Pricing Using Bayes Filters (2004) 

[2] 

Bayes filters take a probabilistic approach to 

estimate an unknown probability density over time. 

Liao’s technical report predicts stock option prices by 

using Bayes filters with an Expectation-Maximization 

algorithm to calculate the implied volatility without a 

return variance for option pricing using the BSOPM. 



The report found that the Bayes filters performed 

better to predict option prices than the generalized 

autoregressive conditional heteroskedasticity 

(GARCH) model as well as the provided implied 

volatilities for pricing the option. 

 

B. A new application of fuzzy set theory to the Black-

Scholes option pricing model (2005) [3] 

Fuzzy classifiers take a non-binary approach to 

decision making compared to the traditional binary 

‘true’ or ‘false’. Lee et al. predicts option prices in the 

publication article by adding fuzzy classifier decision 

making to the BSOPM as the original version has 

assume the riskless interest rate and the volatility to be 

constant. The report found that ignoring fuzzy 

classifiers result in overestimations. 

 

C. A Comparative Study of Support Vector Machine 

and  Artificial Neural Net for Option Price 

Prediction (2021) [4] 

Support vector machines (SVM) classify data by 

creating a line or hyperplane to separate the data into 

different classes. ANNs calculate data with feed-

forward layers such as the input layer, the hidden layer, 

and the output layer. Madhu et al. compared the 

accuracy of option pricing between SVMs and ANNs 

by comparing the two based on the SPY option price. 

The researchers concluded that the ANN was able to 

predict option prices more accurately compared to the 

SVM. 

 

D. Nonparametric Machine Learning Methods for 

Equity Option Pricing (2021) [5] 

Jiang’s technical report predicts American and 

European stock option prices using an ANN. The 

technical report concluded that the ANN built in the 

report performed better than the BSOPM and binomial 

option pricing model (BOPM) for puts but performed 

worse for calls. Jiang also noted that the main 

discrepancy between ANNs built for different option 

types were the activation functions. 

 

E. Pricing Brazilian Fixed Income Options with 

Feedforward and Recurrent Neural Networks 

(2014) [6] 

Recurrent neural networks (RNN) are like ANNs 

except nodes in an RNN remember inputs from prior 

computations. Maciel’s research compares the 

accuracy of computing the one-day interbank deposit 

option prices in the Brazilian market between the 

Black model, Vasicek model, CIR model, ANN 

model, Elman RNN (ERNN) model, and the Jordan 

RNN (JRNN) model. The research results show that 

all three neural networks perform better than the Black 

model, Vasicek mode, and CIR model. Additionally, 

the results indicate that the RNNs were a little more 

accurate compared to the ANN. 

 

F. A CNN-LSTM-Based Model to Forecast Stock 

Prices (2020) [7] 

A CNN-LSTM model has a convolutional neural 

network (CNN) first for feature extraction with a long 

short-term memory (LSTM) later applied to make 

predictions based on previous time series data. Lu et 

al. compared the accuracy of stock pricing between an 

ANN, CNN, RNN, LSTM, CNN-RNN, and CNN-

LSTM. The researchers suggest that a CNN-LSTM 

model be used for stock price prediction because a 

CNN can predict time-series data but not accurately as 

its primary function is image processing. The results 

of the research in order of most accurate to least is 

CNN-LSTM, CNN-RNN, LSTM, RNN, CNN, ANN. 

 

G. Research Gap 

The related literature identifies different usages of 

artificial intelligence that can result in better accuracy 

than the BSOPM. There is a lot of research completed 

on the option pricing theory with respect to artificial 

neural networks. Additionally, there is research that 

provides better alternatives to option pricing compared 

to artificial neural networks.  

 

The CNN-LSTM was proven to be the best model 

type for use in stock prediction. Despite the data used 

for stock price prediction and option pricing being 

similar, there is no research completed on the viability 

of a CNN-LSTM model for option pricing. This 

project seeks to compare the accuracy of option 

pricing for a CNN-LSTM model compared to an ANN 

model with the BSOPM used as a baseline. 

 

 

 



III. RESEARCH OBJECTIVES 

This project has the following research objectives: 

1. Build a CNN-LSTM model to accurately price 

options. 

2. Measure the accuracy of the CNN-LSTM model 

against European options and American options 

for calls, puts, and both. 

3. Compare the accuracy of the CNN-LSTM model 

against an ANN model and a baseline model which 

is the BSOPM. 

 

IV. DATA 

A. Data Collection 

The problem to be solved by this project is if an 

accurate CNN-LSTM model can be built for option 

pricing. The option pricing datasets used in the 

research is hosted by the Wharton Research Data 

Services from the University of Pennsylvania. From 

the OptionMetrics vendor, the datasets on option 

pricing were taken from the Ivy DB US’s Index 

Dividend Yield, Zero Coupon Yield Curve, 

Standardized Options, and Security Prices [8]. 

 

TABLE I 

DATA DICTIONARY 

Variable Variable Explanation 

Stock 

Price 

The stock’s closing price of the 

previous day. 

Strike 

Price 

Price of the stock at option maturity. 

Time to 

Expiration 

The number of days for the option 

contract to mature. 

Implied 

Volatility 

Percentage of the likelihood for 

changes in the stock price. 

Dividend 

Yield 

Ratio of cash dividends distributed 

compared to the stock price. 

Zero 

Coupon 

Yield 

Minimum guaranteed rate of return if 

the money were invested elsewhere. 

Premium Price of the option contract. 

 

The S&P 100 (OEX) was used for training and 

testing the models for the American style options 

while the S&P 100 Index European (XEO) was used 

for training and testing the models for the European 

style options. The dataset used for this project only 

includes data from February 12, 2012, to December 

31, 2021. The OEX dataset had 51,716 entries while 

the XEO dataset had dataset had 51,756 entries 

allowing for equal training between the different 

models. The variable dictionary is shown in Table 1. 

 

B. Data Preprocessing 

1) Dataset Conversion 

The raw datasets contained unnecessary 

fields. To fix this, the necessary fields were 

taken from each of the Ivy DB US datasets 

and added to a single formatted dataset. The 

date, time to expiration, strike price, 

premium, and implied volatility were taken 

from the Standardized Options dataset. The 

dividend yield and closing stock price was 

added to the data rows corresponding by the 

date. The zero-coupon yield was added to the 

data rows corresponding by the date and 

closest option maturity value. 
 

2) Noise Removal 

Some of the parsed data in the dataset were 

incomplete and would mislead the neural 

networks. Rows removed included a blank 

implied volatility, an option premium of 0, 

and a strike price of 0. 

 

3) Data Pruning 

To ensure more accurate results in training 

the models with the datasets, outliers were 

pruned. 2.5% was pruned from each side of 

the dataset resulting in an overall 5% loss of 

data. The metric used for pruning was the 

stock price to option price (SP-OP) ratio 

denoted by the following formula: 

 

𝑆𝑃 − 𝑂𝑃 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑜𝑐𝑘 𝑃𝑟𝑖𝑐𝑒 (𝐶𝑙𝑜𝑠𝑖𝑛𝑔)

𝑂𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒
 

( 1 ) 

Before pruning, the minimum SP-OP ratio 

for the OEX dataset was 3.2163 while the 

maximum SO-OP ratio for the OEX dataset 

was 312.5078. The minimum SP-OP ratio for 

the XEO dataset was 5.6802 before pruning 

while the maximum SP-OP ratio for the XEO 

dataset was 318.7282. Figure 1 and Figure 2 

depicts the frequency in ratios in buckets of 



10 before pruning where the first bucket is 

ratios from 0 to 9 while the next is from 10 to 

19 continuing that pattern for the rest of the 

buckets. 

 

FIGURE I 

Frequency of ratios in buckets for OEX 

 

FIGURE II 

Frequency of ratios in buckets for XEO 

 

C. Exploratory Data Analysis 

To have a deeper understanding of the 

preprocessed dataset, metrics were extracted from the 

dataset such as call frequency, put frequency, time to 

maturity, and option price distribution. These metrics 

can help understand how the neural network models 

will train and if there will be any biases. 

 

Statistics of the dataset can be found in Table 2. 

While there are more puts than calls for the OEX and 

XEO datasets after pruning, the amounts are similar 

and will not result in training one type of options more 

than the other. Defining a short-term option contract as 

having a maturity date of less than or equal to 60 days, 

only 25.9% of the options are short-term in the OEX 

and XEO datasets. This indicates that the machine 

learning models may be less accurate when 

determining the price of a short-term option. Lastly, 

comparing the minimum SP-OP ratio and maximum 

SP-OP ratio of the dataset before and after pruning, it 

shows the dataset is more normalized. For example, 

the maximum SP-OP ratio decreased for the OEX 

from 312.5078 to 154.8459 and from 318.7282 to 

160.6989 for the XEO. While the pruned dataset 

would result in a worse accuracy for the outliers, the 

overall dataset will result in an increased accuracy for 

the models. 

 

TABLE II 

DATASET STATISTICS 

 OEX XEO 

Calls 25783 25734 

Puts 25933 26022 

Short-Term 13379 13394 

Long-Term 38337 38362 

Minimum 

SP-OP Ratio 

8.5433 8.7106 

Maximum 

SP-OP Ratio 

154.8459 160.6989 

  

A sample of the preprocessed datasets can be found 

in Table 3 which displays only calls for the OEX. The 

other datasets are also in this format with the order of 

the columns displayed in Table 1. 

 

 TABLE III 

SAMPLE OF PREPROCESSED DATASET 

 

V. RESEARCH METHODOLOGY 

The model used in this paper are the BSOPM, 

ANN model, and CNN-LSTM model. The mean 

squared error (MSE) metric was used to determine the 

accuracy of the models. 



𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

(𝑛, 𝑦, 𝑦̂) 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑦 = 𝑔𝑖𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑦̂ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

( 2 ) 

A. Black-Scholes Option Pricing Model 

Developed in 1973 by Fischer Black and Myron 

Scholes, the BSOPM is a mathematical model 

determining the price of an option based on the stock 

price, strike price, stock volatility, time to maturity, 

and risk-free interest rate [9]. 

 

The original model makes the following assumptions: 

1. Dividends are not paid out when the option has not 

yet matured. 

2. The option cannot be exercised before maturity. 

3. The risk-free interest rate and stock volatility is 

known and constant. 

4. The returns of the stock are normally distributed. 

5. The financial markets are random and cannot be 

predicted. 

 

Later in 1973, Robert Merton extended the Black-

Scholes mathematical formula to reflect dividends 

paid out from the underlying asset before the option 

has matured [10]. The version of the BSOPM used in 

this project include Robert Merton’s contributions and 

takes the dividend yield into account.  

 

With the following variables: 

 

(𝑥, 𝑐, 𝑣, 𝑟, 𝑡, 𝑑) 

𝑥 = 𝑆𝑡𝑜𝑐𝑘 𝑃𝑟𝑖𝑐𝑒 

𝑐 = 𝑆𝑡𝑟𝑖𝑘𝑒 𝑃𝑟𝑖𝑐𝑒 

𝑡 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 

𝑟 = 𝑅𝑖𝑠𝑘 − 𝐹𝑟𝑒𝑒 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒 

𝑑 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑 

𝑣 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑡𝑜𝑐𝑘 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 

 

The formulas to price option calls and puts are 

 

𝐶𝑎𝑙𝑙 = 𝑥𝑒−𝑑𝑡𝑁(𝑑1) − 𝑐𝑒−𝑟𝑡𝑁(𝑑2) 

( 3 ) 

𝑃𝑢𝑡 = 𝑐𝑒−𝑟𝑡𝑁(−𝑑2) − 𝑥𝑒−𝑑𝑡𝑁(−𝑑1) 

( 4 ) 

where 

𝑑1 =
ln (

𝑥
𝑐

) + (𝑟 − 𝑑 +
𝑣2

2
)𝑡

𝑣√𝑡
 

( 5 ) 

 

𝑑2 =
ln (

𝑥
𝑐

) + (𝑟 − 𝑑 −
𝑣2

2
)𝑡

𝑣√𝑡
= 𝑑1 − 𝑣√𝑡 

( 6 ) 

 

From the datasets in the format of Table 3 above, 

some processing is completed to conform the input 

parameters to the proper scale of the formula. The 

dividend yield and zero-coupon yield were converted 

from percent form to decimal form while the time to 

expiration was converted from days to years. 

 

The BSOPM was used to determine the calculated 

option price for American style calls, American style 

puts, European style calls, and European style puts. 

With the calculated prices, the calculated option price 

was compared to the given option price finding the 

MSE for the above categories.  

 

As the formula to calculate option prices for calls 

and puts are different, two different methods were 

used to calculate the MSE of the BSOPM with respect 

to American style calls and puts, and European style 

calls and puts.  

 

The “Calls and Puts (Random)” method receives a 

dataset with a similarly equal number of calls and puts 

in a random order. During dataset iteration, rows with 

an even index were calculated with the call formula 

while rows with an odd index were calculated with the 

put formula. The MSE of the “Calls and Puts 

(Random)” method is then determined with the 

calculated and given option prices.  

 

The “Calls and Puts (Calculated)” method 

calculates the MSE of calls and puts with the MSE for 

calls only and the MSE for puts only in the following 

equation. 



𝑀𝑆𝐸 =
𝑛𝑐𝑀𝑆𝐸𝑐 + 𝑛𝑝𝑀𝑆𝐸𝑝

𝑛𝑐 + 𝑛𝑝

 

(𝑛𝑐, 𝑛𝑝, 𝑀𝑆𝐸𝑐 , 𝑀𝑆𝐸𝑝) 

𝑛𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠 

𝑛𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑡𝑠 

𝑀𝑆𝐸𝑐 = 𝑀𝑆𝐸 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠 𝑜𝑛𝑙𝑦 

𝑀𝑆𝐸𝑝 = 𝑀𝑆𝐸 𝑜𝑓 𝑝𝑢𝑡𝑠 𝑜𝑛𝑙𝑦 

( 7 ) 

B. Artificial Neural Network Option Pricing Model 

 

FIGURE III 

Model architecture for the ANN 

As the ANN model is being used for comparison 

against the CNN-LSTM model, a well-performing 

model architecture is needed to properly compare the 

two models. In the feed-forward ANN model used in 

[5], it was observed that the model was more accurate 

than the BSOPM and BOPM for some categories 

while being less accurate in others. Due to the high 

performance from the feed-forward ANN model in [5], 

this project’s model architecture was based off it.  

 

The model had an input layer of size 6, an output 

layer of size 1, and 4 hidden layers with 200 neurons 

each. The inputs used was stock price, strike price, 

time to expiration, implied volatility, dividend yield, 

and the zero-coupon rate. The activation functions 

used in the feed-forward ANN in order were 

LeakyReLu, ELU, ReLu, ELU, and GELU. The model 

used a mean squared logarithmic error (MSLE) metric 

for the loss function while the Adam algorithm was 

used as the optimizer. Two identical ANN models with 

different batch sizes and epochs were compared. The 

first ANN model was trained with 100 epochs with a 

batch size of 32 while the second ANN model was 

trained with 200 epochs with a batch size of 128. The 

second model performed ~20% more accurate than the 

first. As such, the MSE in the results section for the 

ANN depict the results for 200 epochs with a batch 

size of 128. 

 

C. Convolutional Neural Network – Long Short-

Term Memory Option Pricing Model 

CNNs are used for its ability to extract features 

from a dataset and while they are normally used in a 

2-dimensional space for image processing, they could 

be used in a 1-dimensional space for time series. CNNs 

are feedforward and perform worse for predicting 

time-based data compared to other model types such 

as RNNs and LSTMs [9]. LSTMs are used for analysis 

or forecasting due to its ability to back-propagate with 

no gradient explosions or disappearance which can 

occur in RNNs. 

 

The general architecture for a CNN-LSTM model 

in order is input layer, convolutional layer(s), long 

short-term memory layer(s), dense layer(s), and output 

layer. The CNN-LSTM model architecture for this 

project was inspired by the CNN-LSTM model in [7] 

and the ANN model created for this project. Though 

the research completed in [7] is for stock price 

forecasting instead of option price forecasting, the data 

structures are similar. The input layer of the model 

accepts a dataset with 10 timesteps and 7 parameters 

in each timestep. The input parameters used are stock 

price, strike price, time to expiration, implied 



volatility, dividend yield, the zero-coupon rate, and the 

option premium for previous timesteps. The 

convolution section of the model included two 

Conv1D layers. The first Conv1D layer had 32 filters, 

a kernel size of 10, and a dilation rate of 4 with causal 

padding. The second Conv1D layer had the same 

parameters as above but with 64 filters instead. The 

LSTM section included one LSTM layer that did not 

output a sequence and had 64 units. The dense section 

of the CNN-LSTM model is the same as the ANN 

model having 4 hidden layers with 200 neurons each. 

The activation functions used in the CNN-LSTM in 

order were ELU, ReLu, tanh, LeakyReLu, ELU, 

ReLu, ELU, and GELU. The model used a MSE 

metric for the loss function while the Adam algorithm 

was used as the optimizer. The CNN-LSTM model 

was trained with a batch size of 128 for 200 epochs. 

 

The final dataset was normalized with the Z-score 

normalization formula: 

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 − 𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

( 8 ) 

While the data did not need to be processed further 

for the ANN model after preprocessing, the CNN-

LSTM model required the datasets to be converted to 

time series. With Table 3 as an example, the datasets 

are sorted by ascending date first and then descending 

time to expiration second. The data inside the datasets 

were filtered into sub-datasets sorted by ascending 

date with the data in each sub-dataset sharing the same 

time to expiration and option type. Afterwards, each 

sub-dataset was converted into a timeseries dataset 

with a sequence length of 10 and sequence stride of 1. 

The timeseries datasets were then combined to form a 

single dataset with the last timestep of every row 

having the option price removed as that is label. This 

processing was done to ensure the timesteps were in 

order and on different days. 

 

FIGURE IV 

Model architecture for the CNN-LSTM 

 

V. RESULTS 

With 20% of the dataset reserved for testing, the 

MSEs for the BOSPM, ANN model, and CNN-LSTM 

model are displayed in Table 4, Table 5, and Table 6 

respectively. Overall, the rankings for accuracy in 

order are the BSOPM, CNN-LSTM model, and ANN 

model. The BSOPM was found to be the most accurate 

model to predict options in every category. The CNN-



LSTM model was more accurate than the ANN model 

in every category except for the American “calls and 

puts”. 

 

TABLE IV 

BLACK-SCHOLES MODEL ACCURACY 

 OEX XEO 

Calls 1.083 0.0033 

Puts 0.3442 0.0058 

Calls and Puts 

(Calculated) 

0.7125 0.0046 

Calls and Puts 

(Random) 

0.7168 0.0044 

 

TABLE V 

ANN MODEL ACCURACY 

 OEX XEO 

Calls 12.6310 9.7236 

Puts 13.3724 8.9890 

Calls and Puts 8.4397 5.5702 

 

TABLE VI 

CNN-LSTM MODEL ACCURACY 

 OEX XEO 

Calls 10.4393 4.2537 

Puts 10.6472 3.8264 

Calls and Puts 9.3283 3.5539 

 

TABLE VII 

CNN-LSTM VS ANN MODEL PERFORMANCE 

 OEX XEO 

Calls 17.35% 56.25% 

Puts 20.38% 57.43% 

Calls and Puts -9.53% 36.20% 

 

Table 7 compares model accuracies between the 

CNN-LSTM and ANN models with positive 

percentages indicating better performance from the 

CNN-LSTM. Analysing the data from Table 7, the 

CNN-LSTM performed better than the ANN for 

American options while the CNN-LSTM performed 

much better than the ANN for European options. The 

exception to this is the ANN performing slightly better 

than the CNN-LSTM for the American “calls and 

puts”.  

 

The leading prediction for why the ANN 

performed better than the CNN-LSTM in that category 

is due to the CNN-LSTM finding similarities and 

differences between calls and puts more difficult than 

the ANN. The MSE results show that the CNN-LSTM 

is better than the ANN at predicting option prices for 

only calls or only puts because the CNN-LSTM can 

analyze past data and extract features. This implies that 

if the CNN-LSTM performs worse when calls and puts 

are together, it is because the CNN-LSTM has more 

difficulty finding similarities and differences between 

calls and puts. It was found in both models that training 

for both calls and puts resulted in a higher accuracy 

than training only calls or puts. Referring to the 

mathematical Black-Scholes formula to price call 

options in Equation 3 and put options in Equation 4, 

the formulas are similar with the only differences 

being changes in variable positivity. The datasets for 

“calls only” and “puts only” were derived by 

separating the types from the combined dataset. 

Therefore, the “calls and puts” model was given 

double the amount of data to learn from compared to 

the “calls only” and “puts only” models allowing it to 

better determine correlations resulting in higher 

accuracies. However, the ANN learned more 

compared to the CNN-LSTM when training for both 

calls and puts. Table 8 compares the “Calls and Puts” 

MSE of the ANN and CNN-LSTM to the lower MSE 

between “Calls” and “Puts” with positive percentages 

indicating better performance from the “Calls and 

Puts” category. 

 

 TABLE VIII 

CALLS AND PUTS VS CALLS OR PUTS 

PERFORMANCE 

 OEX XEO 

ANN 33.18% 38.03% 

CNN-LSTM 10.64% 7.12% 

 

The predicted reason for why the CNN-LSTM had 

more difficulty finding trends between calls and puts 

than the ANN resulting in a lower percentage of 

improvement is because the CNN-LSTM is more 

complex than the ANN. The input layer of the CNN-

LSTM takes a more complex input with a shape of 



(None, 10, 7) while the ANN takes an input with a 

shape of (None, 6). After passing the data through the 

convolutional layers and LSTM layer, the data 

inputted into the dense section of the CNN-LSTM 

model is in the shape of (None, 64). The CNN-LSTM 

is almost identical to the ANN with 2 added 

convolutional 1D layers, a long short-term memory 

layer, and a different input shape for the first dense 

layer. The difference in model architecture suggests 

that the cause for a lower percentage of improvement 

compared to the ANN is either because of trends 

between calls and puts being less apparent after going 

through the CNN layers and LSTM layer, or the dense 

layers being less able to determine trends between 

calls and puts when the input shape of the first dense 

layer is (None, 64). The potential solutions to allow a 

CNN-LSTM to better distinguish calls and puts are 

either a more efficient model architecture, different 

hyperparameters, or more training with lower batch 

sizes and higher epochs to provide the CNN-LSTM 

more opportunities to find the trends. 

 

TABLE IX 

AMERICAN VS EUROPEAN OPTION 

PERFORMANCE 

 ANN CNN-LSTM 

Calls -23.02% -59.25% 

Puts -32.78% -64.06% 

Calls and Puts -34.00% -61.90% 

 

Table 9 compares model accuracies between 

American and European style options with positive 

percentages indicating better performance from the 

American style options. The percentages show that the 

CNN-LSTM and ANN can predict European style 

options more accurately than American style options 

for every category tested. This is due to the ANN and 

CNN-LSTM models being more optimized to price 

European options than American options. While the 

research in [5] had different model designs for 

American and European style options, the ANN model 

and CNN-LSTM model in this project had the same 

design which was inspired from the European model 

in [5] for standardization. While the research from [5] 

found that the best accuracy results for American and 

European style options both have 4 dense layers 

comprised of 200 neurons each, the activation 

functions were different. The model to price American 

options had the following activation functions in 

order: ELU, ELU, ELU, ELU, ReLu. The model to 

price European options had the following activation 

functions in order: LeakyReLu, ELU, ReLu, ELU, 

exponential. For comparison, the ANN and CNN-

LSTM’s dense section have the following activation 

functions in order: LeakyReLu, ELU, ReLu, ELU, 

GELU. Additionally, the percentages from Table 9 

show the CNN-LSTM had a much greater percentage 

of improvement compared to the ANN. This is 

expected as a CNN-LSTM can extract features from a 

timeseries while an ANN cannot. 

 

TABLE X 

BSOPM VS ANN MODEL PERFORMANCE 

 OEX XEO 

Calls 91.43% 99.97% 

Puts 97.43% 99.94% 

Calls and Puts 

(Calculated) 

91.56% 99.92% 

Calls and Puts 

(Random) 

91.51% 99.92% 

 

TABLE XI 

BSOPM VS CNN-LSTM MODEL 

PERFORMANCE 

 OEX XEO 

Calls 89.63% 99.92% 

Puts 96.77% 99.85% 

Calls and Puts 

(Calculated) 

92.36% 99.87% 

Calls and Puts 

(Random) 

92.32% 99.88% 

 

Table 10 compares model accuracies between the 

BSOPM model and ANN model while Table 11 

compares model accuracies between the BSOPM 

model and the CNN-LSTM model. Positive 

percentages indicate better performance from the 

BSOPM model. Referring to the research completed in 

the related works section, every article that compared 

an application of artificial intelligence to price options 

to the BSOPM found the artificial intelligence model 

to be more accurate than the BSOPM. Specifically, the 

research completed in [5] found that ANNs can be 

more accurate than the BSOPM in some categories and 

is similar for the others. While the absolute difference 



in values is small for the MSEs between the BSOPM, 

ANN, and CNN-LSTM, the BSOPM performs 

significantly better than the ANN and CNN-LSTM 

created in this project.  

 

VI. IMPROVEMENTS 

Analysing the results from Table 10 and Table 11, 

the BSOPM is a much better choice for option pricing 

compared to the ANN and CNN-LSTM. However, 

previous research has proven that ANNs can be more 

accurate than the BSOPM and that CNN-LSTMs are 

more accurate than ANNs for time series data. 

Therefore, improvements must be made to the current 

neural networks created for this project to be more 

accurate. 

A. Binomial Option Pricing Model 

The BSOPM is currently used in this project as a 

baseline to measure the accuracy of the neural network 

models. While the BSOPM is a good baseline model 

to measure the accuracy of European options, the 

formula assumes that the option cannot be exercised 

before maturity and therefore does not support 

American options. The BOPM is a good, well-known 

alternative for a baseline model to measure the 

accuracy of American options. The BOPM is preferred 

to the BSOPM for pricing American options because 

it considers an option contract being exercised before 

maturity by calculating a range of possible results for 

different periods in a multi-period model. 

 

B. Simulated Data 

The dataset used in this project is real market data 

of the OEX and XEO from February 12, 2012, to 

December 31, 2021. The dataset provides ~25,000 

rows of data to the models predicting call option prices 

or put option prices separately and ~50,000 rows of 

data to the models predicting call and put option prices 

together. Currently, the ANN and CNN-LSTM models 

are not pretrained before being trained with real 

market data. This requires the neural networks to 

determine the best fit through trial and error.  

 

With a train set of 60%, validation set of 20%, and 

test set of 20%, the neural networks can only be trained 

with a maximum of ~30,000 rows of data. From Table 

11, the CNN-LSTM is required to improve its 

accuracy by 99.92% to have the same accuracy as the 

BSOPM. With ~30,000 rows of data, the ANN and 

CNN-LSTM models would overfit before achieving a 

similar accuracy to the BSOPM. This could be fixed 

by gathering a lot more market data, either from 

simulation or collecting more real data. For reference, 

the ANNs built in [5] were first pretrained with 

~10,000,000 rows of simulated data before being 

trained with real market data. 

 

Simulating market data is preferred over collecting 

more real-world market data as it requires 

preprocessing of the dataset to eliminate noise or any 

outliers that could decrease the accuracy of a model. 

Using simulated data, it could be controlled and 

designed to ensure no outliers or noise would be 

present. The BOPM would be used to simulate 

American option data while the BSOPM would be 

used to simulate European option data. The ANN and 

CNN-LSTM models would then be pretrained with the 

simulated market data before being trained with real 

market data allowing the machine learning models to 

already have an accurate base to start training from. 

 

C. Longer Training 

The ANN and CNN-LSTM created in this project 

was trained with 200 epochs and a batch size of 128. 

After 200 epochs, both models were not overfitting 

and could have been further trained. The decision for 

not training until the local minima was reached is 

because the project aims to determine the viability of 

a CNN-LSTM in option pricing by comparing it to an 

ANN. However, a comparison could also be made 

with the most accurate ANN and CNN-LSTM 

regardless of if their number of epochs and batch sizes 

are different. To train the models for further accuracy, 

the models could iterate through more epochs or have 

smaller batch sizes at the cost of training time. 

 

D. More/Better Data Processing 

After preprocessing the datasets, additional 

processing is done to ensure a better fit with the 

models. One of these processes is data normalization 

as non-normalized data could have outliers that 

mislead the neural network during optimization. 

Currently, the ANN and CNN-LSTM are normalized 

with Z-score normalization which is calculated with a 

mean of the dataset and standard deviation. As the 



CNN-LSTM accepts time series data as an input, 

normalization with a mean of the entire dataset does 

not address short-term fluctuations. The CNN-LSTM 

could utilize a moving average for normalization 

instead which calculates the mean of each subset. This 

would flatten short-term fluctuations allowing the 

CNN-LSTM to easier detect long-term trends. 

 

 Another step that could be improved for data 

processing is how labels are scrubbed from the input 

data in the CNN-LSTM. The CNN-LSTM is given the 

same parameters as the ANN in the timesteps with an 

added option price added for past timesteps. As the 

input shape for the CNN-LSTM is (10, 7), the label 

would by default be included in the option price of the 

‘current’ timestep. This issue is currently resolved by 

setting the values to -1 after the dataset is normalized 

with the expectation that the CNN-LSTM will 

understand that the field is always an outlier and will 

learn to ignore it. While this may work, the neural 

network could also be misled and optimize itself 

incorrectly. A better solution is to set the values as 

blank allowing the neural networks to predict its value 

with the observed relationships between the data. 

Another better solution would be setting the weight of 

that field to 0 so the model is explicitly instructed to 

ignore the field. 

 

E. Different Models 

The ANN and CNN-LSTM models created in this 

project use the same architecture between American 

and European options. This results in some or all the 

models being less accurate than a model designed to 

fit that singular problem. As the current models are 

designed for European options, the models used to 

predict American option prices should be redesigned. 

The American option models should have similar 

activation functions to the models used for pricing 

American options in [5]. As previously mentioned, the 

activation functions used in order are ELU, ELU, 

ELU, and ReLu. 

 

The ANN model architecture is based off the best 

performing models in [5] while the CNN-LSTM 

model architecture is based off the research from [7]. 

The best-performing ANN models in [5] were proven 

to either perform better than the BSOPM and BOPM 

in some categories. Contrarily, the CNN-LSTM in [7] 

only proved that it performed better than an ANN but 

did not have a comparison to the BSOPM or BOPM. 

This could indicate that the architecture design for the 

CNN-LSTM may not be the most accurate and should 

therefore be tweaked to determine if there are more 

accurate designs. 

 

F. Learning Rate 

Neural networks have a learning rate which 

determines how much is learned during optimization. 

A learning rate too small results in slower convergence 

while a learning rate too big results in divergence. The 

neural network models created in this project use the 

Adam optimizer which has a default learning rate of 

0.001. For more accurate results, the learning rate 

should be tailored to the model and dataset which can 

be achieved with algorithms. Two approaches that are 

recommended for further analysis is learning rate 

decay and the low memory Broyden – Fletcher – 

Goldfarb – Shanno (L-BFGS) algorithm.  

 

Learning rate decay is a method where the model 

starts with a large learning rate which is reduced in 

later training iterations. This results in convergence 

with less oscillation and results in more accurately 

reaching the minima. The models in [5] used a learning 

rate which started at 0.001 and was reduced by 90% 

after 3 epochs of unimproved training loss. 

 

The L-BFGS algorithm is an optimization 

algorithm that approximates the Broyden – Fletcher – 

Goldfarb – Shanno (BFGS) algorithm. This algorithm 

is designed for larger datasets as determining the 

optimal value for a hyperparameter with larger 

datasets are more memory intensive. The L-BFGS 

algorithm determines the local minima through an 

estimation of the inverse Hessian matrix represented 

by a few vectors. While this algorithm is suggested to 

optimize the learning rate, it could also be used to 

determine optimal values for other hyperparameters 

[11]. 

 

VII. FUTURE WORK 

While this project proved the potential of using a 

CNN-LSTM for option pricing by performing more 

accurately than an ANN, more research on the topic of 

option pricing with CNN-LSTMs are needed. The 

most important extension of this report is getting the 

CNN-LSTM to be more accurate than the BSOPM for 

European options and the BOPM for American 



options. Additionally, the CNN-LSTM was only 

compared against an ANN. While the CNN-LSTM is 

predicted be more accurate than other model types for 

option pricing, it should be confirmed with a 

comparison against RNNs, LSTMs, CNN-RNNs, and 

CNNs. The CNN-LSTM could also be used to predict 

the Delta, Gamma, Theta, and Vega for options which 

would allow for trading strategies such as delta 

hedging. Lastly, an ANN should be tested with the 

same time-series data as the CNN-LSTM to ensure the 

CNN-LSTM’s higher accuracy is due to the 

differences in model architecture and not a more 

complex dataset. 

 

VIII. CONCLUSIONS 

The objective of this paper is to build a CNN-

LSTM model to accurately price options and 

determine if it is a viable neural network type by 

comparing its accuracy against an ANN model. In this 

paper, we have shown that a CNN-LSTM model can 

more accurately estimate the price of an option 

compared to an ANN model. 

 

While the BSOPM performs better than both the 

ANN and CNN-LSTM created in this project, the 

results indicate that a CNN-LSTM is a better choice 

for option pricing than an ANN and should be further 

researched to be more accurate. It was discovered that 

while the CNN-LSTM performed better than the ANN 

in every category except one, the ANN was able to 

better distinguish the features between calls and puts 

in the same dataset than the CNN-LSTM model. 
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