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A New Approach for Grasp Quality Calculation using

Continuous Boundary Formulation of Grasp Wrench

Space

Shuwei Qiu∗, Mehrdad R. Kermani

Electrical and Computer Engineering, Western University, London, Ontario, Canada

Abstract

In this paper, we aim to use a continuous formulation to efficiently calculate the well-known wrench-based
grasp metric proposed by Ferrari and Canny which is the minimum distance from the wrench space origin
to the boundary of the grasp wrench space. Considering the L∞ metric and the nonlinear friction cone
model, the challenge of calculating this metric is to determine the boundary of the grasp wrench space.
Instead of relying on convex hull construction, we propose to formulate the boundary of the grasp wrench
space as continuous functions. By doing so, the problem of grasp quality calculation can be efficiently solved
as typical least-square problems and it can be easily implemented by employing off-the-shelf optimization
algorithms. Numerical tests will demonstrate the advantages of the proposed formulation compared to the
conventional convex hull-based methods.

Keywords: Grasp Quality Calculation; Boundary of Grasp Wrench Space; Continuous Formulation; L∞
Metric; Nonlinear Friction Cone Model

1. Introduction

In the field of robotic grasping, grasp planning is a fundamental topic. Given a target object to be
grasped, the purpose of grasp planning is to appropriately plan the contact points and the contact normals
on the object’s surface to balance contact forces and other external forces such as gravity. The topic of grasp
planning contains many problems, for instance, the problem of finding a suitable set of contact points given
the target object and some grasp constraints (i.e., the grasp synthesis problem), the problem of determining
if a given grasp is force/form closure (i.e., the force/form closure determination problem), the problem of
quantifying the goodness of a given grasp (i.e., the grasp quality calculation problem), and so on. The focus
of this paper is on the problem of grasp quality calculation. We consider the hard-finger contact model in
this paper, but the proposed method can be extended to the soft-finger contact model as well.

For a target object, there are usually numerous possibilities to grasp it [1]. To find the desired grasp
among many potentials, it is necessary to evaluate and rank the quality of these grasps. To define the
quality of a given grasp, many metrics from different perspectives have been proposed. For example, there
are metrics related to the grasp matrix (G), such as the minimum singular value of G and the grasp isotropy
index. There are also metrics considering the geometric relationships in the grasp, such as the shape and the
area of the grasp polygon. The robot configurations can be used as a grasp quality measure. The distance to
singular configurations [2] and the volume of the manipulability ellipsoid [3] are examples of such measures.
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By combining different grasp quality measures, one can also quantify the goodness of a grasp in a global
scale [4]. Due to limited space, we refer the readers to [5] for a comprehensive overview of grasp metrics.

Among different grasp metrics, those related to the grasp wrench space (GWS) are undoubtedly among
the most popular ones. The seminal work of GWS-based grasp metrics was proposed by Ferrari and Canny
[6], which is often referred to as “Q-distance”. Q-distance quantifies the goodness of force closure grasps.
Since at least three contact points are required to achieve force closure in spatial problems, Q-distance is
a suitable measure for multi-fingered robotic hands and precision grasping. Q-distance is conceptualized
by following an intuitive approach which is to calculate the ratio between the magnitude of the maximum
wrench this given grasp can resist along with all directions and the magnitude of the applied finger forces
[6]. A wrench (denoted by ~w ∈ R6) is a vector obtained by stacking a force vector ~f ∈ R3 and a torque
vector ~t ∈ R3,

~w =
[
~f>, ~t>

]>
(1)

whose magnitude is defined as

‖~w‖ =

√
‖~f‖2 + λ‖~t‖2 (2)

where λ is a scaling factor. In this work, we use the L2 metric for ‖~w‖ (i.e., λ = 1). λ can also be defined
differently for other purposes, for instance, for unifying force and torque units [7] and for removing the
reference frame dependence [8]. To ensure a stable grasp, the contact force on each contact point must lie
in the Coulomb friction cone (denoted by FC) expressed in the contact frame,

FC =

{
[f1, f2, fn]>|fn ≥ 0,

√
f21 + f22 ≤ µfn

}
(3)

where f1 and f2 are the tangential force components, fn is the normal force component along the contact
normal direction, and µ is the tangential friction coefficient. A contact force applied to the i-th contact
point (denoted by ~fi) can be converted into a wrench by the corresponding grasp matrix (denoted by Gi) as

~wi = Gi ~fi. All possible wrenches that can be applied through the i-th contact point (i.e., , the i-th wrench
set, denoted by Wi) is then formulated as,

Wi =
{
Gi ~fi|~fi ∈ FC

}
(4)

To find the set of wrenches that can be exerted on the object, Ferrari and Canny [6] introduced two criterias.
One limits the maximum magnitude of each normal contact force to 1, i.e., the L∞ metric. Using the L∞
metric, the set of all possible wrenches acting on the object (i.e., the grasp wrench space) is,

WL∞ =

nc⊕
i=1

Wi (5)

where
⊕

is the Minkowski summation and nc is the number of contact points. The other criteria limits the
summation of the magnitudes of all contact normal forces to 1, i.e., the L1 metric. Using the L1 metric, the
grasp wrench space is,

WL1 =

nc⋃
i=1

Wi (6)

where
⋃

is the union operation. The value of Q-distance in a geometrical sense is the distance from the
origin of the 6-D wrench space (i.e., ~06×1) to the boundary of the grasp wrench space. Ferrari and Canny
also proposed to construct the convex hull of the grasp wrench space to calculate the value of Q-distance
as follows. First, the primitive wrench sets are generated by approximating the friction cone as an m-sided
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pyramid. Second, the grasp wrench space (WL∞ or WL1) is approximated by constructing the convex hull.
Third, the minimum distance between the origin and the facets of the convex hull is obtained.

Calculating the value of Q-distance is challenging in practice, especially with the L∞ metric. The reason
is twofold. First, the convex hull construction only works for finite sets. Second, the convex hull construction
and the calculation of the distances from the origin to the convex hull’s facets are computationally expensive
[9]. As a consequence, there are two common practices in the calculation of Q-distance. First, the Coulomb
friction cone is linearized by an m-sided pyramid [10, 11]. Second, the L1 metric is considered rather than
the L∞ metric. However, these two common practices have their own drawbacks. The linear friction cone
model has two major disadvantages [12]. The solution obtained from the linear model may conflict with
the one obtained from the nonlinear model. Also, the computation time will be significantly increased
when increasing the number of the pyramid’s facets in the linear model. As for the L1 metric, it only suits
the robotic hands with under-actuated fingers [13]. If the L1 metric is used for the robotic hands whose
fingers are empowered by independent actuators, the actual capabilities of the grasp would be severely
underestimated which may mislead the further operations and analysis [14].

In this paper, we study how to efficiently calculate the value of Q-distance considering both the L∞
metric and the nonlinear friction cone model. To this end, we formulate the boundary of the grasp wrench
space with continuous functions. By doing so, the value of Q-distance can be solved as a least-square problem
and it can be easily implemented by employing off-the-shelf optimization algorithms.

The contributions of this paper are listed as follows.

• We mathematically derive the exact expression of the boundary of grasp wrench space.

• Based on the derived boundary formulation, we propose a continuous formulation for the calculation
of Q-distance [6] considering the L∞ metric and the nonlinear model of the Coulomb friction cone
with the hard finger contact model.

• We show that it is easy to implement the proposed formulation by employing existing optimization
algorithms.

The rest of this paper is structured as follows. Section 2 reviews previous works related to Q-distance
calculation. Section 3 mathematically derives the continuous boundary formulation of grasp wrench space.
Section 4 presents the numerical results. Finally, Section 5 concludes this work.

2. Related Works

In this section, we briefly review the works related to the calculation of Q-distance [6], which are summa-
rized in Table 1. Following the suggested approach of Ferrari and Canny [6], Miller and Allen [15] provided
examples of calculating Q-distance with the L1 metric by employing the open-sourced Qhull algorithm [16].
They invoked the Qhull algorithm to construct the convex hull of the grasp wrench space and calculated
the distance between all facets of the convex hull to the 6-D origin. The approach was computationally
expensive, so to expedite the computational speed, some improvements were proposed. Borst et al. [17]
proposed to incrementally construct the convex hull of the grasp wrench space. In this approach, the convex
hull was constructed starting from a coarse approximation of the friction cone and the nearest facet of this
convex hull to the origin was attained. To compensate for the approximation error, additional wrenches
with the largest possible distance to the previously obtained facet were incrementally added to the wrench
set spanning the convex hull. The nearest facet to the origin and the quality measure were then updated.
The procedure was repeated until the value of the quality measure reached below a preset threshold. Zhu
and Wang [18] provided an approximation of Q-distance by considering the distance between the origin and
the boundary of grasp wrench space along with finite directions instead of all directions. Based on the Qhull
algorithm, Liu and Carpin [19] proposed a solution to calculate Q-distance while constructing the convex
hull to avoid building the entire convex hull of the grasp wrench space. Dai et al. [20] showed that the value
of Q-distance with the L1 metric can be approximated by solving a semi-definite programming problem.
With the L1 metric, Pokorny and Kragic [21] investigated some theoretical properties of Q-distance and
proposed an algorithm to compute an upper bound of Q-distance which can be used to efficiently reject

3



Table 1: Related Works on Q-Distance Calculation

Methods
Friction Cone

Model
Normal Force

Constraint
Highlights

Miller and Allen [15] Linear L1 metric
Invoke the Qhull algorithm [16] to
calculate Q-distance

Borst et al. [17] Linear L∞ metric
Incrementally construct the convex hull of
the grasp wrench space

Zhu and Wang [18] Linear L∞ metric
Consider the distance between the origin
and the boundary of GWS along with
finite directions

Liu and Carpin [19] Linear L1 and L∞
Intertwine Q-distance calculation with
convex hull construction

Dai et al. [20] Linear L1 metric
Approximate Q-distance by semi-definite
programming

Pokorny and Kragic [21] Linear L1 metric
Investigate theoretical properties of
Q-distance and compute an upper bound

Harada et al. [22] Ellipsoidal L∞ metric
Evaluate the grasp stability under gravity with
soft finger contact model

Krug et al. [14] Linear L1 and L∞
Investigate the influence of the L1 and L∞
metric to a fully actuated robotic hand

Zheng and Qian [8] Nonlinear L1 and L∞
Cast the problem of Q-distance calculation
as an nonlinear optimization problem

Zheng [23] Nonlinear L∞ metric
Iteratively enlarge a polytope inside GWS
and contains the origin by calculating its
support function and support mapping

unstable grasps. Using an ellipsoidal approximation of the friction cone, Harada et al. [22] took the soft
finger contact model into account and evaluated the stability of a given grasp under gravity. Krug et al. [14]
investigated the influence of the L1 and L∞ metric to wrench-based grasp quality indexes. They showed
that the capability of a grasp executed by a fully actuated robotic hand would be severely underestimated
if the L1 metric is applied.

The above-mentioned works [14, 15, 17–22] have a common limitation of simplifying the nonlinear friction
cone with either an m-sided pyramid or an ellipsoid. Many works have been proposed to consider the
nonlinear friction cone model. Zheng and Qian [8] formulated the problem of Q-distance calculation as a
nonlinear optimization problem by means of the concept of support function. To improve the computational
efficiency, Zheng [23] proposed an improvement of Borst’s method [17] to calculate Q-distance with the
nonlinear friction cone model. Starting from a polytope in the grasp wrench space containing the origin,
Zheng’s method [23] iteratively enlarged this polytope by calculating its support function and support
mapping. By doing so, the minimum distance between the origin and the polytope boundary could quickly
converge to the value of Q-distance. Zheng’s method [23] only works when the origin is contained within
the grasp wrench space and is complex to be implemented.

In this work, we calculate the value of Q-distance using a geometric approach. We regard all forces and
torques that can be applied at each contact point as two solid objects in 3D geometric space and the grasp
wrench space (GWS) as a 6D convex object. We then parameterize the boundary of GWS and calculate
Q-distance as typical least-square problems. The details of the proposed method are explained next.

3. Continuous Boundary Formulation of Grasp Wrench Space

3.1. Problem Formulation

The problem we target is to calculate the wrench-based grasp quality metric proposed by Ferrari and
Canny [6] (the Q-distance) with the L∞ metric and the nonlinear friction cone. We propose to solve this
problem based on the geometric interpretation of Q-distance. Q-distance is geometrically interpreted as the
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shortest distance from the six-dimensional origin (~06×1) to the boundary of the wrench space composed of
all possible wrenches that can be generated by the given grasp (i.e., the grasp wrench space). Assuming a
grasp with nc contact points, the corresponding grasp matrices with a hard finger model (denoted by Gi,
i = 1, . . . ,nc), and the friction coefficient (denoted by µ), one can formulate the problem of Q-distance
calculation as,

min
~w∈bd(WL∞ )

1

2
~w> ~w (7)

where WL∞ is the grasp wrench space with the L∞ metric and bd(WL∞) is the boundary of WL∞ . Assuming
µ is invariant over the object’s surface, the challenge of solving Eq. (7) is the determination of bd(WL∞).

Figure 1: 3D convex cone expressed in the local contact frame

We consider the determination of bd(WL∞) as a geometric problem. With the hard finger model, the
friction cone constraint defines a second-order cone expressed in the local contact frame (see Fig. 1) as,

FC =

{
[f1, f2, fn]>

∣∣∣fn ∈ [0,h],
√
f21 + f22 ≤ µfn

}
(8)

where h is the height of this cone acting as the maximum value of the normal force component. All forces
that can be applied at the i-th contact point (i.e., the i-th force set, denoted by Fi) constitute a 3D convex
cone expressed in the inertial frame,

Fi =
{
Ri ~fi

∣∣∣~fi ∈ FC} =
{
Ri [fi1 , fi2 , fin ]

>
∣∣∣fin ∈ [0,h],

√
f2i1 + f2i2 ≤ µfin

}
, i = 1, . . . ,nc (9)

where Ri ∈ R3×3 is the orientation of the i-th contact frame with respect to the inertial frame. All torques
that can be applied at the i-th contact point (i.e., the i-th torque set, denoted by Ti) constitute a convex
object obtained from FC after a linear transformation,

Ti =
{
SiRi~ti

∣∣∣~ti ∈ FC} =
{
SiRi [ti1 , ti2 , tin ]

>
∣∣∣tin ∈ [0,h],

√
t2i1 + t2i2 ≤ µtin

}
, i = 1, . . . ,nc (10)

where Si = Skew(~pi − ~c) is the cross product matrix, in that ~pi represents the i-th contact point and ~c
represents the object’s center of mass. Based on the definition of the wrench vector as per Eq. (1), all
wrenches that can be applied at the i-th contact point (i.e., the i-th wrench set, denoted by Wi) constitute
a 6D convex object which is the Cartesian product of Fi (a 3D convex cone) and Ti (a 3D convex object),

Wi = Fi × Ti =

{[
~f
~t

] ∣∣∣~f ∈ Fi,~t ∈ Ti} , i = 1, . . . ,nc

=

{[
Ri [fi1 , fi2 , fin ]

>

SiRi [ti1 , ti2 , tin ]
>

] ∣∣∣fin , tin ∈ [0,h],
√
f2i1 + f2i2 ≤ µfin ,

√
t2i1 + t2i2 ≤ µtin

}
(11)
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With this geometric interpretation, WL∞ is a 6D convex object obtained as the Minkowski sum of multiple
6D convex objects (Wi) as WL∞ =

⊕nc

i=1Wi. In what follows, the proposed continuous formulation of
bd(WL∞) is derived.

3.2. Boundary Decomposition: bd(WL∞) = bd(WL∞)1 ∪ bd(WL∞)2
To reduce the difficulty of formulating bd(WL∞), we first decompose bd(WL∞) into two components.

Regarding Fi and Ti as independent convex objects and substituting Wi = Fi × Ti in WL∞ =
⊕nc

i=1Wi, we
obtain,

WL∞ =

nc⊕
i=1

Wi =

nc⊕
i=1

(Fi × Ti) =

nc⊕
i=1

Fi ×
nc⊕
i=1

Ti (12)

where we use the fact that the Minkowski sum is distributive over Cartesian product [24, 25]. Since Fi and
Ti are both closed convex objects in 3D geometric space,

⊕nc

i=1 Fi and
⊕nc

i=1 Ti are also 3D closed objects
[26]. An example of the Minkowski sum of two 3D cones is shown in Fig. 2.

Figure 2: An example of the Minkowski sum of two 3D cones [27]

From Eq. (12), bd(WL∞) is obtained as,

bd(WL∞) = bd

(
nc⊕
i=1

Fi ×
nc⊕
i=1

Ti

)
=

[
bd

(
nc⊕
i=1

Fi

)
×

nc⊕
i=1

Ti

]
︸ ︷︷ ︸

bd(WL∞ )1

⋃[
nc⊕
i=1

Fi × bd

(
nc⊕
i=1

Ti

)]
︸ ︷︷ ︸

bd(WL∞ )2

(13)

where we apply the product rule for the boundary of the Cartesian product of closed sets (see Appendix A
for proof). A 3D example of Eq. (13) is shown in Fig. 3. Geometrically, a solid cylinder is the Cartesian
product of a disk and a line segment (see Fig. 3(a)). The boundary of a cylinder can be obtained by applying
the product rule (see Fig. 3(b)).

(a) A solid cylinder: the Cartesian product of a disc and a line segment.

(b) The components of a cylinder’s boundary.

Figure 3: The boundary of a cylinder: a 3D example of Eq. (13).
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As seen in Eq. (13), bd(WL∞) is decomposed into two components, bd(WL∞)1 and bd(WL∞)2. Note
that bd(WL∞)1 and bd(WL∞)2 are not fully disjoint as they both contain the component

[
bd(⊕nc

i=1Fi) ×
bd(⊕nc

i=1Ti)
]
. But decomposing bd(WL∞) as in Eq. (13), we can make use of the second-order cone defi-

nition of the friction cone Eq. (8) to formulate
⊕nc

i=1 Ti and
⊕nc

i=1 Fi as shown in Eq. (22) and Eq. (24),
respectively. Using Eq. (13), Eq. (7) can be re-written as,

min
~w∈bd(WL∞ )

1

2
~w> ~w ⇔ min (d1, d2) (14)

d1 = min
~w1∈bd(WL∞ )1

1

2
~w>1 ~w1

d2 = min
~w2∈bd(WL∞ )2

1

2
~w>2 ~w2

In what follows, we will explain the formulation of bd(WL∞)1 and bd(WL∞)2.

3.3. Formulation of bd(WL∞)1
In this section, bd(WL∞)1 is formulated. Since bd(WL∞)1 = bd (

⊕nc

i=1 Fi)×
⊕nc

i=1 Ti as per Eq. (13), we
need to formulate bd (

⊕nc

i=1 Fi) (i.e., the boundary of the Minkowski sum of force sets) and
⊕nc

i=1 Ti (i.e.,
the Minkowski sum of torque sets).

Geometrically, the boundary of the Minkowski sum of convex objects is obtained by only adding up the
points on each object’s boundary with the same outward normal directions [28, 29]. A 2D example of this
principle is shown in Fig. 4 in that the boundary of two squares’ Minkowski sum is obtained by combining
the sides with the same outward normal directions. Following this principle, bd (

⊕nc

i=1 Fi) is formulated as,

Figure 4: The Minkowski sum of two squares

bd

(
nc⊕
i=1

Fi

)
=

{
nc∑
i=1

~bFi

∣∣∣~bFi
∈ bd (Fi) , ~nbF1

= · · · = ~nbFnc

}
(15)

where bd (Fi) is the boundary of Fi and ~nbFi
is the unit outward normal vector on bd (Fi) (i = 1, . . . ,nc).

Since Fi =
{
Ri ~fi

∣∣∣~fi ∈ FC}, bd (Fi) is obtained as,

bd (Fi) =
{
Ri~bFC

∣∣∣~bFC ∈ bd (FC)
}

(16)

where bd (FC) (the boundary of the local friction cone) is determined by the boundary condition of the
Coulomb friction law (i.e.,

√
f21 + f22 = µfn) and is parameterized as,

bd (FC) =


µfn cos θ
µfn sin θ

fn

 ∣∣∣fn ∈ [0,h], θ ∈ [0, 2π)

 (17)
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To attain ~nbFi (i = 1, . . . ,nc), we first obtain the unit outward normal vector on bd (FC) (denoted by
~v) as [30, Chapter 3],

~v =

(
∂bd (FC)

∂fn
× ∂bd (FC)

∂θ

)
/

∥∥∥∥∂bd (FC)

∂fn
× ∂bd (FC)

∂θ

∥∥∥∥
=

1

µfn
√
µ2 + 1

µfn cos θ
µfn sin θ
−µ2fn

 =
1√
µ2 + 1

cos θ
sin θ
−µ

 (18)

Alternatively, the same expression of ~v can be obtained by,

BF (f1, f2, fn) := f21 + f22 − µ2f2n = 0

~v =
Grad (BF )

‖Grad (BF ) ‖

∣∣∣∣f1=µfn cos θ
f2=µfn sin θ

where BF (f1, f2, fn) is defined as an implicit function of the local friction cone’s boundary whose gradient

is denoted by Grad (BF ). Since bd (Fi) =
{
Ri~bFC |~bFC ∈ bd (FC)

}
(i = 1, . . . ,nc), we characterize ~nbFi

from ~v using different parameters (θbFi
) as,

~nbFi
= Ri~v (θbFi

) =
Ri√
µ2 + 1

cos θbFi

sin θbFi

−µ

 (19)

Furthermore, from the condition that ~nbF1
and ~nbFi

pointing in the same direction, we can obtain,

~nbFi
= ~nbF1

, i = 2, . . . ,nc

⇔ Ri√
µ2 + 1

cos θbFi

sin θbFi

−µ

 =
R1√
µ2 + 1

cos θbF1

sin θbFi

−µ


⇔

cos θbFi

sin θbFi

−µ

 = R>i R1

cos θbF1

sin θbF1

−µ



⇒


cos θbFi

=
(
ir11 −

ir12
ir31

ir32

)
cos θbF1

+

(
ir12(ir33−1)

ir32
− ir13

)
µ

sin θbFi
=
(
ir21 −

ir22
ir31

ir32

)
cos θbF1

+

(
ir22(ir33−1)

ir32
− ir23

)
µ

(20)

where irjk (j, k = 1, 2, 3) is the entry of the matrix R>i R1 at j-th row and k-th column.
In view of Eqs. (15), (16) and (17), we parameterize bd (

⊕nc

i=1 Fi) with θbF1 and fin (i = 1, . . . ,nc) as,

bd

(
nc⊕
i=1

Fi

)
=

{
R1

µf1n cos θbF1

µf1n sin θbF1

f1n

+

nc∑
i=2

Ri

µfin cos θbFi

µfin sin θbFi

fin

 ∣∣∣f1n , fin ∈ [0,h], θbF1
∈ [0, 2π)

}
(21)

where cos θbFi
and sin θbFi

(i = 2, . . . ,nc) are functions about cos θbF1
as per Eq. (20).

To formulate bd(WL∞)1, we also need to formulate
⊕nc

i=1 Ti. Based on Eq. (10),
⊕nc

i=1 Ti is formulated
as,

nc⊕
i=1

Ti =

{
nc∑
i=1

SiRi~ti

∣∣∣~ti ∈ FC} =


nc∑
i=1

SiRi

ti1ti2
tin

 ∣∣∣tin ∈ [0,h],
√
t2i1 + t2i2 ≤ µtin

 (22)
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where ti1 , ti2 , and tin (i = 1, . . . ,nc) are the tangent and normal components expressed in the i-th contact
frame, respectively.

Having formulated bd (
⊕nc

i=1 Fi) and
⊕nc

i=1 Ti, bd(WL∞)1 is formulated as,

bd(WL∞)1 =

{[
~f
~t

] ∣∣∣~f ∈ bd( nc⊕
i=1

Fi

)
, ~t ∈

nc⊕
i=1

Ti

}
(23)

where the expressions of bd (
⊕nc

i=1 Fi) and
⊕nc

i=1 Ti are formulated as per Eqs. (21) and (22), respectively.

3.4. Formulation of bd(WL∞)2
In this section, bd(WL∞)2 is formulated. The procedure of formulating bd(WL∞)2 is similar with that of

bd(WL∞)1. To formulate bd(WL∞)2, we need to formulate
⊕nc

i=1 Fi (i.e., the Minkowski sum of force sets)
and bd (

⊕nc

i=1 Ti) (i.e., the boundary of the Minkowski sum of torque sets) since bd(WL∞)2 =
⊕nc

i=1 Fi ×
bd (
⊕nc

i=1 Ti) as per Eq. (13).
From Eq. (9),

⊕nc

i=1 Fi is formulated as,

nc⊕
i=1

Fi =

{
nc∑
i=1

Ri ~fi

∣∣∣~fi ∈ FC} =


nc∑
i=1

Ri

fi1fi2
fin

 ∣∣∣fin ∈ [0,h],
√
f2i1 + f2i2 ≤ µfin

 (24)

Analogous to bd (
⊕nc

i=1 Fi), bd (
⊕nc

i=1 Ti) is also obtained by only adding up the points on the boundary
of torque sets (denoted by bd (Ti), i = 1, . . . ,nc) with the same outward normal directions (~nbTi

) [28, 29]
(see Fig. 4 for a graphical example),

bd

(
nc⊕
i=1

Ti

)
=

{
nc∑
i=1

~bTi

∣∣∣~bTi ∈ bd (Ti) , ~nbT1 = · · · = ~nbTnc

}
(25)

where

bd (Ti) =
{
SiRi~bFC

∣∣∣~bFC ∈ bd (FC)
}

(26)

And ~nbTi
is obtained from ~v Eq. (18) as,

~nbTi = SiRi~v (θbTi) =
SiRi√
µ2 + 1

cos θbTi

sin θbTi

−µ

 (27)

From ~nbT1 and ~nbTi (i = 2, . . . ,nc) pointing in the same direction, we can obtain,

~nbTi
= ~nbT1

, i = 2, . . . ,nc

⇔ SiRi√
µ2 + 1

cos θbTi

sin θbTi

−µ

 =
S1R1√
µ2 + 1

cos θbT1

sin θbT1

−µ


⇔

cos θbTi

sin θbTi

−µ

 = (SiRi)
−1
S1R1

cos θbT1

sin θbT1

−µ



⇒


cos θbTi

=
(
is11 −

is12
is31

is32

)
cos θbT1 +

(
is12(is33−1)

is32
− is13

)
µ

sin θbTi
=
(
is21 −

is22
is31

is32

)
cos θbT1

+

(
is22(is33−1)

is32
− is23

)
µ

(28)

where isjk (j, k = 1, 2, 3) is the entry of the matrix (SiRi)
−1
S1R1 at j-th row and k-th column.
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In view of Eqs. (17), (25) and (26), bd (
⊕nc

i=1 Ti) is parameterized with θbT1 and tin (i = 1, . . . ,nc) as,

bd

(
nc⊕
i=1

Ti

)
=

{
S1R1

µt1n cos θbT1

µt1n sin θbT1

t1n

+

nc∑
i=2

SiRi

µtin cos θbTi

µtin sin θbTi

tin

 ∣∣∣t1n , tin ∈ [0,h], θbT1
∈ [0, 2π)

}
(29)

where cos θbTi and sin θbTi (i = 2, . . . ,nc) are functions of cos θbT1 as per Eq. (28).
Having formulated

⊕nc

i=1 Fi and bd (
⊕nc

i=1 Ti), bd(WL∞)2 is formulated as,

bd(WL∞)2 =

{[
~f
~t

] ∣∣∣~f ∈ nc⊕
i=1

Fi, ~t ∈ bd

(
nc⊕
i=1

Ti

)}
(30)

where
⊕nc

i=1 Fi is as per Eq. (24) and bd (
⊕nc

i=1 Ti) is as per Eq. (29).

3.5. The Proposed Q-Distance Calculation Method
Having formulated the exact expression of bd(WL∞)1 and bd(WL∞)2, we finalize the formulation of Q-

distance calculation based on Eq. (14). To obtain meaningful values of the Q-distance and keep the generality
of the proposed solution, we set the height of the local friction cone as 1 (i.e., h = 1). The calculation of
Q-distance is formulated as,

Q =
√

2dmin, dmin = min (d1, d2) (31)

d1 = min
~w1∈bd(WL∞ )

1

1

2
~w>1 ~w1 (32)

d2 = min
~w2∈bd(WL∞ )2

1

2
~w>2 ~w2 (33)

Since bd(WL∞)1 = bd (
⊕nc

i=1 Fi)×
⊕nc

i=1 Ti and bd(WL∞)2 =
⊕nc

i=1 Fi× bd (
⊕nc

i=1 Ti) as per Eq. (13), we can
expand Eqs. (32) and (33) as,

d1 = min
~f1∈bd(

⊕nc
i=1 Fi)

~t1∈
⊕nc

i=1 Ti

1

2

[
~f>1 ~t>1

] [~f1
~t1

]
= min

~f1∈bd(
⊕nc

i=1 Fi)

1

2
~f>1
~f1︸ ︷︷ ︸

d1f

+ min
~t1∈

⊕nc
i=1 Ti

1

2
~t>1 ~t1︸ ︷︷ ︸

d1t

(34)

d2 = min
~f2∈

⊕nc
i=1 Fi

~t2∈bd(
⊕nc

i=1 Ti)

1

2

[
~f>2 ~t>2

] [~f2
~t2

]
= min

~f2∈
⊕nc

i=1 Fi

1

2
~f>2
~f2︸ ︷︷ ︸

d2f

+ min
~t2∈bd(

⊕nc
i=1 Ti)

1

2
~t>2 ~t2︸ ︷︷ ︸

d2t

(35)

As observed, the calculation of Q-distance is now formulated as four independent least-square problems
which are detailed as follows.

Based on the formulation of bd (
⊕nc

i=1 Fi) as per Eq. (21), the minimization problem for solving the value
of d1f is formulated as,

d1f = min
1

2
~f>1
~f1 (36)

~f1 = f11R1

µ cos θbF1

µ sin θbF1

1

+

nc∑
i=2

f1iRi

µ cos θbFi

µ sin θbFi

1


cos θbFi

=

(
ir11 −

ir12
ir31

ir32

)
cos θbF1

+

(
ir12

(
ir33 − 1

)
ir32

− ir13

)
µ, for i > 1

sin θbFi =

(
ir21 −

ir22
ir31

ir32

)
cos θbF1 +

(
ir22

(
ir33 − 1

)
ir32

− ir23

)
µ, for i > 1

s.t. θbF1 ∈ [0, 2π), f1i ∈ [0, 1], i = 1, . . . ,nc
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where θbF1 and f1i (i = 1, . . . ,nc) are the decision variables, where Ri ∈ R3×3 is the orientation of the i-th
contact frame with respect to the inertial frame, irjk (j, k = 1, 2, 3) is the entry of the matrix R>i R1 at j-th
row and k-th column, and µ is the tangential friction coefficient.

Based on the formulation of
⊕nc

i=1 Ti as per Eq. (22), the minimization problem for solving the value of
d1t is formulated as,

d1t = min
1

2
~t>1 ~t1 (37)

~t1 =

nc∑
i=1

SiRi

t1i1t1i2
t1in


s.t. t1in ∈ [0, 1],

√
t21i1 + t21i2 ≤ µt1in , i = 1, . . . ,nc

where t1i1 , t1i2 and t1in (i = 1, . . . ,nc) are the decision variables, and Si = Skew(~pi−~c) is the cross product
matrix, in that ~pi represents the i-th contact point and ~c represents the object’s center of mass.

Based on the formulation of
⊕nc

i=1 Fi as per Eq. (24), the minimization problem for solving the value of
d2f is formulated as,

d2f = min
1

2
~f>2
~f2 (38)

~f2 =

nc∑
i=1

Ri

f2i1f2i2
f2in


s.t. f2in ∈ [0, 1],

√
f22i1 + f22i2 ≤ µf2in , i = 1, . . . ,nc

where f2i1 , f2i2 and f2in (i = 1, . . . ,nc) are the decision variables.
Based on the formulation of bd (

⊕nc

i=1 Ti) as per Eq. (29), the minimization problem for solving the value
of d2t is formulated as,

d2t = min
1

2
~t>2 ~t2 (39)

~t2 = t21S1R1

µ cos θbT1

µ sin θbT1

1

+

nc∑
i=2

t2iSiRi

µ cos θbTi

µ sin θbTi

1


cos θbTi

=

(
is11 −

is12
is31

is32

)
cos θbT1

+

(
is12

(
is33 − 1

)
is32

− is13

)
µ, for i > 1

sin θbTi
=

(
is21 −

is22
is31

is32

)
cos θbT1

+

(
is22

(
is33 − 1

)
is32

− is23

)
µ, for i > 1

s.t. θbT1
∈ [0, 2π), t2i ∈ [0, 1], i = 1, . . . ,nc

where θbT1
and t2i (i = 1, . . . ,nc) are the decision variables, and isjk (j, k = 1, 2, 3) is the entry of the matrix

(SiRi)
−1
S1R1 at j-th row and k-th column.

Remark. Note that trivial solutions exist in the above minimization problems (i.e., f1i = 0 for Eq. (36),
t1in = 0 for Eq. (37), f2in = 0 for Eq. (38), and t2i = 0 for Eq. (39) (i = 1, . . . ,nc)). To exclude the trivial
solutions in these minimization problems, one should use a small value (e.g., 1× 10−3), instead of 0, as the
lower bound for the decision variables.

The calculation of d1f in Eq. (36) and d2t in Eq. (39) are the minimization of trigonometric polynomials,
which can be solved by constrained nonlinear optimization algorithms. The calculation of d1t in Eq. (37)
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and d2f in Eq. (38) are second-order cone programming problems, which can be efficiently solved by second-
order cone programming algorithms. In addition, since these four least-square problems are independent, the
computational speed can be further increased by implementing parallel computing techniques if available.
The algorithm for calculating the value of Q-distance using the above formulation is provided in Algorithm 1
in the form of pseudo-code.

Algorithm 1: Q-Distance Calculation with Continuous Boundary Formulation

Input : contact points (~pi, i = 1, . . . ,nc), contact normals (~ni), center of mass (~c), and the friction
coefficient (µ)

Output: the value of Q-distance (Q)
/* Step 1: Compute grasp matrices */

1 [Gi,Ri,Si]←Get Grasp Matrices(~pi,~ni,~c), (i = 1, . . . nc)
/* Step 2: Define the minimization problem for solving d1f */

2 [θbF1 , f1i]←Define Decision Variables, (i = 1, . . . ,nc)
3 C1 = [0 ≤ θbF1 < 2π, 0 ≤ f1i ≤ 1], (i = 1, . . . ,nc)// Define constraints

4 CF1 ←Define Cost Function// see Eq. (36)

/* Step 3: Define the minimization problem for solving d1t */

5 [t1i1 , t1i2 , t1in ]←Define Decision Variables, (i = 1, . . . ,nc)

6 C2 =
[
0 ≤ t1in ≤ 1,

√
t21i1 + t21i2 ≤ µt1in

]
, (i = 1, . . . ,nc)// Define constraints

7 CF2 ←Define Cost Function// see Eq. (37)

/* Step 4: Define the minimization problem for solving d2f */

8 [f2i1 , f2i2 , f2in ]←Define Decision Variables, (i = 1, . . . ,nc

9 C3 =
[
0 ≤ f1in ≤ 1,

√
f2
1i1

+ f2
1i2
≤ µf1in

]
, (i = 1, . . . ,nc)// Define constraints

10 CF3 ←Define Cost Function// see Eq. (38)

/* Step 5: Define the minimization problem for solving d2t */

11 [θbT1 , t2i]←Define Decision Variables, (i = 1, . . . ,nc)
12 C4 = [0 ≤ θbT1 < 2π, 0 ≤ t2i ≤ 1], (i = 1, . . . ,nc)// Define constraints

13 CF4 ←Define Cost Function// see Eq. (39)

/* Step 6: Solve least-square problems */

14 d1f ←Nonlinear Minimization(CF1,C1)
15 d1t ←Second-order Cone Programming(CF2,C2)
16 d2f ←Second-order Cone Programming(CF3,C3)
17 d2t ←Nonlinear Minimization(CF4,C4)

/* Step 7: Calculate the value of Q-distance */

18 d1 = d1f + d1t, d2 = d2f + d2t
19 dmin = min (d1, d2), Q =

√
2dmin

20 Return Q

4. Numerical Results

This section outlines the numerical tests designed to demonstrate the performance of the proposed
solution in comparison with the conventional convex hull construction method implemented with the Qhull
algorithm [16].

4.1. Implementation Details

Before presenting the results of numerical tests, we provide the details of the implemented methods. For
the proposed solution explained in Section 3.5, the least-square problems Eq. (37) and Eq. (38) (i.e., the
calculation of d1t and d2f ) were solved by the “SeDuMi” algorithm [31] implemented with “YALMIP” [32] in
MATLAB. The other two least-square problems Eq. (36) and Eq. (39) (i.e., the calculation of d1f and d2t)
were solved by the MATLAB built-in function “fmincon” implemented with “YALMIP”. Both algorithms
were using their default settings in “YALMIP”. Since YALMIP is not compatible with the Parallel Computing
Toolbox of MATLAB, these least-square problems were solved in sequence rather than in parallel. For the
conventional Qhull-based method, the calculation of Q-distance was performed in three steps. (1) Given unit
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normal forces, the primitive wrench vectors at a contact point were generated by linearizing the friction cone
as an m-sided pyramid. With different values of m, the Qhull-based methods are referred to as “Qhull-m”
hereafter. (2) Considering all combinations among primitive wrenches (i.e., the Minkowski sum of primitive
wrenches), the convex hull of the grasp wrench space was constructed by invoking the Qhull program. (3)
The distance from the origin to the facets of the constructed convex hull was calculated and the minimum
value is regarded as the value of Q-distance.

4.2. Numerical Tests

All numerical tests were conducted using MATLAB r2019b on a laptop computer powered by an i5-5200U
CPU @2.20GHz with 12GB RAM. The friction coefficient is assumed to be µ = 0.3 in all tests. We consider
the case of grasping a banana, a power drill, and a cleanser bottle with three, four, and five contact points,
respectively. 100 force-closure grasps were randomly selected from the point cloud of each object from the
famous YCB dataset [33] (see Fig. 5). The centroid of the point cloud was regarded as the center of mass
in all tests. To calculate the value of Q-distance for these grasps, we implemented the proposed method

(a) (b) (c)

Figure 5: Different grasps on different objects (unit: meter). (a) 3-contact grasps on a banana. (b) 5-contact grasps on a
cleanser bottle. (c) 4-contact grasps on a power drill. Red, blue, green, magenta, and yellow dots are the contact points for
Finger 1, 2, 3, 4, and 5, respectively.

in comparison with Qhull-5 (i.e., the Qhull-based method using a 5-sided pyramid to linearize the friction
cone), Qhull-8, Qhull-9, Qhull-10, Qhull-13, Qhull-15, and Qhull-17.

4.3. Results

The results are listed in Tables 2, 3 and 4, where SD stands for standard deviation. The proposed method
outperformed Qhull-based methods dramatically in terms of computational speed. Efficient grasp quality
evaluation is a critical component in the process of grasp planning, especially for real-time applications
[34–36]. In the process of grasp planning, it is ordinary to synthesize and evaluate numerous grasp configu-
rations using grasp quality measure(s) in an iterative process. A decreased evaluation time of a single grasp
configuration is an important factor that can significantly improve the overall grasp planning efficiency. The
proposed continuous boundary formulation enhances the grasp quality evaluation in two aspects. On the
one hand, the proposed continuous boundary formulation makes it possible to utilize the efficiency of exist-
ing solvers and mathematical programming techniques. On the other hand, since the proposed calculation
method is composed of four independent minimization problems, it enables the use of parallel computing
techniques on individual processing units to further enhance the efficiency of the grasp quality evaluation.
As for the values of Q-distance, the results from Qhull-based methods fluctuate significantly. For example,
among the same potential 3-contact grasps for grasping a banana as shown in Fig. 5(a), the maximum value
of Q-distance calculated by Qhull-9 (7.40× 10−5) is less than the minimum Q-distance value calculated by
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Table 2: Results for 3-contact grasps

Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.18× 10−7 1.16× 10−3 1.1091 0.6660
Qhull-5 4.21× 10−2 8.93× 10−2 6.5833 0.6923
Qhull-8 5.00× 10−7 1.01× 10−2 8.4916 1.4610
Qhull-9 4.85× 10−7 7.40× 10−5 10.9036 1.1889
Qhull-10 9.54× 10−5 2.75× 10−3 15.9925 3.0494
Qhull-13 2.50× 10−2 3.90× 10−2 20.4811 4.0401
Qhull-15 5.35× 10−7 2.72× 10−5 25.1361 5.1627
Qhull-17 1.95× 10−2 3.26× 10−2 22.3091 4.8169

Table 3: Results for 4-contact grasps

Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.41× 10−7 1.26× 10−3 1.2441 0.8372
Qhull-5 2.19× 10−2 1.40× 10−1 10.8608 3.0631
Qhull-8 5.01× 10−7 2.30× 10−2 16.8790 2.3686
Qhull-9 5.33× 10−7 2.82× 10−4 17.8227 3.3504
Qhull-10 7.38× 10−7 1.58× 10−2 28.6167 4.5378
Qhull-13 1.31× 10−2 7.58× 10−2 19.6621 5.2444
Qhull-15 1.31× 10−2 7.58× 10−2 43.3528 13.3126
Qhull-17 1.04× 10−2 5.62× 10−2 24.7275 5.7986

Table 4: Results for 5-contact grasps

Q-distance values Computation time (s)
Min Max Mean SD

Proposed 1.27× 10−7 1.30× 10−3 1.5835 1.1145
Qhull-5 1.16× 10−1 2.09× 10−1 8.5327 2.3327
Qhull-8 5.00× 10−7 1.19× 10−2 20.7646 5.0158
Qhull-9 4.83× 10−7 6.62× 10−4 37.7040 10.8483
Qhull-10 7.22× 10−7 3.50× 10−3 55.4412 20.7376
Qhull-13 4.45× 10−2 8.72× 10−2 26.3182 9.1274
Qhull-15 5.23× 10−7 1.91× 10−4 464.3587 484.6158
Qhull-17 3.66× 10−2 8.12× 10−2 53.8731 24.1987

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 6: The best 3-contact grasp found by different methods. Red, blue, and green dots (arrows) are the contact points
(normals) for Finger 1, 2, and 3, respectively.
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(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10 (e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 7: The best 5-contact grasp found by different methods. Red, blue, green, magenta, and yellow dots (arrows) are the
contact points (normals) for Finger 1, 2, 3, 4, and 5, respectively.

(a) Qhull-5 (b) Qhull-8 (c) Qhull-9 (d) Qhull-10

(e) Qhull-13 (f) Qhull-15 (g) Qhull-17 (h) Proposed

Figure 8: The best 4-contact grasp found by different methods. Red, blue, green, and magenta dots (arrows) are the contact
points (normals) for Finger 1, 2, 3, and 4, respectively.
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Qhull-10 (9.54 × 10−5). We also exhibit the best grasp found by different methods (i.e., the grasps corre-
sponding to the maximum Q-distance value calculated by different methods) in Figs. 6, 7 and 8. As seen,
the best grasps found by different methods are not consistent. Thus, in the absence of ground truth solution
and without the consideration of the hand structure in the Q-distance definition, it remains debatable which
grasp configuration is better than the others. The stability of a planned grasp needs to be assessed when
Q-distance is used for a specific task, due to its task-independent definition. This can be achieved using
some benchmarks [33, 37, 38]. These results show that the number of pyramid’s sides (i.e., m) sways the
result obtained from convex hull-based methods, and different choices of m affect not only the computation
time but also the decision of grasp planning. The problem of selecting m stems from the sampling nature of
convex hull construction. The input point set to the operation of convex hull construction has to be finite.
As a consequence, the boundary of the wrench set at the i-th contact point (i.e., bd (Wi), i = 1, . . . ,nc) can
only be approximated by a limited number of points. Mathematically speaking, bd (Wi) can be decomposed
as,

bd (Wi) = bd (Fi × Ti) = [bd (Fi)× Ti] ∪ [Fi × bd (Ti)]

= {bd (Fi)× [int (Ti) ∪ bd (Ti)]} ∪ {[int (Fi) ∪ bd (Fi)]× bd (Ti)}
= [bd (Fi)× int (Ti)] ∪ [int (Fi)× bd (Ti)] ∪ [bd (Fi)× bd (Ti)] (40)

where int (Fi) and int (Ti) denote the interior of Fi and Ti, respectively. As seen, bd (Wi) is decomposed
into three disjoint components. In convex hull-based methods, it is common to approximate bd (Wi) using
the primitive wrench set (denoted by PWi) which is obtained by mapping the primitive force set (denoted
by PFi) using the grasp matrix (Gi) as,

PWi =
{
Gi ~f

∣∣~f ∈ PFi} =

{[
Ri
SiRi

]
~f
∣∣~f ∈ PFi} (41)

Since PFi is sampled from the friction cone boundary (i.e., PFi ⊂ bd (FC)), we can obtain,{
Ri ~f

∣∣~f ∈ PFi} ⊂ bd (Fi) ,
{
SiRi ~f

∣∣~f ∈ PFi} ⊂ bd (Ti) (42)

As a result, PWi ⊂
[
bd (Fi) × bd (Ti)

]
and PWi only approximates a part of

[
bd (Fi) × bd (Ti)

]
which is

only one component of bd (Wi) as in Eq. (40), in that there is no consideration about the points in the
other two components of bd (Wi) (i.e., [bd (Fi)× int (Ti)] and [int (Fi)× bd (Ti)]). Consequently, one can
only conclude that in convex hull-based methods, the grasp wrench space boundary has been obtained using
the points sampled from one component of bd (Wi). As a comparison, we consider all the portions of bd (Wi)
(i = 1, . . . ,n) in the proposed method by regarding Fi and Ti as solid objects in the 3D geometric space,
and parameterize bd (Wi) and bd (WL∞) following geometric principles. Therefore, the proposed formulation
of bd (WL∞) is more concrete from a geometric perspective.

It is noteworthy to discuss a limitation of the calculation method presented in Section 3.5. In the proposed
Q-distance calculation method, two nonlinear minimization problems are involved (i.e., Eqs. (36) and (39))
which were solved by a generic constrained nonlinear optimization algorithm (i.e., the “fmincon” function
in MATLAB) in the current work. Consequently, it is not guaranteed to find the global minimum of these
two problems (Eqs. (36) and (39)). However, the proposed calculation method can benefit from the future
development of mathematical programming techniques since it does not require any specific algorithms or
special-designed heuristic procedures.

5. Conclusions

In this paper, we formulated the boundary of grasp wrench space with continuous functions considering
the L∞ metric and the nonlinear friction cone model. With this new continuous formulation, the wrench-
based grasp quality (Q-distance) [6] is calculated much more efficiently as typical least-square problems. The
proposed method can be easily implemented by employing off-the-shelf optimization algorithms. In addition,
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by regarding the force sets (Fi, i = 1, . . . ,nc) and the torque sets (Ti) as solid objects in 3D geometric space,
this paper provides an entirely new and more concrete formulation for Q-distance calculation than the convex
hull-based methods from a geometric perspective.

Future works include extending the proposed formulation to the soft finger contact model, implementing
parallel computing techniques to further increase the computational speed, comparing the proposed method
with more Q-distance calculation methods, and applying the proposed method in grasp planning applications
with real robotic systems.

Appendix A. Boundary of Cartesian Product of Two Closed Sets

Given two closed sets (A and B) in two topological spaces (X and Y ), we have A ⊆ X and B ⊆ Y . The
boundary of the Cartesian product of A and B, bd (A×B) is equal to [bd (A)×B] ∪ [A× bd (B)].

Proof. Since A and B are closed sets, their Cartesian product (A×B) is also closed. One can obtain

bd (A×B) = A×B − int (A×B) (A.1)

where int (A×B) denotes the interior points of A × B. Since int (A×B) = intA × intB where intA and
intB are the interior of A and B, respectively, one can obtain

bd (A×B) = A×B − intA× intB (A.2)

= (A×B) ∩ (intA× intB)
c

(A.3)

where we make use of the fact that S1−S2 = S1∩(S2)
c

for two sets S1 and S2, in that (·)c is the complement
of a set. Since A ⊆ X and B ⊆ Y , one can obtain

(intA× intB)
c

= [(intA)
c × Y ] ∪ [X × (intB)

c
] (A.4)

Substitute Eq. (A.4) into Eq. (A.3), one have

bd (A×B) = (A×B) ∩ {[(intA)
c × Y ] ∪ [X × (intB)

c
]} (A.5)

= {(A×B) ∩ [(intA)
c × Y ]} ∪ {(A×B) ∩ [X × (intB)

c
]} (A.6)

Since (S1 ∩ S2)× (S3 ∩ S4) = (S1 × S3) ∩ (S2 × S4) where Si (i = 1, 2, 3, 4) are sets, one can finally obtain

bd (A×B) = {[A ∩ (intA)
c
]× (B ∩ Y )} ∪ {(A ∩X)× [B ∩ (intB)

c
]} (A.7)

= [bd (A)×B] ∪ [A× bd (B)] (A.8)
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