1971

Studies Of Alpha-bromoketones And Alpha-acetoxyketones

Iris Shih-yung Wang

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

https://ir.lib.uwo.ca/digitizedtheses/536

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.
STUDIES OF α-BROMOKETONES AND α-ACETOXYKETONES

by

Iris Shih-yung Wang

Department of Chemistry

Submitted in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario, Canada
July 1971

© Iris Shih-yung Wang 1971
ABSTRACT

The reactions of ring-A α-bromo and α-acetoxy ketosteroids of both 5α- and 5β-series with acetate ion were investigated in detail. By comparing the different amounts of α-acetoxyketones and α,β-unsaturated ketones formed at various temperatures in the two solvent systems studied, the following points have been established:

(a) The mechanism of formation of α-acetoxyketone from α-bromoketone and acetate ion depends on the solvent system. In a polar solvent like acetic acid, a symmetric intermediate explains the results. In a less polar solvent like acetone, SN2 displacement probably operates. (b) In acetic acid medium, α-acetoxyketone usually undergoes interchange of carbonyl and acetoxy groups at temperatures higher than 135°, very probably via a cyclic ortho ester-like intermediate. (c) Around 200°, transfer of the acetoxy group from the α- to the α'-position occurs. A symmetric intermediate with substantial charge separation satisfactorily explains the result. (d) Elimination of acetic acid to give α,β-unsaturated ketones occurs to a significant extent only when the resulting α,β-unsaturated
ketone is secondary-tertiary. As a result, the long-known \(\Delta^1 \)-cholestenone rearrangement is clarified through the successive operations of these four steps.

The reactions of monocyclic \(\alpha \)-acetoxyketones with acetate ion in acetic acid were also investigated, using deuterium exchange and C-13 labelling. Besides confirming the results of steroid compounds, the degenerate rearrangements of monocyclic \(\alpha \)-acetoxyketones were shown to be of preparative value for H- and C- labelling. Medium ring effects were observed in the seven-, eight- and nine-membered ring compounds.
ACKNOWLEDGEMENT

The author thanks Dr. E. W. Warnhoff for advice, guidance and forbearance during the course of this work. Thanks are also due to Drs. J. B. Stothers and M. Gordon for the 13C-n.m.r. spectra and valuable discussions.

Contribution of the other members of the Chemistry Department is also gratefully acknowledged.

The author is indebted to the National Research Council of Canada for funds to carry out this work and for a Scholarship (1967-1970).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACTS</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER I - INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II - REARRANGEMENT OF α-BROMO KETOSTEROIDS AND α-ACETOXY KETOSTEROIDS</td>
<td>22</td>
</tr>
<tr>
<td>(i) Conversion of α-Bromoketones into α-Acetoxyketones</td>
<td>39</td>
</tr>
<tr>
<td>(ii) Interchange of Carbonyl and Acetoxyl Groups of α-Acetoxyketones</td>
<td>63</td>
</tr>
<tr>
<td>(iii) α→α'-Shift of Acetoxy Group of Acetoxyketones</td>
<td>66</td>
</tr>
<tr>
<td>(iv) Formation of Δ^5-Cholest-4-one</td>
<td>77</td>
</tr>
<tr>
<td>(v) Conclusion</td>
<td>81</td>
</tr>
<tr>
<td>CHAPTER III - DEGENERATE REARRANGEMENT OF α-ACETOXYCYCLANONES</td>
<td>87</td>
</tr>
<tr>
<td>CHAPTER IV - PREPARATIONS OF COMPOUNDS</td>
<td>114</td>
</tr>
<tr>
<td>(i) Steroid Compounds</td>
<td>114</td>
</tr>
<tr>
<td>(ii) Acyloxyclanones</td>
<td>122</td>
</tr>
<tr>
<td>(iii) Cyclohexanone-1-13C</td>
<td>124</td>
</tr>
<tr>
<td>Chapter/Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Chapter V - Experimental</td>
<td>132</td>
</tr>
<tr>
<td>Appendix - Dehydrobromination of 3α-Bromocholestan-4-one</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>244</td>
</tr>
<tr>
<td>Vita</td>
<td>253</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Low field proton splitting pattern of α-acetoxy ketosteroids</td>
</tr>
<tr>
<td>2</td>
<td>(\Delta^1)-Cholestenone rearrangement scheme</td>
</tr>
<tr>
<td>3</td>
<td>(^{13})C-n.m.r. spectrum of 2-acetoxycyclohexanone with (^{13})C in natural abundance</td>
</tr>
<tr>
<td>4</td>
<td>(^{13})C-n.m.r. spectrum of 2-acetoxycyclohexanone -1-(^{13})C</td>
</tr>
<tr>
<td>5</td>
<td>(^{13})C-n.m.r. spectrum of (143^\circ) reaction product</td>
</tr>
<tr>
<td>6</td>
<td>(^{13})C-n.m.r. spectrum of (217^\circ) reaction product</td>
</tr>
<tr>
<td>7</td>
<td>I.r. spectra of (^{13})C-labelled compounds</td>
</tr>
<tr>
<td>8</td>
<td>N.m.r. spectrum of compound (121)</td>
</tr>
<tr>
<td>9</td>
<td>Carbonation apparatus</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Reactions of (\alpha)-bromo ketosteroids with potassium acetate in acetic acid</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>Reactions of (\alpha)-bromo ketosteroids with tetramethylammonium acetate in acetone</td>
<td>31</td>
</tr>
<tr>
<td>III</td>
<td>Reactions of (\alpha)-acetoxy ketosteroids with potassium acetate in acetic acid</td>
<td>32</td>
</tr>
<tr>
<td>IV</td>
<td>Reactions of (\alpha)-acetoxy ketosteroids with tetramethylammonium acetate in acetone</td>
<td>33</td>
</tr>
<tr>
<td>V</td>
<td>N.m.r. data of steroid bromoketones, acetoxyketones and enones</td>
<td>34</td>
</tr>
<tr>
<td>VI</td>
<td>U.v. data of steroid enones</td>
<td>37</td>
</tr>
<tr>
<td>VII</td>
<td>Deuterium exchange of acyloxycyanones</td>
<td>92</td>
</tr>
<tr>
<td>VIII</td>
<td>T.l.c. data of steroid acetoxyketones and enones</td>
<td>136</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

In the course of their investigation of the bromination of 3-ketosteroids, Butenandt and coworkers noticed that the position of bromination was determined by the configuration at C-5 of the steroid skeleton. 3-Ketones of the 5β-series (A/B cis) were substituted at the 4-position, whereas the 5α-series (A/B trans) yielded 2-substitution products. 5β-Cholestan-3-one 1 and cholestan-3-one 2* were smoothly monobrominated exclusively at position 4 and 2 to give 4-bromo-5β-cholestan-3-one 3 and 2-bromocholestan-3-one 4**, respectively. Analogous reactions were also observed in 3-keto bile acids, 3-keto pregnanes 4,5 and 3-keto androstanes. 6,7

The 2-bromoketones and the 4-bromoketones behaved differently toward dehydrobrominating agents. 4-Bromo-5β-cholestan-3-one 3 reacted with boiling pyridine to give the

* In this thesis, 5α-cholestane derivatives are referred to as cholestan derivatives without the insertion of "5α-". Whenever the cis 5β-stereochemistry is meant, the "5β-" prefix is used.

** The stereochemistry of bromine in the products was shown by later workers. 2
expected product of dehydrobromination, Δ^4-cholesten-3-one $\mathbf{5}$, m.p. 79-80°, $[\alpha]_D^\circ +88^\circ$, which was a known compound at that time. The yield was rather low (30%), and a part of the bromoketone was converted into a sparingly soluble nitrogen-containing pyridinium salt. Under comparable conditions 2-bromocholestan-3-one $\mathbf{4}$ reacted with pyridine to give a similar salt in high yield, and no dehydrobromination occurred. When more drastic conditions were tried, the products were uncrystallizable resins. When potassium acetate in acetic acid was used as dehydrobrominating agent, it was found that 2-bromocholestan-3-one $\mathbf{4}$ yielded an unsaturated ketone, m.p. 111-112°, $[\alpha]_D^\circ -32^\circ$, $\lambda_{\text{max}}^{\text{CHCl}_3}$ 240 nm. The years from 1934 to 1939 were the early stages of application of ultraviolet spectroscopy to organic chemistry, and the only characteristic known at that time about α,β-unsaturated ketones was that their absorption maxima were much longer than those of saturated or unconjugated ketones. Since the compound formed from 2-bromocholestan-3-one $\mathbf{4}$ and potassium acetate was different from Δ^4-cholesten-3-one $\mathbf{5}$ in physical properties and since its ultraviolet spectrum strongly indicated that it was an α,β-unsaturated ketone, Butenandt assigned the structure of Δ^1-cholesten-3-one $\mathbf{6}$ to this new compound.

Three years later, Ruzicka8 isolated Δ^4-cholesten-3-one $\mathbf{5}$ from the thermal decomposition of the pyridinium salt
1. \(\text{Br}_2 \rightarrow 2 \rightarrow 3 \rightarrow 5 \)

2. \(\text{Br}_2 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 7 \)

3. Reaction with pyridine, 30% yield.

4. Reaction conditions: KOAc-HOAc, 200°.
formed from 2-bromocholestane-3-one 4 and pyridine. With the hope of effecting direct dehydrobromination, Butenandt9 investigated the reaction of 2-bromocholestane-3-one 4 with the sterically demanding base, \(\gamma\)-collidine. The reaction proceeded smoothly at reflux temperature and gave an unsaturated ketone, m.p. 95\(^\circ\), \([\alpha]_D^0 +64_0^0, \lambda_{\text{max}}^\text{EtOH} 230 \text{ nm (e10,800)},\) in good yield. To his surprise, the compound was neither identical with \(\Delta^4\)-cholesten-3-one 5 nor with the "\(\Delta^1\)-cholesten-
3-one" obtained from 2-bromocholestane-3-one 4 and potassium acetate in acetic acid, and therefore must be another \(\alpha,\beta\)-unsaturated ketone. Because this compound yielded cholestan-3-one 2 on catalytic hydrogenation, Butenandt concluded that the \(\gamma\)-collidine-dehydrobrominated product was the true \(\Delta^1\)-cholestan-3-one 6 and renamed the product from the potassium acetate-acetic acid reaction \textit{hetero-\(\Delta^1\)-cholestenone} (\(\textit{h-\Delta^1\)-cholestenone}).

By this time there were many more ultraviolet spectra of unsaturated ketosteroids available, and it was found that both the absorption maxima and the intensity of absorption at these maxima could be correlated with specific structural features.10,11 Cyclohexenones whose conjugated double bond was di-secondary absorbed at \textit{ca.} 230 nm. Substitution of an alkyl group or ring residue for hydrogen on the double
bonds caused a bathochromic shift to ca. 240 nm. Moreover, for compounds with a transoid relationship of carbonyl group and carbon-carbon double bond, the extinction coefficients were around 9,000-12,000. For compounds with a cisoid relationship of carbonyl group and carbon-carbon double bond, the extinction coefficients were much lower (5,000-9,000).

Butenandt identified \(\Delta^1 \)-cholestenone as \(\Delta^5 \)-cholesten-4-one by the following observations: Clemmensen or Wolff-Kishner reduction of \(\Delta^1 \)-cholestenone and subsequent catalytic hydrogenation yielded cholestane. Therefore, the carbon skeleton is unchanged. Catalytic hydrogenation of \(\Delta^1 \)-cholestenone over palladium-calcium carbonate in alcoholic solution led to a mixture of alcohols which on Oppenauer oxidation gave cholestan-4-one. Hydrogenation over Raney-nickel in ethanol in the presence of ethyl orthoformate to protect the carbonyl group as the ketal and subsequent acid hydrolysis also gave cholestan-4-one. The latter compound had been prepared some years earlier from \(\Delta^4 \)-cholestene by nitration and subsequent treatment with zinc dust in acetic acid. Thus the carbonyl group in \(\Delta^1 \)-cholestenone must be at the 4-position. Since the ultraviolet data demand an \(\alpha,\beta \)-unsaturated ketone,
Δ^1-cholestenone can only be Δ^2-cholesten-4-one 11 or Δ^5-cholesten-4-one 7. The latter structure with its secondary-tertiary double bond and the cisoid configuration of carbonyl and carbon-carbon double bond clearly fits the observed absorption maximum (240 nm) and extinction coefficient (7,000) much better than the alternative structure 11 with the double bond at the 2,3-position which would demand a shorter absorption maximum (<230 nm) and higher extinction coefficient (9,000-10,000). The position of the double bond inferred from the ultraviolet data was also supported by chemical evidence. Hydroxylation of the
double bond either by hydrogen peroxide catalyzed by osmium tetroxide or by potassium permanganate gave a diol containing only one acetylatable hydroxyl group, presumably a secondary-tertiary diol. The alternative structure 11 would give rise to a di-secondary diol which should yield a diacetate on acetylation.

Butenandt postulated the following scheme for this unusual rearrangement.

\[
\begin{align*}
\text{Br} & \xrightarrow{(i)} \text{O} & \xrightarrow{(ii)} \text{Br} & \xrightarrow{(iii)} \text{OH} & \xrightarrow{(iv)} \\
4 & & 12 & & 13 & & 14 \\
& & & & & & \\
\text{O} & \xrightarrow{(v)} & \text{O} & & \\
15 & & 7 & & & & \\
\end{align*}
\]

The first step is the transfer of bromine from the 2-position to the 4-position to give 4-bromocholestan-3-one 12. Although the same migration had been suggested by Richard 14 to explain the Favorskii product of some \(\alpha\)-haloketones, no \(\alpha'\)-bromoketones had ever been isolated from \(\alpha\)-bromoketones on treatment with either potassium acetate-acetic acid or methoxide-methanol. The second step
is conversion of bromoketone 12 to hydroxyketone 13, an unlikely reaction in a system without water or hydroxide ion. The third step is a simple acyloin rearrangement of 13 to 14. The fourth step is 1,3-elimination of water to give the cyclopropanone 15 which is also a type of intermediate suggested for Favorstki rearrangement of \(\alpha \)-haloketones,\(^{15}\) but without any supporting evidence. The final step is the rearrangement of the cyclopropanone 15 to the observed product 7. Butenandt pointed out the apparent similarity of the final step in his reaction scheme with the formation of 7-cholesteryl acetate 17 from the reaction of cholesteryl tosylate 16 with potassium acetate in acetic anhydride,\(^{16}\) conditions similar to those of his reaction.

![Chemical Structure](image)

Almost ten years passed without any further work on this reaction before Fieser and Romero\(^{17}\) reinvestigated the reaction at reflux temperature. An acetoxycholestanone, m.p. 147-149\(^\circ\), \([\alpha]_D^0 +26^\circ\), was isolated in a yield (40\%) about twice that reported for \(\Delta^5 \)-cholesten-4-one 7 by
Butenandt. Fieser and Romero showed the substance to be a complex composed of 2α-acetoxycholestan-3-one \(\text{18} \) and 4α-acetoxycholestan-3-one \(\text{19} \). The complex could not be resolved into its components by either chromatography or recrystallization. Condensation with ethanedithiol and saponification afforded a mixture of ethylenethioketal alcohols that were separable by chromatography. The two substances were characterized by the cholestanols that they afforded on desulfurization. One was identical with cholestan-2α-ol, the other identical with cholestan-4α-ol.

\[
\begin{align*}
\text{Br} & \quad \text{AcO} \\
\text{4} & \quad \text{KoAc} \quad \text{HOAc} \\
\text{18} & \quad \text{19} \\
\text{HSCH}_2\text{CH}_2\text{SH} & \quad \text{hydrolysis}
\end{align*}
\]

From the relative yields of acetoxycholestanones formed at reflux and \(\Delta^5 \)-cholesten-4-one \(\text{7} \) formed at 200°, Fieser and Romero suggested that both 2α- and 4α-acetoxycholestan-3-one \(\text{18} \) and \(\text{19} \) were the precursors of \(\Delta^5 \)-cholesten-4-one \(\text{7} \).
They formulated the rearrangement schemes as follows:

\[
\begin{align*}
\text{OAc} & \xrightarrow{\text{AcO}} \text{OAc} & \xrightarrow{\text{AcO}} \text{OH} & \xrightarrow{} \text{21} \\
\text{19} & & & \text{7}
\end{align*}
\]

Fieser's scheme differs from Butenandt's in two main points. Firstly, based on experimental evidence, ketol acetates 19 and 21 instead of free ketols 13 and 14 were suggested as intermediates. The isomerization of 4α-acetoxycholestan-3-one 19 to 3α-acetoxycholestan-4-one 21, as Fieser pointed out, has analogy in the isomerization of \(\Delta^5 \)-cholestene-4α-ol-3-one acetate 22 to \(\Delta^5 \)-cholestene-3β-ol-4-one acetate 23 by acid-washed alumina. Secondly, the formation of \(\Delta^5 \)-cholesten-4-one 7 was assumed to be the result of 1,4-allylic elimination of acetic acid from the enol of 21 to give the enol of the final product without involving any cyclopropanone-type intermediate such as 15.

The suggestion of ketol acetates instead of free ketols as intermediates to explain the introduction of the carbonyl
group at the 4-position is very reasonable. Ketol formation from either ketol acetates or bromoketones in the potassium acetate-acetic acid medium would not be expected to be a facile process since the only nucleophile available is acetate ion. However, a cyclopropanone-type intermediate such as 15 is not to be dismissed a priori, since present knowledge of the chemistry of cyclopropanones reveals that they do give ketol acetates with acetic acid. 19

Although Fieser and Romero pointed out that both 2α-acetoxysterol-3-one 18 and 4α-acetoxysterol-3-one 19 might be the precursors of the final product 7, they did not specify how 18 might be transformed into 7.

As to the formation of 4α-acetoxysterol-3-one 19, Fieser and Romero assumed an α-α'-transfer of bromine to give 4α-bromocholesterol-3-one 12, the first step in Butenandt's scheme, and subsequent displacement at C-4 by acetate ion. However, Elie20 suggested that the formation of 19 may be the result of an S N 2' attack of acetate ion on
the enol of 2α-bromocholestan-3-one 4 as indicated below:

Fieser and Romero did no further work on the reaction and the problem lay dormant except for Djerassi's work which showed that the rearrangement is apparently a general one for systems of this type by subjecting 2-bromo-trans-9-methyl-3-decalone 24 to Butenandt's conditions and isolating 9-methyl-$\Delta^{10(5)}$-4-octalone 25.

No further serious study was made of this reaction until Williamson and Johnson, during their work on the application of nuclear magnetic resonance (n.m.r.) spectroscopy to stereochemical problems, synthesized ring-A α-acetoxy ketones in the cholestane series by unambiguous routes. Up to this time, most of the
ring-A α-acetoxy ketones reported in the literature had been prepared by displacement reactions on 2α-bromocholestan-3-one 4 or by acetylation of the acyloin condensation product of 2,3-secocholestan-2,3-dioic acid dimethyl ester 26 (R = CH₃). 8,17,23,24 The first reaction was always subject to abnormal displacement to give the 4-substituted compound and the second reaction was subject to the contamination by 3,4-secoacidic 27; therefore the α-acetoxy ketones obtained were usually mixtures of isomers and structural assignments

![Structures 26 and 27](image)

were in a rather confused state. Williamson and Johnson prepared the acetoxy ketone via diaxial hydroxy acetates obtained by acetolysis of the appropriate epoxides. Acetolysis of 2α,3α-oxidocholestan 28 gave 3α-hydroxy-2β-acetoxycholestan 29, which on Jones oxidation yielded the axial ketone 2β-acetoxycholestan-3-one 30. The acetoxy group in 30 was epimerized by acid to give the equatorial epimemer 2α-acetoxycholestan-3-one 18. 4α-Acetoxycholestan-3-one 19 and 3β-acetoxycholestan-2-one 39 were prepared in an analogous way from 3α,4α-oxidocholestan 32 and
2β,3β-oxidocholestane 36, respectively. Since the structures of the starting epoxides were well established, the structural assignments for the products 18, 19, 39 were unequivocal.

On mixing equal amounts of 2α-acetoxycholestan-3-one 18 and 4α-acetoxycholestan-3-one 19 and recrystallization from ethanol, Williamson and Johnson obtained in quantitative yield a complex, m.p. 149.0°-149.3°, [α]_D +27°, which was less soluble and higher melting than either of its components.
That the complex was formed from equal parts of its components followed from its synthesis, the average optical rotations for the components \(4\alpha = -4^\circ, 2\alpha = +52^\circ, \text{av.} = +24^\circ\), and integration of the n.m.r. spectrum. Furthermore, it was shown to be identical with the complex, m.p. 147-149°, \([\alpha]_D +26^\circ\), isolated by Fieser and Romero\(^{17}\) on treating 2\(\alpha\)-bromocholestan-3-one 4 with potassium acetate in refluxing acetic acid.

Williamson and Johnson proposed that 4\(\alpha\)-acetoxycholestan-3-one 19 might be formed by \(S_N^2\)' attack on the enolic form of 2\(\alpha\)-bromocholestan-3-one 4, as Elieș had suggested several years before. They also mentioned that 2\(\alpha\)-acetoxycholestan-3-one 18 did not rearrange into 4\(\alpha\)-acetoxycholestan-3-one 19 when treated with potassium acetate, but no experimental details were given.

With the authentic ring-A \(\alpha\)-acetoxy ketones in hand, Williamson and Johnson proceeded further to investigate the related displacement of 2\(\alpha\)-bromocholestan-3-one 4 with tetramethylammonium acetate in refluxing acetone. Crystalline 3\(\beta\)-acetoxycholestan-2-one 39 was isolated in 12% yield. The infrared (i.r.) spectra of the crude reaction mixture and the final product were very similar except for a band at 8.8 \(\mu\) which appeared in the former and might be
attributed to 2α-acetoxycholestan-3-one 18, the expected product of normal displacement. A control experiment showed that 2α-acetoxycholestan-3-one 18 rearranged easily into 3β-acetoxycholestan-2-one 39 under the reaction conditions. The latter reaction is closely related to one of the steps (19+21) in Fieser's scheme for h-Δ¹-cholestenone formation.

\[
\begin{array}{ccc}
\text{Br} & \rightarrow & \text{AcO} \\
4 & \rightarrow & 18 \\
\end{array}
\]

In contrast to 2α-bromocholestan-3-one 4, 4α-bromocholestan-3-one 12 on treatment with tetramethylammonium acetate in acetone gave a 20% yield of Δ⁴-cholesten-3-one 5 and a 4% yield of the 1:1 complex of 2α-acetoxycholestan-3-one 18 and 4α-acetoxycholestan-3-one 19. A control experiment with 4α-acetoxycholestan-3-one 19 gave recovery of the starting material.²⁵ Thus abnormal displacement on the 4α-bromo-3-ketone 12 to give 2α-acetoxy-3-ketone 18 also occurs to some extent with tetramethylammonium acetate in acetone, if the 4α-bromo-3-ketone 12 used in the reaction was not contaminated with the 2α-bromo-3-ketone 4.

A related result was also reported in the decalone
system. In the reaction of 9-chloro-trans-1-decalone 40 with potassium acetate in acetic acid, the abnormal displacement product, 2-acetoxy-1-decalone 41, was obtained in 47% yield along with some \(\Delta^9 \)-octalone-1 43. However, treatment with tetramethylammonium acetate in acetone gave only \(\Delta^9 \)-octalone-1 43 and 9-acetoxy-1-decalone 42, the normal displacement product.

![Chemical structures](image)

Williamson and Johnson's work dealt only with the postulated earlier stages of the \(\text{\text{H-}\Delta^1} \)-cholestenone rearrangement, i.e., the bromoketone to acetoxyketone stage and the stage of interchange of carbonyl and acetoxy groups of acetoxyketones. Bordwell's work on 4-substituted 2,6-dibromocyclohexanones 44 and 4-substituted 2-acetoxy-6-bromocyclohexanone 45 shed more light on the reaction of bromoketones with potassium acetate in acetic acid. Both 44 and 45 gave 5-substituted 2-acetoxy-cyclohex-2-enone 46, as the major product—an unsaturated ketone with the carbonyl group shifted to an adjacent position. 4-Substituted
2-acetoxy-cyclohexan-2-one 47 and the dione 48 were formed in minor amounts. The formation of 46 from 45 or 44 is very similar to the \(\Delta^1 \)-cholestenone rearrangement, since the latter involves the same migration of carbonyl group to an adjacent position and the formation of an \(\alpha,\beta \)-unsaturated ketone as the final product, and since the two reactions were carried out under comparable conditions. Bordwell provided evidence to support the assumption that 45 was an intermediate in the reaction involving 44. The transformation of 45 into the final product 46 involved the
1,3-elimination of hydrogen bromide accompanied by acyl migration. Evidence was also presented to show that acyl migration does not precede the loss of bromide ion. The two mechanistic pathways suggested by Bordwell differ only in the order of bond breaking and bond making.

Bordwell also reinvestigated Inhoffen's work on 2α,4α-dibromocholestan-3-one 49 and proved by nuclear magnetic resonance spectroscopy that the products were 50 and 51, in agreement with his results in the cyclohexanone case.

Recent work by Julian 29 on the reaction of 2β,6β-dibromocholestan-4-en-3-one 52 with potassium acetate in acetone is an extension of Bordwell's work on 49. The product, 3-acetoxycholesta-2,5-dien-4-one 53 can be easily explained by the intermediacy of 2-bromo-4-acetoxycholestan-5-en-3-one 54, formed by initial S_N^1 displacement of bromine at 6-position. An 0^{18}-labelling result agreed with the mechanism proposed.
The foregoing introduction summarizes the state of knowledge of this unusual reaction when the present investigation of its detailed mechanism was started.

At the outset, we were faced with the following questions:

(i) Were both 2α- and 4α-acetoxycholestan-3-one 18 and 19 really precursors of Δ⁵-cholesten-4-one 7? If so, did the 2α-isomer 18 isomerize to the 4α-isomer 19 first on its way to the final product?

(ii) How was the mixture of 2α- and 4α-acetoxycholestan-3-one 18 and 19 formed from 2α-bromocholestan-3-one 4 and potassium acetate in refluxing acetic acid? Is this a general reaction of bromoketones?

(iii) In view of Williamson and Johnson's differing results from reactions in acetone and in acetic acid, what was the effect of the medium on the course of reaction of bromoketones?
(iv) Was it possible to isolate intermediates other than 2α- and 4α-acetoxycholestan-3-one 18 and 19?
CHAPTER II
REARRANGEMENT OF α-BROMO KETOSTEROIDS AND
α-ACETOXY KETOSTEROIDS

From the discussion in Chapter I, it is seen that although the so-called "h-Δ¹-cholesteneone rearrangement" has been recognized as an unusual rearrangement for a long time, 12,17,21,22,27 not much attention has been paid to it since Butenandt's elucidation of the product as Δ⁵-cholesten-4-one 2 and Fieser and Romero's isolation of acetolysis products at lower temperature. The lack of any detailed mechanistic study might be due to two causes, the poor yields of Δ⁵-cholesten-4-one 2 reported by Butenandt 12 and by Djerassi 21 (20-27%), and the very confused state of the structural assignment for ring-A acetoxyketones, the most probable intermediates of this reaction.

When we started our work in 1966, the structural assignment of acetoxyketones had already been clarified by Williamson and Johnson's unambiguous synthesis. 22 In addition, n.m.r. spectroscopy had been demonstrated to be a very powerful tool for the stereochemical study of
steroid acetoxyketones. A clue to the cause of poor yield was provided by the observation that eremophilone 56 and 9-methyl-Δ\(^{10(5)}\)-4-octalone 25, both of which possess the same chromophoric system as Δ\(^{5}\)-cholesten-4-one 7, were sensitive to air oxidation. Therefore, it seemed worthwhile to reinvestigate the \(\Delta^1\)-cholestenone rearrangement in the absence of air. When 2α-bromocholestan-3-one 4 was treated at 220-230° with potassium acetate and acetic acid in a sealed tube under a nitrogen atmosphere, Δ\(^{5}\)-cholesten-4-one 7 was formed in 80% yield based on thin layer chromatography (t.l.c.) and u.v. data, and crystalline material was isolated in 50% yield. A parallel reaction without the exclusion of air gave a more complex product as shown by t.l.c., and crystalline Δ\(^{5}\)-cholesten-4-one 7 was obtained in only 20% yield. In addition, it was found that even in the absence of oxygen, a minor amount (ca. 15%) of
Δ^4-cholesten-3-one 5 and a trace of Δ^1-cholesten-3-one 6 were formed.

In the logical next step to follow Fieser's work the 1:1 complex of 2α-acetoxycholestan-3-one 18 and 4α-acetoxycholestan-3-one 19, free from any conjugated ketone, as shown by n.m.r., was treated with potassium acetate and acetic acid at 220-230°C. The crude product contained at least 70% of Δ^5-cholesten-4-one 7 as estimated from u.v. and t.l.c. data. This result proved that Fieser's speculation, that both 2α-acetony-3-ketone 18 and 4α-acetony-3-ketone 19 could serve as intermediate in the $\text{h-}\Delta^1$-cholestenone rearrangement, was correct.

Since preliminary tests revealed that the $\text{h-}\Delta^1$-cholestenone rearrangement could be made quite clean if run under a nitrogen atmosphere and that both 2α- and 4α-acetony-3-ketone 18 and 19 were indeed precursors of Δ^5-cholesten-4-one 7, a detailed study of the mechanism of this novel rearrangement looked promising.

The preparation of pure 2α-acetonycholestan-3-one 18 and its 4α-isomer 19 for investigation of their interconversions and transformations to Δ^5-cholesten-4-one 7 would be an easy task in view of Williamson and Johnson's synthetic work. According to Fieser's scheme for the
\(\Delta^1 \)-cholestenone rearrangement, the next reaction to investigate would be the interchange of acetoxy and carbonyl groups in 4\(\alpha \)-acetoxycholestan-3-one 21 to 3\(\alpha \)- or 3\(\beta \)-acetoxycholestan-4-one 21 or 57, whichever is the more stable isomer. Although Fieser proposed direct formation of \(\Delta^5 \)-cholesten-4-one 7 from 21, other possibilities such as the involvement of 5\(\alpha \)-acetoxycholestan-4-one 58 were also not unlikely and worth investigating. Detailed

\[
\begin{align*}
\text{AcO}^+ & \quad \text{AcO}^- \\
& \quad \text{21} \\
& \quad \text{57} \\
& \quad \text{58}
\end{align*}
\]

analysis of the reaction products of 2\(\alpha \)-bromcholestan-3-one 4 and 4\(\alpha \)-bromcholestan-3-one 12 with acetate ion in acetone as well as in acetic acid would give some insight into the structural influence and the solvent effect on the course of normal and abnormal displacements.

After our work in the 5\(\alpha \)-cholestane series (A/B trans) had been started, Satoh 32 published his result in the closely related 5\(\beta \)-cholestane series (A/B cis). When 4\(\beta \)-bromo-5\(\beta \)-cholestan-3-one 3 was treated with potassium
acetate in refluxing acetic acid, the abnormal displacement product 2β-acetoxy-5β-cholestan-3-one 59 was isolated in good yield (68%).

However, Satoh's claim of the absence of the normal displacement product, 4β-acetoxy-5β-cholestan-3-one 60 was based only on the t.l.c. data, which, as shown by our later work, could not separate the 2β- and the 4β-isomers 59 and 60, at least in the two solvent systems used by us. No n.m.r. data of the crude product were given.
Satoh's result prompted the extension of our work into the 5β-cholestane series, since 2β- and 4β-acetoxy-5β-cholestan-3-one \(\text{59} \) and \(\text{60} \), the analogues of 2α- and 4α-acetoxycholestan-3-one \(\text{18} \) and \(\text{19} \) in the 5β-series, would be expected to rearrange into \(\Delta^5 \)-cholestan-4-one \(\text{7} \) under suitable conditions. Furthermore, comparisons of the acetolysis of the bromoketones in both series would shed light on the conformational influence in these reactions.

The results of the reactions of α-bromo ketosteroids and α-acetoxy ketosteroids with potassium acetate-acetic acid or with tetramethylammonium acetate-acetone are listed in Tables I-IV. (p. 30-33) To facilitate comparison, the reactions are grouped according to the type of reagents used. Also, discussion of the mechanistic significance of these results will not be closely parallel to the order in which the work was done.

Reactions were usually run until there was no bromoketone left. Since unsaturated ketones and acetoxyketones were the only products formed, the yields of various components were determined by spectroscopic analysis of the crude reaction mixture. In cases where only one unsaturated ketone was formed in significant amounts, the yield was estimated from the u.v. extinction coefficient of the crude product and should be accurate to ca. \(\pm 2\% \) for
yields lower than 20%, and accurate to ±4% for yields higher than 50%. When more than one unsaturated ketone was formed, the total amount was estimated from u.v. data and the relative ratio estimated from the integration of vinylic protons in the n.m.r. spectrum. The yields of individual unsaturated ketones calculated in this way are estimated to be accurate to ca. ±5% for values greater than 30% and accurate to ca. ±2% for values smaller than 10%. The remainder of the crude product was taken as the yield of acetoxyketones. The relative amounts of isomeric ketones were roughly estimated by the height of the C-18 and C-19 methyls and the splitting pattern of the low field α-protons in the n.m.r. spectrum. The intensity of spots on t.l.c. plates was used as a check. Yields determined in this way are estimated to be subject to an error of ±5-10%. In one case, the specific rotation was used for estimating the yields of acetoxyketones, and the results are estimated to be accurate to ca. ±2%. If a compound was not detectable on t.l.c., its yield is reported as zero. If a compound failed to show up on n.m.r., but its absence was inconclusive from t.l.c., it is designated by "?" in the Tables. The purpose of reporting the composition of the crude products in percentage yields is merely to facilitate the comparison of the various reactions. It is
to be noted that the accuracy of the percentage yields does not affect the later discussion of the reaction of bromo-ketones and acetoxyketones.

In most cases, the crude product was separated by thin layer chromatography and the identity of the major components was checked by melting point and spectroscopic data of the purified components. Tables V and VI list the n.m.r. and u.v. data of the pure steroid bromoketones, acetoxyketones and conjugated ketones. Fig. 1 shows the low-field \(\alpha \)-proton splitting patterns of the acetoxyketones. The t.l.c. data of steroid compounds are reported in the experimental section (Chapter V), Table VIII, p.136.

The remainder of this chapter will be divided into five sections. Section (i) deals with the conversion of bromoketones into acetoxyketones in acetate-acetic acid or in acetate-acetone medium. Section (ii) deals with the interchange of carbonyl and acetoxy groups of \(\alpha \)-acetoxyketones. Section (iii) deals with the \(\alpha \rightarrow \alpha' \) shift of acetoxy group of \(\alpha \)-acetoxyketones. Section (iv) concerns the elimination of acetic acid to give the final product, \(\Delta^5 \)-cholesten-4-one \(\mathcal{Z} \). In each section, possible mechanisms will be outlined first. Experimental results will then be discussed. Section (v) is a general conclusion for the mechanism of \(\mathcal{H}-\Delta^1 \)-cholestenone rearrangement.
<table>
<thead>
<tr>
<th>reaction</th>
<th>bromo-kepone</th>
<th>temperature</th>
<th>time (hr.)</th>
<th>% yield of products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>220-230°</td>
<td>5</td>
<td>o^a o^a o^a 80^b 15 ± 2^b 5^c</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>97-103°</td>
<td>8</td>
<td>44 ± 2^d 42 ± 2^d 5 ± 2^h trace(?)^o 6 ± 2^f trace(?)^e</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>133-135°</td>
<td>6</td>
<td>30 ± 5^b 40 ± 5^b 20 ± 5^b trace(?)^o 7 ± 2^f trace(?)^e</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>200-210°</td>
<td>16</td>
<td>30 ± 5^b 50 ± 5^f 10 ± 2^f ?^g</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>133-135°</td>
<td>3</td>
<td>40 ± 5^b 40 ± 5^b 10 ± 3^b trace(?)^e 10 ± 5^b trace(?)^e</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>133-135°</td>
<td>3</td>
<td>no reaction</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>200-210°</td>
<td>14</td>
<td>?^g ?^g 45 ± 5^b 30 ± 5^f 5 ± 2^f ?^g</td>
</tr>
</tbody>
</table>

unsaturated ketones

| 8 | | 133-135° | 3.5 | 25 ± 5^b 75 ± 5^b trace^e |
| 9 | | 133-135° | 3.5 | 85 ± 5^b ?^g 15 ± 2^f ?^g |

| 10 | | 133-135° | 3.5 | 90 ± 5^b ?^g trace(?)^e 10 ± 5^b trace(?)^e |
| 11 | | 133-135° | 3.5 | 90 ± 5^b ?^g trace(?)^e 10 ± 5^b trace(?)^e |

^a Not visible in n.m.r. spectrum or t.l.c. ^b Estimated from n.m.r. and t.l.c. data ^c Estimated from the n.m.r. spectra of the mother liquor ^d Estimated from n.m.r., [α]D, and t.l.c. data

^e Not visible in the n.m.r. spectrum, but the presence of one of the enones was indicated by t.l.c. data ^f Estimated from n.m.r., t.l.c., and u.v. data ^g Not visible from the n.m.r. spectrum, but its absence is inconclusive from t.l.c. data
TABLE II

REACTIONS OF α-BROMO KETOSTEROIDS WITH TETRAMETHYLAMMONIUM ACETATE IN ACETONE

<table>
<thead>
<tr>
<th>reaction</th>
<th>bromo-ketone</th>
<th>temperature</th>
<th>time (hr.)</th>
<th>% yield of products</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td>r.t.</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reflux</td>
<td>2</td>
<td>80 ± 5^b, 10 ± 5^b, 0^a, 8 ± 2^c</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>reflux</td>
<td>170</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reflux</td>
<td>2.5</td>
<td>60 ± 5^b, 30 ± 5^b, 0^a, 10 ± 5^b</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>r.t.</td>
<td>2.5</td>
<td>(4)^e, (19)^e</td>
</tr>
</tbody>
</table>

| | | | | * |

15		r.t.	12	*
		reflux	2	27 ± 5^b, 27 ± 5^b, 0^a, 45 ± 2^c
16		r.t.	20	*
		reflux	1	25 ± 5^b, 25 ± 5^b, 45 ± 2^c, 6^f

*Not visible in n.m.r. spectrum or t.l.c.
^bEstimated from n.m.r. and t.l.c. data
^cEstimated from n.m.r., t.l.c., and u.v. data
^dNot visible from the n.m.r. spectrum, but its absence is inconclusive from t.l.c. data
^eWilliamson and Johnson's result
^fEstimated after thick layer separation from the n.m.r. spectrum
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Acetoxy Ketone</th>
<th>Temperature</th>
<th>Time</th>
<th>% Yield of Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>AcO</td>
<td>220-230°C</td>
<td>4.5 hr</td>
<td>(\text{trace}^a)</td>
</tr>
<tr>
<td>18</td>
<td>AcO</td>
<td>133-135°C</td>
<td>4 hr</td>
<td>(70 \pm 10^b)</td>
</tr>
<tr>
<td>19</td>
<td>AcO</td>
<td>133-135°C</td>
<td>3 days</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>20</td>
<td>AcO</td>
<td>190-200°C</td>
<td>2 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>21</td>
<td>AcO</td>
<td>220-230°C</td>
<td>5 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>22</td>
<td>AcO</td>
<td>200-210°C</td>
<td>16 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>23</td>
<td>AcO</td>
<td>133-135°C</td>
<td>6 hr</td>
<td>no reaction</td>
</tr>
<tr>
<td>24</td>
<td>AcO</td>
<td>170-180°C</td>
<td>4 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>25</td>
<td>AcO</td>
<td>200-210°C</td>
<td>16 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>26</td>
<td>AcO</td>
<td>133-135°C</td>
<td>3 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>27</td>
<td>AcO</td>
<td>133-135°C</td>
<td>12 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>28</td>
<td>AcO</td>
<td>133-135°C</td>
<td>12 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>29</td>
<td>AcO</td>
<td>133-135°C</td>
<td>19 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
<tr>
<td>30</td>
<td>AcO</td>
<td>133-135°C</td>
<td>48 hr</td>
<td>(50 \pm 10^b)</td>
</tr>
<tr>
<td>31</td>
<td>AcO</td>
<td>220-230°C</td>
<td>4 hr</td>
<td>(80 \pm 10^b)</td>
</tr>
</tbody>
</table>

\(^a\) Not visible in n.m.r. spectrum or t.l.c.
\(^b\) Estimated from n.m.r. and t.l.c. data
\(^c\) Absence shown by m.p. of the recrystallization product
\(^d\) Without exclusion of air
\(^e\) Not visible in the n.m.r. spectrum, but its presence indicated by t.l.c. data
\(^f\) Estimated from n.m.r., t.l.c., and u.v. data
\(^g\) Not visible from the n.m.r. spectrum, but its absence is inconclusive from t.l.c. data
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Acetoxy-ketone</th>
<th>Temperature</th>
<th>Time</th>
<th>% Yield of Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
<td>reflux</td>
<td>12 hr.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>reflux</td>
<td>4 days</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>reflux</td>
<td>12 hr.</td>
<td>no reaction</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>reflux</td>
<td>2 days</td>
<td>no reaction</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>reflux</td>
<td>4 hr.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>reflux</td>
<td>4.5 hr.</td>
<td></td>
</tr>
</tbody>
</table>

- a: Not visible in n.m.r. spectrum or t.l.c.
- b: Estimated from n.m.r. and t.l.c. data
- c: Not visible from the n.m.r. spectrum, but its absence is inconclusive from t.l.c. data
- d: t.l.c. data
<table>
<thead>
<tr>
<th>Compound</th>
<th>C-19 methyl</th>
<th>C-18 methyl</th>
<th>O=C-C<sup>H</sup> Br</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.67</td>
<td>1.38</td>
<td>4.45 (d.d., J = 5.5 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.17</td>
<td>5.10 (b.q., J = 7, 12 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>0.73</td>
<td>4.33 (b.s., w<sub>H</sub> = 7 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.10</td>
<td>4.72 (q., J = 6.5, 13.5 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.12</td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.10</td>
<td>4.66 (d., J = 12.5 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.28</td>
<td>4.16 (b.s., w<sub>H</sub> = 6 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>0.73</td>
<td>4.30 (b.s., w<sub>H</sub> = 8 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td>1.05</td>
<td>4.70 (q., J = 5.5, 14 Hz.)</td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td>1.08</td>
<td>4.88 (d., J = 11.5 Hz.)</td>
</tr>
</tbody>
</table>

^aFigures in the table are δ values downfield from TMS (δ = 0.00). All spectra were taken in deuteriochloroform solutions.
Table V (continued)

<table>
<thead>
<tr>
<th>compound</th>
<th>C-18 methyl</th>
<th>C-19 methyl</th>
<th>CH$_3$COO-</th>
<th>O=C-C${\circlearrowleft}$H${\circlearrowright}$OAc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcO</td>
<td>0.65</td>
<td>0.77</td>
<td>2.13</td>
<td>5.20 (m.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.67</td>
<td>1.16</td>
<td>2.13</td>
<td>5.29 (q., J = 13, 6.5 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.67</td>
<td>0.85</td>
<td>2.10</td>
<td>5.33 (q., J = 10, 7 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.67</td>
<td>1.16</td>
<td>2.13</td>
<td>5.04 (d., J = 11.5 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.67</td>
<td>1.12</td>
<td>2.08</td>
<td>4.92 (b.s., w$_{K}$ = 6 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.65</td>
<td>0.75</td>
<td>2.10</td>
<td>4.83 (m.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.65</td>
<td>0.75</td>
<td>2.13</td>
<td>5.20 (m.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.66</td>
<td>0.82</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.65</td>
<td>1.09</td>
<td>2.15</td>
<td>5.25 (m.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.69</td>
<td>1.17</td>
<td>2.15</td>
<td>5.35 (d.d., J = 8.5 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.69</td>
<td>1.07</td>
<td>2.15</td>
<td>5.23 (q., J = 13.5, 6 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.67</td>
<td>1.10</td>
<td>2.15</td>
<td>5.46 (d., J = 8 Hz.)</td>
</tr>
<tr>
<td>AcO</td>
<td>0.69</td>
<td>1.07</td>
<td>2.15</td>
<td>5.55 (d., J = 12 Hz.)</td>
</tr>
<tr>
<td>compound</td>
<td>C-18 methyl</td>
<td>C-19 methyl</td>
<td>(\text{H}_1)</td>
<td>(\text{H}_2)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{O=C-C=C-})</td>
<td>(\text{O=C-C=C-})</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>1.01</td>
<td>5.88 (d., (J = 10.5) Hz.)</td>
<td>7.14 (d., (J = 10.5) Hz.)</td>
</tr>
</tbody>
</table>
| | 0.72 | 1.17 | 5.70 (b.s., \(\delta_\text{H} = 3\) Hz.) |\
| | 0.67 | 0.88 | 6.00 (d., \(J = 10\) Hz.) | 6.75 (m.) |
| | 0.70 | 0.96 | | 6.42 (m.) |
| | 0.70 | 1.20 | 5.88 (d., \(J = 10.5\) Hz.) | 6.82 (d., \(J = 10.5\) Hz.) |
TABLE VI

U.V. SPECTRA OF STEROID α,β-UNSATURATED KETONES

<table>
<thead>
<tr>
<th>compound</th>
<th>λ_{max}</th>
<th>ε_{max}</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(230 nm)</td>
<td>(10,800)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(241 nm)</td>
<td>(16,600)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>226 nm</td>
<td>7,830</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>(239 nm)</td>
<td>(10,400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>241 nm</td>
<td>6,610</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(241 nm)</td>
<td>(7,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>232 nm</td>
<td>8,050</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>(232 nm)</td>
<td>(7,500)</td>
<td></td>
</tr>
</tbody>
</table>

Figures in the parentheses are data reported in the literature.
(i) **Conversion of Bromoketones into Acetoxyketones**

As mentioned earlier, reactions of α-haloketones such as 2α-bromocholestan-3-one 4, 4α-bromocholestan-3-one 12, 17, 22 4β-bromo-5β-cholestan-3-one 3, and 9-chloro-trans-decalone-1 40 with acetate ion can form either normal or abnormal displacement products, depending on the structure of the haloketone and the solvent used. Smith and Gonzalez also observed both the normal and abnormal displacement products in the reaction of 2-chlorocyclohexanone with sodium phenoxide in petroleum ether, 33 although the reaction condition is quite different from the reaction with acetate ion in acetic acid or in acetone.

\[
\begin{align*}
\text{Cl} & \quad \rightarrow \\
\text{O} & \quad \text{O} \\
\text{C} & \quad \text{OC}_6\text{H}_5 \\
\end{align*}
\]

Fieser and Romero originally proposed that the normal product 62 came from direct displacement (mechanism A) while the abnormal product 64 arose from preliminary α→α'-shift of bromine in 61 to give the α'-bromoketone 63, followed by direct displacement (mechanism B). Mechanism B was not very convincing since α→α'-shift of halo-substituent has only been observed with α-haloketones in the presence of hydrogen bromide or chloride. Eliel, 20 Williamson and
Johnson,22 and recently Satoh and coworkers32 have all preferred the direct formation of \(\alpha'^{-}\)-acetoxyketone 64 by Mechanism A

\[
\begin{align*}
\text{Br} &\quad \text{Br} \\
\alpha &\quad \alpha' \\
\text{OAc}^{-} &\quad \text{AcO} \\
\end{align*}
\]

Mechanism B

\[
\begin{align*}
\text{Br} &\quad \text{Br} \\
\alpha &\quad \alpha' \\
\text{OAc}^{-} &\quad \text{OAc} \\
\end{align*}
\]

\(S_N^{2'}\) attack of acetate ion on the enol form 69 of the bromoketone (mechanism C), apparently by analogy with known Mechanism C

\[
\begin{align*}
\text{Br} &\quad \text{Br} \\
\alpha &\quad \alpha' \\
\text{OH} &\quad \text{OAc}^{-} \\
\text{OAc} &\quad \text{OAc} \\
\end{align*}
\]

\(S_N^{2'}\) displacements in allylic systems.34 However, as Bordwell pointed out, this mechanism involves "the postulation of an unusual reaction path (\(S_N^{2'}\)) applied to an intermediate (the enol 69) present in small concentration."

In addition, Bordwell's work on 2,6-dibromocyclohexanones44, ruled out, at least in this case, \(S_N^{2'}\) displacement as
an important pathway for the acetolysis of these bromoketones,
and showed 1,3-elimination of hydrogen bromide to be the
first step in the transformation of 45 into the major
product 2-acetoxy-cyclohex-2-enones 46.

Roscioni and coworkers demonstrated that isomeric
chloroketones in the 1-phenoxypropanone series 70, 71 gave
the same acetolysis product 72 on treatment with potassium
acetate in acetic acid. A common symmetric intermediate
73 was proposed to explain the result. Put in general

\[
\begin{align*}
\text{C}_6\text{H}_5\text{OCH}_2\text{COCHClCH}_3 \quad &\xrightarrow{70} \quad \text{C}_6\text{H}_5\text{OCH}^+\text{CHCH}_3 \\
\text{C}_6\text{H}_5\text{OCHClCOCH}_2\text{CH}_3 \quad &\xrightarrow{71} \quad \text{C}_6\text{H}_5\text{OCH}^+\text{CHCH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CHOAcCOCH}_2\text{CH}_3 \quad &\xrightarrow{72} \quad \text{C}_6\text{H}_5\text{CHOAcCOCH}_2\text{CH}_3
\end{align*}
\]

Mechanism D₁

In terms, Roscioni and coworkers' mechanism involves ionization
of the C-Br bond of the enol 69 aided by π-bond participation
from the neighboring group to give the enolic carbonium ion
74, followed by nucleophilic attack by acetate ion at either
the α- or the α'-position (mechanism D₁). Mechanism D₁
finds analogy in the mechanism for α-alkoxyketone formation
from chloroketones such as 75 and 76. It was shown by
Bordwell and Carlson36 that both the acid-catalyzed and the base-catalyzed solvolyses proceed by the same mechanism: solvolysis of an intermediate enol allylic chloride to the enolic carbonium 77 and subsequent attack by the solvent.

\[
\begin{array}{c}
\text{75} \\
\text{76}
\end{array}
\]

It is to be noted that this enolic carbonium ion mechanism for the acetolysis of bromoketones would account for the formation of normal and abnormal displacement products 62 and 64 at the same time and predicts that the same acetoxyketone mixtures would result from isomeric bromoketones 61 and 63.

Other mechanisms involving a dipolar ion (zwitterion or oxyallyl) intermediate 78 or a cyclopropanone intermediate 79 are also possible (mechanisms D2 and D3).

Since it is difficult to distinguish between the last three mechanisms unambiguously, they will be grouped
Mechanism D₂

Mechanism D₃

together and referred to as the symmetric intermediate mechanism or mechanism D. There are clearly some instances where this mechanism is not applicable, for example, in the reaction of bromoketones lacking α-protons.

There is one more alternative for formation of the normal displacement product 62. Instead of direct S^N_2 displacement of bromine (mechanism A) or attack on the symmetric intermediate (mechanism D), the acetate ion could attack at the carbonyl group to give epoxy acetate 80, which could rearrange either thermally or catalytically into an acetoxyketone to give the normal displacement product (mechanism E). The formation of epoxy acetate
intermediate has been suggested by Cookson and coworkers37 to explain the stereochemistry of the acetolysis of 3\(\beta\)-acetoxy-5\(\alpha\),7\(\beta\)-dibromocholestan-6-one.

As to the stereochemistry of the mechanisms mentioned above, direct \(S_\text{N}^2\) displacement (mechanism A) must give inversion. The \(S_\text{N}^2'\) mechanism (mechanism C) would give retention if Stork's result on his cyclohexyl allylic system38 can be extended to the enol system. Since Williamson and coworkers39 demonstrated that 3\(\beta\)-acetoxy-2\(\alpha\),3\(\alpha\)-oxidocholestane \(81\) rearranged thermally to 2\(\beta\)-acetoxycholestan-3-one \(30\), but rearranged directly in acid to 2\(\alpha\)-acetoxycholestan-3-one \(18\), the epoxy acetate route (mechanism E) would be expected to give retention.
or inversion product, depending on whether the final step was thermal or catalytic. No stereochemical course could be predicted for mechanism B, since no \(\alpha\rightarrow\alpha'\)-shift of bromine has ever been observed in acetic acid or acetone. For the enolic carbonium ion mechanism or the zwitterionic mechanism (mechanism \(D_1\) or \(D_2\)) attack from both sides and at both positions will be equally probable only if the intermediate has \(C_{2v}\) symmetry, otherwise steric and stereoelectronic effects will take place. For a cyclopropanone mechanism (mechanism \(D_3\)), no prediction could be made since the detailed mechanisms of both the formation of the cyclopropanone and the opening of the cyclopropanone ring are not yet well understood.\(^{19}\)

Control experiments showed that the \(\alpha\)-substituents in both bromoketones and acetoxyketones were easily epimerized in potassium acetate-acetic acid. Thus the configurations of the substituents of the products do not have much significance except that they represent the more stable ones. However, this is not the case with the tetramethylammonium acetate-acetone reagent, for although bromoketones are readily epimerized, the rate of epimerization of acetoxyketones is much slower, and occasionally the less stable epimer can be isolated.

When the reaction of 2\(\alpha\)-bromocholestan-3-one 4 with
potassium acetate-acetic acid at 133-135° (reflux temperature) was repeated (reaction 3), the crude product showed two acetoxyketone spots on a t.l.c. plate in a ratio of ca. 5:1, corresponding in Rf values to 2α-acetoxycholestan-3-one (or 4α-acetoxycholestan-3-one) and 3β-acetoxycholestan-2-one. On lowering the reaction temperature to 97-103° and stopping the reaction as soon as all the bromoketone was consumed (reaction 2), the crude product was found to contain ca. 5% of the 3β-acetoxy-2-ketone. Thus the presence of this in the reaction at 133-135° was a result of further transformation of the 2α-acetoxy-3-ketone formed during the reaction.

This was confirmed by treating pure 2α-acetoxy-3-ketone with potassium acetate-acetic acid at 133-135° for a longer time, whereupon the 3β-acetoxy-2-ketone was formed in ca. 80% yield (reaction 19). Since control experiments showed that there was no interconversion between the 2α-acetoxy-3-ketone (or the 3β-acetoxy-2-ketone) and the 4α-acetoxy-3-ketone at 133-135° (reactions 18, 19, and 23), the ratio of the 2α-acetoxy-3-ketone plus the 3β-acetoxy-2-ketone to the 4α-acetoxy-3-ketone formed in the reaction of 2α-bromo-3-ketone with acetic acid-acetate mixture at temperatures lower than 133-135° represents the kinetically controlled formation of the
normal and abnormal displacement products.

As noted by previous workers,¹²,²² the 2α-acetoxy-3-ketone ¹⁸ and the 4α-acetoxy-3-ketone ¹⁹ are not separable by recrystallization or column chromatography, and they have identical Rf values on t.l.c. and almost identical i.r. spectra. Thus resort has to be made to n.m.r. spectroscopy and optical rotations, but even in the n.m.r. spectra, the C-18 and C-19 methyl protons are identical, and the α-proton signals overlap partially. Quantitative estimation by α-proton integration is thus subject to some uncertainty.

The difference in specific rotation (+52° for ¹⁸ and -4° for ¹⁹) is big enough for fairly accurate estimation. In this way, the ratio of C-2 to C-4 attack in the reaction of 2α-bromocholestan-3-one ⁴ with potassium acetate-acetic acid at 97-103° was estimated to be very close to 1:1 (reaction 2).

Reaction of 4α-bromocholestan-3-one ¹² with potassium acetate-acetic acid at 133-135° also gave a mixture of isomeric acetoxyketones, the 2α-acetoxy-3-ketone ¹⁸, the 4α-acetoxy-3-ketone ¹⁹ and the 3β-acetoxy-2-ketone ³⁹ (reaction 5). The ratio of C-2 to C-4 attack was estimated to be ca. 1:1 by n.m.r. integration of low field α-protons. The fact that, within experimental error,
2α-bromocholan-3-one 4 and 4α-bromocholan-3-one 12 gave the same acetolysis product is a strong indication for the common symmetric intermediate mechanism (mechanism D) for the reaction of bromoketones with potassium acetate in acetic acid. This inference was further supported by the acetoxyketones formed in the 5β-series. Both 2β-bromo-5β-cholestan-3-one 82 and 4β-bromo-5β-cholestan-3-one 3 gave only 2β-acetoxy-5β-cholestan-3-one 59 on treatment with potassium acetate-acetic acid. No trace of 4β-acetoxy-5β-cholestan-3-one 60 was detectable in the n.m.r. spectrum of the crude products (reactions 10 and 11).

The formation of both the 2- and the 4-substituted products in the 5α-series (reactions 2, 3 and 5) and the exclusive formation of the 2-substituted product in the 5β-series (reactions 10 and 11) can also be rationalized by the symmetric intermediate mechanism (mechanism D). The symmetric intermediate in the 5α-series 83 would be more susceptible to the C-4 attack than to the C-2 attack if the transition state comes after substantial change in the geometry of the planar intermediate (Δ²-cholestene v.s. Δ³-cholestene). 40 On steric grounds, if the attack is from the α-side, the chances should be equal for 2- and 4-position; if the attack is from the β-side, C-2 attack might be favored because of the presence of the extra 6β-H
interaction to hinder the C-4 attack. Thus it is not surprising that approximately equal amounts of C-2 attack and C-4 attack were observed.

In the 5β-series, the symmetric intermediate should be more susceptible to C-2 attack than to C-4 attack if the geometry of the transition state has changed substantially from the planar form (Δ^3-5β-cholestene v.s. Δ^2-5β-cholestene). The steric environments are comparable for C-2 and C-4 if the attack is from β-side, but C-2 attack is strongly favorable if the attack is from α-side because of the presence of C-7 methylene group. Thus only the 2β-acetoxy-3-ketone 59 was formed from either the 2β-bromo-3-ketone 82 or the 4β-bromo-3-ketone 3.

Besides the acetoxyketones discussed above, minor amounts of unsaturated ketones were also observed during the acetolysis with potassium acetate-acetic acid. The unsaturated ketones formed from 2α-bromocholestan-3-one 4, 4α-bromocholestan-3-one 12, 2β-bromo-5β-cholestane-3-one 82 and 4β-bromo-5β-cholestane-3-one 3 were all mainly
Δ^4-cholestan-3-one 5. Not much Δ^1-3-ketone (Δ^1-cholesten-3-one 6 or Δ^1-5β-cholestan-3-one 85) was observed.

Speculation on the mechanism of their formation will be presented after the discussion of the reaction of bromoketones with tetramethylammonium acetate in acetone.

With the intention of getting more support for the symmetric intermediate mechanism D for the acetalolysis of bromoketones with potassium acetate-acetic acid, three more ring-A bromoketones were prepared and treated with potassium acetate-acetic acid.

Two acetoxyketones were formed in a ratio of about 1:3 from 3α-bromocholestan-2-one 86, the major one being 3β-acetoxycholestan-2-one 39, the normal displacement product (reaction 8). Although no attempt was made to isolate the minor isomer, the n.m.r. spectrum of the crude product was consistent with its being 1β-acetoxy-cholestan-2-one 87 because of the presence of a singlet ($\omega_H = 3$ Hz.) at δ 4.70 for the C-1 proton.

3β-Acetoxycholestan-4-one 57 was the only acetoxyketone formed from 3α-bromocholestan-4-one 88 (reaction 9). Only
a trace of the abnormal substitution product, 5α-acetoxycholestan-4-one 58, was detected. However, since a control experiment revealed that the 5α-acetoxy-4-ketone 58 was readily isomerized into the 3β-acetoxy-4-ketone 57 by potassium acetate-acetic acid at 133-135°C (reaction 28), the absence of the 5α-acetoxy-4-ketone 58 has no mechanistic significance. In addition to the acetoxyketone 57, the crude acetolysis product from 3α-bromocholan-4-one 88 (reaction 9) contained ca. 15% of Δ5-cholesten-4-one 7. Since 3α-acetoxy-cholan-4-one 21 gave a much lower yield (ca. 6%) of Δ5-cholesten-4-one 7 under comparable conditions.
(reaction 26), at least part of the Δ^5-cholesten-4-one 7 was formed directly from the 3α-bromo-4-ketone 88. Analogous to the reactions of 2α-bromocholestan-3-one 4 and 2β-bromo-5β-cholestan-3-one 82 (reactions 2 and 10), no significant amount of the normal elimination product, Δ^2-cholesten-4-one 11 was formed in the acetolysis of the 3α-bromo-4-ketone 88 (reaction 9). Discussion of unsaturated ketone formation will also be deferred.

The most interesting acetolysis reaction of a bromoketone with potassium acetate in acetic acid was that of 2α-bromocholestan-1-one 89. Reaction at 133-135°C gave quantitative recovery of the starting material (reaction 6). The inertness of the 2α-bromo-1-ketone 89 is expected if acetolysis in acetic acid prefers to go through a symmetric intermediate mechanism D since there is no α'-proton in 89. Comparison of the reactions of 2α-bromocholestan-3-one 4 and 2α-bromocholestan-1-one 89 (reactions 2, 3, and 6) indicates that direct S_N^2 displacement (mechanism A) cannot be a major route for the formation of the normal displacement product, since it is difficult to rationalize why the shift of carbonyl function from C-3 to C-1 should alter the reactivity of the bromo-substituent to such a great extent. However, an epoxy acetate pathway (mechanism E) is also consistent with the inertness of 2α-bromo-1-ketone
89. Because of the well-known steric congestion around the C-1 position, the sluggishness toward acetate ion attack on the carbonyl group of 2\(\alpha\)-bromocholestan-1-one 89 is expected.

The same argument\(^{41}\) has been used to explain the failure of 89 to undergo the quasi-Favorskii rearrangement since the symmetric intermediate mechanism and the epoxy acetate mechanism (mechanisms D and E) have the same structural requirement as the cyclopropanone and semi-benzilic mechanisms respectively, for the Favorskii rearrangement.

When the 2\(\alpha\)-bromo-1-ketone 89 was treated with potassium acetate-acetic acid at 200-210\(^{\circ}\), the product was a mixture of 3\(\beta\)-acetoxycholestan-2-one 39 and \(\Delta^5\)-cholesten-4-one 7 (reaction 7). From the discussion of the acetoxyketone rearrangement to be presented later in this chapter, 2\(\alpha\)-acetoxycholestan-1-one 90 is the most reasonable intermediate for the formation of both the 3\(\beta\)-acetoxy-2-ketone 39 and \(\Delta^5\)-cholesten-4-one 7. Thus either the
direct displacement or the epoxy acetate pathway (mechanism A or E) must operate at higher temperature to give the acetolysis product even though these mechanisms are not important at 133-135°.

When the reaction of 2α-bromocholan-3-one 4 with tetramethylammonium acetate was repeated according to the procedure of Williamson and Johnson,22 to our surprise, n.m.r. and t.l.c. examination of the crude product showed that the major component was 2α-acetoxycholan-3-one 18, and not the 3β-acetoxy-2-ketone 39. The amount of the latter was less than 10% (reaction 12). Only after reflux for five days was there an appreciable amount of the 3β-acetoxy-2-ketone 39 formed (reaction 13). The difference between our result and that of Williamson and Johnson22 can be explained by slight differences in the reaction medium since it was found later that the rate of reaction of bromoketones or acetoxyketones with this reagent was not easily reproducible and seemed to depend on the pH and the minute amount of water in the system, probably introduced mainly with the tetramethylammonium acetate. The reaction of 2α-bromocholan-3-one 4 with tetramethylammonium acetate-acetone can therefore be formulated as follows: (see p. 55)

The second step was confirmed by treating pure 2α-acetoxycholan-3-one 18 with tetramethylammonium
acetate-acetone (reaction 32, 33). Thus if the reaction conditions are chosen properly, the most convenient way to prepare the 2α-acetoxy-3-ketone 18 is the reaction of 2α-bromocholesstan-3-one 4 with acetate ion in acetone.

Comparison of the acetoxyketone distributions from the reaction of 2α-bromocholesstan-3-one 4 with acetate ion in acetic acid and in acetone (reactions 2 and 12) supports the suggestion made earlier that acetolysis in acetic acid proceeds mainly by the symmetric intermediate mechanism D. If the formation of the 2α-acetoxy-3-ketone 18 and the 4α-acetoxy-3-ketone 19 in acetic acid is a result of S_N^2 displacement (mechanism A) and/or epoxy acetate rearrangement (mechanism E) in competition with $S_N^{2'}$ displacement (mechanism C), it is difficult to rationalize why the change of solvent from acetic acid to acetone should suppress $S_N^{2'}$ displacement so completely as to give the 2α-acetoxy-3-ketone 18 as the sole product. On the other hand, the symmetric intermediate mechanism can not be an important route in acetone, since there is no obvious reason why
attack of acetate ion on the intermediate 83 should occur at both C-2 and C-4 in acetic acid, but exclusively at C-2 in acetone. The conclusion that acetylation in acetic acid proceeds mainly by the symmetric intermediate (probably the enolic carbonium ion or zwitterionic intermediate i.e. mechanism D₁ or D₂) and reaction in acetone proceeds mainly by direct S₂N displacement and/or epoxy acetate intermediate (mechanism A and/or E) is in agreement with the high Grunwald-Winstein Y-value of acetic acid (-1.68) compared to that of acetone (approx. -4.1*).⁴²

Although a control experiment on 3β-acetoxy-2α,3α-oxidocholestane 81 in tetramethylammonium acetate-acetone gave complete recovery of the starting material, we still feel reluctant to exclude the epoxy acetate mechanism (mechanism E) because of the stereochemical influence (i.e. 3β-acetoxy-2α,3α-oxidocholestane 81 v.s. 3α-acetoxy-2β,3β-oxidocholestane) that might be important and because of the unreproducibility of the rate of reaction in acetone.

The 5β-series gave entirely different results. Reaction of both 2β-bromo-5β-cholestan-3-one 82 and 4β-bromo-5β-cholestan-3-one 3 with acetate-acetone gave only the 2-substituted products, 2β-acetoxy-5β-cholestan-3-one 59 and 2α-acetoxy-5β-cholestan-3-one 91 in addition to unsaturated ketones (reactions 15, 16). The complete
*Extrapolated value
change from normal displacement in the case of the 2β-bromo-3-ketone 82 to abnormal displacement in the case of the 4β-bromo-3-ketone 3 can be rationalized in two ways. If a symmetric intermediate is involved (mechanism D), exclusive formation of 2-substituted products in acetone can be explained in the same way as the acetylation in acetic acid. However, by analogy to the 5α-series, and in view of the different unsaturated ketone formed from each bromoketone (see later), a symmetric intermediate is not very likely and one is forced to conclude that the 2β-bromo-3-one 82 undergoes direct S_N2 displacement or the epoxy acetate route (mechanism A or E) to give the normal product, whereas the 4β-bromo-3-ketone 3 undergoes S_N2' (mechanism C) exclusively to give the abnormal products, contrary to Bordwell's objection to S_N2' displacement being an important route for the reaction. A full understanding awaits the

\[
\text{Br} \quad \rightarrow \quad 59 + 91 + \quad \text{85} \quad \rightarrow \quad 59 + 91 + \quad \text{Br}
\]

investigation of the reaction of some more bromoketones with acetate ion in acetone, e.g., reinvestigation of the reaction of pure 4α-bromocholestan-3-one 12 with acetate ion in acetone.
A control experiment revealed that pure 2α-acetoxy-5β-cholestan-3-one 91 isomerized into the 2β-isomer 59 at about the same rate (reaction 37) as the reaction of the 2β-bromo-3-ketone 82 or the 4β-bromo-3-ketone 3 with acetate-acetone (reaction 15, 16). Therefore, reaction in acetone, in contrast to that in acetic acid, afforded the kinetically controlled product, 2α-acetoxy-5β-cholestan-3-one 91, in appreciable amount. A more sensitive technique such as optical rotation is required to ascertain whether part of the 2β-acetoxy-5β-cholestan-3-one 59 formed directly from the bromoketones.

The appreciable amount of α-attack observed in the two bromo-5β-cholestanone cases is unexpected. In the case of 2β-bromo-5β-cholestan-3-one 82, it might result from the direct SN1 attack on the 2-position with inversion of configuration. In the case of 4β-bromo-5β-cholestan-3-one 3, it is difficult to see why the acetate ion does not approach the 2-position of the Δ2-enol of 3 from the β-side which is more favored on steric ground.

Comparison of the unsaturated ketones formed in the reaction of 2α- and 4α-bromocholestan-3-one 4 and 12 and 2β- and 4β-bromo-5β-cholestan-3-one 82 and 3 in both acetic acid and acetone gives very interesting results. For reactions in acetic acid (reactions 2, 5, 10, and 11), the
major unsaturated ketone is always the more stable one, i.e. Δ^4-cholesten-3-one 5, no matter whether the bromine substituent is at the 2- or the 4-position. But for reactions in acetone (reactions 12, 14, 15, and 16), the major unsaturated ketone is the one expected from normal 1,2-elimination of hydrogen bromide without rearrangement, i.e. Δ^4-cholesten-3-one 5 from 4α-bromocholan-3-one 12 and 4β-bromo-5β-cholestan-3-one 3, but Δ^1-cholesten-3-one 6 and Δ^1-5β-cholesten-3-one 85 from 2α-bromocholan-3-one 4 and 2β-bromo-5β-cholestan-3-one 82 respectively.

The formation of Δ^4-cholesten-3-one 5 as well as Δ^1-cholesten-3-one 6 in the dehydrobromination of 2α-bromocholan-3-one 4 by pyridine bases or by lithium salts in dimethylformamide has been known for a long time. Possible mechanisms for the formation of the rearranged elimination product, Δ^4-cholesten-3-one 5, have been suggested. The possibility of debromination and rebromination to give 4α-bromocholan-3-one 12, i.e. the first step in mechanism B, followed by normal 1,2-elimination has been ruled out at least for the pyridine bases by the work of Marshall and Warnhoff. Two other possibilities are 1,4-elimination of hydrogen bromide from the Δ^3-enol of 2α-bromocholan-3-one 4, and the formation of a symmetric intermediate such as 83 with subsequent proton shift. It is to be noted that
these two mechanisms involve the same intermediates as the

\[\text{Br-} \quad \rightarrow \quad \text{Br-} \quad \rightarrow \]

4

\[\text{HO} \quad \rightarrow \quad \text{HO} \quad or \quad \text{or} \quad \rightarrow \]

83

5

\[\text{S}_{\text{N}}^{2'} \text{ displacement and symmetric intermediate mechanisms } C \]

and D respectively, proposed earlier for acetolysis of

bromoketones.

The different dehydrobromination behavior in the

potassium acetate-acetic acid and tetramethylammonium

acetate-acetone systems can be easily explained if the

symmetric intermediate mechanism is assumed to be responsible

for the rearranged elimination product. As mentioned

earlier, a solvent like acetic acid with a higher Grunwald-

Winstein Y-value facilitates the formation of symmetric

intermediates such as 83 and 84, both of which can undergo

proton loss to the more stable product \(\Delta^4 \)-cholesten-3-one 5.

Therefore, in addition to displacement product, the major

unsaturated ketone formed during the acetolysis of \(\alpha \)-bromo
3-ketosteroids in acetic acid is Δ^4-cholesten-3-one 5 whether the bromo-substituent is on C-2 or C-4. On the other hand, formation of symmetric intermediates such as 83 and 84 in acetone is suppressed because of the low ionizing power of the medium, and direct E2 elimination is the only pathway operating to give the observed unrearranged product. However, if 1,4-elimination were responsible for the rearranged product in acetic acid, one would expect that it would also operate in acetone, and no difference in dehydrobromination behaviors should be observed in these two media.

The formation of Δ^5-cholesten-4-one 7, and not Δ^2-cholesten-4-one 11 during the acetalolysis of 3\(\alpha\)-bromocholestan-4-one 88 in acetic acid (reaction 9) and the minute amount of unsaturated ketone formation during the acetalolysis of 3\(\alpha\)-bromocholestan-2-one 86 (reaction 8) agree with the rationalization delineated above. In the first case, Δ^5-cholesten-4-one 7, the more stable of the two possible isomers was formed from the symmetric intermediate 92. In the second case, since all the \(\alpha\)- and \(\beta\)-positions of 93 are secondary or quaternary, acetate ion attack predominates over proton loss and acetoxyketones are the only products observed.
The difference in the amounts of unsaturated ketone formed in the acetolysis of 2α-bromocholen-3-one 4, and 2β-bromo-5β-cholestan-3-one 82 in acetone (reactions 12 and 15) was unexpected. One possible explanation depends on the observed faster rate of acetoxyketone formation from 2α-bromocholen-3-one 4 than that of 2β-bromo-5β-cholestan-3-one 82. The slowness of conversion of 82 into acetoxyketones might result in a larger amount of elimination product. However, since the rates of the reaction of bromoketones with tetramethylammonium acetate-acetone are not easily reproducible, the difference in the rates observed for single runs may not be real.

In conclusion, the mechanism of conversion of bromoketones into acetoxyketones depends drastically on the reaction medium. In acetate-acetic acid, symmetric intermediate mechanism D is the major pathway. In acetate-acetone, direct displacement mechanism A and/or epoxyacetate mechanism E predominate. The minor amount of unsaturated ketones formed also fits into this scheme.
(ii) Interchange of Carbonyl and Acetoxy Groups of Acetoxyketones

The first step in Fieser's scheme for the transformation of 4α-acetoxycholestan-3-one 19 into Δ^5-cholesten-4-one 7 is the interchange of functional groups to give 3α- or 3β-acetoxycholestan-4-one 21 or 57. Our observations of the rearrangement of 2α-acetoxycholestan-3-one 18 into 3β-acetoxycholestan-2-one 39 by acetate ion in refluxing acetic acid or in refluxing acetone (reactions 18,19,32, and 33) provides more exact analogy than that mentioned by Fieser. The mechanism generally accepted for the interchange reaction proceeds through a cyclic ortho ester intermediate such as 96. 18

When 2α-acetoxycholestan-3-one 18 was treated with potassium acetate-propionic acid at 133-135° for two days the crude product was a 7:3 mixture of 2α-acetoxycholestan-3-one 18 and 3β-acetoxycholestan-2-one 39, no trace of propionoxyl group was incorporated into the organic moiety. Thus the interchange of functional groups of
acetoxycarbonyl, at least in carboxylic acid at 133-135°, is intramolecular. This result is strong support for the mechanism mentioned above. Further observation that the 2α-acetoxycarbonyl-3-ketone 18 was rearranged into the 3β-acetoxycarbonyl-2-ketone 39 by γ-collidine, although at somewhat higher temperature (215°) is additional evidence for the intramolecularity of the rearrangement.

The greater thermodynamic stability of the 3β-acetoxycarbonyl-2-ketone 39 relative to the 2α-acetoxycarbonyl-3-ketone 18 as observed in the above reactions can be attributed to the difference between the two CH₃-H repulsive interactions in 18 and a single CH₃-H interaction plus one less repulsive H-H interaction in 39.

![Diagram](image)

In contrast to the 2α-acetoxycarbonyl-3-ketone 18, the 4α-acetoxycarbonyl-3-ketone 19 did not undergo the interchange reaction in refluxing potassium acetate-acetic acid or in refluxing tetramethylammonium acetate-acetone (reactions 23 and 34). It was also recovered unchanged on treatment with...
γ-collidine at 215°. The difference between 18 and 19 can be rationalized by the fact that a 2,3-double bond is much more stable and more readily introduced than a 3,4-double bond in the 5α-series.40 Since the mechanism suggested for the interchange reaction involves enolization, the 2α-acetoxy-3-ketone 18 is expected to react faster than the 4α-isomer 19. Raising the reaction temperature of the 4α-isomer 19 to 170-180° resulted in conversion into the final product Δ⁵-cholesten-4-one 7 (reaction 24), indicating that the interchange reaction of the 4α-acetoxy-3-ketone 19 into the 3β-acetoxy-4-ketone 57 began to take place at 170-180°, followed by more rapid conversion of the latter into Δ⁵-cholesten-4-one 7. Control experiment starting with pure 3α-acetoxy-4-ketone 21 confirmed the above assumption (reactions 26 and 27).

Analogous derivatives of the 5β-series behaved somewhat differently. Both 2β-acetoxy-5β-cholestan-3-one 59 and 4β-acetoxy-5β-cholestan-3-one 60 undergo interchange of functional groups in refluxing potassium acetate-acetic acid to give 3α-acetoxy-5β-cholestan-2-one 97 and 3β-acetoxycholestan-4-one 57 respectively (reactions 30 and 29). In refluxing tetramethylammonium acetate-acetate, both the 4β-acetoxy-3-ketone 60 and the 2β-acetoxy-3-ketone 59 are recovered unchanged in almost quantitative yield
(reactions 35 and 36). Bullucci has suggested that in the

\[
\text{O} \\
\text{AcO} \\
\text{97}
\]

5β-series the direction of enolization might not be as unequivocal as in 5α-series since dehydrochlorinations of 3β-chloro-5β-cholestane 98 gave a mixture of \(\Delta^2 \)-5β-cholestene and \(\Delta^3 \)-5β-cholestene in a ratio of 55:45\(^4\) and bromination of 17β-hydroxy-5β-androstan-3-one 99 gave a mixture of the 2-bromoketone and the 4-bromoketone in a ratio of 1:4.\(^4\) Our observations of the different behavior of acetoxyketones in 5α- and 5β-series toward interchange reactions agrees with Bullucci's suggestion.

\[
\text{Cl} \\
\text{98}
\]

\[
\text{99}
\]

(iii) α-α′-Shift of Acetoxyl Group of α-Acetoxyketones

As mentioned earlier, both 2α-acetoxycholestan-3-one 18
and 4α-acetoxycholestan-3-one 19 were found to be intermediates in the h-Δ¹-cholestenone rearrangement by the conversion of 1:1 complex of 18 and 19 into Δ⁵-cholesten-4-one 7 at 220-230° (reaction 17). The most reasonable first step for the transformation of the 2α-acetoxy-3-ketone 18 into Δ⁵-cholesten-4-one 7 is α→α'-transfer of the acetoxy group from C-2 to C-4 to give 4α-acetoxycholestan-3-one 19.

At least four mechanisms can be proposed for this transformation.

Mechanism AA

Mechanism BB

Mechanism CC
Mechanism DD

Mechanism AA is S_{N2}' attack by acetate ion on the enol form of the acetoxyketone. Mechanism BB_1 and BB_2 are loss of acetate ion from the enol and the enolate respectively, to give the enolic carbonium ion 74 and the zwitterion 78 respectively, followed by acetate ion attack on either α- or α'-position. Mechanism CC_1 and CC_2 involve formation of cyclopropanone 79 by intermolecular and intramolecular 1,3-elimination of acetic acid. Mechanism DD is intramolecular acetoxy group transfer in the enol of α-acetoxyketone 62 to give the enol of α'-acetoxyketone 64. Analogy is provided by the allylic rearrangement of allyl esters in gas phase or in solution.47 A transition state with substantial charge separation but with a structure resembling that of a Cope rearrangement, such as 100 has been proposed.47 Similar intermediates have been recently proposed for the thermal rearrangement of 6-acyloxy cyclohexane-2,4-dione 101 into 102 and 103.48 Of all the mechanisms proposed above, mechanism DD is unique in that the acetoxy group transfer is intramolecular.
It should be pointed out that although $S_N^{2'}$ displacement seems to be a less probable pathway for the formation of the rearranged acetoxyketones from bromoketones with potassium acetate-acetic acid, this mechanism should not be ruled out a priori for the $\alpha\rightarrow\alpha'$-transfer in acetoxyketones under more drastic condition and with this much poorer leaving group.

As mentioned before, the interconversion between the 2α-acetoxy-3-ketone 18 and the 4α-acetoxy-3-ketone 19 does not take place in refluxing acetic acid-acetate mixture (reactions 18, 19 and 23). At higher temperature (190-200°C),
reaction of the 2α-acetoxy-3-ketone 18 resulted in partial conversion into Δ⁵-cholesten-4-one 7, the acetoxyketone in the crude product was mainly the interchange product, 3β-acetoxycholestan-2-one 39, plus some starting material. No trace of the α+α'-transfer product, 4α-acetoxy-3-ketone 19, was detectable (reaction 20). This behavior can be interpreted in two ways, a slow rate-determining rearrangement of the 2α-acetoxy-3-ketone 18 to the 4α-acetoxy-3-ketone 19, followed by a fast conversion of 19 into Δ⁵-cholesten-4-one 7; or direct rearrangement of the 2α-acetoxy-3-ketone 18 to Δ⁵-cholesten-4-one 7 without the intervention of the 4α-acetoxy-3-ketone 19. The latter possibility is completely unreasonable and thus must be ruled out.

Comparison of the amount of Δ⁵-cholesten-4-one 7 formed from the 2α-acetoxy-3-ketone 18, the 3β-acetoxy-2-ketone 39, the 4α-acetoxy-3-ketone 19 and the 2α-bromo-3-ketone 4 under comparable conditions (reactions 20, 22, 25, and 4) demonstrated that the 4α-acetoxy-3-ketone 19 is transformed into Δ⁵-cholesten-4-one 7 much faster than the 2α-isomer 18, consistent with the above assumption that the rate-determining step is the α+α'-transfer of the acetoxy1 group (18 → 19).

Acetoxyketones in the 5β-series showed very similar
behavior. $\alpha+\alpha'$-Transfer of the acetoxy group does not take place in the refluxing acetic acid-acetate mixture. Only interchange reactions were observed with 4β- and 2β-acetoxy-5β-cholestan-3-one 60 and 59 (reactions 29 and 30). Raising the temperature of the reaction of 2β-acetoxy-5β-cholestan-3-one 59 to 220-230$^\circ$ resulted in complete conversion into the final product, Δ^5-cholesten-4-one 7 (reaction 31), indicating that $\alpha+\alpha'$-transfer does occur at higher temperature.

Investigation of the reaction of 4α-acetoxycholestan-3-one 19 at 170-180$^\circ$ indicated that the initial interchange reaction is the rate-determining step for its final conversion into Δ^5-cholesten-4-one 7. Therefore the next reaction to be investigated was the interconversion of 3β-acetoxycholestan-4-one 57 and 5α-acetoxycholestan-4-one 58 and their transformation into the final product, Δ^5-cholesten-4-one 7.

When the 3α-acetoxy-4-one 21 and the 5α-acetoxy-4-one 58 were treated with acetic acid-acetate at 133-135$^\circ$, a mixture of 3β-acetoxycholestan-4-one 57 and Δ^5-cholesten-4-one 7 in a ratio of ca. 4:1 and traces of 5α-acetoxycholestan-4-one 58 was obtained in both cases (reactions 27 and 28). The conversion of 5α-acetoxycholestan-4-one 58 into 3β-acetoxycholestan-4-one 57 was the first case studied
thus far in which α-α'-transfer was demonstrated to operate by isolation of the α'-acetoxyketone. The greater thermodynamic stability of 3β-acetoxycholestan-4-one 57 compared to 5α-acetoxycholestan-4-one 58 can be rationalized as follows: 5α-acetoxycholestan-4-one 58 has four repulsive AcO-H interactions because of the axial orientation of its 5α-acetoxy group, whereas 3β-acetoxycholestan-4-one 57 with its 3β-acetoxy group in an equatorial position, has only four H-H interactions.

The ease of α-α'-transfer of the acetoxy group in 5α-acetoxycholestan-4-one 58 (perhaps also in 3α- and 3β-acetoxycholestan-4-one 21 and 57 as will be shown later) compared to that in 2α-acetoxy-3-ketone 18 and the
4α-acetoxy-3-ketone 19 is probably due to the presence of an additional alkyl substituent at α- or α'-position to stabilize the partial carbonium ion character in the transition state. All of the four mechanisms proposed above for α→α'-transfer of the acetoxyl group are consistent with this rationalization, especially the enolic carbonium ion mechanism BB₁ and the zwitterionic mechanism BB₂, in both of which substantial cationic character is developed in the transition state. The same difference was observed in a monocyclic case. Whereas 2-acetoxy-cyclohexanone 104(6) only gave interchange product on treatment with potassium acetate in refluxing acetic acid, 2-acetoxy-6-methyl-cyclohexanone 105 readily underwent α→α'-transfer of the acetoxyl group at 133-135°C to give a mixture of 105 and 2-acetoxy-2-methylcyclohexanone 106 in a ratio of ca. 4:1.

It should be mentioned here that the same structural
influence has been observed in the isomerization of 5α-bromocholestan-4-one 107 into 3β-bromocholestan-4-one 88 by hydrogen bromide.49 No similar α-α'-transfer has been observed in 2α- or 4α-bromocholestan-3-one 4 or 12. The question of whether this rearrangement is a bromide or a bromonium ion shift is unknown.

Reaction of 3α-acetoxyccholestan-4-one 21 with potassium acetate-propionic acid at 133-135° gave mainly 3β-propionoxyccholestan-4-one 108, the product of incorporation of external carboxylate.
Of the several mechanisms that could account for the incorporation, the most reasonable one would seem to proceed by a symmetric intermediate mechanism BB and subsequent solvent attack. One additional substituent at the \(\alpha' \)-position is assumed to be responsible for the more facile formation of the symmetric intermediate which has cationic character on the enolic part, in exactly the same way that one additional substituent was proposed to be responsible for the facile conversion of 5\(\alpha \)-acetoxycholestan-4-one \(\mathbf{58} \) into 3\(\beta \)-acetoxycholestan-4-one \(\mathbf{57} \). 2-Acetoxy-6-methylcyclohexanone \(\mathbf{105} \), the monocyclic analogue of 3\(\alpha \)- or 3\(\beta \)-acetoxycholestan-4-one \(\mathbf{21} \) or \(\mathbf{57} \), behaves in the same way. External carboxylate incorporates readily at 133-135\(^\circ\).

\[
\begin{align*}
\text{AcO} & \quad \text{O} & \quad \text{C}_2\text{H}_5\text{COO} & \quad \text{O} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{O} & \quad \text{CH}_3 & \quad \text{O} & \quad \text{CH}_3 \text{OCOC}_2\text{H}_5
\end{align*}
\]

\(\mathbf{105} \)

It should be pointed out that although the symmetric intermediate mechanisms BB give a very satisfactory
explanation for the external carboxylate incorporation, it
does not exclude the possibility that other mechanisms
operate at the same time. The thermal stability of
5α-acetoxycholestan-4-one 58 up to 210° does not exclude
the intramolecular acetoxy group transfer, since enol
formation might be hindered by the absence of acetic acid
and acetate ion. Treatment of the 5α-acetoxy-4-ketone 58
with γ-collidine at 215° for 18 hours gave 10% of
3β-acetoxycholestan-4-one 57, the αα'-transfer product.
However, since the elimination product, Δ5-cholesten-4-one
7 was also formed in 18% yield, thus introducing acetate
ion into the medium, it is not certain whether the
αα'-transfer is intramolecular or intermolecular.

Sheehan 50 has recently observed a similar reaction in
his work on acetoxyisopulegone. Both trans- and
cis-4-acetoxyisopulegone 109 and 110 were found to
isomerize thermally into cis- and trans-2-acetoxyisopulegone
111 and 112. Since the isomerization occurred readily at
200° without any solvent, it was concluded that the
rearrangement should be intramolecular and proceeded by a
cyclic transition state (i.e. mechanism DD).

Therefore, symmetric intermediate with substantial
carbonium ion character (mechanism BB) explains in a very
satisfactory way the reactivities of various acetoxyketones toward α→α'-transfer and toward external carboxylate ion incorporation. However, none of the other three mechanisms mentioned above can be ruled out. More work on the closely related 2-acetoxycyclohexanone might give a better understanding of α→α'-transfer of acetoxy group (see Chapter III).

(iv) Formation of Δ^5-Cholesten-4-one

Several mechanisms can be proposed for the last stage of the rearrangement. The first possibility is 1,4-elimination of acetic acid from the enol form of 3β-acetoxycholestan-4-one, originally suggested by Fieser. The second possibility is rapid reversible formation of symmetric intermediate (cf. mechanism BB or CC) and slow leakage into the more stable unsaturated ketone.
Δ^5-cholesten-4-one 7 by proton loss.

A third possibility is less likely but still must be considered. It involves 1,2-elimination of acetic acid from 5α-acetoxycholestan-4-one 58 to give the final product 7.

\[\text{AcO} \quad \xrightarrow{\text{AcO}^-} \quad \text{AcO} \]

\[\text{57} \quad \xrightarrow{\text{92}} \quad \text{58} \quad \xrightarrow{\text{7}} \]
Distinction among these three mechanisms is difficult, since the 3β-acetoxy-4-ketone 57 is in rapid equilibrium with the 5α-acetoxy-4-ketone 58. Considering the high ionizing power of acetic acid and the mechanism of abnormal elimination of α-bromoketones, the second mechanism is certainly the most probable one.

It is also of some interest to consider the origin of the minor amounts of unsaturated ketones other than Δ⁵-cholesten-4-one 7 in the acetoxyketone rearrangements. Comparison of the reaction of 2α-acetoxycholestan-3-one 18, 3β-acetoxycholestan-2-one 39 and 4α-acetoxycholestan-3-one 19 at 200-230⁰ revealed that there is definitely more Δ⁴-cholesten-3-one 5 formed in the reactions starting with the 2α-acetoxy-3-ketone 18 or the 3β-acetoxy-2-ketone 39 than in those starting with the 4α-acetoxy-3-ketone 19 (reactions 17, 21, 22, 24, and 25). This observation is consistent with the picture that transformation of the 2α-acetoxy-3-ketone 18 into the 4α-acetoxy-3-ketone 19 proceeds, at least in part, by the symmetric intermediate mechanism (mechanism BB or CC) and the intermediate 83 partly leaks into Δ⁴-cholesten-3-one 5, the more stable one of the two possible unsaturated ketones. For reactions starting with the 4α-acetoxy-3-ketone 19, the compound is converted almost exclusively into Δ⁵-cholesten-4-one 7 by
the more facile interchange and elimination processes before it gets a chance to form the symmetric intermediate 83. The

\[\text{AcO} \quad \text{18} \quad \rightleftharpoons \quad \text{HO-}\text{or}\text{O-}\text{or}\text{C} \quad \rightleftharpoons \quad \text{OAc} \quad \text{19} \quad \text{leakage} \]

5β-series gave similar results. Much more Δ^4-cholesten-3-one 5 was formed in the reaction of 2β-acetoxy-5β-cholestan-3-one 59 than that of 4β-acetoxy-5β-cholestan-3-one 60 (reactions 31 and 29).

Therefore the Δ^4-cholesten-3-one 5 formed in the Δ^1-cholestenone rearrangement (reactions 1 and 4) can be concluded to arise by three distinct paths, partly during the acetolysis of the 2α-bromo-3-ketone 4, partly during the α→α'-transfer of the 2α-acetoxy-3-ketone 18, and partly during the solvolysis of the 4α-acetoxy-3-ketone 19. In all the reactions of α-bromo and α-acetoxy ketosteroids in acetic acid studied, Δ^1-cholesten-3-one 6, Δ^1-5β-cholesten-3-one 85 or Δ^2-cholesten-4-one 11 has never been detected
in the n.m.r. spectra of the crude products. From the t.l.c.
data, these cannot be present in >5% yield.

Thus the formation of unsaturated ketones from bromoketones
and acetoxyketones can be generalized as follows: in acetic
acid, the major product is always the more stable (more
substituted) of the two possible α,β-unsaturated ketones no
matter whether the bromo or the acetoxy substituent is at the
α- or α'-position; in acetone, direct 1,2-elimination is
responsible for unsaturated ketone formation from bromoketones,
and there is no evidence of unsaturated ketones arising from
direct E2-elimination of acetoxyketones.

(v) Conclusion

From the foregoing discussion of the reactions of
bromoketones and acetoxyketones in acetic acid-acetate at
various temperatures, the probable detailed mechanism of
Δ^1-cholestenone rearrangement has been established as
follows: (also see Fig. 2).

(a) Acetolysis of 2α-bromocholestan-3-one 4 or its
4α-isomer 12 occurs around 100$^\circ$ and proceeds by the
symmetric intermediate 83 to give a mixture of 2α- and
4α-acetoxycholestan-3-one 18 and 19 in approximately equal
amounts. Both 18 and 19 were shown to be the precursors
of Δ^5-cholesten-4-one 7.
(b) For the conversion of 2α-acetoxycholestan-3-one 18 into Δ⁵-cholesten-4-one 7, the transformation of 18 into its 4α-isomer 19 by α→α'-transfer of the acetoxy group is the rate determining step. The transfer reaction is not operative until the temperature is ca. 200°C.

(c) Interchange of functional groups in 4α-acetoxycholestan-3-one 19 takes place at 170°C. Once 3β-acetoxycholestan-4-one 57 is formed, it converts readily into Δ⁵-cholesten-4-one 7 at 170°C.

(d) At temperature as low as 135°C, 3β-acetoxycholestan-4-one 57 is in rapid equilibrium with 5α-acetoxycholestan-4-one 58, and converts slowly into the final product 7. The formation of Δ⁵-cholesten-4-one 7 from 57 or 58 probably proceeds by the symmetric intermediate 92 although other pathways such as direct 1,4-elimination of acetic acid from the enol form of the 3β-acetoxy-4-ketone 57 and ester pyrolysis of the 5α-acetoxy-4-ketone 58 are also possible.

(e) Reversible conversion of 2α-acetoxycholestan-3-one 18 into 3β-acetoxycholestan-2-one 39 occurs readily around 135°C. Because of the greater thermodynamic stability of the 3β-acetoxy-2-ketone 39, it serves as a reservoir for the 2α-acetoxy-3-ketone 18. This interchange reaction has
no net effect on the \(h-\Delta^1 \)-cholestenone rearrangement.

(f) The symmetric intermediate 83 formed during the acetolysis of 2\(\alpha \)- or 4\(\alpha \)-bromo-3-ketone 4 or 12 and during the interconversion between 2\(\alpha \)- and 4\(\alpha \)-acetoxy-3-ketone 18 and 19 partly leaks into the unsaturated ketones \(\Delta^4 \)-cholesten-3-one 5 and \(\Delta^1 \)-cholesten-3-one 6. \(\Delta^4 \)-ChOLESTEN-3-one 5 is formed in much larger amount since it is more substituted than \(\Delta^1 \)-cholesten-3-one 6.

The present knowledge of the \(h-\Delta^1 \)-cholestenone rearrangement can be summarized in the following energy profile. A similar diagram can be drawn for compounds in the 5\(\beta \)-series.
With the intermediates of the \(h-\Delta^1 \)-cholestenone rearrangement convincingly established at this point, one would predict that all ring-A \(\alpha \)-bromoketones and \(\alpha \)-acetoxyketones in both the 5\(\alpha \)- and 5\(\beta \)-series should yield \(\Delta^5 \)-cholesten-4-one \(7 \) on treatment with potassium acetate-acetic acid at the appropriate temperature. This is indeed the case as shown by Table I to Table IV. The most dramatic result is that of 2\(\alpha \)-bromocholestan-1-one \(89 \). Although this compound resisted acetolysis in refluxing acetic acid-acetate, at 200-210\(^\circ \) it gave \(\Delta^5 \)-cholesten-4-one \(7 \) in good yield. Thus the functional groups did move around the ring from the 1- and 2-positions to the 4- and 5-positions by successive interchanges and \(\alpha \rightarrow \alpha' \)-transfers! The only acetoxyketone detected in the reaction mixture was

\[
\begin{align*}
\text{Br} & \quad \rightarrow \quad \text{OAc} \\
89 & \quad \rightarrow \quad 90 \\
& \quad \rightarrow \quad 87 \\
& \quad \rightarrow \quad 39 \\
\text{OAc} & \quad \rightarrow \quad \text{OAc} \\
18 & \quad \rightarrow \quad 19 \\
& \quad \rightarrow \quad 57 \\
& \quad \rightarrow \quad 7
\end{align*}
\]
3β-acetoxycholestan-3-one 39, just as one would have predicted from the evidence presented above that the rate-determining step of the Δ^1-cholestenone rearrangement is conversion of the 2α-acetoxy-3-ketone 18 into the 4α-acetoxy-3-ketone 19 and that 3β-acetoxy-2-ketone 39 serves as a reservoir for the 2α-acetoxy-3-ketone 18 because of the relative thermodynamic stability.
CHAPTER III

DEGENERATE REARRANGEMENT OF 2-ACYLOXYCYCLANONES

From the discussion in Chapter II, it is seen that interchange of the functional groups and $\alpha\rightarrow\alpha'$-transfer of the acetoxy group in acetoxyketones are the essential steps in the transformation of ring-A α-acetoxyketosteroids into Δ^5-cholesten-4-one 7. The interchange step was clearly demonstrated to operate in 2α-acetoxycholestan-3-one 18, 4β-acetoxy-5β-cholestan-3-one 60, and 2β-acetoxy-5β-cholestan-3-one 59 on treatment with refluxing acetic acid-potassium acetate mixture. However, $\alpha\rightarrow\alpha'$-transfer reaction was demonstrated unambiguously only in one case, 3β-acetoxycholestan-4-one 57 and 5α-acetoxycholestan-4-one 58 in refluxing acetic acid-acetate medium. For all other acetoxyketones studied, no $\alpha\rightarrow\alpha'$-transfer product was actually isolated. As mentioned in the last chapter, the 3β-acetoxy-4-ketone 57 and the 5α-acetoxy-4-ketone 58 have the special structural feature of the α- and α'-positions being secondary and tertiary, in contrast to the secondary-secondary nature of all of the other acetoxyketones.
Since α→α'-transfer of halogen of α-haloketones has only been demonstrated in the presence of hydrogen bromide or chloride, it was of interest to investigate in detail the related α→α'-transfer of the acetoxy group of α-acetoxyketones in acetic acid-acetate medium.

The failure to detect the α→α'-transfer product from most α-acetoxyketosteroids must be attributed to the drastic conditions required for the transfer reaction and the faster rates of subsequent steps. For example, once the 2α-acetoxy-3-ketone 18 was transformed into the 4α-acetoxy-3-ketone 19 by α→α'-transfer at ca. 200⁰C, the latter readily underwent a further interchange reaction and irreversible elimination of acetic acid to give the final product Δ⁵-cholesten-4-one 7 because of the tertiary nature of the 5-position. A good choice for the study of the interchange and the transfer reactions of α-acetoxyketones without the complication by elimination would be 2-acetoxycyclanones 104(n) with all of the carbon atoms being secondary. Although both the interchange and the transfer reactions are degenerate in unsubstituted 2-acetoxycyclanones 104(n), the simultaneous operation of these two reactions should cause the carbonyl and acetoxy groups to pirouette around the ring in a rearrangement which is easily revealed by deuterium exchange or carbon-label scrambling. If the
reaction is carried out in deuterated acetic acid-acetate medium, every ring hydrogen will be labilized after successive rearrangement and the molecule will be perdeuterated. If the reaction is started with acetoxy cyclanone104(n) labelled at one specific carbon atom of the ring, the probability of finding the label at every carbon atom of the ring will be equal.

On the other hand, if neither the interchange nor the transfer process occurs, three deuterium atoms, at most, would be incorporated into the ring and the carbon label would remain at the original place. If only the interchange process takes place, a maximum of five deuterium atoms can be incorporated into the ring and only two carbon atoms would be labelled.
Deuterium exchange experiments were carried out first since it did not require the preparation of carbon-labelled acetoxyketones and could be done with acetic acid-d$_4$ and potassium acetate-d$_3$.

The relative intensity of the C-H and C-D stretching modes in the i.r. spectrum of the acetoxyketones (2930, 2860 cm$^{-1}$ for C-H; 2210, 2110 cm$^{-1}$ for C-D) is useful for qualitative estimation of the extent of deuteration, especially since non-α C-D stretching is found to be stronger than α C-D stretching.

Since all of the ring protons except that at the 2-position of the acetoxycyclanones have similar chemical shifts and are strongly coupled to adjacent protons, the n.m.r. spectrum can be used for quantitative estimation of deuterium exchange in these compounds only by comparison with an added calibration standard. Besides, the value obtained in this way is only the average number of deuterium atoms incorporated into the molecule. Accurate quantitative calculation of deuterium incorporation was made by mass spectroscopy. The molecular ion peak of most acetoxycyclanones is very weak because the molecule loses the acetyl group (CH$_3$CO-) very readily on electron bombardment to give the M-CH$_3$CO$^+$ peak of moderate intensity. Fortunately, there are no peaks just lower than
M-CH₃CO⁺ and no peaks between the M-CH₃CO⁺ and the molecular ion peaks to complicate the analysis, and therefore calculations based on the M-CH₃CO⁺ ion signal should give the extent of ring deuteration accurately. In confirmation, for 2-acetoxytrocyclohexanone 104(6), in which the molecular ion peak is fairly strong, calculations based on both the M⁺ peak and the M-CH₃CO⁺ peak give identical results for ring deuteration. One great advantage of mass spectroscopic analysis over n.m.r. analysis is that the former gives not only the deuterium content but also the relative distribution of deuterated species.

The first reaction examined was the deuterium exchange of 2-acetoxytrocyclohexanone 104(6) since it has the same ring as the steroid acetoxyketones and has been reported to be stable to 180° in the absence of activated carbon. For reaction at 140°, partially deuterated 2-acetoxytro-cyclohexanone 104(6) was obtained in 22% yield after purification. Mass spectroscopic analysis showed that the ring was mainly tri- and penta-deuterated (reaction 40). No significant amount of more highly deuterated species was observed. Therefore only the interchange of functional groups occurs at 140°, consistent with the result in the steroid series.

Treatment of 2-acetoxytrocyclohexanone 104(6) with potassium acetate-d₃ in acetic acid-d₄ at 220° gave a 13%
TABLE VII
DEUTERIUM EXCHANGE OF ACYLOXYCYCLANEGES

<table>
<thead>
<tr>
<th>reaction</th>
<th>compound</th>
<th>temperature (°)</th>
<th>time (hr.)</th>
<th>yield</th>
<th>extent of ring deuteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d_{10} (1.4), d_{11} (2.4), d_{12} (3.7), d_{13} (5.7), d_{14} (6.7), d_{15} (6.3), d_{16} (7.9), d_{17} (10.8), d_{18} (10.8), d_{19} (15.4), d_{20} (15.7), d_{21} (10.4)</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>133-135°</td>
<td>6</td>
<td>4a</td>
<td>d_{9} (2.6), d_{1} (6.8), d_{2} (29.3), d_{3} (52.7), d_{4} (2.9), d_{5} (4.1)</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>220°</td>
<td>15</td>
<td>0b</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>140°</td>
<td>12</td>
<td>34c, 22d</td>
<td>d_{2} (12.8), d_{3} (44.5), d_{4} (12.0), d_{5} (29.7)</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>220°</td>
<td>14</td>
<td>17c, 13d</td>
<td>d_{5} (1.6), d_{6} (6.1), d_{7} (21.9), d_{8} (37.8), d_{9} (32.1)</td>
</tr>
<tr>
<td>42e</td>
<td></td>
<td>215°</td>
<td>48</td>
<td>6e, 7d</td>
<td>d_{3} (2.4), d_{4} (9.1), d_{5} (16.8), d_{6} (22.1), d_{7} (26.3), d_{8} (10.2), d_{9} (13.1)</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>240°</td>
<td>20</td>
<td>10a, 5f</td>
<td>d_{3} (4.7), d_{4} (18.2), d_{5} (31.3), d_{6} (13.1), d_{7} (16.3), d_{8} (6.5), d_{9} (4.9), d_{10} (2.6), d_{11} (1.4)</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>240°</td>
<td>40</td>
<td>14a</td>
<td>d_{3} (7), d_{4} (27), d_{5} (50), d_{6} (3), d_{7} (5)</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>240°</td>
<td>40</td>
<td>22a</td>
<td>d_{3} (3.3), d_{4} (1.6), d_{5} (1.6), d_{6} (2.7), d_{7} (5.3), d_{8} (12.5), d_{9} (14.2), d_{10} (25.7), d_{11} (9.8), d_{12} (13.5), d_{13} (3.4), d_{14} (3.8), d_{15} (1.1), d_{16} (1.0)</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>240°</td>
<td>57</td>
<td>29g</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>150°</td>
<td>40</td>
<td>65h</td>
<td>d_{2} (3.8), d_{3} (24.2), d_{4} (14.0), d_{5} (58)</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>170°</td>
<td>43</td>
<td>26h</td>
<td>d_{3} (2.1), d_{4} (19.2), d_{5} (78.7)</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>180-185°</td>
<td>43</td>
<td>1.9h</td>
<td>mainly d_{5}</td>
</tr>
</tbody>
</table>

aAfter bulb-to-bulb distillation bBy g.l.p.c. analysis cAfter purification by thick layer dAfter purification by thick layer and bulb-to-bulb distillation eIn acetic acid-d_{4} only
fAfter purification by bulb-to-bulb distillation and preparative g.l.p.c. gAfter purification by sublimation hAfter recrystallization, m.p. 84-85.5°
yield of deuterated compound after purification (reaction 41). The mass spectrum revealed that there was complete equilibration among the ring protons and external deuterium, consistent with the expectation that $\alpha\alpha'$-transfer of the acetoxy group would occur around 220°.

In parallel runs where potassium acetate in acetic acid was used instead of potassium acetate-d_3 in acetic acid-d_4, 2-acetoxy cyclohexanone $104(6)$ was recovered in much higher yield (77% for 140° reaction, 22% for the 220° reaction). The reason for such a big difference in yields is unclear, but might be attributed to some small amount of impurity in either the acetic acid-d_4 or the potassium acetate-d_3.

It should be pointed out that potassium acetate is not essential for the complete deuteration of the ring. A control experiment with 2-acetoxy cyclohexanone $104(6)$ in acetic acid-d_4 alone at 215° also gave the perdeuterated product, although in a somewhat lower yield and at a slower rate (reaction 42).

The reaction of 2-acetoxy cyclohexanone $104(6)$ with potassium acetate in propionic acid gave the same result as obtained from the steroid compounds 2α-acetoxycholestan-3-one 16 and 3α-acetoxycholestan-4-one 21. No incorporation of propionoxyl group was observed at 140°, a condition under which the interchange of functional groups occurs readily.
as shown by the deuterium exchange experiment, thus confirming that the interchange reaction was intramolecular. At 220°, there was complete equilibration between acetoxyl and propionoxyl groups, consistent with the α-α'-transfer being intermolecular, but in no way excluding its being intramolecular.*

Although complete deuteration of the ring is an indication that both the interchange and the α-α'-transfer reactions of acetoxyketone occur at 220°, there are other conceivable ways to explain the result. One obvious alternative is homoenolization of the ketone. Combined with the interchange process, it could give rise to complete deuterium exchange.

Homoenolate ion **114** has been advanced by Nickon and coworkers⁵² to account for the racemization and deuterium incorporation of camphenilone **113** with potassium t-butoxide in t-butyl alcohol at 185°. Compared to the acetic

Preliminary results by Warnhoff and Ouchi indicate that intramolecular α-α'-transfer is a possible pathway, since C-acetoxy cyclohexanone is almost completely scrambled when heated in toluene at 250°.
acid-acetate reagent used in our study, Nickon's reagent is undoubtedly much stronger for proton abstraction. Besides, the rigid ring system of camphenilone 113 is ideally constructed for 6-exo-proton abstraction to form the homoenolate, whereas the more flexible 2-acetoxycyclohexanone 104(6) has to sacrifice a certain amount of entropy to attain the required geometry.

\[\text{RO}^- \quad \overset{\text{H}}{\leftrightarrow} \quad \overset{\text{O}}{\leftrightarrow} \quad \overset{\text{O}}{\leftrightarrow} \quad \overset{\text{O}}{\leftrightarrow} \]

The easiest way to distinguish between a homoenolate pathway and an α-α'-transfer pathway is by carbon atom labelling. If homoenolate formation alone were responsible for exchange of ring protons, the carbon label would be distributed only between two positions.

Between 13C- and 14C-labels, we chose the former for two main reasons. Firstly, it is well known that 13C-n.m.r. spectroscopy can be used to locate the 13C-label at each position of the ring without having to do preliminary degradative work; whereas with 14C-label, the known degradative schemes do not distinguish between C-1 and C-2, C-3 and C-6, C-4 and C-5. Secondly, 13C-n.m.r. spectroscopy
is available in our department. Moreover, with the 60% ^{13}C enrichment to be used in our study, carbon-label scrambling can be qualitatively followed by i.r. at the same time, since the $^{12}\text{C}=\text{O}$ and $^{13}\text{C}=\text{O}$ stretching modes are well separated (1730 and 1690 cm$^{-1}$ respectively).

All ^{13}C-n.m.r. spectra were determined by Dr. J. B. Stothers and Dr. M. Gordon in this Department. The spectra were run in benzene solution with double irradiation to remove proton coupling effects. The eight carbon atoms of 2-acetoxy cyclohexanone 104(6) with ^{13}C in natural abundance give rise to well-separated signals (Fig. 3). With reference to the chemical shifts of cyclohexanone 115(6) and cyclohexyl acetate 116, the eight peaks of 2-acetoxy cyclohexanone 104(6) were tentatively assigned as follows:

The figures in the formula are chemical shifts in ppm from TMS. The assignments for all positions except C-4 and C-5 were confirmed by the spectra of the partially deuterated
\[\text{at 217° for 22 hr.} \]
and the carbon-labelled compounds to be described later.

13C-Enriched 2-acetoxyctclohexanone 104(6) was prepared by epoxidation and thermal rearrangement of the enol acetate of cyclohexanone 115(6) with 60% 13C enrichment at the carbonyl carbon. In the n.m.r. spectrum of the enriched 2-acetoxyctclohexanone, only the peak of δ_C 203.1 was enhanced. The C-2 and C-6 signals clearly showed 13C-13C coupling (Fig. 4). Thus the carbon label was exclusively located at the C-1 position and this compound is unambiguously 2-acetoxyctclohexanone-1-13C (60%) 104(6)-1-13C (60%).

When this 2-acetoxyctclohexanone-1-13C (60%) was treated with potassium acetate-acetic acid at 142-144° for 12 hours, a 77% yield of crystalline material was recovered after purification. In the n.m.r. spectrum of this sample, the peaks at δ_C 203.1 (C-1) and 76.7 (C-2) were both enhanced (Fig. 5). Moreover, the relative intensity of 13C=O to 12C=O stretching modes in the i.r. spectrum of this sample was diminished to about one half of that of the starting material (Figs. 7b and 7c). The distribution of carbon label between C-1 and C-2 positions confirms the conclusion deduced from deuterium exchange work that at 140° only interchange of functional groups occurs.

When 2-acetoxyctclohexanone-1-13C (60%) with no detectable enrichment at other carbons was treated with potassium acetate-acetic acid at 220° for 22 hours,
crystalline material was recovered in 22% yield. The $^{13}\text{C}-\text{n.m.r.}$ spectrum of the sample revealed that the carbon-label was distributed around the six carbon atoms of the ring (Fig. 6). I.r. spectrum also showed a big decrease in the ratio of $^{13}\text{C}=$O to $^{12}\text{C}=$O stretching intensity (Fig. 7b and 7d). To our mind, α-α'-transfer of the acetoxy group combined with the interchange process is the only credible explanation compatible with complete scrambling of carbon label around the ring.

Therefore homoenolate formation was ruled out as the only pathway responsible for complete deuteration of the ring. Positive exclusion of homoenolization in acetic acid-acetate medium could be tested on a suitably substituted cyclohexanone derivative such as 2-methoxycyclohexanone 117.

![117]

With both the deuterated and carbon-labelled samples available, the $^{13}\text{C}-\text{n.m.r.}$ assignment of 2-acetoxy cyclohexanone 104(6) can be discussed in more detail. Because the $^{13}\text{C}-\text{n.m.r.}$ spectrum was obtained only with complete proton decoupling, the partially deuterated compound, 2-trideuterio acetoxycyclohexanone-2,3,3,6,6-d$_5$ obtained from
deuterium exchange at 140°, is very useful for analysis of 13C-n.m.r. spectra. Only four sharp peaks at δ_c 23.9, 27.3, 169.1 and 203.1 were observed. Since C-2, C-3, C-6 and the methyl carbon in the acetoxy group are coupled with deuterium ($J_{13C-D} \sim 20$Hz.) and since the ketone carbonyl absorbs at lower field than the ester carbonyl, the absorptions at 203.1 and 169.1 ppm arise from C-1 and the acetoxy carbonyl respectively, as expected from the model compounds 115(6) and 116, and the absorptions at 23.9 and 27.3 should belong to C-4 and C-5. The assignment of the 203.1 absorption to C-1 was further confirmed by the spectrum of 2-acetoxyxyclohexanone-1-13C (60%) 104(6)-1-13C-(60%) (Fig. 4). In addition to the peak at δ_c 203.1 being enhanced, patterns at 40.7 and 76.7 each appear as an overlapping doublet and singlet instead of the simple sharp singlets in the spectrum of the compound with 13C in natural abundance. Since the doublets with coupling constants 40 Hz., clearly are due to 13C-13C coupling because of the 60% enrichment of 13C at the C_1-position, absorptions at 76.7 and 40.7 must come from C-2 and C-6. The 76.7 peak
was shown to belong to C-2 by the spectrum of the mixture of 2-acetoxy cyclohexanone-1-13C and 2-acetoxy cyclohexanone-2-13C obtained from the interchange reaction at 142-144° (Fig. 5). Peaks at δ_c 203.1 and 76.7 were enhanced and peaks at 40.7 and 33.3 ppm were split. Therefore the peaks centered at 40.7 come from C-6 and those at 33.3 from C-3. The highest field peak at 20.4 must arise from the methyl carbon of the acetoxyl group. The only uncertainty remaining is the distinction between C-4 and C-5 at 23.9 and 27.3 ppm.

Besides mechanistic interest, the acetoxyketone rearrangement, especially in the monocyclic series, could prove useful in the preparation of deuterium and carbon-labelled compounds since there are not many known reactions that give complete deuteration or carbon-scrambling of cycloalkane derivatives. With this possibility in mind, 2-acetoxy cyclanones $104(n)$ of other ring sizes ($n=5,7,8,9,12$) were prepared and their deuterium exchange reaction examined.

Table VII summarizes the deuterium exchange results of 2-acyloxy cyclanones. Except for 2-acetoxy cyclopentanone $104(5)$, acetoxy cyclanones $104(n)$ of other ring sizes studied (i.e. $n=6,7,8,9,12$) undergo pentadueteration in the ring at reflux temperature of acetic acid-acetate mixture,
indicating that keto acetate interchange takes place in all of these compounds. When 2-acetoxycyclododecanone $^{104(12)}$ was treated with deuterated acetic acid-acetate at 240° for 57 hours, the acetoxyketone was recovered in 22% yield. Mass spectroscopic analysis revealed that there was complete equilibration between ring protons and the external deuterium source (reaction 46). Thus the α-acetoxyketone grouping did migrate all the way around the annular periphery to introduce twenty-one deuterium atoms into the ring! However, for acetoxyclanones $^{104(n)}$ of medium size ($n=7,8,9$), the ring size plays a major role in the extent of further incorporation of deuterium atoms beyond pentadeuteration (reactions 43, 44 and 45). All of the four mechanisms proposed for the $\alpha+\alpha'$-transfer process require three adjacent carbon atoms of the ring (α-C, C=O, α'-C) to approach trigonal hybridization at the transition state. Comparison of reactions of 2-acetoxyclanones $^{104(n)}$ of various ring sizes revealed that the ease of deuteration ($6>7>8<9<12$) correlates generally with the ease of introduction of three adjacent trigonal centers into carbocycles as judged by other reactions in which this phenomenon can be observed.

Heap and Whitham 56 have shown that the equilibrium constants for medium-ring α,β- and β,γ-unsaturated ketones
118 and 119 depend on the ring size. An increase in ring size from six to nine progressively favors the \(\beta,\gamma \)-unsaturated ketone 119, and it is the more stable isomer in the eight- and nine-membered rings. Hydrolysis of the 1-bromocyclocalk-2-enes 120 also indicated that the rate decreased with increase in ring size from seven to nine. Heap and Whitham rationalized these two observations by the torsional effects and non-bonded interactions generated in medium-size rings when three adjacent carbon atoms are forced into trigonal hybridization state. However, since the yield of the recovered acetoxycyclanones 104(n) for \(n=7,8,9 \) are rather poor (reactions 43, 44 and 45), the question of whether the correlation results solely from the changing rate of the \(\alpha \rightarrow \alpha' \)-transfer reaction, or whether the acetoxyketone 104(n) is drained off into side products is not yet answered. The extremely slow rate of deuteration and the poor yield observed for 2-acetoxydicyclopentanone 104(5) (reaction 38) have no satisfactory explanation.

In summary, deuterium exchange experiments of acetoxycyclanones 104(n) indicated that the acetoxyketone
rearrangement can be utilized for the preparation of deuterated or carbon-labelled cycloalkane derivatives in fairly good yields for ring sizes of six and twelve, and probably larger, but only in low yields for ring sizes seven and nine, and cannot be used in eight- or five-membered ring compounds.

The side products for most of the reactions of 2-acetoxycyclanones 104 are either volatile or else non-distillable, since pure 2-acetoxycyclanones 104 were usually obtained by bulb-to-bulb distillation of the crude reaction product. One exception is the seven-membered ring case, g.l.p.c. analysis of the crude product of the reaction of 2-acetoxycycloheptanone 104(7) revealed the presence of two side products A and B in addition to the starting material.

The structures of A and B were elucidated for two reasons: firstly, to find whether they are condensation products; secondly, once their structures are known, insight might be provided into a way to avoid their formation, thus improving the yield in the deuterium exchange reactions.

Treatment of 2-acetoxycycloheptanone 104(7) with acetic acid-acetate at 250° for 2 days gave a 23% yield of distillable material, which was found to contain ca. 40% of A and 30% of B by g.l.p.c. and n.m.r. analysis.
Separation by fractional distillation and column chromatography gave A (95% pure) in 2.6% overall yield and crystalline B in 2.8% overall yield. Although compound A has not been obtained completely pure, its spectroscopic data are consistent with the structure [121]. Both u.v. (λ_{max} 215 nm (ε 10,700)) and i.r. spectra (ν_{max} 1760 cm$^{-1}$) indicated the presence of an α,β-unsaturated γ-lactone grouping. The molecular weight was determined by mass.
spectroscopy to be 152. N.m.r. spectrum (Fig. 8) has doublets at δ 5.99 and 7.45, indicating the presence of two vinylic protons. The formation of 121 from acetoxy-cycloheptanone 104(7) can be formulated as on p. 108 and has the precedent in the recently published transformation of 122 into 123 by acid catalysis.

Structure 124 was assigned to compound B from its spectroscopic data and elemental analysis. Both the u.v. (λ max 227 nm (ε 7,700)) and i.r. spectra (ν max 1445 cm⁻¹) are consistent with the furan structure. Mass spectroscopy revealed the molecular weight to be 204. The tetra-substituted nature of the furan ring was confirmed by the three humps in its n.m.r. spectrum at δ 1.71, 2.31,
and 2.68 ppm in a ratio of 3:1:1 and the absence of low field absorptions.

The furan 124 can be rationalized as a condensation product between cycloheptanone 115(7) and 2-acetoxy-cycloheptanone 104(7) as follows:

Since 124 was formed in ca. 7% crude yield, the cycloheptanone 115(7) required in the condensation scheme can be easily explained by the 5% contamination of cycloheptanone 115(7) known to be present in the starting material, 2-acetoxy-cycloheptanone 104(7).

We have no knowledge of the structure of other products in the reaction of 2-acetoxy-cycloheptanone 104(7) and the
way they are formed, but if these are further transformation products of compound A 121, one obvious way to improve the yield in the exchange reaction would be to use trimethylacetates, isobutyrate or benzoates instead of acetate, since the formation of 121 involves ester condensation as the first step.

In view of the greater tendency of the benzoyloxy group than acetoxy group to serve as a leaving group in pyrolytic reactions, and the lack of α-hydrogen in the benzoyloxy group, 2-benzoyloxy cyclohexanone 125 was expected to undergo more facile degenerate rearrangement and to be subject to fewer side reactions if $\alpha$$\rightarrow$$\alpha'$-transfer of acyl groups is an intramolecular allylic shift (mechanism DD).

Treatment of 2-benzoyloxy cyclohexanone 125 with deuterated acetic acid-acetate at 150$^\circ$ gave a 65% recovery of the benzoyloxyketone 125 which was mainly pentadeuterated (reaction 47). Raising the temperature to 170$^\circ$ and 185$^\circ$ decreased the recovered yield to 26% and 1.5% respectively, and the amount of 2-acetoxycyclohexanone 104(6) increased correspondingly, but no more than five deuterium atoms were incorporated into the recovered benzoyloxyketone 125. The results indicated that the interchange reaction of 2-benzoyloxy cyclohexanone 125
occurred readily at 150° and was intramolecular, but α-α'-transfer of benzoyloxy group was not much faster than that of the acetoxy group and proceeded at a rate comparable with the intermolecular carboxyl group exchange.

Rearrangement of benzoyloxyketone 125 with potassium benzoate in benzoic acid would be difficult to follow by deuterium exchange. Resort has to be made to carbon-label scrambling work on 2-benzoyloxy-cyclohexanone-1-\(^{13}\)C 125-1-\(^{13}\)C which could be readily made from 2-acetoxy-cyclohexanone-1-\(^{13}\)C 104(6)-1-\(^{13}\)C.
CHAPTER IV
PREPARATION OF COMPOUNDS

(i) Steroid Compounds

The α-bromo and α-acetoxy ketosteroids used in the present study were all prepared by well-established procedures. Chart I and Chart II outline the synthetic scheme for α-bromo and α-acetoxy ketosteroids respectively. Comments in this section are mainly confined to improvements discovered in the course of our work.

Cholestanones

5β-Cholestan-3-one 1. It has been known for a long time that presence of acid or base has a big effect on the stereochemical course of hydrogenation of α,β-unsaturated ketones.\(^{58}\) Hydrogenation of Δ^4-cholesten-3-one 5 in ethyl acetate in the presence of palladium on charcoal gave 5β-cholestan-3-one 1 and cholestan-3-one 2 in a ratio of ca. 4:1. With Nishimura's\(^{59}\) modification, acetic acid containing small amount of hydrobromic acid was used as solvent, 5β-cholestan-3-one 1 was obtained in 95% purity and the product was readily recrystallizable.

114
Chart I

\[\text{2} \rightarrow \text{4} \]

\[\text{32} \rightarrow \text{12} \]

\[\text{89} \]

\[\text{88} \]

\[\text{86} \]

\[\text{82} \]
Chart II

2 \[\rightarrow\] 30 \[\rightarrow\] 18

32 \[\rightarrow\] 33 \[\rightarrow\] 34 \[\rightarrow\] 19

21 \[\rightarrow\] 57

58

1 \[\rightarrow\] 59
Cholestenones

\[^1 \text{Cholesterol-3-one } 6 \]. Crystalline \[^1 \text{cholestone-3-one } 6 \], m.p. 96–99°, has been prepared by Green and Long\(^60\) in 82% yield on treating 2α-bromo-cholestan-3-one 4 with calcium carbonate in boiling dimethylacetamide. However, in our hands, the crude product was shown by n.m.r. to be a mixture of ca. 30% of \[^4 \text{cholestone-3-one } 5 \] and 70% of \[^1 \text{cholestone-3-one } 6 \]. Three recrystallizations gave \[^1 \text{cholestone-3-one } 6 \] which is free from \[^4 \text{cholestone-3-one } 5 \] in 42% yield.

Cholestenes

\[^1 \text{Cholestene. A sample prepared from the lithium aluminum hydride-aluminum chloride reduction of } \]
\[^1 \text{cholestone-3-one } 6 \] was contaminated by ca. 30% of \[^2 \text{cholestone} \] as revealed by n.m.r. and t.l.c. data. Since neither chromatography on alumina nor recrystallization gave much fractionation, it was used as such in the epoxidation reaction. In an attempted preparation of \[^1 \text{olefin} \], Striebel and Tamm found that treatment of the thioethylene ketal of \[^1 \text{cholestone-3-one } 6 \] with Raney-nickel gave \[^2 \text{cholestone} \] as the only isolable product.\(^62\)

\[^3 \text{Cholestene. Preparation of } ^3 \text{cholestone from} \]
\(\Delta^4 \)-cholesten-3-one 5 by hydroboration-elimination\(^63\) is much more convenient than by zinc-dust reduction of this conjugated ketone,\(^64\) especially on a large scale. \(\Delta^3 \)-Cholestene was obtained in higher yield and purity by the first method. The main side-product in both reactions is \(\Delta^3 \)-5\(\beta \)-cholestene, arising from initial \(\beta \)-attack at C-5.

\(\Delta^4 \)-Cholestene 10. Lithium aluminum hydride-aluminum chloride reduction of \(\Delta^4 \)-cholesten-3-one 5 gave \(\Delta^4 \)-cholestene, which was contaminated by ca. 10% of \(\Delta^3 \)-5\(\beta \)-cholestene. The crude product was easily purified by recrystallization.

Epoxides

1\(\alpha \),2\(\alpha \)-Oxidocholestane. The mixture of 1\(\alpha \),2\(\alpha \)-oxidocholestane and 2\(\alpha \),3\(\alpha \)-oxidocholestane 28 obtained by epoxidation of impure \(\Delta^1 \)-cholestene cannot be separated by recrystallization. A pure sample was obtainable in low yield by separation on thick layer. The melting point of the pure sample (94–95\(^\circ \)) was higher than that reported in the literature (89–90\(^\circ \)).\(^61\)

A better way for separating the above mixture was found during preparation of bromohydrins from the epoxides. It was found that 2\(\beta \)-bromcholestan-1\(\alpha \)-ol was more readily converted into epoxide on silica gel than 2\(\beta \)-bromcholestan-3\(\alpha \)-ol. Thus the mixture of bromohydrins prepared from crude 1\(\alpha \),2\(\alpha \)-oxidocholestane was readily separated by thick layer
chromatography into pure $1\alpha,2\alpha$-oxidocholestan-3ol in quantitative yields.

4α,5α-Oxidocholestan. Because of the special location of the double bond, Δ^4-cholestan is subject to β-side attack as well as α-side attack, in contrast to Δ^1-, Δ^2-, Δ^3-, Δ^5-cholestenes, which are approached predominately from the α-side. The ratio of α-side attack to β-side attack was found to be subject to subtle changes in the medium. When Δ^4-cholestan was epoxidized in chloroform according to the procedure of Heilbron,66 the crude product was a mixture of 4α,5α-oxidocholestan and 4β,5β-oxidocholestan in a ratio of ca. 7:3. However, change of chloroform to carbon tetrachloride altered the ratio to ca. 9:1, and isomerically pure 4α,5α-oxidocholestan was obtained in 70% yield after one recrystallization.
Enol Acetates and Oxido Acetates

3-Acetoxycholest-2-ene (cholestan-3-one Δ^2-enol acetate) and 3-acetoxy-5β-cholest-3-ene (5β-cholestan-3-one Δ^3-enol acetate). Although it has been well established that cholestan-3-one 2 prefers Δ^2-enolization and 5β-cholestan-3-one 1 prefers Δ^3-enolization, the enol acetates prepared from 2 and 1 by treatment with isopropenyl acetate in the presence of sulfuric acid catalysis are not pure: 3-acetoxycholest-2-ene is contaminated by ca. 10% of 3-acetoxycholest-3-ene; 3-acetoxy-5β-cholest-3-ene is contaminated by ca. 10% of 3-acetoxy-5β-cholest-2-ene. Moreover, the isomers are not separable by recrystallization.

Since we were interested only in the acetoxyketones, impure enol acetate was used for the next epoxidation step. The oxido acetate mixtures were easily separable by recrystallization.

Bromoketones

2α-Bromocholestan-3-one 4. 2α-Bromocholestan-3-one 4 prepared from cholestan-3-one 2 by bromination in acetic acid is always contaminated by 10~20% of the parent ketone even if more than one equivalent of bromine was added. The main trouble arises from the co-precipitation of cholestan-3-one 2 with 2α-bromocholestan-3-one 4 during the reaction. When carbon tetrachloride was used as the solvent
and a little more than one equivalent of bromine was added, the crude reaction mixture was mainly 2α-bromocholestan-3-one 4 plus a small amount of 2α,4α-dibromocholestan-3-one. No trace of the parent ketone was detectable from t.l.c. The small amount of dibromoketone was easily separated by recrystallization.

2β-Bromo-5β-cholestan-3-one 82. The simplest way to prepare this compound from the parent ketone 5β-cholestan-3-one 1 is the dibromination-debromination scheme, which has been used successfully by Williamson and Johnson 22 to prepare the 4α-bromocholestan-3-one 12 in almost quantitative yield from cholestan-3-one 2. By using a large excess of chromous acetate for a short period of time for the debromination step, 2β-bromo-5β-cholestan-3-one 82 was prepared from 5β-cholestan-3-one 1 in 60% yield.

Acetoxyketones

3β-Acetoxycholestan-4-one 57. In contrast to other acetoxyketones, for which the axial-equatorial isomerization was cleanly effected by hydrochloric acid in acetic acid, treatment of 3α-acetoxycholestan-4-one 21 with hydrochloric acid in acetic acid gave a very complex product mixture, probably due to the tertiary nature of C-5. However,
3α-acetoxycholestane-4-one \(^{21}\) was converted by refluxing acetic acid-acetate into the equatorial isomer, 3β-acetoxycholestan-3-one \(^{57}\) in good yield, the only detectable side-products being \(^{5}\)-cholesten-4-one \(^{7}\) and minute amount of 5α-acetoxycholestan-4-one \(^{58}\).

(ii) **Acyloxycyclanones**

All acyloxycyclanones used in the present work were prepared from the hydroxycyclanones or the parent cyclic ketones. In the case of 2-acetoxy cyclohexanone \(^{104}(6)\), 2-acetoxy cyclononanone \(^{104}(9)\) and 2-benzoyloxy cyclohexanone \(^{125}\) where the corresponding hydroxyketones were readily available, direct acylation with acetic anhydride or benzoyl chloride gave the desired products in high yields.

In cases where the parent cyclic ketones were the starting material, there were three routes to the acetoxyketones.

(a) **Acetoxylation with lead tetra-acetate**: Treatment of symmetric cyclic ketones with one molar equivalent of lead tetra-acetate gave a mixture of \(\alpha\)-acetoxyketone, \(\alpha,\alpha'\)-diacetoxyketone and starting material, which were usually easily separated by fractional distillation. This is the simplest of the three routes and is the method of choice if the starting ketone is readily available. The
only disadvantage is the fact that there is always some diacetoxyketone formed and it is tedious to recycle the unreacted ketone. Yields after purification without recycling usually range from 20% to 30% except for the very poor yield (6%) from cyclopentanone 115(5).

(b) **Via** enol acetate and oxido acetate: Enol acetates were prepared from the parent ketone by acid-catalyzed reaction with isopropenyl acetate in 85-90% yield. Epoxidation and subsequent thermal rearrangement afforded the desired acetoxyketone in 60-70% yield. This is certainly the preferred route when the starting ketone is the limiting factor, e.g., with carbon-labelled compounds.

(c) **Via** chloroketone: For unsymmetric ketones such as 2-methylcyclohexanone, chlorination with sulfuryl chloride, followed by treatment with potassium acetate in acetic acid gave mainly the thermodynamically more stable isomer of the two possible α-acetoxyketones, whereas lead tetra-acetate acetoxylation described above gave approximately equal amounts of the two possible isomers. For symmetric ketones, route (a) and (b) are the methods of choice since the chloroketone pathway is a two step synthesis and the first step is subject to dichlorination.
(iii) Cyclohexanone-1-^{13}C \text{115(6)}-1-^{13}C

After an extensive survey of the literature, two routes, both starting with 1,5-dibromopentane \text{126} seemed to be most suitable for the synthesis of cyclohexanone labelled at C-1. Reaction of 1,5-dibromopentane \text{126} with labelled potassium

Route A

\[
\begin{array}{c}
\text{Br} \quad \text{Br} \\
\text{2K}^{*}\text{CN} \\
\text{126} \\
\end{array}
\quad
\begin{array}{c}
\text{NC}^{*} \\
\text{127} \\
\text{H}_2\text{O} \\
\text{128} \\
\text{BaO} \\
\end{array}
\quad
\begin{array}{c}
\text{CO}_2\text{H} \\
\text{115(6)} \\
\end{array}
\]

Route B

\[
\begin{array}{c}
\text{Br} \quad \text{Br} \\
\text{4Li} \\
\text{126} \\
\end{array}
\quad
\begin{array}{c}
\text{Li} \\
\text{129} \\
\text{Li}^{*}\text{CO}_2 \\
\text{130} \\
\text{H}_2\text{O} \\
\end{array}
\quad
\begin{array}{c}
\text{OLi} \quad \text{OLi} \\
\text{115(6)} \\
\end{array}
\]

cyanide, hydrolysis of the resulting dinitrile \text{127} and subsequent pyrolysis of the barium salt of the diacid \text{128} give cyclohexanone \text{115(6)} (route A). Preparation of 1,5-dilithiopentane \text{129} and treatment with labelled carbon dioxide give cyclohexanone \text{115(6)} directly upon hydrolysis (route B).

Route B is the method of choice for \text{13}C-labelled compound although most of the cyclohexanone-1-^{14}C
$^{115}(6)-1^{-14}C$ reported in the literature has been synthesized by route A. The major disadvantages of route A are the requirement of two moles of labelled cyanide per mole of cyclohexanone and the high cost of ^{13}C-labelled potassium cyanide ($1,000 per gram of ^{13}C, 60% enrichment). For route B, only one mole of carbon dioxide is used up for one mole of cyclohexanone produced, and labelled carbon dioxide can be easily generated from the much cheaper ^{13}C-labelled barium carbonate ($300 per gram of ^{13}C, 60% enrichment).

Preparation of cyclohexanone $^{115}(6)$ in ca. 20% yield by route B was originally discovered by West and Rochow. Because of the cost of ^{13}C-labelled carbon, yield was also of importance in our synthesis of cyclohexanone-$1^{-13}C$ $^{115}(6)-1^{-13}C$. In an extensive investigation of the reaction, the side reactions were diminished to achieve a reproducible 50% yield of cyclohexanone $^{115}(6)$ based on barium carbonate.

The side products of the reaction by route B were mainly a less volatile compound X and some nondistillable material. Compound X had a retention time about four times longer than that of cyclohexanone $^{115}(6)$ in g.l.p.c. The mass spectrum of X showed a molecular ion at m/e 170 and a fragment ion at 152 (M-18$^+$. There is a weak O-H
absorption at 3500 cm\(^{-1}\) in its i.r. spectrum but no carbonyl absorption. Thus compound X is consistent with the tertiary alcohol structure 131, and probably comes from

\[
\begin{array}{c}
\text{HO} \\
\text{---(CH}_2\text{)}_5\text{CO} \ (\text{CH}_2\text{)}_5\text{CO(CH}_2\text{)}_5\text{CO---}
\end{array}
\]

131 \hspace{1cm} 132

the reaction of cyclohexanone 115(6) with one end of the dilithiopentane 129. The nondistillable material was an amorphous solid, and was only slightly soluble in ether. Its i.r. spectrum showed moderately strong C=O absorption around 1720 cm\(^{-1}\). Thus the nondistillable material must be polymeric ketones 132 arising from intermolecular condensation.

The formation of the tertiary alcohol 131 and the polymeric ketone 132 will be discussed in detail along with the three steps of route B.

(a) 1,5-Dilithiopentane 129. The preparation of 1,5-dilithiopentane 129 from 1,5-dibromopentane 126 and lithium sand in 60-80% yield has been reported by several workers. 68,69 However, in our hands, the reaction of 126 with lithium sand (prepared from BDH 98% or 99.5% lithium rod, or from Foote Mineral Co. high purity lithium ribbon) or lithium dispersion (Lithium Corp. of America) gave
unreproducible low yields (0~20%) of organolithium compound. The main side reaction seemed to be Wurtz-type coupling because the titration value for bromide ion after hydrolysis of the reaction mixture was always quantitative. Since the intermolecular Wurtz-type coupling product would consume some of the carbon dioxide at the carbonation stage and give rise to polymeric material, a high yield of 1,5-dilithiopentane 129 from the dibromide 126 was essential to optimize the yield of cyclohexanone. The problem was solved by adding 2.5% sodium metal to the molten lithium when the sand was made. The same effect of sodium has been observed earlier in the preparation of n-butyllithium and phenyllithium. The reaction of 1,5-dibromopentane 126 with lithium sand containing 2.5% sodium went smoothly at −20°C to give 1,5-dilithiopentane 129 in 75~85% yields. The yields were determined by titration with sec-butyl alcohol, using 1,10-phenanthroline as an indicator.

(b) Carbonation of 1,5-dilithiopentane 129 to the gem-dialkoxide 130. Since barium carbonate was used as the \(^{13}\)C source, 129 was allowed to react with gaseous carbon dioxide to form the gem-dialkoxide 129, which is inert to further attack by alkyllithium. Carbon dioxide was generated gradually in the reaction system in ca. 80~90% yield by the
action of concentrated sulfuric acid on barium carbonate. Most of the unwanted polymeric ketone 132 was formed during the carbonation step, and its formation can be rationalized as follows. Once one end of 1,5-dilithiopentane 129 reacts with carbon dioxide to form 133, there is a competition between intra- and intermolecular reactions. Intramolecular cyclization gives arise to the gem-dialkoxide 130, which yields the desired product cyclohexanone 115(6) on hydrolysis. There are at least two possible intermolecular processes which will lead to polymer formation. Firstly, 133 could react with a new molecule of 1,5-dilithiopentane 129 to give the dimeric species 134, which after further reaction with carbon dioxide or 133, would lead to polymeric material. As far as entropy is concerned,
intramolecular cyclization is preferred to intermolecular reaction for the formation of six-membered rings, i.e., 130 should be formed much faster than 134. Moreover, this intermolecular reaction between 133 and 1,5-dilithiopentane 129 could be suppressed further by working at high dilution of 129. The second intermolecular process is the reaction of 133 with one more molecule of carbon dioxide to form the dicarboxylate 135. Once 135 is formed, it is destined to give rise to polymeric material since there is no intermolecular pathway possible for the dicarboxylate 135 and it will wander around till it reacts with 1,5-dilithiopentane 129 or 133 present in the system no matter how dilute the solution of 129 is. Since a three-body collision is very unlikely, the dicarboxylate 135 has to come from 133, the only way to suppress the formation of 135 is slow passage of carbon dioxide and efficient mixing of the gaseous and liquid phases, i.e., working at high dilution of carbon dioxide. However, even with the efficient stirring device described in the Experimental Section and in a fairly dilute solution (0.17M) of 1,5-dilithiopentane 129, maximum amount of intramolecular reaction is 50%. The persistence of intermolecular reaction might be attributed to the well-known polymeric nature of organolithium compound. Since there are
always other molecules of 1,5-dilithiopentane 129 present after carbon dioxide had reacted with one end of 129 to form 133, the intermolecular process between 133 and 129 within the same cluster would be a facile one. A possible way to solve this problem might be to use a suitable bidentate ligand such as ethyleneglycol dimethyl ether (glyme) or N,N,N',N'-tetramethylethylendiamine (TMEDA) to chelate 1,5-dilithiopentane 129 in the monomeric form. Since chelation decreases the stability of organometallic compounds in ether,82 thus necessitating modification of the carbonation temperature, we have not investigated the use of glyme or TMEDA extensively.

(c) Hydrolysis of the gem-dialkoxide 130. Because carbon dioxide is the limiting agent in the present case, excess 1,5-dilithiopentane 129 is deliberately maintained to the end of the reaction. As pointed out by Jorgenson in a review,73 excess organolithium compound can cause the formation of tertiary alcohol. Since the gem-dialkoxide 130 and 1,5-dilithiopentane 129 hydrolyze at comparable rates,
cyclohexanone liberated from 130 may be taken up by the remaining 1,5-dilithiopentane 129 to give the tertiary alcohol 131. Following Jorgenson's procedure, instead of adding water to the crude reaction mixture, it was hydrolyzed by pouring into a well-stirred solution of dilute hydrochloric acid. In this way the formation of the tertiary alcohol 131 was substantially decreased, but never completely suppressed. In view of the suggestion that the excess organolithium compound could be destroyed after completion of carbonation but before the hydrolytic work-up, methyl iodide was added to consume the excess 1,5-dilithio pentane 129 and it was found that tertiary alcohol formation during the work-up was completely suppressed.

With all the precautions mentioned above, cyclohexanone 115(6) was prepared from 1,5-dibromopentane 126 and carbon dioxide in 50% yield based on barium carbonate.
CHAPTER V

EXPERIMENTAL

General

Melting points were taken on a Reichert-Kofler microscope hotstage. Optical rotations were measured with chloroform solutions, in a 1-dm. tube on a Rudolph Model 80 Polarimeter. Optical rotatory dispersions (O.R.D.) were recorded with chloroform solutions in a 1-cm. quartz cell on a Durrum-Jasco ORD/UV-5 Spectropolarimeter. Infrared spectra were recorded on a Beckman IR-5A or IR-10 Spectrophotometer in carbon tetrachloride solutions. Ultraviolet spectra were taken on a Cary Model 14 Spectrophotometer in 95% ethanol solution. Proton nuclear magnetic resonance spectra (n.m.r.) were determined with deuteriochloroform solutions on a Varian A-60 or T-60 or HA-100 instrument with tetramethyilsilane (TMS) as internal reference. Chemical shifts were reported as δ values in ppm downfield from TMS (δ = 0.00). ¹³C nuclear magnetic resonance spectra were determined with benzene solutions in a 12-mm. tube on a Varian HA-60 instrument operating at 15.1 MHz. internally locked on benzene with proton
noise decoupling. Chemical shifts were reported as δ_c values in ppm downfield from TMS ($\delta_c = 0.0$) using δ_c benzene = 128.7 ppm. Mass spectra were run on Varian M-66 in the department or on Hitachi RMV-6 instruments by Morgan-Schaffer Co., Montreal, Canada.

Gas liquid partition chromatography (g.l.p.c.) was carried out on a Glowall Model 400, fitted with 1.8 m. x 3.4 mm. spiral wound glass column for analysis and a 1.8 m. x 10 mm. column for preparative work. A hydrogen flame detector was used, and in the preparative work, in conjunction with a 50:1 stainless steel splitter. The column packing was 5% diethylene glycol succinate (DEGS) on nonacid-washed 60-80 mesh Chromosorb P.

Fractional distillations were done on a Nestor and Faust 8" micro spinning band or on a Nestor and Faust 18" semi-micro spinning band.

Solutions in organic solvents were dried by washing them with saturated sodium chloride solution and then allowing to stand over anhydrous magnesium sulfate before filtration. Removal of organic solvent was effected on a rotary evaporator under the reduced pressure provided by a water aspirator, with the flask heated by a water bath (40-60°C). Petroleum ether refers to the fraction boiling at 60-80°C unless otherwise specified.
Microanalyses were carried out in the laboratories of A. B. Gygli, Toronto, Canada or in the laboratories of J. F. Alicino, Metuchen, N.J., U.S.A.

Sealed tube reactions were heated in a Fischer HI-TEMP oil bath or in Hans Hosli furnace.

For reactions of steroid compounds with potassium acetate in acetic acid, "work-up" means removal of acetic acid on the rotary evaporator, dilution with water, and extraction with ether, followed by washing the ether layer with 5% aqueous sodium bicarbonate solution until pH>8, drying over magnesium sulfate and removal of ether on the rotary evaporator. For reactions of steroid compounds with tetramethylammonium acetate in acetone, "work-up" means removal of acetone on rotary evaporator, extraction with ether, followed by washing the ether layer with water and saturated sodium chloride solution, drying over magnesium sulfate and removal of ether on the rotary evaporator.

For reactions of monocyclic compounds with potassium acetate in acetic acid, "work-up" means dilution of the crude reaction mixture with water, extraction with ether, followed by washing the ether layer with 5% aqueous sodium bicarbonate solution until pH>8, drying over magnesium sulfate and removal of ether by simple distillation at atmospheric pressure.
Camag DF-5 silica gel with calcium sulfate binder was used for thin layer chromatography (t.l.c.) and for thick layer chromatography (20 g. per 20 x 20 cm. plate). Benzene-ethyl acetate 90:10 (solvent A) or petroleum ether (b.p. 60-80°C)-ethyl acetate 85:15 (solvent B) was used for development. A GE G15T8 lamp was used to detect u.v.-absorbing spots and then a 30% sulfuric acid solution was used for charring of t.l.c. plates. The bands of thick layer chromatography were detected with the help of u.v.-light and ordinary transmitted light. The bands cut from the thick layer were extracted with ether.

Silica gel-silver nitrate thin layer was prepared by spreading a slurry of 30 g. of Camag DF-5 silica gel in a solution of 7.5 g. of silver nitrate in 60 ml. of water on six 20 x 20 cm. glass plates. All t.l.c. on silica gel-silver nitrate were developed with petroleum ether.

Table VIII lists the Rf values of steroid α-acetoxyketones and α,β-unsaturated ketones.
TABLE VIII

Rf VALUES OF STEROID α-ACETOXYKETONES AND ENONES

<table>
<thead>
<tr>
<th>compound</th>
<th>solvent A</th>
<th>solvent B</th>
<th>compound</th>
<th>solvent A</th>
<th>solvent B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcO</td>
<td>0.48</td>
<td>0.26</td>
<td>6</td>
<td>0.44</td>
<td>0.30</td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td>0.21</td>
<td>5</td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td>0.21</td>
<td>11</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td>0.21</td>
<td>7</td>
<td>0.46</td>
<td>0.35</td>
</tr>
<tr>
<td>AcO</td>
<td>0.35</td>
<td></td>
<td>85</td>
<td>0.48</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.48</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcO</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>AcO</td>
<td>0.48</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Delta^1\text{-Cholesten-3-one 6} \]

The method of Green and Long60 was followed. 2α-Bromocholestan-3-one 4 (30.0 g., m.p. 169-170°, free from cholestan-3-one 2, prepared as described on p. 149) was dehydrobrominated with calcium carbonate in boiling dimethylacetamide. Crude \[\Delta^1\text{-cholesten-3-one 6} \] was obtained in 92% yield. U.v., n.m.r. and t.l.c. data showed the presence of ca. 30% of \[\Delta^4\text{-cholesten-3-one 5} \]. Three recrystallizations from methanol-ether gave 10.0 g. (41%) of \[\Delta^1\text{-cholesten-3-one 6} \] m.p. 94-98° (lit.60 m.p. 98°) which was free from \[\Delta^4\text{-cholesten-3-one 5} \] as judged from t.l.c. and n.m.r. data. Concentration of the mother liquors and repeated recrystallizations gave a further 2.0 g. (8%) of colorless crystals, m.p. 81-93°.

I.r. spectrum: \(\nu \text{max} 1680 \text{ cm}^{-1} \) (C=O).

N.m.r. spectrum: \(\delta 0.70 \) (3H, s., C-18 methyl), 1.01 (3H, s., C-19 methyl), 3.88 (1H, d., J=10.5 Hz., C-2 H), 7.14 ppm (1H, d., J=10.5 Hz., C-1 H)

\[\Delta^4\text{-Cholesten-3-one 5} \]

\[\Delta^4\text{-Cholesten-3-one 5} \] was prepared by the Oppenauer oxidation of cholesterol, according to the procedure of Organic Syntheses.74 On hundred gram scale, it was obtained in 70% yield, m.p. 75-80° (lit.74 m.p. 79.5-80.5°).
I.r. spectrum: ν max 1675 (C=O) and 1620 cm$^{-1}$ (conj. C=C).

N.m.r. spectrum: δ 0.72 (3H, s., C-18 methyl), 1.17 (3H, s., C-19 methyl), 5.70 ppm (1H, b.s., ω_r=3 Hz., C-4 H)

5β-Cholestan-3-one 1

The procedure of Nishimura and coworkers59 was followed. Δ^4-Cholesten-3-one 5 (4.0 g., m.p. 75-80°, single spot on t.l.c.) dissolved in acetic acid was hydrogenated in the presence of palladium-on-charcoal in a Parr Model 3910 hydrogenator. Hydrogen uptake was complete within one day. Work up gave 3.2 g. (80%) of crude 5β-cholestan-3-one 1. T.l.c. (solvent A) of the crude product showed that it was contaminated by less than 5% of cholestan-3-one 2. One recrystallization from ether-95% ethanol gave 2.0 g. (50%) of colorless plates, m.p. 59-61° (lit.59 m.p. 59-61°).

N.m.r. spectrum: δ 0.68 (3H, s., C-18 methyl), 1.00 ppm (3H, s., C-19 methyl)

Δ^1-Cholestene

The following procedure was essentially that of Djerassi and coworkers.61

A solution of 9.8 g. of Δ^1-cholestene-3-one 6 (m.p. 94-98°, free from Δ^4-cholesten-3-one 5) in 150 ml. of anhydrous ether was added to a solution of lithium
aluminum hydride (2.0 g.) and aluminum chloride (12.0 g.) in 250 ml. of anhydrous ether. The mixture was refluxed for 2 hr. Ethyl acetate was added to destroy the excess hydride, and the mixture was washed with 20% aqueous sulfuric acid solution and dried. After the removal of solvent, the 9.3 g. (99%) of residue left was chromatographed in petroleum ether (b.p. 30-60°) on 130 g. of neutral alumina (Woelm, activity IV). The petroleum ether eluate (ca. 300 ml.) gave 3.7 g. (39%) of \(\Delta^1 \)-cholestene. T.l.c. on silica gel-silver nitrate (solvent A) and the n.m.r. spectrum showed that it was contaminated by ca. 30% of \(\Delta^2 \)-cholestene. Two recrystallizations from methanol-ethyl acetate gave 2.0 g. (21%) of long needles, m.p. 67-68° (lit. \(\delta^1 \) m.p. 70-71°).

Concentration of the mother liquors gave a further 1.2 g. (13%) of crystals, m.p. 60.5-65°. T.l.c. on silica gel-silver nitrate showed there was not much fractionation of \(\Delta^1 \)-cholestene and \(\Delta^2 \)-cholestene on recrystallization.

\textbf{N.m.r. spectra:} \(\delta \) 0.67 (3H, s., C-18 methyl), 0.81 (3H, s., C-19 methyl), 5.50 (1H, b.d., J=11 Hz., C-2 H), 5.88 ppm (1H, b.d., J=11 Hz., C-1 H)

\(\Delta^2 \)-Cholestene

Cholestan-3β-ol\(^{75}\) (10.0 g., m.p. 140-142°, free from cholesterol) was converted via the toluene-\(p \)-sulfonate
ester into \(\Delta^2 \)-cholestene according to the procedure of Douglas and coworkers.\(^76\) One recrystallization of the crude product from acetone gave 6.3 g. (63%) of pure \(\Delta^2 \)-cholestene, m.p. 71-73\(^\circ\) (lit.\(^76\) m.p. 74-75\(^\circ\)).

N.m.r. spectrum: 6 0.67 (3H, s., C-18 methyl), 0.75 (3H, s., C-19 methyl), 5.60 ppm (2H, b.s., \(\nu_{\text{H}}=6\) Hz., C-2 H and C-3 H)

\(\Delta^3 \)-Cholestene

(a) By hydroboration and 1,2-elimination of \(\Delta^4 \)-cholesten-3-one \(5\). The procedure of Caglioti and coworkers\(^63\) was followed with slight modification. A stream of diborane (generated from 38 g. of sodium borohydride and 330 g. of boron trifluoride etherate) was bubbled through a solution of 40 g. of \(\Delta^4 \)-cholesten-3-one \(5\), m.p. 75-80\(^\circ\), in 80 ml. of diethylene glycol dimethyl ether (diglyme) at room temperature for 1 hr. After standing at room temperature for another 1 hr., the reaction mixture was treated with 400 ml. of acetic anhydride at 120\(^\circ\) for 2 hr.* When the reaction mixture had cooled to room temperature, the diglyme was distilled off under vacuum, and the residue was diluted with water and extracted with ether. The combined ether extracts were washed four times with 10% aqueous sodium hydroxide solution and dried. Removal of

*Treatment with acetic anhydride at temperatures lower than reflux temperature seemed to give a higher yield of cholestenes.
ether left 38.6 g. of dark brown residue which was
cromatographed in petroleum ether (b.p. 30-60°) on 500 g.
of neutral alumina (Woelm, activity I). The petroleum ether
(b.p. 30-60°) eluate (ca. 4 l.) gave 19.6 g. (49%) of
semicrystalline Δ3-cholestene, whose n.m.r. spectrum showed that
it was contaminated by ca. 20% of Δ3-5β-cholestene (vinyllic
protons at δ 5.34, b.d., J=11 Hz., 5.70, b.d., J=11 Hz.).
Two recrystallizations from acetone gave 12.0 g. (30%) of
Δ3-cholestene, m.p. 74.5-75°, (lit. m.p. 78-79°, 63 74-75° 64)
which was free from Δ3-5β-cholestene according to the n.m.r.
spectrum.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.78 (3H, s.,
C-19 methyl), 5.29 (1H, b.d., J=10 Hz., C-3 H or C-4 H),
5.55 ppm (1H, b.d., J=10 Hz., C-4 H or C-3 H)

(b) By zinc-dust reduction of Δ4-cholesten-3-one 5.
Δ4-Cholesten-3-one 5 (2.0 g., m.p. 80-80.5°), in 750 ml. of
acetic acid was reduced by 400 g. of zinc dust at room
temperature according to the procedure of McKenna and
coworkers.64 A mixture of approximately equal amounts of
Δ3-cholestene and Δ3-5β-cholestene was obtained in 60%
yield. Repeated recrystallization from acetone gave 0.6 g.
(13%) of Δ3-cholestene, m.p. 70-74.5°, [α]D +61° (c, 2.25)
[lit.64 m.p. 74-75°, [α]D +58° (c, 0.70)]. The n.m.r.
spectrum was identical with that obtained in (a).
Δ⁴-Cholestene 10

Δ⁴-Cholestene 10 was prepared from Δ⁴-cholestene-3-one 5 following the procedure of Djerassi and coworkers 61 for the preparation of Δ¹-cholestene from Δ¹-cholestene-3-one 5.

A solution of 80 g. of Δ⁴-cholestene-3-one 5, m.p. 77.5-80°, in 1.4 l. anhydrous ether was added to a solution of lithium aluminum hydride (15 g.) and aluminum chloride (100 g.) in 2.0 l. of anhydrous ether. The mixture was refluxed for 2 hr. Ethyl acetate was added to destroy the excess hydride, and the mixture was washed with 20% aqueous sulfuric acid solution and dried. After the removal of solvent, there was left 60 g. (78%) of crude Δ⁴-cholestene 10. The n.m.r. spectrum and t.l.c. behavior (silica gel-silver nitrate) showed that the crude product was contaminated by ca. 10% of Δ³-5β-cholestene, but was free from Δ³-cholestene. Two recrystallizations from ether-acetone gave 38 g. (50%) of long needles, m.p. 74-78°, which was free from Δ³-5β-cholestene. Two more recrystallizations raised the melting point to 78-80.5° (lit. m.p. 82.5° 77 79-80° 78).

N.m.r. spectrum: δ 0.68 (3H, s., C-18 methyl), 1.01 (3H, s., C-19 methyl), 5.30 ppm (1H, b.s., w₆=8 Hz., C-4 H)

1α,2α-Oxidocholestane

Δ¹-Cholestene (2.0 g., 5.4 mmol., m.p. 67-68°,
containing ca. 20% of the Δ^2-isomer) in 10 ml. of chloroform was epoxidized with 6.7 mmol. of perbenzoic acid in 15 ml. of chloroform at -10°, according to the method of Furst and Plattner79 for epoxidation of Δ^2-cholestene. The crude product was obtained in quantitative yield. The n.m.r. spectrum showed that it was a mixture of ca. 80% of 1α,2α-oxidocholestane and ca. 20% of 2α,3α-oxidocholestane 28. One recrystallization from acetone gave 1.6 g. (80%) of colorless prisms, m.p. 77-93$^\circ$. Two more recrystallizations of a small amount of the sample raised the melting point to 90-95$^\circ$, but the n.m.r. spectrum revealed that there was no fractionation of 1α,2α-oxidocholestane from its 2α,3α-isomer 28 on recrystallization. Purification of 150 mg. of the sample of m.p. 77-93$^\circ$ on one thick layer (solvent A) and one recrystallization gave 45 mg. of colorless prisms, m.p. 94-95$^\circ$ (lit.61 m.p. 89-90$^\circ$). The n.m.r. spectrum showed that it was free from the 2α,3α-isomer.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.91 (3H, s., C-19 methyl), 3.05 ppm (2H, m., C-1 H and C-2 H)

2α,3α-Oxidocholestane 28

The method of Furst and Plattner79 was followed. A solution of 4.0 g. (10.8 mmol.) of Δ^2-cholestene, m.p.
71-72.5°, in 20 ml. of chloroform was epoxidized with 12.2 mmol. of perbenzoic acid in 25 ml. of chloroform. Crude product was obtained in quantitative yield. One recrystallization from ether-95% ethanol gave 3.6 g. (88%) of 2α,3α-oxidocholestone 28, m.p. 103-106° (lit. 79 m.p. 105°).

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 0.75 (3H, s., C-19 methyl), 3.09 ppm (2H, m., C-2 H and C-3 H)

3α,4α-Oxidocholestone 32

The method of Fürst and Plattner 79 for the epoxidation of Δ^2-cholestene was followed. A solution of 11.0 g. (29.7 mmol.) of Δ^3-cholestene, m.p. 74-74.5° in 50 ml. of chloroform was epoxidized with 32.4 mmol. of perbenzoic acid in 70 ml. of chloroform. Crude 3α,4α-oxidocholestone 32 was obtained in quantitative yield. Two recrystallizations from ether-95% ethanol gave 10.3 g. (82%) of colorless plates, m.p. 116.5-118° (lit. 80,81 m.p. 117-118°).

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.77 (3H, s., C-19 methyl), 2.69 (1H, d., J=4 Hz., C-4 H), 3.15 ppm (1H, b.s., \(\delta_r \approx 8 \) Hz., C-3 H)

4α,5α-Oxidocholestone

The method of Heilbron and coworkers 66 was followed with slight modification.
(a) Epoxidation with m-chlorobenzoic acid in carbon tetrachloride. To 2.0 g. (5.4 mmol.) of Δ⁴-cholestene 10, m.p. 78-80.5°, dissolved in 50 ml of carbon tetrachloride and cooled to -10°C, was added 1.8 g. (5.6 mmol.) of 54% m-chlorobenzoic acid (Aldrich Chem. Co.) in 100 ml. of carbon tetrachloride. After 12 hr. at -10°, the mixture was filtered to remove m-chlorobenzoic acid. The carbon tetrachloride solution was washed with 5% aqueous sodium sulfite solution, 5% aqueous sodium bicarbonate solution and dried. Removal of ether gave a quantitative yield of crude crystalline product. The n.m.r. spectrum showed that there was less than 10% contamination by 4β,5β-oxidocholestanate. One recrystallization from acetone gave 1.4 g. (70%) of colorless plates, m.p. 93-98°, which were free from 4β,5β-oxidocholestanate. Two more recrystallizations raised the melting point to 100-102° (lit. 66 m.p. 100-101°).

N.m.r. spectrum: δ 0.68 (3H, s., C-18 methyl), 1.05 (3H, s., C-19 methyl), 2.90 ppm (1H, b.s., 3H, 7 Hz., C-4 H).

(b) Epoxidation with m-chloroperbenzoic acid in other organic solvents. Δ⁴-Cholestene 10, m.p. 78-80.5°, was epoxidized with m-chloroperbenzoic acid in the same manner as described in part (a) except that carbon tetrachloride was replaced by methylene chloride, or ether, or benzene.
In all three cases, crude products were obtained in quantitative yield. The n.m.r. spectrum of the crude product showed that ca. 30%, 20%, 10% of 4β,5β-oxidocholestane was present when the reaction was carried out in methylene chloride, ether and benzene respectively. Two to three recrystallizations were required to get rid of this contaminant.

(c) Epoxidation by perbenzoic acid in chloroform. The procedure of Heilborn was followed. The n.m.r. spectrum of the crude product showed the presence of ca. 30% 4β,5β-oxidocholestane.

3β,4β-Oxidocholestane

3α-Hydroxy-4β-acetoxycholestane (4.0 g., m.p. 158-160°) was converted to 3β,4β-oxidocholestane via 3α-mesyloxy-4β-acetoxycholestane according to the procedure of Fürst and Scotoni. Crude 3β,4β-oxidocholestane was obtained in 82% yield. Recrystallization from methanol-ether gave a first crop of 2.3 g. (65%), m.p. 97-100°, a second crop of 0.35 g. (10%), m.p. 94-99° (lit. m.p. 98-99°).

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 0.95 (3H, s., C-19 methyl), 3.00 ppm (2H, m., C-3 H and C-4 H)

3-Acetoxycholest-2-ene (cholestan-3-one Δ2-enol acetate) The method of Dauben and coworkers was followed.
The reaction of 2.0 g. of cholestan-3-one, m.p. 120-129°, and 2.5 ml. of isopropenyl acetate under acidic catalysis gave quantitative yield of crude 3-acetoxycholest-2-ene. One recrystallization from methanol-chloroform gave 2.1 g. (93%) of cream-colored crystals, m.p. 83-87°. Repeated recrystallizations raised the melting point to 87-89° (lit. m.p. 90-90.5°), but the n.m.r. spectrum of this material showed that there was always some contamination (ca. 10%) by 3-acetoxycholest-3-ene. (vinylic proton at 5.00, b.s., $w_H=2.5$ Hz.)

I.r. spectrum: ν_{max} 1750 (C=O) and 1680 cm$^{-1}$ (C=C)

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.83 (3H, s., C-19 methyl), 2.12 (3H, s., CH$_3$COO-) 5.25 ppm (1H, b.s., $w_H=10$ Hz., C-2 H)

3-Acetoxy-5β-cholest-3-ene (5β-cholestan-3-one Δ^3-enol acetate)

The method of Dauben and coworkers83 was followed.

3-Acetoxy-5β-cholest-3-ene, m.p. 82-88° (lit.83 m.p. 83.1-83.6°), was obtained in 60% yield from 5.3 g. of 5β-cholestan-3-onel, m.p. 59-61°. A small amount of this sample was repeatedly recrystallized to raise the melting point to 86-90°, but its n.m.r. spectrum revealed that there was always some contamination by 3-acetoxy-5β-choles-2-ene (vinylic proton at δ 5.25, m.).
N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.97 (3H, s., C-19 methyl), 2.10 (3H, s., CH$_3$COO-), 5.09 ppm (1H, b.s., $\omega_\mathrm{F}=4$ Hz., C-4 H)

2α,3α-Oxido-3β-acetoxycholestane 81

3-Acetoxycholestad-2-ene (8.6 g., m.p. 85-90°, containing ca. 10% of 3-acetoxycholestad-3-ene) was epoxidized with perbenzoic acid according to the procedure of Williamson and Johnson. 22 Crude 2α,3α-oxido-3β-acetoxycholestane 81 was obtained in quantitative yield. The n.m.r. spectrum of the crude product revealed the presence of ca. 10% of 3α,4α-oxido-3β-acetoxycholestand (C-4 H at δ 2.87, b.s., $\omega_\mathrm{F}=2.5$ Hz.). Two recrystallizations from ethyl acetate gave 5.2 g. (59%) of prisms, m.p. 124-130° (lit. 22 m.p. 133-134.5°). The n.m.r. spectrum showed that it was free from 3α,4α-oxido-3β-acetoxycholestan.

I.r. spectrum: ν_max 1745 cm$^{-1}$ (C=O)

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 0.95 (3H, s., C-19 methyl), 3.30 ppm (1H, b.d., J=5.5 Hz., C-2 H)

3β,4β-Oxido-3α-acetoxy-5β-cholestan

The procedure of Williamson and Johnson 22 for epoxidizing cholestanone enol acetate was followed.

To 2.2 g. (5.14 mmol.) of 3-acetoxy-5β-cholesta-3-ene (m.p. 86-89°, containing ca. 10% of 3-acetoxy-5β-cholesta-2-ene)
cooled to -10°, was added 10.1 mmol. of perbenzoic acid in 45 ml. of chloroform, also cooled to -10°. After 3 days at -10°, t.l.c. showed that there was no starting material left. The reaction mixture was poured into a cold 10% aqueous sodium carbonate solution, shaken for 5 min., and then extracted with ether. The ether extracts were combined, washed with water, dried, and evaporated to leave 2.5 g. of crystalline solid which was shown by n.m.r. to contain a small amount of 2β,3β-oxido-3α-acetoxy-5β-cholestane (C-2 H at δ 3.20, m.). One recrystallization from ether-95% ethanol separated it completely from the contaminant and gave 1.16 g. (51%) of colorless prisms, m.p. 130-138°. Two more recrystallizations raised the melting point to 134-139°.

I.r. spectrum: \(\nu_{\text{max}}\) 1745 cm\(^{-1}\) (ester C=O)

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 0.87 (3H, s., C-19 methyl), 2.07 (3H, s., CH\(_3\)COO\(-\)), 3.09 ppm (1H, s., C-4 H)

2α-Bromocholestan-3-one 4

A modification of the procedure of Fieser and coworkers was used.

A solution of 25 g. (0.156 mole) of bromine and 2 ml. of 48% hydrobromic acid in 60 ml. of acetic acid was added
from a dropping funnel to a well-stirred solution of 60 g. (0.156 mole) of cholestan-3-one \(^{2, \text{a}}\), m.p. 127-129\(^{\circ}\), in 1.5 l. of carbon tetrachloride in a 3-l. round-bottomed flask. The addition was completed in 30 min., and the stirring was continued for another 1 hr. The reaction mixture was washed with water, 5% aqueous sodium sulfite solution, water, and dried. Removal of carbon tetrachloride and two recrystallizations from petroleum ether-carbon tetrachloride gave 39 g. (54%) of 2\(\alpha\)-bromocholestan-3-one \(^{4}\), m.p. 167-169\(^{\circ}\) (lit. \(^{67}\) m.p. 168-169\(^{\circ}\)). Concentration of the mother liquors gave a second crop of 3.5 g. (5%), m.p. 164-168\(^{\circ}\). T.l.c. showed that both crops were free from cholestan-3-one \(^{2}\).

I.r. spectrum: \(\nu_{\text{max}}\) 1730 cm\(^{-1}\) (C=O)

N.m.r. spectrum: \(\delta\) 0.67 (3H, s., C-18 methyl), 1.10 (3H, s., C-19 methyl), 4.72 ppm (1H, q., \(J=6.5\), 13.5 Hz., C-2 H)

2\(\alpha\)-Bromocholestan-1-one \(^{89}\)

The procedure of Djerassi and coworkers \(^{61}\) was followed with modifications.

1\(\alpha,2\alpha\)-Oxidocholestan (700 mg., 18.2 mmol., m.p. 77-93\(^{\circ}\), containing ca. 20% of 2\(\alpha,3\alpha\)-oxidocholestan \(^{28}\)) in 40 ml. of chloroform was treated with 15.0 ml. of 48% hydrobromic acid for 10 min. Washing with 5% aqueous
sodium sulfite solution and then with water and evaporation in vacuo after drying gave 855 mg. of oil, which showed two spots on t.l.c. (solvent A). The n.m.r. spectrum showed that it was a mixture of 2β-bromocholestan-1α-ol and 2β-bromocholestan-3α-ol.* The mixture was separated on four thick plates. Extraction of the combined upper bands (major component) gave 368 mg. of partially crystalline material which was found by n.m.r. to be a mixture of 2β-bromocholestan-1α-ol and 1α,2α-oxidocholestane uncontaminated by any 2,3-isomers. Retreatment of this mixture with 48% hydrobromic acid and work up as described above gave 440 mg. (52%) of oil which was shown by n.m.r. to be pure 2β-bromocholestan-1α-ol. Attempts to crystallize the oily material from ether-methanol failed.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.20 (3H, s., C-19 methyl), 3.95 (1H, b.s., $\omega_\gamma=6$ Hz., C-1 H), 4.39 ppm (1H, b.s., $\omega_\gamma=9$ Hz., C-2 H)

The crude oily 2β-bromocholestan-1α-ol (300 mg., 0.78 mmol. after thick layer chromatography) was dissolved in 20 ml. of acetic acid and treated with 80 mg. of chromium trioxide in 0.5 ml. of water. The solution was kept at room temperature overnight, diluted with water and

*N.m.r. spectrum of 2β-bromocholestan-3α-ol: δ 0.67 (3H, s., C-18 methyl), 4.25 ppm (2H, b.s., $\omega_\gamma=10$ Hz., C-2 H and C-3 H)
extracted with ether. The combined ether extracts were washed with 5% aqueous sodium bicarbonate solution, and then dried. Removal of ether gave 290 mg. (90%) of partially crystalline solid whose n.m.r. spectrum was consistent with the structure of 2β-bromocholestan-1-one.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.38 (3H, s., C-19 methyl), 4.55 ppm (1H, d.d., J=5.5 Hz., C-2 H)

The crude 2β-bromocholestan-1-one (290 mg.) obtained as above was dissolved in 5 ml. of chloroform and treated with gaseous hydrogen bromide for 5 min. at 70°. The chloroform was removed under reduced pressure to leave 290 mg. of crude 2α-bromocholestan-1-one 89. Purification on two thick layer plates developed in solvent A gave 186 mg. (64%) of colorless oil. Two recrystallizations from 95% ethanol gave 162 mg. (56%) of colorless plates, m.p. 150-154° with a transition at 117° (lit. 61 m.p. 154-156°).

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.17 (3H, s., C-19 methyl), 5.10 ppm (1H, b.q., J=7,12 Hz., C-2 H)

3α-Bromocholestan-4-one 88

(a) From 3β,4β-oxidcholestane via

3α-bromocholestan-4β-ol. The usual procedure for preparation of bromohydrin from epoxide was followed. 61,85

3β,4β-Oxidocholestane (430 mg., 1.05 mmol., m.p. 94-99°) in
25 ml. of chloroform was shaken with 48% aqueous hydrobromic acid (8 ml.) at room temperature for 10 min. The chloroform layer was washed with 5% aqueous sodium sulfite solution, water, and then dried. Evaporation of chloroform left 420 mg. (86%) of crude 3α-bromocholestan-4β-ol. Recrystallization from methanol-ether gave 241 mg. (49%) of colorless plates, m.p. 173.5-180°. A second crop from the mother liquor yielded 122 mg. (25%) of material, m.p. 160-178.5°.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.02 (3H, s., C-19 methyl), 1.80 (1H, s., O-H), 3.88 (1H, b.s., \(w_K = 7 \) Hz., C-4 or C-3 H), 4.37 ppm (1H, unresolved doublet with further coupling, \(w_K = 8 \) Hz., C-3 or C-4 H)

3α-Bromocholestan-4β-ol (360 mg., 0.77 mmol., m.p. 160-178.5°) dissolved in 20 ml. of acetic acid was oxidized with 80 mg. of chromium trioxide in 0.5 ml. of water. The solution was kept at room temperature overnight, diluted with water and extracted with ether. The combined ether extracts were washed with 5% aqueous sodium bicarbonate solution, and then dried. Removal of ether left 312 mg. (87%) of crude 3α-bromocholestan-4-one 88. One recrystallization from acetone-95% ethanol gave 207 mg. (58%) of colorless crystals, m.p. 125.5-127.5° (lit. 86 m.p. 120-121°).
N.m.r. spectrum: 6 0.67 (3H, s., C-18 methyl), 0.73 (3H, s., C-19 methyl), 4.30 ppm (1H, b.s., $\Delta v = 8$ Hz., C-3 H)

(b) From 5α-hydroxycholestan-4-one. Following the method of Shoppee and coworkers, 5α-hydroxycholestan-4-one (120 mg., 0.30 mmol., m.p. 150-159°) was converted in quantitative yield into 3α-bromocholestan-4-one. Two recrystallizations from acetone-95% ethanol gave 88 mg. (58%) of crystalline material, m.p. 97-121°. Two more recrystallizations raised the melting point to 116-124°. The n.m.r. spectrum was identical with those obtained in part (a).

3α-Bromocholestan-2-one 86

The procedure of Barton and Alt 85 was followed. 2β,3β-Oxidocholestane 36 (1.50 g., m.p. 84-86°) was converted via 3α-bromocholestan-2β-ol into 0.91 g. (50% overall yield) of 3α-bromocholestan-2-one 86 m.p. 151-154°, once recrystallized from chloroform-methanol (lit. 85 m.p. 151-153°).

N.m.r. spectrum: 6 0.67 (3H, s., C-18 methyl), 0.73 (3H, s., C-19 methyl), 4.33 ppm (1H, b.s., $\Delta v = 7$ Hz., C-3 H)

4α-Bromocholestan-3-one 12

4α-Bromocholestan-3-one 12 was prepared from 3α,4α-oxidocholestanone 32 according to the reaction scheme
of Sorm and coworkers. 81

3α,4α-Oxidocholestane 32 (424 mg., m.p. 115-117.5°) was converted by treatment with 48% aqueous hydrobromic acid into 406 mg. (79%) of 4β-bromocholan-3α-ol, m.p. 160-162°).

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 1.08 (3H, s., C-19 methyl), 2.10 (1H, s., O-H), 4.10 (1H, b.s., \(\omega_{E}=6 \) Hz., C-3 or C-4 H), 4.25 ppm (1H, unresolved doublet with further coupling, \(\omega_{E}=6 \) Hz., C-4 or C-3 H)

4β-Bromocholan-3α-ol (243 mg., m.p. 136-141.5°) was oxidized with chromic trioxide in acetic acid in quantitative yield to crude 4β-bromocholan-3-one.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.28 (3H, s., C-19 methyl), 4.16 ppm (1H, b.s., \(\omega_{E}=6 \) Hz., C-4 H)

The crude 4β-bromocholan-3-one was epimerized with hydrogen bromide in acetic acid to 4α-bromocholan-3-one 12. Purification on thick layer (solvent A) and two recrystallizations from ethyl acetate-95% ethanol gave 85 mg. (35%) of colorless needles, m.p. 143-147° (lit. 81 m.p. 152-154°).

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.10 (3H, s., C-19 methyl), 4.66 ppm (1H, d., \(J=12.5 \) Hz., C-4 H)
4β-Bromo-5β-cholestan-3-one \(\mathbf{3} \)

5β-Cholestan-3-one \(\mathbf{1} \) (1.29 g., 3.34 mmol., m.p. 58-61\(^\circ\)C)
in 40 ml. of acetic acid was treated with 3.70 mmol. of
bromine in 5 ml. of acetic acid according to the procedure
of Butenandt and Wolff. \(^1\) Crude oily 4β-bromo-5β-cholestan-
3-one \(\mathbf{3} \) was obtained in quantitative yield. Attempted
recrystallization from acetone or 95% ethanol failed.
Purification of a 400-mg. portion on two thick-layers
(solvent A) gave 395 mg. of colorless semicrystalline
solid. Attempted recrystallization from various solvents
also failed. A 0.90-g. portion of the crude material was
chromatographed on 20 g. of silica gel. Elution with ether
(\(\text{ca.} \) 300 ml.) afforded 0.52 g. of semicrystalline material,
which after two recrystallizations from acetone-95%
ethanol yielded 210 mg. (23%) of colorless needles, m.p.
110-114\(^\circ\)C (lit. \(^1\) m.p. 110-111\(^\circ\)).

N.m.r. spectrum: \(\delta \) 0.68 (3H, s., C-18 methyl), 1.08 (3H,
s., C-19 methyl), 4.88 ppm (1H, d., J=11.5 Hz., C-4 H)

2β-Bromo-5β-cholestan-3-one \(\mathbf{82} \)

The procedure of Williamson and Johnson \(^22\) for the
preparation of 4α-bromocholestan-3-one \(\mathbf{12} \) was followed.

Chromous acetate was prepared under a nitrogen
atmosphere by passing an aqueous solution of 0.53 g.
(2.0 mmol.) of chromium trichloride hexahydrate through a
Jones reductor into a 50-ml. three-necked flask and then
precipitating the acetate with aqueous sodium acetate
solution. The brick red precipitate of chromous acetate
was washed with deoxygenated water, 95% ethanol, anhydrous
ether, and finally dried by a rapid passage of dry
deoxygenated nitrogen through the flask.

To this dry powder was added, with stirring, 267 mg.
(0.482 mmol.) of 2β,4β-bromo-5β-cholestan-3-one, m.p.
129.5-136.5°, in 3 ml. of chloroform and 5 ml. of acetic
acid. Stirring was continued for 10 min. Air was then
blown through the solution to oxidize the excess chromous
ion. The dark green slurry was taken up in 20 ml. of ether
and washed with water, dilute sodium bicarbonate solution
and dried. The removal of ether gave 198 mg. (88%) of
colorless solid. T.l.c. showed two spots, the minor one
corresponding in Rf value to 5β-cholestan-3-one ▼, and no
starting material was left. The crude product was purified
on two 20 x 20 cm. thick layer plates, and the major band
gave 144 mg. (63%) of solid which showed a single spot on
t.l.c. One recrystallization from methanol-acetone gave
70 mg. of 2β-bromo-5β-cholestan-3-one ▲2, m.p. 135-137°.

I.r. spectrum: ν max 1730 cm⁻¹ (C=O)
N.m.r. spectrum: δ 0.68 (3H, s., C-18 methyl), 1.05 (3H, s., C-19 methyl), 4.70 ppm (1H, q., J=5.5,14 Hz., C-2 H)

O.R.D.: $[\alpha]_{589}^{O} = -9^\circ$, $[\alpha]_{310}^{O} = 430^\circ$ (trough), $[\alpha]_{269}^{O} = +650^\circ$ (peak) ($c = 0.530$)

Analysis: Calcd. for C$_{27}$H$_{45}$OBr: C, 69.66; H, 9.74

Found : C, 68.88; H, 9.23

Cholestan-4β,5α-diol

Collins' procedure88 for mild acid hydrolysis of the epoxide was followed.

A solution of 1.5 g. of 4α,5α-oxidocholestane, m.p. 100-102$^\circ$, in 350 ml. of acetone and 35 ml. of water containing 3.0 ml. of 2N sulfuric acid was kept at room temperature for 2 days. After removal of acetone at room temperature under reduced pressure, water was added and the product was extracted with ether. The ether extracts were washed with water, 5% sodium bicarbonate solution, and dried. Removal of ether left 1.5 g. of crude cholestan-4β,5α-diol. One recrystallization from acetone gave 1.0 g. (67%) of colorless crystals, m.p. 169-170$^\circ$ with transition at 158$^\circ$ (lit.89 m.p. 171-172$^\circ$).

N.m.r. spectrum: δ pyridine 0.72 (3H, s., C-18 methyl), 1.55 (3H, s., C-19 methyl), 4.00 (1H, b.s., ν_H=8 Hz., C-4 H), 5.10 ppm (2H, b.s., ν_H=20 Hz., O-H)
5α-Hydroxycholestan-4-one

5α-Hydroxycholestan-4-one was prepared according to the method of Eastham and coworkers.90 Cholestan-4β,5α-diol (1.0 g., m.p. 166-172\textdegree) was oxidized with chromic trioxide in pyridine to 5α-hydroxycholestan-4-one. The crude product was obtained in quantitative yield. One recrystallization from methanol yielded 0.56 g. (56%) of colorless plates, m.p. 156-158\textdegree (lit.90 m.p. 157-158\textdegree).

\textbf{I.r. spectrum:} ν_{max} 3580, 3400 (O-H) and 1720 cm-1 (C=O)

\textbf{N.m.r. spectrum:} δ 0.67 (3H, s., C-18 methyl), 0.80 ppm (3H, s., C-19 methyl)

2β-Acetoxysterol-3-one 30

2α,3α-Oxido-3β-acetoxysterol 81 (0.93 g., m.p. 124-130\textdegree) was thermally isomerized into 2β-acetoxysterol-3-one 30 according to the procedure of Williamson and Johnson.22 One recrystallization from 95% ethanol yielded 0.68 g. (72%) of colorless prisms, m.p. 139-147\textdegree (lit.22 m.p. 147.5-147.9\textdegree).

\textbf{I.r. spectrum:} ν_{max} 1745 (ester C=O) and 1730 cm-1 (ketone C=O)

\textbf{N.m.r. spectrum:} δ 0.67 (3H, s., C-18 methyl), 0.85 (3H, s., C-19 methyl), 2.10 (3H, s., CH\textsubscript{3}COO-), 5.33 ppm (1H, q., J=10.7 Hz., C-2 H)
2α-Acetoxycholestan-3-one 18

2β-Acetoxycholestan-3-one 30 (3.28 g., m.p. 139-147°) in 70 ml. of acetic acid was treated with 0.5 ml. of 36% aqueous hydrochloric acid according to the procedure of Williamson and Johnson. Work up and two recrystallizations from 95% ethanol yielded 2.87 g. (89%) of 2α-acetoxycholestan-3-one 18 as colorless needles, m.p. 122-124°, [α]D +57° (c 1.96) [lit. 22 m.p. 124.7-125.2°, [α]D +51.55 (c 1.67)].

I.r. spectrum: νmax 1750 (ester C=O) and 1735 cm\(^{-1}\) (ketone C=O)

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.16 (3H, s., C-19 methyl), 2.13 (3H, s., CH\(_3\)COO-), 5.29 ppm (1H, q., J=13.6.5 Hz., C-2 H)

3β-Acetoxycholestan-2-one 39

3β-Acetoxycholestan-2-one 39 was prepared from 2α-acetoxycholestan-3-one 18 according to the method of Williamson and Johnson. 22

2α-Acetoxycholestan-3-one 18 (500 mg., m.p. 122-124°) was treated with 570 mg. of tetramethylammonium acetate in 35 ml. of acetone at reflux for four days. T.l.c. revealed 60% conversion into 3β-acetoxycholestan-2-one 39. One recrystallization gave 204 mg. (40%) of
3β-acetoxycholestan-2-one, m.p. 141-144.5°. A small portion was recrystallized once more to raise the m.p. to 144-145° (lit.22 m.p. 145.5-146.1°).

I.r. spectrum: ν max 1745 (ester C=O) and 1725 cm$^{-1}$ (ketone C=O)

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 0.77 (3H, s., C-19 methyl), 5.20 ppm (1H, m., C-3 H)

4β-Acetoxycholestan-3-one 34

4β-Acetoxycholestan-3α-ol 33, m.p. 158-160°, was prepared from 4.0 g. of 3α,4α-oxidocholestane 32 according to the method of Fürst and Scotoni80 in 56% overall yield.

4β-Acetoxycholestan-3α-ol 33 (0.81 g., m.p. 158-160°) was treated with Jones reagent according to the procedure of Williamson and Johnson.22 The crude product, obtained in quantitative yield, was almost pure 4β-acetoxycholestan-3-one 34 as shown by the n.m.r. and t.l.c. data. Two recrystallizations from 95% ethanol of a 40-mg. portion of the crude product yielded 7 mg. of colorless needles, m.p. 130-134° (lit.22 m.p. 133.7-134.4°).

I.r. spectrum: ν max 1750 (ester C=O) and 1730 cm$^{-1}$ (ketone C=O)

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.12 (3H, s., C-19 methyl), 2.08 (3H, s., CH$_3$COO$^-$), 4.92 ppm (1H, b.s.,
4α-Acetoxycholestan-3-one 19

The method of Williamson and Johnson 22 was used.

Crude 4β-acetoxycholestan-3-one 34 (0.82 g., obtained from oxidation of 4β-acetoxycholestan-3α-ol) in 25 ml. of acetic acid containing three drops of 36.6% hydrochloric acid was allowed to stand at room temperature overnight. Evaporation of solvent gave 0.80 g. (98%) of solid. Two recrystallizations from 95% ethanol gave 0.61 g. (75%) of colorless needles, m.p. 135.5-142.5°. One more recrystallization raised the melting point to 143.5-144° (lit. 22 m.p. 144-145°).

I.r. spectrum: \(\nu_{\text{max}} \) 1750 (ester C=O) and 1735 cm\(^{-1}\)
(ketone C=O)

N.m.r. spectrum: \(\delta \) 0.67 (3H, s., C-18 methyl), 1.16 (3H, s., C-19 methyl), 2.13 (3H, s., CH\(_3\)COO-), 5.04 ppm (1H, d., J=11.5 Hz., C-4 H)

3α-Acetoxycholestan-4-one 21

Williamson and Johnson's procedure 22 for the oxidation of diaxial hydroxy acetates to axial acetoxyketones was followed.

To 1.30 g. (2.91 mmol.) of 3α-acetoxycholestan-4β-ol (m.p. 170-178°, prepared from 3α,4α-oxidocholestane
according to the procedure of Fürst and Scotoni80 dissolved in 130 ml. of acetone (distilled from a mixture of Drierite and potassium permanganate) was added dropwise 1.0 ml. (7.96 meq.) of standard chromic acid solution* over a 5-min. period with rapid stirring of the solution. After an additional 1 min., the reaction was quenched in 5% aqueous potassium acetate solution and extracted with ether. The ether extract was washed with water and dried. Evaporation of ether gave 1.27 g. (90%) of 3α-acetoxycholestan-4-one 21. Two recrystallizations from methanol-acetone give material of m.p. 93-94.5°.

\textbf{I.r. spectrum:} ν max 1745 (ester C=O) and 1725 cm$^{-1}$ (ketone C=O)

\textbf{N.m.r. spectrum:} δ 0.65 (3H, s., C-18 methyl), 0.75 (3H, s., C-19 methyl), 2.10 (3H, s., CH$_3$COO-), 4.83 ppm (1H, unresolved triplet due to further coupling, ω_H=5 Hz., C-3 H)

\textbf{Q.R.D.:} [α]$_{589}^{\infty}$+24°, [α]$_{320}^{\infty}$-510° (trough), [α]$_{270}^{\infty}$+1110° (peak) (c, 0.620)

\textbf{Analysis:} Calcd. for C$_{29}$H$_{48}$O$_3$: C, 78.33; H, 10.88

\textbf{Found:} C, 78.85; H, 10.43

* The standard chromic acid solution was prepared by dissolving 26.75 g. of chromium trioxide in 23 ml. of conc. sulfuric acid and diluting the mixture to 100 ml. with water.
3β-Acetoxycholest-5-en-4-one 23

3β-Acetoxycholest-5-en-4β-ol was prepared by selenium dioxide oxidation of cholesteryl acetate according to the method of Petrow and coworkers.91 Colorless crystals of m.p. 177-189° (lit.91 192-193°) and showing a single spot on t.l.c. was obtained in 10% yield from 30 g. of cholesteryl acetate.

3β-Acetoxycholest-5-en-4β-ol (2.1 g., m.p. 177-189°) in 20 ml. of carbon tetrachloride was oxidized at room temperature with 15 ml. of dimethylsulfoxide and 10 ml. of acetic anhydride. After standing at room temperature for 2 days, the reaction mixture was stirred for 6 hr. with 100 ml. of water to hydrolyze excess acetic anhydride, and then extracted with ether. The combined ether extracts were washed with water, 5% aqueous potassium bicarbonate solution and dried. Removal of ether gave 2.1 g. (100%) of solid. Two recrystallizations from methanol gave 1.49 g. (71%) of 3β-acetoxycholest-5-en-4-one, m.p. 97-115° (lit.18 m.p. 120-121°). A 200-mg. portion was purified by thick layer chromatography (solvent A) followed by one recrystallization to yield 130 mg. of colorless plates, m.p. 117-121°.

N.m.r. spectrum: $ 0.68 (3H, s., C-18 methyl), 0.99 (3H, s., C-19 methyl), 2.15 (3H, s., CH$_3$COO-), 5.20 (1H, d.d.,
J=8 Hz., C-3 H), 6.40 ppm (1H, unresolved quartet due to further coupling, \(\nu_H = 10 \) Hz., C-6 H)

3β-Acetoxycholestan-4-one 57

(a) By basic isomerization of 3α-acetoxycholestan-4-one 21. A solution of 140 mg. of 3α-acetoxycholestan-4-one 21, m.p. 93-94.5°, and 0.9 g. of potassium acetate in 4.5 ml. of acetic acid was refluxed under nitrogen at 135° for 3 hr. After removal of acetic acid under reduced pressure, water was added to the resulting residue and the product extracted with ether. The ether extract was washed with water, 5% aqueous sodium bicarbonate solution, water, and then dried. Removal of ether gave 130 mg. (93%) of crystalline solid. Two recrystallizations from 95% ethanol gave 70 mg. of 3β-acetoxycholestan-4-one 57, m.p. 107-118.5° (lit. 92 m.p. 117-118°).

I.r. spectrum: \(\nu \) max 1745 (ester C=O) and 1725 cm\(^{-1}\) (ketone C=O)

N.m.r. spectrum: \(\delta \) 0.65 (3H, s., C-18 methyl), 0.75 (3H, s., C-19 methyl), 2.13 (3H, s., \(\text{CH}_3\text{COO}^- \)), 5.20 ppm (1H, unresolved quartet due to further coupling, C-3 H)

(b) By catalytic hydrogenation of 3β-acetoxycholesterol-5-en-4-one 23. 3β-Acetoxycholesterol-5-en-4-one 23 (410 mg., m.p. 97-115°) in 40 ml. of ethyl acetate was hydrogenated at room temperature in the presence of 200 mg. of 5%
palladium-on-carbon for 24 hr. After removal of the solid catalyst, the evaporation of ethyl acetate left 338 mg. of slightly yellow oil. T.l.c. of the crude product showed that there were two major components present in a ratio of 6:4. Separation of the crude product on two thick layers (solvent A) gave 50 mg. of semicrystalline 3β-acetoxycholestan-4-one 57. One recrystallization from 95% ethanol gave 27 mg. of colorless crystals, m.p. 114-118°C, whose infrared and n.m.r. spectra were identical with those obtained in (a). The other component was identified by m.p., m.m.p. (98-99°C), i.r. and n.m.r. data to be cholestan-4-one 2 resulting from hydrogenation and hydrogenolysis of the 3-acetoxy group.

(c) By acidic isomerization of 3α-acetoxycholestan-4-one 21. 3α-Acetoxycholestan-4-one 21 (95 mg., crude product from Jones' oxidation of 3α-acetoxycholestan-4β-ol) in 2.5 ml. of acetic acid was treated with a drop of 36% aqueous hydrochloric acid at room temperature for 12 hr. T.l.c. of the crude reaction mixture indicated that there were at least three major components.

5α-Acetoxycholestan-4-one 58

A mixture of 0.86 g. of 5α-hydroxycholestan-4-one, m.p. 150-159°C, 12.0 ml. of acetyl chloride and 8.0 ml. of
freshly distilled dimethylaniline in 50 ml. of chloroform was refluxed for one day. Water was added to hydrolyze excess acetyl chloride. After standing at room temperature for one day, the chloroform layer was washed with 5% aqueous sodium bicarbonate solution, dilute hydrochloric acid solution, and dried. The removal of solvent left 1.06 g. of oil. T.l.c. showed that there was still some starting material left. Purification of the crude product on six 20 x 20 cm. thick layer gave 0.62 g. (67%) of solid which after two recrystallizations from methanol-ether gave 0.50 g. (55%) of 5α-acetoxycholestan-4-one 58, m.p. 147-148.5⁰.

I.r. spectrum: \(\nu\text{max } 1740 \text{ (ester C=O) and 1725 cm}^{-1} \) (ketone C=O)

N.m.r. spectrum: \(\delta 0.66 \text{ (3H, s., C-18 methyl), 0.82 (3H, s., C-19 methyl), 2.13 ppm (3H, s., CH}_3\text{CO-)} \)

O.R.D.: \([\alpha]_{589}^{+31^0}, [\alpha]_{308}^{-1140} \text{ (trough), } [\alpha]_{273}^{+2120} \) (peak) \((g, 0.916) \)

4α-Acetoxy-5β-cholestan-3-one

The procedure of Williamson and Johnson22 for thermal rearrangement of 2α,3α-oxido-3β-acetoxycholestane was followed.

A 1.16-g. sample of 3β,4β-oxido-3α-acetoxy-5β-cholestane, m.p. 130-138⁰, was placed in a 15-ml. centrifuge
tube which was immersed for 5 min. in an oil bath
maintained at 160°. On cooling, the product remained an
oil. The n.m.r. spectrum was consistent with the structure
of 4α-acetoxy-5β-cholestan-3-one. No attempt was made to
crystallize the compound.

N.m.r. spectrum: δ 0.67 (3H, s., C-18 methyl), 1.10 (3H,
s., C-19 methyl), 2.15 (3H, s., CH₃COO⁻), 5.46 ppm (1H, d.,
J=8 Hz., C-4 H)

4β-Acetoxy-5β-cholestan-3-one 60

4α-Acetoxy-5β-cholestan-3-one (1.16 g., crude product,
see previous experiment) in 20 ml. of acetic acid was
treated with three drops of 48% hydrobromic acid at room
temperature for 8 hr. The solvent was removed at room
temperature and reduced pressure to give 1.10 g. of
slightly brown oil. Attempted crystallization from 95%
ethanol failed. Purification of the crude product on four
thick plates followed by one recrystallization from 95%
ethanol gave 0.75 g. (65%) of colorless prisms, m.p.
104-107°. One more recrystallization raised the melting
point to 106-108°.

I.r. spectrum: V max 1745 (ester C=O) and 1730 cm⁻¹
(ketone C=O)

N.m.r. spectrum: δ 0.69 (3H, s., C-18 methyl), 1.07
(3H, s., C-19 methyl), 2.15 (3H, s., CH₃COO⁻), 5.55 ppm

(1H, d., J=12 Hz., C-4 H)

Analysis: Calc. for C₂₉H₄₈O₃: C, 78.33; H, 10.88

Found

: C, 77.90; H, 10.28
Reaction of 2α-Bromocholestan-3-one 4 with Potassium

Acetate in Acetic Acid at 220-230\degree \text{(Reaction 1)}*

2α-Bromocholestan-3-one 4 (500 mg., m.p. 167-169\degree) and 3.00 g. of potassium acetate (both dried separately at 80\degree under 0.4 Torr for 3 hr.) in 14.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220-230\degree \text{ (furnace temperature reading)} for 5 hr. After being cooled to room temperature, the tube was opened and the reaction mixture was worked up to give 394 mg. (95%) of a brown oil, which solidified on standing at room temperature. Recrystallization from acetone gave 208 mg. (49%) of \(\Delta^5\)-cholesten-4-one 7, m.p. 93-105\degree. Purification on a thick layer (solvent B) followed by two recrystallizations from acetone gave 97 mg. of colorless plates, m.p. 110-112\degree (lit.12 m.p. 111-112\degree).

\textbf{U.v. spectrum:} \(\lambda_{\text{max}}\) 241 nm (\(\epsilon\) 6,610) [lit.12 241 nm (\(\epsilon\) 7,200)]

\textbf{I.r. spectrum:} \(\nu_{\text{max}}\) 1685 (C=O) and 1625 cm-1 (conj. C=C)

\textbf{N.m.r. spectrum:} \(\delta\) 0.70 (3H, s., C-18 methyl), 0.96 (3H, s., C-19 methyl), 6.42 ppm (1H, unresolved quartet due to further coupling, \(w_h=7.5\text{ Hz.}, C-6\text{ H})

The amount of this unsaturated ketone in the crude product as estimated from t.l.c. and n.m.r. data was

*The number for the reaction refers to that listed in Tables I-IV and Table VII.
ca. 80%. The n.m.r. spectrum of the crude product also revealed the presence of ca. 15% of Δ⁴-cholesten-3-one 5 (vinylic proton at δ 5.70, b.s., \(\omega_p = 3 \text{ Hz} \)). No vinylic proton absorptions due to Δ¹-cholesten-3-one 6 was visible in the n.m.r. spectrum of the crude product. However, after the mother liquor was separated on a thick layer (solvent A), the upper unsaturated ketone band (Rf 0.46) was shown by n.m.r. integration of vinylic protons to be a mixture of Δ⁵-cholesten-4-one 7 and Δ¹-cholesten-3-one 6 in a ratio of ca. 5:1. Therefore, the amount of Δ¹-cholesten-3-one 6 formed in the h-Δ¹-cholestenone rearrangement was estimated to be ca. 5%.

A parallel reaction without the exclusion of air gave a more complex product mixture, which showed at least seven spots of moderate intensity on the t.l.c. (solvent A), whereas the crude product of the reaction under a nitrogen atmosphere showed only two major spots on t.l.c., corresponding in Rf values to Δ⁵-cholesten-4-one 7 and Δ⁴-cholesten-3-one 5. Crystalline material of m.p. 90-105° was isolated in 20% yield in the reaction without the exclusion of air.

Reaction of 2α-Bromocholestan-3-one 4 with Potassium

Acetate Alone at 220-230°

2α-Bromocholestan-3-one 4 (100 mg., m.p. 168-172°)
and 0.60 g. of dried potassium acetate* were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220-230° (furnace temperature reading) for 5 hr. The reaction mixture was poured into water and extracted with ether. The combined ether extracts were washed with water and dried. Removal of ether left 80 mg. of a brown oil. T.l.c. (solvent A) and i.r. data indicated that the crude product was a mixture of acetoxyketones. The amount of unsaturated ketone as judged from the t.l.c. data was less than 5%.

Reaction of 2α-Bromocholestan-3-one 4 with Potassium Acetate in Acetic Acid at 97-103° (Reaction 2)

2α-Bromocholestan-3-one 4 (288 mg., m.p. 168-170°) and 1.70 g. of dried potassium acetate in 9.5 ml. of acetic acid was warmed in an oil bath (bath temperature 105-110°, solution temperature 97-103°) until no starting material was left as judged from the t.l.c. data. Work up gave 250 mg. (91%) of slightly brown oil, λmax 239 nm (ε 990, based on the molecular weight of 430). Analysis by a combination of u.v., t.l.c. (solvent A), and n.m.r. data, which is described in detail below, indicated that the

*Potassium acetate was dried at 0.5 Torr for 3 hr. at 80° and stored in a flask with ground glass stopper.
crude product was composed of 3β-acetoxycholestan-2-one 39 (5%, Rf 0.49), Δ⁴⁻cholesten-3-one 6 and/or Δ⁵⁻cholesten-4-one 7 (trace*, Rf 0.44), 2α- and/or 4α-acetoxycholestan-3-one 18 and/or 19 (86%, Rf 0.40), Δ⁴⁻cholesten-3-one 5 (6%, Rf 0.30). Purification of 163 mg. of the crude product on a thick layer (solvent A) and isolation of the major acetoxyketone band (Rf 0.40) gave 139 mg. (85%) of colorless solid, [α]D +28° (c, 2.00), single spot (Rf 0.40) on t.l.c. (solvent A). From the specific rotation, it was concluded that 2α- and 4α-acetoxycholestan-3-one 18 and 19 were formed in a ratio of 1:0.97. Recrystallization from 95% ethanol gave 111 mg. of the 1:1 complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19, m.p. 145-147° (lit.²² m.p. 149-149.3°).

i.r. spectrum: ν max 1750 (ester C=O) and 1735 cm⁻¹ (ketone C=O)

N.m.r. spectrum: δ 0.68 (3H, s., C-18 methyl), 1.16 (3H, s., C-19 methyl), 2.12 (3H, s., CH₃COO⁻), 5.15 ppm (1H, m., C-2 H or C-4 H)

Attempts to separate C-19 methyls and α-protons in n.m.r. spectra of the 1:1 complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19 by varying the solvent

*When a compound failed to show up on n.m.r. but was detectable from t.l.c., it is reported as trace.
(carbon tetrachloride, benzene, pyridine) were unsuccessful.

Analysis of the Crude Product of the Previous Reaction

N.m.r. spectrum revealed that the crude product was mainly 2α- and 4α-acetoxycholestan-3-one 18 and 19 (δ 0.68 for C-18 methyl, 1.16 for C-19 methyl, 5.15, m., for α-protons) plus minor amounts of 3β-acetoxycholestan-2-one 39 (δ 0.65 for C-18 methyl, 0.77 for C-19 methyl) and Δ⁴-cholesten-3-one 5 (δ 5.70, b.s., \(\omega_p = 3 \) Hz., for vinylic proton). No peaks due to Δ¹-cholesten-3-one 6 and Δ⁵-cholesten-4-one 7 (δ 5.88, d., and 7.14, d., for vinylic protons of 6; 6.42, unresolved quartet, for vinylic proton of 7) were visible in the low field region. T.l.c. (solvent A) showed four spots, Rf 0.48 (39, minor), 0.46 (6 or 7, trace), 0.40 (18 or 19, major), 0.30 (5, minor). Therefore the amount of Δ⁴-cholesten-3-one 5 in the crude product was calculated from the u.v. data [\(\lambda_{max} = 239 \) nm (ε 990)] to be ca. 6% based on ε 16,500 for the pure compound, and the amount of Δ¹-cholesten-3-one 6 and/or Δ⁵-cholesten-4-one 7 were reported as "trace".

Comparison of the relative peak heights of the C-18 and C-19 methyls in the n.m.r. spectrum and the intensity of spots on the t.l.c. plate indicated that 3β-acetoxycholestan-2-one 39 was present in ca. 5%. The
rest of the crude product was taken as the percentage of 2α- and 4α-acetoxysterol-3-one 18 and 19. The low field α-proton pattern in n.m.r. spectrum indicated 18 and 19 were present in a ratio of 1:0.9.

Reaction of 2α-Bromocholesterol-3-one 4 with Potassium

Acetate in Acetic Acid at 133-135°C (Reaction 3)

2α-Bromocholesterol-3-one 4 (1.00 g., m.p. 167-169°C) and 7.00 g. of dried potassium acetate in 35 ml. of acetic acid was refluxed at 133-135°C (solution temperature) under a nitrogen atmosphere for 6 hr. Work up gave 828 mg. (87%) of crystalline material, λmax 239 nm (ε 1130, based on the estimated molecular weight of 430). Analysis by a combination of u.v., n.m.r., and t.l.c. (solvent A) data indicated that the crude product was a mixture of

3β-acetoxysterol-2-one 39 (20%, Rf 0.49), Δ1-cholesten-3-one 6 and/or Δ5-cholesten-4-one 7 (trace, Rf 0.44), 2α- and 4α-acetoxysterol-3-one 18 and 19 (70%, Rf 0.40), Δ4-cholesten-3-one 5 (10%, Rf 0.30). The ratio of 18 to 19 was estimated from the splitting pattern of the low field protons to be close to 1:0.8. One recrystallization from 95% ethanol gave 400 mg. of crystalline material, m.p. 119-140°C. A 300-mg. portion was purified on a thick layer (solvent A). The major band (Rf 0.40) gave 164 mg. of
crystalline material which after three recrystallizations from 95% ethanol amounted to 72 mg. of the 1:1 complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19, m.p. 145-147°.

Reaction of 2α-Bromocholestan-3-one 4 with Potassium Acetate in Acetic Acid at 200-210° (Reaction 4)

2α-Bromocholestan-3-one 4 (180 mg., m.p. 166-169°) and 1.10 of dried potassium acetate in 6.8 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated in an oil bath at 200-210° for 16 hr. Work up gave 158 mg. (100%) of a brown oil, λmax 239 nm (ε 4250, based on the estimated molecular weight of 403).

T.l.c. (solvent A) showed three spots, Rf 0.48 (7 or 39 or 6, major), 0.40 (18 or 19, minor), 0.30 (5, minor). T.l.c. (solvent B) showed three spots, Rf 0.35 (7 or 6, major), 0.26 (39, major), 0.19 (18 or 19 or 5, minor). Analysis by a combination of u.v., t.l.c., and n.m.r. data showed that the crude product was Δ5-cholesten-4-one 7 (50%), 3β-acetoxycholestan-2-one 39 (30%), 2α- and/or 4α-acetoxycholestan-3-one 18 and/or 19 (10%), and Δ4-cholesten-3-one 5 (10%). The crude product was separated on a thick layer (solvent B) into three bands. Band 1 (Rf 0.35) on work up gave 60 mg. of crude Δ5-cholesten-4-one 7, which after three recrystallizations from acetone yielded
15 mg. of colorless prisms, m.p. 108-112°. Band 2 (Rf 0.26) on work up gave 36 mg. of acetoxycholestanone mixture, which after two recrystallizations from 95% ethanol afforded 28 mg. of 3β-acetoxycholestan-2-one 39, t.l.c. single spot, m.p. and m.m.p. 143-145°. On admixture with the 1:1 complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19, the m.p. was depressed to 115-141°. Band 3 (Rf 0.19) consisted mainly of Δ⁴-cholesten-3-one 5, but no attempt was made to isolate it.

Reaction of 4α-Bromocholestan-3-one 12 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 5)

4α-Bromocholestan-3-one 12 (70 mg., m.p. 153.5-160.5°) and 0.51 g. of dried potassium acetate in 3.0 ml. of acetic acid were refluxed under a nitrogen atmosphere (solution temperature 133-135°) until t.l.c. showed the complete absence of starting material (3 hr.). Work up gave 60 mg. (90%) of a brown oil. A combination of t.l.c. (solvent A) and n.m.r. data indicate that the crude product was composed of 3β-acetoxycholestan-2-one 39 (10%, Rf 0.49), Δ¹-cholesten-3-one 6 and/or Δ⁵-cholesten-4-one 7 (trace, Rf 0.44), 2α-acetoxycholestan-3-one 18 (40%, Rf 0.40), 4α-acetoxycholestan-3-one 19 (40%, Rf 0.40) and Δ⁴-cholesten-3-one 5 (10%, Rf 0.30). Three
recrystallizations of the crude product from 95% ethanol gave 16 mg. of the 1:1 complex of 2α- and
4α-acetoxycholestan-3-ones 18 and 19, m.p. and m.m.p.
145-147°. On admixture with 4α-acetoxycholestan-3-one 19, the m.p. was depressed to 134-147°. On admixture with 3β-acetoxycholestan-2-one 39, the m.p. was depressed to 120-145°.

Reaction of 2α-Bromocholestan-1-one 89 with Potassium

Acetate in Acetic Acid at 133-135° (Reaction 6)

2α-Bromocholestan-1-one 89 (130 mg., m.p. 150-154°) and 1.50 g. of dried potassium acetate in 10.0 ml. of acetic acid was refluxed at 133-135° (solution temperature) under a nitrogen atmosphere for 3 hr. Work up gave 119 mg. (92%) of solid, which was shown by n.m.r. and t.l.c. data to be mainly starting material.

Reaction of 2α-Bromocholestan-1-one 89 with Potassium

Acetate in Acetic Acid at 200-210° (Reaction 7)

2α-Bromocholestan-1-one 89 (119 mg., recovered material from the previous experiment) and 0.70 g. of potassium acetate in 4.5 ml. of acetic acid was sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated in an oil bath at 200-210° for 14 hr. Work up gave 106 mg. (100%) of
a brown oil, \(\lambda_{\text{max}} \) 230 nm (\(\epsilon \) 3080, based on the estimated molecular weight 414), four spots on t.l.c. (solvent B). The composition of the crude product was estimated by a combination of n.m.r., u.v., and t.l.c. data to be \(\Delta^5 \)-cholest-4-one 7 (30%, Rf 0.35), 3\(\beta \)-acetoxycholestan-2-one 39 (45%, Rf 0.26), \(\Delta^4 \)-cholest-3-one 5 (5%, Rf 0.19) and an unknown compound (20%, Rf 0.60). No trace of starting material was detectable on the t.l.c. plate. The crude product was separated on a thick layer (solvent B) into three bands. Band 1 (Rf 0.35) on extraction gave 25 mg. of crude \(\Delta^5 \)-cholest-4-one 7, which after two recrystallizations from acetone gave 14 mg. of colorless plates, m.p. and m.m.p. 109-112\(^\circ\). Band 2 (Rf 0.26) on extraction yielded 19 mg. of crude 3\(\beta \)-acetoxycholestan-2-one 39, which after two recrystallizations from 95% ethanol yielded 10 mg. of colorless plates, m.p. and m.m.p. 143-145\(^\circ\). Band 3 was mainly \(\Delta^4 \)-cholest-3-one 5, but no attempt was made to isolate it.

Reaction of 3\(\alpha \)-Bromocholestan-2-one 86 with Potassium Acetate in Acetic Acid at 133-135\(^\circ\) (Reaction 8)

3\(\alpha \)-Bromocholestan-2-one 86 (80 mg., m.p. 151-154\(^\circ\)) and 0.55 g. of dried potassium acetate in 3.0 ml. of acetic acid were refluxed (solution temperature 133-135\(^\circ\)) under a
nitrogen atmosphere for 3.5 hr. Work up gave 75 mg. of slightly brown solid. A combination of t.l.c. (solvent A) and n.m.r. data indicated that the crude product was composed of 3β-acetoxycholestan-2-one 39 (75%, Rf 0.48) an unknown acetoxyketone (25%, Rf 0.40) and trace amounts of unsaturated ketones (Rf 0.40, 0.30). The n.m.r. spectrum of the crude product was consistent with the unknown acetoxyketone (Rf 0.40) being 1β-acetoxycholestan-2-one 87 (δ 0.65 for C-18 methyl, 0.92 or C-19 methyl, 2.12 for CH₃COO⁻, 4.70 for C-1 H). Two recrystallizations of the crude product from 95% ethanol gave 14 mg. of 3β-acetoxycholestan-2-one 39, m.p. and m.m.p. 143-145°. No attempt was made to isolate the other acetoxyketone.

Reaction of 3α-Bromocholestan-4-one 88 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 9)

3α-Bromocholestan-4-one 88 (140 mg., m.p. 125.5-127.5°) and 1.30 g. of dried potassium acetate in 6.0 ml. of acetic acid was refluxed at 133-135° (solution temperature) under a nitrogen atmosphere for 3.5 hr. Work up gave 129 mg. of brown oil, λmax 230 nm (ε 1190). A combination of u.v., t.l.c. (solvent B) and n.m.r. data indicated that the crude product was Δ⁵-cholesten-4-one 7 (15%, Rf 0.35), 3β-acetoxycholestan-4-one 57 (85%, Rf 0.25) and
5α-acetoxycholestan-4-one 58 (trace, Rf 0.20). The crude product was separated on a thick layer (solvent B) into two bands. Band 1 on work up gave 28 mg. of crude 5-cholesten-4-one 7, which after two recrystallizations gave 10 mg. of colorless plates, m.p. and m.m.p. 109-112°. Band 2 on work up gave 64 mg. of crude 3β-acetoxycholestan-4-one 57, which after two recrystallizations from 95% ethanol afforded 42 mg. of colorless plates, m.p. 108-118°, whose n.m.r. spectrum and Rf value were identical with those of the sample prepared from isomerization of 3α-acetoxycholestan-4-one 21.

Reaction of 2β-Bromo-5β-cholestan-3-one 82 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 10)

2β-Bromo-5β-cholestan-3-one 82 (200 mg., m.p. 133-135.5°) and 1.3 g. of dried potassium acetate in 7.0 ml. of acetic acid were refluxed at 133-135° (solution temperature) under a nitrogen atmosphere for 3.5 hr. Work up gave 184 mg. (97%) of solid. Analysis by a combination of n.m.r., and t.l.c. (solvent B) data indicated that the crude product was 1,5β-cholesten-3-one 85 and/or 5-cholesten-4-one 7 (trace, Rf 0.34), 2β-acetoxy-5β-cholestan-3-one 59 (90%, Rf 0.26) and 4'-cholesten-3-one 5 (10%, Rf 0.21). One recrystallization from 95% ethanol afforded 120 mg. (64%)
of 2β-acetoxy-5β-cholestan-3-one 59, m.p. 139-148°. Two more recrystallizations from 95% ethanol yielded 91 mg. of colorless needles, m.p. 146-150°, m.m.p. with the authentic sample obtained from 4β-bromo-5β-cholestan-3-one 3 (see next experiment), 146-150°.

Reaction of 4β-Bromo-5β-cholestan-3-one 3 with Potassium Acetate in Acetic Acid (Reaction 11)

4β-Bromo-5β-cholestan-3-one 3 (145 mg., m.p. 110-140°) and 1.0 g. of dried potassium acetate in 5.0 ml. of acetic acid were refluxed at 133-135° (solution temperature) for 3.5 hr. Work up gave 138 mg. (100%) of slightly brown solid. Analysis by a combination of n.m.r. and t.l.c. (solvent A) data indicated that the crude product was Δ1-5β-cholesten-3-one 85 and/or Δ5-cholesten-4-one 7 1 (trace, Rf 0.48), 2β-acetoxy-5β-cholestan-3-one 59 (90%, Rf 0.48), Δ4-cholesten-3-one 5 (10%, Rf 0.30). The splitting pattern of the low field α-proton revealed the absence of 4β-acetoxy-5β-cholestan-3-one 60. One recrystallization from 95% ethanol gave 101 mg. (73%) of crystalline 2β-acetoxy-5β-cholestan-3-one 59, m.p. 129-140°. A 10 mg. portion was recrystallized twice from 95% ethanol to give 5 mg. of colorless needles, m.p. 148-149.5° (lit. 132 m.p. 149-151°).
I.r. spectrum: ν_{max} 1745 (ester C=O) and 1730 cm$^{-1}$ (ketone C=O)

N.m.r. spectrum: 6 0.69 (3H, s., C-18 methyl), 1.07 (3H, s., C-19 methyl), 2.15 (3H, s., CH$_3$COO$^-$), 5.23 ppm (1H, q., J=13.5, 6 Hz., C-2 H)

Reaction of 2\textalpha-Bromocholestan-3-one 4 with

Tetramethylammonium Acetate in Acetone at Reflux (Reaction 12)

2\textalpha-Bromocholestan-3-one 4 (506 mg., m.p. 166-170°C) and 620 mg. of tetramethylammonium acetate in 35 ml. of dried acetone* were stirred at room temperature for 40 hr. T.l.c. (solvent A) revealed that there was ca. 80% reaction. The mixture was then refluxed on steam bath for 2 hr. Work up gave 427 mg. (89%) of crystalline solid, λ_{max} 227 nm (ε 867, based on the estimated molecular weight of 438).

Analysis by a combination of u.v., n.m.r., and t.l.c. data estimated the crude product to be 3\textbeta-acetoxycholestan-2-one 39 (10%, Rf 0.48), Δ^1-cholesten-3-one 6 (8%, Rf 0.44), and 2\textalpha-acetoxycholestan-3-one 18 (80%, Rf 0.40). No trace of Δ^4-cholesten-3-one 7 (Rf 0.30) was detected by t.l.c. One

Tetramethylammonium acetate was prepared by acidifying a 10% solution of tetramethylammonium hydroxide with acetic acid to a litmus paper end point and then evaporating to dryness at 0.5 Torr at 150°C on an oil bath. The dry, flaky foam was used without further purification. Acetone was dried by distilling from Drierite.
recrystallization from 95% ethanol gave 245 mg. (51%) of 2α-acetoxycholestan-3-one 18 as colorless plates, m.p. and m.m.p. 120-122°. From the mother liquor a second crop of 70 mg. (15%) of 2α-acetoxycholestan-3-one 18, m.p. 117-122°, was obtained, bringing the total yield up to 66%.

Reaction of 2α-Bromocholestan-3-one 4 with Tetramethylammonium Acetate in Acetone at Reflux (Reaction 13)

2α-Bromocholestan-3-one 4 (2.0 g., m.p. 167-169°) and 2.40 g. of tetramethylammonium acetate in 140 ml. of dried acetone was refluxed on steam bath for seven days. Work up gave 1.71 g. (88%) of an oil, which slowly solidified on standing at room temperature. T.l.c. (solvent A) and n.m.r. data revealed that the crude product was 3β-acetoxycholestan-2-one 39 (30%, Rf 0.48), Δ^1-cholesten-3-one 6 (10%, Rf 0.44), and 2α-acetoxycholestan-3-one 18 (60%, Rf 0.40). No trace of Δ^4-cholesten-3-one 5 was detectable by t.l.c.

Reaction of 2β-Bromo-5β-cholestan-3-one 82 with Tetramethylammonium Acetate in Acetone (Reaction 15)

2β-Bromo-5β-cholestan-3-one 82 (200 mg., m.p. 133-135.5°) and 240 mg. of tetramethylammonium acetate in 16 ml. of dried acetone were stirred at room temperature for 12 hr. T.l.c. showed that there was ca. 20% of starting material
left. The reaction was completed by refluxing on a steam bath for 2 hr. Work up gave 184 mg. (97%) of slightly brown oil, λ_{max} 233 nm (ε 3160, based on the estimated molecular weight of 416). Analysis by a combination of u.v., n.m.r., and t.l.c. (solvent B) indicated that the crude product was composed of Δ^1-5β-cholesten-3-one 85 (45%, Rf 0.34), 2β-acetoxy-5β-cholestan-3-one 59 (27%, Rf 0.26), and 2α-acetoxy-5β-cholestan-3-one 91 (27%, Rf 0.21). No trace of Δ^4-cholesten-3-one 5 was detectable on the t.l.c. plate. Separation on thick layer (solvent B) yielded three bands. Band 1 (Rf 0.34) on extraction gave 45 mg. of crystalline solid, which after one recrystallization from methanol-acetone gave 36 mg. of Δ^1-5β-cholesten-3-one 85, m.p. 102-105° (lit. 93 m.p. 104°).

U.v. spectrum: λ_{max} 232 nm (ε 8030) [lit. 93 232 nm (ε 7,500)]

I.r. spectrum: ν_{max} 1680 cm$^{-1}$ (C=O)

N.m.r. spectrum: 5 0.70 (3H, s, C-18 methyl), 1.20 (3H, s, C-19 methyl), 5.88 (1H, d, J=10.5 Hz, C-2 H), 6.82 ppm (1H, d, J=10.5 Hz, C-1 H)

Band 2 (Rf 0.26) on extraction yielded 31 mg. of crystalline solid, which after one recrystallization from 95% ethanol gave 26 mg. of 2β-acetoxy-5β-cholestan-3-one 59, m.p. 140-147°.

Band 3 (Rf 0.21) on extraction yielded 44 mg. of
crystalline solid, which after one recrystallization from 95% ethanol gave 27 mg. of 2α-acetoxy-5β-cholestan-3-one \(\text{91} \), m.p. 139-140° (lit. 138-139°, 32, 137-138° 45).

I.r. spectrum: \(\nu_{\text{max}} \) 1745 (ester C=O) and 1730 cm\(^{-1}\) (ketone C=O)

N.m.r. spectrum: \(\delta \) 0.69 (3H, s., C-18 methyl), 1.17 (3H, s., C-19 methyl), 2.15 (3H, s., CH\(_3\)COO\(-\)), 5.35 ppm (1H, d.d., J=8.5 Hz., C-2 H)*

Reaction of 4β-Bromo-5β-cholestan-3-one \(\text{3} \) with

Tetramethylammonium Acetate in Acetone at Reflux (Reaction 16)

4β-Bromo-5β-cholestan-3-one \(\text{3} \) (334 mg., crude bromination product after purification by thick layer, single t.l.c. spot, i.e. free from 2β,4β-dibromo-5β-cholestan-3-one and 5β-cholestan-3-one \(\text{1} \)) and 400 mg. of tetramethylammonium acetate in 25 ml. of dried acetone were stirred magnetically for 20 hr. at room temperature. T.l.c. (solvent A) showed that there was ca. 20% of starting material left. The reaction was completed by refluxing on a steam bath for one hour. Work up gave 282 mg. (95%) of slightly brown oil, \(\lambda_{\text{max}} \) 240 nm (ε 8250, based on the

*Peaks at \(\delta 5.35 \text{ ppm} \) appears as a quartet at 100 MHz. with \(J=9.5, 7 \text{ Hz} \).
estimated molecular weight of 414). From t.l.c. (solvent A), u.v., and n.m.r. data the crude product was estimated to be composed of $^1\Delta$-5β-cholesten-3-one 85 (trace, Rf. 0.48), 2β-acetoxy-5β-cholestan-3-one 59 (25%, Rf 0.48), 2α-acetoxy-5β-cholestan-3-one 91 (25%, Rf 0.40), and $^\Delta$-cholesten-3-one 5 (45%, Rf 0.30). Separation on a thick layer (solvent A) gave three bands. Band 1 (Rf 0.48) on extraction gave 54 mg. of oil, which was shown by n.m.r. to be mainly 2β-acetoxy-5β-cholestan-3-one 59, contaminated by ca. 25% of $^1\Delta$-5β-cholesten-3-one 85. The amount of $^1\Delta$-5β-cholesten-3-one 85 present in the crude product was estimated therefore to be ca. 6%. Band 2 (Rf 0.40) on extraction gave 52 mg. of crystalline solid, which was shown by n.m.r. to be practically pure 2α-acetoxy-5β-cholestan-3-one 91. Band 3 (Rf 0.30) was mainly $^\Delta$-cholesten-3-one 5.

Reaction of 1:1 Complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19 with Potassium Acetate in Acetic Acid at 220-230°

(Reaction 17)

1:1 Complex of 2α- and 4α-acetoxycholestan-3-one 18 and 19 (200 mg., m.p. 119-140°, contaminated by ca. 5% of 3β-acetoxycholestan-2-one 39, but free from any unsaturated ketone as revealed by n.m.r.) and 1.20 g. of dried potassium acetate in 5.0 ml. of acetic acid were sealed in a thick-walled
Pyrex tube and heated at 220-230° (furnace temperature reading) for 4.5 hr. Work up gave 135 mg. (82%) of brown oil, \(\lambda_{\text{max}} \) 241 nm (\(\epsilon \) 5700, based on molecular weight 384). T.l.c. (solvent A) showed three spots, Rf 0.70 (unknown, minor), 0.46 (\(\mathcal{Z} \), major), 0.30 (\(\mathcal{S} \), minor). Both t.l.c. and u.v. data indicated that the crude product contained ca. 70% of \(\Delta^5 \)-cholesten-4-one \(\mathcal{Z} \) (Rf 0.46) and ca. 10% of \(\Delta^4 \)-cholesten-3-one \(\mathcal{S} \) (Rf 0.30) and some unknown compound (Rf 0.70). Purification on a thick layer (solvent B) gave 54 mg. of a colorless oil which after two recrystallizations from acetone gave 16 mg. of \(\Delta^5 \)-cholesten-4-one \(\mathcal{Z} \), m.p. and m.m.p. 109-110°.

Reaction of 2\(\alpha \)-Acetoxycholestan-3-one 18 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 18 and 19)

2\(\alpha \)-Acetoxycholestan-3-one 18 (270 mg., m.p. 120-123°) and 1.40 g. of dried potassium acetate in 7.0 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 4 hr. Work up gave 235 mg. (87%) of solid. T.l.c. (solvent A) and n.m.r. revealed that the crude product was a mixture of 3\(\beta \)-acetoxycholestan-2-one 39 (40%, Rf 0.48) and 2\(\alpha \)-acetoxycholestan-3-one 18 (60%, Rf 0.40). Retreatment of the crude product with potassium acetate in acetic acid at reflux for 3 days gave 180 mg. (66%) of
solid, λ_{max} 271 nm (ϵ 343, based on molecular weight of 444). T.l.c. (solvent A) and n.m.r. revealed that the conversion into 3\(\beta\)-acetoxycholestan-2-one 39 was ca. 80%. Both t.l.c. and u.v. data showed the complete absence of α,β-unsaturated ketone. One recrystallization from 95% ethanol gave 84 mg. of 3\(\beta\)-acetoxycholestan-2-one 39, m.p. 115-142\(^{\circ}\), single t.l.c. spot. Three more recrystallizations gave 40 mg. of colorless plates, m.p. and m.m.p. 144-145\(^{\circ}\).

Reaction of 2\(\alpha\)-Acetoxycholestan-3-one 18 with Potassium Acetate in Propionic Acid

2\(\alpha\)-Acetoxycholestan-3-one 18 (100 mg., m.p. 122-124\(^{\circ}\)) and 0.60 g. of dried potassium acetate in 3.0 ml. of propionic acid was heated under a nitrogen atmosphere at 133-135\(^{\circ}\) (solution temperature) for 2 days. Work up gave 100 mg. of brown oil. The n.m.r. spectrum of the crude product showed the complete absence of propionoxyl group. T.l.c. (solvent A) revealed two spots (Rf 0.48 and 0.40) in a ratio of 7:3. Separation on a thick layer (solvent A) and extraction of the upper band afforded 41 mg. of crystalline material whose n.m.r. spectrum was identical with that of authentic 3\(\beta\)-acetoxycholestan-2-one 39. Two recrystallizations from 95% ethanol yielded 34 mg. of colorless plates, m.p. and m.m.p. 142-145\(^{\circ}\).
Mass spectrum: m/e 444 (M⁺), no ion in the m/e 458 region

Reaction of 2α-Acetoxycholestan-3-one 18 with Potassium

Acetate in Acetic Acid at 190-200° (Reaction 20)

2α-Acetoxycholestan-3-one 18 (140 mg., m.p. 120-123°) and 1.10 g. of dried potassium acetate in 6.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 190-200° (furnace temperature reading) for 2 hr. Work up gave 135 mg. of brown oil, λmax 241 nm (ε 1300, based on the estimated molecular weight of 432). A combination of u.v., n.m.r., and t.l.c. (solvent A) indicated that the crude product was composed of 3β-acetoxycholestan-2-one 39 (60%, Rf 0.48), 2α- and 4α-acetoxycholestan-3-one 18 and/or 19 (20%, Rf 0.40), Δ⁵-cholesten-4-one 7 (20%, Rf 0.40), Δ⁴-cholesten-3-one 5 (trace, Rf 3.0). Recrystallization of the crude product from 95% ethanol gave 57 mg. of crude 3β-acetoxycholestan-3-one 39, m.p., 111-140°, single t.l.c. spot. Two more recrystallizations gave 20 mg. of colorless plates, m.p. and m.m.p. 141-145°.

The mother liquor of the first recrystallization was separated on a thick layer (solvent A). Extraction of the band (Rf 0.40) just below the major unsaturated ketone band gave 17 mg. of crystalline material, single t.l.c. spot. One recrystallization from 95% ethanol afforded 8 mg. of
2α-acetoxycholestan-3-one \(18\), m.p. and m.m.p. 120-123\(^\circ\).

Reaction of 2α-Acetoxycholestan-3-one \(18\) with Potassium Acetate in Acetic Acid at 220-230\(^\circ\) (Reaction 21)

2α-Acetoxycholestan-3-one \(18\) (200 mg., m.p. 120-123\(^\circ\)) and 1.20 g. of dried potassium acetate in 7.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220-230\(^\circ\) (furnace temperature reading). Work up gave 148 mg. (90\%) of brown oil, \(\lambda_{\text{max}}\) 240 nm (\(\varepsilon\) 6210, based on molecular weight of 384). A combination of n.m.r., u.v., and t.l.c. (solvent A) data indicated that the crude product contained \(\Delta^5\)-cholesten-4-one \(7\) (80\%, Rf 0.48) and \(\Delta^4\)-cholesten-3-one \(5\) (5\%, Rf 0.30). No trace of starting material was detectable from t.l.c. or n.m.r. data. Purification of the crude product on a thick layer gave 50 mg. of crude \(\Delta^5\)-cholesten-4-one \(7\), which after three recrystallizations from acetone afforded 12 mg. of colorless prisms, m.p. and m.m.p. 110-112\(^\circ\).

Reaction of 3β-Acetoxycholestan-2-one \(39\) with Potassium Acetate in Acetic Acid at 200-210\(^\circ\) (Reaction 22)

3β-Acetoxycholestan-2-one \(39\) (100 mg., m.p. 140-145\(^\circ\)) and 0.60 g. of dried potassium acetate in 4.0 ml. of acetic
acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated in an oil bath at 200-210° for 16 hr. Work up gave 90 mg. (96%) of brown oil, λmax 238 nm (ε 3530, based on the estimated molecular weight of 414).

A combination of t.l.c. (solvent A), u.v., and n.m.r. data indicated that the crude product was composed of

3β-acetoxycholestan-2-one 39 (40%, Rf 0.48),
Δ5-cholesten-4-one 7 (45%, Rf 0.46), 2α- and 4α-acetoxycholestan-3-one 18 and/or 19 (10%, Rf 0.40),
Δ4-cholesten-3-one 5 (5%, Rf 0.30).

Reaction of 4α-Acetoxycholestan-3-one 19 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 23)

4α-Acetoxycholestan-3-one 19 (200 mg., m.p. 136-143°)

and 1.40 g. of potassium acetate in 7.0 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 6 hr. Work up gave 190 mg. (95%) of brown oil. Both t.l.c. and n.m.r. data showed the crude product was mainly the starting material, no trace of unsaturated ketone was detected.

Reaction of 4α-Acetoxycholestan-3-one 19 with Potassium Acetate in Acetic Acid at 170-180° (Reaction 24)

4α-Acetoxycholestan-3-one 19 (184 mg., m.p. 136-143°)
and 1.40 g. of dried potassium acetate in 7.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 170-180°C (furnace temperature reading) for 4 hr. Work up gave 174 mg. (100%) of brown oil, λ_{max} 240 nm (ϵ 5,700 based on the estimated molecular weight of 396). A combination of u.v., n.m.r., and t.l.c. (solvent A) data showed that the crude product was composed of Δ^5-cholesten-4-one 7 (80%, Rf 0.40), acetoxyketone mixture (20%, Rf 0.40) and Δ^4-cholesten-3-one 5 (trace, Rf 0.30). The crude product was separated on a thick layer (solvent B). Band 1 (Rf 0.35) on work up afforded 74 mg. of crude Δ^5-cholesten-4-one 7, which after three recrystallizations from acetone gave 55 mg. of colorless plates, m.p. and m.m.p. 110-112°C. Band 2 (Rf 0.30) on extraction afforded 49 mg. of a mixture of Δ^5-cholesten-4-one 7 and acetoxyketones. Band 3 (Rf 0.26) on extraction afforded 16 mg. of acetoxyketones, which was shown by the n.m.r. spectrum to be a mixture of 2α- and/or 4α-acetoxycholestan-3-one 18 and/or 19 and 3β-acetoxycholestan-2-one 39 and/or 3β-acetoxycholestan-4-one 57.
Reaction of 4α-Acetoxycholestan-3-one \(\text{19} \) with Potassium

Acetate in Acetic Acid at 200-210° (Reaction 25)

4α-Acetoxycholestan-3-one \(\text{19} \) (100 mg., m.p. 136-143°) and 0.60 g. of dried potassium acetate in 4.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 200-210° in an oil bath for 16 hr. Work up gave 90 mg. (100%) of brown oil. N.m.r. and t.l.c. (solvent A) revealed that \(\Delta^5 \)-cholest-4-one \(\text{7} \) was the main product and the amount of acetoxyketones was less than 5%. The t.l.c. data revealed that \(\Delta^4 \)-cholesten-3-one \(\text{5} \) was present in very small amount, if at all.

Reaction of 3α-Acetoxycholestan-4-one \(\text{21} \) with Potassium

Acetate in Acetic Acid at 133-135° (Reaction 26)

3α-Acetoxycholestan-4-one \(\text{21} \) (140 mg., m.p. 93-94.5°) and 0.90 g. of dried potassium acetate in 4.5 ml. of acetic acid was refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 3 hr. Work up gave 130 mg. (93%) of crude oil. T.l.c. (solvent A) and n.m.r. revealed that the crude product was mainly (>90%) 3β-acetoxycholestan-4-one \(\text{57} \) (Rf 0.48), ca. 5% of \(\Delta^5 \)-cholest-4-one \(\text{7} \) (Rf 0.44) and trace amount of 5α-acetoxycholestan-4-one \(\text{58} \).
(Rf 0.40). Two recrystallizations from 95% ethanol gave 70 mg. of 3β-acetoxycholestan-4-one 57 m.p. 107-118.5°.

Reaction of 3α-Acetoxycholestan-4-one 21 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 27)

3α-Acetoxycholestan-4-one 21 (100 mg., m.p. 93-94.5°) and 0.70 g. of dried potassium acetate in 4.0 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 12 hr. Work up gave 97 mg. (100%) of solid, λmax 241 nm (ε 1,270, based on the estimated molecular weight of 432). A combination of u.v., n.m.r., and t.l.c. (solvent B) data indicated that the crude product was composed of 3β-acetoxycholestan-4-one 57 (80%, Rf 0.35), Δ⁵-cholesten-4-one 7 (20%, Rf 0.26) and 5α-acetoxycholestan-4-one 58 (trace, Rf 0.21). The crude product was separated on a thick layer (solvent B) into two bands. Band 1 (Rf 0.35) on extraction yielded 15 mg. of Δ⁵-cholesten-4-one 7 which after two recrystallizations from acetone gave 8 mg. of colorless plates, m.p. and m.m.p. 109-112°. Band 2 (Rf 0.26) on extraction yielded 40 mg. of 3β-acetoxycholestan-4-one 57, which after two recrystallizations from 95% ethanol gave 30 mg. of colorless plates, m.p. 102-119°.
Reaction of 3α-Acetoxycholestan-4-one 21 with Potassium

Acetate in Propionic Acid

3α-Acetoxycholestan-4-one 21 (100 mg., m.p. 93-94.5°) and 0.70 g. of dried potassium acetate in 5.0 ml. of propionic acid were heated at 130° (solution temperature) under a nitrogen atmosphere for 5 hr. Work up gave 95 mg. (92%) of oil, λmax 241 nm (ε 440, based on molecular weight of 458). The n.m.r. spectrum indicated the presence of propionoxy group (δ 1.19, t., J=7 Hz., 2.35, q., J=7 Hz.). From the u.v. and n.m.r. data, the crude product was estimated to be composed of 3β-propionoxycholestan-4-one 108 (90%, Rf 0.49), Δ⁵-cholesten-4-one 7, (7%, Rf 0.44) and an unknown acyloxyketone (trace, Rf 0.40). Purification of the crude product on a thick layer (solvent A) gave 43 mg. of crystalline solid, which after three recrystallizations from 95% ethanol gave 3 mg. of 3β-propionoxycholestan-4-one 108, m.p. 109-111°.

N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 0.75 (3H, s., C-19 methyl), 1.19 (t., overlapping with methylene envelope, J=7 Hz., CH₃CH₂COO⁻), 2.35 (q., partly overlapping with methylene envelope, J=7 Hz., CH₃CH₂COO⁻), 5.20 ppm (1H, m., very similar to those of 3β-acetoxycholestan-4-one 57, C-3 H).

Mass spectrum: m/e 458 (M⁺)
Reaction of 5α-Acetoxycholestan-4-one 58 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 28)

5α-Acetoxycholestan-4-one 58 (100 mg., m.p. 147-148.5°) and 0.70 g. of dried potassium acetate in 4.0 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 12 hr. Work up gave 96 mg. (99%) of brown solid, λ_{max} 240 nm (ε 1,360 based on the estimated molecular weight of 432). A combination of t.l.c. (solvent B), n.m.r. and u.v. data indicated that the crude product was composed of 3β-acetoxycholestan-4-one 57 (80%, Rf 0.35), Δ⁵-cholesten-4-one 7 (20%, Rf 0.26) and 5α-acetoxycholestan-4-one 58 (trace, Rf 0.21). The crude product was separated on a thick layer (solvent B) into two bands. Band 1 on (Rf 0.35) extraction yielded 12 mg. of Δ⁵-cholesten-4-one 7, which after two recrystallizations from acetone gave 5 mg. of colorless plates, m.p. and m.m.p. 109-112°. Band 2 (Rf 0.26) on extraction gave 37 mg. of 3β-acetoxycholestan-4-one 57, which after one recrystallization from 95% ethanol gave 30 mg. of colorless plates, m.p. 106.5-117.5°.

Pyrolysis of 5α-Acetoxycholestan-4-one 58

5α-Acetoxycholestan-4-one 58 (100 mg., m.p. 147-148.5°) was heated under a nitrogen atmosphere on an oil bath at 200-210° for 2 hr. T.l.c. (solvent A), i.r. and n.m.r.
showed the product was essentially pure starting material. When the pyrolysis was done under 0.1 Torr at 200-210°, most of the sample sublimed up away from the heat source in 0.5 hr.

Reaction of 4β-Acetoxy-5β-cholestan-3-one 60 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 29)

4β-Acetoxy-5β-cholestan-3-one 60 (120 mg., m.p. 104-107°) and 0.86 g. of potassium acetate in 4.8 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 19 hr. Work up gave 114 mg. of slightly brown oil. Based on t.l.c. (solvent B) and n.m.r. data, it was estimated that the crude product was composed of Δ5-cholesten-4-one 7 (15%, Rf 0.35), 3β-acetoxycholestan-4-one 57 (70%, Rf 0.26), 4β-acetoxy-5β-cholestan-3-one 60 (10%, Rf 0.26) and 5α-acetoxycholestan-4-one 58 (trace, Rf 0.21). Separation on a thick layer (solvent B) gave rise to two bands. Band 1 (Rf 0.35) on extraction yielded 19 mg. of Δ5-cholesten-4-one 7, which after two recrystallizations from acetone afforded 5 mg. of colorless plates, m.p. 106-111°. Band 2 (Rf 0.26) on work up gave 80 mg. of crude 3β-acetoxycholestan-4-one 57, which after three recrystallizations from 95% ethanol afforded 47 mg. of colorless plates, m.p. 108-118°.
Reaction of 2β-Acetoxy-5β-cholestan-3-one 59 with Potassium Acetate in Acetic Acid at 133-135° (Reaction 30)

2β-Acetoxy-5β-cholestan-3-one 59 (90 mg., m.p. 146-150°) and 0.6 g. of dried potassium acetate in 3.5 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 48 hr. Work up gave 90 mg. (100%) of crude oil. T.l.c. (solvent B) showed two spots, Rf 0.26, 0.21, in almost equal amounts. The n.m.r. spectrum indicated that one of the components was starting material. No unsaturated ketone was detected on the t.l.c. plate. Separation on a thick layer (solvent B) gave two bands. Band 1 (Rf 0.26) on extraction afforded 36 mg. of solid, whose n.m.r. spectrum was identical with that of starting material. Band 2 (Rf 0.21) on extraction gave 30 mg. of 3α-acetoxy-5β-cholestan-2-one 97, which after two recrystallizations from 95% ethanol gave 17 mg. of colorless flakes, m.p. 158-170° (lit. m.p. 168-169°).

3α-Acetoxy-5β-cholestan-2-one 97 was also independently prepared by the basic hydrolysis and reacetylation of 2β-acetoxy-5β-cholestan-3-one 59. The two samples had identical n.m.r. spectra.

I.r. spectrum: ν max 1745 (ester C=O) and 1730 cm⁻¹ (ketone C=O)
N.m.r. spectrum: δ 0.65 (3H, s., C-18 methyl), 1.09 (3H, s., C-19 methyl), 2.15 (3H, s., CH₃COO⁻), 5.25 ppm (1H, m., C-3 H)*

O.R.D.: [α]₃₀⁸⁻690 (trough), [α]₂₇₀⁺₆₈₄ (peak) (c, 0.438)

Reaction of 2β-Acetoxyl-5β-cholestan-3-one 59 with Potassium Acetate in Acetic Acid at 220-230°C (Reaction 31)

2β-Acetoxyl-5β-cholestan-3-one 59 (91 mg., m.p. 129-140°C, once recrystallized crude product of the acetolysis of 4β-bromo-5β-cholestan-3-one 3 in acetic acid) and 0.63 g. of dried potassium acetate in 3.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220-230°C (furnace temperature reading) for 4 hr. Work up gave 82 mg. (95%) of brown oil. The t.l.c. (solvent A) and n.m.r. data revealed that the crude product was Δ⁵-cholesten-4-one 7 (80%, Rf 0.44) and Δ₄-cholesten-3-one 5 (10%, Rf 0.30). Purification on a thick layer (solvent B) gave 30 mg. of Δ⁵-cholesten-4-one 7, which after three recrystallizations from acetone gave 10 mg. of colorless plates, m.p. 110-112°C.

*The low field proton (δ 5.25) was resolved into broad quartet (J=7.11 Hz.) at 100 MHz.
Reaction of 2α-Acetoxycholestan-3-one 18 with
Tetramethylammonium Acetate in Acetone at Reflux
(Reactions 32 and 33)

2α-Acetoxycholestan-3-one 18 (500 mg., m.p. 122-124°)
and 570 mg. of tetramethylammonium acetate in 35 ml. of
dried acetone was refluxed on a steam bath for one day. The
t.l.c. (solvent B) of the reaction mixture showed two spots
in a ratio of ca. 3:7, corresponding in Rf values to
3β-acetoxycholestan-2-one 39 (Rf 0.48) and
2α-acetoxycholestan-3-one 18 (Rf 0.40). The reaction
mixture was refluxed for another three days. Work up gave
456 mg. (91%) of amorphous solid. T.l.c. and n.m.r. data
showed that the crude product was composed of
3β-acetoxycholestan-2-one 39 (60%, Rf 0.48) and
2α-acetoxycholestan-3-one 18 (40%, Rf 0.40). No trace of
unsaturated ketone was detectable on the t.l.c. plate. One
recrystallization from 95% ethanol gave 204 mg. (40%) of
3β-acetoxycholestan-2-one 39, m.p. 141-144.5°. One more
recrystallization raised the m.p. to 144-145° (lit.22
m.p. 145.5-146.1°). The n.m.r. spectrum showed that the
mother liquor was mainly 2α-acetoxycholestan-3-one 18, no
trace of 4α-acetoxycholestan-3-one 19 was detectable.
Reaction of 4α-Acetoxycholestan-3-one \(\textit{19} \) with Tetramethylammonium Acetate in Acetone at Reflux (Reaction 34)

4α-Acetoxycholestan-3-one \(\textit{19} \) (198 mg., m.p. 136-138.5°) and 242 mg. of tetramethylammonium acetate in 16 ml. of dried acetone were refluxed on a steam bath for 12 hr. Work up gave 197 mg. (99%) of solid which was shown by t.l.c. (solvent A) and n.m.r. to be mainly the starting material. No trace of 3β-acetoxycholestan-4-one \(\textit{57} \) or any unsaturated ketone was detectable on the t.l.c. plate.

Reaction of 4β-Acetoxy-5β-cholestan-3-one \(\textit{60} \) with Tetramethylammonium Acetate in Acetone at Reflux (Reaction 35)

4β-Acetoxy-5β-cholestan-3-one \(\textit{60} \) (49 mg., m.p. 103.5-108.5°) and 50 mg. of tetramethylammonium acetate in 4.0 ml. of dried acetone were refluxed on a steam bath for 2 days. Work up gave 48 mg. (97%) of brown oil. N.m.r. and t.l.c. (solvent A) showed that it was mainly the starting material. No trace of 3β-acetoxycholestan-4-one \(\textit{57} \) and any unsaturated ketone was detectable on the t.l.c. plate.

Reaction of 2β-Acetoxy-5β-cholestan-3-one \(\textit{59} \) with Tetramethylammonium Acetate in Acetone at Reflux (Reaction 36)

2β-Acetoxy-5β-cholestan-3-one \(\textit{59} \) (90 mg., m.p. 146-150.5°) and 120 mg. of tetramethylammonium acetate in
8 ml. of dried acetone were refluxed on a steam bath for 4 hr. Work up gave 90 mg. (100%) of crystalline solid. Both n.m.r. and t.l.c. (solvent B) data indicated that the crude product was mainly the starting material. T.l.c. data revealed ca. 5% conversion into a spot corresponding in Rf value (0.21) to 2α-acetoxy-5β-cholestan-3-one 91 or 3α-acetoxy-5β-cholestan-3-one 97. No trace of unsaturated ketone was detected on the t.l.c. plate.

Reaction of 2α-Acetoxy-5β-cholestan-3-one 91 with

Tetramethylammonium Acetate in Acetone at Reflux (Reaction 37)

2α-Acetoxy-5β-cholestan-3-one 91 (3 mg., m.p. 135.5-137.5°) was treated with 0.15 ml. of a solution of tetramethylammonium acetate in acetone* at reflux. The course of the reaction was followed by t.l.c. (solvent B), at five-minute intervals. After 0.5 hr., the conversion of 2α-acetoxy-5β-cholestan-3-one 91 (Rf 0.21) into 2β-acetoxy-5β-cholestan-3-one 59 (Rf 0.26) was ca. 30%. No trace of unsaturated ketone was detected on the t.l.c. plate.

Reaction of 2α-Acetoxycholestan-3-one 18 with γ-Collidine

2α-Acetoxycholestan-3-one 18 (95 mg., m.p. 122-124°)

*Prepared from 0.60 g. of tetramethylammonium acetate in 40 ml. of acetone and 1 ml. of methanol.
and 3.0 ml. of \(\gamma \)-collidine were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 210-220°C in an oil bath for 12 hr. After being cooled to room temperature, the tube was opened and the reaction mixture was concentrated at room temperature under reduced pressure to remove most of the \(\gamma \)-collidine. The residue was acidified with 10% hydrochloric acid to Congo Red, and then extracted with ether. The combined ether extracts were washed with 10% hydrochloric acid, water and then dried. Removal of ether left 85 mg. (90%) of brown oil. T.l.c. (solvent A) and n.m.r. data indicated that the crude product was a mixture of 3\(\beta \)-acetoxycholestan-2-one 39 (50%, Rf 0.48) and 2\(\alpha \)-acetoxycholestan-3-one 18 (50%, Rf 0.40). No unsaturated ketone was detected by t.l.c. Separation of the crude product on a thick layer plate (solvent A) gave two bands. Band 1 (Rf 0.48) on extraction gave 39 mg. of 3\(\beta \)-acetoxycholestan-2-one 39, which after two recrystallizations from 95% ethanol gave 19 mg. of colorless plates, m.p. and m.m.p. 143-145°C. Band 2 (Rf 0.40) on extraction gave 13 mg. of 2\(\alpha \)-acetoxycholestan-3-one 18, which after two recrystallizations from 95% ethanol gave 11 mg. of colorless plates, m.p. and m.m.p. 121-123°C.
Reaction of 4α-Acetoxycholestan-3-one \(19\) with \(γ\)-Collidine

4α-Acetoxycholestan-3-one \(19\) (89 mg., m.p. 135.5-142.5\(^{\circ}\)) and 3.0 ml. of \(γ\)-collidine were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 215\(^{\circ}\) in an oil bath for 21 hr. After being cooled at room temperature, the reaction mixture was concentrated at room temperature under reduced pressure to remove most of the \(γ\)-collidine. The residue was acidified with 10% hydrochloric acid and extracted with ether. The combined ether extracts were washed with 10% hydrochloric acid, water and then dried. Removal of ether left 90 mg. of semicrystalline solid, which was shown to be mainly the starting material by the n.m.r. spectrum. The crude reaction product was retreated with 3.0 ml. of \(γ\)-collidine at 250\(^{\circ}\) for 20 hr. Work up as described above gave 50 mg. (58%) of brown oil. Analysis by a combination of t.l.c. (solvent A) and n.m.r. data indicate that it was a mixture of \(Δ^4\)-cholesten-4-one \(7\) (80%, Rf 0.44) and \(Δ^4\)-cholesten-3-one \(5\) (20%, Rf 0.30).

Reaction of 5α-Acetoxycholestan-4-one \(58\) with \(γ\)-Collidine

5α-Acetoxycholestan-4-one \(58\) (90 mg., m.p. 147-148.5\(^{\circ}\)) in 3.0 ml. of \(γ\)-collidine was sealed under a nitrogen atmosphere in a Pyrex thick-walled tube and heated at 215\(^{\circ}\) in an oil bath for 18 hr. After being cooled to room
temperature, the reaction mixture was concentrated at room
temperature under reduced pressure to remove most of the
\(\gamma \)-collidine. The residue was acidified with 10% hydrochloric acid and then extracted with ether. The combined ether extracts were washed with 10% hydrochloric acid, water, and then dried. Removal of ether gave 85 mg. of brown oil, \(\lambda_{\text{max}} \) 241 nm (\(\epsilon \) 1,160, based on the estimated molecular weight of 412). A combination of t.l.c. (solvent A), n.m.r., and u.v. data indicated that the crude product was a mixture of \(\Delta^5 \)-cholesten-4-one \(\mathbf{7} \) (18\%, Rf 0.44), an acetoxyketone (10\%, Rf 0.48), and starting material (70\%, Rf 0.40). Separation of the crude product on a thick layer (solvent A) gave 30 mg. of an oil, \(\lambda_{\text{max}} \) 241 nm (\(\epsilon \) 3,020). Based on n.m.r. and u.v. data, it was estimated to be a mixture of 46\% of \(\Delta^5 \)-cholesten-4-one \(\mathbf{7} \) and 54\% of what was probably 3β-acetoxycholestan-4-one \(\mathbf{57} \). Band 2 (Rf 0.40) on extraction yielded 30 mg. of an oil, which was shown by n.m.r. to be essentially pure 5α-acetoxycholestan-4-one \(\mathbf{58} \). Two recrystallizations from 95\% ethanol gave 22 mg. of colorless plates, m.p. and m.m.p. 146.5-148°.
Dehydrobromination of 3α-Bromocholestan-4-one 88 with γ-Collidine

3α-Bromocholestan-4-one 88 (47 mg., m.p. 125.5-127.5°C) and 0.8 ml. of γ-collidine were heated at 155°C in an oil bath for 3.5 hr. After being cooled to room temperature, the reaction mixture was concentrated at room temperature under reduced pressure to remove most of the γ-collidine. The residue was acidified with 10% hydrochloric acid and then extracted with ether. The combined ether extracts were washed with 10% hydrochloric acid, water and then dried. Evaporation of ether left 45 mg. of crude oil. N.m.r. and t.l.c. data showed that it was mainly starting material. The crude oil was retreated with 0.8 ml. of γ-collidine at 175°C (oil bath temperature) for 18 hr. Work up as described above gave 22 mg. (66%)* of brown oil, λ max 225 nm (ε 5,600). T.l.c. (solvent A) and n.m.r. data showed it was a mixture of 3α-bromocholestan-4-one 88 (30%, Rf 0.66) and Δ²-cholesten-4-one 11 (70%, Rf 0.46). The n.m.r. spectra revealed no trace of the olefinic proton or the C-19 methyl group of Δ⁵-cholesten-4-one 7. Purification of the crude product on a thick layer (solvent A) followed by two recrystallizations from acetone yielded 2 mg. of

*The low yield was due partly to loss in manipulation.
Δ²-cholesten-4-one 11, m.p. 89-91° (lit. 86 m.p. 73-93°).

U.v. spectrum: λ_{max} 226 nm (ε 7,830) [lit. 86 239 nm (ε 10,400)]

N.m.r. spectrum: 6 0.67 (3H, s., C-18 methyl), 0.88 (3H, s., C-19 methyl), 6.00 (1H, d., J=10 Hz., C-3 H), 6.75 ppm (1H, m., C-2 H)

2-Acetoxy cyclopentanone 104(5)

Cavill's procedure⁹⁵ for acetoxylation of ketones was followed.

Cyclopentanone 115(5) (84 g., 1 mol.) and 443 g. (0.8 mol.) of 80% lead tetra-acetate in 600 ml. of benzene (distilled from sodium) were heated at 80° until negative starch-iodide test was obtained (overnight). The reaction mixture was a dark brown solution at the end of the reaction. Work up by washing the reaction mixture with water and removal of benzene at room temperature under reduced pressure gave 42 g. of dark brown oil. Distillation through the 8" spinning band column at 15 Torr yielded 18.8 g. of cyclopentanone 115(5), b.p. 37-38°/15 Torr, and 6.3 g. (6%) of 2-acetoxy cyclopentanone 104(5), b.p. 115-117°/15 Torr, (lit. b.p. 85°/0.07 Torr⁹⁶, 104°/10 Torr⁹⁷).

I.r. spectrum: ν_{max} 1760 (ester C=O) and 1745 cm⁻¹ (ketone C=O)
N.m.r. spectrum: 6 2.12 (3H, s., CH₃COO⁻), 5.10 ppm (1H, triplets of multiplets, C-2 H)

Mass spectrum: m/e 142 (weak, M⁺), 99 (M-CH₃CO⁺)

2-Acetoxy-cyclohexanone 104(6)

(a) By acetylation of 2-hydroxy-cyclohexanone.

2-Hydroxy-cyclohexanone (Aldrich) was acetylated with acetic anhydride according to the procedure of Sımızszkovicz and Born. 98 2-Acetoxy-cyclohexanone 104(6), m.p. 33-37°C, was obtained in 78% yield (lit. 98 m.p. 35-36°C).

I.r. spectrum: ν max 1750 (ester C=O) and 1730 cm⁻¹ (ester C=O)

N.m.r. spectrum: 6 2.13 (3H, s., CH₃COO⁻), 5.17 ppm (1H, b.q., J=7.11 Hz., C-2 H)

Mass spectrum: m/e 156 (M⁺), 113 (M-CH₃CO⁺)

(b) By acetoxylation of cyclohexanone 115(6) with lead tetra-acetate. 95 Cyclohexanone (5 g., 0.051 mol.) was acetoxylated with 22.6 g. (0.042 mol.) of 80% lead tetra-acetate in 40 ml. of benzene according to the procedure of Cavill and coworkers. 95 The crude product was fractionally distilled through the 8" spinning band column under reduced pressure. 2-Acetoxy-cyclohexanone 104(6), b.p. 48-50°C/0.2 Torr, was obtained in 26% yield. One recrystallization from petroleum ether (b.p. 30-60°C) gave
colorless prisms, m.p. 33-37° in 22% overall yield.

(c) By epoxidation of cyclohexanone enol acetate. The procedure of Rogné99 was followed with slight modifications. Cyclohexanone \textbf{115(6)} (11.0 g., 0.11 mol.), 32.0 g. of freshly distilled isopropenyl acetate,* and 100 mg. of p-toluenesulfonic acid was refluxed at 130° (oil bath temperature) for 5.5 hr. G.l.p.c. of the reaction mixture showed the complete absence of starting material. Excess isopropenyl acetate was distilled through the 18" spinning band column under ca. 30 Torr. The residue was further fractionally distilled under 7 Torr to give 14.0 g. (90%) of cyclohexanone enol acetate, b.p. 56-57°/7 Torr, single peak on g.l.p.c. analysis (lit. b.p. 180-181°,100 74-76°/16 Torr39).

\textbf{N.m.r. spectrum:} \text{δ} 2.05 (3H, s., CH$_3$COO-), 5.32 ppm (1H, m., C-2 H)

Cyclohexanone enol acetate (7.0 g., 0.05 mol.) was epoxidized with 0.055 mol. of m-chloroperbenzoic acid in 40 ml. of chloroform at -10° according to the procedure of Williamson and coworkers.39 Crude 1-acetoxy-1,2-oxidocyclo-

*It was found that the rate and the yield of enol acetate formation depended on the purity of isopropenyl acetate used. In other runs where isopropenyl acetate directly from bottle (Eastman) was used, it took one to two days for the reaction to go to completion at 150°, and cyclohexanone enol acetate was isolated in only 50-60% yield.
for 1 hr. to rearrange it into acetoxyketone. Distillation of the crude product through the 18" spinning band column yielded 5.4 g. of 2-acetoxy-cyclohexanone 104(6), b.p. 102-104\(^\circ\)/7 Torr, which after one recrystallization from petroleum ether (b.p. 30-60\(^\circ\)) gave a first crop of 3.2 g. of colorless prisms, m.p. 34-36\(^\circ\), and a second crop of 0.9 g., m.p. 32-34\(^\circ\). The total overall yield from cyclohexanone enol acetate was 61%.

2-Acetoxy-cycloheptanone 104(7)

(a) By acetoxylation of cycloheptanone 115(7).

Cavill's procedure for acetoxylation of ketones was followed. Cycloheptanone 115(7) (11.2 g., 0.1 mol.) and 443 g. (0.085 mol.) of 85% lead tetra-acetate in 30 ml. of benzene (distilled from sodium) were heated at 80\(^\circ\)C on steam bath until negative starch-iodide test was obtained (overnight). The mixture was washed with water, and then dried. Removal of benzene at room temperature under vacuum gave 13.4 g. of oil. Distillation through the 8" spinning band column gave 2.8 g. of cycloheptanone, b.p. 36-38\(^\circ\)/2 Torr, and 5.4 g. (32%) of 2-acetoxy-cycloheptanone 104(7), b.p. 78-80\(^\circ\)/0.9 Torr (lit. 103 b.p. 120-122\(^\circ\)/10 Torr). I.r. spectrum: \(\nu\) max 1745 (ester C=O) and 1730 cm\(^{-1}\) (ketone C=O)
N.m.r. spectrum: 2.02 (3H, s., CH$_3$COO$^-$), 5.40 ppm (1H, unresolved quartet due to further coupling, C-2 H)

Mass spectrum: m/e 170 (weak, M$^+$), 127 (M-CH$_3$CO$^+$)

(b) By epoxidation of cycloheptanone enol acetate.

Cycloheptanone enol acetate was prepared in a manner similar to that of cyclohexanone enol acetate.

Cycloheptanone 115(7) (33.6 g., 0.3 mol.), 90 ml. of isopropenyl acetate and 50 mg. of p-toluenesulfonic acid was refluxed at 180° (oil bath temperature) for one day. Excess isopropenyl acetate was distilled through the 18" spinning band column under ca. 30 Torr. The residue was further distilled through spinning band column under 15 Torr to give 39.1 g. (84.7%) of cycloheptanone enol acetate, b.p. 65-67°/15 Torr, single peak on g.l.p.c. analysis.

I.r. spectrum: max 1750 (ester C=O) and 1675 cm$^{-1}$ (C=C)

Cycloheptanone enol acetate (39.0 g., 0.25 mol.) was epoxidized with 0.27 mol. of m-chloroperbenzoic acid in 15.0 ml. of chloroform at -10° as in the case of cyclohexanone enol acetate. The crude 1-acetoxy-1,2-oxido-cycloheptane was warmed on steam bath for one hour to rearrange it into acetoxyketone. Distillation through the 18" spinning band column under reduced pressure afforded 30.0 g. (71%) of 2-acetoxy-cycloheptanone 104(7), b.p. 84-85°/1.5 Torr, single peak on g.l.p.c. analysis.
2-Acetoxy-cyclooctanone 104(8)

Cavill's procedure for acetoxylation of ketones was followed.

Cyclooctanone 115(8) (6.1 g., 0.05 mol.) and 25.9 g. (0.04 mol.) of 80% lead tetra-acetate in 40 ml. of benzene (distilled from sodium) were heated at 80° until negative starch-iodide test was obtained (4 hr.). The mixture was washed with water, and then dried. Removal of benzene gave 7.7 g. of oil. Distillation through the 8" spinning band column under reduced pressure gave three fractions:

b.p. 30-40°/0.6 Torr, 1.3 g., mainly starting material;
b.p. 80-90°/0.6 Torr, 4.3 g. (48%), mainly 2-acetoxy-cyclooctanone 104(8), containing ca. 10% of starting material; b.p. 100-105°/0.018 Torr, 0.52 g., mainly 2,8-diacetoxy-cyclooctanone. The 2-acetoxy-cyclooctanone fraction was further fractionally distilled to give 1.8 g. (20%) of material, containing less than 3% of cyclooctanone, b.p. 79-80°/0.6 Torr (lit. 104 b.p. 86-87.5°/1.1 Torr).

I.r. spectrum: νmax 1745 (ester C=O) and 1725 cm⁻¹ (ketone C=O)

N.m.r. spectrum: δ 2.12 (3H, s., CH₃COO⁻), 5.23 ppm (1H, b.q., J=4,7.5 Hz., C-2 H)

Mass spectrum: m/e 184 (weak, M⁺), 141 (M-CH₃CO⁺)
2-Acetoxycyclonanone 104(9)

2-Hydroxycyclononanone was synthesized from dimethyl azeleate by acyloin condensation following the procedure of Organic Syntheses. Material of b.p. 89°/1.5 Torr was obtained in 20% yield.* No attempt was made to crystallize the compound (lit. m.p. 43°).

I.r. spectrum: ν max 3450 (O-H) and 1715 cm$^{-1}$ (C=O)

N.m.r. spectrum: δ 3.84 (1H, b.s., O-H), 4.26 ppm (1H, q., J=4.5, Hz., C-2 H)

2-Hydroxycyclononanone (1.7 g.) was refluxed with 12 ml. of acetic anhydride under a nitrogen atmosphere for 1 hr. Excess acetic anhydride was removed by evaporating on rotary evaporator. The residue was distilled at 0.6 Torr to give 1.10 g. of 2-acetoxycyclononanone 104(3), b.p. 93-95°/0.6 Torr, single peak on g.l.p.c. analysis.

I.r. spectrum: ν max 1750 (ester C=O) and 1730 cm$^{-1}$ (ketone C=O)

N.m.r. spectrum: δ 2.12 (3H, s., CH$_3$COO-), 5.11 ppm (1H, q., J=4.7 Hz., C-2 H)

Analysis: Calcd. for C$_{11}$H$_{18}$O$_3$: C, 66.64; H, 9.15

Found: C, 66.03; H, 9.20

Mass spectrum: m/e 155 (M-CH$_3$CO$^+$)

The poor yield was due partly to loss in manipulation.
2-Acetoxycyclododecanone

Cavill's procedure for acetoxylation of ketones was followed.\(^9^5\)

Cyclododecanone \(115(12)\) (5.0 g., 0.028 mol.) and 14.2 g. (0.025 mol.) of 80% lead tetra-acetate in 30 ml. of benzene (distilled from sodium) were heated at 80° until negative starch-iodide test was obtained (overnight). The mixture was washed with water, and then dried. Removal of benzene gave 6.1 g. of partially crystalline material. The crude product was distilled at 0.3 Torr to remove cyclododecanone. The residue was recrystallized from petroleum ether to give 1.60 (26%) of 2-acetoxycyclododecanone \(104(12)\) as colorless prism, m.p. 81-82°. A small amount of sample was recrystallized once more from petroleum ether and sublimed at 15 Torr to give material for analysis, m.p. 82.3-83.0°.

I.r. spectrum: \(\nu_{\text{max}}\) 1745 (ester C=O) and 1730 cm\(^{-1}\)

(ketone C=O)

N.m.r. spectrum: \(\delta\) 2.13 (3H, s., CH\(_3\)CO-), 5.17 ppm (1H, q., J=4.5 Hz., C-2 H)

Analysis: Calcd. for C\(_{14}\)H\(_{26}\)O\(_3\): C, 69.96; H, 10.07

Found : C, 70.42; H, 10.21

Mass spectrum: m/e 240 (weak, M\(^+\)), 197 (M-CH\(_3\)CO\(^+\))
2-Benzoyloxy cyclohexanone 125

2-Hydroxycyclohexanone (3.8 g.) was treated with 10 ml. of benzoyl chloride and 10 ml. of pyridine at room temperature for 2 hr., then at 80° for 10 min. The reaction mixture was diluted with water and extracted with ether. The combined ether layers were washed with 10% hydrochloric acid, water, 5% aqueous sodium bicarbonate solution and dried. Removal of ether and one recrystallization from ether gave 3.2 g. (44%) of 2-benzoyloxy cyclohexanone 125 as colorless prisms, m.p. 84-84.5° (lit. 101 m.p. 85-86°).

I.r. spectrum: \(\nu_{\text{max}} 1735 \) (ester C=O) and 1725 cm\(^{-1}\) (ketone C=O)

N.m.r. spectrum: \(\delta \) 5.40 (1H, b.q., \(J = 11.7 \text{ Hz} \), C-2 H), 7.43 (3H, m., aromatic protons), 8.10 ppm (2H, m., aromatic protons)

Mass spectrum: m/e 218 (M\(^+\))

cis-2-Acetoxy-6-methylcyclohexanone 105

2-Chloro-2-methylcyclohexanone was synthesized from 2-methyl-cyclohexanone and sulfuryl chloride according to the procedure of Organic Syntheses\(^{102} \) in 68% yield, b.p. 40-42°/2.5 Torr.
I.r. spectrum: ν_{max} 1720 cm$^{-1}$ (C=O)

N.m.r. spectrum: δ 1.62 (3H, s., CH$_3$-) 2.96 ppm (2H, m., C-6 H)

2-Chloro-2-methylcyclohexanone (6.3 g.) and 8.4 g. of potassium acetate in 50 ml. of acetic acid were refluxed under nitrogen for 4 hr. The reaction mixture was diluted with water and extracted with ether. The ether extracts were combined, washed with 5% aqueous sodium bicarbonate solution and dried. Removal of ether by simple distillation gave 6.0 g. of slightly brown oil. Distillation through the 8" spinning band yielded 4.3 g. of colorless oil. N.m.r. and g.l.p.c. showed it was a mixture of cis-2-acetoxycyclohexanone 105 and 2-acetoxycyclohexanone 106* in a ratio of ca. 4:1. Two recrystallizations from petroleum ether (b.p. 30-60$^\circ$) gave 1.5 g. of cis-2-acetoxycyclohexanone 105 as colorless plates, m.p. 54-55$^\circ$ (lit.96 m.p. 50-52$^\circ$).

N.m.r. spectrum: δ 1.05 (3H, d., J=6.5 Hz., CH$_3$-), 2.14 (3H, s., CH$_3$COO-), 5.18 ppm (1H, b.q., J=6.12 Hz., C-2 H)

Cyclohexanone-1-$_{13}$C 115(6)-1-$_{13}$C

(a) Preparation of lithium sand. Lithium metal ribbon (1.78 g., 0.15 g. atom, Foote Mineral Company) and

*Tentative assignment based on the peaks at δ 1.44, s., for CH$_3$-; 2.11, s., for CH$_3$COO-.
50 mg. of sodium metal* were put in a one-necked 250-ml. round bottom flask** containing 120 ml. of mineral oil. The flask was swept with argon (Union Carbide) for several minutes, then a high speed stainless-steel stirrer was attached to the flask. The flask was heated in an oil bath at 220-230° and the stirrer was started to whip the molten metal into very fine particles. When the desired fineness, as judged by visual estimation, was obtained, the flask was allowed to cool gradually*** and the speed of the motor was reduced. After the oil had cooled below 100°, the stirrer was stopped and disconnected from the flask. The flask was again swept with argon and the sand was ready for use. The sand prepared in this way retained its activity for several days if the flask was properly stoppered.

(b) 1,5-Dilithiopentane 129,68,69 The reaction vessel was a three-necked 250-ml. round bottom flask. One side arm was fitted with a gas inlet tube and the other side arm was fitted with a low temperature thermometer. After the lithium sand in mineral oil, as prepared in (a) above, was poured into the flask, the center neck of the flask was fitted

*The presence of catalytic amount of sodium was essential to give a satisfactory yield of alkyllithium, see (b).
**Molten lithium seemed to corrode the glass slightly. When a Quick-Fit flask was used, it usually broke during the cooling period. It was necessary to use Lab-Glass flask or Pyrex flask.
***Slow cooling seemed to give more reactive lithium sand.
with a sintered glass filter stick which reached to the bottom of the flask. The top of the filter stick had been bent into an inverted U-shape and was connected to a disposal flask. As the content in the flask was stirred by a magnetic bar, the argon pressure was applied to force the mineral oil through the filter stick, leaving lithium sand in the flask. In the same manner, the lithium sand was washed with two 50-ml. portions of anhydrous ether (dried over sodium). After 100 ml. of anhydrous ether was added to the flask, the filter stick was replaced by a 50-ml. pressure-equalized dropping funnel which now also served as a gas outlet. The argon flow was reduced to a slow rate and 11.5 g. (0.05 mol.) of 1,5-dibromopentane 126 (AR grade, redistilled) in 50 ml. of anhydrous ether was put into the dropping funnel. About 3 ml. of the dibromide solution was added into the flask, and the reaction was initiated at room temperature by vigorous stirring. The reaction flask was then cooled to \(-20^\circ\) in a Dry Ice-acetone bath, and the remaining dibromide solution was added dropwise during 1.5 hr. with continuous stirring. After the addition was completed, the reaction mixture was stirred for 0.5 hr. at \(10^\circ\). Another 50 ml. of ether was added to make the total volume up to 200 ml. An aliquot (4 ml.) of the solution was taken out by a hypodermic syringe and
titrated with standard sec-butyl alcohol solution for the yield of organometallic compound. o-Phenanthroline was used as an indicator for the titration.71 Yields varies from 74% to 84% with the usual yield being around 80% when the lithium sand, prepared as in (a) above, was used. If the lithium sand was prepared without the added sodium, the yield of organolithium compound varied erratically from 0% to 20%.

(c) Carbonation of 1,5-dilithiopentane 129. The apparatus employed is illustrated in Fig. 9. It was composed of a carbon dioxide generator and a reaction vessel. The carbon dioxide generator consisted of a 100-ml. three-necked round bottom flask A for sulfuric acid, a 25-ml. glass bulb B with a bent neck for addition of barium carbonate, and a drying tube C containing Drierite which served also as a gas outlet. The third neck of flask A is used as a gas inlet.

While 1,5-dilithiopentane 129 was being prepared, concentrated sulfuric acid (50 ml.) and a magnetic bar were put in the flask A, and barium carbonate-13C (6.6 g., 0.033 mol., 61% enriched) was placed in tube B. The whole system was swept by argon for several minutes and was ready for use.

The reaction vessel was a 1-l. reaction flask E with
side indentations (ACE Glass 6477) and a flask head F with three B24/35 necks in line plus a Bl4/35 neck (ACE Glass 6488). The center neck was fitted with a Trubore bearing G with a side opening for gas inlet (ACE Glass 9368) and a hollow glass stirring rod H with vanes attached to a solid disc (ACE Glass 9380). The side opening in the bearing G corresponded to the hole drilled in the stirring rod H, so that the gas could travel down the rod through the hollow disc. One side neck of the flask head F was fitted with a thermometer, and the other side neck was left open. The Bl4/35 neck was closed with a stopcock.

The carbon dioxide generator was connected by a piece of rubber tubing to the side opening of G. The reaction vessel was swept with a slow stream of argon when the dilithiopentane 129 solution, prepared as described in (b) above, was filtered through a filter stick into the reaction vessel. After the filtration was completed, another 100 ml. of anhydrous ether was added and a drying tube D containing Drierite was connected to the side neck formerly left open. The outlet of the drying tube I was led by a piece of rubber tubing to a flask containing saturated barium hydroxide solution which served both as a trap for carbon dioxide and as a gas bubbler to estimate the flow rate of argon.
The reaction flask E was cooled in an ice bath to 10°, the dilithiopentane solution in it was stirred vigorously,* and the argon flow was adjusted to a very slow rate. With the concentrated sulfuric acid in the flask A stirred smoothly by the magnetic bar, barium carbonate-13C was added slowly from the bulb B. Usually 10-15 min. were required to complete the addition. The argon flow was then increased to drive all of the carbon dioxide into the dilithiopentane solution. On the addition of 1 ml. of 1% o-phenanthroline etheral solution through the Bl4/35 neck, the solution in the flask E turned immediately to reddish brown. Methyl iodide (4 ml.) was added and the reddish-brown color gradually faded (5 min.). After 200 ml. of ice-water was added to hydrolyze the reaction mixture, the argon flow and the stirring were stopped. During the entire carbonation and hydrolysis process, the temperature of the reaction flask E was maintained at 10-20° by the ice-water bath.

The ether layer was separated from the aqueous layer, washed with 5% aqueous sodium bisulfite solution, water, and then dried. Removal of ether by simple distillation left 5.5 g. of slightly brown oil. Bulb-to-bulb

*Vigorous stirring was essential to minimize the formation of polymeric material.
distillation (15 Torr, oven temperature 60-160°) gave
1.81 g. (55% based on barium carbonate-13C) of
cyclohexanone-1-13C 115(6)-l-13C, single spot on t.l.c.
The purity was verified by g.l.p.c. analysis to be higher
than 95%.

I.r. spectrum: λ_{max} 1720 (12C=O) and 1680 cm$^{-1}$ (13C=O) in
a ratio of ca. 1:2

Mass spectrum: m/e 99 and 98 (M$^+$)

Calculation based on M$^+$ peaks showed that the
13C-enrichment was 59%.

2-Acetoxy-cyclohexanone-1-13C 104(6)-1-13C

Cyclohexanone-1-13C 115(6)-l-13C (4.05 g.) was
converted into its enol acetate by heating at 130° for
5.5 hr. with 11.2 ml. of freshly distilled isopropenyl
acetate in the presence of 37 mg. of p-toluenesulfonic
acid as a catalyst. Excess isopropenyl acetate was
distilled at 30 Torr through the 8" spinning band column,
and the residue was purified by bulb-to-bulb distillation
(15 Torr, oven temperature 80-110°) to give 5.62 g. (91%)
of cyclohexanone-1-13C enol acetate. The purity was
verified by g.l.p.c. analysis to be higher than 90%.

The crude cyclohexanone-1-13C enol acetate (5.62 g.,
37.4 mmol.) in 14 ml. of chloroform was epoxidized with
43.9 mmol. of m-chloroperbenzoic acid at -10°C. Crude epoxy acetate, obtained in 80% yield, was thermally rearranged (100°C) to the acetoxyketone. Purification by bulb-to-bulb distillation (4 Torr, oven temperature 100-110°C) gave 4.57 g. (73% from enol acetate) of 2-acetoxycyclohexanone-1-13C 104(6)-1-13C. One recrystallization from petroleum ether (b.p. 30-60°C) yielded 3.58 g. (59% from enol acetate) of colorless prisms, m.p. 32-37°C.

I.r. spectrum: \(\nu_{\text{max}} \) 1750 (ester C=O), 1730 (ketone \(^{12}\text{C}=\text{O}\)), and 1690 cm\(^{-1}\) (ketone \(^{13}\text{C}=\text{O}\)), the latter two in a ratio of ca. 1:2

Mass spectrum: m/e 156, 157 (M\(^+\)), 113, 114 (M-CH\(_3\)CO\(^+\))

Calculations based on M\(^+\) peaks showed that the \(^{13}\text{C}\)-enrichment was 61%.

\(^{13}\text{C}-n.m.r. spectrum: \(\delta \) C 20.4 (s., CH\(_3\)\(-\)), 23.9 (s., C-4 \(\)), 27.3 (s., C-5), 33.3 (s., C-3 \(\)), 40.7 (overlapping s. and d., \(J=40 \text{ Hz.}, \text{C-6 } \)), 76.7 (overlapping s. and d., \(J=40 \text{ Hz.}, \text{C-2 } \)), 169.1 (s., CH\(_3\)CO\(-\)), 203.1 ppm (s., enhanced, C-1)

Reaction of 2-Acetoxycyclopentanone 104(5) with Potassium

**Acetate-\(\text{d}_3 \) in Acetic Acid-\(\text{d}_4 \) at 133-135°C (Reaction 38)

2-Acetoxycyclopentanone 104(5) (400 mg., b.p.
115-117°/15 Torr) and 0.62 g. of dried potassium acetate-d₃* in acetic acid-d₄ were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 6 hr. Work up gave 50 mg. (12%) of brown oil. Purification by bulb-to-bulb distillation yielded 15 mg. (4%) of 2-acetoxy-cyclopentanone 104(5) as a colorless oil. The purity was shown by g.l.p.c. analysis to be higher than 96%.

I.r. spectrum: νmax 2930, 2860 (strong, C-H), 2210, 2110 (weak, C-D), 1760 (ester C=O) and 1745 cm⁻¹ (ketone C=O)

Mass spectrum: m/e 143-147 (weak, M⁺), 99-105 (M-CH₃CO⁺)

Calculations based on M-CH₃CO⁺ peaks revealed the extent of deuteration of ring protons to be d₀ 2.6%, d₁ 6.8%, d₂ 29.3%, d₃ 52.7%, d₄ 2.9%, d₅ 4.1%, d₆ 0.7%.

Reaction of 2-Acetoxy-cyclopentanone 104(5) with Potassium

Acetate-d₃ in Acetic Acid-d₄ at 220° (Reaction 39)

2-Acetoxy-cyclopentanone 104(5) (315 mg., b.p. 115-117°/15 Torr) and 0.52 g. of dried potassium acetate-d₃ in 3.0 ml. of acetic acid-d₄ were sealed under a nitrogen atmosphere and heated at 18°C for 6 hr. The solution was evaporated to dryness at 0.6 Torr at 100°. The dry, flaky foam was used without further purification.

Potassium acetate-d₃ was prepared by neutralizing acetic acid-d₄ with 1N aqueous potassium hydroxide solution to a phenolphthalein end point and then evaporating to dryness at 0.6 Torr at 100°. The dry, flaky foam was used without further purification.
atmosphere in a thick-walled Pyrex tube and heated at 220° in an oil bath for 15 hr. Work up gave only 26 mg. of brown residue. No 2-acetoxy-cyclopentanone 104(5) was detectable from g.l.p.c. analysis of the crude product.

Reaction of 2-Acetoxy-cyclohexanone 104(6) with Potassium

Acetate-d₃ in Acetic Acid-d₄ at 140° (Reaction 40)

2-Acetoxy-cyclohexanone 104(6) (200 mg., m.p. 33-37°) and 0.40 g. of dried potassium acetate-d₃ in 2.0 ml. of acetic acid-d₄ were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 140° in an oil bath for 12 hr. Work up gave 115 mg. (57%)* of oil.

Purification on thick layer (solvent A) gave 68 mg. (34%) of oil, which after one recrystallization from petroleum ether (b.p. 30-60°) yielded 43 mg. (22%)* of colorless prisms, m.p. 34-38°.

I.r. spectrum: \(v_{\text{max}}\) 2930, 2860 (strong, C-H), 2210, 2110 (medium, C-D), 1750 (ester C=O) and 1730 cm\(^{-1}\) (ketone C=O)

Mass spectrum: m/e 158-165 (M⁺), 114-120 (M-CH₃CO⁺)

*Reaction with potassium acetate in acetic acid under the same condition gave a 92% yield of crude product, and a 77% yield of pure crystalline product.
Calculations based on M-CH$_3$CO$^+$ peaks showed the extent of deuteration of ring protons to be d$_2$ 12.8%, d$_3$ 44.5%, d$_4$ 12.0%, d$_5$ 29.7%.

Reaction of 2-Acetoxy-cyclohexanone 104(6) with Potassium

Acetate-d$_3$ in Acetic Acid-d$_4$ at 220$^\circ$ (Reaction 41)

2-Acetoxy-cyclohexanone 104(6) (300 mg., m.p. 33-37$^\circ$) and 0.51 g. of dried potassium acetate-d$_3$ in 3.0 ml. of acetic acid-d$_4$ were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220$^\circ$ (furnace temperature reading) for 14 hr. Work up gave 120 mg. (40%)* of brown oil, which was purified on a thick layer (solvent A) to give 49 mg. (17%)* of slightly brown oil, single t.l.c. spot and single peak on g.l.p.c. analysis. Bulb-to-bulb distillation (0.2 Torr, oven temperature 45-50$^\circ$) gave 40 mg. (13%)* of colorless oil, which crystallized on standing at room temperature for several days.

I.r. spectrum: ν_{max} 2930, 2860 (medium, C-H), 2210, 2110 (strong, C-D), 1750 (ester C=O) and 1730 cm$^{-1}$ (ketone C=O)

Mass spectrum: m/e 162-170 (M$^+$), 118-124 (M-CH$_3$CO$^+$)

Calculations based on M$^+$ peaks showed that the extent of deuteration of the molecule was d$_6$ 0.17%, d$_7$ 0.4%,

*Reaction with potassium acetate in acetic acid under the same condition gave 70% yield of the crude product, and 40% yield of pure crystalline product.
\(\text{d}_8 \) 1.6\%, \(\text{d}_9 \) 6.1\%, \(\text{d}_{10} \) 21.9\%, \(\text{d}_{11} \) 37.8\%, \(\text{d}_{12} \) 32.1\%.

Calculation based on \(\text{M-CH}_3\text{CO}^+ \) peaks showed that the extent of deuteration of ring protons was \(\text{d}_5 \) 1.2\%, \(\text{d}_6 \) 6.3\%, \(\text{d}_7 \) 17.8\%, \(\text{d}_8 \) 37.5\%, \(\text{d}_9 \) 35.5\%, \(\text{d}_{10} \) 1.6\%.

Reaction of 2-Acetoxydicyclohexanone 104(6) with Acetic Acid-d\(_4\) at 215\(^\circ\) (Reaction 42)

2-Acetoxydicyclohexanone 104(6) (300 mg., m.p. 33-37\(^\circ\)) in 3.0 ml. of acetic acid-d\(_4\) was sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 215\(^\circ\) in an oil bath for 48 hr. Work up gave 60 mg. (20\%) of brown oil. Purification on a thick layer (solvent A) yielded 25 mg. (8\%) of a slightly brown oil, which after bulb-to-bulb distillation (0.6 Torr, oven temperature 50\(^\circ\)) afforded 20 mg. (7\%) of 2-acetoxydicyclohexanone 104(6) as a colorless oil.

I.r. spectrum: \(\nu \text{max} \) 2930, 2860 (medium, C-H), 2210, 2110 (medium, C-D), 1750 (ester C=O) and 1735 cm\(^{-1}\) (ketone C=O)

Mass spectrum: m/e 162-168 (M\(^+\)), 115-124 (M-CH\(_3\)CO\(^+\))

Calculation based on M-CH\(_3\)CO\(^+\) peak showed that the extent of deuteration of ring protons was \(\text{d}_3 \) 2.4\%, \(\text{d}_4 \) 9.1\%, \(\text{d}_5 \) 16.8\%, \(\text{d}_6 \) 22.1\%, \(\text{d}_7 \) 26.3\%, \(\text{d}_8 \) 10.2\%, \(\text{d}_9 \) 13.1\%.
Reaction of 2-Acetoxydicyclohexanone 104(6) with Potassium Acetate in Propionic Acid at 133-135°

2-Acetoxydicyclohexanone 104(6) (300 mg., m.p. 33-37°) and 0.50 g. of dried potassium acetate in 3.0 ml. of propionic acid was heated under a nitrogen atmosphere at 133-135° (solution temperature) for 24 hr. Work up gave 100 mg. (33%) of brown oil. The n.m.r. spectrum of the crude product revealed the complete absence of propionoxyl group.

Reaction of 2-Acetoxydicyclohexanone 104(6) with Potassium Acetate in Propionic Acid at 220°

2-Acetoxydicyclohexanone 104(6) (400 mg., m.p. 33-37°) and 0.60 g. of dried potassium acetate in 4.0 ml. of propionic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220° in an oil bath for 42 hr. Work up gave 240 mg. (60%) of brown oil. The n.m.r. spectrum showed the complete exchange of acetoxy group for the propion oxy group (δ 1.20, t., J=7 Hz., and 2.42, q., J=7 Hz., for CH₃CH₂COO⁻).

Reaction of 2-Acetoxydicycloheptanone 104(7) with Potassium Acetate-d₃ in Acetic Acid-d₄ at 240° (Reaction 43)

2-Acetoxydicycloheptanone 104(7) (300 mg., b.p.
78-80°/0.9 Torr) and 0.50 g. of dried potassium acetate-d₃ in 3.0 ml. of acetic acid-d₄ were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 240° in an oil bath for 20 hr. Work up and bulb-to-bulb distillation of the crude product yielded 30 mg. (10%) of a colorless oil, which showed three peaks on g.l.p.c. analysis. Purification by preparative g.l.p.c. (column temperature 140°) yielded ca. 15 mg. (5%) of partially deuterated 2-acetoxycycloheptanone 104(7), single peak on g.l.p.c. analysis.

I.r. spectrum: \(\nu \)max 2930, 2860 (strong, C-H), 2210, 2110 (medium, C-D), 1745 (ester C=O) and 1730 cm⁻¹ (ketone C=O)

Mass spectrum: m/e 175-184 (weak, M⁺), 128-140 (M-CH₃CO⁺)

Calculation based on M-CH₃CO⁺ peaks showed that the extent of ring deuteration was \(d_1 \) 0.3%, \(d_2 \) 0.7%, \(d_3 \) 4.7%, \(d_4 \) 18.2%, \(d_5 \) 31.3%, \(d_6 \) 13.1%, \(d_7 \) 16.3%, \(d_8 \) 6.5%, \(d_9 \) 4.9%, \(d_{10} \) 2.6%, \(d_{11} \) 1.4%.

Reaction of 2-Acetoxycycloheptanone 104(7) with Potassium Acetate in Acetic Acid at 250°

2-Acetoxycycloheptanone 104(7) (20.0 g., b.p. 78-80°/0.9 Torr) and 25.0 g. of dried potassium acetate in 150 ml. of acetic acid were sealed under a nitrogen atmosphere in five thick-walled Pyrex tubes and heated at
250° (furnace temperature reading) for 2 days. Work up yielded 4.50 g. (22.5%) of a dark-colored oil. Bulb-to bulb distillation (2 Torr, oven temperature 150°) gave 2.52 g. of pale green oil, λmax 272 nm (shoulder) (ε 850). The n.m.r. spectrum revealed the complete absence of starting material. The g.l.p.c. show two main peaks A and B accounting for ca. 60% of the total material. Fractional distillation through the 8" spinning band column at 4 Torr gave the following fractions:

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp.</th>
<th>Weight (g.)</th>
<th>Main component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89-97°</td>
<td>0.32</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>97-102°</td>
<td>0.32</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>105-106°</td>
<td>0.15</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>106-113°</td>
<td>0.32</td>
<td>A + B</td>
</tr>
<tr>
<td>5</td>
<td>113-120°</td>
<td>0.58</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>120°</td>
<td>0.53</td>
<td>B</td>
</tr>
</tbody>
</table>

Chromatography of Fractions 2 and 3 (0.47 g.) on 15 g. of silica gel and elution with 1:1 petroleum ether-benzene gave 265 mg. of colorless oil, which was shown by g.l.p.c. to contain ca. 95% of compound A, for which all physical data are consistent with the unsaturated γ-lactone structure 121.

U.v. spectrum: λmax 215 nm (ε 10,700)
I.r. spectrum: νmax 1760 cm⁻¹ (C=O)
N.m.r. spectrum: δ 5.99 (1H, d., J=6 Hz., vinylic proton at α-position), 7.45 ppm (1H, d., J=6 Hz., vinylic proton at β-position)

Mass spectrum: m/e 152 (M+)

Fractions 5 and 6 (1.11 g.) were chromatographed on 60 g. of silica gel packed in petroleum ether. Elution with the same solvent gave 280 mg. of semicrystalline material, which after two recrystallizations from acetone gave 107 mg. of compound B, m.p. 60-62.2°, as colorless crystals. The crystals slowly turned brown on exposure to air and light. All the physical data of compound B are consistent with the tetrasubstituted furan structure 124.

U.v. spectrum: λ_{max} 227 nm (ε 7,700)

I.r. spectrum: ν_{max} 1445 cm^-1

N.m.r. spectrum: δ 1.71 (b.), 2.31 (b.), and 2.68 ppm (b.) in a ratio of 3:1:1, no low field absorption

Analysis: Calcd. for C_{14}H_{2}O: C, 82.30; H, 9.87; O, 7.83

Found: C, 81.02; H, 9.64; O, 8.95*

Reaction of 2-Acetoxycyclooctanone 104(8) with Potassium

Acetate-d₃ in Acetic Acid-d₄ (Reaction 44)

2-Acetoxycyclooctanone 104(8) (465 mg., b.p. 79-80°/0.6 Torr) and 1.0 g. of dried potassium acetate-d₃

*The high oxygen analysis value might be due to the ready air oxidation of furan.
in 6.0 ml. of acetic acid-d_4 were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 220° in an oil bath for 24 hr. and then at 240° for 40 hr. Work up gave 230 mg. (50%) of a brown oil. Purification by bulb-to-bulb distillation (0.3 Torr, oven temperature 90-110$^\circ$) yielded 60 mg. (14%) of partially deuterated 2-acetoxycyclooctanone 104(8) as colorless oil, single peak on g.l.p.c. analysis.

IR spectrum: ν_{max} 2930, 2860 (strong, C-H), 2210, 2110 (medium, C-D), 1745 (ester C=O) and 1725 cm$^{-1}$ (ketone C=O)

Mass spectrum: m/e 141-149 (M-CH_3CO^+)

Calculation based on M-CH_3CO^+ peaks showed that the extent of ring deuteration was d_0 2%, d_1 2%, d_2 2%, d_3 7%, d_4 27%, d_5 50%, d_6 3%, d_7 5%.

Reaction of 2-Acetoxycyclononanone 104(9) with Potassium

Acetate-d_3 in Acetic Acid-d_4 at 240° (Reaction 45)

2-Acetoxycyclononanone 104(9) (340 mg., b.p. 93-95$^\circ$/0.6 Torr) and 0.55 g. of dried potassium acetate in 3.4 ml. of acetic acid-d_4 were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 240° in an oil bath for 40 hr. Work up gave 267 mg. (81%) of brown oil. Purification by bulb-to-bulb distillation (0.4 Torr) gave 75 mg. (22%) of partially deuterated
2-acetoxycyclononanone 104(9) as a colorless oil, single peak on g.l.p.c. analysis.

I.r. spectrum: ν_{max} 2930, 2860 (strong, C-H), 2210, 2110 (medium, C-D), 1750 (ester C=O) and 1730 cm$^{-1}$ (ketone C=O)

Mass spectrum: m/e 155-170 (M-CH$_3$CO$^+$)

Calculation based on M-CH$_3$CO$^+$ peaks showed that the extent of deuteration of ring protons was d$_0$ 3.3%, d$_1$ 1.6%, d$_2$ 1.6%, d$_3$ 2.7%, d$_4$ 5.3%, d$_5$ 12.5%, d$_6$ 14.2%, d$_7$ 25.7%, d$_8$ 9.8%, d$_9$ 13.5%, d$_{10}$ 3.4%, d$_{11}$ 3.8%, d$_{12}$ 1.1%, d$_{13}$ 1.0%, d$_{14}$ 0.5%.

Reaction of 2-Acetoxycyclododecanone 104(12) with Potassium Acetate-d$_3$ in Acetic Acid-d$_4$ at 240° (Reaction 46)

2-Acetoxycyclododecanone 104(12) (200 mg., m.p. 81-82.5°) and 1.0 g. of dried potassium acetate-d$_3$ in 6.0 ml. of acetic acid-d$_4$ were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 240° * in an oil bath for 57 hr. Work up gave 120 mg. (60%) of a brown oil, whose main component was 2-acetoxycyclododecanone 104(12) as shown by t.l.c. and i.r. data. Sublimation at 15 Torr gave 58 mg. (29%) of solid, which after two recrystallizations from 95% ethanol gave 15 mg. of partially

*Rearrangement at 220° for 40 hr. introduced an average of less than five deuterium atoms into the molecule as shown by n.m.r. integration of the crude reaction solution.
deuterated 2-acetoxycyclododecanone \(104(12)\), m.p. 79-80.5\(^\circ\), single spot on t.l.c.

I.r. spectrum: \(\nu_{\text{max}}\) 2930, 2860 (medium, C-H), 2210, 2110 (strong, C-D), 1745 (ester C=O) and 1730 cm\(^{-1}\) (ketone C=O)

Mass spectrum: \(m/e\) 254-264 (very weak, \(M^+\)), 205-220 (\(M-\text{CH}_3\text{CO}^+\))

Calculations based on \(M-\text{CH}_3\text{CO}^+\) peaks showed that the extent of ring deuteration was \(d_8\) 0.4%, \(d_9\) 0.6%, \(d_{10}\) 1.4%, \(d_{11}\) 2.4%, \(d_{12}\) 3.7%, \(d_{13}\) 5.7%, \(d_{14}\) 6.7%, \(d_{15}\) 8.3%, \(d_{16}\) 7.9%, \(d_{17}\) 10.8%, \(d_{18}\) 10.8%, \(d_{19}\) 15.4%, \(d_{20}\) 15.7%, \(d_{21}\) 10.4%.

Reaction of 2-Benzoyloxy cyclohexanone \(125\) with Potassium Acetate-\(d_3\) in Acetic Acid-\(d_4\) at 133-135\(^\circ\) (Reaction 47)

2-Benzyloxy cyclohexanone \(125\) (200 mg., m.p. 84-84.5\(^\circ\)) and 0.40 g. of dried potassium acetate-\(d_3\) in 2.0 ml. of acetic acid-\(d_4\) were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 150\(^\circ\) in an oil bath for 40 hr. Work up gave 150 mg. (75%) of crude oil. Recrystallization from ether gave 130 mg. (65%) of partially deuterated 2-benzyloxy cyclohexanone \(125\) as colorless prisms, m.p. 85-85.5\(^\circ\).

I.r. spectrum: \(\nu_{\text{max}}\) 3030, 2930, 2860 (strong, C-H), 2210, 2110 (weak, C-D), 1735 (ester C=O) and 1725 cm\(^{-1}\) (ketone C=O)

Mass spectrum: \(m/e\) 220-224 (\(M^+\))
Calculation based on M^+ peak showed that the extent of deuteration was d_2 3.8%, d_3 24.2%, d_4 14.0%, d_5 58.0%.

Reaction of 2-Benzoyloxy cyclohexanone 125 with Potassium

Acetate-d_3 in Acetic Acid-d_4 at 170° (Reaction 48)

2-Benzoyloxy cyclohexanone 125 (210 mg., m.p. 84-84.5$^\circ$) and 0.40 g. of dried potassium acetate-d_3 in 2.0 ml. of acetic acid-d_4 were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 170° in an oil bath for 43 hr. Work up gave 95 mg. (45%) of brown oil. Recrystallization from ether gave 55 mg. (26%) of partially deuterated 2-benzoyloxy cyclohexanone 125 as colorless prisms, m.p. 84-85.5$^\circ$.

I.r. spectrum: ν_{max} 3030, 2930, 2860 (strong, C-H), 2210, 2110 (weak, C-D), 1735 (ester C=O) and 1725 cm$^{-1}$ (ketone C=O)

Mass spectrum: m/e 221-225 (M^+)

Calculation based on M^+ peaks showed that the extent of deuteration was d_3 2.1%, d_4 19.2%, d_5 78.7%.

Reaction of 2-Benzoyloxy cyclohexanone 125 with Potassium

Acetate-d_3 in Acetic Acid-d_4 at 180-185$^\circ$ (Reaction 49)

2-Benzoyloxy cyclohexanone 125 (200 mg., m.p. 84-85$^\circ$) and 0.40 g. of dried potassium acetate-d_3 in 2.0 ml. of acetic acid-d_4 were sealed under a nitrogen atmosphere in
a thick-walled Pyrex tube and heated at 180-185° in an oil bath for 43 hr. Work up gave 90 mg. (45%) of brown oil. Two recrystallizations from ether gave 3 mg. (1.5%) of partially deuterated 2-benzoyloxy cyclohexanone 125, m.p. 84-85.5°. Mass spectrum showed it was mainly pentadeuterated with no d₆-component.

Reaction of 2-Benzoyloxy cyclohexanone 125 with Potassium Acetate in Acetic Acid at 195°

2-Benzoyloxy cyclohexanone 125 (200 mg., m.p. 84-85.5°) and 0.40 g. of dried potassium acetate in 2.0 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 195° in an oil bath for 6 hr. Work up gave 100 mg. (5%) of brown oil. The n.m.r. spectrum of the crude product showed the presence of a substantial amount of acetoxyl group (§ 2.13, s.). Recrystallization from ether gave 43 mg. (21%) of 2-benzoyloxy cyclohexanone 125 as colorless prisms, m.p. 84-85°.

Reaction of cis-2-Acetoxy-6-methylcyclohexanone 105 with Potassium Acetate in Acetic Acid at 133-135°

cis-2-Acetoxy-6-methylcyclohexanone 105 (183 mg., m.p. 54-55°) and 0.30 g. of dried potassium acetate in
2.0 ml. of acetic acid were refluxed (solution temperature 133-135°) under a nitrogen atmosphere for 17 hr. Work up and purification by bulb-to-bulb distillation yielded 130 mg. (71%) of colorless oil. N.m.r. and g.l.p.c. analyses revealed it was a mixture of cis-2-acetoxy-6-methylcyclohexanone 105 (δ 1.05, d., J=6.5 Hz., for CH₃--; 2.14, s., for CH₃COO--; 5.18, m., for C-2 H) and 2-acetoxy-2-methylcyclohexanone 106 (δ 1.44, s., for CH₃--; 2.11, s., for CH₃COO--) in a ratio of ca. 4:1.

Reaction of cis-2-Acetoxy-6-methylcyclohexanone 105 with Potassium Acetate in Propionic Acid at 133-135°

cis-2-Acetoxy-6-methylcyclohexanone 105 (300 mg., m.p. 54-55°) and 0.50 g. of dried potassium acetate in 3.0 ml. of propionic acid were heated under a nitrogen atmosphere at 133-135° (solution temperature) for 6 hr. Work up gave 280 mg. (93%) of a brown oil. The n.m.r. spectrum showed the complete exchange of the acetoxy group for the propionoxy group. G.l.p.c. analysis showed the crude product was a mixture of at least three compounds. The major compound, accounting for ca. 60% of the crude product, was probably cis-2-propionoxy-6-methylcyclohexanone (δ 1.05, d., J=6.5 Hz., for CH₃--; 1.20, t., J=7 Hz., for CH₃CH₂COO--; 5.18, m., for C-2 H).
Reaction of 2-Acetoxybicyclohexanone-1-\(^{13}\)C \(^{104(6)}\)-1-\(^{13}\)C with Potassium Acetate in Acetic Acid at 142-144\(^{\circ}\)

2-Acetoxybicyclohexanone-1-\(^{13}\)C \(^{104(6)}\)-1-\(^{13}\)C (400 mg., m.p. 32-37\(^{\circ}\)) and 0.80 g. of dried potassium acetate in 40 ml. of acetic acid were sealed under a nitrogen atmosphere in a thick-walled Pyrex tube and heated at 142-144\(^{\circ}\) for 12 hr. The reaction mixture was diluted with 160 ml. of water, neutralized with 18 g. of sodium bicarbonate, and then extracted with ether. The combined ether extracts (40 ml.) were washed with 5% aqueous sodium bicarbonate solution, and then dried. Removal of ether by simple distillation gave 370 mg. (92\%) of slightly brown oil, which after one recrystallization from petroleum ether (b.p. 30-60\(^{\circ}\)) yielded 307 mg. (77\%) of 2-acetoxybicyclohexanone-1-\(^{13}\)C as colorless prisms, m.p. 33-38\(^{\circ}\), single spot on t.l.c. (solvent A).

I.r. spectrum: \(\nu_{\text{max}}\) 1750 (ester C=O), 1730 (ketone \(^{12}\)C=O) and 1690 cm\(^{-1}\) (ketone \(^{13}\)C=O), the latter two in a ratio of ca. 2:1

\(^{13}\)C-n.m.r. spectrum: \(\delta_{C}\) 20.4 (s., CH\(_3\)), 23.9 (s., C-4), 27.3 (s., C-5), 33.3 (m., C-3), 40.7 (m., C-6), 76.7 (s., enhanced, C-2), 169.1 (s., CH\(_3\)COO\(-\), 203.1 ppm (s., enhanced, C-1)
Reaction of 2-Acetoxy cyclohexanone-1-13C 104(6)-1-13C with Potassium Acetate in Acetic Acid at 216-218\degree

2-Acetoxy cyclohexanone-1-13C 104(6)-1-13C (1.40 g., m.p. 32-37\degree) and 2.80 g. of dried potassium acetate in 14 ml. of acetic acid were sealed under a nitrogen atmosphere in seven thick-walled Pyrex tubes and heated at 216-218\degree in an oil bath for 22 hr. The combined reaction mixture was diluted with 300 ml. of water, neutralized with 57 g. of sodium bicarbonate and then extracted with ether. The combined ether extracts (300 ml.) were washed with 5% aqueous sodium bicarbonate solution and water, and then dried. Removal of ether by simple distillation left 1.05 g. (75%) of brown oil. Purification on eight 20 x 20 cm. thick layers (solvent A) yielded 611 mg. (44%) of slightly brown oil. One recrystallization from petroleum ether gave 304 mg. (22%) of 2-acetoxy cyclohexanone-13C as colorless prisms, m.p. 33-35\degree, single spot on t.l.c.

\textit{l.r. spectrum:} \nu_{\text{max}} 1750 (ester C=O), 1730 (ketone 12C=O), and \nu 1690 cm-1 (ketone 13C=O, very weak)

\textit{13C-n.m.r. spectrum:} \delta 20.4 (s., weak, \text{CH\textsubscript{3}}-), 23.9 (s., C-4), 27.3 (s., C-5), 33.3 (s., C-3), 40.7 (s., C-6), 76.7 (s., C-2), 169.1 (s., weak, \text{CH\textsubscript{3}}\text{COO}-), 203.1 ppm (s., C-1)
APPENDIX

DEHYDROBROMINATION OF 3α-BROMOCHOLESTAN-4-ONE

In the course of their work on the bromination of ketosteroids, Shoppee and coworkers treated 3α-bromocholestan-4-one with boiling 6-collidine and assigned the structure of Δ^2-cholesten-4-one to the crystalline product isolated in 90% yield. However, the u.v. data, λ_{max}^{EtoH} = 239 nm (ε 10,000), reported for the compound was not consistent with the structure. The extinction coefficient was in the usual range for transoid enones, but the absorption maximum was too far from the predicted value (227 nm). Since collidine-dehydrobromination was well-known to give both normal and rearranged elimination products, the sample obtained by Shoppee and coworkers might be a mixture of Δ^2-cholesten-4-one and Δ^5-cholesten-4-one, thus explaining the abnormal u.v. data. In view of our finding that formation of Δ^5-cholesten-4-one is preferred to that of Δ^2-cholesten-4-one in acetic acid, it seemed worthwhile to reinvestigate Shoppee and coworkers' reaction. To our surprise, the crude product only contained
\(\Delta^2 \)-cholesten-4-one \(\text{ll} \), no trace of \(\Delta^5 \)-cholesten-4-one \(\text{ll} \) was detectable in the n.m.r. spectrum. Physical constants of the crystallized material agreed with those reported by Shoppee, except u.v. data, \(\lambda_{\text{max}}^\text{EtOH} \) 226 nm (\(\epsilon \) 7,800).
REFERENCES

1. A. Butenandt and A. Wolff, Ber., 68 2091 (1935).

 (b) R. N. Jones, D. A. Ramsay, F. Herling and

7. A. Butenandt and H. Dannenberg, Ber., 71 1681 (1938).

9. A. Butenandt, L. Mamoli, H. Dannenberg, L.-W. Masch and
 J. Paland, Ber., 72 1617 (1939).

 76 (1942).

12. A. Butenandt and G. Ruhenstroth-Bauer, Ber., 77 397
 (1944).

42. (a) E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70 846 (1948).

 (b) H. L. Goering, Record Chem. Progr., 21 109 (1960).

(b) Private communication with R. West.

(d) Private communication with C. W. Kamienski.

73. M. Jorgenson, Org. Reactions, Vol. 18 p.1
74. Organic Syntheses, 35 39
75. E. B. Hershberg, E. Oliveto, M. Rubin, H. Staeudle and
76. G. H. Douglas, P. S. Ellington, G. D. Meakins and
 1048 (1951).
 (1949).
 (1953).
82. A. W. Langer, Jr., Trans. N Y Academy Science 27 741
 (1965).
 Ztg., 74 309 (1950).

105. Organic Syntheses, 37 8