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Abstract

This Ph.D thesis focuses on modeling transmission and dispersal of one of the most
common infectious diseases, malaria.

Firstly, an integro-differential equation system is derived, based on the classical
Ross-Macdonald model, to emphasize the impact of the disease latency on disease dy-
namics. The novelty lies in the fact that different distribution functions are used to
describe the variance of individual latencies. The theoretical results of this project in-
dicate that latencies reduce the basic reproduction number.

Secondly, a patch model is derived to examine how traveling by human beings
affects the transmission and spread of malaria. Due to coexistence of latency and dis-
persal, the model turns out to be a system of delay differential equations on patches
with non-local infections. The results from this work suggest that although malaria has
been eradicated in many countries since the 1980s, re-emergence of the disease is still
possible, and hence precautionary measures should be taken accordingly.

Thirdly, since there are more than five species of malaria parasites causing human
malaria, and these are currently distributed in different geographic regions, co-invasion
by multiple strains of malaria may arise. We propose multi-strain models to explore
co-infection at the within-host level and co-existence at the between-host level. The
analysis shows that competitive exclusion dominates at the within-host level, meaning
that long term co-infection of a single host by multiple strains can be generically ex-
cluded. However, at the between-host level, long term co-existence of multiple strains
in a region is possible.

Keywords: Infectious disease, malaria, latency, spatial dispersal, multi-species, math-
ematical modeling.
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Chapter 1

Introduction

Malaria is a widely spread infectious disease, which is also one of the most prevalent

diseases in tropical and subtropical areas. Figure 1.1 is a map obtained from WHO

Malaria Report 2010, and the shaded areas are the countries where malaria was endemic

in 2009.

In addition to being widespread, malaria is also known as a massive killer, because

annually 300 million to 500 million infections are reported, among which, 700,000 to

881,000 cases result in deaths as shown in Table 1.3. Most of deaths are either children

under five or pregnant women.

Typical symptoms of malaria infections start with headache, followed by cyclical

fevers and chills, and sometimes even coma (see, e.g., [31]). The period of cyclical

fevers lasts several days, during which time a high probability of dying has been ob-

served for children, since their immune systems are weak. Such fever can also lead to

abortions of pregnant women. There are some other possible symptoms such as (refer

to [31]) vague, sweating, anemia, bloody stools, convulsion, myalgia, diarrhea, nausea,

and vomiting. All symptoms are caused by the intra-host development of members of

eukaryotic protists of the genus Plasmodium, a family of protozoan parasites that are
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responsible for malaria infection.

Figure 1.1: Malaria endemic countries in 2009

1.1 Life cycle of malaria parasites

Malaria is a vector-borne disease. Instead of transmitted directly from human to human,

malaria parasites are transfered between humans through mosquitoes. The malaria par-

asite life cycle is divided into two parts, one is within host (human) body and the other

is within vector (mosquito) body, as shown in Figure 1.2.

Human infection starts from a blood meal of an infectious female mosquito. The

parasites existing in the infectious mosquito’s saliva, called sporozoites at this stage,

enter the bloodstream of the human though mosquito bites and migrate to the liver.

Within minutes after entering in the human body, sporozoites infect hepatocytes, and
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Figure 1.2: The life cycle of malaria parasites
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multiply asexually and asymptomatically in liver cells for a period of 5−30 days [6,9].

This period is called the exo-erythrocytic stage. At the end of this stage, thousands of

merozoites (schizonts) emerge inside an infected liver cell. These merozoites rupture

their host cells undetectably by wrapping themselves in the membrane of infected liver

cells. Then, merozoites escape into the bloodstream and get ready to infect red blood

cells. Once entering the bloodstream, free merozoites undergo the so-called erythro-

cytic stage, in which merozoites invade red blood cells to develop ring forms before

experiencing asexual or sexual maturation. Within the red blood cells, a proportion

of parasites keep multiplying asexually and periodically break out of infected old red

blood cells to invade fresh red blood cells. Such amplification cycles may cause the

symptom of waves of fever. The rest parasites follow sexual maturation and produce

male (micro-) and female (macro-) gametocytes which may be taken up by bites of

female mosquitoes.

When an uninfected female mosquito bites an infectious human, it ingests the hu-

man’s blood cells with gametocytes. In the mosquito gut, exflagellated micro-gametocytes

enter macro-gametocytes after being released from the human’s red blood cells, and fur-

ther form diploid zygotes, which develop into active ookinetes. Ookinetes burrow into

the mosquito midgut wall and become oocysts. The growth and division of each oocyst

produces thousands of active haploid forms called sporozoites. After 8 − 15 days, the

oocyst bursts and releases sporozoites into the body cavity of the mosquito, from where

sporozoites travel to and invade the mosquito salivary glands. Then the malaria para-

sites once more undergoes a cycle of human infection when the mosquito takes a blood

meal from another human, injecting the sporozoites from its salivary glands into the

human bloodstream [33], and another round of the parasite life cycle starts.
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P. falciparum P.vivax P.ovale P.malaria P. knowlesi
Duration of primary

exoerythrocytlc
cycle (days) 5.5 8 9 14-15 8-9
Number of

exoerythrocytlc
merozoites 30 000 10 000 15 000 15 000
Duration of
erythrocytic
cycle (hours) 48 48 50 72 24
Duration of

mosquito cycle
at 27◦C (days) 10 8-9 12-14 14-15

Table 1.1: Some comparative characters of the five human malaria parasites

1.2 Malaria species

There are more than one hundred species from the genus Plasmodium involved in

malaria infection, but mainly five of them can cause human malaria: P. falciparum,

P. vivax, P. Ovale, P. Malaria and P. Knowles. All of these species share a similar life

cycle with various development time-frames (see Table 1.1 for the variance). Different

maturation characters of these parasites are responsible for the variations in infection

performances, vulnerable population groups and disease mortality rates. For instance,

P. falciparum can invade and propagate in most ages of red blood cells, producing the

largest numbers of exoerythrocytlc merozoites which leads itself to be the most fatal

parasite among the five. Therefore, 90% of malaria induced deaths are contributed by

P. falciparum infections. But this species is curable and can be eliminated completely in

human bodies, due to the short exoerythrocytlc cycle that is approximated 6 days. This

time period is exhibited as the latent period within humans. On the other hand, P. vivax,

the one associated with a low disease mortality rate, can persist inside human bodies

for an average human life time because of its ability to withstand a wide variation of

temperature and the long exoerythrocytlc phase.
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1.3 Geographical spread of malaria

Malaria is an ancient infectious diseases with a 10,000 year history [13]. Originally

from different species of Plasmodium ancestors, the disease was first found in three

places: West Africa, Central Africa, and Southeast Asia [10, 25]. From the time line

of the disease dispersal in Table 1.2. [34], we noticed that the geographical spread of

malaria has followed the dispersal or migration of human beings throughout history.

More specifically, the growth of international trade in the sixteenth century in Europe,

early trans-Pacific voyages, colonization of Central America and tropic areas and so

on, all of them played an important role in helping the spread of malaria. In the early

period of the last century, the total population of malaria infections has reached a very

high level with more than one-half of the world’s population at significant risk, and

one out of ten was dying of this disease. Since the early 1950s, with the appearance

of the effective insecticide DDT and medicines for malaria infection, the disease has

almost gone extinction in North America and most European countries. Currently,

deaths caused by malaria mainly happens in Africa. Although the disease incident rate

is still high in India and Southeast Asia, the disease induced mortality rate is lower in

contrast to that in Africa. The reason can be traced to the origin of malaria and the

historical geographic distribution of different species of malaria parasites.

With the geographic expansion of the disease, malaria parasites have also experi-

enced dispersal and evolution. Among the five main species that cause human infec-

tions, P. falciparum was original from West Africa, while P.vivax was first found in

Asian and Central West Africa, independently [10, 25]. With the migration of human

beings, P. falciparum has been spread towards north and east areas of Africa, and P.

vivax has been spread from east to west via land (see Table 1.2.). And the spread of the

parasites by sea followed the opposite direction.

Although both P. vivax and P. malariae had achieved the widest global distribution,
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currently P. vivax and P. falciparum are the most common malaria parasites contributing

more than 90% of infection cases. Almost 85% of the 300-500 million annual malaria

cases occur in sub-Saharan Africa, and about 85% of the cases in Africa are caused

by P. falciparum. P. vivax is still the most geographically prevalent parasite causing

human malaria, estimated to account for 100-300 million clinical cases across much of

Southeast Asia, Central and South America, the Middle East, causing 70 − 90% of the

infections in these areas. Infections caused by this particular species have low mortality

rate but high probability of relapse, explaining why Southest Asians (including Indians)

have a low death rate in contrast to Africa (exhibited in Table 1.3.).

Currently, there are roughly 108 countries endemic with malaria. Most of them are

located in Africa and Southeast Asia. Although the eradication of malaria has been

claimed in many western countries, shown in Table 1.3., there are still a few cases re-

ported in these areas annually. The majority of reported cases are imported by travelers

who have been to the regions where the disease persists. Increased travel would in-

creases the chance of re-emergence of the disease in modern cities where malaria has

been eradicated. Indeed, such re-emergence happened in Iquitos of Peru (see, [12])

once. Thus, the impact of increasing frequency and scale of traveling between re-

gions, countries and continents on the disease dispersal, needs to be carefully evaluated,

preferably by mathematical models.

1.4 Malaria control and treatments

According to the transmission procedure of malaria, there are three conditions for the

prevalence of the disease:

(i) high density of Anopheles mosquitoes,

(ii) high density of human population,
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(iii) large rate of transmission of parasites between human beings and mosquitoes.

Obviously, not too much can be done in respect to (ii). So, (i) and (iii) are naturally

targeted. That is, either controlling the population of Anopheles female mosquitoes at a

lower level, or avoiding biting by mosquitoes can reduce the chance of malaria becom-

ing endemic. In the middle of the last century, people in Africa have already knew how

to remove or poison the breeding grounds of mosquitoes or the aquatic habitats of the

larva stages, such as by filling or applying oil to places with standing water, to control

the population of mosquitoes [17]. Later, pesticide was widely employed to eliminate

mosquitoes. On the other hand, mosquito nets, bedclothes and mosquito-repellent in-

cense (indoor residual spraying) also help to keep mosquitoes far away from people

and minimize the biting rate, greatly reducing the chance of infection and transmission

of malaria.

There are some effective drugs for malaria patients currently. For example, Chloro-

quine, Quinuine, Primaquine and combinations of some other drugs like sulfadoxine

and pyrimethamine(SP) are effective medicines for treating infections caused by the five

major parasites. Although malaria is an entirely preventable or curable disease thanks to

these effective medicines, there are still millions of people suffering from this disease,

who are too poor to afford full treatments. Moreover, insufficient treatments due to poor

economic conditions, may result in drug resistance and lead to emergence of new (drug

resistant) strains of malaria parasites. For instance, the first case of resistance to Chloro-

quine was documented in 1957. Chloroquine, Quinine and Sulfadoxine-pyrimethamine

resistance cases have been reported in almost all disease endemic areas [7]. The emer-

gence of drug resistant species of malaria makes control and treatment of this disease

harder and more challenging.

Once recovered, either naturally or after treatments, a human being does possess

temporary immunity, but it only lasts a short time. And the cross-immunity of infections



9

caused by different species of malaria parasites [32] is complicated. The road to malaria

vaccine clinics has been long and filled with darkness, even with the support of global

funds. A completely effective vaccine has not yet been developed for malaria infection,

although several vaccines are under clinical trials. Till recently, a vaccine appears to be

within reach, following a successful large-scale phase III trial of RTS,S [27] in seven

African countries. This latest achievement in trials shows the potential for a bright

future for malaria vaccinations.

1.5 Mathematical models for malaria transmission

It is widely acknowledged that mathematical models can play a crucial role in predict-

ing disease dynamics. The so-called Ross-MacDonald model (see, [28, 29, 22, 23, 24])

is the earliest attempt to quantitatively describe the dynamics of malaria transmission

at a population level, given by the following system of ordinary differential equations:


dIh

dt
=ae1Im

N − Ih

N
− d1Ih,

dIm

dt
=ae2(M − Im)

Ih

N
− d2Im.

(1.5.1)

Here Ih and Im represent the populations of the infectious classes of human beings and

female mosquitoes, respectively. N and M are the total populations of human beings

and female mosquitoes, which were assumed to be constants. The model ignores the

latencies within both human hosts and mosquitoes, and assumes no immunity of the

recovered individuals (thus, the terms N − Ih and M − Im represent the populations of

the susceptible humans and mosquitoes). The constant a is the mosquito biting rate;

e1 is the probability that a bite from an infective mosquito will cause infection of a

susceptible human; and e2 is the probability that a bite from a susceptible mosquito to

an infective human individual will cause infection of the mosquito. It is assumed that



10

the average duration of infection for human beings and mosquitoes are 1/d1 and 1/d2,

respectively. By analyzing this mathematical model, both Ross and McDonald found

that it would be possible to eradicate the disease without killing all vector mosquitoes.

This was in contrast to the traditional belief that malaria could be wiped out only by

eradicating all vector mosquitoes, which would be impossible in practice. Indeed, by

looking at the basic reproduction number for this model, given by

R0 =
ae1

d1

M
N

ae2

d2
, (1.5.2)

one can show that any measure(s) that can bring R0 to a value less than 1 would even-

tually drive the disease to extinction. Obviously, among the possible measures are, for

example, controlling the mosquito population M (e.g., by spraying mosquito pesticides)

to a sufficiently lower level or controlling the biting rate a (e.g., by using mosquito nets).

The Ross-MacDonald model is a simple example that shows how mathematical

modeling can provide insights into the dynamics of malaria transmission and spread,

and suggest effective measures to control the disease. This simple model is fully mathe-

matically tractable in the sense that the long term behavior of solutions of model (1.5.1)

can be fully determined by the quantity R0, which is explicitly calculated from the

model parameters. However, it is highly simplified and biologically inaccurate in the

sense that many biological factors are omitted. In recent years, there have been efforts to

incorporate these factors in models, resulting in various modifications of model (1.5.1).

For instance, in [4, 8, 21], a discrete delay is introduced in models to account for the

latency within mosquitoes. In [30], two discrete delays are introduced in model (1.5.1),

one accounting for the latency in humans and the other for the latency in mosquitoes.

In [19], a model with spatial diffusion and advection of mosquitoes and the season-

ality of the model parameters is proposed and analyzed. In [20], age structure of the

mosquitoes is incorporated in the model, and in [21], a spatially non-local model with
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latency in mosquitoes is analyzed. Models that involve modification of model (1.5.1)

to consider within a spatial environment (patchy), are discussed in [3, 11, 5].

In addition to modeling the disease transmission at host and vector population level,

there are also works that study the replication of malaria parasites within the host. The

first within-host model was proposed by Anderson et al. [2] (see also Hetzel and Ander-

son [14] and Anderson [1]). They described the interaction among healthy red blood

cells, infected red blood cells and malaria parasites. These models have been gener-

alized by many researchers for different purposes. We refer the reader to a review by

Molineaux and Dietz [26] and Iggidr et. al. [15, 16] and the references therein on var-

ious such generalizations. Especially, the authors built a multi-stage and multi-species

ordinary differential equation model for within-host dynamics of the malaria parasites,

and showed that the basic reproduction number computed by the next generation ma-

trix plays a global threshold role in [15]. The impact of the immune response on the

infection of blood cells by malaria parasites is also discussed in [1, 14, 26, 18].

1.6 Thesis outline and objectives

Although some modifications of model (1.5.1) have appeared in the literature, there is

much room to further improve the models to obtain a realistic description of the disease

dynamics. In subsections 1.1 - 1.3 of this thesis, malaria transmission and spread is

explored by deriving some more realistic models.

Taking the latency issue as an example, the model in [30] is the only one that has

considered the latencies in both humans and mosquitoes. But a careful analysis of that

model reveals that the model is indeed not well posed, because solutions starting with

positive initial data may actually become negative. Also note that the latency actu-

ally differs from individual to individual, and such a variance in latency suggests that
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latency distributions should be introduced. In Chapter 2, we derive a modified Ross-

MacDonald model for the dynamics of malaria transmission by incorporating latencies

in both human beings and female mosquitoes. Two general probability functions (P1(t)

and P2(t)) are introduced to reflect the variations of latencies among individual hu-

mans and individual mosquitoes, respectively. We justify the well-posedness of the

new model, identify the basic reproduction number R0 for the model and analyze the

dynamics of the model. The results show that latencies decrease the value of the basic

reproduction number (BRN), and the BRN plays a threshold role in predicting whether

the disease will die our or persist.

Chapter 3 deals with the spatial spread of malaria in a patchy environment. The

existing works [3, 11, 5] ignore the latencies in their patch models. Moreover, in

[11], the authors assume that not only humans but also mosquitoes disperse between

patches. This may be justifiable if one considers small areas with aquatic environment

as patches, but becomes unrealistic when cities or countries or continents are consid-

ered as patches because of the very limited distance that mosquitoes can fly [35]. In [5],

the authors only consider the dispersal of infectious humans, but ignore that of suscep-

tible humans—this also lacks justification. In Chapter 3, we derive a model built in a

patchy environment where the distances between patches are far so that mosquitoes can

not disperse between patches, but humans can. Latencies are assumed in humans and

mosquitoes, and it is the mobility of people in latency that accounts for the scenario:

a human being infected in one patch may become infectious, after a latent period, in

another patch. This scenario is referred to as a non-local infection. By analyzing the

model, both theoretically and numerically, we are able to explore the impact of the

travel by susceptible, latent, and infectious humans on disease transmission and disper-

sal.

Chapter 4 is motivated by the current geographical distribution of the five main
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Time Lines of
invasion of malaria Locations

>10000 years ago Africa

10000-5000 years ago
Mesopotamia

Indian peninsula
South-East Asia

5000 years ago China
3000 years ago P. falciparum reaches India
2,500 - 2,000 years ago the Mediterranean shores
1000-500 years ago Northern Europe
end of 15th century AD New World (North South America)
mid 18th century AD Across North America
19th Century AD all over the globe

Table 1.2: Time lines of malaria disease invasion in different regions.

species of malaria parasites, and the increasing mobility of human beings in the world.

Travels by humans may bring the multiple species of malaria parasites into a single

region, and hence, whether or not the multiple species can co-exist in that region turns

to be an issue. In this chapter, we only consider two species for simplicity. We first set

up a model to describe the interactions between two species at the within-host level. It

turns out that the model demonstrates generic competitive exclusion. This means that

generically, either both species will die out, or only one species will persist. Based on

this result, we further set up another two-strain model at the population level. Analysis

shows that for a range of model parameters, it is possible for the two species to co-exist

in the same region.

We conclude the thesis with a conclusion in Chapter 5, where we summarize the

main results (conclusions) of the thesis, and point out some possible topics for future

work that of interest to the author.
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Chapter 2

Latencies in malaria infections and

their impacts on the disease dynamics

In this chapter, we modify the classic Ross-MacDonald model for malaria disease dy-

namics by incorporating latencies for both human beings and female mosquitoes. One

novelty of our model is that we introduce two general probability functions (P1(t) and

P2(t)) to reflect the fact that the latencies differ from individual to individual. We jus-

tify the well-posedness of the new model, identify the basic reproduction number R0

for the model and analyze the dynamics of the model. We show that when R0 < 1, the

disease free equilibrium E0 is globally asymptotically stable, meaning that the disease

will eventually die out; and if R0 > 1, E0 becomes unstable. When R0 > 1, we consider

two specific forms for P1(t) and P2(t): (i) P1(t) and P2(t) are both exponential func-

tions; (ii) P1(t) and P2(t) are both step functions. For (i), the model reduces to a system

of ordinary differential equations (ODEs), and for (ii), the long term disease dynamics

are governed by a system of delayed differential equations (DDEs). In both cases, we

are able to show that when R0 > 1, the disease persist; moreover if there is no recovery

(γ1 = 0), all admissible positive solutions will converge to the unique endemic equi-

librium. A significant impact of the latencies is that they reduce the basic reproduction
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number, regardless of the forms of the distributions.

2.1 Introduction

Malaria is an infectious disease and widespread in tropical and subtropical regions for

thousands of years. Malaria is a vector-borne, caused by one or more of a family of

protozoan called Plasmodium, mainly consisting of five species: P. falciparum, P. vivax,

P. malariae, P. ovale and P. knowlesi. The malaria parasites can parasitize in blood cells

and other tissues of both human beings and mosquitoes. The transmission of the disease

between human beings and female mosquitoes is through biting by female mosquitoes

of human beings. Based on such a transmission mechanism, it was initially widely

believed that the disease could be wiped out only by eradicating all vector mosquitoes.

This is impossible in practice.

It was Ross [18] who first used a mathematical model to quantitatively investigated

the spread of malaria. Ross’ model was later further extended and studies by Mc-

Donald [15, 16, 17], lead to the following system which has been referred to as the

Ross-McDonald model


dI1

dt
= ae1I2(1 −

I1

N
) − d1I1,

dI2

dt
= ae2(M − I2)

I1

N
− d2I2.

(2.1.1)

Here I1 and I2 represent the populations of the infectious classes of human beings and

female mosquitoes, respectively. N and M are the total populations of human beings

and female mosquitoes, which are assumed to be constants. The coefficient a is the

mosquito biting rate; e1 is the probability that a bite by an infective mosquito will cause

infection of a susceptible person; and e2 is the probability that a bite from a susceptible

mosquito on a infective human will cause infection of the mosquito. The parameters
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d1 and d2 are the natural death rates of infectious human beings and mosquitoes, re-

spectively. By analyzing this mathematical model, both Ross and McDonald found that

it is possible to eradicate the disease without killing all vector mosquitoes. The basic

reproduction number for this model is given by

R0 =
ae1M
d1N

ae2

d2
, (2.1.2)

one knows that any measure(s) that can bring R0 to a value less than 1 would eventually

drive the disease to extinction, including controlling the mosquito population M to a

sufficiently lower level. Obviously, the approach of mathematically modeling provides

much insight into the spread of malaria, by which, effective measures to control the

disease can be suggested. For example, in addition to decreasing M to a certain level

(by spraying mosquito pesticides) which was Ross and McDonald’s finding, decreasing

the biting rate (achievable by using mosquito nets) can help eradicate malaria as well.

The Ross-McDonald model is mathematically tractable in the sense that long term

solution behavior of the system (2.1.1) can be fully determined by the combined pa-

rameter R0. It is biologically inaccurate in the sense that many biological factors are

omitted. One of the important factors is the latency in the transmission process. This

can be seen from the life cycle of the malaria parasites. The cycle begins from a blood

meal of a female mosquito from human beings. After bitten by an infected female

mosquito, a person receives an inoculum of the malaria parasites (sporozoites). About

half an hour later, liver cells of the person are invaded by sporozoites. The reproduction

of parasites (merozoites) occurs in the liver cells again and again, releasing more free

merozoites to infect more liver cells. The immature trophozoites ( merozoites ), be-

come mature, developing either in a sexual or asexual way. Trophozoites that undergo

asexual development will go through the erythrocytic cycle producing more immature

trophozolie, while the others grow to gametocytes by sexual maturation and may be
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transferred to a female mosquito after biting. Once they are ingested into a female

mosquito, gametocytes differentiate into male or female gametes and then fuse in the

mosquito gut. This produces ookinetes that penetrate the gut lining and are further de-

veloped to oocysts in the gut wall. When oocysts ruptures, they release sporozoites that

migrate through the mosquito’s body to the salivary glands, ready to undergo another

life cycle. See, e.g. [1,21] for details on this topic. Several days to a couple of weeks are

needed for the development of parasites inside humans and mosquitoes by the process

described above.

Some modellers have noticed the omission of latencies in the Ross-McDonald model

and proposed modifications in the form of DDEs, but most of these works only in-

corporate a single delay, representing the latency of the parasite in mosquitoes, see,

e.g., [1, 2, 13]. Recently, Ruan and Xiao [19] modified the model (2.1.1) by adding

two delays accounting for the latencies in both mosquitoes and humans, respectively. It

results in the following delayed and rescaled system


dx(t)

dt
= ame1y(t − τ1)[1 − x(t − τ1)]e−d1τ1 − d1x(t),

dy(t)
dt

= ae2[1 − y(t − τ2)]x(t − τ2)e−d2τ2 − d2y(t),
(2.1.3)

where m = M/N, x = I1/N and y = I2/M, and the term e−d1τ1 (e−d2τ2 resp. ) accounts

for the probability that an infected human host (mosquito resp.) can survive the latent

period τ1 (τ2 resp). For this modified model, the basic reproduction number is adjusted

to

R0 =
a2e1e2me−d1τ1e−d2τ2

d1d2
. (2.1.4)

It is shown in [19] that when R0 < 1, then the disease free equilibrium (0, 0) is stable;

when R0 ≥ 1, then (0, 0) is unstable and there is an endemic equilibrium (x∗, y∗) which
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is locally asymptotically stable provided that the two delays are small and

a2e1e2m < ae2d1 + 2d1d2. (2.1.5)

The inequality (2.1.5) is a mathematically technical condition without a biological ex-

planation. Numerical simulations indicate that solutions of (2.1.3) with initial data from

the region [0, 1] × [0, 1] can go outside of this region, causing confusion since x(t) and

y(t) are proportional variables. This confusion suggests a careful revisit of the model.

Moreover, the latencies of the malaria parasite in mosquitoes may differ from individ-

ual to individual, and so do the latencies in humans. This requires some mechanism in

modeling to reflect such variances of the latencies.

The goal of this chapter is to derive a general and realistic model that incorporates

not only the latencies of the malaria parasite in both mosquitoes and humans, but also

the variances of the latencies. In Section 2.2, following the idea in [24], we formulate

a more general model with two probability functions P1(t) and P2(t) describing the la-

tency distributions for humans and mosquitoes, respectively. In Section 2.3, we analyze

our new model mathematically. Under some reasonable assumptions, we address the

well-posedness, identify the basic reproduction number R0 for the model, and prove

that the disease free equilibrium is globally asymptotically stable if R0 < 1. When

R0 > 1, the disease dynamics is more difficult to be determined for general P1(t) and

P2(t), hence we consider two specific cases for P1(t) and P2(t). In Sub-Section 2.3.2, we

consider the case that P1(t) and P2(t) are both exponential functions, resulting in a sys-

tem of ODEs; in Sub-Section 2.3.3, we take P1(t) and P2(t) as step functions, leading to

a system of DDEs. In both cases, we are able to obtain results on the disease dynamics.

In Section 2.4, we summarize our main results and give some remarks discussing the

modeling issue.
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2.2 Model formulation for general latency distributions

Denote the size of the population of human beings by N(t) and that of the female

mosquitoes by M(t). Let S 1(t) and I1(t) be, respectively, the subpopulations of the

susceptible and infectious classes of human hosts and S 2(t) and I2(t) be the respective

subpopulations of the susceptible and infectious classes of female mosquitoes. As men-

tioned in the introduction, there is a complicated development process of the malaria

parasites in a host as well as in a mosquito, causing a latency in each part of the malaria

life cycle. This requires introducing a third subpopulation for each populations: ex-

posed class, consisting of those individuals who have been infected, but not infectious

yet. Denote by L1(t) and L2(t) the subpopulations of the latent host and the latent female

mosquito.

We consider a simple demographic scenario by assuming constant natural birth rates

and death rates for both humans and the mosquitoes, denoted respectively by b1, b2

and d1, d2. As mentioned in the introduction, we use the constant a to denote the

mosquito biting rate; e1 to denote the probability that a bite from an infective mosquito

will cause infection of a person; and e2 to denote the probability that a biting by a

susceptible mosquito of an infective human will cause infection of the mosquito. The

malaria parasites only cause deaths in human beings, but not in mosquitoes, and this

suggests introducing a disease related death rate for human beings, denoted by d. In-

fected human beings may recover, either due to the functioning of the immune system

or through a treatment including taking anti-malaria drugs such as Chloroquine, Qui-

nine and Amodiaquine. Let γ1 be the recovery rate which is assumed to be a constant.

Now we introduce the latency distributions following the idea in [24]. Let P1(t)

denote the probability (without taking death into account) that a latent host individual

still remains in the latent class t time units after entering the latent class. Similarly, let

P2(t) be the probability that a latent mosquito individual still remains in the latent class
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t time units after entering the latent class. It is biological reasonable to assume that

P1(t) and P2(t) possess the following properties:

(H): For i = 1, 2, Pi : [0,∞) → [0,∞) is non-increasing, piecewise continuous

with possibly finitely many jumps and satisfy Pi(0+) = 1, limt→∞ Pi(t) = 0 with∫ ∞
0

Pi(u) du positive and finite.

Assume that initially S 1(0) > 0, I1(0) ≥ 0, S 2(0) > 0, I2(0) ≥ 0 and L1(0) ≥

0, L2(0) ≥ 0, then the equations governing the subpopulations are given by



dS 1

dt
= b1N(t) − ae1I2(t)

S 1(t)
N(t)

+ γ1I1(t) − d1S 1(t),

L1(t) =

∫ t

0
ae1I2(ξ)

S 1(ξ)
N(ξ)

e(−d1+d)(t−ξ)P1(t − ξ) dξ,

I1(t) = N(t) − S 1(t) − L1(t),

dS 2

dt
= −ae2S 2

I1

N(t)
+ b2M(t) − d2S 2(t),

L2(t) =

∫ t

0
ae2S 2(ξ)

I1(ξ)
N(ξ)

e−d2(t−ξ)P2(t − ξ) dξ,

I2(t) = M(t) − S 2(t) − L2(t).

(2.2.1)

Here, the integrals are in the Riemann sense. This SLIS model can be visually illustrated

by the diagram in Figure 2.1.

Since the emphasis of this chapter is the impact of latencies, we will follow the

existing models in [15, 16, 17, 18, 19] to assume constant total populations for both

human beings and female vector mosquitoes, i.e., N(t) = N and M(t) = M both are

constants. This can be achieved by, for example, assuming that

(A1) Disease related deaths can be ignored (i.e., setting d = 0);

(A2) The natural birth and death rates balance the natural birth rates for both host and

vector (i.e., b1 = d1 and b2 = d2).
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Figure 2.1: The transmission diagram of the host-vector SEIS model

There may be other situations that can lead to constant populations, (e.g., a compensa-

tion to the disease caused deaths by immigration of human hosts). However for sim-

plicity of discussion, we simply assume (A1) and (A2) hold in the rest of the chapter.

For a time scale that is not long, N(t) and M(t) vary only slightly, therefore, this case

also constitutes a good scenario for approximating N(t) and M(t) by constants. With

these assumptions, one only needs to work on four out of the six variables. We choose

S 1, I1, S 2 and I2 for which the governing differential equations are derived as below.

Differentiating the L1 and L2 equations (in the sense of Riemann integral) leads to


L′1(t) = ae1I2(t)

S 1(t)
N

+

∫ t

0
ae1I2(ξ)

S 1(ξ)
N

e−d1(t−ξ)DtP1(t − ξ) dξ − d1L1(t),

L′2(t) = ae2S 2(t)
I1(t)
N

+

∫ t

0
ae2S 2(ξ)

I1(ξ)
N

e−d2(t−ξ)DtP2(t − ξ) dξ − d2L2(t).
(2.2.2)

In the L1 equation above, each term has its own biological meaning: the first term is

the rate of new infections, the second term accounts for the rate at which the infected

individuals move to the infectious class from the exposed class, and the third term is

due to natural death. The terms in the L2 equations can be explained in the same way.
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Passing to the I1 and I2 equations and keeping the S 1 and S 2 equations (2.2.1) lead to

the following reduced system



dS 1(t)
dt

= d1N − ae1I2(t)
S 1(t)

N
+ γ1I1(t) − d1S 1(t),

dI1(t)
dt

= −

∫ t

0
ae1I2(ξ)

S 1(ξ)
N

e−d1(t−ξ)DtP1(t − ξ) dξ − (d1 + γ1)I1(t),

dS 2(t)
dt

= d2M − ae2S 2(t)
I1(t)
N
− d2S 2,

dI2(t)
dt

= −

∫ t

0
ae2S 2(ξ)

I1(ξ)
N

e−d2(t−ξ)DtP2(t − ξ) dξ − d2I2(t).

(2.2.3)

Rescaling (2.2.3) by


S 1(t)

N
→ S 1(t),

L1(t)
N
→ L1(t),

I1(t)
N
→ I1(t),

S 2(t)
M
→ S 2(t),

L2(t)
M
→ L2(t),

I2(t)
M
→ I2(t),

we have the following system



dS 1

dt
= d1 − ae1mI2(t)S 1(t) + γ1I1(t) − d1S 1(t),

dI1

dt
= −

∫ t

0
ae1mI2(ξ)S 1(ξ)e−d1(t−ξ)DtP1(t − ξ) dξ − (d1 + γ1)I1(t),

dS 2

dt
= d2 − ae2S 2(t)I1(t) − d2S 2,

dI2

dt
= −

∫ t

0
ae2S 2(ξ)I1(ξ)e−d2(t−ξ)DtP2(t − ξ) dξ − d2I2(t),

(2.2.4)

with the following obvious constraints:

S 1(t) + L1(t) + I1(t) = 1, S 2(t) + L2(t) + I2(t) = 1, (2.2.5)

where m = M/N represents the average mosquito number per person.
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2.3 Mathematical analysis of the model

By the theory for integro-differential equations in [14], one knows that for any given

initial values S i(0) ≥ 0 and Ii(0) ≥ 0, i = 1, 2, system (2.2.4) admits a unique solu-

tion with (S 1(t), I1(t), S 2(t), I2(t)) satisfying the initial conditions. From the biological

significance, we only need to consider system (2.2.4) in the set

Ω :=
{
(S 1, I1, S 2, I2) ∈ R4 : S 1 > 0, I1 ≥ 0, S 1 + I1 ≤ 1, S 2 > 0, I2 ≥ 0, S 2 + I2 ≤ 1.

}
.

Indeed, one can easily show that the set Ω is positively invariant in the sense that stated

in the following lemma.

Lemma 2.3.1 If (S 1(0), I1(0), S 2(0), I2(0)) ∈ Ω satisfies S 1(0) + I1(0) = 1 and S 2(0) +

I2(0) = 1, then system (2.2.4) has a unique solution (S 1(t), I1(t), S 2(t), I2(t)) satisfying

the initial data (S 1(0), I1(0), S 2(0), I2(0)), which remains in Ω for all t ≥ 0. Moreover,

if I1(0) + I2(0) > 0, then I1(t) > 0 and I2(t) > 0 for t > 0.

The proof of the lemma is by a standard argument, and is thus omitted here.

Let

P̂i := lim
t→∞

∫ t

0
e−diuPi(u) du, i = 1, 2.

Clearly, P̂1 (resp. P̂2) is the average time that an infected human being (resp. female

mosquito) remains in the latent class before becoming infectious or dying (see [24]).

By the properties of Pi(u), it follows that

0 < P̂i < lim
t→∞

∫ t

0
e−diu du = 1/di, i = 1, 2.

Actually, P̂1d1 (resp. P̂2d2) is the probability that an infected host (resp. mosquito)

will die during the latent period. Hence, Q1 (resp. Q2) represents the proportion of the



29

exposed hosts (resp. vectors) that could survive during the latent period, where

Qi := − lim
t→∞

∫ t

0
e−di(t−ξ)DtPi(t − ξ) dξ

= 1 − diP̂i ∈ (0, 1), i = 1, 2.

Using Qi, i = 1, 2, the basic reproduction number for the model (2.2.4) can then be

defined as

R0 = m
ae1

γ1 + d1
· Q1 ·

ae2

d2
· Q2, (2.3.1)

accounting for the average number of secondary infections that a single infectious

human being (or female mosquito), once introduced into a fully susceptible popula-

tion of humans and mosquitoes, is expected to cause with respect to humans (female

mosquitoes) during the infection period. Here, due to the transmission nature of this

vector-host disease, R0 consists of two parts: m ae1
γ1+d1

· Q1 accounts for how many new

infectious mosquitoes results from an infectious human being can result in during his

infection period; and ae2
d2
· Q2 explains how many new infectious human beings are

infected by an infectious mosquito during its infection period.

System (2.2.4) has a disease free equilibrium E0, given by E0 = (1, 0, 1, 0). In

terms of the biological meaning of the basic reproduction number, R0 = 1 should be a

threshold value for the stability/instability of E0 for the model (2.2.4), as is confirmed

in the following Theorem.

Theorem 2.3.1 If R0 < 1, then E0 is globally asymptotically stable in Ω; if R0 > 1, it

is unstable.
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Proof. Let

B1(z) = lim
t→∞

∫ t

0
ae1me−(d1+z)(t−ξ)DtP1(t − ξ) dξ,

B2(z) = lim
t→∞

∫ t

0
ae2e−(d2+z)(t−ξ)DtP2(t − ξ) dξ.

Then the stability of E0 is determined by the roots of the following characteristic equa-

tion of system (2.2.4) at E0:

det



z + d1 −γ1 0 −ae1m

0 z + d1 + γ1 0 B1(z)

0 −ae2 z + d2 0

0 B2(z) 0 z + d2


= 0. (2.3.2)

Expanding the determinant, equation (2.3.2) can be rewritten as

(z + d1)(z + d2)h(z) = 0, (2.3.3)

where

h(z) = (z + d2)(z + γ1 + d1) − B1(z)B2(z). (2.3.4)

Since z = −d1 and z = −d2 are two negative real roots of equation (2.3.3), the stability

of E0 is fully determined by the roots of h(z) = 0, which is equivalent to

z2 + (d1 + γ1 + d2)z + d2(d1 + γ1) = B1(z)B2(z). (2.3.5)
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Assume that R0 < 1. Then

∣∣∣z2 + (d1 + γ1 + d2)z + d2(d1 + γ1)
∣∣∣2 = |B1(z)B2(z)|2

≤ (ae1e2mQ1Q2)2 = [d2(γ1 + d1)R0]2 (2.3.6)

< [d2(γ1 + d1)]2.

Let z = x + iy. If x ≥ 0, then we have

∣∣∣z2 + (d1 + γ1 + d2)z + d2(d1 + γ1)
∣∣∣2

=
∣∣∣x2 − y2 + (d1 + γ1 + d2)x + d2(d1 + γ1) + i[2xy + (d1 + γ1 + d2)y]

∣∣∣2
≥ y4 + y2[2x2 + 2x(d1 + γ1 + d2) + d2

1 + γ2
1 + d2

2 + 2d1γ1] + [d2(d1 + γ1)]2

≥ [d2(d1 + γ1)]2, (2.3.7)

which contradicts the inequality (2.3.6). Therefore, x (the real part of z) must be nega-

tive, implying that E0 is locally asymptotically stable if R0 < 1.

Next, we show that E0 is globally attractive when R0 < 1. To this end, we use the

notation

x∞ = lim sup
t→∞

x(t) and x∞ = lim inf
t→∞

x(t)

for a function defined for all large t. Let (S 1(t), I1(t), S 2(t), I2(t)) be a solution of system

(2.2.4) in Ω. By Lemma 2.3.1, we know that S∞1 , I
∞
1 , S

∞
2 and I∞2 all exist and satisfy

0 < S∞1 ≤ 1, 0 ≤ I∞1 ≤ 1, 0 < S∞2 ≤ 1 and 0 ≤ I∞2 ≤ 1. By the Fluctuation Lemma [9],

there is a sequence tn with tn → ∞ as n→ ∞ such that

I1(tn)→ I∞1 , and I′1(tn)→ 0 as n→ ∞. (2.3.8)
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Rewrite the differential equation for I1(t) in model (2.2.4) as

I′1(t) + (γ1 + d1)I1(t) = −

∫ t

0
ae1mS 1(t − ξ)I2(t − ξ)e−d1ξDtP1(t − ξ) dξ. (2.3.9)

Evaluating this equation at t = tn and letting n → ∞ on both sides of the resulting

equation, we obtain

(γ1 + d1)I∞1 ≤ lim sup
n→∞

(
−

∫ tn

0
ae1mS 1(tn − ξ)I2(tn − ξ)e−d1ξDtP1(t − ξ) dξ

)
. (2.3.10)

By the Lebesgue - Fatou Lemma (see [22], P468), it follows that

(γ1 + d1)I∞1 ≤ ae1mS∞1 I∞2 Q1. (2.3.11)

Similarly, we can establish the following:

d2I∞2 ≤ ae2S∞2 I∞1 Q2. (2.3.12)

The two inequalities (2.3.11) and (2.3.12) imply that either I∞1 and I∞2 are both

positive or both zero. We show that the former is impossible if R0 < 1. Otherwise,

(2.3.11) and (2.3.12) would yield

(γ1 + d1) ≤
a2e1e2mS∞1 S∞2 Q1Q2

d2
, (2.3.13)

which is equivalent to
1
R0
≤ S∞1 S∞2 .
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This would lead to 1 < S∞1 S∞2 under R0 < 1, leading a contradiction to “S∞1 ≤ 1 and

S∞2 ≤ 1”. Therefore, I∞1 = 0 and I∞2 = 0, implying

I1(t)→ 0, I2(t)→ 0 as t → ∞. (2.3.14)

Applying (2.3.14) and the theory of asymptotically autonomous systems (see, e.g., [3])

to the S i(t) equations in model (2.2.4), we conclude that

S 1(t)→ 1 and S 2(t)→ 1 as t → ∞. (2.3.15)

Thus, E0 is globally attractive, and hence, globally asymptotically stable in Ω provided

that R0 < 1.

Next, assume that R0 > 1. To show that E0 is unstable, it suffices to show that

h(z) = 0 admits a positive real root. Consider z = x > 0 and let

T (x) = x2 + (d1 + γ1 + d2)x + d2(d1 + γ1), B(x) = B1(x)B2(z). (2.3.16)

Note that T (x) is increasing in x ≥ 0 and T (0) = d2(γ1 + d1) and T (∞) = ∞. On the

other side,

B(x) = B1(x)B2(x)

=

(
lim
t→∞

∫ t

0
ae1me−(d1+x)(t−ξ)DtP1(t − ξ) dξ

) (
lim
t→∞

∫ t

0
ae2e−(d2+x)(t−ξ)DtP2(t − ξ) dξ

)

= lim
t→∞

∫ t

0

∫ t

0
a2e1e2me−(d1+x)(t−ξ)−(d2+x)(t−η)DtP1(t − ξ) DtP2(t − η) dξ dη, (2.3.17)
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is decreasing for x > 0, and B(0) = a2e1e2mQ1Q2. Now R0 > 1 is equivalent to

T (0) < B(0) which implies that the equation T (x) = B(x) has a positive real root, that

is, h(z) = 0 has a positive real root. Therefore, E0 is unstable if R0 > 1. The proof of

the theorem is complete. �

When R0 > 1, for general functions P1(t) and P2(t), the dynamics of model (2.2.4)

is difficult to determine. For example, even the issue of existence of an endemic equi-

librium remains a problem: for some choices of P1(t) and P2(t), model (2.2.4) may

allow an endemic equilibrium while for others choices, it may not. To proceed further,

we consider two special cases of P1(t) and P2(t), for which we are able to obtain some

further information about the dynamics of model (2.2.4).

2.3.1 Special case I — a system of ODEs

In this section, we set Pi(t) = e−εit, i = 1, 2 where ε1 and ε2 are positive constants. This

means that the probabilities of infected hosts and vectors remaining in the latent classes

follow negative exponential distributions with mean exposed times equal to 1/ε1 and

1/ε2, respectively. In this case, model (2.2.4) reduces to the following system of ODEs:



dS 1(t)
dt

= −ae1mS 1(t)I2(t) + d1 + γ1I1(t) − d1S 1(t)

dI1(t)
dt

= ε1 [1 − I1(t) − S 1(t)] − (d1 + γ1)I1(t),

dS 2(t)
dt

= −ae2S 2I1(t) + d2 − d2S 2(t),

dI2(t)
dt

= ε2 [1 − I2(t) − S 2(t)] − d2I2(t).

(2.3.18)
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The two survival factors Q1 and Q2 are now given by Qi = εi
εi+di

, i = 1, 2, and accord-

ingly, the basic reproduction number becomes

R0 =
ae1m
γ1 + d1

·
ae2

d2
·

ε1

ε1 + d1
·

ε2

ε2 + d2
. (2.3.19)

By substitutions, we find system (2.3.18) admits only two equilibria, the disease

free equilibrium E0 and a non-trivial equilibrium E∗. When R0 > 1, E0 is unstable, and

the unique non-trivial equilibrium E∗ = (S ∗1, I
∗
1, S

∗
2, I
∗
2), where

S ∗1 =
C0

C1
, I∗1 =

ε1d2(R0 − 1)
C1

S ∗2 = C2, I∗2 =
R0 − 1

C3
, (2.3.20)

and

C0 = d2d1 + d2γ1 + d2ε1 + ε1ae2,

C1 =
ε1ae2

(d1 + ε1)(d1 + γ1)(ε2 + d2)
(ε1ε2γ1 + ε1ε2d1 + ε2d2

1 + ε2γ1d1 + ε1γ1d2

+ ε2d1d2 + d2
1d2 + γ1d1d2 + ε1ε2e1am + ε2d1e1am + ε2γ1e1am),

C2 =
d2

ε2e1am(d1d2 + γ1d2 + ε1d2 + ε1e2a)

(
ε1ε2γ1 + ε1ε2d1 + ε2d2

1 + ε2γ1d1

+ε1γ1d2 + ε1d1d2 + d2
1d2 + γ1d1d2 + ε1ε2e1am + ε2d1e1am + ε2γ1e1am

)
,

C3 =
ame1

ε1d2(d1 + ε1)(d1 + γ1)(ε2 + d2)
(ε2d1d2 + d1d2

2 + γ1d2
2 + ε2γ1d2

+ ε1d2ae2 + ε1ε2d2 + ε1d2
2 + ε1ε2ae2),

has all positive constants. If we retain L′1 and L′2 equations in system (2.3.18), we can

solve L∗1 and L∗2 for the non-trivial equilibrium. The additions S ∗1+L∗1 + I∗1 = 1 and

S ∗2 + L∗2 + I∗2 = 1 lead the fact that each term does not exceed one. Hence, we have

E∗ ∈ Ω. The following theorem shows that if γ1 = 0, the global dynamics of system

(2.3.18) is completely determined in terms of R0, which acts as a threshold in the global

sense.
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Theorem 2.3.2 Consider system (2.3.18). If R0 > 1, the endemic equilibrium E∗ is

globally asymptotically stable among all positive solutions in Ω, provided that γ1 = 0.

Proof. To prove the global stability of E∗, we consider the full model system asso-

ciated with the reduced system (2.3.18) by adding the latent classes:



S ′1(t) = − β12I2(t)S 1(t) + d1 + γ1I1(t) − d1S 1(t),

L′1(t) = β12I2(t)S 1(t) − (ε1 + d1)L1(t),

I′1(t) = ε1L1(t) − (d1 + γ1)I1(t),

S ′2(t) = − β21S 2(t)I1(t) + d2 − d2S 2(t),

L′2(t) = β21S 2(t)I1(t) − (d2 + ε2)L2(t),

I′2(t) = ε2L2(t) − d2I2(t),

(2.3.21)

where, for the convenience of notation, we have introduced the new parameters β12 =

ae1m and β21 = ae2. We will employ a Lyapunov function similar to those used in

recent works [6, 10, 11]. To this end, we set v1 = β21S ∗2I∗1 and v2 = β12S ∗1I∗2 and let

V1(t) = v1(S 1 − S ∗1 − S ∗1 ln
S 1

S ∗1
+ L1 − L∗1 − L∗1 ln

L1

L∗1
)

+ v2(S 2 − S ∗2 − S ∗2 ln
S 2

S ∗2
+ L2 − L∗2 − L∗2 ln

L2

L∗2
),

(2.3.22)

where S ∗i and I∗i , i = 1, 2, are given in (2.3.20), and L∗1 = (d1 + γ1)I∗1/ε1 and L∗2 =

d2I∗2/ε2 or equivalently, L∗i = 1 − S ∗i − I∗i , i = 1, 2. Differentiating V1(t) along any
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positive solution of system (2.3.21) gives

V ′1(t) = v1

[(
1 −

S ∗1
S 1

)
S ′1 +

(
1 −

L∗1
L1

)
L′1

]
+ v2

[(
1 −

S ∗2
S 2

)
S ′2 +

(
1 −

L∗2
L2

)
L′2

]
= v1

[
−β12I2S 1 + d1 + γ1I1 − d1S 1 + β12I2S ∗1 − d1

S ∗1
S 1
− γ1I1

S ∗1
S 1

+ d1S ∗1

+β12I2S 1 − (ε1 + d1)L1 − β12I2S 1
L∗1
L1

+ (ε1 + d1)L∗1

]
+ v2

[
−β21S 2I1 + d2 − d2S 2 + β21S ∗2I1 − d2

S ∗2
S 2

+ d2S ∗2

+β21S 2I1 − (ε2 + d2) L2 − β21S 2I1
L∗2
L2

+ (ε2 + d2) L∗2

]
= v1

[
d1 + γ1I1 − d1S 1 + β12I2S ∗1 − d1

S ∗1
S 1
− γ1I1

S ∗1
S 1

+ d1S ∗1 − (ε1 + d1)L1

−β12I2S 1
L∗1
L1

+ (ε1 + d1)L∗1

]
+ v2

[
d2 − d2S 2 + β21S ∗2I1 − d2

S ∗2
S 2

+d2S ∗2 − (ε2 + d2) L2 − β21S 2I1
L∗2
L2

+ (ε2 + d2) L∗2

]
.

Making use of the equations for the endemic equilibrium Ê∗ = (S ∗1, L
∗
1, I
∗
1, S

∗
2, L

∗
2, I
∗
2),

we can further express V ′1(t) as

V ′1(t) = v1

[
d1S ∗1 + β12S ∗1I∗2 − γ1I∗1 + γ1I1 − d1S 1 + β12S ∗1I2 − d1

(S ∗1)2

S 1
+ γ1I∗1

S ∗1
S 1

−β12I∗2
(S ∗1)2

S 1
− γ1I1

S ∗1
S 1

+ d1S ∗1 − (ε1 + d1)L1 − β12I2S 1
L∗1
L1

+ (ε1 + d1)L∗1

]
+ v2

[
d2S ∗2 + β21S ∗2I∗1 − d2S 2 + β21S ∗2I1 − d2

(S ∗2)2

S 2
− β21I∗1

(S ∗2)2

S 2

+d2S ∗2 − (ε2 + d2)L2 − β21I1S 2
L∗2
L2

+ (ε2 + d2)L∗2

]
= v1

{
d1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ β12S ∗1I2 +

[
2β12S ∗1I∗2 − γ1I∗1 + γ1I1 − β12I∗2

(S ∗1)2

S 1

+γ1I∗1
S ∗1
S 1
− γ1I1

S ∗1
S 1
− β12I2S 1

L∗1
L1
− (ε1 + d1)L1

]}
+ v2

{
d2S ∗2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+β21S ∗2I1 +

[
2β21S ∗2I1 − β21I∗1

(S ∗1)2

S 2
− β21S 2I1

L∗2
L2
− (ε2 + d2)L2

]}
.
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Further, we define

V2(t) = v1
ε1 + d1

ε1

(
I1 − I∗1 − I∗1 ln

I1

I∗1

)
+ v2

ε2 + d2

ε2

(
I2 − I∗2 − I∗2 ln

I2

I∗2

)
. (2.3.23)

Now we can construct the Lyapunov function V = V1 + V2. Straightforward calculation

of the derivative of V along trajectories of system (2.3.21), after appropriate grouping,

leads to

V ′(t) = v1

{
d1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ β12S ∗1I2 +

[
2β12S ∗1I∗2 − γ1I∗1 + γ1I1

−β12I∗2
(S ∗1)2

S 1
+ γ1I∗1

S ∗1
S 1
− γ1I1

S ∗1
S 1
− β12I2S 1

L∗1
L1
− (ε1 + d1)L1

]
+
ε1 + d1

ε1

[
ε1L1 − (d1 + γ1)I1 − ε1L1

I∗1
I1

+ (d1 + γ1)I∗1

]}
+ v2

{
d2S ∗2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+ β21S ∗2I1 +

[
2β21S ∗2I1 − β21I∗1

(S ∗2)2

S 2

−β21S 2I1
L∗2
L2
− (ε2 + d2)L2

]
+
ε2 + d2

ε2

[
ε2L2 − d2I2 − ε2L2

I∗2
I2

+ d2I∗2

]}
= v1d1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ v2d2S ∗2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+ v1

[
β12S ∗1I2 −

(ε1 + d1)(d1 + γ1)
ε1

I1

]
+ v2

[
β21S ∗2I1 −

d2(ε2 + d2)
ε2

I2

]
+ v1

[
3β12S ∗1I∗2 − β12I∗2

(S ∗1)2

S 1
− β12I2S 1

L∗1
L1
− β12S ∗1I∗2

L1

L∗1

I∗1
I1

]
+ v1γ1

(
I1 − I∗1 + I∗1

S ∗1
S 1
− I1

S ∗1
S 1

)
+ v2

[
3β21S ∗2I∗1 − β21I∗1

(S ∗2)2

S 2
− β21S 2I1

L∗2
L2
− β21S ∗2I∗1

L2

L∗2

I∗2
I2

]
.

(2.3.24)

The third and fourth terms in system (2.3.24) cancel out:

v1

[
β12S ∗1I2 −

(d1 + ε1)(d1 + γ1)
ε1

I1

]
+ v2

[
β21S ∗2I1 −

d2(ε2 + d2)
ε2

I2

]
= v1v2

[
I2

I∗2
−

I1

I∗1

]
+ v2v1

[
I1

I∗1
−

I2

I∗2

]
= 0.
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The sum of the fifth and seventh terms can be rewritten as

v1v2

(
6 −

S ∗1
S 1
−

S 1

S ∗1

I2

I∗2

L∗1
L1
−

S ∗2
S 2
−

S 2

S ∗2

I1

I∗1

L∗2
L2
−

L1

L∗1

I∗1
I1
−

L2

L∗2

I∗2
I2

)
.

The sixth term vanishes since γ1 = 0 is assumed. Thus, V ′(t) can be simplified as

V ′(t) = v1d1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ v2d2S ∗2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+ v1v2

(
6 −

S ∗1
S 1
−

S 1

S ∗1

I2

I∗2

L∗1
L1
−

S ∗2
S 2
−

S 2

S ∗2

I1

I∗1

L∗2
L2
−

L1

L∗1

I∗1
I1
−

L2

L∗2

I∗2
I2

)
.

(2.3.25)

By the relation of arithmetic mean and geometric mean, we conclude that V ′(t) ≤ 0

with the equality holding if and only if

S 1

S ∗1
=

L1

L∗1
=

I1

I∗1
=

S 2

S ∗2
=

L2

L∗2
=

I2

I∗2
= 1.

By the Lyapunov-LaSalle Theorem, Ê∗ is globally asymptotically stable for (2.3.21).

Back to model (2.3.18), we conclude that E∗ is globally asymptotically stable for

(2.3.18) among all positive solutions in Ω, completing the proof. �

2.3.2 Special case II — a system of DDEs

Consider step functions for P1(t) and P2(t):

P1(t) =


1, t ≤ τ1,

0, t > τ1,
and P2(t) =


1, t ≤ τ2,

0, t > τ2,
(2.3.26)

where τ1 ≥ 0 and τ2 ≥ 0 are constants. Although the latent period differs from indi-

vidual to individual, choosing τ1 and τ2 as the respective average latencies for infected

humans and female mosquitoes would make the above P1(t) and P2(t) reasonable ap-
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proximations for the real situation.

With this pair of P1(t) and P2(t), the long term (e.g., for t ≥ max{τ1, τ2}) disease

dynamics is governed by the following system of delay differential equations derived

from model (2.2.4):



dS 1(t)
dt

= − ae1mS 1(t)I2(t) + d1 − d1S 1(t) + γ1I1(t),

dI1(t)
dt

= ae1me−d1τ1S 1(t − τ1)I2(t − τ1) − d1I1(t) − γ1I1(t),

dS 2(t)
dt

= − ae2S 2(t)I1(t) + d2 − d2S 2(t),

dI2(t)
dt

= ae2e−d2τ2S 2(t − τ2)I1(t − τ2) − d2I2(t),

(2.3.27)

with

L′1(t) = ae1mS 1(t)I2(t) − ae1me−d1τ1S 1(t − τ1)I2(t − τ1) − d1L1(t),

L′2(t) = ae2S 2(t)I1(t) − ae2e−d2τ2S 2(t − τ2)I1(t − τ2) − d2L2(t).
(2.3.28)

Accordingly, Qi can be calculated as Qi = e−diτi , i = 1, 2, resulting in the following

explicit formula for the basic reproduction number:

R0 =
ae1m

(d1 + γ1)
ae2

d2
e−d1τ1e−d2τ2 . (2.3.29)

For system (2.3.27), the uniqueness and the boundedness of its non-trivial equilib-

rium can be shown by a similar argument in previous case of ODEs. When R0 > 1, the

components of the unique endemic equilibrium E∗ = (S ∗1, I
∗
1, S

∗
2, I
∗
2) can be explicitly

expressed as

S ∗1 =
(d1 + γ1)D1

ae−d1τ1e2D2
, I∗1 =

d1(R0 − 1)
ae2(d1 + γ1)d2D2

,

S ∗2 =
d2D2

ae1me−d2τ2 D1
, I∗2 =

d1(R0 − 1)
ae1m(d1 + γ1)d2D1

,
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where
D1 = γ1d2(1 − e−d1τ1) + d1ae2e−d1τ1 + d1d2,

D2 = ae1mγ1e−d2τ2(1 − e−d1τ1) + ae1me−d2τ2d1 + d1γ1 + d2
1.

Theorem 2.3.1 has confirmed that the disease free equilibrium E0 = (1, 0, 1, 0) is

globally asymptotically stable if R0 < 1 and it is unstable when R0 > 1. In the rest of

this section, we explore the dynamics of system (2.3.27) when R0 > 1.

For system (2.3.27), the phase space is X = C([−τ1, 0],R2) × C([−τ2, 0],R2)). The

fundamental theory for such a system of DDEs can be found in [7]. For biological

reasons, we consider the subset

X1
+ =

Φ = (φ1, φ2, φ3, φ4) ∈ X :
0 ≤ φ1(θ) ≤ 1, 0 ≤ φ2(θ) ≤ 1 for, θ ∈ [−τ1, 0]

0 ≤ φ3(θ) ≤ 1, 0 ≤ φ4(θ) ≤ 1 for, θ ∈ [−τ2, 0]

 .
Let X0

+ = {Φ = (φ1, φ2, φ3, φ4) ∈ X1
+ : either φ2 or φ4 is not identical to 0}. Then for

any Φ ∈ X0
+, the corresponding solution (S 1(t), I1(t), S 2(t), I2(t)) satisfies 0 < S 1(t) ≤

1, 0 < I1(t) ≤ 1, 0 < S 2(t) ≤ 1 and 0 < I2(t) ≤ 1 for t > 0. We first show that if R0 > 1,

then the disease is weakly persistent in the sense stated in the following lemma.

Lemma 2.3.2 Assume R0 > 1. Then for any initial function Φ = (φ1, φ2, φ3, φ4) ∈ X0
+,

the corresponding solution (S 1(t), I1(t), S 2(t), I2(t)) satisfies

I∞1 > 0, I∞2 > 0, S 1∞ < 1, S 2∞ < 1.

Proof. By way of contradiction, we assume that the statement is false. We first

show that the following equalities would all hold:

lim
t→∞

I1(t) = 0, lim
t→∞

I2(t) = 0, lim
t→∞

S 1(t) = 1, lim
t→∞

S 2(t) = 1. (2.3.30)
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Indeed, if I∞1 = 0, then I1(t) → 0 as t → ∞. Applying the theory of asymptotically

autonomous systems (see, e.g., [3]) to the S 2 and I2 equations in system (2.3.27), we

conclude that S 2(t) → 1 and I2(t) → 0, which further leads to, by the S 1 equation in

system (2.3.27), S 1(t) → 1. Similarly, I∞1 = 0 also leads to (2.3.30). If S 1∞ = 1, then

S 1(t)→ 1 as t → ∞. By 0 ≤ I1(t) = I−S 1(t)−L1(t) ≤ 1−S 1(t), we know that I1(t)→ 0

which in turn implies I2(t)→ 0 and S 2(t)→ 1 as t → ∞. Similarly, S 2∞ = 1 also leads

to (2.3.30).

Now, for any δ ∈ (0, 1), by equalities in (2.3.30), there is T > 0 such that

I1(t, φ2) < δ, I2(t, φ4) < δ, S 1(t, φ1) > 1 − δ, S 2(t, φ3) > 1 − δ, for t ≥ T. (2.3.31)

By inequalities in (2.3.31) and the I1 and I2 equations in system (2.3.27), we have


dI1(t)

dt
≥ ae1me−d1τ1 I2(t − τ1)(1 − δ) − (d1 + γ1)I1(t),

dI2(t)
dt
≥ ae2e−d2τ2 I1(t − τ2)(1 − δ) − d2I2(t),

for t ≥ T. (2.3.32)

This suggests the following linear comparison system for I1(t) and I2(t):


du1(t)

dt
= ae1me−d1τ1u2(t − τ1)(1 − δ) − (d1 + γ1)u1(t),

du2(t)
dt

= ae2e−d2τ2u1(t − τ2)(1 − δ) − d2u2(t).
(2.3.33)

Since system (2.3.33) is monotone, the stability/instability of its trivial solution is the

same as that of the linear system obtained by dropping the two delays in system (2.3.33)

(see, e.g. Smith [20]) which is determined by the following characteristic equation:

λ2 + (d1 + γ1 + d2)λ + (d1 + λ1)d2

[
1 − (1 − δ)2R0

]
= 0. (2.3.34)

Because R0 > 1, one can choose δ ∈ (0, 1) sufficiently small so that 1 − (1 − δ)2R0 < 0,
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and hence, equation (2.3.34) has a root with positive real part. This means that posi-

tive solutions of equation (2.3.34) are unbounded. On the other hand, the comparison

theorem for delay differential equations (see, e.g., Smith [20]) implies that I1(t) ≥ u1(t)

and I2(t) ≥ u2(t) where (u1(t), u2(t)) is the positive solution of system (2.3.34) with the

initial function (φ2, φ4) and hence is unbounded. This contradicts with (2.3.30), and the

contradiction completes the proof of the lemma. �

Next, we prove that if R0 > 1, then the disease is actually uniformly strongly per-

sistent.

Theorem 2.3.3 Assume that if R0 > 1. There exists an η > 0 such that for any initial

function Φ = (φ1, φ2, φ3, φ4) ∈ X0
+, the corresponding solution (S 1(t), I1(t), S 2(t), I2(t))

satisfies

(i) d1
ae1m+d1

≤ S 1∞ and d2
ae2+d2

≤ S 2∞;

(ii) η ≤ I1∞ and η ≤ I2∞.

Proof: Since 0 ≤ I1(t) ≤ 1 for t ≥ −τ2 and 0 ≤ I2(t) ≤ 1 for all t ≥ −τ1, the S ′1(t)

and S ′2(t) equations in system (2.3.27) lead to

S ′1(t) ≥ d1 − ae1mS 1(t) − d1S 1(t) = d1 − (ae1m + d1)S 1(t),

S ′2(t) ≥ d2 − ae2S 2(t) − d2S 2(t) = d2 − (ae2 + d2)S 2(t).

By the standard comparison theorem (see, e.g., [20]), it follows that S 1(t) ≥ w1(t), and

S 2(t) ≥ w2(t), where (w1(t),w2(t)) is the solution of

w′1(t) = d1 − ae1mw1(t) − d1w1(t),

w′2(t) = d2 − ae2w2(t) − d2w2(t).
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with w1(0) ≤ φ1(0), w2(0) ≤ φ3(0). Thus,

S 1∞ ≥ w1∞ =
d1

ae1m + d1
, and S 2∞ ≥ w2∞ =

d2

ae2 + d2
. (2.3.35)

Next, applying the Fluctuation Lemma (see, e.g., [9]) to the S ′1(t) and S ′2(t) equa-

tions in system (2.3.27) gives

I∞1 ≥
d2 − d2S 2∞

ae2S 2∞
, I∞2 ≥

d1 − d1S 1∞

ae1mS 1∞
. (2.3.36)

By Lemma 2.3.2 and the inequalities in (2.3.36), we know that ∂X1
+ = X1

+/X
0
+ is a uni-

form weak repeller for X0
+. Applying Theorem 1.4 of [23] to the solution semi-flow

Ψ(t,Φ) = (S 1(t), I1(t), S 2(t), I2(t)) of system (2.3.27) for t ≥ max(τ1, τ2) with Φ ∈ X0
+,

we conclude that ∂X1
+ is also a uniform strong repeller for X0

+, implying that the dis-

ease is uniformly strongly persistent. This means that there exists an η > 0 such that

I1∞ ≥ η, I2∞ ≥ η, where η is independent of the initial function Φ ∈ X0
+. The proof is

complete. �

The following theorem, parallels to Theorem 2.3.2 for (2.3.18), and confirms the

global asymptotical stability of the endemic equilibrium E∗ for system (2.3.27) under

the assumption γ1 = 0.

Theorem 2.3.4 Consider system (2.3.27). Assume that R0 > 1. Then the endemic

equilibrium E∗ is globally asymptotically stable in X0
+, provided that γ1 = 0.
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Proof. We use a Lyapunov functional to prove the theorem. Let

V = ae2e−d2τ2S ∗2I∗1

[
e−d1τ1S ∗1

(
S 1

S ∗1
− 1 − ln

S 1

S ∗1

)
+ I∗1

(
I1

I∗1
− 1 − ln

I1

I∗1

)]
+ae1me−d1τ1S ∗1I∗2

[
e−d2τ2S ∗2

(
S 2

S ∗2
− 1 − ln

S 2

S ∗2

)
+ I∗2

(
I2

I∗2
− 1 − ln

I2

I∗2

)]
+ae2e−d2τ2S ∗2I∗1ae1mS ∗1I∗2e−d1τ1

∫ 0

−τ1

g1(S 1I2) ds

+ae1me−d1τ1S ∗1I∗2ae2S ∗2I∗1e−d2τ2

∫ 0

−τ2

g1(S 2I1) ds.

where

g1(x) =
x(t + s)

x∗
− 1 − ln

x(t + s)
x∗

,

and x∗ is the endemic equilibrium term with respect to the component x in the solution

of system (2.3.27).

The derivative of V along the trajectory of system (2.3.27) is

V ′ = ae2S ∗2I∗1e−d2τ2

[
d1e−d1τ1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ e−d1τ1γ1

(
I1 − I∗1 + I∗1

S ∗1
S 1
− I1

S ∗1
S 1

)
+ae1me−d1τ1 I∗2S ∗1 + ae1mI2S ∗1e−d1τ1 − ae1me−d1τ1 I∗2

(S ∗1)2

S 1
− (γ1 + d1)I1

−ae1me−d1τ1 I2(t − τ1)S 1(t − τ1)
I∗1
I1

+ ae1me−d1τ1 I∗2S ∗1

−ae1me−d1τ1 ln
I2S 1

I2(t − τ1)S 1(t − τ1)

]
+ ae1mS ∗1I∗2e−d1τ1

[
d2S ∗2e−d2τ2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+ 2ae2S ∗2I∗1e−d2τ2

+ae2S ∗2I1e−d2τ2 − ae2S ∗2I∗1e−d2τ2
S ∗2
S 2
− d2I2 − ae2e−d2τ2 I1(t − τ2)S 2(t − τ2)

I∗2
I2

−ae2e−d2τ2 ln
I1S 2

I1(t − τ2)S 2(t − τ2)

]
.

Setting c1 = ae2I∗1S ∗2e−d2τ2 and c2 = ae1mI∗2S ∗1e−d1τ1 , and reorganizing the above for-
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mula, we obtain

V ′ = c1d1e−d1τ1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ c2d2e−d2τ2S ∗2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
+ c1e−d1τ1γ1

(
I1 − I∗1 + I∗1

S ∗1
S 1
− I1

S ∗1
S 1

)
+

(
a2e1e2me−d1τ1−d2τ2 I∗1S ∗2I2S ∗1 − ae1mI∗2S ∗1e−d1τ1d2I2

)
+

[
a2e1e2me−d1τ1−d2τ2 I1S ∗2I∗2S ∗1 − ae2I∗1S ∗2e−d2τ2(d1 + γ1)I1

]
+ c1c2

[
4 −

S ∗1
S 1
−

S ∗2
S 2
−

I2(t − τ1)
I∗2

S 1(t − τ1)
S ∗1

I∗1
I1

−
I1(t − τ2)

I∗1

S 2(t − τ2)
S ∗2

I∗2
I2
− ln

I2S 1

I2(t − τ1)S 1(t − τ1)
− ln

I1S 2

I1(t − τ2)S 2(t − τ2)

]
.

The third term vanishes due to the assumption γ1 = 0. Both the fourth and fifth terms

are also zero by the equations for the equilibrium E∗. Now the sixth (last) term can be

further rewritten as

c1c2

[(
1 −

S ∗1
S 1

+ ln
S ∗1
S 1

)
+

(
1 −

S ∗2
S 2

+ ln
S ∗2
S 2

)
+ (1 − x + ln x) + (1 − y + ln y)

]
,

where

x =
I2(t − τ1)

I∗2

S 1(t − τ1)
S ∗1

I∗1
I1
, y =

I1(t − τ2)
I∗1

S 2(t − τ2)
S ∗2

I∗2
I2
.

Thus,

V ′ = c1d1e−d1τ1S ∗1

(
2 −

S 1

S ∗1
−

S ∗1
S 1

)
+ c2d2S ∗2e−d2τ2

(
2 −

S 2

S ∗2
−

S ∗2
S 2

)
(2.3.37)

+c1c2

[(
1 −

S ∗1
S 1

+ ln
S ∗1
S 1

)
+

(
1 −

S ∗2
S 2

+ ln
S ∗2
S 2

)
+ (1 − x + ln x) + (1 − y + ln y)

]
.

Now, by the relation between arithmetic and geometric means, and the non-positivity

of the function g(u) = 1 − u + ln u, we conclude that V ′ ≤ 0 and V ′ = 0 if and only

if (S 1, I1, S 2, I2) is at E∗. It follows from the Lyapunov-LaSalle Theorem for DDEs
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(see [7]) that E∗ is globally asymptotically stable in X0
+, completing the proof. �

2.4 Conclusion and discussion

In this chapter, we have modified the classic Ross-MacDonald model for the disease

dynamics of Malaria by incorporating latencies within both human beings and female

mosquitoes. The novelty of our model is that we have introduced two general probabil-

ity functions (P1(t) and P2(t)) to reflect the fact that the latencies of the malaria parasite

differ from individual to individual in humans and mosquitoes. We have justified the

well-posedness of the new model, identified the basic reproduction number R0 for the

model and analyzed the dynamics of the model. We have shown, very naturally and as

in most works on disease models, that when R0 < 1, the disease free equilibrium E0

is globally asymptotically stable, meaning that the disease will eventually die out; and

if R0 > 1, E0 becomes unstable. When R0 > 1, the dynamics of the model become

more difficult for general P1(t) and P2(t), and this forces us to consider some specific

functions. When P1(t) and P2(t) are both exponential functions, the model reduces to

a system of ODEs; when P1(t) and P2(t) are both step functions, the long term disease

dynamics are governed by a system of DDEs. In both cases, we are able to show that

when R0 > 1 then the disease will persist; moreover if there is no recovery (γ1 = 0),

then all admissible positive solutions will converge to the unique endemic equilibrium.

Our approach may provide a framework for dynamics of other mosquito-borne dis-

eases. Taking Dengue as an example, since this disease is caused by the dengue virus

(unlike the malaria protozoa), the recovered human beings will carry immunity, and

hence not return to the susceptible class, implying γ1 = 0 in the corresponding model.

Therefore, our approach (actually results) can be easily applied to the corresponding
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model(s) for dengue disease.

From the formula of the basic reproduction number R0 for our model, we can see

that it is indeed smaller than the one obtained by ignoring the latencies (i.e., setting

Q1 = 1 and Q2 = 1). In other words, if the latencies are neglected in modeling the

disease dynamics, the basic reproduction number will be overestimated, regardless of

what forms of the latency probability functions P1(t) and P2(t) are adopted

We point out that there is a mathematical theory for disease models which defines

the basic reproduction number as the spectral radius of the so called next generation

operator. Here in this chapter, our R0 is defined by the so called survival function [8].

The difference lies in that ” the survival function gives the total number of infectives

in the same class produced by a single infective of that class, while the next generation

operator gives the mean number of new infectives per infective in any class per gener-

ation”. The value corresponding to the latter definition thus depends on the number of

infective classes in the infection cycle [8]. Taking the model (2.3.18) as an example,

using the next generation operator (matrix in this case) approach from [4,25], the basic

reproduction number for model (2.3.18) is defined as

R0 =

√
ae1m
γ1 + d1

·
ae2

d2
·

ε1

ε1 + d1
·

ε2

ε2 + d1
, (2.4.1)

which is the square root of the formula in (2.3.19). Note that many researchers have

used the survival function scenario to define basic reproduction numbers for vector-

borne diseases, see e.g., [1, 8, 19] and the references therein. Note that because the

threshold value for the basic reproduction number is at 1, such a difference does not

cause any mathematical problem in exploring the threshold property of vector-borne

disease models. For a detailed discussion on this topic, we refer readers to [4, 5, 8, 25].

We conclude this chapter by a remark that the way we have incorporated latencies in
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this chapter may also help clarify the confusion for [19] mentioned in the introduction.

Indeed, by adding τ1 > 0 and τ2 > 0 into the model, latent classes in both humans and

mosquitoes are admitted and hence, the term 1 − x(t − τ1) and 1 − y(t − τ2) should be

replaced by 1 − l1(t − τ1) − x(t − τ1) and 1 − l2(t − τ2) − y(t − τ2) respectively, where

l1(t) = L1(t)/N is the proportion of the latent human beings and l2(t) = L2(t)/M is

the proportion of the latent mosquitoes with both satisfying equations corresponding to

equations (2.3.28). Since 1−x(t−τ1) is larger than 1−l1(t−τ1)−x(t−τ1) and 1−y(t−τ2)

is larger than 1 − l2(t − τ2) − y(t − τ2), this may explain why the solutions of (1.3) with

initial values from [0, 1] × [0, 1] may go beyond this region. When only considering a

discrete latency in mosquitoes, Aron and May [1] discussed a similar model.
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Chapter 3

Modeling malaria transmission in a

patchy environment

In this chapter, a mathematical model is derived to describe the transmission and spread

of malaria over a patchy environment. The model incorporates two factors: disease

latencies in both humans and mosquitoes, and dispersal of humans between patches.

The basic reproduction number R0 is identified by the theory of the next generation

operator for a structured disease model. The dynamics of the model is investigated in

terms of R0. It is shown that the disease free equilibrium is asymptotically stable if

R0 < 1, and it is unstable if R0 > 1; in the latter case, the disease is endemic in the

sense that the variables for the infected compartments are uniformly persistent. For

the case of two patches, some more explicit conditions are obtained, and impacts of

dispersal rates in all different compartments on R0 are also explored. Some numerical

simulations are performed which show that the impacts could be very complicated: in

a certain range of the parameters, R0 is increasing with respect to a dispersal rate while

in another range, it can be decreasing with respect to the same dispersal rate.
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3.1 Introduction

Malaria is a mosquito-borne disease that has spread to more one hundred countries,

mostly in tropical and sub-tropical regions. Each year, 300-500 million infection cases

are reported, among which around a million cases result in deaths. Thus, malaria still

remains a threat to human beings in many places in the world.

Mathematical models can help understand the dynamics of transmission and spread

of the infectious disease and thereby, provide guides and suggestions for the control of

the disease. In the context of malaria, the earliest model is the Ross-MacDonald model

(see,e.g., [13,12] or [1]), which is given by the following system of ordinary differential

equations: 
dIh

dt
= ac1Im

N − Ih

N
− d1Ih,

dIm

dt
= ac2(M − Im)

Ih

N
− d2Im.

(3.1.1)

Here, Ih and Im represent the populations of the infectious classes of human beings and

female mosquitoes, respectively. N and M are the total populations of human beings

and female mosquitoes, which were assumed to be constants. The model is a result of

ignoring the latency within both hosts and mosquitoes and assuming no immunity of

the recovered individuals (thus, the terms N − Ih and M − Im present the populations of

the susceptible humans and mosquitoes). The constant a is the mosquito biting rate; c1

is the probability that a bite of an infective mosquito will cause infection of the human;

and c2 is the probability that a bite by a susceptible mosquito of an infective human

individual will cause infection of the mosquito. It is assumed that the average durations

of infection for human and mosquitoes are 1/d1 and 1/d2 individually. By analyzing

this mathematical model, both Ross and Macdonald found that it would be possible

to eradicate the disease without killing all vector mosquitoes. This was in contrast to

the traditional belief that malaria could be wiped out only by eradicating all vector
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mosquitoes, which turned out to be impossible in practice. Indeed, by looking at basic

reproduction number for this model given by

R0 =
ac1

d1

M
N

ac2

d2
, (3.1.2)

one knows that any measure(s) that can bring R0 to a value less than 1 would eventually

drive the disease to extinction. Obviously, among the possible measures are, for exam-

ple, controlling the mosquito population M (e.g., by spraying mosquito pesticides) to a

sufficiently lower level and controlling the biting rate a (e.g., by using mosquito nets).

Ross-MacDonald model is a simple example of showing how mathematical mod-

eling can provide insights into the mechanism of malaria transmission and spread, by

which effective measures to control the disease can be suggested. This simple model is

mathematically tractable in the sense that long term solution behavior of model (3.1.1)

can be fully determined by the quantity R0 which is explicitly calculated by the model

parameters. However, it is highly simplified and biologically inaccurate in the sense that

many biological factors are omitted. Among such factors are latencies of the develop-

ments of malaria parasites within humans and mosquitoes, and the spatial heterogeneity

of the habitats of humans and mosquitoes. In recent years, researchers consider these

missing factors into the model, resulting in various forms of modification on model

(3.1.1).

Along the line of latency, in [1,4,11], a discrete delay is introduced into their models

to account for the latency within mosquitoes; in [14], two discrete delays are added

into model (3.1.1), one accounting for the latency in humans and the other for that in

mosquitoes; and two probability distributions are used to account for the variation of

latencies in human and mosquito populations in [23].

We consider two forms of spatial heterogeneity: (A) continuous spatial heterogene-
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ity and (B) discrete spatial heterogeneity. With respect to (A), a model in [10] with spa-

tial diffusion and advection of mosquitoes was recently proposed and studied that also

considered the seasonality of the model parameters, and a spatially non-local model

in [11] with latency in mosquitoes was also discussed. In the context of case (B), some

work on extensions of model (3.1.1) were included in [2, 3, 5]. However, patch models

in [2, 3, 5] have all ignored the latencies which have been shown to have a significant

impact on the disease dynamics. This motivates us to derive a more realistic patch

model that not only contains dispersal of humans but also incorporates the latencies

both in humans and in mosquitoes.

In this chapter, we will follow the approach in [8, 9] where patch models with non-

local infections are derived and analyzed. Making use of the infection age as well as

the typical method of characteristics for structured populations, we derive a model in-

volving a patchy environment that has two discrete delays, accounting for the latencies

in humans and mosquitoes, respectively. The model also contains spatially non-local

term accounting for non-local infection resulting from the dispersal of humans during

the latent period. We point out that, as in [2] and [3], we assume mosquitoes cannot fly

the distances between the patches, and thus only humans can disperse between patches

in our model. This is in contrast to the model in [5] where both humans and mosquitoes

can disperse between patches.

The rest of the chapter is organized as below. In Section 3.2, we derive (not propose)

the model rigorously, starting from an age structured system of first order partial dif-

ferential equations and using the method of characteristics. In Section 3.3, we address

the well-posedness by proving the non-negativeness and boundedness of solutions. In

Section 3.4, we identify the basic reproduction number R0 of the model by using the

abstract theory for structured disease models developed by Thieme [17]. As expected,

R0 plays a threshold role in the sense that when R0 < 1, the disease free equilibrium
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(DFE) is asymptotically stable (Section 4); if R0 > 1 the DFE is unstable and the dis-

ease is endemic in the sense that the infected components of the model are uniformly

persistent (Section 3.5). In Section 3.6, we focus on the two-patch case where more

explicit conditions are obtained, and impacts of dispersal rates in all different compart-

ments on R0 are also explored. In the last section, Section 3.7, we summarize our main

results and discuss the biological implications of our results.

3.2 Model formulation for general patch model with fixed

latency

Consider human and Anopheles mosquito populations distributed over n patches. Here,

depending on the situation, patches could be towns, cities or countries etc. Use Ni and

Mi to denote the total population of human beings and female Anopheles mosquitoes in

patch i, respectively. In the presence of malaria, the total populations are divided into

compartments of susceptible and infected classes. Assume that there is a fixed infec-

tion latent period of length τ1 within human beings and another fixed latent period τ2

within mosquitoes. Latencies differ from individual to individual in general. For sim-

plicity, here we assume fixed latencies which can be considered as an approximation of

the mean latencies within the hosts and the vectors. We can also assume that τ2 ≤ τ1,

because it is known that the latency in humans is greater than that in mosquitoes. Due

to latencies, the infected classes are further divided into latent classes and infectious

classes for both hosts and vectors. Let S i j, Li j and Ii j be the sub-populations of the sus-

ceptible, latent and infectious classes respectively, with the first sub-index i specifying

the i-th patch (i = 1, 2, ..., n), and the second sub-index j representing human for j = 1

and female mosquito for j = 2.

As we pointed out at the end of the introduction of this chapter, we assume that the
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distances between two patches are sufficiently large so that the Anopheles mosquitoes

cannot disperse between the patches. Then, the sub-populations of the mosquitoes can

be described by the following differential equations:



dS i2(t)
dt

= βi2Mi(t) − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dLi2(t)
dt

= − di2Li2(t) + aici2S i2(t)
Ii1(t)
Ni(t)

− aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

dIi2(t)
dt

= − di2Ii2(t) + aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

(3.2.1)

where βi2, di2 and ai are the birth, death and biting rates respectively in patch i, and ci2

is the probability that a bite by a susceptible mosquito of an infectious human in patch

i will cause infection. In this work, we further assume that βi2 = di2 for i = 1, 2, · · · , n,

so that the births and deaths of the mosquitoes are balanced in each patch, implying

that the total mosquito population Mi in patch i remains a constant as M′
i (t) = 0 under

the above assumption. Hence, we will simply write Mi to replace Mi(t).

On the human being side, dispersal between patches is common. This, together with

the latency within humans, will result in the so-called non-local infections, meaning

that a human being may get infected in one patch, but start infecting mosquitoes in

another patch. To model this phenomenon, we follow the ideas in [8, 9] to make use

of the infection age a. Let li(t, a) be the density of the infected human beings in patch

i (i=1,2,...,n) with the infection age a at time t. Similar to the equations incorporating

the natural age structure in Metz and Diekmann [6], the densities li(t, a), (i = 1, 2, ...n)

are described by the following system of first-ordered partial differential equations

∂

∂t
li(t, a) +

∂

∂a
li(t, a) = −(di1 + d̄i1(a) + γi)li(t, a) +

n∑
j=1

Di j(a)l j(t, a) −
n∑

j=1

D ji(a)li(t, a)

(3.2.2)

where Di j(a) is the dispersal rate from patch j to patch i of the infected hosts at the
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infection age a; di1 is the natural death rate of the hosts, d̄i1(a) stands for the malaria

induced mortality rate and γi is the recovery rate, all in patch i. Here we neglect delays

and loss for the movements of hosts between patches, otherwise things will become

mathematically intractable.

From the definition of li(t, a), the human population in the latent and infectious class

in patch i at time t can be expressed by

Li1(t) =

∫ τ1

0
li(t, a) da and Ii1(t) =

∫ ∞

τ1

li(t, a) da. (3.2.3)

The fact that di1 + d̄i1(a) + γi is bounded below by the positive constant di1 implies that

li(t,∞) = 0. (3.2.4)

Noting that the population with zero infection age equals to the population of new

infections, we have

li(t, 0) = aici1
Ii2(t)S i1(t)

Ni(t)
, (3.2.5)

where ci1 is the probability that a bite by an infectious mosquito of a susceptible human

will result in a successful new infection of a susceptible human in patch i .

For convenience of showing the main idea to build the patch model, we further

assume that the disease induced mortality rates and the dispersal rates in system (3.2.2)

are piecewise constants:

d̄i1(a) =


0, 0 ≤ a ≤ τ1,

µi, a > τ1,
Di j(a) =


DL

i j, 0 ≤ a ≤ τ1,

DI
i j, a > τ1,

i, j = 1, 2, ...n.

(3.2.6)
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It follows from (3.2.2)-(3.2.4) and (3.2.6) that

dIi1(t)
dt

= −

∫ ∞

τ1

∂li(t, a)
∂a

da −
∫ ∞

τ1

(
di1 + d̄i1(a)

)
li(t, a) da

+

∫ ∞

τ1

n∑
j=1

Di j(a)l j(t, a) da −
∫ ∞

τ1

n∑
j=1

D ji(a)li(t, a) da

= li(t, τ1) − (di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t).

(3.2.7)

Similarly, from (3.2.2)-(3.2.3) and (3.2.5)-(3.2.6), we obtain

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) − li(t, τ1) +

∞∑
j=1

DL
i jc j1(t) −

∞∑
j=1

DL
jici1(t). (3.2.8)

The term li(t, τ1) in (3.2.7) and (3.2.8) can be determined by applying the method of

characteristics to (3.2.2) in the same way as in [8, 9], and we give the details below.

For fixed ξ > 0, let

Uξ
i (t) = li(t, t − ξ), for ξ ≤ t ≤ ξ + τ1, i = 1, 2, ..., n.

Then,

d
dt

Uξ
i (t) =

∂

∂t
li(t, a)|a=t−ξ +

∂

∂a
li(t, a)|a=t−ξ

= − (di1 + d̄i1(t − ξ))li(t, t − ξ) +

n∑
j=1

Di j(t − ξ)l j(t, t − ξ)

−

n∑
j=1

D ji(t − ξ)li(t, t − ξ)

= − di1li(t, t − ξ) +

n∑
j=1

DL
i jl j(t, t − ξ) −

n∑
j=1

DL
jili(t, t − ξ)

= − di1Uξ
i (t) +

n∑
j=1

DL
i jU

ξ
i (t) −

n∑
j=1

DL
jiU

ξ
i (t).

(3.2.9)
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Using vector notation Uξ(t) =
(
Uξ

1(t),Uξ
2(t), ...,Uξ

n(t)
)T

where T represents the trans-

pose of a vector, (3.2.9) is rewritten as

d
dt

Uξ(t) = BUξ(t), (3.2.10)

where the coefficient matrix B is given by

B =



−d11 −
∑n

j=1 DL
j1 DL

12 · · · DL
1n

DL
21 −d21 −

∑n
j=1 DL

j2 · · · DL
2n

...
...

. . .
...

DL
n1 DL

n2 · · · −dn1 −
∑n

j=1 DL
jn


.

Integrating system (3.2.10) for t ∈ [ξ, ξ + τ1] yields

Uξ(t) = eB(t−ξ)
(
Uξ

1(ξ),Uξ
2(ξ), · · · ,Uξ

n(ξ)
)T
, ξ ≤ t ≤ ξ + τ1. (3.2.11)

From the definition of Uξ
i (t) and equalities (3.2.5), it follows that

Uξ(t) = eB(t−ξ) (l1(ξ, 0), l2(ξ, 0), · · · , ln(ξ, 0))T

=eB(t−ξ)
(
a1c11I1,2(ξ)

S 1,1(ξ)
N1(ξ)

, · · · , ancn1In2(ξ)
S n1(ξ)
Nn(ξ)

,

)T

, ξ ≤ t ≤ ξ + τ1.

(3.2.12)

For t ≥ τ1, letting l(t, τ1) = (l1(t, τ1), l2(t, τ1, · · · , ln(t, τ1)))T . Then

l(t, τ1) =U t−τ1(t)

=eBτ1

(
a1c11I1,2(t − τ1)

s1,1(t − τ1)
N1(t − τ1)

, · · · , ancn1In2(t − τ1)
S n1(t − τ1)
Nn(t − τ1)

)T

.

(3.2.13)
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Denoting the matrix eBτ1 by P = [pi j(τ1)]n×n, (3.2.13) becomes

li(t, τ1) =

n∑
j=1

pi j(τ1)a jc j1I j2(t − τ1)
S j1(t − τ1)
N j(t − τ1)

. (3.2.14)

Since our focus is not on demography of humans, we will adopt the simplest demo-

graphic equation N′i (t) = Ki1 − di1Ni(t) for patch i (i = 1, 2, · · · , n), which leads to the

following equation for the susceptible human population in patch i:

dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) − aici1Ii2(t)
S i1(t)
Ni(t)

+

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t).

(3.2.15)

Substituting equalities (3.2.14) back into the Li1 and Ii1 equations in systems (3.2.7) and

(3.2.8), and pulling together the resulting equations with (3.2.1) and (3.2.15), we know

that the sub-populations in all compartments for t ≥ τ1 are described by the following
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system of delay differential equations (DDEs):



dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t)

−

n∑
j=1

p ji(τ1)aici1Ii2(t − τ1)
S i1(t − τ1)
Ni(t − τ1)

,

dIi1(t)
dt

= − (di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t)

+

n∑
j=1

pi j(τ1)a jc j1I j2(t − τ1)
S j1(t − τ1)
N j(t − τ1)

,

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dLi2(t)
dt

= − di2Li2(t) + aici2S i2(t)
Ii1(t)
Ni(t)

− aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

dIi2(t)
dt

= − di2Ii2(t) + aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

(3.2.16)

with Ni = S i1 + Li1 + Ii1 and Mi = S i2 + Li2 + Ii2, for i = 1, 2, · · · , n. In the Ii1 equation,

we find that the recruitment consists of two parts: one directly results from travel of

infectious individuals, while the other is a result of mobility of latent individuals with

pi j(τ1) accounting for the probability that a host infected in patch j can survive during

the latent period [0, τ1], and has moved to patch i at the end of the latent period. For

n = 2, the transmission dynamics described by system (3.2.16) can be visualized by the

transmission diagram in Figure 3.1.

For t ∈ [0, τ2), no new infected humans and mosquitoes will become infectious and
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hence, the disease dynamics is governed by the following system of ODEs:



dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t),

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t),

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dLi2(t)
dt

= −di2Li2(t) + aici2S i2(t)
Ii1(t)
Ni(t)

,

dIi2(t)
dt

= −di2Ii2(t),

(3.2.17)

while for t ∈ [τ2, τ1), the disease dynamics is given by another system of DDEs:



dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t),

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t),

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dLi2(t)
dt

= −di2Li2(t) + aici2S i2(t)
Ii1(t)
Ni(t)

− aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

dIi2(t)
dt

= −di2Ii2(t) + aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

(3.2.18)

Obviously, the long term disease dynamics are represented by the system of DDEs

(3.2.16) which will be, therefore, the main focus of our analysis in the subsequent
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sections.

Figure 3.1: Transmission diagram for t ≥ τ1 when there are only two patches.

It is natural to assume that the dispersal matrix DS = (DS
i j) is irreducible, other-

wise the patchy environment can be further split into smaller irreducible environments

isolated from each other. As the behavior of individuals in latent period generally re-

mains the same as that of susceptible individuals, we assume that DL = (DL
i j) is also

irreducible. Without loss of generality and for simplicity, we assume DS
i j , 0, DL

i j ,

0, DI
i j , 0 in the rest of the chapter.

3.3 Well-posedness

Realistically, initial values for all variables in the model should be non-negative:

S i j(0) ≥ 0, Ii j(t) ≥ 0, Li1(0) ≥ 0, for i = 1, 2, ..., n; j = 1, 2. (3.3.1)

With such a set of initial values given, one can solve (3.2.17) to get a unique solution

for t ∈ [0, τ2] which can be easily shown to be non-negative in [0, τ2]. Using the values
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of this solution in the inteval [0, τ2], one can further solve the ODE system (3.2.17)

to get a unique and non-negative solution defined for t ∈ [τ2, τ1]. The combination of

these two solutions gives the initial function for the DDE system (3.2.16) on [0, τ1] =

[0, τ2]∪[τ2, τ1]. This non-negative initial function, by the fundamental theory of DDEs,

will result in a unique solution of system (3.2.16) for t ≥ τ1 which is also non-negative

on the maximal interval of existence [τ1, tmax). Details of the theory validating the above

argument is referred to, e.g., [7,16]. For similar arguments, but for another non-vector-

borne disease model with non-local infections on a patch environment, see [8].

Next, we show that the solutions of system (3.2.16) remain bounded. Firstly the

boundedness of S i2, Li2 and Ii2 is obvious since 0 ≤ S i2 ≤ Mi, 0 ≤ Li2 ≤ Mi, 0 ≤ Ii2 ≤

Mi and Mi is a constant. To prove the boundedness of S i1, Li1 and Ii1, it suffices to show

that Ni is bounded. Let N(t) be the total population of humans in the n patches,i.e.,

N(t) =

n∑
i=1

Ni =

n∑
i=1

S i1(t) +

n∑
i=1

Li1(t) +

n∑
i=1

Ii1(t).

Then,

Ṅ(t) =

n∑
i=1

Ṡ i1(t) +

n∑
i=1

L̇i1(t) +

n∑
i=1

İi1(t)

=

n∑
i=1

Ki1 −

n∑
i=1

di1Ni(t) −
n∑

i=1

µiIi1(t)

≤

n∑
i=1

Ki1 −

n∑
i=1

d1Ni(t)

= K̄1 − d1N(t),

(3.3.2)

where d1 = min1≤i≤n(di1) and K̄1 =
∑n

j=1 Ki1. By the comparison theorem, we show that

N(t) is bounded with lim supt→∞ N(t) ≤ K̄1/d1. Consequently, Ni(t), i = 1, 2, · · · , n are

also bounded, and so are S i1, Li1 and Ii1 by the relations 0 ≤ S i1 ≤ Ni, 0 ≤ Li1 ≤ Ni,

0 ≤ Ii1 ≤ Ni.

The prior boundedness of solutions to system (3.2.16) implies that all solutions with
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initial conditions satisfying initial condition (3.3.1) exist globally, that is, exist for all

t ∈ [τ,∞) (see [7]).

Summarizing the above, we have established the following theorem.

Theorem 3.3.1 For any given initial values satisfying initial condtion (3.3.1), the model

system consisting of (3.2.16)-(3.2.18) has a unique solution which is non-negative and

bounded for all t ≥ 0.

As we have seen above, systems (3.2.18) and (3.2.17) only describe the disease

dynamics on the transient intervals [0, τ] and [τ2, τ1] respectively, and the long term

disease dynamics is described by (3.2.16). In the rest of this chapter, we only need to

investigate the dynamics of (3.2.16).

3.4 Disease free equilibrium and basic reproduction num-

ber

A disease free equilibrium of model (3.2.16) is the equilibrium with the infection re-

lated components being zeros. That is, such an equilibrium has the form

E0 = (S̄ 0
11, · · · , S̄

0
n1, S̄

0
12, · · · , S̄

0
n2, 0, · · · , 0︸   ︷︷   ︸

4n

).

Denote S̄ 0
1 = (S̄ 0

11, · · · , S̄
0
n1) and S̄ 0

2 = (S̄ 0
12, · · · , S̄

0
n2). It is immediately noticed that

S̄ 0
2 = (M1, · · · ,Mn) and S̄ 0

1 satisfies the following linear algebraic system

QS̄ 0
1 = K, (3.4.1)
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where K = (K11, · · · ,Kn1)T and

Q =



d11 +
∑n

j=1 DS
j1 −DS

12 · · · −DS
1n

−DS
21 d21 +

∑n
j=1 DS

j2 · · · −DS
2n

...
...

. . .
...

−DS
n1 −DS

n2 · · · dn1 +
∑n

j=1 DS
jn



.

The irreducibility of DS ensures that Q is also irreducible. Since Q has non-positive off-

diagonal entries and positive column sums, Q is a non-singular M-matrix, and is thus

invertible with Q−1 > 0. This shows that system (3.4.1) has a unique positive solution

S̄ 1
0 = Q−1K > 0, implying that system (3.2.16) has an unique disease free equilibrium

E0.

The basic reproduction number of a disease model is closely related the the stability

of the disease free equilibrium. To proceed further, we linearize system (3.2.16), noting

that the Li1 and Li2 equations decouple from the rest in the linearized system, so we drop

the Li1 and Li2 equations, leading to the following system:



d
dt

S i1(t) = −di1S i1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t) + γiIi1(t) − aici1Ii2(t),

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t)

+

n∑
j=1

pi j(τ1)a jc j1I j2(t − τ1),

d
dt

S i2(t) = −di2S i2(t) − aici2Ii1(t)
Mi

S̄ 0
i1

,

dIi2(t)
dt

= −di2Ii2(t) + aici2
Mi

S̄ 0
i1

e−di2τ2 Ii1(t − τ2).

(3.4.2)
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Let

F1 =


0 F1

0 0

 , F2 =


0 0

F2 0

 , V =


V1 0

0 V2

 ,
where the n × n matrices F1, F2, V1 and V2 are defined as below:

(F1)i j = pi j(τ1)a jc j1, i, j = 1, · · · , n;

F2 = diag
(
a1c12e−d12τ2

M1

S̄ 0
11

, · · · , ancn2e−dn2τ2
Mn

S̄ 0
n1

)
,

(V1)i j =


di1 + γi + µi +

n∑
k=1

DI
ki, for j = i,

− DI
i j for j , i.

V2 = diag (d12, d22, · · · , dn2).

Denote I1(t) = (I11, · · · , In1) and I2 = (I12, · · · , In2) and let I(t) = (I1(t), I2(t)). Obvi-

ously, the equations in system (3.4.2) containing the components of I(t) actually de-

couple from the rest, giving a subsystem containing I(t) only:

d
dt

I(t) = F1I(t − τ1) + F2I(t − τ2) − VI(t). (3.4.3)

Since system (3.2.16) (hence (3.4.3)) is not a system of ODEs, the recipe for calcu-

lating the spectral radius of the next generation matrix given in [20] cannot be directly

applied to define the basic reproduction number for this model. Below, we will use

the more general notion of the next generation operator which provides an analogue

of the next generation matrix for structured models described by infinite dimensional

systems, including system (3.2.16). We now follow the approach in [6,17] to define the

basic reproduction number R0 for our model. To this end, we need to identify the next

generation operator for our model.
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Assume that the populations of humans and female mosquitoes are settled at E0

and there is no infectious individual before the time t = 0. Suppose that at t = 0, there

are some infectious individuals introduced in this patchy environment. Then near E0,

the infectious populations I1(t) and I2(t) are governed by system (3.4.3). Note that the

first two terms in system (3.4.3) track new infections while the last term takes care of

evolution with respect to time, tracking the survival of the infected individuals.

Define a positive linear operator F : Rn
+ × Rn

+ → Rn
+ × Rn

+ by

F (σ) = (F1σ2, F2σ1) for σ = (σ1, σ2) ∈ Rn
+ × Rn

+.

Let U(t) = (U1(t),U2(t)) be the semi-group generated by

d
dt

I(t) = −VI(t),

that is

U(t)σ = (e−V1tσ1, e−V2tσ2), for σ = (σ1, σ2) ∈ Rn
+ × Rn

+.

Now, let the initial distribution I0 = (I1
0 , I

2
0) where I1

0 = (I11(0), · · · , In1(0)) and

I2
0 = (I12(0), · · · , In2(0)) be given. Due to the latency within humans, the production

of new infectious humans will not occur before t = τ1, and hence, the number of the

cumulative new infectious human beings is given by

∫ ∞

τ1

F1[U2(t − τ1)I2
0] dt =

∫ ∞

0
F1[U2(t)I2

0] dt. (3.4.4)

Similarly, new infections of female mosquitoes will not happen for t < τ2 and the

number of the cumulative new infectious female mosquitoes is

∫ ∞

τ2

F2[U1(t − τ2)I1
0] dt =

∫ ∞

0
F2[U1(t)I1

0] dt. (3.4.5)
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From equations (3.4.4) and (3.4.5), the distribution of all new infections caused by the

initial distribution I0 is

∫ ∞

0
(F1[U2(t)I2

0], F2[U1(t)I1
0]) dt =

∫ ∞

0
FU(t)I0 dt.

This identifies the next generation operator T of the model:

T (σ) :=
∫ ∞

0
F [U(t)σ] dt, for σ = (σ1, σ2) ∈ Rn

+ × Rn
+. (3.4.6)

The basic reproduction number is then defined as the spectral radius of T : R0 = ρ(T )

(see, e.g. , [6, 17]). Note that (3.4.6) can be rewritten as

T (σ) =

∫ ∞

0
Fe−Vtσ dt = (

∫ ∞

0
Fe−Vt dt)σ for σ = (σ1, σ2) ∈ Rn

+ × Rn
+, (3.4.7)

where F = F1 + F2. Thus, R0 can be further expressed as

R0 := ρ(T ) = ρ(
∫ ∞

0
Fe-Vt dt) = ρ(F

∫ ∞

0
e-Vt dt) = ρ(FV−1). (3.4.8)

Now we consider the stability of E0. It is easy to calculate the characteristic equa-

tion of system (3.4.2) as

|zEn×n + Q| · |zEn×n + D2| ·
∣∣∣(zEn×n + V1) (zEn×n + V2) − F2e−zτ2 F1e−zτ1

∣∣∣ = 0, (3.4.9)

where D2 = diag (d12, · · · , dn2). The other matrices in (3.4.9) have been defined before.

Let
∆1(z) = |zE2n×2n + Q| , ∆2(z) = |zE2n×2n + D2| ,

∆3(z, τ1, τ2) =
∣∣∣(zEn×n + V1) (zEn×n + V2) − F2e−zτ2 F1e−zτ1

∣∣∣ .
Obviously ∆2(z) = 0 has roots −di2 < 0, i = 1, 2, · · · , n. Note that for the matrix
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Q = [Qi j]n×n,

∑
j,i

∣∣∣−Q ji

∣∣∣ =

n∑
j=1

DS
ji < di +

n∑
j=1

DS
ji =

∣∣∣∣∣∣∣−di −

n∑
j=1

DS
ji

∣∣∣∣∣∣∣ = |−Qii| . (3.4.10)

According to the Gershgorin Circle Theorem [21], any root z of ∆1(z) = 0 satisfies

|z + Qii| ≤
∑
j,i

∣∣∣−Q ji

∣∣∣ < | − Qii| = |Qii|

and hence, must have negative real part. Therefore, the stability of E0 is fully deter-

mined by the distribution of the roots of the equation

∆3(z, τ1, τ2) = 0 (3.4.11)

which is nothing but the characteristic equation of (3.4.3). Noting that F1, F2 and −V

all have non-negative off-diagonal entries, (3.4.3) is a monotone system, and hence the

stability of the trivial solution is equivalent to that of the corresponding ODE system

obtained by dropping the two discrete delays (see e.g., [15, 16]):

d
dt

I(t) = (F1 + F2 − V)I(t) = (F − V)I(t). (3.4.12)

Then

max{Re(z) : ∆3(z, τ1, τ2) = 0} < 0 (> 0) if and only if s(F − V) < 0 (> 0),

where s(F−V) is the stability modulus of F−V defined as the maximal real part of all

eigenvalues of the matrix F−V. By Theorem 2 in [20], s(F−V) < 0 (> 0) is equivalent

to ρ(FV−1) < 1 (> 1). Hence, E0 is asymptotically stable when R0 < 1 and unstable

when R0 < 1.
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Summarizing the above, we have proved the following theorem.

Theorem 3.4.1 If R0 = ρ(FV−1) < 1, then E0 is asymptotically stable, when R0 > 1,

E0 is unstable.

3.5 Disease persistence and endemic equilibrium

We have seen that when R0 > 1, the DFE is unstable. In this section we will show that

in this case, the disease will persist; and moreover, there exists an endemic equilibrium.

Note that in systems (3.2.16)-(3.2.18), Li2 actually decouples from the rest. We only

need to consider the following subsystem as a result of omitting the L′i2(t) equations in

(3.2.17), (3.2.18) and (3.2.16):



dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t),

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t),

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dIi2(t)
dt

= −di2Ii2(t),

t ∈ [0, τ2),

(3.5.1)
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dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t),

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t),

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dIi2(t)
dt

= −di2Ii2(t) + aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

t ∈ [τ2, τ1),

(3.5.2)

and 

dS i1(t)
dt

= Ki1 − di1S i1(t) + γiIi1(t) +

n∑
j=1

DS
i jS j1(t) −

n∑
j=1

DS
jiS i1(t)

− aici1Ii2(t)
S i1(t)
Ni(t)

,

dLi1(t)
dt

= aici1Ii2(t)
S i1(t)
Ni(t)

− di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t)

−

n∑
j=1

p ji(τ1)aici1Ii2(t − τ1)
S i1(t − τ1)
Ni(t − τ1)

,

dIi1(t)
dt

= −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t)

+

n∑
j=1

pi j(τ1)a jc j1I j2(t − τ1)
S j1(t − τ1)
N j(t − τ1)

,

dS i2(t)
dt

= di2Mi − di2S i2(t) − aici2S i2(t)
Ii1(t)
Ni(t)

,

dIi2(t)
dt

= −di2Ii2(t) + aici2S i2(t − τ2)
Ii1(t − τ2)
Ni(t − τ2)

e−di2τ2 ,

t ≥ τ1.

(3.5.3)

The break-down of the model into (3.5.1)-(3.5.3) starting with the ODE system
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(3.5.1) seems to suggest that it is more convenient to establish persistence in<5n. Con-

sider the scenario in which there is no infectious individual in the patchy environment

before t = 0. At t = 0, let (S 1(0), S 2(0), L1(0), I1(0), I2(0)) = (S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) where

S 0
j = (S 0

1 j, · · · , S
0
n j) ∈ <

n
+, L0

1 = (L0
11, · · · , S

0
n1) ∈ <n

+ and I0
j = (I0

1 j, · · · , I
0
n j) ∈ <

n
+ for

j = 1, 2. With this initial condition, by Theorem 3.3.1 , there is a unique solution to the

model (3.5.1)-(3.5.3), denoted by

(
S 1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2), S 2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2), L1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2),

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2), I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2)
)
,

which is non-negative and bounded. For convenience of notation, we sometimes omit

the initial values when referring to the solution and simply write (S 1(t), S 2(t), L1(t), I1(t), I2(t))

if there is no confusion. Then we further have the following observations:

(O1) S j(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) � 0 for j = 1, 2 and t > 0. Here and in the sequel, the

notation� means that all components are positive.

(O2) If I0
1 = 0 and I0

2 = 0, then Ii1(t) = 0 and Ii2(t) = 0 for all t ≥ 0. This can

be shown by applying the constant-variation formula to systems (3.5.1)-(3.5.3)

consecutively.

(O3) Assume that either I0
1 > 0 (i.e., I0

1 ≥ 0 but I0
1 , 0, i.e., at least one component

is positive) or I0
2 > 0, meaning that the disease is brought to at least one patch

either by humans or mosquitoes at t = 0. In this case, by system (3.5.1) we know

that I1(t) > 0 or I2(t) > 0 for t ∈ [0, τ2]. Moving on to the interval [τ2, τ1] and

by (3.5.2), we further know that I1(t) > 0 or I2(t) > 0 for t ∈ [0, τ1]. Finally, for

t > τ1, from system (3.5.3) and by the irreducibility and positivity of the matrix

P = eBτ1 , we conclude that I1(t) � 0 and I2(t) � 0 for t ≥ τ1. Thus components

of I1(t) and I2(t) are positive for t ≥ τ1.
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(O4) If both I0
1 > 0 and I0

2 > 0, then repeating the argument for (O3) concludes that

I1(t) and I2(t) are positive for t ≥ 0.

(O5) If both I0
1 = 0 and I0

2 = 0, but L0
1 > 0, then there is as least one component of L0

1

that is positive. Assume Li1 > 0, i ∈ {1, 2, ..., n},

Li1(0) =

∫ τ1

0
li(0, a) da > 0,

which implies that li(0, a0) > 0 for some a0 ∈ [0, τ1] and i ∈ {1, 2, ..., n}. By

formula (3.2.2) for l(t, a) and equation (3.2.13), we can extend Uξt and ξ > 0 by

U−a0(t). Then

l(τ1 − a0, τ1) = U−a0(τ1 − a0)

= eB(τ1−a0) (l1(0, a0), l2(0, a0), ..., ln(0, a0))

> 0.

Further, due to the continuity of l(t, a),

Ii1(τ1 − a0) =

∫ ∞

τ1

li(τ1 − a0, a) da > 0, for some i ∈ {1, 2, ..., n}.

Repeating the argument for (O3) with a shifting of initial time, we conclude that

I1(t) and I2(t) are positive for t ≥ 0.

Denote

X = <5n
+ = {(X1, X2,Y1,Z1,Z2) : X j ∈ <

n
+, Y1 ∈ <

n
+, Z j ∈ <

n
+, j = 1, 2}

X0 = {(X1, X2,Y1,Z1,Z2) ∈ X : Y1 � 0, Z1 � 0, Z2 � 0},
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and let ∂X0 = X \ X0. Then

∂X0 = {(X1, X2,Y1,Z1,Z2) ∈ X : Zi1 = 0 or Zi2 = 0 or Yi1 = 0, at least for one i}.

We have seen from the above that both X and X0 are positive invariant sets for the

solution semi-flow Φ(t) of model (3.5.1)-(3.5.3). It is obvious that ∂X0 is relatively

closed in X. Theorem 3.1 also confirms that systems (3.5.1)-(3.5.3) are point dissipative

in X.

Next, let

Ω∂1 = {(S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) ∈ X : (S 1(t), S 2(t), L1(t), I1(t), I2(t)) ∈ ∂X0}.

We first prove the following lemma which shows that Ω∂1 can also be characterized by

the following set

Ω∂2 =
{
(S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) ∈ X : I1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) = 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) = 0,

L1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) = 0 for t ≥ 0

}
.

Lemma 3.5.1 Ω∂2 = Ω∂1.

Proof. Indeed Ω∂2 ⊂ Ω∂1 is obvious, so we only need to show Ω∂1 ⊂ Ω∂2. Let

(S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) ∈ Ω∂1. We need to show that I1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) = 0 and

I2(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) = 0 for all t ≥ 0. Assume the opposite, that is, there exist an i and

a t0 ≥ 0 such that either (A) Ii1(t0, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) > 0; or (B) Ii2(t0, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) >

0; or (C) Li1(t0, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) > 0. We show below that each of these three cases will

lead to a contradiction.

With respect to (A), we have three cases: (A-1) t0 ∈ [0, τ2); (A-2) t0 ∈ [τ2, τ1); (A-3)



78

t0 ∈ [τ1,∞). In case (A-1), similar to (O3) above, we know from system (3.5.1) that

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) > 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) ≥ 0 for t ∈ [t0, τ2);

and from system (3.5.2) that

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) > 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) > 0 for t ∈ [τ2, τ1);

and finally from system (3.5.3) that,

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) � 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) � 0 for t ∈ [τ1,∞).

This implies that for t ≥ τ1,

(
S 1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2), S 2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2), I1(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2),

I2(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)
)
∈ X0,

a contradiction to (S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) ∈ Ω∂1. For (A-2), by system (3.5.2), we have

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) > 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) ≥ 0 for t ∈ [t0, τ1);

and by system (3.5.3),

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) > 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) > 0 for t ∈ [τ1, τ1 + τ2);

and finally by system (3.5.3),

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) � 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) � 0 for t ∈ [τ1 + τ2,∞),
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also a contradiction. For (A-3), by system (3.5.3), we have

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) > 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) > 0 for t ∈ [t0, t0 + τ2);

and by system (3.5.3) again,

I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2)) � 0, I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) � 0 for t ∈ [t0 + τ2 + τ1,∞),

also a contradiction.

With respect to (B), there are also three cases: (B-1) t0 ∈ [0, τ2); (B-2) t0 ∈ [τ2, τ1);

(B-3) t0 ∈ [τ1,∞). By similar arguments, each of these cases will lead to a contradiction

as well. Therefore, I1(t, S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) = 0 and I2(t, S 0

1, S
0
2, L

0
1, I

0
1 , I

0
2) = 0 for all t ≥ 0,

meaning that (S 0
1, S

0
2, L

0
1, I

0
1 , I

0
2) ∈ Ω∂2. This proves Ω∂1 = Ω∂1.

Upon the case of (C), by the observation of (O5) and similar arguments, we can get

Ω∂1 = Ω∂1.

In conclusion, we have Ω∂1 = Ω∂1. �

The next lemma establishes weak persistence of the disease in the sense that both

I1 and I2 persist.

Lemma 3.5.2 Assume that R0 > 1. Then there is an ε > 0 such that for any solution of

model (3.5.3) with initial conditions in X0 that eventually enters X0, we have

lim sup
t→∞

max{Ii j(t), i = 1, · · · , n; j = 1, 2} ≥ ε. (3.5.4)

Proof. For the sake of contradiction, assume that (3.5.4) is false. Then, there is a
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T1 > τ1 such that

0 < Ii j(t) < ε for t ≥ T1, i = 1, · · · , n; j = 1, 2. (3.5.5)

It follows from (3.5.3) that

dS i1

dt
≥ (Ki1 − aici1ε) − di1S i1 +

n∑
j=1

DS
i jS j1 −

n∑
j=1

DS
jiS i1, t ≥ T1, (3.5.6)

and

dS i1

dt
≤ (Ki1 + γiε) − di1S i1 +

n∑
j=1

DS
i jS j1 −

n∑
j=1

DS
jiS i1, t ≥ T1. (3.5.7)

The above suggests the following two comparison systems for S 1(t):

dYi2

dt
= (Ki1 − aici1ε) − di1S i2 +

n∑
j=1

DS
i jY j2 −

n∑
j=1

DS
jiYi2, t ≥ T1, (3.5.8)

and
dYi3

dt
= (Ki1 + γiε) − di1S i1 +

n∑
j=1

DS
i jY j3 −

n∑
j=1

DS
jiYi3, t ≥ T1. (3.5.9)

The comparison theorem (see, e.g., [16]) shows that

Y2(t) ≤ S 1(t) ≤ Y3(t), for t ≥ T1. (3.5.10)

Similarly, from the L1(t) equation in (3.5.3), we have

dLi1(t)
dt

≤ aici1ε − di1Li1(t) +

n∑
j=1

DL
i jL j1(t) −

n∑
j=1

DL
jiLi1(t), t ≥ T1. (3.5.11)
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Hence, L1(t) ≤ Y4(t) for large t, where Y4(t) satisfies

dYi4(t)
dt

= aici1ε − di1Yi4(t) +

n∑
j=1

DL
i jY j4(t) −

n∑
j=1

DL
jiYi4(t), t ≥ T1, (3.5.12)

leading to

0 ≤ L1(t) ≤ Y4(t), for t ≥ T1, (3.5.13)

by the comparison theorem.

Note system (3.5.8) has a globally asymptotically stable equilibrium Ȳ2(ε) = Q−1
s K2(ε)

where K2(ε) = (K11 + γ1ε, · · · ,Kn1 + γnε), and system (3.5.9) has a globally asymptot-

ically equilibrium Ȳ3(ε) = Q−1
s K3(ε) where K3(ε) = (K11 − a1c11ε, · · · ,Kn1 − ancn1ε).

Similarly, system (3.5.12) also has a globally asymptotically stable positive equilib-

rium Ȳ4(ε). Notice that Y2(ε), Y3(ε) and Ȳ4(ε) are all continuous in ε with Ȳ2(ε)→ S̄ 0
1,

Ȳ3(ε) → S̄ 0
1 and Ȳ4(ε) → 0 as ε → 0. Hence, for any given η > 0, there is an ε0 ≤ η

such that

S̄ 0
1 − η̂ ≤ Ȳ2(ε), Ȳ3(ε) ≤ S̄ 0

1 + η̂ and 0 ≤ Ȳ4(ε) ≤ 2η̂ for ε ∈ (0, ε0), (3.5.14)

where η̂ denotes the n-dimensional vector with all components equal to η. Thus, for t

sufficiently large, we have

S̄ 0
1 − η̂ ≤ S 1(t) ≤ S̄ 0

1 + η̂ and 0 ≤ L1(t) ≤ η̂. (3.5.15)

Choose η < min{S̄ 0
i1 : i = 1, · · · , n}. Then for t sufficiently large,

0 < S̄ 0
i1 − η < Ni(t) = S i1(t) + Li1(t) + Ii1(t) ≤ S̄ 0

i1 + 3η, i = 1, · · · , n. (3.5.16)
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Next consider the S 2(t) equation in system (3.5.3). By relations (3.5.5), (3.5.15)

and (3.5.16), we know that for sufficiently large t,

Ii1(t)
Ni(t)

≤
ε

S̄ 0
i1 − η

≤
η

S̄ 0
i1 − η

.

This together with system (3.5.3) leads to

dS i2(t)
dt

≥ di2Mi − di2S i2(t) − aici2
η

S̄ 0
i1 − η

S i2(t). (3.5.17)

By an analogous argument, we conclude that for t sufficiently large,

S i2(t) ≥
di(S̄ 0

i1 − η)

di(S̄ 0
i1 − η) + aici1η

Mi =: Ȳi5(η). (3.5.18)

Obviously, Yi5(η) is continuous in η and Yi5(0) = Mi.

We now apply the above estimates to the I′i1(t) and Ii2(t) equations in system (3.5.3),

yielding the following



dIi1

dt
≥ −(di1 + γi + µi)Ii1(t) +

n∑
j=1

DI
i jI j1(t) −

n∑
j=1

DI
jiIi1(t)

+

n∑
j=1

pi j(τ1)a jc j1h j(η)I j2(t − τ1),

dIi2

dt
≥ −di2Ii2 + aici2 e−di2τ2gi(η)Ii1(t − τ2),

(3.5.19)

where

hi(η) =
S̄ 0

i1 − η

S̄ 0
i1 + 3η

, gi(η) =
Ȳi5(η)

S̄ 0
i1 + 3η

, i = 1, · · · , n.

Consider the following comparison system obtained from the right-hand side of system

(3.5.19):
dW(t)

dt
= G1(η)W(t − τ1) + G2(η)W(t − τ2) − VW(t) (3.5.20)
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where the matrix V is as in Section 3.4, and

G1(η) =


0 G1(η)

0 0

 G1(η) =


0 0

G1(η) 0


with

G1(η) =



b11(τ1)a1c11h1(η) b12(τ1)a2c21h2(η) · · · b1n(τ1)ancn1hn(η)

b21(τ1)a1c11h1(η) b22(τ1)a2c21h2(η) · · · b2n(τ1)ancn1hn(η)
...

...
. . .

...

bn1(τ1)a1c11h1(η) bn2(τ1)a2c21h2(η) · · · bnn(τ1)ancn1hn(η)


,

G2(ξ) =



a1c12e−d12τ2g1(η) 0 · · · 0

0 a2c22e−d22τ2g2(η) · · · 0

...
...

. . .
...

0 0 · · · ancn2e−dn2τ2gn(η)



.

This linear delay system is monotone and hence, the stability/instability of the trivial

solution is independent of τ1 and τ2. Let G(η) = G1(η) + G2(η). By the same argument

for the stability of system (3.4.12), we know that if ρ(G(η)V−1) > 1, then the trivial

solution of system (3.5.20) is unstable, implying that system (3.5.20) has unbounded

solutions, since it is a linear system. Note that hi(η) and gi(η) are continuous in η with

hi(0) = 1 and gi(0) = Mi/S̄ 0
i1. This implies that G1(η) → F1(η) and G2(η) → F2(η),

and hence, G(η) → F as η → 0. Now since R0 = ρ(FV−1) > 1, by continuity, we

can choose η sufficiently small so that ρ(G(η)V−1) > 1, and therefore, system (3.5.20)
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has unbounded solutions; by (3.5.19) and the comparison theorem for delay differential

equations (see, e.g., [16]), system (3.5.3) also has unbounded solutions, contradicting

the results in Theorem 3.3.1. This contradiction proves the lemma. �

We are now in the position to state and prove the main results in this section.

Theorem 3.5.1 Assume that R0 > 1. Then the disease is uniformly persistent in the

sense that there exists an ε > 0 such that for any solution of system (3.5.3) with initial

data in X0 that eventually enters X0, we have

lim inf
t→∞

Ii j(t) ≥ ε for i = 1, · · · , n; j = 1, 2. (3.5.21)

Moreover, there exists a positive (endemic) equilibrium, that is, an equilibrium with all

components positive.

Proof. Note that S̄ 0 = (S̄ 0
1, S̄

0
2) is globally asymptotically stable in <2n

+ /{0} for the

system consisting of the S i1 and S 21 equations resulting from setting Ii1 = 0 and I21 = 0

in (3.2.16). Moreover, by Lemmas 3.5.1-3.5.2, E0 is an isolated invariant set in X, and

the stable manifold of E0 does not intersect the interior of X0. Also note that every

orbit in Ω1 converges to E0 (hence E0 is an isolated invariant set in X). By Theorem 4.6

in Thieme [19], it follows that the model system (3.5.1)-(3.5.3) is uniformly persistent

with respect to (X0, ∂X0), and hence (3.5.21) holds. Further by Theorem 2.4 in Zhao

[24], there is an equilibrium in X0, denoted by E∗ = (S ∗1, S
∗
2, I
∗
1, I
∗
2), where S ∗1 ≥ 0, S ∗2 ≥

0 and I∗1 � 0 and I∗2 � 0. From the Ii2 equations in system (3.5.3) and the fact that

I∗1 � 0 and I∗2 � 0, it follows that S ∗2 � 0. So, it remains to show that S ∗1 � 0 as

well. Firstly, claim that S ∗1 > 0, because otherwise,the S i1 equations would lead to
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I∗i1 = −Ki1/γi < 0, a contradiction. Rewrite the S ′i1(t) equations as

S ′1(t) = [Q − Q1(t)]S 1(t) + [K + M(t)]

where Q and K as in Section 3.2, M(t) = (γ1I11(t), · · · , γnI21(t))T and

Q1(t) = diag
(
a1c11I12(t)

N1(t)
,

a2c21I22(t)
N2(t)

, · · · ,
ancn1In2(t)

Nn(t)

)
.

Since S ∗1 = S 1(t, S ∗1, S
∗
2, I
∗
1, I
∗
2), S ∗1 can be expressed by

S ∗1 = e
∫ t

0 [Q−Q1(ξ)] dξS ∗1 +

∫ t

0
e
∫ t

s [Q−Q1(ξ)] dξ[K + M(ξ)] dξ.

By the cooperative and irreducible property of the matrix Q and the positivity of [K +

M(ξ)], we conclude that S ∗1 � 0. Thus, E∗ is positive, completing the proof. �

.

3.6 A simple case: two-patch model

In the previous sections, we saw that R0 = ρ(FV−1) plays the role of a threshold. All

parameters in system (3.2.16) are included in the two matrices F and V, directly or

indirectly. We particularly emphasize that the dispersal rates in the three compartments

(susceptible, latent and infectious) enter F and V in differential ways, and hence, we

expect they affect R0 in different ways. Unfortunately, for general n, it is very difficult

(if not impossible) to investigate the impact of these dispersal rates on R0 in explicit

form. In this section, we will focus on the simplest patchy environment: two patches,

with the hope of obtaining some more explicit and helpful information on how R0

depends on the various dispersal rates.
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When n = 2, the matrix B becomes

B =

 −d11 − DL
21 DL

12

DL
21 −d21 − DL

12

 ,
and in consequence, we get

P(τ1) =


e−d11τ1

(
DL

12+DL
21e−(DL

12+DL
21)τ1

)
DL

12+DL
21

e−d11τ1 DL
12

(
1−e−(DL

12+DL
21)τ1

)
DL

12+DL
21

e−d21τ1 DL
21

(
1−e−(DL

12+DL
21)τ1

)
DL

12+DL
21

e−d21τ1

(
DL

12e−(DL
12+DL

21)τ1 +DL
21

)
DL

12+DL
21

 .

Further, we give the matrices F and V as the following expressions:

F =



0 0 p11(τ1)a1c11 p12(τ1)a2c21

0 0 p21(τ1)a1c11 p22(τ1)a2c21

a1c12e−d12τ2 M1
S 0

11
0 0 0

0 a2c22e−d22τ2 M2
S 0

21
0 0


,

and

V =



d11 + γ1 + µ1 + DI
21 −DI

12 0 0

−DI
21 d21 + γ2 + µ2 + DI

12 0 0

0 0 d12 0

0 0 0 d22


.

where

S̄ 0
11 =

D12K21 + D12K11 + d21K11

d21d11 + d21D21 + D12d11
, S̄ 0

21 =
d11K21 + D21K21 + D21K11

d21d11 + d21D21 + D12d11
(3.6.1)

is the solution of Qx = K, regardless of the irreducibility of the matrix Q. Therefore,
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with Maple’s help, the basic reproduction number is calculated as

R = ρ(FV−1) =
1
2

√
2r3s2 + 2c4s4 + 2r1s1 + 2r2s3 + 2

√
Z

where

Z = r3
2s2

2 + 2r3s2r4s4 + 2r3s1r1s2 − 2r3s2r2s3 + r4
2s4

2 − 2r4s4r1s1

+ 2r4s3r2s4 + r1
2s1

2 + 2r1s1r2s3 + r2
2s3

2 + 4r3s1r2s4 + 4r4s3r1s2,

r1 = a1c12e−d12τ2 M1(d21 + γ2 + µ2 + DI
12)/

(
det (V1) S 0

11

)
,

r2 = a1c12e−d12τ2 M1DI
12/

(
det (V1) S 0

11

)
,

r3 = a2c21e−d22τ2 M2DI
21/

(
det (V1) S 0

21

)
,

r4 = a2c21e−d22τ2 M2(d21 + γ1 + µ1 + DI
21)/

(
det (V1) S 0

21

)
,

s1 = p11(τ1)a1c11/d12, s2 = p12(τ1)a2c21/d22,

s3 = p21(τ1)a1c11/d12, s4 = p22(τ1)a2c21/d22.

The expression of the basic reproduction number is still complicated. For simplicity,

we only consider two simple scenarios that make the two patches with dispersal: (i)

only the susceptible individuals disperse; (ii) only the susceptible and exposed groups

disperse. For the case when all three classes of humans disperse, we only explore the

topic numerically.

It is natural and helpful to compare with these cases when the two patches are iso-

lated, that is, DS , DL and DI are all zero matrices. In this case, the disease free equi-

librium is E1
0 = (K11/d11, K21/d21, M1, M2, 0, 0, 0, 0, 0, 0) and the basic reproduction

number is

R1
0 = max (R1

1, R1
2), (3.6.2)



88

where

R1
1 =

√
a1

2c12c11e(−d11τ1−d12τ2)M1
K11
d11

(d11 + γ1 + µ1) d12
, R1

2 =

√
a2

2c22c21e(−d21τ1−d22τ2)M2
K21
d21

(d21 + γ2 + µ2) d22
. (3.6.3)

Clearly, R1
1 and R1

2 are the local basic reproduction numbers for each patch. Applying

the results in work [23] (Chapter 2) to each patch, we have the following theorem on

the the disease dynamics in each patch.

Theorem 3.6.1 If R1
i < 1, then the disease free equilibrium (DFE): (Ki1/di1, 0, 0, Mi, 0, 0)

is asymptotically stable; moreover if µi = γi = 0, then the DFE is globally asymptoti-

cally stable. If R1
i > 1, the disease uniformly persists in the population.

3.6.1 Only susceptible individuals disperse

When only susceptible individuals can travel between patches, the dispersal matrices

DL and DI are zero matrices. Such an assumption may hold for the situation when all

infected individuals are prohibited (e.g., by health authorities) from traveling. In this

case, the matrix B and P are reduced to

B =

 −d11 0

0 −d21

 , P =

 e−d11τ1 0

0 e−d21τ2

 .
Hence, the basic reproduction number is in the following form according to the next

generation operator:

R2
0 := max (R2

1,R
2
2) (3.6.4)

where

R2
i =

√
ai

2ci1ci2e−di1τ1e−di2τ1 Mi

S̄ 0
i1di2 (di1 + γi + µi)
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and (S̄ 0
11, S̄ 0

21) are the same as given by the expression in (3.6.1). Here, R2
i can be

explained as a dispersal mediate reproduction number in patch i.

With the assumptions that K11/d11 = K21/d21 and further R1
1 = R1

2, we can explore

the impact of human dispersal on the global basic reproduction number (GBRN) in

the case that all other parameters are fixed. Comparing R2
0 with R1

0, we can obtain the

following relations:

(i) If DS
21 < DS

12, S̄ 0
21 < K21/d11 = K11/d11 < S̄ 0

11. By the formula of R2
i , i = 1, 2, we

have
R2

1 < R1
1 = R1

2 < R2
2,

R2
0 = R2

2 = max (R2
1, R2

2) > max (R1
1, R1

2) = R1
0;

(ii) If DS
21 > DS

12, similarly we have

R2
1 > R1

1 = R1
2 > R2

2,

R2
0 = R2

1 = max (R2
1, R2

2) > max (R1
1, R1

2) = R1
0;

(iii) If DS
21 = DS

12, similarly we have

R2
1 = R1

1 = R1
2 = R2

2,

R2
0 = R2

1 = max (R2
1, R2

2) = max (R1
1, R1

2) = R1
0.

In the first two cases, the GBRN is increased by the dispersal of susceptible peo-

ple. Biologically, the relations can be interpreted as: the asymmetric dispersal between

patches leads to an increase of the GBRN, and in turn increases the possibility of dis-

ease persistence (when R2
0 exceeds one). The disease final size will be affected as well.

Moreover, the stronger the asymmetry of the dispersal between patches, the faster R2
0

increases (shown in Figure 3.2. and 3.3.). Focusing on the disease dynamics in one

patch, we can easily understand that when more susceptible people migrate in, the dis-

ease incidence rate decreases by decreasing the percentage of infectious individuals in
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the patch. Mosquitoes have less chance to bite an infectious human and gets infected.

Next we relax the assumptions K11/d11 = K21/d21 and R1
1 = R1

2. The numerical

simulation for the general case is shown in Figure 3.4 (a-d). The dispersal rate DS
12

from patch 2 to patch 1 is fixed. By increasing DS
21, we find that the GBRN with dis-

persal in the susceptible class is always greater than that in the case when patches are

isolated. Unless the difference between DS
12 and DS

21 is small (weak asymmetry), then

K11/d11, K21/d21 dominate the relation of K21DS
21/d11 and K11DS

21/d11 and may even re-

duce R2
0. The following relations:

(i) if K11DS
21/d11 < K21DS

12/d21, then S̄ 0
11 > K11/d11 and S̄ 0

21 < K21/d11. In conse-

quence, by the formula for R1
i and R2

i , i = 1, 2, we have

R1
1 > R2

1, R1
2 < R2

2,

(ii) if K11DS
21/d11 > K21DS

12/d21, similarly we have

R1
1 < R2

1, R1
2 > R2

2.

In these cases, if R1
0 = max (R1

1, R1
2) = R1

1 and K11DS
21/d11 < K21DS

12/d21, then we get

R2
0 = max (R2

1, R2
2) < max (R1

1, R1
2) = R2

0.

With different dispersal rates, the GBRN may change in various ways. As indi-

cated in Figure 3.4 (a-d), when we increase the dispersal rate DS
12 from patch 2 to 1,

i.e. DS
12 = 0, 0.1, 0.5, 0.9, the curve of R2

0 changes from monotonically increasing

to monotonically decreasing, with respect to the dispersal rate DS
21 from patch 1 to 2.

Similarly, we have the same relation between R2
0 and DS

12, if DS
21 is fixed. Figure 3.5

shows a case that two patches are isolated, and the disease will die out as both local

basic reproduction number are less than 1: R2
1 = 0.5966, R2

2 = 0.7208. By traveling,
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Figure 3.2: The relation between DS and R2
0. For parameters K11 = K21 = 0.72,

d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 = 0.2, a1 = 0.5, a2 = 0.4, e11 = 0.5, e12 =

0.45, e21 = 0.5, e22 = 0.45, γ1 = 0.4, γ2 = 0.4, τ1 = 20, τ2 = 6, µ1 = 0.08, µ2 =

0.08, M1 = 2000, M2 = 2000.

Figure 3.3: All the coefficients remains the same as in Figure 3.2, except diff=DS
12−DS

21,
and DS

21 is fixed at 0.1, so the range of diff is from [−0.1, 0.9]
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Figure 3.4: The top row of a,b,c,d are mappings of the 3-D curve on the plain DS
12 = 0

with different values of DS
12; and the bottom row shows the size of the populations in

both patches at the disease free steady state. All the coefficients are as follows K11 =

K21 = 0.72, d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 = 0.2, a1 = 0.5, a2 = 0.4, e11 =

0.5, e12 = 0.4, e21 = 0.5, e22 = 0.45, γ1 = 0.3, γ2 = 0.4, τ1 = 20, τ2 = 6, µ1 =

0.08, µ2 = 0.1, M1 = 2000, M2 = 2000.



93

the GBRN changes from 0.7208 (no connection) down to 0.7190 (low dispersal rates

for both directions), then up to 1.1070 (dispersal with strong asymmetry). This can

be explained as the fact that with a highly asymmetric dispersal between susceptible

people, disease can persist in the population.

Figure 3.5: Solid lines: the GBRN is 1.1070; dash lines: the GBRN is 0.7190; dot
lines: the GBRN is 0.7208. The other coefficients and initial conditions are N1(0) =

500, N2(0) = 600, M1 = 2000, M2 = 6000, S 11(0) = 450, S 21(0) = 400, S 12(0) =

1800, S 22(0) = 5000, E11(0) = 0, E21(0) = 0, I11(0) = 50, I21(0) = 200, I12(0) =

200, I22(0) = 1000, K11 = 0.6, K21 = 0.72, d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 =

0.2, a1 = 0.3, a2 = 0.3, e11 = 0.5, e12 = 0.4, e21 = 0.5, e22 = 0.45, γ1 = 0.3, γ2 =

0.4, τ1 = 20, τ2 = 6, µ1 = 0.01, µ2 = 0.02, DL = DI = 0. Time unit: days.)

3.6.2 Only susceptibles and individuals in exposed group can dis-

perse

When patients become infectious, they usually have disease symptoms that limit their

outdoor activities. But when they are in the disease latency, they may travel without

knowing they have been infected. Therefore, under these circumstances, both sus-
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ceptible and latent individuals disperse between patches, i.e.,DS and DL are non-zero

matrices, when the infectious groups are quarantined, i.e., DI is a zero matrix. Then,

the GBRN is

R3
0 := ρ(FV−1) =

1
2

√
2 h2 j4 + 2 h1 j1 + 2

√
Γ2

where
Γ2 =h2

2j4
2 − 2 h2 j4 h1 j1 + h1

2j1
2 + 4 h2 j3 h1 j2,

j1 = p11(τ1)a1c11/d12, j2 = p12(τ1)a2c21/d22,

j3 = p21(τ1)a1c11/d12, j4 = p22(τ1)a2c21/d22,

h1 =
a1c12e−d12τ2 M1

s̄0
11 (d11 + γ1 + µ1)

, h2 =
a2c22e−d22τ2 M2

s̄0
21 (d21 + γ2 + µ2)

.

Notice that R3
0 can be re-arranged and given terms of R2

1 and R2
2 as

R3
0 :=

1
2

√
2 R2

1 η1 + 2 R2
1 η2 + 2

√
Γ3 (3.6.5)

where

Γ3 = (R2
1η1)2 − 2 R2

1η1R2
2η2 + (R2

2η2)2
+ 4 R2

1 R2
2 η1 η2

p12(τ1)p21(τ1)
p11(τ1)p22(τ1)

and ηi = pii(τ1)/e−di1τ1 . where ηi = pii(τ1)/e−di1τ1 .

When individuals in latency can travel, the impact of dispersal rates for susceptible

people is similar as we discussed in section 3.6.1. The movements of people in exposed

class also changes the GBRN in various ways as well. By our observations, we get
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ηi < 1, and according to the derivation of the probability matrix P, we further have

p12(τ1)p21(τ1)
p11(τ1)p22(τ1)

=
DL

12DL
21(e−(DL

12+DL
21) − 1)2

(DL
12 + DL

21e−(DL
12+DL

21))(DL
12e−DL

12−DL
21 + DL

21)

≤
DL

12DL
21(e−(DL

12+DL
21) − 1)2

DL
12DL

21

≤
DL

12DL
21

DL
12DL

21

≤ 1.

Therefore

max {R2
1η1, R2

2η2} ≤ R
3
0 ≤ R2

1η1 + R2
2η2.

If we fix the dispersal rate of susceptible people, and vary that of the latent popu-

lation. We observe the impact of DL on R3. It is unlikely that DS = 0 while DL > 0,

as there is no indication that infected people have a higher preference for traveling than

susceptible humans. Figures 3.6., 3.7. and 3.8. exhibit the relationship between DL and

R3, with K11 = 0.6, K21 = 0.72, d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 = 0.2, a1 =

0.6, a2 = 0.4, e11 = 0.5, e12 = 0.4, e21 = 0.5, e22 = 0.45, γ1 = 0.3, γ2 = 0.4, τ1 =

16, τ2 = 16, µ1 = 0.08, µ2 = 0.1,DS
12 = 0.3, DS

21 = 0.5, M1 = 2000, M2 = 6000.

There is a special situation that the dispersal rate of people in latency is proportional

to that for the susceptible groups. The proportion affects the disease persistence as

well, and its relationship with R3 is shown in Figure 3.9 and 3.10. We set K11 = 0.6,

K21 = 0.72, d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 = 0.2, a1 = 0.6, a2 = 0.4, e11 =

0.5, e12 = 0.4, e21 = 0.5, e22 = 0.45, γ1 = 0.3, γ2 = 0.4, τ1 = 16, τ2 = 16, µ1 =

0.08, µ2 = 0.1, M1 = 2000, M2 = 6000.

Another possible phenomenon is: the dispersal is unidirectional for individuals in

the latent period. Hence, we have either DL
12 = 0 or DL

21 = 0. Here, we assume DL
21 = 0.
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Figure 3.6: The relation between DL and R3 when both susceptible and latent groups
travel, and susceptible individuals travel at fixed rates between patches.

Figure 3.7: The 2D mapping of figure 3.6. From a-d, the dispersal rate from patch 2 to
1 set as DL

12 = 0, 0.1, 0.57, 0.9.
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Figure 3.8: The 2D mapping of figure 3.6. From a-d, the dispersal rate from patch 2 to
1 is set as DL

21 = 0, 0.1, 0.57, 0.9. In a, the line of the basic reproduction number for
both case DS > 0, DL > 0 and DL = 0 coincide.

Figure 3.9: The relation between DS and R3 when the travel rate for people in latency
is proportional to that for healthy group. The proportion rate k = 0.6.
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Figure 3.10: The 2D mapping of Figure 3.9. From a-d, the dispersal rate from patch 2
to 1 is set as DS

12 = 0, 0.1, 0.5, 0.9.

Then, it follows by

B =

 −d11 DL
12

0 −d21 − DL
12

 .
and in consequence, we have

P(τ1) =

 e−d11τ1 e−d11τ1(1 − e−DL
12τ1)

0 e−d11τ1e−DL
12τ1


Therefore, the basic reproduction number is

R̄3
0 :=

1
2

√
2 R2

1 η1 + 2 R2
1 η2 + 2

√
(R2

1η1)2 − 2 R2
1η1R2

2η2 + (R2
2η2)2

= max (R2
1 η1,R2

2 η2).

(3.6.6)

Obviously, R̄3
0 < R2

0. This may explain why while there are currently many disease

endemic areas in the world, the disease has not yet spread and does not persist glob-
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ally. The zero or low local basic reproduction of those disease-free cities and countries

reduce the value of the global(average) basic reproduction number.

3.6.3 Two patches are fully connected

In this case, we have given the expression for R at the beginning of this section. With

the complicated form of the basic reproduction number, we only give numerical re-

sults to explain the impact of movement on persistence of the disease here. We know

that if more infected humans come into a patch, more susceptible humans locally may

get infected instantly and vice versa. The dispersal of infectious groups between two

patches has a similar impact on the disease persistence with that of groups in the latent

period. In Figure 3.11, we compare the GBRN between the two cases which are with

or without dispersal in infectious class. When DL is fixed, by introducing a dispersal

rate between infectious groups in two patches, if the dispersal rate of susceptible class

from patch 2 to 1 is low, then the global basic reproduction rate actually less than that in

the situation with no dispersal in infectious group. Otherwise if DS
12 is high, the impact

from movement of susceptible class plays a dominant role.

Next, if we compare the weights of the impacts of dispersal between individuals in

latency and in infectious period on the disease persistence. We find that with a fixed

dispersal rate between healthy people, DS
12 = 0.3, DS

21 = 0.5, when the connections

between either group in latency or infectious group is not strong, then due to the in-

stant infection and latent period, the travel activities of individual in latent period is

less harmful than that of infected individuals. However, if the connections between

latent or infectious groups are strong in both groups, the disease induced mortality rate

dominates the GBRN and reduce the impact on GBRN caused by traveling of infec-

tious group (Figure 3.12). In practice, the dispersal rate members of the population in

the latent and infectious class is usually less or at least no more than that of susceptible
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Figure 3.11: From a-d, the dispersal rate from patch 2 to 1 set as DS
12 = 0, 0.1, 0.5, 0.9,

and DL
12 = 0.42,DL

21 = 0.6. DI
12 = 0.1,DI

21 = 0.2 for the dot line and DI
12 = DI

21 = 0 for
the solid line. The other parameters are set as K11 = 0.6, K21 = 0.72, d11 = 0.001, d12 =

0.011, d21 = 0.2, d22 = 0.2, a1 = 0.6, a2 = 0.4, e11 = 0.5, e12 = 0.4, e21 = 0.5, e22 =

0.45, γ1 = 0.3, γ2 = 0.4, τ1 = 16, τ2 = 16, µ1 = 0.08, µ2 = 0.1, M1 = 2000, M2 =

6000.
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people. So we are more interested in the case with small dispersal rates between latent

and infectious groups individually (a and b in Figure 3.12) under the condition that

DS
12 = 0.3, DS

21 = 0.5.

Figure 3.12: From a-d, the dispersal rate from patch 2 to 1 set as DL
12 = DI

12 =

0, 0.1, 0.5, 0.9. All the other coefficients remain the same as in Figure 3.11.

3.7 Conclusion and Discussion

In this chapter, we have proposed an epidemic model to simulate the dynamics of

malaria transmission under the influence of population dispersal between patches. Pop-

ulation dispersal can be interpreted as human beings traveling and migrating by trans-

portation from one city (country, continent) to another. However, female mosquitoes

cannot move from patch to patch as the distance between patches is consider to be be-

yond the flying ability of the insects. We have incorporated constant latent periods into

the model for the additional purpose of exploring how the movement of individuals in

the latent period will affect the disease dispersal. We build a system of DDEs for n
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patches. For the model, we applied the theorem of the next generation operator [18] to

compute its GBRN. We have shown that a small scale of disease invasion is unsuccess-

ful for n patches if R0 < 1; while if R0 > 1, the disease will uniformly persist in every

patch. In the special case of two patches, we have considered different types of human

dispersal: (i) only susceptible population can move; (ii) only susceptibles and persons

in the disease latent period can travel and migrate. When only the susceptible group

can travel, disease will not disperse from one patch to another. However, if the move-

ments are between patches where malaria is endemic, the disease may persist between

patches even if the local basic reproduction rates are less than one in both patches, i.e.,

the disease would die out when patches were isolated. When groups in the latent or

infective period can travel, the disease can be spread from patches with disease to the

other disease free areas, causing the persistence of malaria in other places, shown in

Figure 3.13.

We have assumed that in different patches, the latent periods are fixed and iden-

tical for all human beings and all female mosquitoes, respectively. It is biologically

reasonable to consider various latent periods for both hosts in patches, as climate and

geographic impacts in each patch may be different. The theorem of the next generation

operator theorem can still apply in this case, but the probability matrix P(τ) of dispersal

of individuals in the latent period is much more complicated. We leave this as future

work.
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Figure 3.13: Patch 1 with S 0
1 = 500, M1 = 2000 is disease free at time 0, and

patch 2 with S 0
2 = 600, M2 = 6000 with a population of 50 human in latency

and 200 mosquitoes infected initially. There are infectious humans at the beginning.
K12 = 0.7, K21 = 0.72, d11 = 0.001, d12 = 0.011, d21 = 0.2, d22 = 0.2, a1 = 0.4, a2 =

0.4, e11 = 0.5, e12 = 0.4, e21 = 0.5, e22 = 0.45, γ1 = 0.3, γ2 = 0.4, τ1 = 16, τ2 =

16, µ1 = 0.08, µ2 = 0.1, DS
12 = 0.1, DS

21 = 0.7, DL
12 − 0.1, DL

21 = 0.15, DI = 0.
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Chapter 4

Can multiple malaria species

co-persist? — Analysis of ODE models

There are several species of malaria protozoa spreading in different regions. On the

other hand, the world becomes more highly connected by travel than ever before. This

raises a natural concern of possible epidemics caused by multiple species of malaria

parasites in one region. In this study, we use mathematical models to explore such

a possibility. Firstly, we propose a model to govern the within-host dynamics of two

species. Analysis of this model practically excludes the possibility of co-persistence

(or super-infection) of the two species in one host. Then we move on to set up another

model to describe the dynamics of disease transmission between human and mosquito

populations without the co-infection class (using the results in Section 4.2). By ana-

lyzing this model, we find that epidemics involving both species in a single region is

possible.



108

4.1 Introduction

Malaria is widespread and the most prevalent infectious disease in the world. It causes

millions of infections every year, 90% of which are either children age under five or

pregnant women. Since the 1980s, this disease has been claimed to have been eradi-

cated in many developed countries, such as United States, Canada and some European

countries. Althogh mortality rate associated with malaria infection have been reduced

from more than a million to an estimated 700,000-881,000 per year, according to the

latest report from the Roll Back Malaria partnership of the World Health Organiza-

tion [30], the disease still remains endemic in most tropical and subtropical areas (about

108 countries), and is associatesd with the poverty in these places.

The malaria pathogen is consisted of members of eukaryotic protisists of the genus

Plasmodium. Humans, reptiles, birds and various mammals are potential hosts for more

than 100 species of plasmodium. Among these species, there are five major species that

have been reported to cause malaria infections in humans with significant number of

infections. They are P. falciparum, P. vivax, P. ovale, P. malaria and P. knowles. These

protozoan are transferred from the mosquito salivary glands to human bloodstream via

bites of mosquito, hence malaria is a mosquito-borne disease. Due their different ring

forms, malaria parasites have different characteristics during the infection process. For

example, P. falciparum infections have the highest disease-induced mortality rate and

this protozoan is responsible for 90% of malaria induced deaths. Because P. falci-

phrum has strong parasitic ability in red blood cells (Rbcs) of all ages (other species

are restricted to Rbcs at particular stages of development), it can therefore cause high

rates of parasitaemia [27]. The other species P. vivax has a wider range for its survival

temperature.

Tracing back to ten thousand years ago, P. falciparum was original from West
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Africa, while P.vivax, co-evolved with non-human primates, i.e. Asian macaques, and

was originally found in Asian and Central West Africa independently [5,18]. Currently,

the geographical distribution of Plasmodium infections is as follows. Nearly 85% of

cases in Africa are caused by P. falciparum. The remaining cases are caused by the

other three species. P. vivax has the widest geographically distribution, existing in most

countries in Asia, Central and South America, and the Middle East, where 70 − 90%

of malaria infections is caused by this species and the rest is mainly due to P. falci-

parum [2,20]. P. malariae causes sporadic infections in Africa, parts of India, the west-

ern Pacific and South America, whereas P. ovale is restricted to tropical Africa, New

Guinea, and the Philippines [2]. P. knowlesi has been reported in Eastsouth Asian coun-

tries such as Malaysia, Thailand, Vietnam, Myanmar and Philippines [6, 7, 19, 21, 26].

In some regions, more than one malaria species has been found and this raises a natural

concern: can such a co-existence of multiple malaria species persist in a single region?

This concern has been debated by researchers since the first case of co-existence was

reported. Maitland and Williams [15] argued that newly transmitted P. falciparum in-

fections were suppressing patient infections (either new or latent) with P. vivax. Nosten

et al. [17] found that on the Thai-Burma border, pregnant women whose first attack of

malaria during pregnancy was caused by P. vivax had a significantly lower risk of devel-

oping P. falciparum infections later in the pregnancy. Moreover, statistical analysis by

McKenzie and Bossert [16] showed that the number of mixed infections did not weigh

significantly compared with that of single infection cases for P.falciparum - P.vivax. On

the other hand, based on the data they collected, McKenzie and Bossert [16] claimed

that at the level of human populations, four malaria species had been established in the

populations in Madagascar and New Guinea.

In this chapter, we address the concern of co-existence of multiple species by using

mathematical models. For simplicity, we only consider two species, but we believe
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that the approach can be applied to the situation with more than two species. Further

justification for just choosing two species is because that the two major species, P. falci-

parum and P. vivax, contribute 90% of malaria infections in most areas. In Section 4.2,

we propose a model represented by a system of ordinary differential equations (ODEs),

describing the life cycle of malaria parasites at the erythrocytic phase. The dynamics of

the model predicts that generically co-infection within a host cannot persist. In Section

4.3, we model the malaria transmission at the human and mosquito population level. We

first propose another model of ODEs for a single-species case containing the recovered

class for humans, and then, extend this model to a two-species version in a natural way.

Notice that the cross-immunity between species is complicated, e.g., there is no cross

immunity between P. falciparum and P. vivax [31]. Hence, we need to incorporate extra

terms in the two-species model to reflect this fact. For both one-species and two-species

models, we address well-posedness, identify the basic reproduction numbers and show

the threshold role these numbers play. Moreover, we explore the long term dynamics

including the stability of various equilibria and persistence of the model systems. Our

results shows that although two species of malaria parasites cannot co-exist within a

single host, but both can persist in a single region at the population level. We finish the

chapter in Section 4.4, where we summarize the main results and discuss the biological

implications as well as some possible future work. Some numerical simulation results

are also given to support our conclusion on persistence at the population level.

4.2 Within-host level

The life cycle of malaria parasites inside human bodies consists of two phases: an exo-

erythrocytic and an erythrocytic phase. The exoerythrocytic procedure involves infec-

tion of the hepatic system (liver). After an effective bite, a mosquito injects sporozoites,
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which rapidly attach to and enter the liver cells though the bloodstream. An asymp-

tomatic period follows, during which parasite mature and multiply asexually within the

liver cells, forming hepatic schizonts (see, e.g., [27]). Once hepatic schizonts rupture

the liver cells, and release merozoites back into the bloodstream. After entering the ery-

thorocytic phase, the free merozoites penetrate Rbcs, where they develop to ring forms

and undergo sexual or asexual maturation. Sexual maturation produces male and female

gametocytes, and sexually propagates infectious gametocytes, that wait for piercing by

female mosquitoes. Asexual maturation forms schizonts, which invade healthy Rbcs

and repeat the cycle again and again, causing the well-recognized pattern of cyclical

fevers in humans.

Figure 4.1: One-species case.

From the above description, the developmental process of malaria parasites within

a host can be illustrated by the diagram in Figure 4.1. Here T , T ∗, VI , VM and V̄M rep-

resent the populations of healthy Rbcs, infected Rbcs, immature merozoites, asexually

mature merozoites, sexually mature gametocytes, respectively. It is assumed that (i)

the health Rbcs are recruited at a constant rate λ; (ii) uninfected target cells die at rate

d; (iii) parasites at all phases die at a rate d1; (iv) asexually mature merozoites infect

healthy Rbcs according to a mass-action law with constant rate k; (v) infected Rbcs
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then produce immature merozoites at rate p and are killed (ruptured) at rate µ(p) asso-

ciated with the production rate; and finally, (vi) a proportion εc of immature merozoites

remains asexual and keep searching for healthy Rbcs, whereas the rest mature sexually

in the bloodstream.

Translating the diagram into differential equations, we obtain the following model

system 

Ṫ (t) = λ − dT − kVMT,

Ṫ ∗(t) = kVMT − µ(p)T ∗,

V̇I(t) = pT ∗ − d1VI − cVI ,

V̇M(t) = ε1cVI − d1VM,

˙̄VM(t) = (1 − ε1)cVI − d1V̄M.

(4.2.1)

Clearly, the last equation in system (4.2.1) is decoupled from the others. Hence, we

only need to consider the following reduced system



Ṫ (t) = λ − dT − kVMT,

Ṫ ∗(t) = kVMT − µ(p)T ∗,

V̇I(t) = pT ∗ − d1VI − cVI ,

V̇M(t) = ε1cVI − d1VM.

(4.2.2)

When a host is infected by two different species of malaria parasites, the dynamics

of the Rbcs and the parasites of the two species within the host can be described by the

following system of ODEs which is a very straightforward expansion of the one species
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model (4.2.2): 

Ṫ (t) = λ − dT − k1VM1T − k2VM2T,

Ṫ ∗1(t) = k1VM1T − µ(p1)T ∗1 ,

Ṫ ∗2(t) = k2VM2T − µ(p2)T ∗2 ,

V̇I1(t) = p1T ∗1 − d1VI1 − c1VI1,

V̇I2(t) = p2T ∗2 − d2VI2 − c2VI2,

V̇M1(t) = ε1c1VI1 − d1VM1,

V̇M2(t) = ε2c2VI2 − d2VM2.

(4.2.3)

Here the meanings of all variables and parameters are similar to those in system (4.2.2)

and self-explanatory, with the integer subscripts 1 and 2 denoting species 1 and 2 re-

spectively. Similarly, the model system (4.2.3) is demonstrated by the diagram in Figure

4.2.

Figure 4.2: Two-species case.

The form of the model system (4.2.3) is a special case of a more general system

studied in [10] where n strains and k development stages are considered. Hence, we

can use the results in [10] to obtain the dynamics of system (4.2.2). To this end, we
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introduce the following two quantities

Ri =
λkiεici pi

ddiµ(pi)(di + ci)
, i = 1, 2.

Each of them is the respective basic reproduction number for the corresponding

parasite species in the absence of the other species. Then, R0 = max (R1,R2), gives the

full basic reproduction number for model (4.2.3) (see, [10]). Applying Theorem 3.1

in [10] to (4.2.3), it follows that the dynamics of model (4.2.3) can be described by the

following theorem:

Theorem 4.2.1 For (4.2.3), the following hold.

(i) If R0 ≤ 1, then the infection free equilibrium (IFE) E0 = (λ/d, 0, 0, 0, 0, 0, 0, ) is

globally asymptotically stable in<7
+;

(ii) If R0 > 1, then E0 becomes unstable. In this case, there are the following possi-

bilities:

(ii)-1 If R1 > 1 and R2 < 1, then in addition to the IFE, there is the species 1

endemic equilibrium E1, which is globally asymptotically stable in

<7
+ \ {E0};

(ii)-2 If R2 > 1 and R1 < 1, then in addition to the IFE, there is the species 1

endemic equilibrium E2, which is globally asymptotically stable in

<7
+ \ {E0};

(ii)-3 If both R1 > 1 and R2 > 1, but R1 > R2, then in addition to the IFE, there

are the species 1 endemic equilibrium E1 and species 2 endemic equilibrium

E2; but E2 is unstable and E1 is globally asymptotically stable in

<7
+ \ {E0, E2};
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(ii)-3 If both R1 > 1 and R2 > 1, but R2 > R1, then in addition to the DFE, there

are the species 1 endemic equilibrium E1 and species 2 endemic equilibrium

E2; but E1 is unstable and E2 is globally asymptotically stable in

<7
+ \ {E0, E1};

Theorem 4.2.1 shows that both of the malaria parasites will all die out (when R0 ≤

1), or competitive exclusion generically holds when R0 > 1—“generic” in the sense of

R1 , R2. In [10], no results were obtained for the case when there are more than one

species that have the same value of its species-specific reproduction number. Turning

to the two species case, this corresponds to the case R1 = R2 > 1. Some tedious but

straightforward calculations show that in such a critical situation, in addition to E0, E1

and E2, there will be infinitely many co-existence equilibria (positive equilibria where

all components are positive). This and the results in Theorem 4.2.1 are demonstrated in

Figure 4.3, where the equilibria shown by bold font are the stable ones.

Although the global dynamics of system (4.2.3) are unknown when R1 = R2 > 1,

we conjecture that the asymptotical behavior of a solution depends on the initial data.

Since R1 and R2 contain more than ten model parameters, the equation R1 = R2 > 1

is indeed a very sensitive condition and is unlikely to hold in reality. Therefore, we

conclude that generically, two species of the malaria parasites cannot co-persist within

a single host. This suggests that when modeling the spread of malaria at the population

level, we can exclude the class of hosts that carry two species of the malaria parasites.
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Figure 4.3: Summary of equilibria and their stabilities: only those in bold font are
stable. Red line represents the co-existence.

4.3 Between-host level

In this section, we explore the spread of two species of the malaria parasites between

the human and mosquito populations. To this end, we need a basic model for a single

species and then extend it to a model for two species, as we did for the within host level

in the previous section .
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4.3.1 A single species model

For a single species, we propose the following model, which is a modification of the

classic Ross-Macdonald model:



S ′H = bHNH − dHS H − ac1
S H

NH
IM + βRH,

I′H = ac1
S H

NH
IM − dHIH − γIH,

R′H = γIH − dHRH − βRH,

S ′M = bMNM − dMS M − ac2S M
IH

NH
,

I′M = ac2S M
IH

NH
− dMIM.

(4.3.1)

Here, the host population is divided into three classes: susceptible (S H), infectious (IH)

and recovered (RH), with NH = S H + IH + RH being the total host population; the

mosquito population is divided into two classes: susceptible (S H) and infectious (IH),

with NM = S M + IM being the total mosquito population. Our emphasis in this work is

the interaction of two species, thus we ignore the latency since incorporation of latency

will result in a model that is an infinite dimensional system, and hence, increase the

level of difficulty.

The model parameters are explained below:

• bH and bM are the birth rates of humans and mosquitoes (for humans, ”birth” is

in a general sense including other recruitments besides natural birth), and dH and

dM are the death rates of humans and mosquitoes;

• a is the biting rate, c1 is the probability that a bite by an infectious mosquito of a

susceptible human being will cause infection, and c2 is the probability that a bite

by a susceptible mosquito of an infectious human being will cause infection;

• γ is the combined recover rate including the natural recovery and the recovery
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due to treatments;

• the temporary immunity of the recovered hosts follows a negative exponential

distribution e−βt, hence recovered hosts return to the susceptible class at rate β.

It is known that malaria causes deaths of humans. Here, to make the model more

mathematically tractable, we also assume that sufficient and effective treatments are

available so that there will be no deaths caused by malaria. We further assume that

in the absence of the disease, recruitment and death for both human and mosquito

populations are balanced so that the total populations of host and mosquitoes remain

constants. This is achieved by assuming bH = dH and bM = dM in (4.3.1).

Under the above scenarios, the total populations of human beings and mosquitoes

are constants since S ′H + I′H + R′H = bHNH − dH(S H + IH + RH) = bHNH − dHNH = 0 and

S ′M + I′M = bMNM − dM(S M + IM) = bMNM − dMNM = 0. This allows us to replace the

term RH by NH − S H − IH and S M = 1 − IM to reduce the system. Rescaling the system

by S H
NH
→ S H, IH

NH
→ IH and IM

NM
→ IM leads to


S ′H = dH − dHS H − ac1mS HIM + β(1 − S H − IH),

I′H = ac1mS HIM − dHIH − γIH,

I′M = ac2(1 − IM)IH − dMIM.

(4.3.2)

where m = NM/NH. By the standard method (see, e.g., Smith [16] or Thieme [24]), one

can show that for any given initial values x0 = (S H(0), IH(0), IM(0)) satisfying

0 ≤ S H(0) ≤ 1, 0 ≤ IH(0) ≤ 1, 0 ≤ IM(0) ≤ 1, (4.3.3)

the system (4.3.2) has a unique solution (S H(t, x0), IH(t, x0), IM(t, x0)) satisfying
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(S H(0, x0), IH(0, x0), IM(0, x0)) = x0 and

0 ≤ S H(t, x0) ≤ 1, 0 ≤ IH(t, x0) ≤ 1, 0 ≤ IM(t, x0) ≤ 1, (4.3.4)

for all t ≥ 0. Thus, model (4.3.2) (and hence (4.3.1)) is well-posed.

Obviously, system (4.3.2) admits the disease free equilibrium: E0 = (1, 0, 0). Lin-

earizing system (4.3.2) at E0 leads to the following linear system


S ′H = −(dH + β)S H − βIH − ac1mIM,

I′H = −(dH + γ)IH + ac1mIM

I′M = ac2IH − dMIM,

(4.3.5)

from which, we can obtain the next generation matrix FV−1 where

F =

 0 ac1

ac2m 0

 , V =

 (dH + γ) 0

0 dM

 .
By the next generation method [25], the basic reproduction number of the model (4.3.2)

is given as the spectral radius of FV−1:

R0 = r(FV−1) =

√
a2c1c2m

dM(dH + γ)
(4.3.6)

The stability of E0 is fully determined by R0, as is confirmed in the following theo-

rem.

Theorem 4.3.1 The disease free equilibrium E0 is globally asymptotically stable if

R0 < 1, and it is unstable when R0 > 1.

Proof. The local asymptotic stability of E0 when R0 < 1 and the instability of
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E0 when R0 > 1 follow directly from Theorem 2 in [25]. We only need to show the

global attractiveness of E0 when R0 < 1. Applying (4.3.4) to the I′H and I′M equations

in (4.3.2), we see that (4.3.4) has the following as an upper comparison system for the

I′H and I′M equations in system (4.3.2):


I′H = ac1mIM − (dH + γ)IH,

I′M = ac2IH − dMIM,

(4.3.7)

which has the matrix representation I′(t) = (F − V)I(t) where I = (IH, IM). Clearly,

system (4.3.7) is the I′H and I′M equations in (4.3.5). Note that R0 = r(FV−1) < 1 if and

only if σ(F − V) < 0 where σ(F − V) is the stability modulus of the matrix F − V , that

is,

σ(F − V) = max{Re(λ) : λ is an eigenvalue of F − V}.

Since system (4.3.7) is linear, the local stability of the trivial solution implies its global

stability, that is, every solution of system (4.3.7) approaches the trivial solution. On the

other hand, system (4.3.7) is cooperative. By the comparison theorem (see, e.g., Theo-

rem 2.1 in [16]), for every solution satisfying system (4.3.3), its IH and IM components

will be bounded from above by the solution of system (4.3.7) that has the same initial

values, and thus, they will approach zero as well. Now, applying the theory of asymp-

totically autonomous systems (see, e.g., [3]) to the S H and S M equations in (4.3.2), we

conclude that S H(t)→ 1 as t → ∞. This implies that E0 is indeed globally attractive if

R0 < 1, and completes the proof. �

When R0 > 1, by explicitly solving the algebraic system for equilibria of sys-

tem (4.3.2), we find that the system (4.3.2) has a unique endemic equilibrium E∗ =
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(S ∗H, I∗H, I∗M) where

S ∗H =
NH (dH + γ) (dMdH + dMγ + βdM + dHae21 + ε1ac2)

ac2

(
ac1NMdH + ac1NMγ + βNHdH + βNHγ + dH

2NH + dHNHγ + βac1NM

) ,
I∗H =

NHdM (dH + γ1) (dH + β) (R0 − 1)(
ac1NMdH + ae11NMγ + βNHdH + βNHγ + dH

2NH + dHNHγ + βac1NM

)
c2a

,

I∗M =
NHdM (dH + γ1) (dH + β) (R0 − 1)

dMdH + dMγ + βdM + dHae21 + βac2
.

(4.3.8)

Moreover, by a similar argument to that in the proof of Theorem 3.3 in [28], we can

show that ifR0 > 1, then the IH and IM components of solutions of (4.3.2) are uniformly

strongly persistent in the sense stated in the following theorem.

Proposition 4.3.1 Assume that R0 > 1. Then IH and IM are uniformly persistent in

the sense that there exists an η > 0 such that for every solution of system (4.3.2) with

IH(0) > 0 and IM(0) > 0,

lim inf
t→∞

IH(t) ≥ η, lim inf
t→∞

IM(t) ≥ η.

Proof. The proof is almost a duplicate of that of Theorem 3.3 in [28], and hence is

omitted here in order to save space. �

Let

Γ :=
{
x(t) = (S H, IH, IM) ∈ R3

+ : S H + IH ≤ 1, IM ≥ 1
}

and denote the interior of Γ by Γ0. The following theorem gives sufficient conditions

that ensure the global stability of E∗ in Γ0.

Theorem 4.3.2 Assume that R0 > 1. Then the unique endemic equilibrium E∗ of system
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(4.3.2) is globally stable in Γ0 provided that

dH + dM −max (−β, β − γ) > 0. (4.3.9)

Proof. We will apply the main theorem in [11] to prove the global asymptotic sta-

bility of the unique endemic equilibrium E∗. To this end, we need to verify the so called

Bendixson criteria: q̄ < 0, where the definition of q̄ will be given later as we proceed.

For the reader’s convenience, we will adopt the same notations and terminology as used

in [11]. The theory has also been applied to some other disease models to prove the

global asymptotic stability of the unique endemic equation (see, e.g., [12])

Firstly, applying the comparison method to the S H equation in system (4.3.2), we

can easily show that S H is also uniformly persistent. This together with Proposition

4.3.1 leads to the uniform persistence of system (4.3.2) in the bounded set Γ, which im-

plies the existence of a compact K ⊂ Γ0 that is absorbing with respect to system (4.3.2)

in Γ. Namely, for every compact set K0 ⊂ Γ0, we have x(t, K0) ⊂ K for sufficiently

large t, where x(t, x0) represents the solution of (4.3.2) with the initial condition x0 ∈ K

(see, e.g., [1]).

The Jacobian matrix J of model system (4.3.2) associated with a general solution

x(t) = (S H(t), IH(t), IM(t)) is

J =


−dH − ac1mIM − β −β −ac1mS H

ac1mIM −dH − γ ac1mS H

0 ac2(1 − IM) −ac2IH − dM

 ,

and its second additive compound matrix (see [12] for the definition; also refer to the
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Appendix of [12] for detailed calculations) can be calculated as


−2dH − ac1mIM − β − γ ac1mS H ac1mS H

ac2(1 − IM) −dH − dM − β − ac1mIM − ac2IH −β

0 ac1mIM −dH − dM − ac2IH − γ

 .

Let A(x) = diag(1, IH/IM, IH/IM). Then A is C1 and nonsingular in Γ0. Let f =

( f1, f2, f3) denote the vector field of system (4.3.2). Then,

A f A = diag(0,
IM

IH
(

IH

IM
) f ,

IM

IH
(

IH

IM
) f ),

where A f is the matrix resulting from replacing each of the entries of A by its directional

derivative along f . Here for a scalar function g = g(S H, IH, IM), its directional derivative

along f is

g f =

(
∂g
∂S H

,
∂g
∂IH

,
∂g
∂IM

)
· f =

∂g
∂S H

f1 +
∂g
∂IH

f2 +
∂g
∂IM

f3.

Following [12], we construct the matrix B = (Bi j)3×3 in terms of

B11 = −2dH − ac1mIM − β − γ,

B12 =

(
ac1mS H

IM

IH
, ac1mS H

IM

IH

)
,

B21 =

(
ac2(1 − IM)

IH

IM
, 0

)T

,

B22 =

 b11 −β

ac1mIM b22

 ,
b11 =

IM

IH
(

IH

IM
) f − dH − dM − β − ac1mIM − ac2IH,

b22 =
IM

IH
(

IH

IM
) f − dH − dM − γ − ac2IH.
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We select the vector norm in R3 to be

||(u, v,w)||0 = sup {|u|, |v| + |w|} ,

and let κ0 denote the Lozinskiĭ measure induced by this vector norm (for the definition

see e.g., [13]). By [14], the following estimate holds:

κ0(B) ≤ sup {g1, g2} , (4.3.10)

where

g1 = B11 + ||B12||r = −2dH − ac1mIM − β − γ +
ac1mS HIM

IH
, (4.3.11)

and
g2 = κ1(B22) + ||B21||l =

IM

IH
(

IH

IM
) f − dH − dM − ac2IH

+ max{−β, β − γ} +
ac1(1 − IM)IH

IM
.

(4.3.12)

Here, for ||(u, v)||r = max{|u|, |v|}, ||(u, v)T ||l = |u| + |v|, and κ1 is the Lozinskiĭ measure

with respect to the l1 norm in R2. Thus, κ1(B22) is calculated by the following procedure:

add the absolute value of the off-diagonal elements to the diagonal one in each column

of B22, then take the maximum of the two sums [4].

From the equation (4.3.2), we find

IM

IH
(

IH

IM
) f =

I′H
IH
−

I′M
IM
, (4.3.13)

and
ac1mS HIM

IH
=

I′H
IH

+ dH + γ, (4.3.14)
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ac2(1 − IM)IH

IM
=

I′M
IM
− dMIM. (4.3.15)

The uniform persistence of the solution in Proposition 4.3.1 ensures that there are η > 0

and T0 > 0, for any solution of (4.3.2), regardless of the initial condition in K (the

absorbing set), satisfying

IH(t) > η, IM(t) > η, for t > T0. (4.3.16)

Substituting equalities (4.3.13)-(4.3.15) into (4.3.11)-(4.3.12) and making use of

inequalities (4.3.16), we obtain

g1 = −2dH − ac1mIM − β − γ +
ac1mS HIM

IH

≤ −2dH − ac1mη − β − γ +
I′H
IH

+ dH + γ

≤
I′H
IH
− (dH + β) for t > T0,

(4.3.17)

and

g2 =
I′H
IH
−

I′M
IM
− dH − dM + max{−β, β − γ} − ac2IH +

ac2(1 − IM)IH

IM

=
I′H
IH
− dMIM − dH − dM + max{−β, β − γ} − ac2IH

≤
I′H
IH
− dHη − dM − dM + max{−β, β − γ} − ac2η

≤
I′H
IH
− (dH + dM −max{−β, β − γ}) for t > T0.

(4.3.18)

Let δ1 = dH +β and δ2 = dH + dM −max{−β, β−γ}, and set δ = min{δ1, δ2}. Then under

the condition (4.3.9), δ > 0 and

κ0(B) ≤
I′H
IH
− δ for t > T0.
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Thus, along each solution (S H, IH, IM) to (4.3.2) such that (S H(0), IH(0), IM(0)) ∈ K

and for t > T0, we get

1
t

∫ t

0
κ0(B(s)) ds ≤

1
t

∫ T

0
κ0(B(s)) ds +

1
t

log
IH(t)
IH(T )

− δ
t − T

t
→ −δ < 0 as t → ∞.

Therefore, we have

q̄ := lim
t→∞

sup sup
x0∈Γ0

1
t
κ0(B(s, x0)) ds ≤ −

δ

2
,

verifying the Bendixson criterion. By theorem 2.3 and 3.1 in [11], we conclude that E∗

is globally asymptotically stable in Γ0, and the proof is complete. �

Remark 4.3.1 Relation (4.3.9) can be guaranteed by some more explicit condition.

For example, each of the following is such a condition:

(C1) β < r
2 ;

(C2) γ

2 ≤ β < dH + dM + γ.

Remark 4.3.2 Translating the results in Theorems 4.3.1 and 4.3.2 for (4.3.2) to (4.3.1),

parallel conclusions can be drawn for system (4.3.1) in<4
+ space in a straightforward

way by adding the component S m = 1 − Im.

4.3.2 A two-species model

In this subsection, we consider the situation in which two species of malaria parasites

have been brought into the same region. We would like to know if both two species can

persist in the region. We naturally wish to expand the one-species model (4.3.1) to this

case by adding another set of variables corresponding to the second species. In other
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words, we will adopt all assumptions in Subsection 4.3.1 leading to system (4.3.1), and

accordingly propose the following two-species model



S ′H = dHNH − dHS H − ae11
S H

NH
IM1 − ae12

S H

NH
IM2 + β1RH1 + β2RH2,

I′H1 = ae11
S H

NH
IM1 − dHIH1 − γ1IH1 + ae1

RH2

NH
IM1,

R′H1 = γ1IH1 − ae2
RH1

NH
IM2 − dHRH1 − β1RH1,

I′H2 = ae12
S H

NH
IM2 − dHIH2 − γ2IH2 + ae2

RH1

NH
IM2,

R′H2 = γ2IH2 − ae1
RH2

NH
IM1 − dHRH2 − β2RH2,

S ′M = dMNM − dMS ∗M − ae21S M
IH1

NH
− ae22S ∗M

IH2

NH
,

I′M1 = ae21S M
IH1

NH
− dMIM1,

I′M2 = ae22S M
IH2

NH
− dMIM2.

(4.3.19)

Here, all variables and parameters are self-explanatory and are as in (4.3.1), but some

have integer subscripts that distinguish species 1 and species 2, respectively, except

for the last term in the I′H1 and I′H2 equations. These two new terms are the result of

the complication of cross immunity between two species. Indeed, immunization stud-

ies in [9, 31] with P. vivax and P. falciparum RAS performed with human volunteers

did not seem to support cross immunity, meaning that individuals recovered from in-

fection by one speciesn do not gain extra protection from the other species. Another

study shown in [8] conducted in Southeast Asia actually showed that the incidence of

P.vivax infection after treatment of P.falciparum infection is substantially greater than

that would be expected on the basis of entomological inoculation rates, and this moti-

vates us to use a probability parameter e1 different from e11, and e2 different from e12.

Clearly, e1 = 0 = e2 corresponds to the situation of complete cross immunity, and in

this case the model is of competitive nature. However, when e1 > 0 and e2 > 0, the
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model demonstrates not only competitive but also cooperative interactions between the

two species.

This model can be graphically illustrated by the diagram in Figure 4.4.

Figure 4.4: Two species case at population level

We still denote by NH the total population of human beings, by NM the total pop-

ulation of the female mosquitoes. Addition still gives S ′H + I′H1 + R′H1 + I′H2 + R′H2 =

bHNH − dHNH = 0 and S ′M + I′M1 + I′H1 = bHNM − dHNM = 0, that is, NH and NM remain

constants. As usual, we rescale the variables in system (4.3.19) by

S H

NH
→ S H,

IHi

NH
→ IHi,

RHi

NH
→ RHi, i = 1, 2,

and
S M

NM
→ S M,

IMi

NM
→ IMi, i = 1, 2.
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yielding



S ′H = dH − dHS H − ae11mS HIM1 − ae12mS HIM2 + β1RH1 + β2RH2,

I′H1 = ae11mS HIM1 − dHIH1 − γ1IH1 + ae1mRH2IM1,

R′H1 = γ1IH1 − ae2mRH1IM2 − dHRH1 − β1RH1,

I′H2 = ae12mS HIM2 − dHIH2 − γ2IH2 + ae2mRH1IM2,

R′H2 = γ2IH2 − ae1nRH2IM1 − dHRH2 − β2RH2,

S ′M = dM − dMS M − ae21S MIH1 − ae22S MIH2,

I′M1 = ae21S MIH1 − dMIM1,

I′M2 = ae22S MIH2 − dMIM2.

(4.3.20)

where m = NM/NH.

From the biological meaning of all variables in system (4.3.20), we only need to

consider system (4.3.20) within the set

X =


(S H, IH1,RH1, IH2,RH2, S M, IM1, IM2) ∈ <8 :

0 ≤ S H, S MIH1,RH1, IH2,RH2, IM1, IM2 ≤ 1,

S H + IH1 + RH1 + IH2 + RH2 = 1, S M + IM1 + IM1 = 1.


.

Since the right-hand side contains only polynomial functions, by the standard ODE

theory, for any initial vector

x0 = (S H(0), IH1(0),RH1(0), IH2(0),RH2(0), S M, IM1(0), IM2(0)) ∈ <8,

system (4.3.20) has a unique solution

x(t) = (S H(t, x0), IH1(t, x0),RH1(t, x0), IH2(t, x0),RH2(t, x0), S M(t, x0), IM1(t, x0), IM2(t, x0)),
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satisfying x(0) = x0. Denote by Φ(t) the semi-flow generated by the solutions of system

(4.3.20), i.e.,

Φ(t)x0 = x(t, x0)

= (S H(t, x0), IH1(t, x0),RH1(t, x0), IH2(t, x0),RH2(t, x0),

S M(t, x0), IM1(t, x0), IM2(t, x0)) .

By the standard argument on invariance of semi-flows (see, e.g., Smith [16]), we can

easily show that the set X is positively invariant for system (4.3.20) in the sense that

if x0 ∈ X, then Φ(t)x0 ∈ X for all t ≥ 0. This is justification that the model (4.3.20)

is well-posed and is thus biologically meaningful. In the rest of this chapter, we will

discuss the long term dynamics of (4.3.20) in X.

4.3.3 A two-species model—disease free equilibrium and basic re-

production number

The model (4.3.20) has a disease free equilibrium (DFE), given by Ē0 = (1, 0, 0, 0, 0, 1, 0, 0, ).

Here in this section, we will add a bar to the notation for the equilibria and basic re-

production numbers to distinguish the two-species case from the one-species case in

section 4.3.1.

To explore the possibilities of other equilibria, we define

Ri =

√
a2e1ie2im

dM(dH + γi)
, i = 1, 2.

Clearly, Ri is the i-species basic reproduction number for the malaria parasite in the

absence of species j ( j , i). Therefore, by the results in Section 4.3.1, we know that if
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R1 > 1, then there is the species 1 endemic equilibrium

Ē∗1 = (S ∗H1, I
∗
H1,R

∗
H1, 0, 0, S

∗
M1, I

∗
M1, 0)

where S ∗H1, I∗H1, S ∗M and I∗M1 are all positive constants given by formulas similar to

(4.3.8), but with those species specific parameters associated to species 1, and R∗H1 =

1 − S ∗H1 − I∗H1. Similarly, when R2 > 1, there is the species 2 endemic equilibrium

Ē∗2 = (S ∗H2, 0, 0, I
∗
H2,R

∗
H2, 0, S

∗
M2, I

∗
M12)

with R∗H2 = 1 − S ∗H2 − I∗H2.

Linearizing system (4.3.20) at Ē0 leads to



S ′H = −dHS H − ae11mIM1 − ae12mIM2 + β1RH1 + β2RH2,

I′H1 = ae11mIM1 − (dH + γ1)IH1

R′H1 = γ1IH1 − (dH + β1)RH1,

I′H2 = ae12mIM2 − (dH + γ2)IH2,

R′H2 = γ2IH2 − (dH + β2)RH2,

S ′M = −dMS M − ae21IH1 − ae22IH2,

I′M1 = ae21IH1 − dMIM1,

I′M2 = ae22IH2 − dMIM2.

(4.3.21)

Note that in system (4.3.21), the four equations for I′H1, IH2, IM1 and IM2 are decoupled
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from the other four equations, forming the following sub-system:



I′H1 = ae11mIM1 − dHIH1 − γ1IH1,

I′M1 = ae21IH1 − dMIM1,

I′H2 = ae12mIM2 − dHIH2 − γ2IH2,

I′H1 = ae22IH2 − dMIM2.

(4.3.22)

Let Ī = (IH1, IM1, IH2, IM2). Note that we have switched the order of IM1 and IH2 in Ī.

Obviously, system (4.3.22) can be represented by the matrix form

Ī′(t) = (F̄ − V̄)Ī(t). (4.3.23)

where F̄ is the new infection matrix given by

F̄ =



0 ae11m 0 0

ae21 0 0 0

0 0 0 ae12m

0 0 ae22 0


,

and

V̄ =



(dH + γ1) 0 0 0

0 dM 0 0

0 0 (dH + γ2) 0

0 0 dM


.



133

Following [25], the next generation matrix for the model (4.3.20) is then given by

F̄V̄−1 =



0 ae11m/dM 0 0

ae21/(dH + γ1) 0 0 0

0 0 0 ae12m/dM

0 0 ae22/(dH + γ2) 0


,

and the basic reproduction number is the spectral radius of this matrix:

R̄0 = r(F̄V̄−1) = max


√

a2e11e21m
dM(dH + γ1)

,

√
a2e12e22m

dM(dH + γ2)

 = max{R1,R2}. (4.3.24)

The following theorem is a direct result of Theorem 2 in [25], which confirms that

the stability of the DFE is fully determined by R̄0.

Theorem 4.3.3 . If R̄0 < 1, then the disease free equilibrium is asymptotically stable.

If R̄0 > 1, it is unstable.

4.3.4 A two-species model—disease persistence

When R̄0 > 1, at least one of the two individual basic reproduction numbers R1 and R2

is larger than 1. If R1 > 1, we have seen in the above subsection that

Ē∗1 = (S ∗H1, I
∗
H1,R

∗
H1, 0, 0, S

∗
M1, I

∗
M1, 0) exists. We introduce the following quantity

R̄21 =
a2e12e22mS ∗H1S ∗M1 + a2e22e2mS ∗M1R∗H1

dM(dH + γ2)
,

which measures the number of secondary infections by species 2, assuming that species

1 is settled at Ē∗1. We may call R̄21 the species 1 mediated basic reproduction number

for species 2. Symmetrically, if R2 > 1, then Ē∗2 = (S ∗H2, 0, 0, I
∗
H2,R

∗
H1, 0, S

∗
M2, I

∗
M2)

exists and we can define the species 2 mediated basic reproduction number for species
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1 by

R̄12 =
a2e11e21mS ∗H2S ∗M2 + a2e21e1mS ∗M2R∗H2

dM(dH + γ2)
.

We point out that the cooperative effects between the two species due to the lack of

cross immunity is also reflected in the fact that R̄21 and R̄12 are different from R̄0.

The following theorem provides some information on the disease dynamics under

R̄0 > 1.

Theorem 4.3.4 . Assume that R̄0 > 1.

(i) In the case R1 > 1: if R̄21 > 1, then Ē∗1 is unstable; if R̄21 < 1, then Ē∗1 is

asymptotically stable provided that

dH + dM −max (−β1, β1 − γ1) > 0. (4.3.25)

(ii) In the case R2 > 1: if R̄12 > 1, then Ē∗2 is unstable; if R̄12 < 1, then Ē∗1 is

asymptotically stable provided that

dH + dM −max (−β2, β2 − γ2) > 0. (4.3.26)

Proof: We only give the proof of (i), as the proof of (ii) is similar.

Linearizing system (4.3.20) at Ē∗1 and expanding the determinant defining the char-

acteristic equation, after some tedious calculations, the characteristic equation H2(z) =

0 is given by

H(z) = (z + dM)(z + dH)(z + β2 + ae1nI∗M1
)h1(z)h2(z), (4.3.27)
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and where

h1(z) = z2 + (γ1 + dM + dH)z + (dMdH + dMγ1 − a2e12e22mS ∗H1S ∗M1 − a2e22e2mS ∗M1R∗H1),

h2(z) = z3 + Q1z2 + Q2z + Q3,

Q1 = ac2I∗H1 + γ1 + ac1mI∗M1 + dM + 2 dH + β1,

Q2 = β dM + γ1dM + ac1mI∗M1dM + 2 dMdH + a2c1mIM1c2I∗H1 + γ1ac2I∗H1

− a2c2S ∗M1c1mS ∗H1 + ac1mI∗M1γ1 + β1γ1 + ac1mI∗M1β1 + 2ac2I∗H1dH + dHγ1

+ ac1mI∗M1dH + β1 dH + d2
H + ac2I∗H1β1

Q3 = dMβ1γ1 + ac2I∗H1d2
H + dMac1mI∗M1dH + ac2I∗H1dHβ1 + a2c1mI∗M1c2I∗H1dH

− β1 a2c2S ∗M1c1mS ∗H1 + dMd2
H + a2c1mI∗M1β1 c2I∗H1 − dHa2c2S ∗M1c1mS ∗H1

+ a2c1mI∗M1γ1 c2I∗H1 + ac1mIM1β1 dM + dMac1mI∗M1γ1 + dMdHβ1 + dMdHγ1

+ β1 γ1 ac2I∗H1 + dHγ1 ac2I∗H1,

which are obtained in Maple. By tedious calculations (with the help of Maple), we can

show that Qi > 0 for i = 1, 2, 3. Since there is only difference in notation between h2(z)

and the characteristic equation of system (4.3.2) at the endemic equilibrium E∗, we can

show that

Q1Q2 − Q3 > 0 (4.3.28)

by Theorem 4.3.2 and Routh-Hurwitz criteria. Inequality (4.3.28) implies that all roots

of h2(z) = 0 have negative real parts. Hence, the stability of Ē∗1 is fully determined by

the roots of h1(z) = 0. It is easily seen that if R̄21 < 1 then the two roots of h1(z) = 0

have negative real parts, implying that Ē∗1 is locally asymptotically stable; and if R̄21 > 1

then h1(z) = 0 has a positive real root implying that Ē∗1 unstable. The proof is complete.

�
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Conditions conditions (4.3.9), (4.3.25) and (4.3.26) can also be expressed by some

explicit conditions, similar to those in Remark 4.3.1.

The next theorem gives conditions under which one species of the malaria parasites

can persist in the host and vector populations.

Theorem 4.3.5 Suppose R̄0 > 1.

(i) If either (A1) R̄1 > 1 and R̄2 < 1; or (B1) R̄2 > 1, R̄12 > 1 and condtion

(4.3.26) holds, then IH1 and IM1 are uniformly persistent in the sense that there

is a positive constant η1 > 0 such that for every solution of system (4.3.20) with

IH1(0) > 0 and and IM1(0) > 0, there hold

lim inf
t→∞

IH1(t) ≥ η1, lim inf
t→∞

IM1(t) ≥ η1.

(ii) If either (A2) R̄2 > 1 and R̄1 < 1; or (B2) R̄1 > 1, R̄21 > 1 and condition

(4.3.25) holds, then IH2 and IM2 are uniformly persistent in the sense that there

is a positive constant η2 > 0 such that for every solution of system (4.3.20) with

IH2(0) > and and IM2(0) > 0, there hold

lim inf
t→∞

IH2(t) ≥ η2, lim inf
t→∞

IM2(t) ≥ η2.

Proof: We will only show the proof for case (i), as the proof the case (ii) is similar.

Denote

X0 = {(S H, IH1,RH1, IH2,RH2, S M, IM1, IM2) ∈ X : IH1 > 0 and IM1 > 0} ,

∂X0 = X/X0 = {(S H, IH1,RH1, IH2,RH2, S M, IM1, IM2) ∈ X, IH1 = 0 or IM1 = 0}.

By the form of system (4.3.20), it is easy to see that both X0 and X are positively
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invariant. Obviously, ∂X0 is relatively closed in X. The boundedness of the solution

established in Section 4.3.2 confirms that system (4.3.20) is a point dissipative system.

Set

M∂ =


(S H(0), IH1(0),RH1(0), IH2(0),RH2(0), S M(0), IM1(0), IM2(0)) ∈ X :

(S H(t), IH1(t),RH1(t), IH2(t),RH2(t), S M(t), IM1(t), IM2(t)) satisfies (4.3.20)

and belongs ∂X0,∀t ≥ 0.


,

and let

M0 = {(S H, IH1,RH1, IH2,RH2, S M, IM1, IM2) ∈ X : IH1 = 0, IM1 = 0} .

We show that M∂ = M0. Clearly, we have M∂ ⊃ M0, so we only need to prove M∂ ⊂ M0.

Suppose not, then there exists x0 such that x0 ∈ M∂ but x0 < M0. Then, either the second

or the seventh component is positive. For the former, by the seventh equation in system

(4.3.20), IM1(t) is activated (nonzero) for t > 0 which in turn activates IH1(t), implying

that x0 < M∂, a contradiction. For the later, by the second equation in system (4.3.20),

IH1(t) is activated for t > 0 which in turn activates IM1(t), implying that x0 < M∂, also a

contradiction. Thus, we have shown M∂ = M0.

Next, we show that for every solution in X0, the IH and IM components are weakly

persistent in the sense that

lim
t→∞

sup IH1(t) > 0 and lim
t→∞

sup IM1(t) > 0. (4.3.29)

For the sake of contradiction, we assume that inequalities (4.3.29) does not hold. Then

either (P1) limt→∞ IH1(t) = 0, or (P2) limt→∞ IH1(t) = 0. For (P1), applying the theory

of asymptotically autonomous systems to the I′M(t) equation, we conclude (P2) also
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holds. Similarly, (P2) also implies (P1). Further applying the theory of asymptotically

autonomous systems to the RH1(t) equation, it follows that RH1(t)→ 0 as t → ∞. Thus,

either (P1) or (P2) leads to

lim
t→∞

IH1(t) = 0, lim
t→∞

IM1(t) = 0, and lim
t→∞

RH1(t) = 0. (4.3.30)

Therefore, the S H, IH2, RH2, S M and IM2 equations in system (4.3.20) have the fol-

lowing as limiting system:



S ′H = dH − dHS H − ae12mS HIM2 + β2RH2,

I′H2 = ae12mS HIM2 − dHIH2 − γ2IH2,

R′H2 = γ2IH2 − dHRH2 − β2RH2,

S ′M = dM − dMS M − ae22S MIH2,

I′M2 = ae22S MIH2 − dMIM2.

(4.3.31)

Case (A1) : R1 > 1 and R2 < 1. By Theorem 4.3.1, (1, 0, 0, 1, 0) is an equilibrium

of system (4.3.31) and it is globally asymptotically stable if R2 < 1. Therefore, for any

ε̄1 > 0, there exists T̄1 > 0 such that

S H(t) ≥ 1 − ε̄1, S M(t) ≥ 1 − ε̄1, ,RH2(t) ≥ ε̄1, for t > T̄1. (4.3.32)

Applying the inequalities in (4.3.32) to the IH1 and IM1 equations in the original system

(4.3.20), we obtain

I′H1 ≥ ae11m(1 − ε̄1)IM1 − dHIH1 − γ1IH1,

I′M1 ≥ ae21(1 − ε̄1)IH1 − dMIM1,

for t > T̄1. (4.3.33)
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This suggests the following linear comparison system


u′1 = ae11m(1 − ε̄1)u2 − (dH + γ1)u1,

u′2 = ae21(1 − ε̄1)u1 − dMu2.

(4.3.34)

Because R1 > 1, by continuity, we can choose ε̄1 sufficiently small so that

a2e11e21m(1 − ε̄)2

dM(dH + γ1)
> 1, (4.3.35)

which implies that the stability modulus of system (4.3.34) is positive. Therefore the

positive solutions of system (4.3.34) are unbounded. On the other hand, system (4.3.34)

is cooperative and hence, by the comparison theorem (see, e.g., [16] or [23]), we have

IH1(t) ≥ u1(t) and IM1(t) ≥ u2(t), where (u1(t), u2(t)) is the positive solution of (4.3.34)

with initial condition (IH1(0), IM1(0)). Now the unboundedness of (u1(t), u2(t)) implies

unboundedness of (IH1, IM1(t)), a contradiction.

Case (B1): R2 > 1, R̄12 > 1 and condition (4.3.26) holds. Apply Theorem 4.3.2 to

system (4.3.31) (under R2 > 1 and condtion (4.3.26)), we have S H(t) → S ∗H2, IH2(t) →

I∗H2, RH2(t) → R∗H2, S M(t) → S ∗M2, IM2(t) → I∗M2. Hence, for any ε̄2 > 0, there exists

T̄2 > 0 such that

S H(t) ≥ S ∗H2 − ε̄2, S M(t) ≥ S ∗M2 − ε̄2, ,RH2(t) ≥ R∗H2 − ε̄2, for t > T̄2. (4.3.36)

Applying the inequalities in (4.3.36) to IH1 and IM1 equations in the original system

(4.3.20), we obtain

I′H1 ≥ ae11m(S ∗H2 − ε̄2)IM1 − dHIH1 − γ1IH1 + ae1m(R∗H2 − ε̄2)IM1,

I′M1 ≥ ae21(S ∗M2 − ε̄2)IH1 − dMIM1,

for t > T̄2

(4.3.37)
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This suggests the following linear comparison system


v′1 = [ae11m(S ∗H2 − ε̄2) + ae1m(R∗H2 − ε̄2)]v2 − (dH + γ1)v1,

v′2 = ae21(S ∗M2 − ε̄2)v1 − dMv2.

(4.3.38)

Since R̄12 > 1, by continuity, we can choose ε̄2 sufficiently small so that

[ae11m(S ∗H2 − ε̄2) + ae1m(R∗H2 − ε̄2)]ae21(S ∗M2 − ε̄2)
dM(dH + γ2)

=
a2e11e21m(S ∗H2 − ε̄2)(S ∗M2 − ε̄2) + a2e21e1m(S ∗M2 − ε̄2)(R∗H2 − ε̄2)

dM(dH + γ2)

> 1.

This implies that the characteristic equation of the linear system (4.3.38) has a positive

real root, which means the positive solutions of (4.3.34) are unbounded. Similar to the

proof of case (A1), this would further imply that (IH1(t), IM1(t)) is unbounded, also a

contradiction.

Combining the above, we have proved that (4.3.29) is valid. In the case of (A1), Ē0

is the only equilibrium in M0, and every forward orbit in M0 converges to Ē0. Note that

(4.3.29) implies that Ē0 is an isolated invariant set in X, WS (Ē0) ∩ X0 is empty where

WS is a stable manifold. By [ [24], Theorem 4.6] , we conclude that system (4.3.20)

is uniformly persistent with respect to (X0, ∂X0). Under condition (B1), there are only

two equilibria Ē0 and Ē∗2 in M0. From (4.3.29) and the fact that M∂ = M0, we know that

these two equilibria are isolated in X, and WS (Ē0) ∩ X0 and WS (Ē∗2) ∩ X0 are empty,

and so every forward orbit in M0 converges to either Ē0 or Ē∗2. Moreover Ē0 and Ē∗2

are acyclic in M0. Again, by [ [24], Theorem 4.6], we conclude that system (4.3.20) is

uniformly persistent with respect to (X0, ∂X0). Therefore, under either (A1) or (B1), we

have IH and IM are uniformly persistent, the proof is complete. �
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Combining (i) and (ii) in the above theorem, we have the following results on per-

sistence of both species of the malaria parasites.

Theorem 4.3.6 Assume one of the following holds,

(i) R̄1 > 1, R̄2 < 1, R̄21 > 1 and condition (4.3.25) holds;

(ii) R̄2 > 1, R̄1 < 1, R̄12 > 1 and condition (4.3.26) holds; and

(iii) R̄1 > 1, R̄2 > 1, R̄12 > 1, R̄21 > 1 and conditions (4.3.25), (4.3.26) hold;

then both species are uniformly persistent in the sense that there is a positive constant

η̄, such that every solution (S H, IH1,RH1, IH2,RH2, S M, IM1, IM2) with initial condition in

X̄0 satisfies,

lim
t→∞

inf IHi ≥ η, lim
t→∞

inf IMi ≥ η, i = 1, 2,

where X̄0 = {(S H, IH1,RH1, IH2,RH2, S M, IM1, IM2)| 0 < S H, S M ≤ 1, 0 ≤ RH1, RH2 <

1, 0 < IH1 < 1, 0 < IM1 < 1, 0 < IH2 < 1, 0 < IM2 < 1}. Moreover, system ((4.3.20))

admits at least one positive equilibrium(co-existence equilibrium).

Proof The uniform existence of both species is a consequence of Theorem 4.3.5.

The existence of the positive equilibrium follows from the uniform persistence and the

existence theorem in [29]. �

4.4 Conclusion and discussion

We have set up a ODE model (4.3.20) to describe the dynamics of disease transmis-

sion involving two species of malaria parasites in a well mixed human and mosquito

environment. The model is a natural expansion of a one-species model (4.3.1) but with

the fact of ”no cross immunity” incorporated. The model also makes use of the result
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from a within-host model (i.e. (4.2.3)) for two species which generically excludes per-

sistence of both species within a single host. This allows us to ignore the co-infected

class in our two-species model.

We have investigated the dynamics of both systmes (4.3.1) and (4.3.20). More

specifically, we have identified the basic reproduction numbers and showed their thresh-

old role for both models by studying the stabilities of equilibiria and the persistence of

the model systems. Our analysis on the two-species model (4.3.20) shows that two

species of the malaria parasites may both persist in the region under certain circum-

stances reflected by the conditions in Theorem 4.3.6. These conditions are all expressed

in terms of inequalities, and hence, are robust in terms of parameters. This is in contrast

to the two-species model (4.2.3) at within-host level, for which competition exclusion

holds unless an identity (R1 = R2) holds. The persistence of both species claimed in

Theorem 4.3.6 can be observed in numeric simulations, see, e.g., Figure 4.5.

The persistence of both species can be partially attributed to the cooperative effect

in the model (4.3.20) which is due to the lack of cross immunity. This is reflected in

the conditions in Theorems 4.3.5 and Theorem 4.3.6. For example, in Theorem 4.3.5,

either (A1) or (B1) can lead to the persistence of species 1. While (A1) accounts for

the case that species 1 outcompetes species 2, (B1) provides a scenario that species 2

not only can survive itself but can also help species 1 survive.

Under the conditions in Theorem 4.3.6, there is a positive equilibrium for (4.3.20).

Unfortunately we are unable to study the stability of this positive equilibrium, and

the global dynamics of the model (4.3.20) under these conditions. We leave this as a

possible future work.
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Figure 4.5: Both species can persist at the population level. Simulations are done with
the following parameter values and initial conditions: a = 0.5, e1 = 0.9, e2 = 0.5, e11 =

0.4, e21 = 0.2, e12 = 0.5, e22 = 0.5, n = 7.25, γ1 = 0.3, γ2 = 0.21, dH = 0.001, dM =

0.2, β1 = 1/3, β2 = 1/6; S H = 0.6, IH1 = 0.25, RH1 = 0, IH2 = 0.15, RH2 = 0, S M =

0.8, IM1 = 0.1, IM2 = 0.1.



144

Bibliography

[1] G. J. Butler and P. Waltman, Persistence in dynamical systems, Proc. Amer. Math.

Soc., 96(1986): pp. 425-430.

[2] R. Carter and K. N. Mendis, Evolutionary and historical aspects of the burden of

Malaria, Clin. Microbiol. Rev., 15(2002): pp. 564-594.

[3] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic

models, in: O. Arino et al. (Eds.), Mathematical Population Dynamics: Analy-

sis of Heterogeneity, I. Theory of Epidemics, Wuerz, Winnepeg, Canada, 1995:

pp. 33-50.

[4] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath,

Boston, 1965.

[5] O. E. Cornejo and A. E. Ananias, The origin and age of Plasmodium vivax, Trends

Parasitol., 22(2006): pp. 558-563.

[6] J. Cox-Singh and B. Singh, Knowlesi malaria: newly emergent and of public

health importance?, Trends Parasitol., 24(2008): pp. 406-410.

[7] C. Daneshvar, T. M. Davis, J. Cox-Singh, M. Z. Rafa’ee, S. K. Zakaria, P. C. Divis

and B. Singh, Clinical and laboratory features of human Plasmodium knowlesi

infection, Clin. Infect. Dis., 49(2009): pp. 852-860.



145

[8] N. M. Douglas, F. Nosten, E. A. Ashley, L. Phaiphun, M. van Vugt, P. Singha-

sivanon, N. J. White and R. N. Price, Plasmodium vivax recurrence following

Plasmodium falciparum and mixed species malaria: risk factors and effect of an-

timalarial kinetics, Clin. Infect. Dis., 52(2011): pp. 610-620.

[9] S.L. Hoffman, L. M. Goh, T. C. Luke, I. Schneider, T. P. Le, D. L. Doolan, J.

Sacci, P. De la Vega, M. Dowler, C. Paul, D. M. Gordon, J. A. Stoute, L. W.

Church, M. Sedegah, D. G. Heppner, W. R. Ballou and T. L. Richie, Protection of

humans against malaria by immunization with radiation-attenuated Plasmodium

falciparum sporozoites, J. Infect. Dis., 185(2002): pp. 1155-1164.

[10] A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, Global analysis of new malaria

intra-host models with a competitive exclusion principle, SIAM J. Appl. Math., 67

(2006): pp. 260-278.

[11] M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems,

SIAM J.Math. Anal., 27(1996): pp. 1070-1083.

[12] M. Y. Li and J. S. Muldowney, On R. A. Smith’s autonomous convergence theo-

rem, Rocky Mountain J. Math., 25(1995): pp. 365-379.

[13] M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiol-

ogy, Math. Biosci., 125(1995): pp. 155-164.

[14] R. H. Martin JR, Logarithmic norms and projections applied to linear differential

systems, J. Math. Anal. Appl., 45(1974): pp. 432-454.

[15] K. Maitland, T. N. Williams and C. T. Newbold, P. vivax and P. falciparum: Bi-

ological interactions and the possibility of cross-species immunity, Parasitol. To-

day, 13(1997): pp. 227-231.



146

[16] F. E. McKenzie and W. H. Bossert, Mixed-species Plasmodium infections of hu-

mans, J. Parasitol., 83(1997): pp. 593-600.

[17] M. Mayxay, S. Pukrittayakamee, P. Newton and N. White, Mixed-species malaria

infections in humans, Trends Parasitol., 20(2004): pp. 233-240.

[18] K. Mendis, J. S. Barbara, P. Marchesini P and R. Carter, The neglected burden of

Plasmodium vivax malaria, Am. J. Trop. Med. Hyg., 64(2001): pp. 97-106.

[19] C. Putaporntip, T. Hongsrimuang, S. Seethamchai, T. Kobasa, K. Limkittikul,

L. Cui and S. Jongwutiwes, Differential prevalence of plasmodium infections

and cryptic Plasmodium knowlesi malaria in humans in Thailand, J Infect Dis,

199(2009): pp. 1143-1150.

[20] S. M. Rich and F. J. Ayala, Malaria: Genetic and Evolutionary Aspects (Emerg-

ing Infectious Diseases of the 21st Century), Springer US, 2006.

[21] B. Singh, S. L. Kim, A. Matusop, A. Radhakrishnan, S. S. Shamsul SS, J. Cox-

Singh, A. Thomas and D. J. Conway, A large focus of naturally acquired Plas-

modium knowlesi infections in human beings. The Lancet 2004, 363(9414): pp.

1017-1024.

[22] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of

Competitive and Cooperative Systems, American Mathematical Society, 1995.

[23] H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University

Press, Cambridge, UK, 1995.

[24] H. R. Thieme, Persistence under relaxed point-dissipativity (with application to

an endemic model), SIAM J. Math. Anal., 24(1993): pp. 407-435.



147

[25] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold

endemic equilibria for compartmental models of disease transmission, Math.

Biosci., 180(2002): pp. 29-48.

[26] P. van den Eede, H. N. Van and C. van Overmeir, Human Plasmodium knowlesi

infections in young children in central Vietnam, Malaria Journal 2009, 81475-

2875-8-24.:249 doi:10.1186.

[27] D. Wilks, M. Farrington and D. Rubenstein, The Infectious Diseases Manual,

second edition, Blackwell Publishing, 2003.

[28] Y. Xiao and X. Zou, Latencies in malaria infections and their impact on the disease

dynamics, submitted.

[29] X-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-

dimensional periodic semiflows with applications, Can. Appl. Math. Quart.,

3(1995): pp. 473-495.

[30] Roll Back Malaria, http://www.rbm.who.int/keyfacts.html, accessed on Novem-

ber 2011.

[31] http://dna.kdna.ucla.edu/parasite-course-old/malaria-

files/subchapters/immunity.htm, accessed on November 2011.



148

Chapter 5

Conclusion and future work

5.1 Conclusion

Based on the classical Ross-Macdonald model [5, 6, 7], three types of models were

proposed focusing on the infection latency in both hosts and vectors, disease dispersal

with latency in a spatially heterogeneous environment and infections by multi-species

of malaria parasites.

In Chapter 2, we derived a model that incorporates, not only the latencies of the

malaria parasites in both mosquitoes and humans, but also the variation of the laten-

cies by introducing two general probability functions (P1(t) and P2(t)). For the general

integro-differential system, the basic reproduction number was computed, ans shown to

function as a threshold for the disease dynamics. When this threshold is less than one,

without any interventions, the disease will eventually die out from the population, in

the sense that the disease free equilibrium is globally asymptotically stable; when the

reproduction number is greater than one, the disease free equilibrium is no longer sta-

ble. Under this circumstance, two types of survival functions were adopted for detailed

mathematical analysis.To model the case that the probability that an infected individ-
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ual leaves the exposed class decreases gradually with respect to time, we used the the

negative exponential probability function. Then the model was reduced to a system of

ODEs. If the latent period is fixed, then we adopted the step function as the survival

probability function, and the system becomes a model of DDEs. In both cases, we

were able to show that the disease will uniformly persist in the community if the basic

reproduction rate is greater than one. Additionally, if the disease recovery rate is zero,

all the solutions will converge to a unique endemic equilibrium, meaning that the dis-

ease will persist at a stable steady state. Moreover, from the expressions of the basic

reproduction number, we confirmed the significant impact of the latencies on disease

transmissions, regardless the various forms of survival functions. The longer the latent

period, the smaller the basic reproduction number. The results indicate that the disease

reproduction rate is over-estimated by the classical Ross-Macdonald model.

The heterogeneity of spatial environments can be either discrete or continuous. In

Chapter 3, we considered discrete diffusion between patches. A system of DDEs was

derived to describe the population dispersal. The distances between patches was as-

sumed to be beyond the flying ability of female mosquitoes and so the model only

included the dispersal terms for humans. Thus the focus was on the impact of human

dispersal on the disease transmission and spread. In addition to the linear dispersion

terms, non-local infection terms, reflecting the mobility of the individuals during the

latent period, were added as well. The equations for the latent and infective classes

were derived from that of the infected group with infection age structure. Using the

next generation operator [3, 4], we computed the global basic reproduction number for

all patches, and showed it is a threshold for the disease dynamics. We pointed out that

for small scale disease invasion fails of n patches, a global basic reproduction number

is less than one and the disease does not become endemic; however if the threshold

is greater than one, then the disease uniformly persists in the different patches when
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the patches are well connected. We focused on the two patch model, and theoretically

and numerically analyzed the relations between the dispersals from different disease

compartments (susceptible, latent, infectious) and the dynamics of the disease trans-

mission and persistence. When only the susceptible group can travel, the disease does

not disperse from one patch to another. However, the movement of susceptible and

latent individuals between patches, where the disease is in epidemic, may lead to the

persistence of malaria, even if the disease would not persist locally (the local basic

reproduction rates are less than one) when patches are isolated. When people in the

latent or infective period migrate, the disease can spread between patches and cause the

persistence of malaria in other places.

In chapter 4, we proposed a multi-species model based on the fact that there are at

least five species of malaria parasites causing human infections. The work answered

one question, whether multi-species of the parasite can persist. We set up models ad-

dressed to the co-existence issue at both within- and between- host level. We were able

to find that competition exclusion leads the co-infection of multiple species of para-

sites impossible within one host; however, the co-operative behavior may dominant the

competitive behavior at the population level, resulting in the co-existence of multiple

species in a community. This is consistent with the results reported by biologists and

epidemiologist. What is more, for a single species model at the population level, we

showed the global asymptotic stability of the unique endemic equilibrium. This which

further helps to introduce the species-mediate reproduction number for each species.

These two additional thresholds decide whether an invader species can survive or not if

the resident species has settled at its stable endemic state.
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5.2 Future work

As mentioned in the discussion part of each chapter, there are still some interesting but

challenging problems that remain open and are worth exploring in the future.

For the work in [8] addressed in Chapter 2, we did not get the global stability of

the disease endemic equilibrium when the disease recovery rate is nonzero. However,

in our numerical analysis, the endemic equilibria in both sub-cases seem to be globally

asymptotically stable when the basic reproduction number exceeds one. Therefore, it

would be interesting to work on the global stabilities of both endemic equilibria.

In Chapter 3, we were able to get the asymptotic stability of the disease free equi-

librium, but its global stability and the stability of other possible equilibria has not

yet been determined. For the two patch model, there are still many other interesting

sub-cases with various dispersal forms between patches to work on.

The work on disease infections by multi-species did not incorporate the disease

latencies for the different species of Plasmodium. Different species of parasites have

different infection latencies, i.e. the average latency of P. falciphrum infection is 5 − 6

days and that of P. vivax is longer [1, 2]. It would be interesting to consider a variety

of latencies in the model, and explore whether multi-species can survive in the same

region.
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