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ABSTRACT 
 

Internals of different types are required in a number of industrial applications of bubble 

columns to achieve the desired mixing or to remove the heat of reaction to maintain 

desired temperature and isothermal conditions of operation. Some of these applications 

include Fischer-Tropsch synthesis, methanol synthesis, and production of dimethyl ether 

(DME).  The presence of internals however can alter the column hydrodynamics and 

mixing patterns which could influence reactor performance. A fast response probe 

capable of capturing bubble dynamics, as well as detecting flow direction is used to study 

the effect of internals on local heat transfer and column hydrodynamics in a bubble 

column with and without solid particles. It captured the temporal variations in heat 

transfer coefficients due to changes in local hydrodynamic conditions. Measurements 

obtained in presence of different configurations and combinations of internals are 

compared with those without internals to elucidate the effects of internals design and 

configurations. Comparisons are based on average values and fluctuating component of 

local temporal variations of the heat transfer coefficient obtained with the fast response 

probe. The average gas holdup, center line liquid, and bubble rise velocities obtained with 

and without internals are also compared. The observed differences are discussed based on 

the insights provided by these comparisons. The heat transfer coefficient and gas holdup 

increases in presence of internals. Relationships between local heat transfer 

measurements and hydrodynamic conditions with internals are shown and discussed. The 

observed increase in heat transfer coefficients with scale can be related to increase in 

liquid circulation velocity with column diameter, which in turn is related to an increase in 

large bubbles rise velocity.  

 

Keywords: Local heat transfer, Bubble columns, Hydrodynamics, Internals design, 

Liquid circulation velocity, Bubble fractions 
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CHAPTER 1.  INTRODUCTION 
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1.1  Introduction 

Bubble column reactors are widely used in a number of industrial processes such as 

oxidation (adiponitrile synthesis), hydrogenation (saturation of fatty acids), 

fermentation (production of ethanol and mammalian cells), biological waste water 

treatment, flue gas desulphurization, coal liquefaction, dimethyl ether production, 

chlorination (production of aliphatic and aromatic chlorinated compounds, 

polymerization (production of polyolefins), biomedical engineering (blood 

oxygenator) (Shah et al.,1982; Fan, 1989; Duduković and Devanathan, 1992; 

Deckwer and Schumpe, 1993; Li, 1998; Prakash et al.,1999; Prakash et al., 2001;  

Duduković et al.,2002). An important and growing area of application of multiphase 

reactor systems is production of clean and renewable fuels such as production of 

sulfur-free diesel by the Fischer-Tropsch process, dimethyl ether (DME) and 

bioethanol processes. For a large number of these processes, there is a need for proper 

design of heat removal in these reactor systems to allow optimal temperature control 

for desired product quality and yield (Duduković et al.,2002).   

  

Bubble columns (BC) belong to a larger class of multiphase reactor of relatively 

simple construction. In bubble columns gas is usually the discontinuous phase and is 

sparged at the bottom of the column through a sparger and the resulting buoyancy-

driven flow creates strong liquid recirculation. These reactors where fine particles 

used as catalyst or reactive solids are suspended in liquid phase are called slurry 

bubble column (SBC) reactors. Compared to other multiphase reactors (i.e. stirred 

tank reactors, trickle bed reactors, three-phase fluidized bed or ebullated bed 

reactors), BC and SBC reactors offer several advantages (Deckwer and Schumpe, 

1993; Kluytmans et al., 2001; Li and Prakash, 2002; Li et al., 2003; Barghi et al., 

2004): 

 

• Simplicity of construction and ease of operation 

• Low construction, operating and maintenance costs 

• No problems with sealing due to absence of moving parts  
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• Excellent temperature control 

• High heat and good mass transfer rates  

• On-line catalyst addition and withdrawal to maintain constant catalyst activity 

• Solids can be handled without serious erosion or plugging problems 

• High liquid (slurry) phase content for the reaction to take place 

• Washing effect of the liquid on catalyst 

•  Little floor space is required and good mixing of the phases by gas aeration 

only  

 

Though BCs and SBCs are simple in construction, the design, scale-up and modeling 

of BCs and SBCs is a difficult task because of lack of information on the effect of 

different parameters such as operating conditions, reactor geometry, distributor type, 

physico-chemical properties of the phases, and slurry concentrations on 

hydrodynamics, heat and mass transfer in these reactors. The crucial design 

considerations include: phase holdup structure, operating flow regimes, mixing and 

circulation pattern, axial and radial dispersion of liquid (slurry) and gas phase, heat 

and mass transfer coefficient, and interfacial area. These parameters are affected by 

various variables such as:  

 

• Superficial gas and liquid (slurry) velocity. 

• Operating conditions (temperature and pressure). 

• Physical characteristics of gas phase (density) and liquid (slurry) phase 

properties (surface tension, viscosity, density and thermal conductivity, 

particles concentration and size distribution) 

• Column diameter  

• Internals and their design (e.g. heat transfer surface). 

 

Effects of some parameters such as superficial gas velocity, distributor type, liquid 

viscosity, operating pressure etc. have been investigated in some detail (Wilkinson et 

al., 1992; Zahradník et al., 1997; Su et al., 2006). However, the effects of other 

variables such as column diameter, internals design have received less attention in 
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literature. A common type of internal used in these reactors for heat removal is a tube 

bundle. A few literature studies have investigated potential design configurations of 

this internal type with some interesting results on column hydrodynamics (Youssef 

and Al-Dahhan, 2009; Larachi et al., 2006; Chen et al., 1999).  There are indications 

that column hydrodynamics and hence performance can be affected by the internals 

design. In some applications, there may be a need to use a combination of internals to 

achieve desired hydrodynamic effects or to mitigate less desirable effects of the main 

internal.   

 

1.2  Scope and Objectives  

Based on above, there is a need to systematically investigate effects of internals 

design and configurations on flow patterns and mixing and heat transfer profile in 

bubble and slurry bubble columns. Two main type internals selected are a tube bundle 

and a six-blade baffle based on initial investigations. The study also combines tube 

bundle type internals with the baffle type to study improvements. The influence of 

column diameter is investigated for scale up effects and comparisons are made with 

internals. The study investigates the effects of two important variables namely 

superficial gas velocity and slurry concentration on heat transfer and hydrodynamic 

parameters including radial heat transfer profiles, gas holdup structure, bubble 

population fractions and potential back mixing effects.   

  

This thesis has seven chapters including the first introductory chapter. Chapter 2 

presents a critical overview of heat transfer in slurry bubble columns and observed 

differences have been analyzed based on available data and appropriate 

recommendations are made. In Chapters 3 and 4 the heat transfer coefficients 

obtained in bubble columns with and without solids in presence of different 

configuration of internals are compared with those without internals to elucidate the 

effects of different internals design. Comparisons are based on average values and 

temporal variation of local near instantaneous heat transfer coefficient obtained with 

the fast response probe. The average gas holdup, center line liquid velocity, and 
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bubble holdup obtained with and without internals are also compared. The observed 

differences are discussed based on the insights provided by these comparisons. With 

some internals, the heat transfer coefficient and gas holdup may increase or decrease. 

The reasons for these increase or decrease are pointed out in this study. Relationships 

between local heat transfer measurements and hydrodynamic conditions in presence 

of internals are shown and discussed. In Chapter 5 the heat transfer coefficient data 

obtained in this study has been compared with the literature data to determine scale-

up effects. The hydrodynamic parameters such as gas holdup profile, liquid 

circulation velocity profile, and bubble rise velocity are compared with the available 

literature data to get the insights of effect of these parameters on the heat transfer 

coefficient with the increase in column size. A simplified scale-up procedure is 

presented based on available data and suitably modified literature correlations for 

heat transfer coefficient. In chapter 6, the temporal variations of heat transfer 

measurements obtained with and without are compared. The temporal variations of 

heat transfer coefficients are also analyzed to study the bubble-wake properties and 

local column hydrodynamics Finally Chapter 7 presents the important conclusions of 

this study. The scope of future work and recommendations are also included in 

Chapter 7. 

 

1.3 Research Contributions 

The main contributions of this research are: 1) The internals developed can be used 

alone or in combination to reduce average bubble size, thereby increasing the 

interfacial area and improving the mass transfer.2) The backmixing in bubble and 

slurry bubble column is reduced by using combination of internals developed, thereby 

improving the product selectivity and reaction rate.  

 

1.4 Thesis Format 

This thesis is written in the format of  ‘Integrated Article thesis’ as specified by the 

Faculty of Graduate Studies of the University of Western Ontario. Individual chapters 

are presented as technical papers with an abstract.  Each chapter has its own 
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conclusions and references with symbols and abbreviations listed at the end of each 

chapter. Appendix is presented together at the end all chapters. 
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CHAPTER 2. HEAT TRANSFER IN SLURRY BUBBLE COLUMN 
REACTOR – A CRITICAL OVERVIEW1  

 
 

Abstract 
 

Studies of heat transfer in slurry bubble column reactors (SBCR) have been reviewed 

and observed differences analyzed based on available data. Heat transfer in these 

reactors   is a strong function of some parameters and weak function of others. The 

parameters significantly influencing heat transfer in these reactors are the superficial 

gas velocity, thermophysical properties of liquid and solid particles, and size and 

concentration of particles. Moreover the rate of change with a parameter is dependent 

on operating flow regime, particles properties, and presence of internals. Of all the 

parameters, the effect of particles is more complex and inadequately understood  

because particles influence flow regime transition, thermophysical and rheological 

properties of the suspension which in turn affect hydrodynamic behavior and 

associated heat transfer characteristics. Effects of column diameter and internals have 

been investigated by a limited number of studies. A comparison of available data   

shows that the effect of column diameter on heat transfer diminishes above 0.3 m. 

This however, requires confirmation from larger diameter studies together with 

associated hydrodynamic studies and appropriate modeling. Literature correlations 

for heat transfer coefficient have been reviewed and their limitations and applicability 

discussed. Axial and radial variations of heat transfer coefficients reported in 

literature studies require appropriate design considerations.  

 
 
Key Words: Slurry bubble column reactor, Multiphase reactors, Heat transfer, 
Hydrodynamics, Flow regime, Operating variables; Column diameter 
 
 
 
 
 
 

                                                 
1  A Version of this chapter is accepted for publication in Industrial and Engineering Chemistry Research 
(2012). 
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2.1.   Introduction 

Applications of multiphase reactors are quite diverse spanning a broad range from 

large scale operations such as heavy oil upgrading to manufacture of fine chemicals 

and pharmaceuticals. Literature studies have reviewed different types of multiphase 

reactors and their application areas (Hulet et al., 2009; Wang et al., 2007, Kantarci et 

al., 2005a; Dudukovic et al., 2002; Dudukovic et al., 1999; Nigam and Schumpe., 

1999; Shah et al., 1982). An important and growing area of application of multiphase 

reactor systems is production of clean and renewable fuels such as production of 

sulfur free diesel by Fischer-Tropsch process, dimethyl ether (DME) and bioethanol 

processes. For a large number of these processes, there is need for proper design of 

heat removal arrangement in these reactor systems to allow optimal temperature 

control for desired product quality and yield. The reactor type commonly used for 

these applications is three-phase gas-liquid-solid reactor wherein fine catalyst 

particles (<100µm) are suspended by flow of gas or gas and liquid.  These reactors, 

commonly known as slurry bubble column reactor (SBCR) are the main focus of this 

review while references are made to other reactor systems as appropriate. The main 

distinguishing feature of SBCR is more homogeneous distribution of fine solid 

particles in the reactor. For low concentration of solid particles, the behavior of these 

reactors approaches that of solids-free bubble columns (Dudukovic et al., 2002). 

Detailed review on flow modeling and design of bubble column reactors is presented 

in literature studies (Joshi., 2001; Degaleesan et al., 1996; Chen et al., 1994; Jakobsen 

et al., 1997; Jakobsen et al., 2005). The heat transfer process in these reactor systems 

is dictated by the highly mixed hydrodynamic structure induced by the rising gas 

bubbles through suspension. This link has been established by several literature 

studies (Jhawar and Prakash., 2007; Jhawar and Prakash., 2011; Lin and Hung-Tzu., 

2003; Lin and Hung-Tzu., 2001) and it is further expanded and highlighted in this 

review.  
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2.2.1 Cataloging of Slurry Bubble Column Reactors 

Slurry bubble column reactors are a subset of a larger group of three-phase sparged 

reactors. Classification of three-phase sparged reactors (TPSR) has been attempted by 

several researchers over the years (Fan., 1989; Fan et al., 1987; Tsutsumi et al., 1987; 

Deckwer et al., 1984). Two main types of three-phase sparged reactors based on 

hydrodynamic considerations are referred to as SBCR and three-phase fluidized bed 

(TPFB). For a given gas-liquid-solid system, particle size and resulting axial solids 

profile distinguish the reactor type. The particle size is usually less than 100 µm in 

SBCR and larger than 500 µm in TPFB, however, these values can change with 

particle type and liquid phase properties. When the particle size is between these two 

limits, a significant axial profile of solids concentration can develop and the operation 

can be classified as three-phase bubble column (Tsutsumi et al., 1987) Apart from 

particle size, their density and loading and liquid physical properties can also 

influence hydrodynamic behavior of these reactors and affect classification (Pandit 

and Joshi., 1984; Khare and Joshi., 1990). A more general classification of these 

reactors based on particles settling velocity (Ut) has been presented by Fan and co-

workers (Fan., 1989; Fan et al., 1987).  The three phase fluidized bed operate in 

expanded bed regime covering particle terminal settling velocity in a liquid medium 

from 3 to 50 cm/s. Detailed review on hydrodynamics and heat transfer in three phase 

fluidized bed are available in literature studies (Fan., 1989; Kim and Kang., 1997; 

Kumar et al., 1993; Wild et al., 1984). Slurry bubble column can operate in both 

expanded and transport regime covering Ut from 0.03 to 7 cm/s. There is overlap in 

operating range for both fluidized bed and slurry bubble column operations in the 

expanded bed regime for Ut from 3 to 7 cm/s (Fan., 1989; Fan et al., 1987). This 

classification based on particles settling velocity is less restrictive since momentum 

and energy balance equations governing the performance of these reactors depend on 

this velocity.  

 

For SBCR, usually a key consideration would be ease of particles suspension in the 

liquid by gas alone. The gas sparged at the bottom of the column creates buoyancy-

driven flow resulting in strong liquid recirculation. The solids follow the liquid 
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motion, and the relative velocity between liquid and solid particles is nearly zero as 

the particles get smaller (Dudukovic et al., 2002). Figure 2.1 shows schematic 

diagram of a slurry bubble column. In these reactors, pseudo-homogeneous phase can 

operate in either batch or continuous mode since superficial gas velocity is the 

dominant variable driving the dynamics of the entire system. The fine particles can be 

uniformly distributed throughout the reactor even at low superficial gas velocities. 

The hydrodynamic characteristics of the slurry bubble column reactor are closer to 

solid free bubble column reactor due to fine particles used. Therefore some predictive 

correlations developed for bubble column reactors can be applied to three-phase 

slurry reactor especially at low solids loadings. A common application of these 

reactors is exothermic catalytic reactions where catalysts particles in the range of 35 

to 60 µm are used to minimize internal diffusion resistance as well allow easy 

separation from liquid product (Gamwo et al., 2005; Krishna and Sie., 2000). 

 
 

Figure 2.1. Schematic of slurry bubble column reactor 
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In three-phase fluidized beds, the bed is divided into two regions - the lower one is a 

dense region concentrated with solid particles and the upper one is solid-free region. 

Solids are uniformly distributed in the lower dense region.  Solid particles are mainly 

suspended by the upward flow of liquid phase in the lower dense region. The gas 

phase in these reactor types can either help suspension or settle the suspension of 

particles causing the bed to expand or contract (El-Temtamy et al., 1979; Epstein., 

1976; Epstein and Nicks., 1976; Darton and Harrison., 1975; Kim et al., 1975; 

Darshinamurty et al., 1971; Ostergaard and Thiesen., 1966). Epstein and coworkers 

(El-Temtamy et al., 1979; Epstein., 1976; Epstein and Nicks., 1976) explained this 

phenomenon based on bubble wake model, while Joshi and co-workers (Joshi et al., 

2001; Joshi, 1983) explained this behavior depending upon whether the gas phase 

supplies energy to the bed or extracts energy from the bed. 

 

2.2.  Flow Regimes and Effects on Heat Transfer 

Demarcation of flow regimes in multiphase reactors and the applicable criteria have 

been the subject of a number of investigations (Wallis, 1969; Michelsen and 

Ostergaard, 1970; Kawagoe et al., 1976; Matsuura and Fan, 1984; Drahos and 

Cermak, 1989; Vial et al., 2000; Olmos et al., 2003a; Olmos et al., 2003b; Memon, 

2004; Barghi et al., 2004; Thorat and Joshi, 2004). Three primary flow regimes 

commonly reported are: dispersed bubble regime (homogeneous or bubble flow 

regime), heterogeneous regime (coalesced bubble or churn turbulent regime), and 

slugging. In addition a transition regime is observed to occur in between dispersed 

bubble regime and coalesced bubble regime (Chen et al., 1994). The slugging regime 

mainly occurs in small diameter experimental columns (< 0.05 m), usually with high 

flow rates. In this regime the gas bubble expands easily up to the column diameter 

creating ‘slugs’ which nearly occupy the entire cross-section of the column. This flow 

regime is seldom encountered in industrial scale reactors. Figure 2.2a from Chen et al. 

(1994) depicts approximate flow structure observed with increasing gas flow. The 

dispersed bubble flow regime (I) is characterized by nearly uniform bubble size and 

radially uniform gas holdup. This is followed by transition regime (II) when 
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increasing gas velocity generates more bubbles leading to increased bubbles 

interactions and growth in bubble size. The larger bubble stream is seen moving 

through column center where the heat transfer rate is expected to increase. With 

further increase in gas velocity, coalesced bubble flow (or heterogeneous) regime (III) 

is reached where fast moving large coalesced bubbles begin to emerge due to 

combined effect of higher initial bubble size and faster coalescence rate.  

 

 
(I)                                (II)       (III) 

 

Figure 2.2a. Flow regimes in 3-D bubble column and gas-liquid-solid fluidization 
system (Adapted from Chen et al. (1994)) 

 

The three flow regimes can also be identified with gas holdup measurements. Figure 

2.2b from Jhawar and Prakash (2007) compares the gas holdups obtained with a fine 

and a coarse sparger. The fine sparger which generates small initial bubbles provides 

higher gas holdups in the first two regimes and more easily identifiable boundaries 

between the flow regimes. The three regimes were easily identified by using change 

in slope of gas holdup curve obtained with the fine sparger. The lower gas holdups 

with the coarse sparger can be attributed to larger initial bubble size generated by the 

sparger.   
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Figure 2.2b. Gas holdup obtained with a fine and coarse sparger (from Jhawar and 

Prakash (2007)) 
 
Krishna et al. (1997) reported gas holdup measurements obtained with a fine sparger 

with increasing solids concentration in the liquid phase. As shown in Figure 2.3, the 

addition of fine particles into liquid lowered the gas holdup and the transition 

velocity. For high solids concentrations, the bubbly flow regime essentially 

disappeared and the gas holdup profile became similar to that of a coarse sparger 

(Figure 2.3). This indicates increased bubble coalescence in presence of fine particles 

in the suspension.  

 

Variation of heat transfer with flow regime in bubble column has been reported by 

Jhawar and Prakash (2007) while Pandit and Joshi (1986) presented a review from 

studies in fluidized beds.  Jhawar and Prakash (2007) compared average heat transfer 

coefficients obtained with a fine and coarse sparger at column center (Figure 2.4). It 

can be seen that in the bubble flow regime, difference between the two spargers is 

large and stays nearly constant. In the transition regime, heat transfer with the fine 
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sparger increases quickly due to emergence of larger bubbles and approaches that 

with coarse sparger. In the fully developed heterogeneous regime, heat transfer 

coefficients obtained with the two spargers are similar. A comparison of Figures 2.2b 

and 2.4 shows that with the fine sparger in the transition flow regime, the gas holdup 

increases rapidly until it reaches a maximum and then decreases, but heat transfer 

continues to increase. This indicates that there is no direct relationship between gas 

holdup structure and heat transfer coefficient in the bubble flow and transition 

regime. Heat transfer process is mainly governed by strength of liquid circulation 

patterns created by rising gas bubbles and their wake region. A decrease in gas 

holdup with increase in velocity indicates increase in average bubble size and 

corresponding bubble rise velocity.   
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Figure 2.3. Changes in gas holdup profile due to addition of fine particles in liquid    
(from Krishna et al. 1997) 

 
In the heterogeneous flow regime, the average gas holdup and heat transfer is not 

affected by primary bubble size, but is related to gross circulation pattern created by 
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fast rising large bubbles (Jhawar and Prakash, 2007; Vial et al., 2000; Lin et al., 

2001). In this regime, the column hydrodynamics and heat transfer tend to become 

essentially independent of the effects of primary gas dispersion orifice diameter and 

the bubble bed is primarily determined by bulk liquid circulation (Jhawar and 

Prakash, 2007; Joshi et al., 1984). There is currently no data available to show the 

effects of particles addition on the heat transfer coefficient, with the two types of 

spargers. However based on the above, it is expected that difference between the 

coarse and fine spargers would decrease with increasing solids concentration in the 

suspension. 
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Figure 2.4. Variation of heat transfer coefficients with superficial gas velocity for fine 
and coarse sparger (z = 0.91 m) (Adapted from Jhawar and Prakash (2007)) 

 
Jhawar and Prakash (2007) also presented radial profile of the heat transfer 

coefficient for different gas velocities in bulk zone (Figure 2.5) which further 

illustrated the link between flow regime and heat transfer. The radial profile is nearly 

flat at a gas velocity (= 0.038 m/s) in the bubble flow regime obtained with fine 
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sparger. However, with increasing gas velocity, the profile was no more flat - 

indicating absence of bubble flow regime. Figure 2.5 shows that the radial profile 

became steeper as the flow moved to transition and heterogeneous flow at higher gas 

velocities.  It can also be seen that with increasing gas velocity, heat transfer 

coefficients increased much faster in the central region compared to the wall region. 

This is related to faster moving large bubbles moving through the central region 

compared to the wall region. The radial profile is also dependent on the axial distance 

from the sparger. In the literature, it has been reported that the radial profile of the 

heat transfer coefficients is relatively flat in zones other than bulk zone (Li and 

Prakash, 2002) Radial profile may also be influenced by presence of internals and 

their configurations. Additional work which includes hydrodynamic and local 

turbulence measurements would provide further insights and confirm the observations 

on the radial variation of heat transfer coefficient. 
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Figure 2.5.  Radial profile of heat transfer coefficients obtained with fine and coarse 

sparger (z = 0.91m) (Adapted from Jhawar and Prakash (2007)) 
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2.3.  Effect of Operating Variables on Heat Transfer 

The high heat transfer rate in three phase sparged reactors helps to maintain required 

temperature to maximize the yield of the desired product.  The heat transfer can take 

place between the bed and the wall or between the bed and the immersed surface. 

Bed-to-wall heat transfer has been studied by few researchers (Viswanathan et al., 

1985; Kato et al., 1980; Kato et al., 1981; Chiu and Ziegler, 1983; Chiu and Ziegler, 

1985). Heat transfer between the bed and the immersed surfaces is more widely used 

in industry and has been subject of several studies in literature (Jhawar and Prakash, 

2007; Li and Prakash, 2002; Saxena et al., 1989; Saxena et al., 1990a; Saxena et al., 

1990b; Saxena et al., 1991a; Saxena et al., 1991b; Saxena et al., 1992b; Saxena and 

Patel, 1990; Li and Prakash, 1997; Li and Prakash, 1999; Li and Prakash, 2001; 

Prakash et al., 2001; Quiroz et al., 2003; Li and Prakash) to name a few. An important 

link between column hydrodynamics and the heat transfer process has also been well 

established by literature studies (Jhawar and Prakash, 2007; Jhawar and Prakash, 

2011; Lin and Hung-Tzu., 2003; Lin and Hung-Tzu, 2001). 

 

Therefore the design and operating variables which affect hydrodynamics will also 

influence the heat transfer rate. These parameters can be divided into two main 

categories: 1) operational parameters; 2) geometric parameters. The first category 

includes variables such as superficial gas and liquid velocity, operating pressure and 

temperature, liquid thermophysical properties, particles properties and concentration. 

The second category includes column dimensions, internals design and location, axial 

and radial position of heat transfer surface. Important effects of these variables on 

heat transfer are discussed in the following sections. 

 

2.3.1. Effects of Superficial Gas Velocity  

The heat transfer coefficient increases with superficial gas velocity irrespective of the 

liquid velocity, gas density and pressure, liquid physical properties, column diameter, 

distributor type, internals, temperature, particle size, concentration and its physical 

properties and the axial and radial location of heat transfer probe/internals. This 
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increase in heat transfer coefficient with superficial gas velocity can be attributed to 

the buoyancy driven turbulence generated by the bubble due to the introduction of the 

gas in the column. The rate of increase in heat transfer coefficient with gas velocity is 

high till fully developed churn turbulent flow is reached (Vg ≈ 0.15 m/s) beyond 

which there is slow increase with gas velocity (Jhawar and Prakash, 2007; Saxena et 

al., 1989; Saxena et al., 1990a; Saxena et al., 1990b; Saxena et al., 1992b; Li and 

Prakash, 1997; Wu et al., 2007; Li, 1998). This behavior can be attributed to evolving 

hydrodynamics and turbulence characteristics. The degree of turbulence distribution 

becomes poorer owing to non-uniform distribution of bubbles in the column at high 

gas velocities. This leads to less isotropic turbulence which dampens the effect of 

turbulence intensity on the heat transfer (Kim and Kang, 1997).  

 

2.3.2. Effects of Superficial Liquid Velocity 

The liquid and slurry velocities have only small effects on heat transfer coefficient in 

bubble and slurry bubble columns compared to three-phase fluidized bed. This is 

because bubble-wake-induced circulation velocity in bubble and slurry bubble 

columns reactors has a dominant effect (Yu and Kim, 1991; Michele and Hempel, 

2002) while the liquid flow has little influence on the overall energy balance (Pandit 

and Joshi, 1986). However, as particle size increases and the bed operation moves 

towards three-phase sparged reactor or fluidized bed, liquid velocity effects become 

more significant. In three-phase fluidized beds, particles movements and collision 

effects with heat transfer surface are also important (Muroyama et al., 1984). This 

effect increases with liquid velocity up to a critical value and then decreases as the 

particles agitation effect becomes smaller with increasing voidage. These 

observations from different literature studies are presented in Figure 2.6.  

 

2.3.3. Effects of Liquid Properties  

From well documented single phase studies, liquid phase thermal conductivity and 

heat capacity are expected to affect the heat transfer rate. Addition of solid particles 

would increase or decrease the average properties of suspension depending on solids 
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properties (Deckwer et al., 1980). The important role of liquid viscosity affecting heat 

transfer rate in multiphase systems is also well documented in literature (Kim and 

Kang, 1997). Heat transfer coefficient decreases with increasing liquid viscosity in 

multiphase reactors (Kang et al., 1985; Kim et al., 1986; Kumar and Fan, 1994; Cho 

et al., 2002) regardless of the particle size and fluid velocities. The decrease in heat 

transfer rate has been attributed 
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Figure 2.6. Variations of heat transfer coefficients with liquid or slurry velocities in 

gas-liquid and gas-liquid-solid systems (adapted from Magiliotou et al. (1988); 
Kumar et al. (1993); Muroyama et al. (2003) 

 

to increase in thermal boundary sub-layer thickness of laminar flow around the 

heating surface with increasing viscosity due to decrease in turbulence and increase in 

viscous friction loss between the phases - thus increasing resistance for conduction 

heat transfer (Kang et al., 1985) Moreover, the particle movement is retarded with 

increasing viscosity, thereby reducing their attack on the thermal boundary layer 

around the heating source (Kim and Kang, 1997). Yang et al.(2000) reported increase 

in heat transfer coefficient in a slurry bubble column with increase in temperature.  
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This was mainly attributed to decrease in liquid viscosity of liquid with increase in 

temperature compared to other effects. Availability of data to consider the effect of 

other physico-chemical properties of the liquid such as: surface tension, thermal 

conductivity, heat capacity, ionic strength and density on heat transfer coefficient are 

either limited or unavailable (Kim and Kang, 1997)  

 

2.3.4. Effects of Particles Properties and Concentration 

While a number of literature studies have reported improved heat transfer with 

addition of fine particles in liquid (Saxena et al., 1990a; Deckwer et al., 1980; Yang 

et al., 2000) a few others have reported a decrease (Li and Prakash., 1997; Li, 1998). 

Addition of fine solid particles into a liquid changes average thermophysical 

properties of the suspension and increases its apparent viscosity (Deckwer et al., 

1980). An increase in thermal conductivity and heat capacity of suspension would 

have a positive effect on heat transfer rate while increase in suspension viscosity 

would have a negative effect due to increase in hydrodynamic boundary layer 

thickness. The heat transfer mechanism in bubble columns has been elucidated based 

on Higbie’s surface renewal (Higbie, 1935) concept by Deckwer (Deckwer, 1980). 

Unsteady heat transfer occurs with fluid elements visiting the surface transitorily.  

The average heat flux during the contact time (θC) of fluid eddy at the heat exchanger 

area can be calculated. 

 

( )2 α ρ
πθ

= −p W B
C

q C T T ………………. (2.1) 

Comparing the above equation with heat transfer coefficient definition yields 
0.5ρ

θ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∼ p

C

k C
h …………………. (2.2) 

An estimation of the contact time (θC) was obtained by applying Kolmogoroff’s 

theory of isotropic turbulence (Deckwer, 1980). If the Reynolds number of the 

turbulent fluid motion is high then Kolmogoroff’s theory (Hinze, 1958) postulates 

that the “the energy dissipation by the micro scale eddies is locally isotropic, no 
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matter whether the large scale eddies move isotropic or not”. Subsequently Deckwer 

et al. (1980) proposed the following equation for heat transfer coefficient in slurry 

bubble column.  

 
0.5 0.75 0.5 0.25 0.25 0.25

,0.1( )ρ μ −=W sl sl p sl sl gh k C g V ……………. (2.3) 

where 

( )1sl s s s lρ φ ρ φ ρ= + −  ………………………………. (2.4) 

, , ,(1 )p sl s p s s p lC w C w C= + − …………………………. (2.5) 

Thermal conductivities of suspensions were estimated by equation proposed by 

Tareef (Tareef, 1940): 

 

( )
( )

2 2
2

l s s l s
sl l

l s s l s

k k k k
k k

k k k k
φ
φ

+ − −
=

+ − −
…………………………. (2.6) 

For estimation of apparent slurry viscosity equation proposed by Vand (1948) is used: 

2.5exp
1 0.609

s
sl l

s

φμ μ
φ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

……………………………… (2.7) 

Equation 2.3 could be rearranged into three groups: 1) thermophysical properties (TP) 

to include thermal conductivity, heat capacity and density; 2) apparent slurry 

viscosity; and 3) gas velocity. Since suspension viscosity will increase with particles 

concentration, any increase in heat transfer coefficient for a given gas velocity, can be 

attributed to dominant effect of thermophysical properties. Ratios of thermophysical 

properties of slurry to the liquid phase are plotted in Figure 2.7 as a function of slurry 

concentration for different literature studies. It is observed that the ratio is above one 

for studies reporting higher heat transfer coefficients with slurries.  The effects of 

apparent slurry viscosity may begin to dominate over thermophysical properties with 

increasing slurry concentration. However, this is not clear from available literature 

studies. There is need to systematically study effects of slurry rheology on heat 

transfer coefficient in SBCR.    
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The effects of particle size on heat transfer coefficient in SBCR have been 

investigated by a limited number of studies. (Saxena et al., 1990a; Saxena and Patel, 

1990; Li et al., 2003). Saxena and coworkers (Saxena et al., 1990a; Saxena and Patel, 

1990) have generally reported a weak dependence on particle size. Their data also 

shows influence of column diameter and presence of internals. Li et al. (2003) 

observed that the effect of particle size is not significant in the wall region but heat 

transfer coefficient decreases with increase in particle size in center of the column. 

The larger effect of particle size at column center could be attributed to its effects on 

wake formation process which is dominant in the central region of the column.  
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Figure 2.7. Effect of slurry concentration on Thermophysical properties 

2.3.5. Effects of Operating Pressure  

Heat transfer coefficients in BC and SBC have been observed to decrease with 

increase in operating pressure (Wu et al., 2007; Yang et al., 2000). This behavior can 

be attributed largely to reduced bubble size and to a smaller extent to increase in 
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liquid viscosity. Literature studies have shown that higher operating pressure in 

bubble columns result in smaller average bubble size and higher gas holdup (Lin et 

al., 1998; Wilkinson et al., 1992). The effect of pressure on physico-chemical 

properties of liquid except viscosity is small (Reid et al., 1977). Luo et al. (1999) 

pointed out that increase in gas density due to increase in pressure results in decrease 

of the initial bubble size from the sparger as well increases the bubble breakup rate. 

The reduced wake size of the resulting smaller bubbles would reduce bubble wake 

enhanced heat transfer rate in the dispersion. In three-phase fluidized beds of 2.1 and 

3 mm glass beads however, heat transfer coefficients were observed to increase with 

pressure up to a critical pressure and decreased thereafter (Luo et al., 1997) This 

points to different hydrodynamic conditions in the two reactor systems. In three-phase 

fluidized bed, increase in gas holdup due to decrease in bubble size would reduce 

liquid holdup (εl) which would result in higher interstitial velocity (Vl/εl) leading to 

higher heat transfer rate. Literature studies have pointed to the role of interstitial or 

linear liquid velocity on heat and mass transfer in three-phase fluidized beds (Chiu 

and Ziegler, 1983; Prakash et al., 1987). 

 

2.3.6. Effects of Column Diameter   

Heat transfer data from different literature studies obtained with different column 

diameters are presented in Figure 2.8. Trend lines are shown for column diameter ≥ 

0.15m where wall effects are expected to be negligible.  It can be observed that 

column diameter effects seem to diminish above diameter of 0.3 m.  There is some 

scatter in data at higher column diameter therefore measurements in a 0.6 m or 

greater diameter column can confirm the trend. Jhawar and Prakash (2011) 

demonstrated that the increase in heat transfer coefficient was related to increasing 

liquid recirculation velocity with column diameter. Their observations are, however, 

based on column diameter upto 0.3 m. and need to be verified for larger diameter 

column.  
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Figure 2.8. Effect of column diameter on heat transfer coefficients (Vg = 0.2 m/s) 

 

2.3.7. Effects of Internals 

The effect of internals on heat transfer coefficient in BC and SBC reactors has been 

studied by only a few researchers (Saxena et al., 1990b; Saxena et al., 1992b; Schluter 

et al., 1995). Saxena et al. (1990b) reported that the effect of internals on heat transfer 

coefficient in large diameter (0.3 m) is not significant but the effect is significant in 

smaller diameter column (0.108 m).  In the small diameter column with seven tube 

bundle, the heat transfer coefficients obtained by Saxena et al. (1990b) are similar to 

those obtained in large diameter column. They pointed out that the presence of 

internals can help in promoting the better mixing in small diameter columns by 

limiting the maximum stable size of the bubbles. It is however, likely that the small 

diameter column used by Saxena et al. (1990b) exhibited more slug like flow 

behavior without the internals. Presence of internals, however would have changed 

the hydrodynamic conditions leading to increase in turbulence and heat transfer 

enhancement. Schlüter et al.(1995) observed that the tube pitch has no significant 
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effect on heat transfer coefficient in low viscosity and it has only a small effect in 

case of highly viscous liquid. There is a need for additional work to investigate the 

role of internals design of different configurations on heat transfer and 

hydrodynamics in different size columns.  

 

2.3.8. Effects of Axial and Radial Location 

Heat transfer coefficient has been found to depend on axial and radial location in the 

column (Jhawar and Prakash, 2007; Li and Prakash, 2002; Saxena et al., 1992b; Li 

and Prakash, 1997; Li and Prakash, 1999; Li and Prakash, 2001; Prakash et al., 2001; 

Li et al., 2003; Wu et al., 2007). In the radial direction highest heat transfer 

coefficient is obtained at the center and lowest near the column wall (Li and Prakash, 

1997; Li and Prakash, 2001; Wu et al., 2007). It is also pointed out that wall region 

heat transfer coefficient is not affected by particle size and column diameter (Jhawar 

and Prakash, 2011; Li and Prakash, 2001). Li and Prakash (2002), pointed out that the 

radial profile of the heat transfer coefficient is relatively flat in distributor, 

intermediate and disengagement zone compared to the bulk zone. Radial profile of 

heat transfer coefficient was found to be affected by slurry concentration up to 20 vol. 

% and the effect became insignificant for higher slurry concentrations (Li and 

Prakash, 2001).   Saxena et al.(1992b) reported that the heat transfer coefficient 

increases as the axial distance from the distributor increases. They attributed this to 

the variation of liquid mixing along the column height. Li and Prakash (2002) also 

observed that the heat transfer coefficient increases with increase in distance from the 

sparger, but in the fully developed bulk zone the effect of axial position becomes 

insignificant. These observations need to be taken into consideration for proper 

design and arrangement of heat transfer surface.  

 

 



 

27 

 

2.4. Correlations of Heat Transfer Coefficients  

A number of empirical and semi-empirical correlations have been proposed in 

literature for bubble columns over the years. The first correlation was reported by 

Kölbel et al.  (1958) based on their experimental results: 

,

0.22
( ) ,34.7 Re Re 150= >

t tG dtd G dNu for ………………….(2.8) 

,

0.36
( ) ,22.4Re Re 150= <

t ttG dd G dNu for ………………….(2.9) 

It is of the form usual for convective heat transfer but does not account for the 

thermophysical properties of the liquid phase. First semi-theoretical correlation to 

estimate heat transfer coefficient in bubble columns was proposed by Kast (1962), by 

analyzing the fluid element motion around the rising gas bubble in column wall 

region. The general form of the equation is 

( )bRe Fr Pr=
ma cSt f ………………………………….(2.10) 

The proposed values of constant and exponents are, f = 0.1, a = 1, b = 1, c = 2 and m 

= -0.22. The values of f,a,b,c and m were subsequently modified by several 

researchers (KoIbel et al., 1964; Burkel, 1972; Shaykhutdinov et al., 1971; Hart, 

1976; Steiff and Weinspach, 1978) to fit their experimental data. The general equation 

accounts for the system properties and superficial gas velocity. The correlations can 

use any characteristic length (i.e. column diameter, heater diameter, particle diameter 

etc.), since it cancels out between Reynolds number and Froude number. Deckwer 

(1980) improved theoretical interpretation of heat transfer model proposed by Kast 

(1962) and applied Higbie’s surface renewal theory (Higbie, 1935) of interphase mass 

transfer and Kolmogoroff’s theory of isotropic turbulence and obtained the values of 

constant in general equation as f = 1, a = 1, b = 1, c = 2, m = -0.25.  This equation 

was extended to slurry bubble columns by Deckwer et al.(1980) The modified 

equation for slurry bubble column can be expressed as shown in equation (2.3). 

 

Li and Prakash (2001) observed that the correlation by Deckwer et al. (1980) well 

predicted the wall region heat transfer coefficient of their study.   Saxena et al. 
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(1992b) pointed out that the correlation proposed by Deckwer et al.(1980) required 

modification to take the effect of temperature in account. They modified the 

correlation based on their experimental data obtained in a slurry bubble column of 

0.305 m in diameter. It was reported that the effect of temperature on the term (ksl ρsl 

Cp,sl)0.5 is minimal. They concluded that the major change in average heat transfer 

coefficient with temperature occurs due to the changes in (ρsl g / µsl) 0.25. The 

correlation proposed by Saxena et al. (1992b) is: 

( )
0.47

0.5 0.25
,0.0035 ρρ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

sl
W sl sl p sl g

sl

gh k C V ………………… (2.11) 

Joshi et al. (1980) proposed a correlation to estimate heat transfer coefficient in 

bubble columns based on the analogy with mechanically agitated contactors.  

 
2 0.141/33
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Ch D D V
k k …………………. (2.12)  

( )
1

31.31 ε ∞
⎡ ⎤= −⎣ ⎦l C g g BV gD V V …………………………….…. (2.13) 

This correlation accounts for system properties, superficial gas velocity and column 

diameter effect. It needs information on terminal rise velocity of a bubble to estimate 

liquid velocity, which is difficult to get. Zehner (1986a; 1986b) proposed a model to 

estimate heat transfer coefficient using approach similar to Joshi et al. (1980). They 

assumed that the circulation velocity of large eddies is an important parameter 

affecting the heat transfer in bubble columns. The model is derived from the heat 

transfer in single-phase flow over a flat surface by introducing the liquid circulation 

velocity as the characteristic velocity and the average distance of the bubbles as the 

characteristic length.  

2
2

3 ,0.18(1 )ε ρ
ν

⎛ ⎞
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W g l l p l
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3
6
π
ε

= B
g

l d ……………………………………………… (2.16) 

This correlation accounts for system properties, superficial gas velocity and column 

diameter effect. It needs the mean bubble diameter which is not easily available in 

bubble columns due to complex hydrodynamic nature. 

 

Correlations obtained in bubble columns can be easily extended to slurry bubble 

columns by using effective slurry properties as proposed by Deckwer et al. (1980). In 

bubble columns the particle size is small and the particle movement relative to fluid is 

negligible and they don’t contribute much to the surface renewal. Magiliotou et al. 

(1988) extended the equation of Deckwer et al. (1980) to three-phase fluidized beds. 

In three-phase fluidized bed, particle size is large and their movement relative to fluid 

is significant and play an important role in surface renewal in addition to fluid eddies.  

 

While most literature correlations provide wall region heat transfer coefficient, 

Jhawar and Prakash (2011) presented a procedure to estimate heat transfer coefficient 

at any radial location in the column. Based on available data in columns ranging from 

15 cm to 30.5 cm, they modified the correlation proposed by Joshi et al. (1980) to 

estimate heat transfer coefficient in the central region in bubble column.  
0.140.8 1/ 3

,

,
0.084

μρ μ
μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

p l lc C C l l l

l l l l w

Ch D D V
k k

……………. (2.17) 

To estimate liquid velocity, the authors recommend correlation proposed by Riquarts 

(1981).  
1

3 8

, 0.21
ν

⎛ ⎞
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l c C
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V gD

g
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To determine values at any radial location, following equation from Jhawar and 

Prakash (2007) is recommended.  



 

30 

 

( ) 1− −⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

n
c

c

h h r n r
h n R

 ………………………….. (2.19) 

  

Where, recommended value of n in this equation is 1.4. This correlation is valid in 

central region (r/R = 0.0 to 0.75). For the wall region correlation of Deckwer et 

al.(1980) is recommended. There is need to test this procedure in columns of diameter 

larger than 0.3m.  

 

2.5.  Conclusions 

Slurry bubble column reactors belong to a subset of multiphase reactors. In these 

reactors, liquid-solid suspension can be treated as a pseudo homogeneous phase due 

to small size particles used. The average properties of the suspension can be estimated 

using fraction of the two phases. Strong link between column hydrodynamics and 

heat transfer has been reviewed and clarified. Based on available data, it is 

recommended that these reactors should be operated in heterogeneous regime to 

achieve high heat transfer rates. The review has also attempted to clarify some 

conflicting results in literature studies related to particle type, size and concentration. 

For example observed increase in heat transfer rate with addition of particles into 

liquid phase can be attributed to enhanced thermophysical properties of the 

suspension. Effects of operating variables have been discussed and their relative 

importance is pointed out. The review also points out that based on available data, the 

effect of column diameter becomes small above diameter of 0.3m. There is however, 

need for confirmation tests in larger diameter reactors with appropriate theoretical 

modeling and analysis. For proper heat transfer estimation in the column, axial and 

radial variations and effects of internals also need be taken into consideration. This 

can be assisted by CFD modeling with proper validation. 
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2.6. Notations 

a Exponent of dimensionless number in equation (2.10) 

b Exponent of dimensionless number in equation (2.10) 

c Exponent of dimensionless number in equation (2.10) 

Cp   Heat capacity, (J/kg K) 

dB mean bubble diameter, m 

DC Column diameter, (m) 

dp Diameter of particle, (m) 

dt Tube diameter, (m) 

f Constant in equation (2.10) 

Fr Froude number, 
2
g

C

V
gD

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

g Acceleration due to gravity, (m/s2) 

h   Heat transfer coefficient, (kW/m2 ºC) 

k    Thermal conductivity, (W/m K) 

l Mean distance between bubbles, (m) 

m Exponent of group of dimensionless number in equation (2.10) 

n Constant in equation (2.19) 

Nu Nusselt number, c

l

hD
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Pr Prandtl number, 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

l

llp
k

C μ,  

q Heat flux, W/m2 

r Radial location, (m)  
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R Radius of the column, (m) 

Re Reynolds number, 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

l

cgl DV
μ

ρ   

St Stanton number, 
l p,l g

h
C Vρ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

T Temperature, (ºC) 

TP Thermophysical properties 

Ut Particle terminal rise velocity, (m/s) 
 
V Superficial velocity, (m/s) 

VB∞ Terminal rise velocity of a bubble, (m/s)  

wS weight fraction of the solid in the column  

z Axial location from the bottom of the column, (m) 

 

Greek Symbols 

α Thermal diffusivity, k/( ρ Cp), m2/ s 

ρ Density (kg/m3) 

Π Constant (=3.14) 

θC          Contact time, s 

ν Kinematic viscosity, (m2/s) 

ε phase holdup (-) 

sφ  Volume fraction of solids in slurry phase 

µ Viscosity, (Pa.s) 
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Subscripts 

avg Average 

g Gas 

l    Liquid 

s  Solid 

sl Slurry 

W Wall 

B Bulk 

c Center 

  

2.7. References 

Abdulmohsin, R.S., Abid, B.A., Al-Dahhan, M.H., 2011. Heat transfer study in a 
pilot-plant scale bubble column. Chemical Engineering Research and Design. 89, 78-
84. 
 
Barghi, S., Prakash, A., Margaritis, A., Bergougnou, M.A., 2004. Flow regime 
identification in a slurry bubble column from gas holdup and pressure fluctuation 
analysis. Canadian Journal of Chemical Engineering. 82, 865-870. 
 
Burkel, W., 1972. Der wärmeübergang an heiz- und kühlflächen in begasten 
flüssigkeiten. (Heat transfer at heating and cooling surfaces in gassed liquids). 
Chemie Ingenieur Technik. 44, 265 - 268.  
 
Chen, R.C., Reese, J., Fan, L.S., 1994.  Flow structure in a three-dimensional bubble 
column and three-phase fluidized bed. AIChE Journal. 40, 1093-1104. 
 
Chiu, T.M., Ziegler, E.N., 1983. Heat transfer in three phase fluidized beds. AIChE 
Journal. 29, 677-685. 
 
Chiu, T.M.; Ziegler, E.N., 1985. Liquid holdup and heat transfer coefficients in liquid 
solid three phase fluidized beds. AIChE Journal. 31, 1504-1509 
 



 

34 

 

Cho, Y.J, Woo K.J., Kang, Y., Kim, S.D., 2002. Dynamic characteristics of heat 
transfer coefficient in pressurized bubble columns with viscous liquid medium. 
Chemical Engineering and Processing. 41, 699-706. 
 
Dakshinamurty, P., Subramhanyam, V., Rao, J.N., 1971. Bed porosities in gas-liquid 
fluidization. Industrial and Engineering Chemistry Process Design and Development. 
10, 322-328. 
 
Darton, R.C., Harrison, D., 1975. Gas and liquid hold-up in three phase fluidization. 
Chemical Engineering Science. 30, 581-586. 
 
Deckwer, W.D., 1980. On the mechanism of heat transfer in bubble column reactors. 
Chemical Engineering Science. 33, 1341-1346. 
 
Deckwer, W.D., Louisi, Y., Zaldi, A., Ralek, M., 1980. Hydrodynamic properties of 
the Fischer-Tropsch slurry process. Industrial and Engineering Chemistry Process 
Design and Development. 19, 699-708. 
 
Deckwer, W.D., Schumpe, A., 1984. Transport phenomena in three phase reactors 
with fluidized solids. German Chemical Engineering. 7, 168-177. 
 
Degaleesan, S., Roy, S., Kumar, S.B., Duduković, M.P., 1996. Liquid mixing based 
on convection and turbulent dispersion in bubble columns. Chemical Engineering 
Science. 51, 1967-1976. 
 
Drahoš, J., Čermák, J., 1989. Diagnostic of gas-liquid flow patterns in chemical 
engineering systems. Chemical Engineering and Processing. 26, 147-164. 
 
Duduković, M.P., Larachi, F., Mills, P.L., 1999. Multiphase reactors – revisited. 
Chemical Engineering Science. 54, 1975-1995. 
 
Duduković, M.P., Larachi, F., Mills, P.L., 2002. Multiphase catalytic reactors: a 
perspective on current knowledge and future trends. Catalysis Reviews. 44, 123-246. 
 
El-Temtamy, S. A., Epstein, N., 1979. Contraction or expansion of three-phase 
fluidized beds containing fine/light solids. The Canadian Journal of Chemical 
Engineering. 57, 520–522. 
 
Epstein, N., 1976. Criterion for initial contraction or expansion of three-phase 
fluidized beds. The Canadian Journal of Chemical Engineering. 54, 259-263. 
 
Epstein, N., Nicks, D., 1976. Contraction or expansion of three-phase fluidized beds, 
in Fluidization Technology, D. L. Keairns (ed.), Hemisphere Publishing, Washington 
D.C. 1, 389-397. 
 



 

35 

 

Fan, L. S., 1989. Gas-liquid-solid fluidization engineering. Butteworths, Stoneham, 
MA. 
  
Fan, L.S., Jean, R.H., Kitano, K., 1987. On the operating regimes of cocurrent 
upward gas-liquid-solid systems with liquid as the continuous phase. Chemical 
Engineering Science. 42, 1853-1855.  
 
Gamwo, I.K., Gidaspow, D., Jung, J., 2005. Optimum catalyst size for slurry bubble 
column reactors. Ind. Eng. Chem. Res. 44, 6393-6402. 
 
Hart, W.F., 1976. Heat transfer in bubble-agitated systems. A general correlation. 
Industrial and Engineering Chemistry, Process Design and Development. 15, 109 - 
114. 
 
Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short 
periods of exposure. Transactions of the A.I.Ch.E. 31, 365–389.  
 
Hikita, H., Asai, S., Kikukawa, H., Zaike, T., Ohue, M., 1981. Heat transfer 
coefficient in bubble columns. Ind. Eng.  Chem. Process Des. Dev. 20, 540-545. 
 
Hinze, J. O., 1958. Turbulence. New York: McGraw-Hill.  
 
Hulet, C., Clement, P., Tochon, P., Schweich, D., Dromard, N, Anfray, J., 2009. 
Literature Review on Heat Transfer in Two- and Three-Phase Bubble Columns. 
International Journal of Chemical Reactor Engineering. 7, R1, 1-94.  
 
Jakobsen, H.A., Lindborg, H., Dorao, C.A., 2005. Modeling of bubble column 
reactors: progress and limitations. Industrial and Engineering Chemistry Research. 
44, 5107-5151. 
  
Jakobsen, H.A., Sannæs, B.H., Grevskott, S., Svendsen, H. F., 1997. Modeling of 
vertical bubble-driven flows. Industrial and Engineering Chemistry Research. 36, 
4052-4074.  
 
Jhawar, A.K., Prakash, A., 2007. Analysis of local heat transfer coefficient in bubble 
column using fast response probes. Chemical Engineering Science. 62, 7274-7281. 
 
Jhawar, A.K., Prakash, A., 2011. Influence of bubble column diameter on local heat 
transfer and related hydrodynamics. Chemical Engineering Research and Design. 89, 
1996-2002 
 
Joshi, J.B., 1983. Solid-liquid fluidized beds: some design aspects. Chemical 
Engineering Research and Design. 61, 143-161. 
 
Joshi, J.B., 2001. Computational flow modeling and design of bubble column 
reactors. Chemical Engineering Science. 56, 5893-5933. 



 

36 

 

Joshi, J.B., Deshpande, N.S., Dinkar, M., Phanikumar, D.V., 2001. Hydrodynamic 
stability of multiphase reactors. Advances in Chem. Eng. 26, 1-130. 
 
Joshi, J.B., Lali, A.M., 1984. Velocity–holdup relationship in multiphase contactors-a 
unified approach, in: Doraiswamy, L.K. and Mashelkar, R.A. (Eds.) Frontiers in 
Chemical Reaction Engineering, vol. I. Wiley Eastern, New Delhi. 314-329. 
 
Joshi, J.B., Sharma, M.M., Shah, Y.T., Singh, C.P.P., Ally, M., Klinzing, G.E., 1980. 
Heat transfer in multiphase contactors. Chemical Engineering Communications. 6, 
257-271. 
 
Kang, Y., Suh, I.S., Kim, S.D., 1985. Heat transfer characteristics of three phase 
fluidized beds. Chemcial Engineering Communications. 34, 1-13. 
 
Kantarci, N., Borak, F., Ulgen, K.O., 2005a. Bubble column reactors. Process 
Biochemistry. 40, 2263-2283.  
 
Kantarci, N., Ulgen, K.O., Borak, F., 2005b. A study on hydrodynamics and heat 
transfer in a bubble column reactor with yeast and bacterial cell suspensions.  
Canadian Journal of Chemical Engineering. 83, 764-773. 
 
Kast, W., 1962. Analyse des wärmeübergangs in blasensäulen. International Journal 
of Heat and Mass Transfer. 5, 329-336. 
 
Kato, Y., Uchida, K., Kago, T.,  S. Morooka., 1980.  Wall-bed heat transfer 
characteristics of three-phase packed and fluidized bed.  Kagaku Kogaku Ronbunshu. 
6, 579-584. 
 
Kato, Y., Uchida, K., Kago, T.,  S. Morooka., 1981. Liquid holdup and heat transfer 
coefficient between bed and wall in liquid-solid and gas-liquid-solid fluidized beds. 
Powder Technology. 28, 173-179.  
 
Kawagoe, K.; Inoue, T.; Nakao, K.; Otake, T. Flow pattern and gas holdup conditions 
in gas sparged contactors. Journal of Chemical Engineering of Japan. 1976, 8, 254-
256. 
 
Khare, A.S., Joshi, J.B., 1990. Effect of fine particles on gas hold-up in three phase 
sparged reactors. Chemical Engineering Journal. 44, 11-25. 
 
Kim, S.D., Baker, C.G.J, Bergougnou, M.A., 1975. Phase holdup characteristics of 
three phase fluidized beds. The Canadian Journal of Chemical Engineering. 53, 134–
139. 
 
Kim, S.D., Kang, Y., 1997. Heat and mass transfer in three-phase fluidized-bed 
reactors – an overview. Chemical Engineering Science. 52, 3639-3660. 
 



 

37 

 

Kim, S.D., Kang, Y., Kwon, H.K., 1986. Heat transfer characteristics in two- and 
three-phase slurry-fluidized beds. AIChE Journal. 32, 1397-1400. 
 
KöIbeI, H., Langemann, H., 1964. Wärmeübergang in blasensäulen. Erdö1-Z. 80, 
405-415. 
 
KöIbeI, H., Siemens, W., Maas, R., Müller, K., 1958. Wärmeübergang in 
blasensäulen. Chem.-Ing.-Tech. 30, 400-404. 
 
Krishna, R., de Swart. W.A., Ellenberger, J., Martina, G.B., Maretto, C., 1997. Gas 
holdup in slurry bubble columns: effect of column diameter and slurry concentrations. 
AIChE Journal. 43, 311-316. 
 
Krishna, R., Sie, S.T., 2000. Design and scale-up of the Fischer-Tropsch bubble 
column slurry reactor. Fuel Processing Technology. 64, 73-105. 
 
Kumar, S., Fan, L.S., 1994. Heat-transfer characteristics in viscous gas-liquid and 
gas-liquid-solid system. AIChE Journal. 40, 745-754. 
 
Kumar, S., Kusakabe, K., Fan, L.S., 1993. Heat transfer in three-phase  fluidization 
and bubble-columns with high gas holdups. AIChE Journal. 39, 1399-1405. 
 
Li, H., 1998. Heat transfer and hydrodynamics in a three-phase slurry bubble column. 
Thesis, PhD, University of Western Ontario, London, Ontario.  
 
Li, H., Prakash, A., 1997. Heat transfer and hydrodynamics in a three-phase slurry 
bubble column. Industrial and Engineering Chemistry Research. 36, 4688-4694. 
 
Li, H., Prakash, A., 1999. Analysis of bubble dynamics and local hydrodynamics 
based on instantaneous heat transfer measurements in a slurry bubble column. 
Chemical Engineering Science. 54, 5265-5271.  
 
Li, H., Prakash, A., 2001. Survey of heat transfer mechanisms in a slurry bubble 
column. Canadian Journal of Chemical Engineering. 79, 717-725. 
 
Li, H., Prakash, A., 2002. Analysis of flow patterns in bubble and slurry bubble 
columns based on local heat transfer measurements. Chemical Engineering Journal. 
86, 269-276. 
 
Li, H., Prakash, A., Margaritis, A., Bergougnou, M.A., 2003. Effects of micron-sized 
particles on hydrodynamics and local heat transfer in a slurry bubble column. Powder 
Technology. 133, 171-184. 
 
Lin, T.J., Hung-Tzu, C., 2003. Effects of macroscopic hydrodynamics on heat 
transfer in a three-phase fluidized bed. Catalysis Today. 79-80, 159-167. 
 



 

38 

 

Lin, T.J., Juang, R.C., Chen, Y.C., Chen, C.C., 2001. Predictions of flow transitions 
in a bubble column by chaotic time series analysis of pressure fluctuation signals. 
Chemical Engineering Science. 56, 1057-1065 
 
Lin, T.J., Tsuchiya, K., Fan, L.S., 1998. Bubble flow characteristics in bubble 
columns at elevated pressure and temperature. AIChE J. 44, 545-560. 
 
Lin, T.J., Wang, S.P., 2001. Effects of macroscopic hydrodynamics on heat transfer 
in bubble columns. Chemical Engineering Science. 56, 1143 - 1149. 
 
Luo, X., Jiang, P., Fan, L.S., 1997. High-pressure three-phase fluidization: 
hydrodynamics and heat transfer. AIChE Journal. 43, 2432-2445. 
 
Luo, X., Lee, D.J., Lau, R., Yang, G.Q., Fan, L.S., 1999. Maximum stable bubble size 
and gas holdup in high-pressure slurry bubble columns. AIChE Journal. 45, 665-680. 
 
Magiliotou, M., Chen, Y.M., Fan, L.S., 1988. Bed-immersed object heat transfer in a 
three-phase fluidized bed. AIChE Journal. 34, 1043-1047. 
 
Matsuura, A., Fan, L.S., 1984. Distribution of bubble properties in a gas-liquid-solid 
fluidized bed. AIChE Journal. 30, 894-903. 
 
Memon, A.I., 2004. Flow regime transitions in bubble and slurry bubble columns. 
Thesis, MESc. University of Western Ontario, London, Ontario, Canada.  
 
Michele, V., Hempel, D.C., 2002. Liquid flow and phase holdup – measurement and 
CFD modeling for two-and three-phase bubble columns. Chemical Engineering 
Science. 57, 1899-1908. 
 
Michelsen, M.L., Østergaard, K., 1970. Hold-up and fluid mixing in gas liquid 
fluidized beds. Chemical Engineering Journal. 1, 37-46. 
 
Muroyama , K., Fukuma, M., Yasunishi, A., 1984. Wall-to-bed heat transfer 
coefficient in gas-liquid-solid fluidized beds. Canadian Journal of Chemical 
Engineering. 62, 199-208. 
 
Muroyama, K., Kato, T., Masuda, T., Kinoshita, S., 2003. Vertical cylinder-to-slurry 
heat transfer in gas-slurry transport bed. Canadian Journal of Chemical Engineering. 
81, 426-432. 
 
Nigam, K.D.P, Schumpe, A., 1996. Three-phase sparged reactors. Gordon and 
Breach, London.  
 
Olmos, E., Gentric, C., Poncin, S., Midoux, N., 2003a. Description of flow regime 
transitions in bubble columns via laser Doppler anemometry signals processing. 
Chemical Engineering Science. 58, 1731-1742. 



 

39 

 

Olmos, E., Gentric, C., Poncin, S., Midoux, N., 2003b.  Identification of flow regimes 
in a flat gas-liquid bubble column via wavelet transforms. Canadian Journal of 
Chemical Engineering. 81, 382-388. 
 
Østergaard, K., Thiesen, P.I., 1966. The effect of particle size and bed height on the 
expansion of mixed phase (gas-liquid) fluidized beds. Chemical Engineering Science. 
21, 413- 417. 
 
Pandit, A.B., Joshi, J.B., 1984. Three phase sparged reactors: some design aspects. 
Reviews in Chem. Eng. 2, 1-84. 
 
Pandit, A.B., Joshi, J.B., 1986. Mass and heat transfer characteristics of three phase 
sparged reactors. Chem. Eng. Res. Des. 64, 125-157. 
 
Prakash, A., Briens, C.L., Bergougnou, M.A., 1987. Mass transfer between solid 
particles and liquid in a three phase fluidized bed. Canadian Journal of Chemical 
Engineering. 65, 228-236. 
 
Prakash, A., Margaritis, A., Li, H.; Bergougnou, M.A., 2001. Hydrodynamics and 
local heat transfer measurements in a bubble column with suspension of yeast. 
Biochemical Engineering Journal. 9, 155-163. 
 
Quiroz, I., Herrera, I., Mendizabal, D.G., 2003. Experimental study on convective 
coefficients in a slurry bubble column. International Communications in Heat and 
Mass Transfer. 30, 775-786. 
 
Reid, R.C., Prausnitz, J.M., Sherwood, T.K., 1977. The properties of gases and 
liquids. McGraw-Hill. New York.  
 
Riquarts, H.P., 1981. Strömungsprofile, impulsaustausch und durchmischung der 
flüssigen phase in bläsensaulen. Chem Ing Techn. 53, 60–61. 
 
Saxena, S.C., Patel, B.B., 1990. Heat transfer and hydrodynamic investigations in a 
baffled bubble column: air-water-glass bead system. Chemical Engineering 
Communications. 98, 65-88. 
 
Saxena, S.C., Rao, N.S., Saxena, A.C., 1990a. Heat transfer from a cylindrical probe 
immersed in a three-phase slurry bubble column. Chemical Engineering Journal. 44, 
141-156. 
 
Saxena, S.C., Rao, N.S., Saxena, A.C., 1990b. Heat-transfer and gas-holdup studies in 
a bubble column: air-water-glass bead system. Chemical engineering 
Communication. 96, 31-55. 
 



 

40 

 

Saxena, S.C., Rao, N.S., Saxena, A.C., 1992b. Heat transfer and gas holdup studies in 
a bubble column: air-water-sand system. Canadian Journal of Chemical Engineering. 
70, 33-41. 
 
Saxena, S.C., Rao, N.S., Yousuf, M., 1991a. Hydrodynamic and heat transfer 
investigations conducted in a bubble column with fine powders and a viscous liquid. 
Powder Technology. 67, 265-275. 
 
Saxena, S.C., Rao, N.S., Yousuf, M., 1991b. Heat transfer and hydrodynamic 
investigations conducted in a bubble column with powders of small particles and a 
viscous liquid. Chemical Engineering Journal. 47, 91-103. 
 
Saxena, S.C., Vandivel, R., Saxena, A.C., 1989. Gas holdup and heat transfer from 
immersed surfaces in two- and three- phase systems in bubble columns. Chemical 
Engineering communications. 85, 63-83. 
 
Schlüter, S., Steiff, A., Weinspach, P.M., 1995. Heat transfer in two- and three-phase 
bubble column reactors with internals. Chemical Engineering and Processing. 34, 
157-172. 
 
Shah, Y.T., Kelkar, B.G., Godbole, S. P., 1982. Design parameters estimations for 
bubble column reactors. AIChE Journal. 28, 353-379. 
 
Shaykhutdinov, A.G., Bakirov, N.U., Usmanov, A.G., 1971. Determination and 
mathematical correlation of heat transfer coefficient under conditions of bubble flow, 
cellular, and turbulent foam. International Chemical Engineering Journal. 11, 641 - 
645. 
 
Steiff, A., Weinspach, P.M., 1978. Heat transfer in stirred and non-stirred gas-liquid 
reactors. German Chemical Engineering. 1, 150 - 161. 
Tareef, B. M., 1940. Thermal Conductivity of Colloidal Systems. Colloidal J. USSR.  
6, 545. 
 
Thorat, B.N., Joshi, J.B., 2004. Regime transition in bubble columns: experimental 
and predictions. Experimental Thermal and Fluid Science. 28, 423-430 
 
Tsutsumi, A., Kim, Y.H., Togawa, S., Yoshida, K., 1987. Classification of three-
phase reactors. Sādhanā. 10, 247-259. 
 
Vand, V., 1948. Viscosity of solutions and suspensions.I. Theory. Journal of Physical 
Chemistry. 52, 277-299. 
 
Vial, C., Camarasa, E., Poncin, S., Wild, G., Midoux, N., Bouillard, J., 2000. Study of 
hydrodynamics behaviour in bubble columns and external loop airlift reactors through 
analysis of pressure fluctuations. Chemical Engineering Science. 55, 2957-2973. 
 



 

41 

 

Viswanathan, S., Kakar, A.S., Murti, P.S., 1965. Effect of dispersing bubbles into 
liquid fluidized beds on heat transfer and hold-up at constant bed expansion. 
Chemical Engineering Science. 20, 903-910. 
 
Wallis, G.B., 1969. One dimensional two-phase flow. McGraw Hill, New York.  
 
Wang, T., Wang, J., Jin, Y., 2007. Slurry reactors for gas-to-liquid processes: A 
Review. Ind. Eng. Chem. Res. 46, 5824-5847. 
 
Wild, G., Saberian, M., Schwartz, J.L., Charpentier, J.C., 1984. Gas-liquid-solid 
fluidized-bed reactors. State of the art and industrial possibilities. International 
chemical Engineering. 24, 639-677. 
 
Wilkinson, P.M., Spek, A.P., van Dieredonck, L.L., 1992. Design parameters 
estimation for scale-up of high-pressure bubble columns. AIChE J. 38, 544-554.  
 
Wu, C., Al-Dahhan, M.H., Prakash, A., 2007. Heat transfer coefficients in a high-
pressure bubble column. Chemical Engineering Science. 62, 140-147. 
 
Yang, G.Q., Luo, X., Lau, R., Fan, L.S., 2000. Heat-transfer characteristics in slurry 
bubble columns at elevated pressures and temperatures. Industrial and Engineering 
Chemistry Research. 39, 2568-2577. 
 
Yu, Y.H., Kim, S.D., 1991. Bubble properties and local liquid velocity in the radial 
direction of cocurrent gas-liquid flow. Chemical Engineering Science. 46, 313-320. 
 
Zehner, P., 1986a. Momentum, mass and heat transfer in bubble columns. Part 1. 
Flow model of the bubble column and liquid velocities. International Chemical 
Engineering. 26, 22-28. 
 
Zehner, P., 1986b. Momentum, mass and heat transfer in bubble columns. Part 2. 
Axial blending and heat transfer. International Chemical Engineering. 26, 29-34. 

 

 

 

 

 

 

 



 

42 

 

CHAPTER 3.   EFFECTS OF INTERNALS OF DIFFERENT 
CONFIGURATIONS ON LOCAL HEAT TRANSFER AND 

HYDRODYNAMICS IN BUBBLE COLUMN 
 
 
 

Abstract 
 
Local heat transfer and column hydrodynamics are investigated in a 0.15m ID bubble 

column in presence of internals of different configurations. Local heat transfers 

variations are measured with a fast response probe capable of capturing bubble 

dynamics as well detect local flow direction. Tap water is the liquid phase and gas 

phase used is oil free compressed air at flow rates varied from 0.03 to 0.35 m/s. 

Measurements obtained in presence of internals are compared with those without 

internals to elucidate the effects of internals design. Comparisons are based on 

average values and fluctuating component of local instantaneous heat transfer 

coefficient obtained with the fast response probe. The average gas holdup, center line 

liquid and bubble holdups obtained with and without internals are also compared. The 

observed differences are discussed based on the insights provided by these 

comparisons. The heat transfer coefficient and gas holdup can increase or decrease 

depending on internal type. The reasons for these increase or decrease are pointed out 

in this study. Relationships between local heat transfer measurements and 

hydrodynamic conditions in presence of internals are shown and discussed.  

 

Key words: Bubble columns, Local heat transfer, Internals design, Hydrodynamics, 

Gas holdup, Bubbles fractions, Liquid circulation velocity 

 

 

 

 

 

 

 



 

43 

 

3.1 Introduction 

Bubble columns (BC) are becoming the reactor of choice for a number of industrial 

applications owing to a number of attractive features the most notables of which 

include excellent heat transfer properties, isothermal conditions of operation, low 

maintenance cost due to simple construction and absence of any moving parts 

(Deckwer and Schumpe, 1993; Kluytmans et al., 2001; Li and Prakash, 2002; Li et 

al., 2003). In addition they offer good mass transfer rates, high selectivity and 

conversion per pass, online catalyst addition and withdrawal and washing effect of 

the liquid on catalyst. The rule of thumb is that the heat transfer in these reactors is 

between 10 and 100 times greater than it is in single-phase liquid flow for the same 

flow rates with respect to the column cross-section (Kast, 1962; Deckwer, 1980; 

Deckwer, 1992). The above benefits make these as the reactor of choice in variety of 

industrial applications such as Fischer-Tropsch synthesis, methanol synthesis, heavy 

oil upgrading, fermentation, biological waste water treatment, flue gas 

desulphurization, coal liquefaction, dimethyl ether production, chlorination and 

hydrogenation (Shah et al., 1982; Fan, 1989; Duduković and Devanathan, 1992; 

Deckwer and Schumpe, 1993; Li, 1998; Prakash et al., 1999; Prakash et al., 2001; 

Duduković et al., 2002). 

 

In order to obtain desired performance, for a given application bubble column may 

need to be equipped with different internals type. These include baffles, heat transfer 

tubes and gas/liquid distributors of different configurations. The internals presence 

and arrangement in bubble columns would affect hydrodynamics and mixing pattern, 

there by affecting the reactor performance and heat transfer characteristics.  A limited 

number of literature studies have investigated effects of internals on bubble column 

hydrodynamics (Youssef and Al-Dahhan, 2009; Larachi et al., 2006; Chen et al., 

1999; Schlüter et al., 1995; Saxena et al., 1992). These studies clearly point to 

alterations in flow pattern, mixing intensities and general hydrodynamics due to 

insertion of internals in a hollow bubble column. Most of these studies have focused 

on different arrangements of heat exchanger tubes aimed at applications in 

exothermic such as Fischer-Tropsch synthesis, methanol synthesis and production of 
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dimethyl ether (DME). By appropriate selection and arrangement of internals, it is 

also possible to improve mass transfer and reduce back mixing effects in these 

reactors. In this study attempts are made to get further insights into the local 

hydrodynamics based on heat transfer coefficient measurements and study of bubble 

populations in presence of internals of different types. The heat transfer coefficient 

data obtained in this study has been compared with the data obtained in bubble 

columns without internals to point out the effects. The hydrodynamic parameters such 

as gas holdup profile, liquid circulation velocity profile, and bubble holdup are 

compared in bubble columns with and without internals to get the insights of affect of 

these parameters on the heat transfer coefficient in air-water system. 

 

3.2 Experimental  

Experiments were conducted in a Plexiglas column of 0.15 m internal diameter and 

height of 2.5 m with (Figure 3.1). The column was supported by rigid metallic 

structure to keep it vertical and minimize mechanical vibrations which might affect 

pressure and heat transfer signals. The gas was introduced in the column using a 

coarse sparger. The detailed design of the coarse sparger is explained elsewhere 

(Gandhi, 1997). The sparger had two levels, upper level had seven (1.9 mm diameter) 

and lower level had five (1.9 mm diameter) downward facing holes on each of four 

arms. Two types of internals and their combination were used in this study. Top view 

of tube bundle type internal studied (Type A) is shown in Figure 3.2a. A flow 

deflector type six-blade concentric baffle studied is shown in Figure 3.2b. It was 

located at two separate axial positions 21 cm and 36 cm from the bottom of the 

column.  Specific details about internals used are provided in Table 3.1.  Oil-free 

compressed air was used as gas phase; tap water was used as the liquid phase. The 

gas flow rate was measured using three calibrated sonic nozzles of different diameter 

(0.7mm, 1.5 mm and 2.5 mm). The superficial gas velocity was varied from 0.03 to 

0.35 m/s. The unaerated water height in the column was maintained around 1.45 m. A 

measuring tape was provided on the column to note the liquid level and dispersion 

height. Two pressure transducers (OMEGA Type PX541-7.5GI and Type PX541-
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15GI) were used to measure the pressure fluctuations in distributor (z = 0.027 m) and 

disengagement section (z = 1.318 m), as shown in Figure 3.1. The pressure 

transducers were connected to a DC power supply and generated a voltage 

proportional to measured pressure. The response time of the pressure transducers was 

2 ms and data were recorded for 105 seconds at a rate of 60 Hz. Instantaneous heat 

flux was measured using a micro-foil heat flux sensor (Rdf, Model number 20453-1 

G161).The sensor was flush mounted on the surface of a brass cylinder of 11 mm 

outer diameter. A small cartridge heater (Chromalox, model number CIR-1012) was 

installed inside the brass cylinder. The AC power was supplied to the cartridge heater 

through a variac to regulate supplied power in the range of 20 to 40V. The detailed 

design of the heat flux probe is explained elsewhere (Li and Prakash., 1997; Li, 

1998). Probe location could be changed both axially and radially and it could also be 

rotated to study effects of sensor orientation on measured values. The temperature of 

the liquid phase was measured using two copper-constantan thermocouples (ANSI 

type T). These thermocouples were located at two radial locations: one at center and 

other close to the wall. Axial position of the thermocouple could be changed. The 

response time of micro-foil heat flux sensor was 20 ms and data were recorded for 

180 s at a rate of 60 Hz. The probe generated microvolt signals, which were amplified 

to millivolts by a suitable amplification circuit using 15V DC supply. A minimum of 

three test runs were performed at each condition and average values are reported. For 

the heat flux sensor, the following equation can be derived for liquid film heat 

transfer coefficient (Li and Prakash, 2001): 

  1
/

Su b

i

T T x
h q A k

− Δ
= − ………...…….(3.1) 

The second term on the right hand side of Equation 3.1 is negligible compared to the 

first term (< 1%) due to high thermal conductivity (k) and small thickness (Δx) of the 

thermal barrier film. Therefore instantaneous heat transfer coefficient could be 

determined by measurement of heat flux and the difference between surface and bulk 

temperatures at a given time. The time-averaged heat transfer coefficient at a given 

location was obtained by averaging the instantaneous heat transfer data collected.  
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Figure 3.1. Schematic diagram of experimental setup 
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Figure 3.2a. Top view of the tube bundle used (Type A) 

 

Figure 3.2b. Top view of bubble diffuser used (Type B) 
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Table 3.1. Details of internals used in air-water system 
 

Internal type Label Geometrical details Comments 
Circular tube 
bundle 
(z = 0.3 m) 

A No. of tubes: 15 
Tube diameter: 0.95 cm 
Tube length: 150 cm 
Wall to wall spacing between tubes: 
4.4 mm 

Adjustable height 
from column 
bottom 

Concentric 
baffle    
(z = 0.21 m) 
 

B1 No. of blades: 6 
Length of blade: 3.5 cm 
Width of blade: 1.9 cm 
Blade angle: 60o from axis 

Adjustable height 
from column 
bottom 

Concentric 
baffle     
(z = 0.36 m) 
 

B2 Same as B1 Adjustable height 
from column 
bottom 

Circular tube 
bundle (z = 0.5 
m) + baffle  
(z = 0.36 m) 

AB2 Combination of A and B2  

 

3.3 Results and discussion 

3.3.1 Local Heat Transfer Coefficients 

Figures 3.3 presents a comparison of average heat transfer coefficient obtained in the 

bulk section of the column at column center with and without internals. From the 

figure it is observed that the heat transfer coefficient increases with increase in 

superficial gas velocity in bubble columns in all cases but at different rates. This 

increase in heat transfer coefficient with superficial gas velocity can be attributed to 

the turbulence generated due to the introduction of the gas in the column. It is 

observed that the heat transfer coefficients obtained with internals types A and AB2 

are significantly higher than those obtained in without internals. It should also be 

noted that the difference between internals A and AB2 is not significant, indicating 

that internal A is clearly playing a more dominant role here. With internal B2, the 

difference is not significant for lower velocities (< 0.15 m/s) compared to hollow 

column but higher values are obtained with increasing velocities. However with 

internal B1, no significant difference is observed. These differences can be related to 
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changes in mixing patterns, turbulence and column hydrodynamics caused by the 

internal type. The intensity and degree of change is expected to vary with specific 

design of internal. Type A internal due to its circular arrangement of heat exchanger 

tubes would help direct flow of gas bubbles to column center thus creating additional 

driving force for liquid circulation rate. The B type internals in this study would have 

a smaller such effect due to a very different design configuration.  However, 

differences observed with change in axial position of this internal (B1 and B2) 

indicate the need to consider local variations in the column hydrodynamic behavior.  
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Figure 3.3. Comparison of heat transfer coefficient measurements in bubble column 
with and without internals, r/R=0 (air-water system) 

 
A limited number of literature studies have investigated effects of internals on bubble 

column hydrodynamics (Youssef and Al-Dahhan, 2009; Larachi et al., 2006; Chen et 

al., 1999). These studies clearly point to alterations in flow pattern, mixing intensities 

and general hydrodynamics due to insertion of internals in a hollow bubble column. 
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Change in design configuration has been reported to clearly affect hydrodynamic 

behavior which is expected to affect rate of transport processes (Youssef and Al-

Dahhan, 2009; Larachi et al., 2006). The fast response heat transfer probe used in this 

study allowed measurement of temporal variation of local heat transfer coefficient in 

the column. Therefore to further  understand the underlying reasons for the observed 

increase in heat transfer coefficient with type A internal, the  dynamic behavior  of 

heat transfer coefficient was compared for a given gas velocity. It is observed from 

Figure 3.4a that the peaks obtained in presence of internals are wider and taller as 

compared to those without the internal. This could be attributed to the passage of 

clusters of bubble generated with type A internal as a result of directing bubble flow 

towards central region of the column.   
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Figure 3.4a.  Instantaneous heat transfer coefficients of air-water system (with and 

without internals) at r/R=0 
 

A similar comparison of the behavior of instantaneous heat transfer coefficients 

obtained in the wall region of the bulk section of the column is shown in Figure 

3.4b for the superficial gas velocity of 0.21 m/s. It can be seen in wall region the 

instantaneous heat transfer coefficient peaks are smaller than central region in 
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both the cases. This can be attributed to presence of smaller bubbles in the wall 

region of the column. It is also interesting to see that in bubble column equipped 

with type A internal the heat transfer coefficient peaks in wall region are smaller 

compared to hollow bubble column. This could be due to smaller and fewer 

bubbles in the annular region created due to insertion of this internal type in the 

column.  Visual observations also supports this, smaller bubbles seemed trapped 

in the annular region given the geometry of the internal and small gap between the 

tubes (see Table 3.1).  
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Figure 3.4b.  Instantaneous heat transfer coefficients of air-water system (with and 

without internals) at r/R=0.624 
 

Figures 3.5 shows a comparison of average heat transfer coefficient obtained close to 

the wall (r/R=0.624) in the bulk section of the column in presence of different 

internals. Following observations can be made for data in the wall region, when 

compared with the heat transfer coefficients obtained at column centre (Figure 3.3). 

 

- Heat transfer coefficients are significantly lower in the wall region.  
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- The rate of change with gas velocity is slow and decreases further above gas 

velocity of 0.15 m/s. 

- A reverse trend is observed with internals i.e. values are higher with type B 

and lower with type A internals indicating very different flow patterns with 

different internals used. 

- Combination of internals A and B2 improves heat transfer coefficient in the 

wall region compared to internal A alone. 
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Figure 3.5. Comparison of heat transfer coefficient measurements in bubble column 

with and without internals, r/R=0.624 (air-water system) 
 
 

A direct comparison of data obtained in the two regions obtained with two different 

internals is presented in Figure 3.6 to further highlight the differences. It can be noted 

that the differences between the two regions is higher with type A internal compared 

to type B2.  Very different geometry of these internals of course is the main cause of 
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the difference.  Selection of proper internals for a given application would need to 

take such differences into consideration.  
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Figure 3.6. Variations of heat transfer coefficient at two radial locations with internal 
A and B2 

 

The radial direction variations were further investigated with radial profiles of heat 

transfer coefficients obtained with and without internals as presented in Figure 3.7a. 

As the radial distance from the center increases the heat transfer coefficient decreases 

at all superficial gas velocities in all cases. It is also observed that the profiles are 

much steeper with Type A internal compared to hollow bubble column or other 

internal type. The radial profiles obtained with type A internal cross the other profile 

around dimensionless radius of about 0.3 and move below other profiles as it moves 

into annular region. This difference can be related to the design of type A internal. 

The tube bundle design would funnel the two phase flow and smaller inter-tube gap 

would limit flow into annular region thus significantly altering column 



 

54 

 

hydrodynamics. The steeper profiles obtained in presence of Type A internals show 

that the lower turbulence is caused by the smaller and fewer bubbles in the wall 

region.  It was visually observed that the bubble size and population decreased in the 

wall region with type A internals, compared to those without or other type internals. 
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Figure 3.7a. Comparison of the radial profile of heat transfer coefficient obtained with 

and without internals in air-water system 
 

 

It is also observed from Figure 3.7a that the radial profile was less steeper with 

combined AB2 internal compared to internal A alone. Given its design, internal B2 

would assist with some flow deflection over the column cross section thus limiting 

the funneling action of type A internal. It is also observed from Figure 3.7a that 

insertion of type B internal caused the radial profile to become more gradual 

compared to hollow column. This effect should lead to reduction in phase back-

mixing in the column and requires further investigations.  A direct comparison of 

radial profiles between hollow column and with internal A is presented in Figure 3.7b 
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at a low and a high gas velocity. It is interesting to note at low gas velocity of 0.038 

m/s, the radial profiles obtained in hollow bubble column and with internal A are 

quite similar. This indicates minimal effect of the internal on column hydrodynamics 

under the dispersed bubble flow conditions at the low velocity. However, at the high 

gas velocity of 0.35 m/s when the column is in fully developed heterogeneous regime, 

the two profiles come apart.  
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Figure 3.7b. Comparison of the radial profile of heat transfer coefficient obtained 

with Type A and without internals in air-water system  
 

3.3.2 Gas Holdup and Bubbles Fractions 

A comparison of gas holdups measured in bubble column with and without internals 

in air-water systems is shown in Figure 3.8. Highest gas holdups are obtained with 

type A internals (A and AB2) followed by B2 while lowest values are obtained with 

B1. Gas holdups obtained in absence of internal lie between internals B1 and B2. The 

results in presence of type A internal are consistent with the literature studies, who 
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used similar internals (Youssef and Al-Dahhan, 2009; Chen et al., 1999; Saxena et al., 

1990). The increase in gas holdup in presence of internals can be attributed due to 

decrease in average bubble size and vice versa.  With type A internals, it was visually 

observed in this study that smaller bubbles accumulated in the wall region. But in 

case of B1, bubble coalescence was visually observed close to the internal especially 

at low superficial gas velocities. At higher velocities visual observations could not be 

made as system was very turbulent. As discussed below, the analysis of bubble 

holdup structure based on gas disengagement studies clearly support the observations 

that “the average bubble size was increasing” in the presence of internal B1. 
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 Figure 3.8. Comparison of gas holdup measurements obtained with and without 

internals (air-water system) 
 

In bubble columns the small bubbles are typically less than 5 mm in diameter and 

large bubbles are typically 5 cm in diameter or larger (Krishna et al., 1991).  Figure 

3.9a and b present comparison of gas holdup of small and large bubbles obtained in 

bubble columns with and without internals in air-water system respectively. The 

detailed procedure for estimation of bubble holdup is explained elsewhere (Li and 
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Prakash, 2000). It is observed in Figure 3.9a, that the gas holdup of small bubble is 

higher in bubble columns equipped with internals A and B2 compared to hollow 

bubble column. This clearly shows that the average bubble size decreased in presence 

of these internals.  But in case of bubble column equipped with internal B1, the gas 

holdup of small bubble is lower compared to bubble column without internals. The 

fact that the presence of this internal in the distributor region actually promotes the 

coalescence of bubbles was visually observed especially at low superficial gas 

velocities. From Figure 3.9b it is also interesting to note that there is no much 

variation in gas holdup of large bubbles fraction in bubble columns equipped with 

internal A, B2 and without internals. But in case of bubble column equipped with 

internal B1, the gas holdup of large bubble is significantly higher. This means the 

average bubble size is increasing.  
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Figure 3.9a. Comparison of small bubbles holdup in bubble columns equipped with 
and without internals in air-water system  
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Figure 3.9b. Comparison of large bubbles holdup in bubble columns equipped with 

and without internals in air-water system 
 

The fast response heat transfer probe used in this study could detect variations due to 

changes in bubble size distribution which could be reflected in standard deviations of 

time series data of the heat transfer coefficient. Figures 3.10a and b compare standard 

deviation of heat transfer data obtained at r/R=0 and r/R=0.624 in the bulk section of 

the column for different cases. The standard deviation of heat transfer coefficient in 

both central and wall region increases with the increase in superficial gas velocity in 

all cases. However, the rate of increase varies with internal type and radial location 

and following observations can be made. 

 

• In the central region of column, the standard deviations are highest with 

internal B1, followed by type A internals while internal B2 and hollow bubble 

column have similar values. High values obtained with B1 can be related 

wider variations in bubble size distribution caused by bubble coalesce 

observed with this internal. 
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Figure 3.10.  Comparison of standard deviation of heat transfer coefficient in bubble 
columns with and without internals in: (a) central (r/R=0) (b) wall region (r/R=0.624)  
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• It can also be noted that differences between different internals are generally 

small and become insignificant at low gas velocities (< 0.1 m/s) when bubble 

size distribution may not evolve significantly. 

 
• In the wall region, it can be noted that lowest standard deviations are obtained 

with type A internals and there is no significant change with gas velocity. This 

indicates that the bubble size is small and there is little change with gas 

velocity. 

 

• Higher standard deviation values obtained with type B internals and hollow 

bubble column point to wider bubble size distribution in the wall region for 

these cases.  

 

3.3.3 Local Liquid Velocity and Related Hydrodynamics 

The heat transfer probe used in this study could also detect flow direction and provide 

an estimation of local liquid velocity using boundary layer theory (Li and Prakash, 

2002). Flow direction could be identified (upward or downward) by measuring the 

time averaged local heat transfer coefficients using the different orientation of the 

probe (upward, downward or lateral). Figure 3.11 shows the results obtained at the 

center (r/R=0) in the bulk section of the column with type A internal. The heat 

transfer coefficients (stagnation point) obtained with the downward orientation of the 

probe are higher than those obtained with the upward orientation, hence indicating 

upward liquid flow. Similar studies were conducted without internals and with 

internals. Li and Prakash (2002) developed a correlation to obtain a local liquid 

velocity by applying boundary layer theory to the measured stagnation point heat 

transfer coefficients.  
0.5

0.4(Pr)st p L p
s

L L

h D V D
a

k ν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

    (3.3) 
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Figure 3.11. Local heat transfer coefficients for different probe orientations in 
presence of internals Type A in air-water system (r/R = 0) 

 

The above equation gives good prediction of liquid velocities in different diameter 

bubble columns as reported by Li and Prakash (2002) and Jhawar and Prakash (2011). 

In the above equation, the value of factor as depends on several aspects such as probe 

design, orientation etc. Jhawar and Prakash (2011), recommended value of factor as to 

be 0.7 based on data from their and other literature studies. The results obtained with 

this procedure at the column centre are shown in Figure 3.12. It is observed that 

highest local liquid velocities are obtained with internal A and AB2, followed by 

internal B2. Lowest center line liquid velocities are obtained with internal B1 but the 

values are quite close to hollow bubble column which tend to be slightly higher. 

Higher central liquid velocity with type A internal is a result of its vertical tube 

bundle design creating a funneling effect for gas and entrained liquid flow. B type 

internals have horizontal blades occupying part of column cross section. Internal B1 
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is placed close to the distributor in developing zone, where rising bubble clusters and 

plumes need to pass through the constricted opening, altering bubble dynamics. 

Internal B2 was placed at higher elevation where bulk region turbulence seems to be 

helping bubble breakup and dispersion. This indicates existence of different 

hydrodynamic conditions in bubble columns equipped with different internals. Even 

though average bubble size was found to increase in bubble columns equipped with 

internal B1, the turbulence intensity seems to decrease as a result of redispersed flow 

by the internal. 
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Figure 3.12.  Comparison of liquid velocities estimated at the center in bulk section of 

the column by equation (3.3) in air water system 
 

Liquid velocities in the wall region of bubble columns with and without internals are 

shown in Figure 3.13. It is observed that trends are quite different compared to central 

region. The liquid velocities obtained in the wall region are higher with type B 

internals compared to type A internal. It is also interesting to note that a difference 
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between internal types is larger and distinct in the wall region. These results indicate 

important role of internals in altering radial liquid profile in the column and hence 

column hydrodynamics.  The steepness of radial profile is indicative of backmixing 

effects in the column. Larger the difference or sharper the steep, greater is the 

backmixing.  
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Figure 3.13.  Comparison of liquid velocities estimated at the wall (r/R =0.624) in 
bulk section of the column by equation (3) in air water system 

 

A plot of difference between radial liquid velocities for different internals is presented 

in Figure 3.14. It can be seen that largest differences are obtained with type A 

followed by AB2, hollow column B2 and B1 in that order. In addition, following 

important observations can be made. 

 

• Combining B2 with internal A reduces the differential velocity thereby 

reducing back mixing especially at higher gas velocities. 
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• Values with internal B2 are significantly lower than hollow bubble column 

below gas velocity of 0.15 m/s but approach the hollow column values at 

higher velocities. This indicates that similar column hydrodynamics are 

achieved at these high velocities likely due similar bubble breakup and 

coalescence process.  

• Internal B1 remains lower than hollow bubble column for all gas velocities 

indicating importance of location from the gas distributor. 
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Figure 3.14.  Comparison of differential radial liquid velocities with different 
internals in bulk section of the column 

 

This suggests that with presence of type B internals, there is improvement in column 

hydrodynamics radially and more uniform mixing is achieved at different radial 

locations due to uniformity in bubble size and population. This is desired as we can 

locate the heat transfer surfaces away from the central region there by minimizing the 
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disturbance to flow and achieving higher heat transfer rates with combination of Type 

A and Type B internals. 
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Figure 3.15. Comparison of time series heat transfer coefficients obtained with 

internals A and AB2 in the annular region 
 

The instantaneous heat transfer coefficient obtained in the annular region in presence 

of internals A and combination of internal A and B2 (AB2) is presented in Figure 

3.15. It is observed that in bubble column equipped with type AB2 internal the heat 

transfer coefficient peaks in wall region are larger compared to bubble column 

equipped with internal A. This could be due to passage of few large bubbles in the 

annular region in bubble columns with AB2.  Visual observations also supports this, 

periodically large bubbles seemed escaping in the annular region because of presence 

of bubble diffuser B2. Given its design, internal B2 would assist with some flow 

deflection over the column cross section. This suggests that by using different 

combination of internals column hydrodynamics can be altered and higher heat 

transfer can be achieved. The radial improvement in column hydrodynamics with 
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internal B2 is advantageous, as the combination AB2 improves the heat transfer in 

annular region. 

 

3.3.4 Estimation of Centerline Liquid Velocity for Type A Internal 

The type A internal is close to a concentric wall draft tube type internal air lift reactor 

which has been well investigated in literature studies (Koide et al., 1983; Koide et al; 

1985; Muroyama et al, 1985; Chisti et al., 1988; Choi and Lee, 1992; Choi et al., 

1996; Heijnen et al., 1997).  However, there is difference since air lift reactors often 

have solid wall draft tube while internal A has perforations due to inter-tube gaps. 

Performing energy balance of an airlift reactor, the energy balance can be written as: 

 

Rate of energy input due to isothermal expansion of gas in the reactor is equal to 

summation of rate of energy dissipation due to bubble wake, stagnant gas in the 

downcomer, energy loss due to friction in the riser and downcomer and energy loss 

due to fluid recirculation at top and bottom of the reactor 

 

The above expression can be written as  

Ei =ER+ED+ET+EB+EF………….........(3.4) 

 

Where Ei = Rate of energy input due to isothermal gas expansion 

D D
i h

h

ghE QP ln 1
P

ρ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
……………. (3.5) 

 

ER = Energy dissipation in riser because of bubble wake 

ED = Energy loss due to drag of gas on liquid in downcomer 

ET and EB = Energy loss due to fluid recirculation at the top and bottom of the reactor 

EF = Energy loss due to wall friction in riser and downcomer. 

 

For low viscosity fluids in airlift reactors the wall (skin) friction energy losses is 

negligible compared to other energy losses in equation (3.4) (Chisti et al., 1988). This 
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has been contradicted by Heijnen et al., (1997), who found that the wall friction is 

significant and depends on aspect ratio of airlift reactor based on draft tube height and 

effective column height for liquid circulation. But results predicted by Heijnen et al., 

(1997) using frictional loss at top and wall for data by Livingston and Zhang (1993) 

are almost similar to those predicted by Chisti et al., (1988) neglecting the loss at top 

and wall. Thus we will assume that friction energy losses at the wall are negligible. 

Therefore the equation (3.4) can be rewritten as: 

i R D T BE  =E +E +E +E  ………………………….. (3.6) 

 

Energy loss due to bubble wake in riser is obtained by an energy balance in riser 

using the liquid in riser as control volume. We know that in the riser the flow is in 

upward direction means the rising bubbles will gain potential energy, but there will be 

loss of pressure energy. Assuming the gas is introduced in riser. 

 

Therefore: 

Ei = ER – Pressure energy loss + Potential energy gain 

( )( )i R Lr r L D R L DE  =E U A gh 1 ghρ ε ρ− − − ……. (3.7) 

 

The equation (3.7) can be further simplified as 

( )i R L D Lr r rE  =E gh U Aρ ε+ …………………….. (3.8) 

 

Rearranging above equation 

( )R i L D Lr r rE =E gh U Aρ ε− ………………. .……(3.9) 

 

Energy loss due to drag of gas on liquid in downcomer (ED) is obtained by an energy 

balance in downcomer using the liquid in downcomer as control volume. In 

downcomer it will be reverse of riser (flow is downward) means there is a pressure 

energy gain and potential energy loss. Assuming no gas is introduced in downer. In 

practicality  for system like ours, due to its design there will be some gas being 
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introduced through downcomer, but it will be very small compared to that being 

introduced in riser, thus assumption seems to be valid. 

 

0 = ED + Pressure energy loss - Potential energy gain 

 

( )( )D Ld d L D d L D0 E U A gh 1 ghρ ε ρ= + − − ……… (3.10) 

 

The equation (3.9) can be further simplified as 

 

( )D Ld d L D dE U A ghρ ε= ………………………… (3.11) 

 

The energy loss due to fluid recirculation at the top and bottom of the reactor is 

calculated in a similar way as for pipe flow (Chisti et al., 1988). But in reality this 

will be very different for the complex system as ours, where the draft tube is not solid 

and has perforations (approx. 4.4 mm). This will allow some liquid and most small 

bubbles to escape to the downcomer. It is known that the average bubble size 

decreases in presence of internals type A (Youssef and Al-Dahhan, 2009). The 

reverse flow is not possible because of the pressure difference between riser and 

downcomer. The bottom and top base plate supporting tube bundle also affects the 

flow pattern. More over the fluid recirculation is greater at the bottom of the column 

and decreases as its distance increases from the bottom and is visually observed in 

this study. It is also observed that some of the entrained bubble from the downcomer 

in the bottom of the reactor re-enters the riser along with the introduced gas. This 

makes the hydrodynamics very complex in our system and makes it difficult to 

model. For the sake of simplicity we will model it based on pipe flow and modify 

later based on the experimental data and assumptions.  

 

Therefore: 

( ) ( )3 3
B T L Lr T r r Ld B d d

1E E V K A 1 V K A 1
2
ρ ε ε⎡ ⎤+ = − + −⎣ ⎦…(3.12) 
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Where, KT and KB are the dimensionless friction loss coefficients at the top and 

bottom connecting sections of the riser and downcomer in the reactor. The VLr and 

VLd in equation (3.12) are the interstitial liquid velocity in riser and downcomer. 

From superficial liquid velocity in riser and downcomer the interstitial liquid velocity 

can be calculated using following equations: 

 

Lr
Lr

r

UV
1 ε

=
−

………………………….. (3.13) 

Ld
Ld

d

UV
1 ε

=
−

…………………………. (3.14) 

The equation of continuity for liquid flow between riser and downcomer can be 

written as: 

 

( ) ( )r r Lr d d LdA 1 V A 1 Vε ε− = − ………(3.15) 

 

r Lr d LdA U A U= …………………….. (3.16) 

 

By substituting VLr and VLd values from equation (3.13) and (3.14) in equation (3.12) 

we get 

 

( ) ( )

33
Ld B dLr T r

B T L 2 2
r d

U K AU K A1E E
2 1 1
ρ

ε ε

⎡ ⎤
⎢ ⎥+ = +
⎢ ⎥− −⎣ ⎦

……………………………………..(3.17) 

 

By substituting equation (3.16) in equation (3.17) and rearranging we get 

( ) ( )

2
3 T r

B T L Lr r B2 2
dr d

K A1 1E E U A K
2 A1 1
ρ

ε ε

⎡ ⎤⎛ ⎞
⎢ ⎥+ = + ⎜ ⎟
⎢ ⎥− −⎝ ⎠⎣ ⎦

………………………. (3.18) 
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By substituting equation (3.9), (3.11) and (3.18) in equation (3.6) we get 

 

( ) ( )
( ) ( )

2
3 T r

i i L D Lr r r Ld d L D d L Lr r B2 2
dr d

K A1 1E  =E gh U A +U A gh + U A K
2 A1 1

ρ ε ρ ε ρ
ε ε

⎡ ⎤⎛ ⎞
⎢ ⎥− + ⎜ ⎟
⎢ ⎥− −⎝ ⎠⎣ ⎦

……………………. (3.19) 

By substituting equation (3.16) in equation (3.19) and rearranging we can write an 

equation for superficial riser velocity in airlift reactors as 

( )

( ) ( )

0.5

D r d
Lr 2

T r
B2 2

dr d

2gh
U

K A 1K
A1 1

ε ε

ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎛ ⎞⎢ ⎥

+ ⎜ ⎟⎢ ⎥
− −⎝ ⎠⎢ ⎥⎣ ⎦

………………….. (3.20) 

 

Equation (3.20) is the general equation for prediction of liquid velocities in airlift 

reactors of different configurations. The diameter effect of riser is incorporated in 

terms of superficial riser liquid velocity. The diameters of riser and downer have 

significant impact on column hydrodynamics. The ratio (Ar/Ad) does not define the 

geometry as we can get the same ratio for different configuration.  

 

Chisti et al., (1988) assumed that for concentric tube type internal loop airlift reactor, 

the energy loss at the top connecting section between riser and downcomer will be 

small relative to that in the bottom section. This is because the top of the draft tube 

likely will be an open channel as opposed to constricted flow path at the bottom due 

to fluid recirculation. The equation (3.20) will be reduced as  

 

( )

( )

0.5

D r d
LR 2

r
B 2

d d

2gh
U

A 1K
A 1

ε ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥

−⎝ ⎠⎢ ⎥⎣ ⎦

…………………….. (3.21) 
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The above assumption may not be valid in this case, especially at low gas velocities 

when the tube bundle is above the gas-liquid dispersion height. It will restrict the 

fluid flow and there will be energy loss. Also the design of tube bundle A, because of 

its support plate at top and bottom will also have some impact. But at high velocities 

the resistance to fluid flow at the top will become negligible compared to the energy 

loss at the bottom due to increased gas-liquid height and perforation in tube bundle. 

So the above assumption will affect the liquid velocities at low superficial gas 

velocities. But our main focus is for high superficial gas velocity (fully developed 

heterogeneous flow regime), so the above assumption may be valid for our case. KB is 

the dimensionless frictional loss coefficient at the riser bottom.  Literature studies 

have reported estimation procedures for conventional airlift reactor (Heijnen et al., 

1997; Chisti, et al., 1988). 

 

The tube bundle used in this study, however has different geometry due to inter-tube 

spacing of 4.4 mm, so there could be flow of liquid and small bubbles from center to 

the downer region, reverse flow is less likely due to higher pressure inside the bundle. 

Most of the small bubble will be in the downer region. Thus following assumptions 

were made for gas holdup based on experimental observations. 

 

• All of large bubble holdup and about 30% of small bubbles holdup is in the 

riser section.  

• Downer has the remaining small bubbles holdup and no large bubbles. 

 

Values of frictional loss coefficient (KB) in equation (3.21) were first estimated using 

literature correlations recommended for conventional airlift reactor (Heijnen et al., 

1997; Chisti, et al., 1988). However, predicted values of liquid velocities were 

significantly higher. Since, the tube bundle used in this study has several differences, 

it was decided to use a value obtained from experimental data. Key differences are 

discussed below. 
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• Tube bundle has perforations which allow some liquid and most small bubbles 

to escape to the downcomer along the length of the tube bundle. This will 

have impact on riser velocities and make the hydrodynamics more complex.  

• It was visually observed that the fluid recirculation was very high at the 

bottom of the column and decreased as the distance increased from the 

bottom. This indicates bypassing effects thus reducing velocity.  

 

 
Figure 3.16. Comparison of estimated liquid circulation velocity in core region in 

bubble columns equipped with Type A internals  
 

A constant value of KB could be used for gas velocities above 0.05 m/s. This 

procedure predicted liquid velocity with average error less than 10% as shown in 

figure 3.16. For low gas velocities, KT cannot be assumed negligible since the tube 

bundle was above gas-liquid dispersion height. This resulted in high error in 

estimated superficial rise velocities at low gas velocities.  
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3.4 Conclusions  

The presences of tube bundle type internal (type A) used in this study results in 

increase in heat transfer coefficient in the central region, but in wall region the heat 

transfer coefficients are lower than those obtained in hollow bubble columns or  with 

six-blade baffle (type B).  The combination of internals AB2 improved heat transfer 

coefficient in the wall region compared to internal A alone. The radial profile of heat 

transfer coefficient was less steeper with combined AB2 internal compared to internal 

A alone. In case of AB2, given the design, internal B2 would assist with some flow 

deflection over the column cross section thus limiting the funneling action of type A 

internal. This study clearly points to alterations in flow pattern, mixing intensities and 

general hydrodynamics due to insertion of internals in a hollow bubble column. The 

location of internals can alter the hydrodynamic conditions as observed with change 

in axial position of B type internal (B1 and B2) indicating the need to consider local 

variations in the column hydrodynamic behavior for design and location of internals. 

The average bubble size decreased in presence of internals A and B2, but a reverse 

trend is found in bubble columns with B1.  

 

3.5 Notations 

Δx Thickness of the thermal barrier, (m) 

A Heat transfer area, (m2)  

Ad       Cross-sectional downer area (m2) 

Ar        Cross-sectional riser area (m2) 

as Constant in equation (3.3) 

Dp Probe diameter (m) 

EB     Energy loss due to fluid recirculation at the bottom of the reactor (W) 

ED     Energy loss due to drag of gas on liquid in downcomer (W) 

EF     Energy loss due to wall friction in riser and downcomer (W) 

Ei      Rate of energy input due to isothermal gas expansion (W) 

ER     Energy dissipation in riser because of bubble wake (W) 
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ET      Energy loss due to fluid recirculation at the top of the reactor (W) 

g Acceleration due to gravity (m/s2) 

h   Heat transfer coefficient, (kW/m2 ºC) 

hD     Gas-liquid dispersion height (m) 

k    Thermal conductivity, (W/m K)                

KB       Dimensionless friction loss coefficients at the bottom 

KT     Dimensionless friction loss coefficients at the top  

N Number of data points 

Ph      Reactor head space pressure (N/m2) 

Pr Prandtl number, ,p l l

l

C
k
μ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Q  Gas flow rate (m3/s) 

q Heat flow rate, (kW) 

r Radial location, (m) 

R Radius of the column, (m) 

T Temperature, (oC) 

ULd     Superficial downcomer liquid velocity (m/s) 

ULr     Superficial riser liquid velocity (m/s) 

V Superficial velocity (m/s) 

VLd      Interstitial liquid velocity in downcomer (m/s) 

VLr     Interstitial liquid velocity in riser (m/s) 

z Axial location from the bottom of the column, (m) 

 

Greek Symbols 

ε phase holdup (-) 

ν Kinematic viscosity (m2/s) 

ρ Density (kg/m3) 

ρD Dispersion density (kg/m3) 

εd         Downer holdup (-) 

εr       Riser holdup (-) 
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Subscripts 

avg Average 

b Bulk 

G  Gas 

C Center 

W Wall 

i  Instantaneous 

L   Liquid 

Su Surface 

st  Stagnation point 
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CHAPTER 4. INVESTIGATIONS OF HEAT TRANSFER 
PROFILE AND HYDRODYNAMICS IN A SLURRY BUBBLE 

COLUMN INSERTED WITH INTERNALS 
 
 

Abstract 
 

Local heat transfer and column hydrodynamics are investigated in a 0.15m ID bubble 

column with and without solids in presence of internals of different configurations. 

Local heat transfers variations are measured with a fast response probe capable of 

capturing bubble dynamics as well detect local flow direction. Tap water is the liquid 

phase and the solid particles used are 49μm glass beads and their concentration is 

varied up to 20 vol. %. The static height of the slurry was maintained around 1.45m. 

Gas phase used is oil free compressed air and its flow rate is varied from 0.03 to 0.35 

m/s. Measurements obtained in presence of internals are compared with those without 

internals to elucidate the effects of internals design. Comparisons are based on 

average values and fluctuating component of local instantaneous heat transfer 

coefficient obtained with the fast response probe. The average gas holdup, center line 

liquid velocity and bubble holdups obtained with and without internals are also 

compared. The observed differences are discussed based on the insights provided by 

these comparisons. The heat transfer coefficient and gas holdup can increase or 

decrease in presence of some internals. The reasons for these deviations are pointed 

out in this study. Relationships between local heat transfer measurements and 

hydrodynamic conditions in presence of internals are shown and discussed.  

 

Key words: Bubble columns, Local heat transfer, Internals design, Hydrodynamics, 

Slurry 
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4.1 Introduction 

Slurry Bubble columns (SBC) are becoming the reactor of choice owing to a number 

of attractive features the most notable of which is their excellent heat transfer 

properties. The rule of thumb is that the heat transfer in gas-liquid and gas-liquid-

solid dispersion is between 10 and 100 times greater than it is in single-phase liquid 

flow for the same flow rates with respect to the column cross-section (Kast, 1962; 

Deckwer, 1980; Deckwer, 1992). The other advantages offered by slurry bubble 

columns are good mass transfer rates, high selectivity and conversion per pass, 

isothermal conditions, online catalyst addition and withdrawal, washing effect of the 

liquid on catalyst, and low maintenance cost due to simple construction and absence 

of any moving parts (Deckwer and Schumpe, 1993; Kluytmans et al., 2001; Li and 

Prakash, 2002; Li et al., 2003). The above benefits make these as the reactor of choice 

in variety of industrial applications such as Fischer-Tropsch synthesis, methanol 

synthesis, heavy oil upgrading, fermentation, biological waste water treatment, flue 

gas desulphurization, coal liquefaction, dimethyl ether production, chlorination and 

hydrogenation (Shah et al., 1982; Fan, 1989; Duduković and Devanathan, 1992; 

Deckwer and Schumpe, 1993; Li, 1998; Prakash et al., 1999; Prakash et al., 2001; 

Duduković et al., 2002). 

 

In order to maintain desired temperature and isothermal conditions of operation, 

slurry bubble columns require internal heat transfer surface to add or remove heat of 

reaction. Some of these applications include Fischer-Tropsch synthesis, methanol 

synthesis and production of dimethyl ether (DME).  The presence of internals in 

bubble columns affects the hydrodynamics and mixing pattern, there by affecting the 

reactor performance and heat transfer. Though these affects have been investigated 

the reasons for these changes have not been addressed in previous literatures. In this 

study attempts are made to get further insights into the local hydrodynamics based on 

heat transfer coefficient measurements and study of bubble populations in presence of 

internals in slurry bubble columns. The heat transfer coefficient data obtained in this 

study have been compared with the data obtained without internals to determine the 

effects. The hydrodynamic parameters such as gas holdup profile, liquid circulation 
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velocity profile, and bubble holdups are compared with and without internals to get 

the insights of affect of these parameters on the heat transfer coefficient in air-water-

glass beads system. 

 

4.2 Experimental  

Experiments were conducted in a Plexiglas column of 0.15 m internal diameter and 

height of 2.5 m with (Figure 4.1). The column was supported by rigid metallic 

structure to keep it vertical and minimize mechanical vibrations which might affect 

pressure and heat transfer signals. The gas was introduced in the column using a 

coarse sparger. The detailed design of the coarse sparger is explained elsewhere 

(Gandhi, 1997). The sparger had two levels, upper level had seven (1.9 mm diameter) 

and lower level had five (1.9 mm diameter) downward facing holes on each of four 

arms. Two types of internals were used in this study. Top view of tube bundle type 

internal studied (Type A) is shown in Figure 4.2a. Bubble diffuser type six blade 

baffle (Type B) studied is shown in Figure 4.2b. Type B internal  was located at an 

axial position of 36 cm from the bottom of the column.  The details about internals 

are provided in Table 4.1. Oil free compressed air was used as gas phase, tap water 

was used as the liquid phase and 49µm glass beads (Potters Industries, spheriglass ® 

A glass) of density 2500 kg/m3 constituted the solid phase. The gas flow rate was 

measured using three calibrated sonic nozzles of different diameter (0.7mm, 1.5 mm 

and 2.5 mm). The superficial gas velocity was varied from 0.03 to 0.35 m/s.  

 

The unaerated slurry height in the column was maintained around 1.45 m. A 

measuring tape was provided on the column to note the liquid level and dispersion 

height. The solid concentration was varied from 5 vol% to 20 vol%. Two pressure 

transducers (OMEGA Type PX541-7.5GI and Type PX541-15GI) were used to 

measure the pressure fluctuations in distributor (z = 0.027 m) and disengagement 

section (z = 1.318 m), as shown in Figure 4.1. The pressure transducers were 

connected to a DC power supply and generated a voltage proportional to measured 
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pressure. The response time of the pressure transducers was 2 ms and data were 

recorded for 180 seconds at a rate of 60 Hz. 

 

Instantaneous heat flux was measured using a micro-foil heat flux sensor (Rdf, Model 

number 20453-1 G161).The sensor was flush mounted on the surface of a brass 

cylinder of 11 mm outer diameter. A small cartridge heater (Chromalox, model 

number CIR-1012) was installed inside the brass cylinder. The AC power was 

supplied to the cartridge heater through a variac to regulate supplied power in the 

range of 20 to 40V. The detailed design of the heat flux probe is explained elsewhere 

(Li and Prakash., 1997; Li, 1998). Probe location could be changed both axially and 

radially and it could also be rotated to study effects of sensor orientation on measured 

values. The temperature of the liquid phase was measured using two copper-

constantan thermocouples (ANSI type T). These thermocouples were located at two 

radial locations: one at center and other close to the wall. Axial position of the 

thermocouple could be changed. The response time of micro-foil heat flux sensor was 

20 ms and data were recorded for 180 s at a rate of 60 Hz. The probe generated 

microvolt signals, which were amplified to millivolts by a suitable amplification 

circuit using 15V DC supply. A minimum of three test runs were performed at each 

condition and average values are reported. For the heat flux sensor, the following 

equation can be derived for liquid film heat transfer coefficient (Li and Prakash, 

2001): 

  1
/

Su b

i

T T x
h q A k

− Δ
= − ………………………….(4.1) 

The second term on the right hand side of Equation (4.1) is negligible compared to 

the first term (< 1%) due to high conductivity (k) and small thickness (Δx) of the 

thermal barrier film. Therefore instantaneous heat transfer coefficient could be 

determined by measurement of heat flux and the difference between surface and bulk 

temperatures at a given time. The time-averaged heat transfer coefficient at a given 

location was obtained by averaging the instantaneous heat transfer data collected.  

  
1

1 /N

avg
i Su b

q Ah
N T T=

=
−∑ …………………………………(4.2) 
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Figure 4.1. Schematic diagram of experimental setup 
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Figure 4.2a. Top view of the tube bundle used (Type A) 

 

Figure 4.2b. Top view of bubble diffuser used (Type B) 
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Table 4.1. Details of internals used in air-water-glass beads system  
 
Internal type Label Geometrical details Comments 
Circular tube 
bundle 
(z = 0.3 m) 

A No. of tubes: 15 
Tube diameter: 0.95 cm 
Tube length: 150 cm 
Wall to wall spacing between tubes: 
4.4 mm 

Adjustable height 
from column 
bottom 

Concentric 
baffle     
(z = 0.36 m) 
 

B No. of blades: 6 
Length of blade: 3.5 cm 
Width of blade: 1.9 cm 
Blade angle: 60o from axis 

Adjustable height 
from column 
bottom 

 

4.3 Results and discussion 

4.3.1 Local Heat Transfer Coefficients 

Figures 4.3 presents a comparison of average heat transfer coefficient obtained in the 

bulk section of the column at column center, with and without internals for slurry 

concentrations 10 vol. %. From the figure it is observed that the heat transfer 

coefficient increases with increase in superficial gas velocity in all cases but at 

different rates. The rate of increase in heat transfer coefficient is high for gas 

velocities less than 0.20 m/s and beyond this the increase becomes gradual. It is 

observed that the heat transfer coefficients obtained are highest with type A internal 

at the column center followed by  type B internal and column without internals at all 

slurry concentrations. With internal B, the difference is not significant for lower 

velocities (< 0.15 m/s) compared to hollow column but higher values are obtained and 

difference increases with increasing velocities. These differences in heat transfer 

profile in slurry bubble columns with and without internals can be related to changes 

in mixing patterns, turbulence and column hydrodynamics caused by the internal 

type. The intensity and degree of change is expected to vary with specific design of 

internal. Type A internal due to its circular arrangement of heat exchanger tubes 

would help direct flow of gas bubbles to column center thus creating additional 

driving force for liquid circulation rate. The B type internals in this study would have 

a smaller such effect due to a very different design configuration.  
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Figure 4.3.  Comparison of heat transfer coefficient measurements in bubble column 

with and without internals, r/R=0 (air-water-glass beads system)  
 

Effect of slurry concentration on average heat transfer coefficient obtained in the bulk 

section of the hollow column and with internal A, at column center are shown in 

Figure 4.4 a and b respectively. The heat transfer coefficient decreases with increase 

in slurry concentration in bubble columns with internals A and without, but at 

different rates. The decrease in heat transfer coefficient with increase in slurry 

concentration can be attributed to increase in apparent suspension viscosity and 

decrease in thermophysical properties (glass-beads). The increase in apparent 

suspension viscosity due to addition of particles results in reduced turbulence, 

because of the solid particle dampening on the bubble wake turbulence (Li and 

Prakash, 1997) and also the  hydrodynamic boundary layer thickness increases and 

would have a negative effect on heat transfer coefficient (Jhawar, 2012).  In this case 

there is a decrease in thermophysical properties of the system and these results in a 

net decrease in heat transfer coefficient with increase in slurry concentration in all 

cases.  
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Figure 4.4.  Effect of slurry concentration on heat transfer coefficients in bubble 
columns (a) Without Internals (b) Internals A 
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For a direct comparison of the effect of internals, the variation of heat transfer 

coefficients with slurry concentration is re-plotted on Figure 4.5. It is observed that 

the profiles are much steeper with Type A internal compared to hollow system or 

other internal type. But in case of hollow bubble column or with internal B, the rate of 

decrease in heat transfer coefficient is almost similar. Also the differences between 

the systems decrease with increasing slurry concentration. These observations were 

analyzed further based on column hydrodynamics and comparison with literature 

studies.  
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Figure 4.5. Variation of heat transfer coefficient with slurry concentration in bubble 

columns in central region with and without internals 
 

A limited number of literature studies have investigated effects of internals on bubble 

column hydrodynamics (Youssef and Al-Dahhan, 2009; Larachi et al., 2006; Chen et 

al., 1999). But no published open source paper is found to investigate effect of 

internals in slurry suspensions. These studies clearly point to alterations in flow 

pattern, mixing intensities and general hydrodynamics due to insertion of internals in 
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a hollow bubble column. Change in design configuration has been reported to clearly 

affect hydrodynamic behavior which is expected to affect rate of transport processes 

(Youssef and Al-Dahhan, 2009; Larachi et al., 2006). The fast response heat transfer 

probe used in this study allowed measurement of temporal variation of local heat 

transfer coefficient in the column. Therefore to further understand underlying reason 

for the observed increase in heat transfer coefficient with type A internal, the 

instantaneous heat transfer coefficients was compared for a given gas velocity. It is 

observed from Figure 4.6a that the peaks obtained in presence of internals are wider 

and taller as compared to those without the internal similar trend is observed in air-

water system. This could be attributed to the passage of clusters of bubble generated 

with type A internal as a result of directing the bubble flow towards central region of 

the column.   
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Figure 4.6a. Instantaneous heat transfer coefficients of air-water-glass beads system 

(with and without internals) at r/R=0 
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A similar comparison of the behavior of instantaneous heat transfer coefficients 

obtained in the wall region of the bulk section of the column is shown in Figure 4.6b 

for the superficial gas velocity of 0.21 m/s. It is seen in wall region that the 

instantaneous heat transfer coefficient peaks are smaller than central region in both 

the cases. This can be attributed to presence of smaller bubbles in the wall region of 

the column. It is also interesting to see that in bubble column equipped with type A 

internal the heat transfer coefficient peaks in wall region are smaller compared to 

hollow bubble column. This could be due to smaller and fewer bubbles in the annular 

region created due to insertion of this internal type in the column.  Visual 

observations also supports this, smaller bubbles seemed trapped in the annular region 

given the geometry of the internal and small gap between the tubes (see Table 4.1).  
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Figure 4.6b. Instantaneous heat transfer coefficients of air-water-glass beads system 

(with and without internals) at r/R=0.624 
 

Figure 4.7 a and b presents the comparison of instantaneous heat transfer coefficient 

in bubble columns with internals A in bulk section at center and wall region in air-

water and air-water-glass beads system at 10 vol.% slurry concentration for a given 

gas velocity.  
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Figure 4.7. Comparison of instantaneous heat transfer coefficients for air-water and 
air-water-glass beads system with internal type A (a) r/R = 0 (b) r/R=0.624 
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From figures it is observed that the heat transfer coefficient peaks obtained in 

presence of internals in central region are wider and taller as compared to those in the 

wall region in both the cases. This could be attributed to the passage of clusters of 

bubble generated with type A internal as a result of directing bubble flow towards 

central region of the column.  It is also observed that with addition of glass-beads the 

peaks are generally higher but with lower base line value both in the central and wall 

region compared to those in air-water system with internals A. With addition of solid 

the apparent slurry viscosity increases, which results in increase in average bubble 

size. The fast rising large bubbles with addition of glass beads could be responsible 

for these higher peaks. The lower base line values in both central and wall region can 

be attributed to combined effect of lower turbulence due to presence of solid particles 

and increase in hydrodynamic boundary layer thickness (Li and Prakash, 1997, 

Jhawar, 2012). Both will have negative effect on heat transfer coefficient giving 

lower base line values.  
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Figure 4.8. Comparison of heat transfer coefficient measurements in slurry bubble 

column with and without internals, r/R=0.624 (air-water-glass beads system) 
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Figures 4.8 shows a comparison of average heat transfer coefficient obtained close to 

the wall (r/R=0.624) in the bulk section of the column with or without presence of 

different internals at 10 vol. % slurry concentration. Following observations can be 

made for data in the wall region, when compared with the heat transfer coefficients 

obtained at column centre (Figure 4.3). 

 

• Heat transfer coefficients are significantly lower in the wall region 

• The rate of increase in heat transfer coefficient with gas velocity is low and it 

further decreases  for gas velocities above 0.2 m/s 

• A reverse trend is observed with internals i.e. the heat transfer coefficients 

with internals A are lower than those with internals B or without indicating 

existence of very different hydrodynamic conditions with different internals 

used 

Variations of average heat transfer coefficients with slurry concentration in the center 

and wall regions are presented in Figure 4.9 for different systems. Following 

observations can be made. 

 

• Heat transfer coefficient are significantly lower in the wall region at all slurry 

concentrations compared to central region at a given superficial gas velocity 

• In hollow bubble column the rate of decrease in heat transfer coefficient with 

increase in slurry concentration is high in wall region compared to that in 

central region. 

• With internals A, the rate of decrease in heat transfer coefficient with increase 

in slurry concentration is significantly low in wall region compared to that in 

central region 

• In wall region, it can be noted that lowest heat transfer coefficients are 

obtained with type A internals and there is little decrease with increase in 

slurry concentration. This indicates that average bubble size is small and there 

is very little change with slurry concentrations 
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Figure 4.9. Variation of heat transfer coefficient with slurry concentration in bubble 

columns in central region with and without internals 
 

As discussed in the following sections, these differences in profile of heat transfer 

coefficient can be related to changes in local column hydrodynamics and bubble size 

distribution due to the presence of internals and their type. Figure 4.10 shows the 

comparison of data obtained in the two regions and with two different internals in air-

water glass beads system to further highlight the differences in column 

hydrodynamics due to presence of different internals. It can be noted that the 

differences between the two regions is higher with type A internal compared to type 

B. Similar results were obtained in air-water system. Very different geometry of these 

internals of course is the main cause of the difference.  Selection of proper internals 

for a given application would need to take such differences into consideration. Also 

combination of different internals and their location need to be tested to improve the 

column performance. 
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Figure 4.10. Variations of heat transfer coefficient at two radial locations with 

internal A and B (air-water-glass beads system) 
 
The radial profiles obtained in slurry bubble columns with and without internals are 

presented in Figure 4.11 to further highlight these radial variations with different 

internals. As the radial distance from the center increases the heat transfer coefficient 

decreases at all superficial gas velocities in all cases. But the rate of decreases is 

different at different superficial gas velocity and in hollow bubble columns or with 

different internals. Similar trend is observed in air-water system. It is observed that 

rate of decrease in heat transfer coefficient with increase in radial distance from the 

center is much higher with internals type A compared to hollow bubble column or 

with internal B.  

 

The radial profiles obtained with type A internal cross the other profile around 

dimensionless radius of about 0.3 and move below other profiles as it moves into 

annular region. This difference can be related to the design of type A internal. The 

tube bundle design would funnel the two phase flow and smaller inter-tube gap would 
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limit flow into annular region thus significantly altering column hydrodynamics. The 

steeper profiles obtained in presence of Type A internals show that lower turbulence 

is caused by the smaller and fewer bubbles in the wall region.  It was visually 

observed that the bubble size and population decreased in the wall region with type A 

internals, compared to those without or other type internals. 
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Figure 4.11.  Comparison of the radial profile of heat transfer coefficient obtained 

with and without internals in air-water-glass beads system  
 

Comparison of radial profile of heat transfer coefficient between hollow column and 

with internal A at a low and high superficial gas velocity is presented in Figure 4.12. 

It is interesting to note at low gas velocity of 0.038 m/s, the radial profiles obtained in 

hollow bubble column and with internal A are quite similar. Same trends were also 

observed in air-water system. This indicates minimal effect of the internal on column 

hydrodynamics under the dispersed bubble flow conditions at the low velocity. 

However, at the high gas velocity of 0.35 m/s when the column is in fully developed 

heterogeneous regime, the two profiles come apart. This suggests that the effect of 
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internals on column hydrodynamic increases with the increase in superficial gas 

velocity. 
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Figure 4.12. Comparison of the radial profile of heat transfer coefficient obtained 

with type A and without internals (air-water-glass beads system)  
 

 

4.3.2 Gas Holdup and Bubbles Fractions 

A comparison of gas holdups measured in slurry bubble column with and without 

internals at 10 and 20 vol. % slurry concentrations is presented in Figure 4.13. Gas 

holdups in presence of internals are higher than those obtained in absence of internals 

irrespective of slurry concentrations. Highest gas holdups are obtained with internals 

type A followed by B. The results in presence of type A internal are consistent with 

the literature studies, who used similar internals (Youssef and Al-Dahhan, 2009; 

Chen et al., 1999; Saxena et al., 1990). The increase in gas holdup in presence of 

internals can be attributed due to decrease in average bubble size.  With type A 

internals, it was visually observed that smaller bubbles accumulated in the wall region 

is also reported by Youssef and Al-Dahhan (2009). 
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Figure 4.13. Comparison of gas holdup measurements obtained with and without 
internals (air-water-glass beads systems) (a) 10 vol. % (b) 20 vol. % 
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From Figure 4.13 it is also observed that the gas holdups decrease with increase in 

slurry concentration, but the rates of decrease in hollow bubble columns and with 

internals are different. At high slurry concentration (20 vol. %) the difference in gas 

holdup obtained in hollow bubble column and with internals B is small at all gas 

velocities. This indicates minimal effect of the internal B on column hydrodynamics 

at high slurry concentration owing to its design. 

 

Figure 4.14 a and b presents the comparison of gas holdup of small and large bubbles 

obtained in slurry bubble columns with and without internals at slurry concentrations, 

10 and 20 vol. %. The detailed procedure for estimation of bubble holdup is explained 

elsewhere (Li and Prakash, 2000). It is observed in Figure 4.14a that the gas holdup 

of small bubble is highest with internals A, followed by B at all slurry concentrations. 

This clearly shows that the average bubble size is decreased in presence of these 

internals. From Figure 4.14b it is also interesting to note that there is no much 

variation in gas holdup of large bubbles fraction in bubble columns with and without 

internals irrespective of the slurry concentration. From Figure 4.14 a and b it is also 

observed that with increase in slurry concentration both gas holdup of small and large 

bubble decreases in slurry bubble columns with and without internals. This could be 

due to increase in average bubble size with increase in slurry concentration in 

presence of fine particles. Because with increase in slurry concentration in presence 

of fine particles the apparent slurry viscosity increases, this in turn affects the bubble 

size (Kara et al., 1982; Nigam and Schumpe, 1996). 

 

The comparison of small and large bubble holdup in slurry bubble columns with and 

without internals with slurry concentration at low and high velocities are presented in 

figure 4.15 a and b.  
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Figure 4.14. Comparison of bubble holdup in slurry bubble columns with and without 
internals in air-water-glass beads system (a) small (b) large 



 

102 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25

Slurry Concentration (vol.%)

Sm
al

l B
ub

bl
e 

G
as

 H
ol

du
p 

(-
)

Without Internals
A
B
Without Internals
A
B

VG = 0.142 m/s

VG = 0.0382 m/s

(a

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25

Slurry Concentration (vol.%)

La
rg

e 
B

ub
bl

e 
G

as
 H

ol
du

p 
(-

)

Without Internals
A
B
Without Internals
A
B

VG = 0.142 m/s

VG = 0.382 m/s

(b

 

Figure 4.15. Effect of slurry concentration on bubble holdup in slurry bubble columns 
with and without internals in air-water-glass beads system (a) small (b) large 
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Following observations can be made for the variation of bubble holdup with slurry 

concentrations in bubble columns with and without internals.  

 

• The gas holdup of both small and large bubble decreases with increase in 

slurry concentration in all cases, but at different rates. 

• The rate of  decrease is high for small bubble holdup compared to that of large 

bubbles (With slurry concentration) 

• .The gas holdup of small bubbles is higher in bubble columns with internals 

compared to those without at all slurry concentration. 

• The effect of internals on large bubble holdup is negligible 

• The rate of decrease of both small and large bubble holdup with slurry 

concentration is high at high superficial gas velocities (in fully developed 

heterogeneous flow regime.  

 

The fast response heat transfer probe used in this study could detect variations due to 

changes in bubble size distribution which could be reflected in standard deviations of 

time series data of the heat transfer coefficient. Figures 4.16a and b compare standard 

deviation of heat transfer data obtained at r/R=0 and r/R=0.624 in the bulk section of 

the column for different cases in air-water-glass beads system. The standard deviation 

of heat transfer coefficient in both central and wall region increases with the increase 

in superficial gas velocity in all cases. However, the rate of increase varies with 

internal type and radial location and following observations can be made. 

 
• In the central region of column, the standard deviations are highest with 

internal type A, followed by internal B. It can also be noted that differences 

between different internals are generally small and become insignificant at 

low gas velocities (< 0.1 m/s) when bubble size distribution may not evolved 

significantly. Similar observations were made in air-water system 

 
• In the wall region, it can be noted that lowest standard deviations are obtained 

with type A internals and there is no significant change with gas velocity. This 
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indicates that the bubble size is small and there is little change with gas 

velocity.  

• Higher standard deviation values obtained with type B internals and hollow 

bubble column point to wider bubble size distribution in the wall region for 

these cases.  

4.3.3 Local Liquid Velocity and Related Hydrodynamics 

The heat transfer probe used in this study could also detect flow direction and provide 

an estimation of local liquid (slurry) velocity using boundary layer theory (Li and 

Prakash, 2002). Flow direction could be identified (upward or downward) by 

measuring the time averaged local heat transfer coefficients using the different 

orientation of the probe (upward, downward or lateral). Figure 4.17 shows the results 

obtained at the center (r/R=0) in the bulk section of the column with internals Type A 

in air-water-glass beads system at 10 vol. % slurry concentration. The heat transfer 

coefficients (stagnation point) obtained with the downward orientation of the probe 

are higher than those obtained with the upward orientation, hence indicating upward 

liquid flow. Similar studies were conducted without internals and with internals. Li 

and Prakash (2002) developed a correlation to obtain a local liquid velocity by 

applying boundary layer theory to the measured stagnation point heat transfer 

coefficients.  

 
0.5

0.4(Pr)st p L p
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L L

h D V D
a

k ν
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    (4.3) 

 

The above equation gives good prediction of liquid velocities in different diameter 

bubble columns as reported by Li and Prakash (2002) and Jhawar and Prakash (2011). 

In the above equation, the value of factor as depends on several aspects such as probe 

design, orientation etc. Jhawar and Prakash (2011), recommended value of factor as to 

be 0.7 based on data from their and other literature studies. 
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Figure 4.16. Comparison of standard deviation of heat transfer coefficient in slurry 
bubble columns with and without internals in (a) central (b) wall region  
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For estimation of slurry velocities the slurry properties needed such as effective 

densities, heat capacities, thermal conductivities and viscosities of suspensions were 

estimated based on the equations given elsewhere (Jhawar, 2012). The results 

obtained with this procedure at the column centre and in region close to wall (r/R 

=0.624) are shown in Figure 4.18 and 4.19 respectively.  
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Figure 4.17. Local heat transfer coefficients for different probe orientations in 

presence of internals Type A in air-water-glass beads system (slurry conc. 10 vol. %)  
(r/R = 0) 

 

It is observed from figure 4.18 that highest local slurry velocities are obtained with 

internal A, followed by internal B. Higher central slurry velocity with type A internal 

is a result of its vertical tube bundle design creating a funneling effect for gas and 

entrained liquid flow. B type internals have horizontal blades occupying part of 

column cross section. Internal B was placed at higher elevation (36 cm from the 

bottom) where bulk region turbulence seems to be helping bubble breakup and 
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dispersion. This indicates existence of different hydrodynamic conditions in bubble 

columns equipped with different internals. In hollow bubble columns and with 

internals, there is no significant difference in slurry velocities at low gas velocities (< 

0.1 m/s) when bubble size distribution may not evolved significantly. 
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Figure 4.18.  Comparison of slurry velocities estimated at the center in bulk section of 
the column by equation (4.3) in air- water –glass beads system 

 
Figure 4.19 presents the slurry velocities in the wall region of bubble columns with 

and without internals in bulk section of the column. It is observed that trends are quite 

different compared to central region. The slurry velocities obtained in the wall region 

are higher with type B internals compared to type A internal. The slurry velocities 

with internal type A are lowest in wall region. It is also interesting to note that a 

difference between internal types is larger and distinct in the wall region. These 

results indicate important role of internals in altering radial liquid profile in the 

column and hence column hydrodynamics.  The steepness of radial profile is 
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indicative of backmixing effects in the column. Larger the difference or sharper the 

steep, greater is the backmixing.  
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Figure 4.19.  Comparison of slurry velocities estimated at the wall (r/R=0.624) in 

bulk section of the column by equation (4.3) in air- water –glass beads system 
 

A plot of difference between radial slurry velocities for different internals is presented 

in Figure 4.20. It can be seen that largest differences are obtained with type A 

followed by hollow column and internal B in that order. Backmixing effects are thus 

expected to highest with type A internal and lowest with type B internal. Combining 

type B internal with type A should help reduce the large backmixing effects of type A 

internal alone. Proper positioning of type B internal between column bottom and tube 

bundle bottom can be investigated for optimization purposes. 
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Figure 4.20.  Comparison of differential radial liquid velocities with different 

internals in bulk section of the column 
 

4.4 Conclusions 

The fast response heat transfer probe used in the study easily captured local variations 

in a slurry bubble column caused by internals of different design. It is demonstrated 

that heat transfer coefficient decreased with increase in slurry concentration. 

However, rate of decrease is affected by the internal type used. This information can 

further help improve internals design and their configurations. For example radial 

variations observed with tube bundle type internal used in this study results in a 

steeper radial profile which can be altered by suitable design changes, as needed. The 

ability of the probe to provide local liquid velocity in the column allowed 

determination of back-mixing effects with different internals. Higher back mixing 

effects generated with tube bundle type internal may require appropriate mitigation 

steps for some applications.  Further optimization studies in this direction will be 

helpful. 
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4.5 Notations 

 
A Heat transfer area, (m2)  

DC Column diameter (m) 

Dp Probe diameter (m) 

h   Heat transfer coefficient, (kW/m2 ºC) 

k    Thermal conductivity, (W/m K) 

N Number of data points 

q Heat flow rate, (kW) 

r Radial location, (m) 

R Radius of the column, (m) 

T Temperature, (oC) 

V Superficial velocity (m/s) 

wS weight fraction of the solid in the column (kg) 

z Axial location from the bottom of the column, (m) 

Δx Thickness of thermal barrier, (m) 

as Constant in equation (4.3) 

Pr Prandtl number, , μ⎛ ⎞
⎜ ⎟
⎝ ⎠

p l l

l

C
k

 

Greek Symbols 

 

µ Viscosity (Pa.s) 

ρ Density (kg/m3) 

ν Kinematic viscosity (m2/s) 

 

Subscripts 

 

avg Average 

b Bulk 

c   Center 

G  Gas 

i  Instantaneous 
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L   Liquid 

S Solid 

w  Wall 

Su Surface 

st  Stagnation point 
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CHAPTER 5.   INFLUENCE OF BUBBLE COLUMN DIAMETER 
ON LOCAL HEAT TRANSFER AND RELATED 

HYDRODYNAMICS2 
 
 

Abstract 
 

 
Heat transfer coefficients measured in a 0.15m ID bubble column are compared with 

similar studies in larger diameter columns to identify influence of column diameter. 

Gas phase used is oil free compressed air and its flow rate is varied from 0.03 to 0.35 

m/s. Tap water is the liquid phase and the solid particles used are 49μm glass beads 

and their concentration is varied up to 20 vol.%. The observed increase in heat 

transfer coefficients can be related to increase in liquid circulation velocity with 

column diameter which in turn is related to increase in large bubbles rise velocity. A 

simplified scale-up procedure is presented based on available data and suitably 

modified literature correlations for heat transfer coefficient. 

 
 
Keywords: Bubble columns; Column diameter effects; Scale-up; Heat transfer; Radial 
profile; Hydrodynamics 
 
  
 

 

 

 
 
 

 
 

                                                 
2  A Version of this chapter is accepted for publication in Chemical Engineering Research and Design (2011). 
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5.1 Introduction 

In addition to their good heat transfer characteristics, the bubble columns offer 

several advantages such as: good mass transfer rates, isothermal conditions, online 

catalyst addition and withdrawal, washing effect of the liquid on catalyst, and low 

maintenance cost due to simple construction and absence of any moving parts 

(Deckwer, 1992; Deckwer and Schumpe, 1993; Kluytmans et al., 2001; Li and 

Prakash, 2002; Li et al., 2003). These benefits make these as the reactor of choice in a 

variety of industrial applications such as Fischer-Tropsch synthesis, methanol 

synthesis, dimethyl ether production, chlorination, hydrogenation and heavy oil 

upgrading, fermentation, biological waste water treatment, flue gas desulphurization, 

coal liquefaction etc. (Shah et al., 1982; Fan, 1989; Deckwer, 1992; Duduković and 

Devanathan, 1992; Deckwer and Schumpe, 1993; Li, 1998; Prakash et al., 1999; 

Prakash et al., 2001; Duduković et al., 2002; Li et al., 2003). 

 

However scale-up procedures are still evolving primarily due to lack of detailed 

understanding of flow structure and mixing pattern for optimal design of these 

reactors (Deckwer and Schumpe, 1993; Li and Prakash, 2002). Saxena et al. (1990) 

pointed out that the model representation of hydrodynamics and heat transfer 

behavior of these columns is quite difficult due to the involved and complicated flow 

and dispersion patterns of the different phases, there by making it difficult and rather 

impossible to reliably scale these reactors. In last decade, attempts have been made to 

study the flow structure in bubble and slurry bubble columns using techniques such as 

particle image velocimetry (Chen et al., 1994; Reese and Fan, 1994), laser Doppler 

anemometry (Mudde et al., 1997, Kulkarni et al. 2001), single particle tracking 

techniques (Degaleesan et al., 1996, 1997) and local heat transfer coefficient-based 

technique (Li and Prakash, 2002; Wu et al., 2007). In this study attempts are made to 

get further insights into the local hydrodynamics based on heat transfer coefficient 

measurements and study of bubble populations. The heat transfer coefficient data 

obtained in this study has been compared with the literature data to determine scale-

up effects. The hydrodynamic parameters such as gas holdup profile, liquid 

circulation velocity profile, and bubble rise velocity are compared with the available 
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literature data to get the insights of affect of these parameters on the heat transfer 

coefficient with the increase in column size.  

 

5.2 Experimental Setup 

Experiments were conducted in a Plexiglas column of 0.15 m internal diameter and 

height of 2.5 m (Figure 5.1). The column was supported by rigid metallic structure to 

keep it vertical and minimize mechanical vibrations which might affect pressure and 

heat transfer signals. The gas was introduced in the column using a coarse sparger. 

The detailed design of the coarse sparger is explained elsewhere (Gandhi, 1997). The 

sparger had five (1.9 mm diameter) downward facing holes on each of four arms. Oil 

free compressed air was used as gas phase, tap water was used as the liquid phase and 

49µm glass beads (Potters Industries, spheriglass ® A glass) of density 2500 kg/m3 

constituted the solid phase. The gas flow rate was measured using three calibrated 

sonic nozzles of different diameter (0.7mm, 1.5 mm and 2.5 mm). The superficial gas 

velocity was varied from 0.03 to 0.35 m/s. 

 

The unaerated water height in the column was maintained around 1.45 m. A 

measuring tape was provided on the column to note the liquid level and dispersion 

height. The solid concentration was varied from 5 vol% to 20 vol%. Two pressure 

transducers (OMEGA Type PX541-7.5GI and Type PX541-15GI) were used to 

measure the pressure fluctuations in distributor (z = 0.027 m) and disengagement 

section (z = 1.318 m), as shown in Figure 5.1. The pressure transducers were 

connected to a DC power supply and generated a voltage proportional to measured 

pressure. The response time of the pressure transducers was 2 ms and data were 

recorded for 105 seconds at a rate of 60 Hz. 

 

Instantaneous heat flux was measured using a micro-foil heat flux sensor (Rdf, Model 

number 20453-1 G161).The sensor was flush mounted on the surface of a brass 

cylinder of 11 mm outer diameter. A small cartridge heater (Chromalox, model 

number CIR-1012) was installed inside the brass cylinder. The AC power was 
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supplied to the cartridge heater through a variac to regulate supplied power in the 

range of 20 to 40V. The detailed design of the heat flux probe is explained elsewhere 

(Li and Prakash., 1997; Li, 1998). Probe location could be changed both axially and 

radially and it could also be rotated to study effects of sensor orientation on measured 

values. For most measurements, the sensor was in lateral position with respect to 

flow, however for some measurements it was oriented to face the flow direction to 

obtain stagnation point heat transfer coefficient used to estimate local liquid velocity 

(Li and Prakash, 2002). The temperature of the liquid phase was measured using two 

copper-constantan thermocouples (ANSI type T). These thermocouples were located 

at two radial locations: one at center and other close to the wall. Axial position of the 

thermocouple could be changed. The response time of micro-foil heat flux sensor was 

20 ms and data were recorded for 180 s at a rate of 60 Hz. The probe generated 

microvolt signals, which were amplified to millivolts by a suitable amplification 

circuit using 15V DC supply. A minimum of three test runs were performed at each 

condition and average values are reported. For the heat flux sensor, the following 

equation can be derived for liquid film heat transfer coefficient (Li and Prakash, 

2001): 

 

  1
/

Su b

i

T T x
h q A k

− Δ
= −     (5.1) 

 

The second term on the right hand side of Equation 5.1 is negligible compared to the 

first term (< 1%) due to high conductivity (k) and small thickness (Δx) of the thermal 

barrier film. Therefore instantaneous heat transfer coefficient could be determined by 

measurement of heat flux and the difference between surface and bulk temperatures at 

a given time. The time-averaged heat transfer coefficient at a given location was 

obtained by averaging the instantaneous heat transfer data collected.  
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Figure 5.1. Schematic diagram of experimental setup 
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5.3  Results and Discussion 

To analyze the effects of column diameter on heat transfer coefficient, the data of this 

study were compared with other literature studies (Li, 1998; Li and Prakash, 2001), 

who used a similar heat flux probe in a larger diameter column. Figure 5.2a shows a 

comparison of average heat transfer in this study with the heat transfer coefficients 

obtained in larger diameter column. Comparison of measured heat transfer 

coefficients were also made in air-water-glass beads system (Figure 5.2b) - the scale 

effect is observed clearly irrespective of slurry concentration.  

 

Similar trends were observed by Saxena et al. (1989) who compared the results 

obtained in the central region of bubble columns of 0.108 m and 0.305 m diameter 

(Figure 5.3). These authors used a 19 mm diameter probe of conventional design 

placed at column center. The observed increase in heat transfer with column diameter 

was attributed to better mixing achieved with large diameter by Saxena et al. (1989).  
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Figure 5.2. Comparison of measured heat transfer coefficients with literature studies 
effects of column diameter: (a) air-water system. (b) air-water-glass beads system 
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Figure 5.3. Heat transfer coefficient data obtained in different column diameter from 
Saxena et al. (1989) 

 

A comparison of average gas holdups measured in this study with the data of Li 

(1998) shows that there is little effect of column diameter on average gas holdups in 

air-water or air-slurry systems (Figure 5.4). These finding are consistent with other 

literature studies which report that the average gas holdups become scale independent 

when DC ≥ 0.15m (Shah et al., 1982; Wilkinson et al., 1992; Zahradník et al., 1997; 

Su et al., 2006). Since gas holdups alone can’t explain the observed increases in heat 

transfer coefficients with column diameter, gas holdup structure in the columns was 

analyzed. Populations of different bubbles fractions and their rise velocities were 

obtained by the dynamic gas disengagement (DGD) method. This technique is based 

on the principle that different bubble classes in dispersion can be distinguished if 

there are significant differences between their rise velocities (Schumpe and Grund, 

1986). The procedure used to obtain bubble fractions and their rise velocities is 

explained elsewhere (Li and Prakash, 2000). 
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Figure 5.4. Comparison of average gas holdup obtained with literature studies 
  

Figures 5.5 a, b and c compare rise velocities of small and large bubble fractions 

obtained in air-water and air-water-glass beads (5 vol.% and 10 vol.% slurry 

concentrations) systems with those obtained by Li and Prakash (2000). The rise 

velocities of large bubbles obtained in this study (Dc = 0.15 m) are lower than those 

obtained in larger diameter column by Li and Prakash (2000). This variation in 

bubble rise velocity with column diameter can be attributed to the wall effects on 

bubble size (Ueyama et al., 1980; Li and Prakash, 2000). The increase in bubble rise 

velocity with column diameter affects the local liquid (slurry) velocities, which in 

turn can affect the local heat transfer coefficients and mixing in column. This can be 

one of the potential reasons for the increase in heat transfer coefficient with column 

diameter.  
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Figure 5.5. Comparison of bubble rise velocity with literature studies: a) air-water 

system (b) air-water-5 vol.% glass beads systems  (c) air-water-10 vol.% glass beads 
system 

 

The heat transfer probe used in this study could also detect flow direction and provide 

an estimation of local liquid (slurry) velocity using boundary layer theory (Li and 

Prakash, 2002). Flow direction could be identified (upward or downward) by 

measuring the time averaged local heat transfer coefficients using the different 

orientation of the probe (upward, downward or lateral). Figure 5.6 show the results 

obtained at the center (r/R=0) in the bulk section of the column. The heat transfer 

coefficients obtained with the downward orientation of the probe are higher than 

those obtained with the upward orientation, hence indicating upward liquid flow at 

that location. As pointed out by Li and Prakash (2002), local liquid velocity could be 

obtained by applying boundary layer theory to the measured stagnation point heat 

transfer coefficients.  
0.5
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Figure 5.6. Local heat transfer coefficients for different probe orientations in bulk 

section (z = 0.91 m; r/R = 0.0) for air-water system 
 

In the above equation, the value of as depends on several factors such as probe design, 

orientation etc.  In this study, values of as were obtained at a low (0.0382 m/s) and a 

high superficial gas velocity (0.15 m/s) using the center line liquid velocity reported 

in 0.15 m diameter column in different literature studies (Kulkarni et al., 2001; Forret 

et al., 2003) and the local heat transfer coefficient obtained with the downward 

orientation of the probe. The values of as obtained using the above procedure were 

quite close (within 3%) for the two superficial gas velocities. Hence an average value 

(as = 0.7) was used in Equation (5.3) to estimate the liquid velocities at the column 

center  using data of this study and those reported by Li (1998). As shown in Figure 

5.7, these values are in good agreement with the predictions by the well tested 

correlation of Riquarts (1981) - absolute average error less than 5%.  
1
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Figure 5.7. Comparison of liquid velocities estimated by equation (5.3) with 
predictions by literature correlations (air-water system) 

 

The figure also shows that the measured center line liquid velocities by Groen et al. 

(1996) and Mudde et al. (1997) are also close to the predictions. This indicates that 

the correlation based on stagnation point heat transfer can provide a good estimate of 

center line liquid velocity in different diameter columns. In order to further confirm 

these observations, experimental data of Krishna et al. (1999) for liquid velocity in 

different diameter bubble columns was also used. As shown in Figure 5.8, these 

authors measured the effect of column diameter on the radial distribution of the liquid 

velocity in the heterogeneous regime.  The liquid velocity increases with increase in 

column diameter at all the radial locations except in the region close to the wall. From 

Figure 5.8, the effect of column diameter on center line liquid velocity is plotted in 

Figure 5.9 and comparisons are made with the predicted centerline liquid velocity 

based on heat transfer measurements at the superficial gas velocity of 0.23 m/s. The 

heat transfer data were interpolated to get the centerline liquid velocities at the 
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superficial gas velocity of 0.23 m/s. It can be observed from Figure 5.9 that, the 

values obtained by Krishna et al. (1999) are slightly lower than those based on heat 

transfer measurements or predicted by Riquart’s correlation but approach predictions 

with increasing column diameter. This could be attributed partially to different 

measurement techniques and calibration procedures used in these studies.   
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Figure 5.8. Radial distribution of liquid velocity in heterogeneous flow regime from 
Krishna et al. (1999) 

 

A review of heat transfer studies and proposed correlations in bubble columns 

showed  that literature correlations have either not accounted for column diameter 

effects (i.e. Deckwer, 1980; Saxena et al., 1992) or shown the effect to be negligibly 

small (Joshi et al., 1980). It should be pointed out that literature correlations are 

generally based on bed-to-wall heat transfer where column diameter effects may not 

significant due to damping effect of the wall. This is also supported by the plots of 

radial profiles of liquid velocity in different diameter columns in Figure 5.8. It can be 

observed that local liquid velocities are similar in the wall region but the differences 



 

129 

 

are significant in the central region. A comparison of heat transfer coefficients in 

different column diameters compared in this study also showed that that wall region 

heat transfer coefficients are much closer compared to the central region, where 

differences are significant.  
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Figure 5.9.Effect of column diameter on centerline liquid velocity 
 

From the above, it can be concluded that a method based on central line liquid 

velocity needs to be used for the estimation of heat transfer coefficient at the column 

center. For a given column diameter, first the correlation of Riquarts (1981) can be 

used to obtain center line liquid velocity. This velocity can be substituted in Equation 

(5.3) to estimate stagnation point heat transfer coefficient at the column center.  

However, this value will be high for vertical heat transfer tubes often used in these 

reactor systems. The data of this study together with that of Li and Prakash (2002) 

and Wu et al., (2007) was used to get a correction factor based on the lateral (vertical) 

and downward (stagnation point) orientation of the probe. It was found that average 
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ratio was essentially constant (about 0.85) for all the column diameters. This 

procedure was applied to estimate heat transfer coefficients for a vertical tube at 

column center for two column diameters (0.15m and 0.28m). It can be seen from 

Figure 5.10 that the predicted values are within 5% of experimental values. This 

procedure was also used to predict the data reported by Saxena et al., (1989) in 0.108 

and 0.305 m diameter columns. It gives good predication of their data (average error 

< 5%) in 0.305 m diameter column, but the average error increased to 10% for 

0.108m column diameter. This increase in error for small column diameter can be 

attributed to the increased wall effect on column hydrodynamics in small column 

diameter (Dc < 15) as pointed in literature (Shah et al., 1982; Wilkinson et al., 1992; 

Zahradník et al., 1997; Su et al., 2006;). This indicates that the wall damping effect 

would be significant for smaller diameter columns. 
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Figure 5.10. Comparison of predicted and experimental value of heat transfer 
coefficient for vertical orientation of heat flux sensor 
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A correlation that is based on liquid circulation velocity in bubble columns was 

proposed by Joshi et al. (1980) for bed to wall heat transfer. This dimensionless 

correlation shown in its general form below was adapted by these authors from stirred 

systems. 
0.141/ 3

,

,

μρ μ
μ μ

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

m
p L Lw C C L L L

L L L L w

Ch D D VC
k k

   (5.5) 

It was decided to test this correlation for the estimation of central region heat transfer 

coefficient in bubble columns by using central line liquid velocity. The predicted 

values by Equation 5.5 for the two column diameters were within 6% for the whole 

range of gas velocities for selected values of correlation constant and exponent (i.e. 

C= 0.084; m = 0.8). This correlation was also used to predict the data reported by 

Saxena et al. (1989) in 0.108 and 0.305 m diameter columns. It gives good 

predication of their data with average error less than 6% in 0.305 m diameter column, 

but the average error increased to about 8% for 0.108m column diameter. This 

increase in error can be attributed to the wall effects as discussed above for the 

smaller diameter column. 

 

While the above procedure gives a good estimate of heat transfer coefficients at the 

column center, there is often need to determine the values at different radial locations 

since for different industrial applications, heat transfer surface could be installed at 

different radial locations in a reactor. Jhawar and Prakash (2007) proposed a 

correlation to predict the heat transfer coefficient at different radial locations knowing 

the value at the center.   

( ) 1 n
c

c

h h r n r
h n R
− −⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
       (5.6) 

Figures 5.11a,b,  show the radial profiles of the heat transfer coefficients measured in 

bubble columns with tube bundle type internal (type A) and without, and  those 

reported by other researchers (Li, 1998; Wu et al., 2007). Equation (5.6) well 

predicted (within 5%) the radial profile in hollow bubble columns in this study and 

those reported in literature up to r/R=0.75 using the recommended value of 1.4 for n. 

In the region between r/R=0.75 to r/R=1,  



 

132 

 

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Radial Locations, r/R (-)

h a
vg

 (k
W

 / 
m

2  ºC
)

With Internals With Internals

A A

VG = 0.0382m/s
Lines show predicitons by Equation (5.6)
Solid (Solid)-Internals, Dotted (Hollow)- Without internals

VG = 0.352m/s

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Radial Position, r/R (-)

h a
vg

 (k
W

 / 
m

2  ºC
)

Li (1998), VG = 0.3m/s
Wu et al.(2007), VG = 0.3m/s
Li (1998), VG = 0.15m/s

b)

Lines show predicitons by Equation (5.6)

  

Figure 5.11. Prediction of Radial profile of heat transfer coefficient using equation 
(5.6): (a) this study (b) literature studies in different column diameter 
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the correlation predicted lower values than the measured heat transfer coefficients 

with average error rising to about 12%. It can be observed from Figure 5.11b that the 

radial profile of heat transfer coefficient becomes relatively flat in this region and 

equation (5.6) may not be applicable here. In bubble columns with tube bundle (type 

A) the radial profile is quite different at low velocities the radial profile is almost 

similar to those obtained in hollow bubble column and are well predicted by equation 

(5.6) using recommended value of n. But at high superficial gas velocity (in fully 

developed heterogeneous flow) the radial profile is different in core and annular 

region. In the core region, equation (5.6) well predicts the data; predictions are higher 

in annular region. In presence of tube bundle type internal, the variable n in equation 

(5.6) needs to be modified. The average heat transfer coefficient between two radial 

positions – where tubes bundle could be arranged- can be obtained by equation 5.7.  

 

2

1

1( ) ( )2= ∏∫
r

avg
anu r

h r h r rdr
A

         (5.7) 

 

Substituting Equation (5.6) into (5.7) and integrating gives. 
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                             (5.8) 

 

The value of n in equation (5.6) was taken as 1.4, as suggested by Jhawar and Prakash 

(2007). Equation (5.8) can be used to calculate the average heat transfer coefficient at 

any given radial location. The estimated heat transfer coefficient at a superficial gas 

velocity of 0.35 m/s and at the radial location, r/R = 0.6 with the width of 19 mm 

cross-section is 5.2 kW/m2 ºC, which is within 7% of the experimental value obtained 

at r/R=0.624. It can also be noted from Figure 5.11a that the values obtained for the  

tube bundle type internal are higher in central and lower in wall regions compared to 

hollow bubble columns. A quick calculation shows that the differences in central and 
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wall regions with tube bundle tend to compensate each other. So hollow column n 

value (n =1.4) in equation (5.6) should give reasonable predictions. 

 

5.4 Conclusions 

The variation of heat transfer coefficient in bubble columns with diameter was 

established based on the data of this study and comparison with literature studies. The 

diameter effect is more prominent in the central region of column. Negligible effect 

of column diameter in the wall region can be related to turbulence damping effect in 

that region. The observed increase in heat transfer coefficient in the central region of 

column is related to increase in liquid circulation velocity with column diameter 

which can in turn be related to increase in large bubbles rise velocities. A general 

literature correlation which accounts for diameter effects on heat transfer has been 

modified to predict center line heat transfer coefficient in bubble columns.  A 

procedure is presented to estimate average heat transfer coefficient for tube bundle 

placed at a radial location in a bubble column reactor of a given diameter.   

 

5.5 Notations 

A Heat transfer area, (m2)  

Cp   Heat capacity, (J/kg K) 

DC Column diameter (m) 

Dp Probe diameter (m) 

dp Diameter of particle (m) 

g Acceleration due to gravity (m/s2) 

h   Heat transfer coefficient, (kW/m2 ºC) 

k    Thermal conductivity, (W/m K) 

n  Constant  in equation (5.6) 

N Number of data points 

q Heat flow rate, (kW) 

r Radial location, (m) 

R Radius of the column, (m) 
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T Temperature, (oC) 

V Superficial velocity (m/s) 

wS weight fraction of the solid in the column (kg) 

z Axial location from the bottom of the column, (m) 

Δx Thickness of thermal barrier, (m) 

ΔH  Distance between two transducers (m) 

as Constant in equation (5.3) 

Pr Prandtl number, ,p l l

l

C
k
μ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 

Greek Symbols 

µ Viscosity (Pa.s) 

ρ Density (kg/m3) 

ν Kinematic viscosity (m2/s) 

 

Subscripts 

1 any given radial location  

2 any given radial location greater than radial location 1 

anu Annular crossection 

avg Average 

b Bulk 

c   Center 

G  Gas 

i  Instantaneous 

L   Liquid 

S Solid 

w  Wall 

Su Surface 

st  Stagnation point 

1 Any particular location 

2 Any particular location 
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}CHAPTER 6. ANALYSIS OF BUBBLE DYNAMICS AND 
COLUMN HYDRODYNAMICS BASED ON INSTANTANEOUS 

HEAT TRANSFER COEFFICIENTS IN SLURRY BUBBLE 
COLUMNS – WITH AND WITHOUT INTERNALS 

 
 

Abstract 
 
Nearly  instant variations of heat transfer coefficient is recorded using a fast response 

probe in a 0.15m ID bubble column with and without internals at different gas 

velocities and slurry concentrations. The heat transfer coefficient increases with 

increase in superficial gas velocity, because of increase in bubble wake turbulence of 

fast rising large bubbles. This is analyzed in further details in this study using a peak-

fitting method to get the peak-height distribution. Then the average peak height, 

standard deviation and average peak area obtained from the distribution at different 

slurry concentrations in bubble column with and without internals is further analyzed 

to understand the bubble dynamics effects in slurries of different concentrations.  Gas 

phase used is oil free compressed air and its flow rate is varied from 0.03 to 0.35 m/s. 

Tap water is the liquid phase and the solid particles used are 49 μm glass beads and 

their concentration is varied up to 20 vol. %. Usually it is observed that average peak 

height and area increases with the increase in superficial gas velocity. The observed 

increase in average peak height and area in both systems can be related to bubble 

wake dynamics. The effect of slurry concentration on bubble wake properties is also 

analyzed based on instantaneous heat transfer coefficients.   

 
Key Words:  Slurry bubble column. Heat transfer, Bubble-wake, internals 
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6.1 Introduction 

The advantages provided by bubble columns such as high heat and good mass 

transfer rates, high selectivity and conversion per pass, isothermal conditions, online 

catalyst addition and withdrawal, washing effect of the liquid on catalyst, and low 

maintenance cost due to simple construction and absence of any moving parts 

(Deckwer and Schumpe, 1993; Kluytmans et al., 2001; Li and Prakash, 2002; Li et 

al., 2003), made them the reactor of choice in many industrial applications such as 

Fischer-Tropsch synthesis, methanol synthesis, heavy oil upgrading, fermentation, 

biological waste water treatment, flue gas desulphurization, coal liquefaction, 

dimethyl ether production, chlorination and hydrogenation (Shah et al., 1982; Fan, 

1989; Duduković and Devanathan, 1992; Deckwer and Schumpe, 1993; Li, 1998; 

Prakash et al., 1999; Prakash et al., 2001; Duduković et al., 2002). Heat transfer 

studies  in bubble columns and slurry bubble columns have been investigated by 

many researchers (Saxena et al., 1989; Saxena and Patel, 1990; Saxena et al., 1990a; 

Saxena et al., 1990b; Saxena et al., 1991a; Saxena et al., 1991b; Saxena et al., 1992; 

Li and Prakash, 1997; Li and Prakash, 1999; Li and Prakash, 2001; Prakash et al., 

2001; Li and Prakash, 2002; Quiroz et al., 2003; Li et al., 2003; Kantarci et al., 

2005b; Wu et al., 2007; Jhawar and Prakash, 2007; Jhawar and Prakash, 2011a; 

Abdulmohsin, 2011) to name a few. While many of these studies focused on time 

averaged measurement of heat transfer coefficient, few researchers (Kumar et al., 

1992; Kumar and Fan 1994; Li, 1998; Li and Prakash, 1997; Li and Prakash, 1999; Li 

and Prakash, 2001) studied instantaneous heat transfer coefficients in bubble and 

slurry bubble columns to investigate the effect of bubble dynamics on heat transfer in 

bubble column reactors. While Kumar et al., (1992) and Kumar and Fan (1994) 

investigated this effect either with single-bubble injection or chain bubbling at low 

superficial gas velocities. Li (1998); Li and Prakash, (1997, 1999, 2001) studied the 

effect of bubble dynamics on heat transfer in bubble and slurry bubble columns based 

on instantaneous heat transfer coefficient at superficial gas velocities, varying in 

range 0.05 m/s to 0.3 m/s. They also investigated the effect of slurry concentration in 

air-water-glass beads system upto 40 vol.% slurry concentrations. In bubble columns, 

the rising gas bubbles create turbulent conditions and generate flow patterns as they 
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entrain liquid (slurry) in their wakes.  In this study, instantaneous heat transfer 

measurements are investigated in bubble and slurry bubble columns with and without 

internals over a range of superficial gas velocities and slurry concentrations of 

practical importance. The instantaneous heat transfer data are analyzed to investigate 

local column hydrodynamics under different conditions.  

 

6.2 Experimental  

Experiments were conducted in a Plexiglas column of 0.15 m internal diameter and 

height of 2.5 m, the experimental set up details are provided else where (Jhawar and 

Prakash, 2011a). The gas was introduced in the column using a coarse sparger. The 

detailed design of the coarse sparger is explained elsewhere (Gandhi, 1997). The 

sparger had two levels, upper level had seven (1.9 mm diameter) and lower level had 

five (1.9 mm diameter) downward facing holes on each of four arms. The internals 

type A was used in this study. The details of internal type A used are provided in 

Jhawar and Prakash (2011b). Oil free compressed air was used as gas phase, tap water 

was used as the liquid phase and 49 µm glass beads (Potters Industries, spheriglass ® 

A glass) of density 2500 kg/m3 constituted the solid phase. The gas flow rate was 

measured using three calibrated sonic nozzles of different diameters (0.7mm, 1.5 mm 

and 2.5 mm). A measuring tape was provided on the column to note the liquid level 

and dispersion height. An air box of 0.3 m height was used with sintered steel plate 

distributor. The superficial gas velocity was varied from 0.03 to 0.35 m/s. The 

unaerated water height in the column was maintained around 1.45 m. The solid 

concentration was varied from 0 to 20 vol. %. Two pressure transducers (OMEGA 

Type PX541-7.5GI and Type PX541-15GI) were used to measure the pressure 

fluctuations in the distributor (z = 0.027 m) and the disengagement section (z = 1.318 

m), as shown in Figure 1. The pressure transducers were connected to a DC power 

supply and generated a voltage proportional to measured pressure. The response time 

of the pressure transducers was 2 ms and data were recorded for 180 seconds at a rate 

of 60 Hz. 
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Instantaneous heat flux was measured using a micro-foil heat flux sensor (RdF, 

Model number 20453-1 G161).The sensor was flush mounted on the surface of a 

brass cylinder of 11 mm outer diameter. A small cartridge heater (Chromalox, model 

number CIR-1012) was installed inside the brass cylinder. The AC power was 

supplied to the cartridge heater through a variac to regulate supplied power in the 

range of 20 to 40V. The detailed design of the heat flux probe is explained elsewhere 

(Li and Prakash., 1997; Li, 1998). Probe location could be changed both axially and 

radially. The temperature of the liquid phase was measured using two copper-

constantan thermocouples (ANSI type T). These thermocouples were located at two 

radial locations: one at center and other close to the wall. Axial position of the 

thermocouple could be changed. The response time of micro-foil heat flux sensor was 

20 ms and data were recorded for 180 s at a rate of 60 Hz. The probe generated 

microvolt signals, which were amplified to millivolts by a suitable amplification 

circuit using 12V DC supply. A minimum of three test runs were performed at each 

condition and average values are reported. For the heat flux sensor, the following 

equation can be derived for liquid film heat transfer coefficient (Li and Prakash, 

2001): 

 

  1
/

Su b

i

T T x
h q A k

− Δ
= −    (6.1) 

 

The second term on the right hand side of Equation 1 is negligible compared to the 

first term (< 1%) due to high conductivity (k) and small thickness (Δx) of the thermal 

barrier film. Therefore instantaneous heat transfer coefficient could be determined by 

measurement of heat flux and the difference between surface and bulk temperatures at 

a given time. The time-averaged heat transfer coefficient at a given location was 

obtained by averaging the instantaneous heat transfer data collected.  
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6.3 Results and Discussion 

6.3.1 Response of Probe at Column Center 

Figure 6.1 a and b show comparison of time series heat transfer data obtained at 

center in bulk section of the bubble column with and without internals for low and 

high superficial gas velocity. It is observed that at high superficial gas velocity the 

heat transfer coefficient peak are significantly higher than those obtained at low gas 

velocities. This increase in heat transfer coefficient with superficial gas velocity can 

be attributed to increase in coalesced bubble size, which in turn generates strong 

liquid recirculation velocity due to increased bubble-wake-induced turbulence as 

pointed out by Li and Prakash (1999). In bubble columns without internals the bubble 

size increases with increase in superficial gas velocity and this has been reported in 

literature (De Swart et al., 1996; Krishna et al 1997; Li and Prakash, 1999). A 

comparison of Figure 6.1a and b indicates that at high gas velocity, peaks are taller 

and wider in presence of internal A, while they are shorter and narrower without 

internal. Sharper peaks can be associated with fast rising large bubble while a wider 

and rounded peak indicate closely spaced large bubbles or bubble clusters.   However, 

the differences are less obvious at lower gas velocity, when bubble size and their rate 

of generation is small. As discussed in following sections, these differences were 

further analyzed based on peak height and area distributions. 

 

6.3.2 Probe Response in Central and Wall Regions 

Figures 6.2 a and b show comparison of instantaneous heat transfer coefficient 

obtained at center and wall region in bulk section of the bubble column with and 

without internals at a superficial gas velocity of 0.21 m/s. It is observed that the heat 

transfer coefficients obtained in the wall region are significantly smaller than in the 

central region - with or without internals. This indicates the near absence of fast 

moving bubble chain or large bubbles in this region.  
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Figure 6.1. Instantaneous heat transfer coefficient obtained at center in bulk section in 
air – water system (a) Without Internals (b) Type A. 
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Figure 6.2. Instantaneous heat transfer coefficient obtained at center and in wall 

region in bulk section in air – water system (a) Without Internals (b) Type A.  
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Another important thing observed is that the average and instantaneous heat transfer 

coefficient in central region are higher in bubble columns with internals (core region) 

compared to those without internals and a reverse trend is observed in the wall region. 

 

A direct comparison of the internal effect at the two radial locations is presented in 

Figure 6.3a and b. The influence of internal A in the two regions is clearly 

observable. The widths of tall peaks without internals are nearly half of those 

obtained with the internal suggesting more large bubbles moving up in close 

proximity. The reverse trend observable in the wall region (Figure 6.3b) can be 

attributed to smaller and fewer bubbles in the wall region with internals compared to 

hollow bubble column. The radial variation of bubble size distribution in bubble 

columns and three phase fluidized without internals is reported in literature studies 

(Yu and Kim, 1988; Chen et al., 1994; Kwon et al., 1994). These studies have 

reported that the average bubble diameter is smaller near the wall region and 

increases towards the central region in bubble column. Similar observations were 

reported by Li and Prakash (1999) based on instantaneous heat transfer coefficient 

measured in bubble column without internals. There is no published literature for the 

radial variation of bubble size distribution in bubble columns equipped with internals. 

The data of this study clearly suggests that the radial distribution of average bubble 

size was significantly affected in presence of the internal type used. 

 

6.3.3 Estimation of peak-height distribution 

From the discussion in previous section, instantaneous heat transfer coefficient can be 

used to describe bubble dynamics and bubble wake behavior. The passing bubble 

over the heat transfer probe surface enhances the heat transfer coefficient as it creates 

shear field due to its dynamics and associated turbulent wake region. The fast 

response probe used in this study is capable of recording this enhanced heat transfer 

coefficient. From the time series heat transfer coefficient data obtained in this study, 

it is observed that the instantaneous heat transfer coefficient peaks are not uniformly 

distributed with time at a given operating condition. 
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Figure 6.3. Instantaneous heat transfer coefficient obtained in bulk section of the 

bubble columns with Type A and without internals in air – water system(a) center 
(r/R=0) (b)  wall (r/R=0.624) region 
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Therefore, a peak height fitting method developed by Li and Prakash (1999) was 

adapted to obtain the peak heights distribution in this study. This method is described 

below in detail. The peak height distribution can be related to bubble dynamics in the 

column. 

 
The peak heights were divided into 40 equally spaced intervals, for quantitative 

description. For a given interval, all peak heights were counted as the peak height of 

mid value of the same interval (the mid value ranged up to 19.75 kW/m2ºC).  The 

area of each peak is obtained by multiplying the sampling time with measured heat 

transfer coefficient above base line.  The base line in this study was defined as the 

average of minimum heat transfer coefficients value obtained, which are lower than 

the average heat transfer coefficient of the over all data at a given superficial gas 

velocity. The base line value increases with increase in superficial gas velocity. The 

heat transfer signal obtained was reconstructed by replacing any instantaneous heat 

transfer coefficient obtained less than base value line value, with the base line value. 

To calculate the peak area, both peak height and time length is used. The peak height 

was defined as the maximum instantaneous heat transfer coefficient obtained for a 

passing bubble-wake, subtracted base line value from it. The time length of each peak 

was defined as the time between two minimum heat transfer coefficients in which one 

is before the peak and other is after the peak. The area of each peak was calculated 

using Simpson integration method. Once the area of peak was calculated, the areas 

with same peak height were added to obtain the summed peak area with peak height i. 

The cumulative area with peak height i represents total effect of bubble-wake induced 

turbulence on heat transfer with peak height i. Then various cumulative areas with 

different peak height i were classified into an area distribution of various peak-

heights. To obtain the distribution independent of sampling time, the distribution was 

normalized as: 

 i
i

area of peak height
totalarea

φ −
=          (6.3) 

The sampling time independent normalized distribution obtained in bubble columns 

with and without internals in air-water system at high and low superficial gas 



 

150 

 

velocities is shown in 6.4. The figure shows that the peak-height distribution is close 

to Gaussian distribution in bubble columns with and without internals for different 

superficial gas velocities. Therefore the mean value and standard deviation of 

Gaussian distribution can be applied to describe the peak height distribution as below: 

( ) ( )
40

i i i
i 1

area of peak height . peak height
X

totalarea
=

− −
=
∑

                             (6.4) 

 
 

( ) ( )
40 2

i i i
i 1

area of peak height . peak height X
SD

totalarea
=

⎡ ⎤− − −⎣ ⎦
=
∑

         (6.5) 

 
The mean value of normalized distribution represents an average value of peak height 

(area average peak height) and standard deviation represents the width of peak height 

distribution. 
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Figure 6.4. Peak-height distribution in bubble columns with Type A and without 

internals at different gas velocities in air – water system (r/R=0). 
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Average peak area is another important parameter that can be obtained from 

instantaneous heat transfer coefficients. To estimate average peak area, the number of 

peaks had to be counted from time series heat transfer data for a given time interval. 

The individual peak area is obtained by the procedure described previously. From 

figure 6.1 to 6.3, it is observed that a few of the peaks were close to baseline which 

could be due to local turbulent fluctuation. In order to avoid counting these low 

peaks, a minimum peak height was defined as 2.25 (kW/m2C) along the lines, as 

discussed by Li (1998). The average peak area was obtained by dividing total area by 

number of peaks. The average area represents a combined effect of both intensity and 

residence time of bubble wake induced turbulence on heat transfer. 

 

6.3.4 Peak-height distribution 

The peak height distributions obtained in bubble columns with and without internals 

in air-water system at center in bulk section of the column at a low (0.038 m/s) and a 

high superficial gas velocity  (0.21 m/s) is shown in Figure 6.4.  The two velocities 

represent the dispersed flow and heterogeneous flow regimes respectively. It can be 

observed that the distributions become wider at higher gas velocity. Also for the same 

gas velocity, the distribution becomes wider in the presence of the internal. It can also 

be observed that the distribution is nearly Gaussian in bubble columns with and 

without internals for different superficial gas velocities.  These variations in peak 

height distribution can be compared with change in bubble size distribution and 

associated column hydrodynamics in presence of the internal. 

 

Variations of average peak heights with superficial gas velocity with and without 

internal are presented in Figure 6.5 for air-water and air-water-glass beads system. It 

is observed that average peak height increases with increasing superficial gas velocity 

in all cases. In addition following observations can be made. 

 

• Higher values obtained with air-water system approach those with slurry 

system with increase in gas velocity with or without internal. 
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• Average peak heights are higher with internal and the difference due to 

internal increases with increasing gas velocity. 
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Figure 6.5. Comparison of average peak height in bubble column with and without 
internals and with literature studies in air-water and air-water-glass beads system 

 
Comparison of standard deviations obtained with average peak heights is presented in 

Figure 6.6.  Following observations can be made from this figure. 

 

• Standard deviations (SD) increase with increasing gas velocity in all cases. 

• The rate of increase is faster up to gas velocity of about 0.15 m/s and 

decreases for higher gas velocities. 

• Higher standard deviations are obtained in presence of the internal. 

• Also standard deviations are higher with slurry system compared to air-water. 

 

The variation of average peak heights with superficial gas velocities can be compared 

with variation of bubble size and bubble chord length distribution reported in 

literature (Rigby et al., 1970; Everson et al., 1993; Kwon et al., 1994; De Swart et al., 
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1996; Luo et al., 1999). With increasing superficial gas velocity, the size of large 

bubble and their distribution width increases (Luo et al., 1999). As the large bubble 

size increases, their rise velocity also increases (Rigby et al., 1970; Luo et al., 1999). 

The fast rising bubbles cause strong liquid recirculation, which in turn increases the 

bubble-wake-induced turbulence, and as a result the heat transfer coefficient peak 

height increased. The high gas velocity generates higher shear stress, which could 

result in breakup of the large bubbles, thus the bubble size distribution depends on 

both bubble coalescence and breakup (De Swart et al., 1996). The bubble size 

distribution and its standard deviation increases with increasing gas velocity (Everson 

et al., 1993; Kwon et al., 1994). Thus the increasing average peak height and peak 

height distribution standard deviation with superficial gas velocity can be related to 

increase in bubble size distribution and its standard deviation with gas velocity. 
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Figure 6.6. Comparison of standard deviation of peak-height distribution in bubble 
column with and without internals and with literature studies in air-water and air-

water-glass beads system  
 
Variations of average peak height with slurry concentration are compared in Figure 

6.7 for a low and a high velocity. It is observed that the trends are similar irrespective 
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of gas velocity or presence of internal.  There is a clear tendency for the average peak 

height to decrease initially with the addition of solid particles up to concentration of 

about 10 vol.% solids. But at high concentrations (beyond 10 vol. %) the average 

peak height increases with increase in slurry concentrations and are almost equal or 

greater than air-water system.  The decrease in average peak height with the addition 

of particles could be attributed to the destruction of ordered motion or circulation in 

bubble-wake thus reducing vortical strength (hence turbulence) inside the bubble 

wake as pointed out by Raghunathan et al., (1992). This would result in reduction of 

bubble wake induced heat transfer rate. The above details explains the reduction in 

average peak height with addition of particles at low concentrations (< 10 vol. %). 

The above effect become less significant in bubble column with internals due to 

increased liquid recirculation and local turbulence, but is not nullified since there is 

decrease in average peak height, but is less compared to bubble column without 

internals. 

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Slurry concentration (vol.%)

A
ve

ra
ge

 P
ea

k 
H

ei
gh

t (
kW

/m
2 ºC

)

A
Without Internals
A
Without Internals

VG = 0.21 m/s

VG = 0.0382 m/s

 
Figure 6.7. Comparison of average peak height with slurry concentration in bubble 

columns in central region with Type A and without internals  
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However, when the slurry concentration is increased to 10 vol. % or more, it is 

observed that the average peak height increases and is almost equal or greater in 

bubble columns with and without internals. Even though the addition of particles 

results in reduction in bubble wake induced turbulence, the average peak height is 

increasing at high concentration, and this could be due to changes in bubble 

population. With addition of particles, the apparent suspension viscosity is increasing, 

which results in the increase in bubble size. As the bubble size increases, the rise 

velocity increases (Luo et al., 1999), which results in strong local shear fields, and 

also the energy content in the wake region (mainly kinetic energy) of these fast 

moving large bubbles increases. The combined effect of these two processes will 

dominate the reduced turbulence due to increasing slurry concentration.  
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Figure 6.8. Comparison of average peak area in bubble column with and without 
internals and with literature studies in air-water and air-water-glass beads system 
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6.3.5 Average Peak Area Analysis 

Figure 6.8 compares variations of average peak areas with gas velocity with and 

without internal in air-water and air-water-glass beads (10 vol. %) system. The peak 

area represents net effect of both bubble wake size and its energy content (Li and 

Prakash, 1999). The peak areas increase with the increase in superficial gas velocity 

in all cases. It can be noted that at low velocities, values obtained in slurry system are 

lower compared to air-water system but increase at a faster rate with increasing gas 

velocity and eventually go above air-water values. The gas velocity at which this 

cross over occurs is lower (≈ 0.09 m/s) with internal compared to hollow bubble 

column (≈0.11 m/s). It seems bubble size is increasing at a faster rate in the slurry 

system due to the  presence of particles and their effects on suspension rheology and 

this effect is enhanced further in presence of the internal. 

 

Figures 6.9 (a) and (b) show the effect of slurry concentration on average peak area 

obtained in the central region in bubble columns with and without internals at 

different superficial gas velocity. Following observation could be made in bubble 

columns with and without internals 

 

• Variations of peak area have similar trends in both cases. 

• Initially there is drop in peak area with addition of fine particles for 

concentration up to 5 vol.%  

• Beyond 5 vol. % slurry concentration there is increasing trend. 

• Values with internals are always higher compared to those without internals. 

• Higher rate of increase in presence of internals with slurry concentration and 

superficial gas velocity. 
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Figure 6.9. Variation of average peak area with slurry concentration in bubble 

columns in central region (a) Without internals (b) Type A 
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The average peak area represents the combined effect of both bubble wake size and 

its turbulence intensity. The initial drop observed in average peak area with addition 

of fine particles for low slurry concentration (< 5 vol. %) could be explained by 

boundary layer flow and decrease in bubble wake turbulence with addition of 

particles. For slurry concentration beyond 5 vol. %, the increase in average peak area 

can be attributed to the sharp increase in bubble rise velocity Li (1998). With addition 

of particles, the apparent suspension viscosity is increasing, which results in the 

increase in bubble size. As the bubble size increases their rise velocity increases (Luo 

et al., 1999), which results in strong local liquid recirculation, and also the energy 

content in the wake region (mainly kinetic energy) of these fast moving large bubbles 

increases. The combined effect of these two will dominate the reduced turbulence due 

to addition of particles. As a result the average heat transfer peak area increases for 

slurry concentration in this range (Li and Prakash, 1999).  This behavior may change 

with particle type and size 

 

6.4 Conclusions 

The probe is capable of capturing the temporal variation of heat transfer coefficient 

due to changes in system properties, presence of internals or with addition of 

particles. This could be further analyzed based on peak height distribution and area to 

give insights about the bubble size distribution and changes in bubble wake-

dynamics. To quantitatively describe the temporal variation of heat transfer 

coefficient a peak fitting method was developed to obtain average peak height and 

peak area in bubble columns with and without internals. The average peak height and 

peak area increases with the increase in superficial gas velocity.  The fast response 

probe can be a useful tool for investigation of bubble size distribution and analysis in 

different system of practical importance and in large column diameter columns 

compared to electrical resistance or optical probe as it is not dependent on the system 

electrical or optical properties. 
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6.5 Notations 

A Heat transfer area, (m2)  

DC Column diameter (m) 

h   Heat transfer coefficient, (kW/m2 ºC) 

k    Thermal conductivity, (W/m K) 

N Number of data points 

q Heat flow rate, (kW) 

r Radial location, (m) 

R Radius of the column, (m) 

SD  Standard deviation of peak height distribution 

T Temperature, (oC) 

V Superficial velocity (m/s) 

X  Average peak height of peak height distribution 

z Axial location from the bottom of the column, (m) 

Δx Thickness of thermal barrier, (m) 

 

 

Greek Symbols 

ν Kinematic viscosity (m2/s) 

øi fraction of area of peak height i in total peak area 
 
 
 
Subscripts 

 

avg Average 

b Bulk 

c   Center 

G  Gas 

i  peak interval number 

L   Liquid 

S Solid 
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w  Wall 

Su Surface 
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CHAPTER 7.  CONCLUSIONS AND RECOMMENDATIONS 
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7.1 Conclusions 
 
 
The following conclusions can be drawn from this study: 
 
 

1. The presence of internals, their design and location in bubble columns affect 

heat transfer characteristics, hydrodynamics and mixing pattern. The fast 

response heat transfer probe used in this study proved to be a valuable tool to 

investigate these local variations.. 

 

2. The presence of tube bundle type internal (type A) increases the heat transfer 

coefficient in central region compared to hollow bubble column, but a reverse 

trend is observed in wall region 

 

3. Axial location of six-blade baffle (type B) used in this study was found to be 

important. When placed at an axial height of 0.36 m from the bottom of the 

column, the heat transfer coefficients obtained are higher at the center than 

those obtained in hollow bubble column, but are lower than compared to those 

obtained with type A. 

 

4.  When type B internal was placed at an axial height of 0.21 m, the heat 

transfer coefficients obtained at the center are similar to those obtained in 

hollow bubble column. 

 

5. The six-blade baffles (type B) used in this study improved the radial profile of 

heat transfer coefficients obtained compared to hollow bubble column or with 

internals type A at both axial locations studied. 

 

6. The combination of type A (z = 0.50m) and B (z = 0.36m) internals studied, 

shows that the heat transfer characteristics is improved compared to type B 

alone at the center and the radial profile of heat transfer coefficient is 

improved compared to those obtained with type A alone. 



 

166 

 

7. The combination of different design internals can also be used to improve the 

hydrodynamic characteristics of the bubble column. 

 

8. The presence of type A internal increases the small bubble holdup, but there is 

negligible affect on large bubble holdup compared to hollow bubble column 

or with type B (z = 0.36 m), resulting in higher average gas holdup. 

 

9. When type B internal is placed at an axial height of 0.36 m, it increases the 

small bubble holdup, but there is negligible affect on large bubble holdup 

compared to hollow bubble column, resulting in higher average gas holdup. 

 

10. When type B internal is placed at an axial of 0.21m, the large and small 

bubble holdup increases and decreases respectively, resulting in lower average 

gas holdups compared to those obtained at an axial height of 0.36 m and 

hollow bubble column. 

 

11. The average bubble size decreases in presence of both type A and type B (z = 

0.36 m) internals. This decrease in bubble size would results in higher 

interfacial area and residence time there by improving the reactors mass 

transfer performance. 

 
12. Presence of six-blade baffle internals, improves the column hydrodynamics 

radially and more uniform mixing is achieved at different radial locations due 

to uniformity in bubble size and population. 

 
13. The presence of internals and their combination can increase or decrease 

backmixing depending on their design and arrangement. 

 
14. The addition of fine solid particles (glass-beads) decreases heat transfer 

coefficient and average gas holdup in hollow bubble columns or with 

internals. 
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15. The average heat transfer coefficient obtained in this study is compared with 

the literature data; it is observed that the heat transfer coefficient increases 

with the increase in column diameter. 

 

16. The flow direction can be qualitatively identified (upward or downward) by 

measuring the time averaged local heat transfer coefficients using the different 

orientation of the probe (upward, downward or lateral) used in this study. 

 

17. The local liquid velocities estimated by using equation (5.3) based on the 

stagnation point heat transfer coefficients are in good agreement with the 

other experimental studies. 

 

18. The modified Joshi et al. (1980) correlation (equation 5.5) based on our study 

gives a good estimate of heat transfer coefficient for column diameters upto 

0.3m. This requires further testing for larger column diameters 

 

19. The bubble rise velocity of large bubbles increases with column diameter and 

slurry concentration. The bubble rise velocity of small bubble increases with 

slurry concentration, but no significant effect of column diameter was 

observed based on comparisons with literature studies. 

 

7.2 Recommendations 
 
The following recommendations can be made based on this study: 
 
 

1. The radial profile of heat transfer coefficient is strongly affected by the 

presence of internals type and location. There is a need to develop an 

appropriate flow model to estimate heat transfer coefficient at different radial 

and axial locations in presence of internals. 
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2. Internals in bubble column can significantly affect hydrodynamics which need 

to be taken into consideration for performance modeling. Detailed CFD 

modeling with appropriate verification could help to understand the variations 

in hydrodynamics and heat transfer in bubble columns with scale and in 

presence of internals. 

 
 

3. Verification experiments are needed in larger diameter column (say 0.6 m) 

with appropriate theoretical modeling and analysis to confirm that the effect 

of column diameter becomes small above diameter of 0.3 m. 

 

4. Axial and radial variations of phase holdups in presence of internals need to 

be investigated as part of verification experiments. 

 
5. Further work can be done to develop scale-up criteria for bubble columns 

based on the results of this study. 

 
6. Measurement of bubble size and liquid velocities at different axial and radial 

locations are needed in presence of different type of internals to better 

understand their effect on the temporal variation of heat transfer coefficient 

and local column hydrodynamics. 

 

7. Back mixing of liquid and gaseous phase need to be further investigated in 

presence of internals using suitable tracers. 
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Appendix A.   Local Liquid Velocity 
 
The radial variation of gas holdup provides the driving force for the recirculation 

flow. An equation for circulating liquid flow was developed by Ueyama and 

Miyauchi (1979) starting with Navier-Stokes equation and following main 

assumptions. 

 

- radial pressure remains constant 

- molecular viscosity is negligible in turbulent core compared to turbulent 

viscosity 

 

( ) ( ) gr
dz
dpr

dr
d

r l
gs ρετ )(11

−+=−   (A.1) 

 

In the turbulent core, the shear stress is related to time-averaged vertical velocity of 

liquid through the turbulent kinematic viscosity as below: 

 

   
dr

dUl
lts ρντ =        (A.2) 

 

Ueyama and Miyauchi (1979) developed an empirical correlation for turbulent 

viscosity based on literature data. 

 

   7.10322.0 ct D=ν     (A.3) 

 

The radial distribution of gas holdup observed in the turbulent flow regime can be 

approximated as: 
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Mean gas holdup is related to local gas holdup as follows: 

 

  ∫= R
locgavgg drr

R 0 ,2, 21 επ
π

ε    (A.5) 

 

Two boundary conditions are required to solve equation (A.1) 

 

One boundary condition assumes axi-symmetric liquid flow in the column: 

 

0=
dr

dUl    at r = R  (A.6) 

 

A second boundary condition is from velocity distribution in turbulent flow. The 

thickness of the laminar sublayer is much smaller than the column radius R, therefore 

can be neglected to give the following boundary condition: 

 

   U = Uw       at r = R   (A.7) 

 

Equation 2.52 can be integrated with above conditions to obtain local liquid velocity 

in column. For a value of m = 2 (in Eq. A.4), Wachi et al. (1987) obtained the 

following equation for local liquid velocity. 
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Peripheral or wall liquid velocity (Ul,w) is related to wall shear stress (τw) by the 

following equation. 

 

   
l
w

wlU
ρ
τ

63.11, −=      (A.9) 

 

Wachi et al. (1987) have also developed equation for liquid velocity at wall of the 

column. 
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Appendix B. Calculation Procedure for Gas Hold-Up from Pressure 
 Difference in Bubble and Slurry Bubble Column 

 

The average gas hold-up can be calculated from the pressure difference between the 

bottom (sparger region) and the top (disengagement region) pressure transducers. In a 

three-phase slurry bubble column, the static pressure drop along the bed height is 

given by  

 

 ( )1 1g g s sP g Hρ ε ρ ε ρ ε−Δ = + + Δ    (B.1) 

 

The volume fraction of individual phases is equal to unity. 

 

  11 =++ sg εεε      (B.2) 

 

The volume fraction of the solid phase in three-phase dispersion is related to the 

volume fraction in the gas free suspension by 

 

  ( )1s g sε ε φ= −       (B.3) 

 

Substitution of equation B.2 and B.3 into equation B.1 yields an equation for gas 

hold-up in slurry bubble column after rearrangement, 
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For solid-free two-phase bubble column, putting sφ  = 0, 
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Appendix C Experimental Setup and Internals Drawings 
 

 

Figure C.1 . Schematic diagram of experimental setup 
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Upper Sparger – 4 arms with 7 orifices each 
Lower Sparger – 4 arms with 5 orifices each 
Orifices located on the bottom of arms 
Orifice diameter – 1.9 mm 
 
 

Figure C.2 . Schematic diagram of the dual sparger design (Gandhi, 1997) 
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Figure C.3. Schematic diagram of the heat transfer probe 
 

 

 

 

Teflon Tip 

Teflon Spacer 

Brass Support 
(Cartridge heater inside) 

Built-in 
Thermocouple 

Heat flux sensor 

Stainless Steel Pipe 



 

176 

 

 
Figure C.4. Microfoil Heat Flux Sensor Dimensions 
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Figure C.5. Schematic diagram of tube bundle internal (type A) 
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Figure C.6. Schematic diagram of six-blade baffle (type B) 
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Appendix D.   Reproducibility and 95% confidence interval of Heat 
Transfer and Gas Holdup Data 

 

All heat transfer and gas holdup measurements were done atleast 3 times (maximum 

4 times) and the average value is reported in all papers. The reproducibility of heat 

transfer data in all cases was within 2-3%. In case of gas holdup data the 

reproducibility of data was within 1%.  The 95% confidence interval was calculated 

for the data reported. Figure D.1 - D.5 shows the 95% confidence interval for heat 

transfer and gas holdup data in air-water  and air-water-glass beads system in hollow 

bubble columns and with internals.  
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Figure D.1. 95% Confidence interval of heat transfer data in hollow bubble columns 

and with internals (air-water-system) at center 
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 Figure D.2. 95% Confidence interval of heat transfer data in hollow bubble columns 
and with internals (air-water-glass beads system) at center 
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Figure D.3. 95% Confidence interval of heat transfer data in hollow bubble columns 
and with internals (air-water-system) in wall region 
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 Figure D.4. 95% Confidence interval of gas holdup data in hollow bubble columns 
and with tube bundle type internal (air-water-system) 
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Figure D.5. 95% Confidence interval of gas holdup data in hollow bubble columns 
and with tube bundle type internal (air-water-glass beads system) 
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Appendix E.  Pressure Transducers Calibration 
 
 
Three pressure transducers (OMEGA type PX-541) were used to obtain the pressure 

fluctuation data. One pressure transducer (OMEGA type PX541-15GI) was located in 

the distributor section at a height of 0.027 m from the bottom of the column. The 

other pressure transducers (OMEGA type PX541-7.5GI) was located at 1.318 m from 

the bottom of the column. The pressure transducer were connected a D.C. power 

supply and generated a voltage proportional to measured pressure. 

 

Calibrations of transducers were repeated before the each set of experiments were 

done. Figure E.1, E.2, shows the calibration curves obtained with three pressure 

transducers. 
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Figure E.1. Calibration curve for distributor section pressure transducer (OMEGA 
type PX541-15GI) 

 

 

 

 



 

187 

 

0

2

4

6

8

10

12

14

16

2 2.5 3 3.5 4 4.5 5

Transducer Reading (volt)

G
au

ge
 P

re
ss

ur
e 

(k
Pa

g)

Without Internals
Six-blade (B)
Tube Bundle (A)

 

Figure E.2. Calibration curve for disengagement section pressure transducer 
(OMEGA type PX541-7.5GI) 
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Appendix F Calibration of Bulk Thermocouples 
 

The bulk temperature was measured using two thermocouples (ANSI type T). One 

thermocouple was located at the center of the column and the other thermocouple was 

located close to the wall. The thermocouples were calibrated using the mercury 

thermometer. The axial locations of the thermocouples could be changed. 
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Figure F.1. Calibration curve for bulk thermocouple located at the center 
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Figure F.2. Calibration curve for bulk thermocouple located close to the wall 
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Appendix G. Solid Characteristics 
 

The glass beads were purchased from Potters Industries Inc., Valley Forge, PA, USA. 

The particle size was measured using a Malvern Mastersizer 2000 available in 

Crystallization and Control Laboratory at the University of Western Ontario. The 

physicochemical properties of glass beads are presented in Table G.1. The samples 

were collected from the different heights in the bag. Typical particle size distribution 

tables and curves obtained for some samples from the Malvern Mastersizer 2000 are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

192 

 

Table G.1. Physicochemical properties of the glass beads 
 

Properties Values 

Particle Size ≈ 49 µm 

Density 2500 kg/m3 

Refractive Index 1.51-1.52 

Crush Resistance 14000-36000 psi 

Heat Capacity 0.84 kJ/kg.K 

Thermal Conductivity 0.80 W/m.K 

Composition Soda-Lime Silica Glass 

Free Silica None 
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