

Data Preprocessing for Machine Learning Models

Rawan El Moghrabi

ECE Department

Western University

London, Canada

relmoghr@uwo.ca

Ruiqi Tian

ECE Department

Western University

London, Canada

rtian25@uwo.ca

Miriam Capretz

ECE Department

Western University

London, Canada

mcapretz@uwo.ca

Luisa Liboni

ECE Department

Western University

London, Canada

luisa.liboni@uwo.ca

Abstract— Data preprocessing is an essential step when

building machine learning solutions. It significantly impacts

the success of machine learning modules and the output of

these algorithms. Typically, data preprocessing is made-up of

data sanitization, feature engineering, normalization, and

transformation. This paper outlines the data preprocessing

methodology implemented for a data-driven predictive

maintenance solution. The above-mentioned project entails

acquiring historical electrical data from industrial assets and

creating a health index indicating each asset's remaining

useful life. This solution is built using machine learning

algorithms and requires several data processing steps to

increase the solution's accuracy and efficiency. In this

project, the preprocessing measures implemented are data

sanitization, daylight savings transformation, feature

encoding, and data normalization. The purpose and results of

each of the above steps are explained to highlight the

importance of data preprocessing in machine learning

projects.

Keywords— Machine Learning, Predictive Maintenance, Data

Preprocessing, Feature Encoding

I. INTRODUCTION

This project collected raw data from smart electrical meters

installed at a Golf Club facility in Mississauga, Ontario. The

smart meters record a range of data for each connected asset.

Historical and live data from the smart meters are obtained

from circuit meters API. Even though the facility has

approximately 84 assets connected to smart meters, only five

assets were chosen for this project. The project aims to

implement predictive maintenance (PdM) methodologies and

create a health index for each asset that predicts the remaining

useful life. The health index would then be a tool to maintain

the industrial equipment at the most optimal time. Thus, the

project would decrease maintenance costs and maximize an

equipment's useful life.

As seen in figure 1, before the machine learning algorithms

can be implemented in the PdM framework, the raw data

obtained for each asset must undergo a series of

preprocessing steps and transformations to achieve the

desired inputs and accurate outputs [1]. These processes may

include sanitization, feature engineering, normalization, and

transformation [2]-[3]. The steps completed during data

preprocessing and the transformations performed during this

project stage largely determine a machine learning model's

predictive behaviour [4]. Therefore, it is essential to perform

the processing steps correctly. An ML model's accuracy

becomes compromised without proper data preprocessing,

and the resulting output would be ineffectual.

II. BACKGROUND

A. Machine Learning

Machine Learning (ML) is a type of artificial intelligence. It

consists of algorithms that take in an input of data and learn

from it to present the desired output [5]. There are four main

types of machine learning: supervised, semi-supervised,

unsupervised, and reinforcement learning. Each of these

categories has its own established implementations. In this

project, unsupervised learning is used to implement the PdM

framework. A clustering algorithm, which creates categories

from unlabeled data, is developed to achieve the goal of this

project.

B. Predictive Maintenance

Predictive Maintenance (PdM) utilizes machine learning

algorithms to create a new category of maintenance which

supports smart manufacturing and industrialization [6]. Two

main maintenance types are currently implemented in

industrial settings [7]. The first type is preventative

maintenance, in which maintenance is scheduled at regular

intervals to avoid equipment failure. The other type of

maintenance is corrective maintenance which relies on

repairing equipment after failure. PdM is a way to perform

Figure 1 Project Overview

maintenance at the optimal time for the asset. This solution

prevents downtime from failed equipment and eliminates any

unnecessary maintenance.

C. Data Acquisition

For this project, five assets were chosen from the list of assets

provided by the Golf Club. The criteria set out to choose the

final list of assets are as follows:

1. Assets with the most data points available.

2. Assets that were least affected by the Covid-19

lockdowns.

3. Assets whose usage was dependent on external

factors such as temperature.

Based on the above considerations, the five chosen assets

were four air conditioning units and one electric heater. A

python script requested data from the Circuit Meter API in

compliance with the company-provided documentation.

According to the API documentation, historical data could

only be acquired in increments of 15 minutes, while live data

is available in increments of two seconds. Note that the API

used in this project could only provide live data up to 24 hours

from the request. The data received dates back to the year

2019 when the Golf Club facility installed smart meters. To

satisfy the project criteria, the python script queried the API

with requests for predetermined electrical metrics. The

metrics obtained included voltage, current, power, apparent

power, reactive power, frequency, external humidity, and

ambient temperature. The Python script implemented a

predetermined delay to avoid overwhelming the API.

III. PREPROCESSING METHOD

A. Data Sanitization

Data sanitization is an essential first step to improving the

overall data quality used for the machine learning algorithms.

Its main goal is to perform noise treatment, reduce

redundancies, and identify outliers [8]. in this step, a Python

script was developed to remove any null values and identify

the outliers in the data. The Python script iterated the entire

data set to remove empty columns. In addition, it was

responsible for identifying any metrics that were requested

from the API but did not have any data stored.

B. Daylight Savings Correction

One of the project's goals is to identify, using a clustering

algorithm, the times of the year when the assets are most in

use. To do that, the data must accurately represent the local

time for each asset. Furthermore, since the assets are located

in a region where daylight savings applies, a transformation

had to be applied to account for the variation due to daylight

savings. This transformation was also applied using a Python

script. The script takes the timecode provided from the API

in UNIX time and converts it into a DateTime object. Then,

a custom function takes in this conversion and shifts the time

by an hour when daylight savings was in effect. The

conversion was not transformed for periods where standard

time was applied. The daylight savings correction provided

more accurate input data, increasing the algorithm's

efficiency.

C. Feature Encoding

Feature encoding is another crucial step in data

preprocessing. This step creates specific features from the

raw data provided [9]. Typically, raw data does not include

human-understandable features. ML algorithms have limited

success without these features and produce outputs with less

efficacy. Features need to be encoded to represent real-life

phenomena to counteract this problem. Examples of these

features are cyclical features such as hours, weeks, and

months. These features need to be encoded in such a way to

preserve their cyclical aspect [10]. One way to do that is to

create a sine-cosine coordinate system representing the

cyclical characteristics of date and time objects. Figure 2

shows an example of this coordinate system as it applies to

daily hours.

As seen from this graph, the day hours would appear linear

without cyclical encoding. If these periodic attributes are not

considered and encoded, the DateTime objects cannot be

meaningfully used in model training.

D. Data Normalization

Data normalization is the process in which the available data

set is scaled or transformed to fit a specific range giving each

feature an equal contribution [11]. The resulting values are all

within a new range of 0 to 1 unless a value for x is provided

the exists outside the min and max bounds. Equation (1) is

used to normalize values where min is the minimum value for

x and max is the maximum value for x.

 y = (x – min) / (max – min) (1)

This process is usually the last step of data preprocessing and

is applied to improve the data quality by ensuring that each

feature has equal weight.

IV. RESULTS

After applying the preprocessing method, the raw data

underwent a transformation that improved its quality and its

representation of naturally occurring phenomena. Table 1

shows an example of the first five data points of asset #5173,

which is one of the air conditioners. In the table, the voltage

metrics can be seen as well as the timecodes which represent

seconds since epoch.

Figure 2 Plot of two-dimensional hour feature

Figure 3 Project Overview

Once the data sanitization Python script was applied, the

power metrics were removed from the data as they were null

values. Moreover, any columns that included periods before

the smart meters began recording were removed as they did

not contain any data. The data sanitization script also

reorganized the data in ascending time order.

After the data sanitization was done, daylight saving

correction was applied. This Python script applied modern

concepts in software engineering and reusable Python

functions to apply a daylight saving pattern representing the

assets' local time. Table 2 shows the added columns that

indicate the date and time represented by that timecode. The

time shown in the table is in local time, which in this case is

either Eastern Standard Time (EST) or Eastern Daylight Time

(EDT).

After that, a linear transformation on the axes using a rotation

matrix of cosines and sines was applied to encode the cyclical

attributes of datetime objects. Table 3 shows an example of

the sine and cosine coordinates for the month, day, and hour

features.

Finally, data normalization was applied using a Python that

applies (1) to ensure that each feature was weighed equally.

V. CONCLUSION

The data processing applied in this research directly supports

the data-driven decision-making predictive maintenance

framework currently under development in the software

engineering lab at Western University. Using modern Python

scripts and software engineering principles, the data set was

improved by eliminating outliers, applying real world

patterns, and encoding cyclical attributes to the data features.

Data preprocessing represents one of the significant steps of

machine learning projects. It directly impacts the success of

learning modules and the accuracy of the outputs. Data

processing is essential to ensure that raw data is transformed

into understandable data representing the real world and

producing outputs applicable to real-life situations.

REFERENCES

[1] J. Nalić and A. Švraka, "Importance of data preprocessing in credit
scoring models based on data mining approaches," 2018 41st
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2018, pp.
1046-1051, DOI: 10.23919/MIPRO.2018.8400191.

[2] Y. Huang, M. Milani, and F. Chiang, "PACAS: Privacy-aware, data
cleaning-as-a-service," in 2018 IEEE International Conference on Big
Data (Big Data). IEEE, dec 2018.

[3] C. Li, 'Preprocessing Methods and Pipelines of Data Mining: An
Overview'. arXiv, 2019.

[4] awakuli, D. Kaiser and T. Engel, "Synchronized Preprocessing of
Sensor Data," 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 3522-3531, doi:
10.1109/BigData50022.2020.9377900.

[5] P. Domingos, "A few useful things to know about machine learning,"
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[6] W. Zhang, D. Yang, και H. Wang, 'Data-Driven Methods for Predictive
Maintenance of Industrial Equipment: A Survey', IEEE Systems
Journal, τ. 13, σσ. 2213–2227, 9 2019.
doi: 10.1109/JSYST.2019.2905565.

[7] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P.
Basto, και S. G. S. Alcalá, 'A systematic literature review of machine
learning methods applied to predictive maintenance', Computers &
Industrial Engineering, τ. 137, σ. 106024, 11 2019.
doi: 10.1016/J.CIE.2019.106024.

[8] García, S., Ramírez-Gallego, S., Luengo, J. et al. Big data
preprocessing: methods and prospects. Big Data Anal 1, 9 (2016).
https://doi.org/10.1186/s41044-016-0014-0

[9] M. Oyamada, "Extracting Feature Engineering Knowledge from Data
Science Notebooks," 2019 IEEE International Conference on Big Data
(Big Data), 2019, pp. 6172-6173, doi:
10.1109/BigData47090.2019.9006522.

[10] T. Mahajan, G. Singh, G. Bruns, G. Bruns, T. Mahajan, και G. Singh,
'An Experimental Assessment of Treatments for Cyclical Data', στο
Proceedings of the 2021 Computer Science Conference for CSU
Undergraduates, Virtual, 2021, τ. 6.

[11] D. Singh, B. Singh, 'Investigating the impact of data normalization on
classification performance', Applied Soft Computing, τ. 97, σ. 105524,
2020.

Table 2: First five entries after Data Sanitization and Daylight

Savings Correction

Timecode Year Month Day Hour Minute Weekday Volts_avg

1.56E+09 2019 7 17 8 0 3 0

1.56E+09 2019 7 17 8 15 3 0

1.56E+09 2019 7 17 8 30 3 0

1.56E+09 2019 7 17 8 45 3 0

1.56E+09 2019 7 17 9 0 3 0

Table 3: Example of the sine and cosine coordinates for select date

and time features

month_sin month_cos day_sin day_cos hour_sin hour_cos

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5

-0.23932 -0.97094 -0.40674 -0.91355 0.707107 -0.70711

Table 1: Raw Voltage Data for Asset #5173

Timecode Volts_avg Volts_std VoltsA_avg

1.66E+09 344.6 0.1 344.4

1.66E+09 345.2 0.2 344.8

1.66E+09 346.1 0.1 345.9

1.66E+09 346.6 0.1 346.3

1.66E+09 347.6 0.1 347.5

