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Abstract— Data preprocessing is an essential step when 

building machine learning solutions. It significantly impacts 

the success of machine learning modules and the output of 

these algorithms. Typically, data preprocessing is made-up of 

data sanitization, feature engineering, normalization, and 

transformation. This paper outlines the data preprocessing 

methodology implemented for a data-driven predictive 

maintenance solution. The above-mentioned project entails 

acquiring historical electrical data from industrial assets and 

creating a health index indicating each asset's remaining 

useful life. This solution is built using machine learning 

algorithms and requires several data processing steps to 

increase the solution's accuracy and efficiency. In this 

project, the preprocessing measures implemented are data 

sanitization, daylight savings transformation, feature 

encoding, and data normalization. The purpose and results of 

each of the above steps are explained to highlight the 

importance of data preprocessing in machine learning 

projects. 
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I. INTRODUCTION 

This project collected raw data from smart electrical meters 

installed at a Golf Club facility in Mississauga, Ontario. The 

smart meters record a range of data for each connected asset. 

Historical and live data from the smart meters are obtained 

from circuit meters API. Even though the facility has 

approximately 84 assets connected to smart meters, only five 

assets were chosen for this project. The project aims to 

implement predictive maintenance (PdM) methodologies and 

create a health index for each asset that predicts the remaining 

useful life. The health index would then be a tool to maintain 

the industrial equipment at the most optimal time. Thus, the 

project would decrease maintenance costs and maximize an 

equipment's useful life.  

As seen in figure 1, before the machine learning algorithms 

can be implemented in the PdM framework, the raw data 

obtained for each asset must undergo a series of 

preprocessing steps and transformations to achieve the 

desired inputs and accurate outputs [1]. These processes may 

include sanitization, feature engineering, normalization, and 

transformation [2]-[3]. The steps completed during data 

preprocessing and the transformations performed during this 

project stage largely determine a machine learning model's 

predictive behaviour [4]. Therefore, it is essential to perform 

the processing steps correctly. An ML model's accuracy 

becomes compromised without proper data preprocessing, 

and the resulting output would be ineffectual.  

 

II. BACKGROUND 

A. Machine Learning 

Machine Learning (ML) is a type of artificial intelligence. It 

consists of algorithms that take in an input of data and learn 

from it to present the desired output [5]. There are four main 

types of machine learning: supervised, semi-supervised, 

unsupervised, and reinforcement learning. Each of these 

categories has its own established implementations. In this 

project, unsupervised learning is used to implement the PdM 

framework. A clustering algorithm, which creates categories 

from unlabeled data, is developed to achieve the goal of this 

project. 

B. Predictive Maintenance 

Predictive Maintenance (PdM) utilizes machine learning 

algorithms to create a new category of maintenance which 

supports smart manufacturing and industrialization [6]. Two 

main maintenance types are currently implemented in 

industrial settings [7]. The first type is preventative 

maintenance, in which maintenance is scheduled at regular 

intervals to avoid equipment failure. The other type of 

maintenance is corrective maintenance which relies on 

repairing equipment after failure. PdM is a way to perform 

 

Figure 1 Project Overview 

 



maintenance at the optimal time for the asset. This solution 

prevents downtime from failed equipment and eliminates any 

unnecessary maintenance. 

C. Data Acquisition  

For this project, five assets were chosen from the list of assets 

provided by the Golf Club. The criteria set out to choose the 

final list of assets are as follows: 

1. Assets with the most data points available. 

2. Assets that were least affected by the Covid-19 

lockdowns. 

3. Assets whose usage was dependent on external 

factors such as temperature. 

Based on the above considerations, the five chosen assets 

were four air conditioning units and one electric heater. A 

python script requested data from the Circuit Meter API in 

compliance with the company-provided documentation. 

According to the API documentation, historical data could 

only be acquired in increments of 15 minutes, while live data 

is available in increments of two seconds. Note that the API 

used in this project could only provide live data up to 24 hours 

from the request. The data received dates back to the year 

2019 when the Golf Club facility installed smart meters. To 

satisfy the project criteria, the python script queried the API 

with requests for predetermined electrical metrics. The 

metrics obtained included voltage, current, power, apparent 

power, reactive power, frequency, external humidity, and 

ambient temperature. The Python script implemented a 

predetermined delay to avoid overwhelming the API. 

 

III. PREPROCESSING METHOD 

A. Data Sanitization 

Data sanitization is an essential first step to improving the 

overall data quality used for the machine learning algorithms. 

Its main goal is to perform noise treatment, reduce 

redundancies, and identify outliers [8]. in this step, a Python 

script was developed to remove any null values and identify 

the outliers in the data. The Python script iterated the entire 

data set to remove empty columns. In addition, it was 

responsible for identifying any metrics that were requested 

from the API but did not have any data stored. 

B. Daylight Savings Correction 

One of the project's goals is to identify, using a clustering 

algorithm, the times of the year when the assets are most in 

use. To do that, the data must accurately represent the local 

time for each asset. Furthermore, since the assets are located 

in a region where daylight savings applies, a transformation 

had to be applied to account for the variation due to daylight 

savings. This transformation was also applied using a Python 

script. The script takes the timecode provided from the API 

in UNIX time and converts it into a DateTime object. Then, 

a custom function takes in this conversion and shifts the time 

by an hour when daylight savings was in effect. The 

conversion was not transformed for periods where standard 

time was applied. The daylight savings correction provided 

more accurate input data, increasing the algorithm's 

efficiency. 

C. Feature Encoding 

Feature encoding is another crucial step in data 

preprocessing. This step creates specific features from the 

raw data provided [9]. Typically, raw data does not include 

human-understandable features. ML algorithms have limited 

success without these features and produce outputs with less 

efficacy. Features need to be encoded to represent real-life 

phenomena to counteract this problem. Examples of these 

features are cyclical features such as hours, weeks, and 

months. These features need to be encoded in such a way to 

preserve their cyclical aspect [10]. One way to do that is to 

create a sine-cosine coordinate system representing the 

cyclical characteristics of date and time objects. Figure 2 

shows an example of this coordinate system as it applies to 

daily hours.  

 

 

As seen from this graph, the day hours would appear linear 

without cyclical encoding. If these periodic attributes are not 

considered and encoded, the DateTime objects cannot be 

meaningfully used in model training. 

D. Data Normalization 

Data normalization is the process in which the available data 

set is scaled or transformed to fit a specific range giving each 

feature an equal contribution [11]. The resulting values are all 

within a new range of 0 to 1 unless a value for x is provided 

the exists outside the min and max bounds. Equation (1) is 

used to normalize values where min is the minimum value for 

x and max is the maximum value for x.  

                        y = (x – min) / (max – min)                  (1) 

This process is usually the last step of data preprocessing and 

is applied to improve the data quality by ensuring that each 

feature has equal weight. 

IV. RESULTS 

After applying the preprocessing method, the raw data 

underwent a transformation that improved its quality and its 

representation of naturally occurring phenomena. Table 1 

shows an example of the first five data points of asset #5173, 

which is one of the air conditioners. In the table, the voltage 

metrics can be seen as well as the timecodes which represent 

seconds since epoch. 

 

Figure 2 Plot of two-dimensional hour feature 

 

Figure 3 Project Overview 

 



 

Once the data sanitization Python script was applied, the 

power metrics were removed from the data as they were null 

values. Moreover, any columns that included periods before 

the smart meters began recording were removed as they did 

not contain any data. The data sanitization script also 

reorganized the data in ascending time order. 

After the data sanitization was done, daylight saving 

correction was applied. This Python script applied modern 

concepts in software engineering and reusable Python 

functions to apply a daylight saving pattern representing the 

assets' local time. Table 2 shows the added columns that 

indicate the date and time represented by that timecode. The 

time shown in the table is in local time, which in this case is 

either Eastern Standard Time (EST) or Eastern Daylight Time 

(EDT). 

 

After that, a linear transformation on the axes using a rotation 

matrix of cosines and sines was applied to encode the cyclical 

attributes of datetime objects. Table 3 shows an example of 

the sine and cosine coordinates for the month, day, and hour 

features. 

 

 

 

Finally, data normalization was applied using a Python that 

applies (1) to ensure that each feature was weighed equally. 
 

V. CONCLUSION 

The data processing applied in this research directly supports 

the data-driven decision-making predictive maintenance 

framework currently under development in the software 

engineering lab at Western University. Using modern Python 

scripts and software engineering principles, the data set was 

improved by eliminating outliers, applying real world 

patterns, and encoding cyclical attributes to the data features. 

Data preprocessing represents one of the significant steps of 

machine learning projects. It directly impacts the success of 

learning modules and the accuracy of the outputs. Data 

processing is essential to ensure that raw data is transformed 

into understandable data representing the real world and 

producing outputs applicable to real-life situations.  
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Table 2: First five entries after Data Sanitization and Daylight 

Savings Correction  

 
Timecode Year Month Day Hour Minute Weekday Volts_avg 

1.56E+09 2019 7 17 8 0 3 0 

1.56E+09 2019 7 17 8 15 3 0 

1.56E+09 2019 7 17 8 30 3 0 

1.56E+09 2019 7 17 8 45 3 0 

1.56E+09 2019 7 17 9 0 3 0 

 

 

Table 3: Example of the sine and cosine coordinates for select date 

and time features 

 
month_sin month_cos day_sin day_cos hour_sin hour_cos 

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5 

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5 

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5 

-0.23932 -0.97094 -0.40674 -0.91355 0.866025 -0.5 

-0.23932 -0.97094 -0.40674 -0.91355 0.707107 -0.70711 

 

Table 1: Raw Voltage Data for Asset #5173 

Timecode Volts_avg Volts_std VoltsA_avg 

1.66E+09 344.6 0.1 344.4 

1.66E+09 345.2 0.2 344.8 

1.66E+09 346.1 0.1 345.9 

1.66E+09 346.6 0.1 346.3 

1.66E+09 347.6 0.1 347.5 

 


