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Abstract

The need for energy efficient communications is essential in current and next-generation

wireless communications systems. A large component of energy expenditure in mo-

bile devices is in the mobile radio interface. Proper scheduling and resource allocation

techniques that exploit instantaneous and long-term average knowledge of the chan-

nel, queue state and quality of service parameters can be used to improve the energy

efficiency of communication.

This thesis focuses on exploiting queue and channel state information as well as

quality of service parameters in order to design energy efficient scheduling techniques.

The proposed designs are for multi-stream, multi-channel systems and in general have

high computational complexity. The large contributions of this thesis are in both

the design of optimal/near-optimal scheduling/resource allocation schemes for these

systems as well as proposing complexity reduction methods in their design.

Methods are proposed for both a MIMO downlink system as well as an LTE

uplink system. The effect of power efficiency on quality of service parameters is well

studied as well as complexity/efficiency comparisons between optimal/near optimal

allocations.

Keywords: Beamforming, Cross-Layer, Channel State Information, Energy

Efficiency, MIMO, Margin Adaptive, Markov Decision Process, Multiuser, Narrow-

beam Scattering, Queue State Information, Quality of Service, Resource Allocation,

SC-FDMA, Scheduling, Sparse Channels, SVD, Time-Varying Channels.
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Chapter 1

Introduction

Modern wireless communication systems strive to achieve two very contrasting ob-

jectives, namely increasing system performance1 while well as increasing battery life-

time2. In fact, both these goals have been heavily focused on since the adoption of

early wireless systems; while the definition of system performance has evolved over

time, the goal of improving energy efficiency of a system has remained clear.

In early wireless systems, the tradeoff was transparent: increasing transmission

power to improve the signal-to-noise ratio (SNR), in turn improved error performance

and would inherently require increased energy expenditure. Nowadays, modern tech-

nologies such as orthogonal frequency division multiplexing (OFDM), multiple input,

multiple output (MIMO) systems, capacity achieving channel coding and even the

evolution of signal processing techniques, all contribute to increased scheduler design

flexibility. Each one of this technologies represents a degree of freedom in the sys-

tem. The increase in the number of these degrees of freedom for a particular system

opaques the once transparent tradeoffs in achieving energy efficient communication.

Further, the lifting of network stack layer abstractions in recent years through cross-

layer design, and consideration of medium access control (MAC) layer performance

in the system, takes this a step further as it necessitates examining the overall system

performance and energy efficiency, particularly from a per-packet or per traffic stream

level. Moreover, when combined with the task of ensuring other quality of service

(QoS) constraints of traffic are maintained, the overall energy efficiency tradeoffs have

become highly complex.

1. The definition and measures of performance will be defined later in this thesis

2. Increasing energy efficiency
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Numerous amounts of recent research has focused on areas such as QoS con-

strained communication, energy efficient scheduling and multiple channel wireless

communication individually. Yet, there remains a gap between the large body of

research on these individual topics, and a synergized combination thereof. As the

adoption rate of streaming video and voice over Internet protocol (VoIP) continues

to increase, adequate QoS must continue to be maintained. Modern wireless systems

which allow transmission of multiple streams of data such as MIMO or OFDM have

long been focused on improving system throughput performance [1–3]. To-date this

has helped ensure the ability of wireless systems to meet QoS demands, however such

advantages may not be sufficient when energy resources are heavily constrained such

as in battery limited wireless devices.

When battery resources are limited in the presence of QoS constraints, the

picture changes dramatically. Simple increases in system throughput may no longer

be the most desirable method to meet QoS as it may unnecessarily waste energy

resources, particularly when the system is not under full load. Here, knowledge of QoS

parameters, queue state information (QSI) and channel state information (CSI) play

a vital role in the energy efficient scheduler design. However, exploiting all or some

of this information exponentially complicates the design of any resource allocation

algorithms due to an explosion of the size of the representative state-space. Combining

this, with the potential for multiple channel resource allocation may explain the

existence of the design gap described above, as energy efficient optimal allocation of

resources in a system with such a large degrees of freedom is highly computationally

complex.

Nevertheless, there has been a small amount of pioneering work in this area to

try and approach this problem [4,5]. This has been accomplished by making various

assumptions or simplifications to the system or simply by focusing on a subset of the

overall scheduling problem. In this thesis, we propose several different approaches in

this research domain.
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1.1 Thesis Outline and Contributions

The remainder of this thesis is divided into eight chapters where the technical con-

tributions of this thesis are contained in Chapters 3 to 7 and focus on both downlink

and uplink energy efficient scheduling techniques. Prior to introducing the technical

contributions, in Chapter 2 we provide detailed background on the problem domain

and summarize some of the recent state-of-the-art advances in the area concentrated

on in this thesis.

The technical contributions of this thesis begin in Chapter 3 where we propose a

novel design for a multiqueue scheduler for a MIMO SVD system with fixed eigenval-

ues. The proposed method makes use of Markov decision processes to schedule traffic

to meet particular delay and throughput requirements while minimizing the average

applied transmission power. The major contributions contained in this chapter are

• Proposing dynamic scheduling policy framework for an arbitrary number of

queues and channels that meets hard constraints on average delay and through-

put which minimizing the average applied power for a time-invariant channel.

• A novel complexity reduction technique for considering joint queue state infor-

mation through practical limitations by coupling queues through their action-

space.

• Proposing a rate-space reduction search by exploiting the monotonicity of bit

error rates in symbol rate.

The contributions of this chapter appear in IEEE Transactions on Wireless Commu-

nications [6].

In Chapter 4, we concentrate on detailing the characteristics of a geometric

sparse MIMO channel for use in a later chapter. In this chapter, both time-invariant

and time-varying statistics for eigenvalues are derived. Some of the major contribu-

tions contained in this chapter are

• Deriving of exact expressions for probability density function of unordered chan-

nel eigenvalues, subchannel SNR and capacity.

• Deriving exact expressions for mean and variance as well as tractable approxi-

mations to non-closed form equations and verifying their accuracy.
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• Computing the exact expression for the level-crossing rate (LCR) and average

fade duration (AFD) of the unordered eigenvalues for a single cluster model, as

well as approximations for the multi-cluster scenario and verifying their accu-

racy.

Several of the contributions in this chapter appear in the proceedings of the 25th

Queen’s Biennial Symposium on Communications [7].

In Chapter 5 we combine our work in Chapters 3 and 4 in the design of a

scheduler with channel distribution information. In addition, the work in this chapter

extends Chapter 3 to both account for the time-varying channel and coded modulation

schemes. The major contributions contained in this chapter are

• Extending the work from Chapter 3 to account for time-varying channels by

exploiting knowledge about the channel distribution information.

• Proposing a practical rate-space reduction by segmenting the symbol rates into

three regions and applying subchannel ordering.

• Studying the tradeoff between partition size and time-average applied power.

Part of this work appears in IEEE Transactions on Wireless Communications in

both [6] and [8].

Chapter 6 which was partially presented at 2011 IEEE International Confer-

ence on Communications [9] looks at the case where multiple traffic streams are

generated by multiple users (one stream per user) and multiple channels are avail-

able through SC-FDMA. In this chapter, we focus on complexity reduction through

establishment of a novel scheduling horizon which considers the restrictions imposed

by synchronous HARQ. Both optimal, and suboptimal methods are presented. The

major contributions contained in this chapter are

• Proposing a block time, time-frequency allocation scheme that exploits the

periodicity of synchronous HARQ to reduce the number of scheduling decisions

in time and optimally allocates resources to minimize overall average applied

power.

• Proposing two suboptimal approaches to the optimal allocation and compared

their performance in terms of average applied power and computational com-

plexity.
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• Proposing a tractable least-squares approximation to the information outage

probability derived in [10] to efficiently determined the required applied power

for a given transport block size and target block error rate.

In Chapter 7 we design a dynamic scheduler for SC-FDMA uplink which meets

delay and throughput constraints while minimizing the average applied transmission

power. The purpose of this chapter is to describe how to apply some of the method-

ologies found in Chapters 3, 5 and 6 to meet QoS requirements in SC-FDMA uplink.

Finally, in Chapter 8 we draw some conclusions on this thesis and propose some

further research directions in this area.

Throughout this thesis, the reader will find a large number of the system inputs,

outputs and decisions are random in nature. As a result, they require knowledge of

probability theory. A brief review of applicable theory is given in Appendix A. Ad-

ditionally, the application of optimization theory plays a vital role in the design of

scheduling policies throughout this thesis. An overview of relevant common optimiza-

tion frameworks are given in Appendix B.
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Chapter 2

Background and Literature Review

In this chapter, an overview on the state-of-the-art research related to this thesis

is provided including background on the use of both queue state information and

channel state information in the scheduling domain.

2.1 Single Stream, Single Channel Transmission

Systems

Consider a simplified single stream (or user) system shown in Figure 2.1. This system

consists of a single finite-length first-in, first-out (FIFO) queue (or buffer). Packets

enter the queue and are stored until transmitted over the channel. Any packets which

arrive to the queue when it is full are dropped. Packets which are transmitted over the

channel are subject to errors. The probability of a packet being erroneous depends

on a number of factors. Packets that are received by the receiver without error are

considered successful, while packets arriving in error are dropped as they cannot be

decoded.

Packets arrive into the queue at an average rate of λ(t) packets per second of

size L bits. The queue holds up to B packets. Packets arriving to a full queue are

dropped with long-term average probability Pdrop. The number of packets in the

queue at anytime t is Q(t). Packets are serviced from the queue at a rate of µ(t)

packets per second to be transmitted over the channel. Packets are transmitted at

a symbol rate of k(µ, t) with applied power P (µ, t) over the channel. The channel

transfer function which for the majority of this thesis measured as the signal-to-noise

ratio (SNR) is time-varying and is described at time t by h(t). Packets arriving at
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Figure 2.1: Single Queue, Single Channel Transmission System

the receiver arrive successfully with a probability of 1− Ploss. All of these described

quantities can be characterized into three categories namely

1. Fully controllable quantities,

2. Indirectly controllable quantities, and

3. Uncontrollable quantities

where the framework for assigning fully controllable quantities is referred to as a

scheduling policy and a given scheduling policy governs the time-evolution dynamics

of the above buffer. The symbol Ω is used throughout this thesis in reference to a

scheduling policy.

Referring back to Figure 2.1, the quantities µ(t), k(µ, t) and P (µ, t) are fully

controllable quantities in that they can be adapted or controlled by a given scheduling

policy1. The quantities Q(t), Pdrop and Ploss are indirectly controllable in that their

value depends on the scheduling policy indirectly other quantities (i.e., Q(t) depends

on µ(t) and λ(t) and so on). Finally uncontrollable quantities include B and L which

are known constants in the system, as well as λ(t) and h(t) which are functions

of external forces on the system (queue input process and channel physical state

respectively).

1. In a saturated transmission scenario where the transmitter is constantly transmitting
packets, µ(t) is directly related to k(µ, t) through L and the symbol duration which can be
denoted Ts.
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A scheduling policy defines the manner in which fully controllable parameters

are selected or adjusted. This policy can be determined blindly or by exploiting

information in the system. Information about Q(t) (queue occupancy level) is known

as queue state information (QSI). QSI for example can be used to obtain an estimate

of the time packets might wait between being stored in the queue and transmission

(herein known as delay). When Q(t) is small, the system has some flexibility to reduce

the service rate µ(t) if it can tolerate some additional delay, while in contrast if Q(t)

is large, an increase in µ(t) might be necessary to meet any constraints on delay.

Information about the channel h(t) is also helpful for the scheduling policy and is

known as channel state information (CSI). Referring again back to Figure 2.1, it can

be observed that the channel fluctuates dramatically as a function of time. Knowledge

about CSI for example may allow the scheduler to adjust power to ensure a given

packet success rate is achieved, or pause and resume transmission (adjust µ(t)) based

on the quality of the channel. In both cases, these advantages are available through

knowledge of CSI in the scheduler and are not possible if the transmitter has no CSI.

2.2 Quality of Service (QoS) Constrained

Communication

The constraint on delay described above is known as a Quality of Service (QoS)

constraint. Constraints on QoS in general can be quantified in a number of ways.

Real-time applications such as video, VoIP, telesurgery, and more have necessitated

the need to employ network level QoS guarantees on a number of stream parameters.

Specific QoS constraints depend widely on the application and can be as simple as

defining the minimum throughput required for a particular service, or more com-

prehensive requirements involving stringent bandwidth and delay tolerances. QoS

guarantees in most recent literature fall within constraining one or more of the fol-

lowing quantities

• Delay,

• Jitter,
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• Throughput, and/or

• Tolerable packet loss

Further, a particular traffic class may have constraints on the minimum, average

and/or maximum of one or all of the above parameters.

2.3 Multi-User/Multi-Stream Scheduling

While it is important to understand the dynamics of the single stream, single channel

system, more recent technology usually requires the transmission of multiple streams

of data often over multiple non-identical channels.

For example, the accommodation for scheduling multiple streams (or services)

for delivery has been incorporated into both the IEEE 802.11e [11] and 802.16e [12]. In

addition to these standards, there has been a variety of approaches described [13–15]

for multi-stream service delivery. Even within standards, there are several different

approaches to handle multistream delivery. For example in the 802.11 family, the

802.11e enhanced distributed channel access (EDCA) focuses on proportional service

differentiation by maintaining different access parameters for each traffic class. For

this reason, 802.11e EDCA is unable to meet hard QoS constraints. While service

differentiation is important, it is not sufficient when hard deadline constraints must

be met. The centralized hybrid coordination function (HCF) controlled channel ac-

cess (HCCA) scheme in the 802.11e alternatively provides a framework for allowing

wireless stations to meet for hard QoS constraints. The protocol in general how-

ever only details the constraint and transmission procedure, but does not describe

any channel allocation schemes. More specifically, in the 802.11e HCCA, admission

control is used heavily to ensure QoS performance is manageable within a particular

set of QoS streams. While the majority of this thesis focuses on scheduling policies

rather than admission control, we acknowledge the importance of admission control

in achieving QoS in any communication system.
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2.4 Multi-Channel Scheduling

Multi-channel communication arises from the recent use of OFDM, MIMO or any

technology that enables a system to transmit multiple data streams simultaneously.

With OFDM, individual subcarriers of an OFDM symbol may be allocated to different

streams of data which in turn may be transmitted to different receivers. In this type

of system, the number of available channels is equal to the number of subcarriers.

Multiple channel transmission strategies thatcan be employed in MIMO can be

achieved in a number of methods. For example, blind spatial multiplexing techniques

(such as V-BLAST [16]) can be employed when state information is not available

at the transmitter while eigenvalue-beamforming for example can be used when CSI

is available [17]. With some techniques, the maximum theoretical number of sub-

channels is equal to the minimum number of antennas between the transmitter and

the receiver. In the case of multiple single antenna users, the maximum number of

channels is the minimum number of transmitter antennas and single-antenna users.

Irrespective of the method in which multiple channels arise (i.e., OFDM, MIMO

spatial multiplexing/eigenbeamforming), individual channels may not be equal and

may evolve in time differently from each other. For this reason, multi-channel com-

munication is advantageous from a scheduling perspective as it introduces additional

dimensionality to the problem by exploiting these differences in CSI between channels.

Here, it becomes possible to select an individual channel (or channels) for transmis-

sion of particular packets. This selection may utilize both the CSI vector (CSI for all

channels) combined with QoS requirements to select the best channel(s) for transmis-

sion. The drawback of multi-channel systems however, is the increased complexity

via the introduction of the additional scheduling dimension inherent in having such

flexibility.

2.5 Cross-Layer Scheduling Techniques

The concept behind cross-layer scheduling techniques is rather simple: The more

information one has, the better decision one can potentially make. This is rather
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intuitive. Similar to the case of the single stream, single channel case, multi-stream,

multi-channel scheduling can benefit from information about the channels and queue

occupancy levels are of importance in scheduler design.

2.5.1 Channel State Information (CSI)

It has been known for some time [18] that channel state information (CSI) which is

knowledge about the current channel condition, can improve scheduling performance.

A simple example to see an improvement, is the ability of MIMO to offer in-

creased channel capacity when full CSI is known. The capacity of a MIMO channel

is given in [17]

C =

M∑

i=1

E

[
log

(
1 +

P (λi)

N0
λ2

i

)]
(2.1)

where M = min(MR,MT ), λ2
i is the ith eigenvalue of the MIMO channel matrix,

P is the total system transmission power, P (λi) is the power allocated to the ith

channel with MR and MT denoting the number of receiver and transmitter antennas

respectively. The benefits of CSI are observed in adoption of a power allocation policy

for P (λi) by the transmitter. If a transmitter has no information about CSI (i.e., the

value of these eigenvalues), the best power allocation strategy is to simply allocate

power equally across all channels (i.e., P (λi) = P/MT ). Alternatively, when the

transmitter has full CSI, the transmitter has the ability to allocate power based on

these channel eigenvalues. It has been shown [17] that the optimal power allocation

in this case is the adaptive waterfilling approach resulting in a channel dependent

power allocation of

P ∗(λi) =

(
µ− N0

λ2
i

)+

(2.2)

where (x)+ = max(0, x) and µ is the adaptive waterfilling level satisfying

M∑

i=1

E

[(
µ− N0

λ2
i

)+]
= P (2.3)
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While the improvements afforded through adaptive waterfilling depend largely on

the eigenvalue distribution, noise power and total power allocated, the system offers

increased capacity by exploiting the ability to choose a power allocation scheme that

depends on the individual eigenvalues and how they change in time rather than simply

allocating power blindly.

As shown there is a large benefit to exploiting full CSI at the transmitter,

however in general it is complicated to ensure that this information is available at the

transmitter error-free, for all time. In practice, CSI is only available at the transmitter

due to feedback from the receiver (either through a direct feedback channel or through

assuming reciprocity of the channel) and in general this feedback could be delayed.

Further, transmission of the feedback for all time may require a large amount of

transmission bandwidth.

Finite-state Markov channel (FSMC) modelling [19] has been used heavily ex-

ploited as a tool in scheduler design. FSMC modelling reduces the feedback require-

ments. Rather than considering the channel as a continuous quantity, where in the

above, a continuously adaptable MIMO power allocation policy is employed and large

amounts of information is needed as feedback, with a FSMC model the receiver only

relays information about which state (or region) the channel falls under, and the

transmitter chooses a suitable transmission policy corresponding to that state. While

the overall performance gain is limited when compared to full, continuous CSI, the

amount of feedback and decision complexity is generally much lower. An overall of

FSMC modelling is given in Section A.4 of Appendix B.

2.5.2 Channel Distribution Information (CDI)

It is possible that information about the current channel state (CSI) is unavailable,

for example due to implementation limitations. While this may limit adaptability of

the scheduler when compared to CSI, channel distribution information (CDI) can still

be exploited in scheduler design for some performance improvements. CDI refers to

information about the overall statistic properties of the channel (i.e., distribution of
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the channel SNR). This information could be obtained in a number of ways a priori

such as through measurement campaigns or use of statistic channel models.

2.5.3 Queue State Information (QSI)

The exploitation of queue state information (QSI) has been shown to be beneficial

particularly when transmitting QoS constrained traffic and when combined with ex-

ploitation of CSI [20, 21].

Consider the following scenario when the channel is in a bad condition (in a

state when it will take a large amount of transmission power to transmit with a certain

probability of error). Without knowledge of QSI, the best policy is to simply postpone

transmission until the channel is in a good state to conserve transmission power. Now

suppose upon analysis of the queue (utilizing QSI), the scheduler determines that it

is not possible to meet QoS constraints if transmission is delayed all together. In this

case, the transmitter may choose to transmit anyways at an increased power level to

ensure QoS constraints are met.

Unlike CSI, QSI for finite length queues can be completely described by a finite

number of states as at any instant of time, only a certain number of packets are

stored in the queue (unlike the continuous nature of CSI). When a system contains

multiple queues, the system QSI is completely described by the joint occupancy levels

in all queues. The resulting state-space grows exponentially as O(BK) where B is

the number of states a queue can exist in and K is the number of queues.

As with CSI, it is possible to quantize QSI (or only consider partial QSI). For

example, in work by Berry and Gallager [22], later extended by Neely [23] to multiple

queues, queue(s) can be segmented in two states (left and right of a threshold). In

this case, a scheduler can employ two policies based on the current state of the queue

relative to the threshold. Both policies strive to return to the threshold queue level.

While the number of policy actions taken by a scheduler is limited in this case, the

complexity growth is only O(2K) providing a more tractable policy complexity.
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2.6 Multi-Channel, Multi-Stream Optimization

Multi-channel, multi-stream optimization arises in numerous practical scenarios in

wireless communications such as QoS scheduling and spatial multiplexing problems.

For details on design considerations, consider a very general downlink system as

shown in Figure 2.2 consisting of a base station and K users (or a single user with K

traffic streams). Here there are K queues (or K users each with a single queues) and

L parallel transmission channels. In this downlink system, all transmissions originate

from a single base station to a single user (or K independent users) over one or more

parallel subchannels. The full details of this model are described as follows.

Each of the K traffic streams arrives to an independent FIFO queue that can

store up to Bi packets. Each traffic stream has a set of quality of service (QoS)

parameters associated with it {Di, D̄i, λi, δi, Ji, J̄i, Li}. Here Di and D̄i denote the

maximum tolerable instantaneous and average queueing delay respectively. The quan-

tities Ji and J̄i denote the maximum tolerable instantaneous and average single-hop

jitter respectively and δi denotes the average tolerable loss rate in packets for a traffic

class. Finally, λi is the average arrival rate in packets to the ith queue and Li is the

packet length. Any packet arriving to a full queue is dropped. The arriving packets

follow a general arrival process.

Each of the K queues have a time-dependant queue service rate of µi(t) packets

per second. For all time t, there are L channels available for transmission. Let

Ci,l(µ, t) denote the rate of packets taken from queue i and transmitted over channel

l and Cl(µ, t) be a vector denoting the combination of packets taken from all queues

transmitted over single channel l. Here, µ is the vector of all queue service rates

µi, ∀i. During any time t, the number of packets stored in any queue is given as Qi(t)

where Qi(t) ∈ {0, 1, . . . , Bi}.
For each channel, the transmitter can adjust both the power allocated Pi,l(µ, t)

and the transmission rate fi,l(Cl(µ, t)) for a given channel and given traffic stream

transmitted in that channel. For simplicity, Pl(µ, t) and fl(Cl(µ, t)) denotes these

quantities in vector form for all i. Without loss of generality, we assume that power

can be allocated continuously in both time and dynamic range such that
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Figure 2.2: General System Model for Multi-Stream, Multi-Channel Transmission System
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0 ≤ Pi,l(µ, t) < ∞, ∀i, l. Further we also assume the rate of the channel, measured

in bits/second, can be adjusted continuously such that 0 ≤ fi,l(Cl(µ, t)) <∞, ∀i, l.
The channel estimation of the lth channel for traffic class i is denoted hl,i(t).

The set of channel all measurements for a single class i is hi(t) and the matrix of all

hi(t) for all l is H(t). The transmitter obtains a delayed, imperfect estimate of hi(t)

given by h(T )(t) = hi(t−∆i(t))+∆hi(t) where ∆i(t) is the time-dependant delay of

the feedback channel and ∆hi(t) is the estimation error. The L channels also may or

may not be correlated. All erroneous packets arriving at the receiver(s) are dropped.

2.6.1 Scheduling Policy Considerations

The above describes a very general system downlink wireless communication sys-

tem. This system from a resource allocation point of view is analogous to many

multi-queue, multi-channel systems encountered in the literature such as a multi-user

OFDM downlink/uplink system or a single base station and receiver pair employing

SVD eigenbeamforming or spatial multiplexing methods such as V-BLAST.

In general the designer must manage resources, such as packet allocation, power

assignment and rate adaptation. An overall allocation routine is referred to as a

scheduling policy, which throughout this thesis is denoted as Ω. A designer may wish

to exploit system information such as channel feedback (CSI), information about the

occupancy level of the queues (QSI) and QoS parameters in the design of the schedul-

ing policy in order to achieve a particular type of, and level of performance. Each

scheduling policy has specific performance goals such as ensuring QoS constraints are

met, providing fairness, maximizing throughput and minimizing energy consumption.

In general a designer may choose to focus on some or all of these goals, or as some of

these goals are conflicting in nature, target a trade-off between them.

Each of the above design decisions represents a degree of freedom in the schedul-

ing policy design. In general it is difficult for a designer to exploit every degree of

freedom described above as the system complexity increases dramatically for each

additional degree of freedom introduced in the policy design. This has been referred
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to as the Curse of Dimensionality [24]. In the literature, there are usually a num-

ber of simplifications or tradeoffs that are considered. In the following section, we

will present a review of related schemes and details on how they differ in terms of

addressing the downlink resource allocation problem described above.

In order to understand the intricacies involved in the design of a scheduling

policy, we first present the energy-optimal general optimization formulation of the

above downlink scheduling problem. While we note it may not be possible to obtain

the energy-optimal solution with any known framework within a feasible degree of

complexity, this general model provides a benchmark to facilitate description of the

recent literature in this area as well as potential future areas of research.

First, the objective function of the energy-optimal scheduling policy describing

the average power consumption of the system is

ψavg = min
fi,l(t),Pi,l(t),

Ci,l(t),∀i,l,t


 lim

t→∞
1

t

t∫

0

K∑

i=1

L∑

l=1

Pi,l(t)Ci,l(t)

fi,l(t)
dt


 (2.4)

where all quantities are defined as before. The optimal scheduling policy, Ωopt, de-

scribes fi,l(t), Pi,l(t), and Ci,l(t) for all i, l, t to minimize (2.4) while not violating QoS

constraints. While the solution to the above will necessarily yield an energy-optimal

scheduling policy, such a policy is not guaranteed unique nor computationally trac-

tive for unbounded time t. While greedy-based approaches may be applicable in such

unbounded time-domain problems, they may not be provably optimal or near optimal

for such a general problem described above; particularly with underlying constraints

on the allocation quantities.

Here, we make two reasonable assumptions on the expression for ψavg. Firstly,

we note that in most wireless communication systems, particularly packet systems,

allocation decisions are made at discrete intervals, which we denote as frames. While it

is not necessary to employ a fixed size frame (i.e., the 802.11 distribution coordination

function [25] employs no fixed frame for transmission), the transmission decision

thresholds in general are discrete in time. With the assumption of relatively small

decision frame sizes of duration Tf seconds, there is little loss in generality to assume
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that the general system above can employ fixed-size decision thresholds. As Tf → 0,

this approaches the continuous time system of (2.4). Using this argument, we can

rewrite (2.4) as

ψavg = min
fi,l(n),Pi,l(n),

Ci,l(n),∀i,l,n


 lim

m→∞
1

mTf

m∑

n=0

K∑

i=1

L∑

l=1

Pi,l(n)Ci,l(n)

fi,l(n)


 (2.5)

In (2.5), it is clear that while we established finite decision thresholds, the

overall optimization is still unbounded in time. In general, the evolution of any one

parameter in time (including the channel evolution) is bounded to a certain degree.

As such, it has become common practice to describe the evolution of a system in time

as a finite number of states rather than time evolution [20, 26, 27]. Here we make no

assumptions on the number or definition of such states, but suggest that in general

it is possible to describe the system in this manner. Let S be the set of all possible

states such that s ∈ S. The following two prepositions are true about S.

1. During anytime m, the system can exist in a single state s ∈ S, and

2. The set S is a complete set such that proposition 1 is true for all m

Using the above definition, we modify (2.5) to obtain

ψavg = min
fi,l(s),Pi,l(s),

Ci,l(s),∀i,l,s




∑

s∈S
Pr[S = s]

K∑

i=1

L∑

l=1

Pi,l(s)Ci,l(s)

fi,l(s)



 (2.6)

where Pr[S = s] is the probability of the system existing in state s. For simplification,

let p(s) = Pr[S = s]2. While in general, the above problem remains highly non-trivial

to solve, it is no longer a function of time. In the following sections, we briefly discuss

the constraints for the above problem.

2. While the revised formulation is no longer unbounded in time, it is important to note
that p(s) is not necessarily independent of the allocation quantities
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2.6.2 Average Delay

In general [28], one can obtain a simple expression for average delay by noting that

the average service rate of a finite length queue is equal to the average arrival rate of

packets entering the queue. Using this argument, the delay constraint is simply

D̄i ≥ D̄i =
E[Qi(s)]

E[µi(s)]
=

∑

s∈S
p(s)Qi(s)

∑

s∈S
p(s)µi(s)

, ∀i (2.7)

where µi(s) and Qi(s) is the service rate of and the number of packets in queue i

respectively while in state s and E[·] is the expectation operator where the expectation

is taken over S.

2.6.3 Maximum Delay

In short, it is difficult to design an energy-optimal schedule for a maximum delay

bound. The reason for this is two-fold. First, in general it may not be possible to

ensure such a bound is met while not considering the time-evolution of each packet

(in time, not state). Such a method implies a un-bounded optimization over time

is required. There are unbounded methods to approach such a problem [29], how-

ever optimization in this case must be handled online. Secondly, due to the general

discipline of the arrival rate, and potential limitations on the service rate of each

channel, there may exist a non-zero probability of the instantaneous arrival rate over

a short period of time exceeding the maximum service rate. As such, it may be in-

feasible to ensure the maximum delay bound is met for all time particularly for finite

transmission power. For this reason, it is often assumed Di =∞, ∀i.

2.6.4 Average Tolerable Packet Loss

In the above system, packets can only be lost in two ways. First, any packets arriving

to a full queue are dropped; this is known as packet dropping. Second, it is also

possible that the receiver may not be able to decode packets as a result of bit errors,
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this is known as channel losses. The total loss rate comprises both types of losses.

Denoting Pd,i(s) and Pl,i(s) respectively as the average queue drops and channel loss

rates in state s, the average total tolerable packet loss rate is given as

δi ≥ ζi = 1− (1− E[Pd,i(s)])(1− E[Pl,i(s)]), ∀i (2.8)

≥ 1−


1−

∑

s∈S
p(s)Pd,i(s)




1−

∑

s∈S
p(s)Pl,i(s)




2.6.5 Instantaneous Power

Both hardware or regulatory restrictions may place limitations on the total transmit

power at any point in time. Denoting the overall limit on power as P on average over

a state s, the power is constrained by

K∑

i=1

L∑

l=1

Pi,l(s)Ci,l(s)

fi,l(s)
≤ P, ∀s ∈ S (2.9)

2.6.6 Throughput

The throughput constraint in general is related directly through the traffic stream

arrival rate and the tolerable loss rate. The throughput constraint is simply

χi ≥ λi(1− δi) packets per second (2.10)

Due to the relation of system throughput to the tolerable loss rate and the arrival

rate, it is not necessary to constrain both the throughput and the tolerable loss rate,

rather constraining one is sufficient.

2.6.7 Jitter

In a general traffic model, individual streams may have limits on the maximum tol-

erable jitter (Ji) and the average stream jitter (J̄i). Jitter can negatively affect the

performance of real-time traffic as real-time decoders are often designed to receive

data at a constant rate such as MPEG2-TS [30].
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Figure 2.3: Leaky Bucket Jitter Compensation

While scheduling algorithms have a large impact on the single-hop jitter, it is

difficult in general to design a system to accommodate this directly. Most applications

employ a leaky bucket based system at the receiver to mold incoming traffic into the

desired bit-rate and combat jitter. The conceptual diagram of a leaky bucket system

is shown in Figure 2.3.

Here we see that by introducing some additional delay in the system in the form

of storing packets in a bucket in such a way that the bucket is never empty, one can

essentially remove jitter in a system. Therefore, in the general formulation we neglect

jitter by assuming J̄i =∞ and Ji =∞, ∀i.

2.7 Recent Relevant Research Work

In order to assess the current state of the art, we review recent approaches to the

above energy-optimal problem. In general, there are few works found in the literature

that attempt to address the above problem directly. This is due to the complexity

described in the above problem when considering both QSI and CSI. There are how-

ever a number of works that focus on addressing subsets of the entire problem. We



Chapter 2: Background and Literature Review 22

review these and relevant research here. The major portion of this review focuses on

packet based systems.

The remainder of this section is divided as follows. In Subsection 2.7.1, we

overview existing research that contributes to improving energy-efficiency in the

multi-stream, multi-channel (MS-MC) scenario indirectly, while in Subsection 2.7.2

we overview recent advances to solve the above described problem specifically from a

scheduling perspective and draw comparisons to the general system model previously

presented.

2.7.1 Throughput Efficiency Based

There is a large amount of research work focused on achieving throughput efficiency,

particularly for MS-MC systems. More specifically, the sum-rate of a system is maxi-

mized in the majority of these schemes. The sum rate is the total achievable transmis-

sion rate of a system and is contributed by transmissions across all channels and/or

to all users.

Application of sum-rate maximization schemes is particularly important for

energy-efficiency communication in saturated wireless systems3. In these scenarios,

maximizing the sum-rate for a particular power level is of importance when examining

the transmission energy required per bit of information, as increasing the transmission

rate for fixed power increases the system energy efficiency.

The majority of these schemes can be classified into

1. Precoder (code) design

2. User selection (resource/channel selection), and

3. Power/rate control

While these schemes are not described in detail here as they do not directly relate to

the work in this thesis, Table 2.1 highlights some of the recent pioneering works that

focus on sum-rate maximization for the MS-MC downlink for the interested reader.

3. Here we denote saturated wireless systems as systems that necessitate transmission
at the maximum transmission rate at all times.
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Table 2.1: Comparison of Pioneering Sum-Rate Maximization Based
Multi-Stream/User Resource Schemes

Ref. Classification Details

[31] Survey

Overview of sum-rate maximization resource
assignment schemes based one user schedul-
ing, precoding and power-allocation.

[3, 32] Precoding

Methods of sum-rate maximization through
employment of user ordering and successive
user stream encoding based on knowledge of
interference to each user in a Gaussian broad-
cast channel by employing dirty paper (DP)
coding [33].

[34] Precoding

Tomlinson-Harashima non-linear precoding
scheme is employed (extension some sin-
gle user/antenna design) and achieves higher
sum-rate than linear or decision feedback
equalizers.

[2] User Selection
Dynamic subcarrier allocation for OFDM to
maximize sum-rate

[35–37] User Selection

Selection of a subset of users to maximize
sum-rate when number of users exceeds num-
ber of base-station antennas for DP coded
systems

[38,39] User Selection

Selection of a subset of users to maximize
sum-rate when number of users exceeds num-
ber of base-station antennas for block diago-
nalization (BD) systems

[40,41] Power and Rate Control
Iterative waterfilling methods for power allo-
cation approach to maximize sum-rate

[42] Power and Rate Control
Proposed power and rate allocation methods
to maximize weighted sum-rate and minimize
sum power for OFDMA
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Application of dynamic backpressure policies [43] is also of interest in through-

put maximization for MS-MC downlink systems. Such policies are well-known to

be throughput-optimal. In the work by Manikandan et al. [44] for example, the au-

thors employ a backpressure based policy to the MS-MC resource allocation problem.

Here, the authors propose an extension to previous works by [45] and [46] and de-

sign a method to assign rates based on partially known CSI. During each scheduling

time-frame, only one user is assigned to each channel. The author’s formulation of

error rates is based on channel capacity outages. A packet is successfully received

when a given rate is less then the channel capacity, and received in error otherwise.

As such, power control is not employed or considered in this work, alternatively it is

integrated into determining the achievable capacity region. Finally, the formulation

is not constrained by any delay or loss requirements.

2.7.2 Energy Efficiency Based

There have also been a number of recent works that have attempted to simplify and

solve the energy-optimal allocation problem described above (or a closely related prob-

lem). These schemes are detailed below and a summary of key scheme components

is given in Table 2.2.

Rashid et al. [4] proposed a scheduling scheme to exploit the diversity present

when using V-BLAST [16] to transmit to multiple users. Here, to simplify the design,

the channels hl are broken up into a small number of states based on the post-

processed SNR of each sequential V-BLAST stream which is also given from [16].

The number of streams is equal to the number of transmitter antennas on the base

station. As V-BLAST operates in open loop MIMO, the transmitter is only made

aware of each channel state rather than the exact estimate of the channel. Power

is allocated equally across all channels (Pl(µ, t) = const). Further, there is a finite

number of transmission rates such that the number of transmission rates is equal to the

number of channel states. The transmission rate is chosen solely based on the channel

state (i.e., fl(µ, t) = fl(H)) where each transmission mode is statically mapped to a

channel state and where the lowest SNR channel state has a null transmission rate of



Chapter 2: Background and Literature Review 25

0 bits/second. The active transmission rates are chosen in such a way as to satisfy a

minimum target packet error rate (PER).

Arrivals to each user follow a batch bernoulli arrival process. During each

scheduling interval, only one subchannel is allocated to a given user implying

Ci,l =





K∑

i=1

Ci,l, channel is allocated to user

0, otherwise

, ∀l (2.11)

The user allocation is handled by exploiting multiuser diversity. During each schedul-

ing interval, each subchannel is allocated to the user with the highest SNR state.

When two or more users share the highest SNR state, a user is randomly chosen from

this group. Delay and packet loss is not constrained, however performance metrics

for the delay and loss metrics are derived.

Niyato et al. [5] approach the problem from a similar direction using MIMO

SVD eigenbeamforming to obtain multiple parallel channels. In their work, the entire

problem is segmented into separate admission control and resource allocation prob-

lems; the latter of which we describe here. Power and rate allocation is handled as

described above in [4] where the channel is partitioned based on the MIMO channel

eigenvalues. The antenna assignment (or resource allocation) is handled through an

exhaustive allocation action space which spans the total number of ways the trans-

mission antennas can be grouped and assigned to all users. As in the scheme above,

one channel can only be occupied by a single user during a time frame. While the

exhaustive method is efficient for a small number of users, the action space grows

considerably as the number of users increases.

The resource allocation is formulated by applying a direct application of Markov

decision process (MDP) theory where MAC layer throughput is maximized (through

minimizing of queue losses) and average delay is constrained (as in (2.7)). The draw-

backs of this approach however, is the complexity issues in consideration of the joint

state space of the individual queues and channels.

Lau with Chen [48] and with Cui [47] formulate the optimization problem as

a Pareto-optimal tradeoff between delay and power for multi-stream MIMO and
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Table 2.2: Summary Multi-Streams, Multi-Channel Resource Allocation Schemes

Ref. Power Allocation Rate Adaption User/Channel Allocation

[4] Fixed Fixed to Channel State Highest User SNR

[5] Fixed Fixed to Channel State
Allocation that maximizes throughput
through exhaustive search

[47] Variable Function of Power/CSI Based on MDP solution using QSI/CSI

[48] Variable Function of Power/CSI Precoder Design

[29] Variable Function of Power/CSI ———

OFDMA systems respectively. The Pareto-optimal formulation in both works is

shown to be delay-optimal.

In [47], the authors assume the system operates at channel capacity in all OFDM

subcarriers. In this way, for a given CSI H, there is a one-to-one mapping between

the transmission rate fl(Cl(µ, t)) and the subcarrier power allocation Pl(µ, t). The

subcarrier power and allocation problem is formulated as a delay-optimal infinite

horizon MDP for the joint QSI and CSI. To reduce the system complexity the authors

propose two methods. Firstly, the authors propose a reduced state method to solve

the Bellman equations by solving separate conditional Bellman equations. The latter,

is a two-step procedure where the subcarriers are allocated subject to CSI only, and

power is allocated subject to both CSI and QSI.

In [48], the author incorporate stream error rates by taking an approach simi-

lar to [49] to relate the transmission rate directly to the subchannel power allocation

through introduction of a constraint in the rate expression. The optimization problem

is formulated as in [47] to obtain the optimal precoding matrix. In this way, user selec-

tion is not required (all users transmit during each frame, i.e., C = diag{µ1, . . . , µK}).
The authors also propose a suboptimal, low complexity extension that exploits the

relative delay importance (β factor) of each stream.

The drawback in both papers is the lack of hard constraints on the stream delay.

While the delay-optimal method provides differentiation between streams through

specification of the β factor, this method does not directly translate into hard delay



Chapter 2: Background and Literature Review 27

constraints.

Kuo and Cavers take an interesting approach to the rarely tackled problem

of maximum delay constraints in [29]. In their work, by employing resource and

power allocation, they are able to meet maximum delay constraints and minimize

transmission energy for the special case of a single traffic stream (i.e., for K = 1)

over multiple parallel channels. To combat the time-dependant issues on meeting hard

delay-constraints, the author’s optimization constraints are modified in time domain

to force inequality of constraints at the interior points and equality of constraints at

the problem upper bound, such an algorithm however is non-causal.

In their work, channel error constraints are met by introducing a constant gain

factor in the capacity formulation as computed in [49] to meet a target bit error

rate (BER). In this way, as with other schemes we have described above, there is

a one-to-one mapping between the power and rate allocation for given CSI. In lieu

of exploiting direct QSI, the authors utilize knowledge of the current expiring data

(data which will exceed maximum delay requirements if not transmitted) during a

given frame.

The authors further propose a causal version of the scheduler based on estimates

future energy usage based on current CSI and data expiry. The causal scheduler

performs the above optimization at each instant of time a new packet arrives to the

system or when the CSI changes. The drawback of course of such an approach is that

CSI may change rapidly, and packets may arrive to the system regularly forcing the

online optimization procedure to be performed frequently. The scheduling scheme is

also limited to the case of a single traffic stream.

2.8 Chapter Summary

While, in recent years, there has been a large number of contributions to the MS-MC

problem particularly in improving system throughput, in the realm of constraining

quality of service, there has been far less focus. One notable rationale for this is

the well-known complexity issues associated with exploitation of QSI, particularly for

multistream transmission. Many of the above described schemes rely on underlying
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assumptions or system simplifications to achieve complexity reduction. Future ap-

proaches will need to continue to focus on methods of achieving complexity reduction

without dramatically sacrificing system performance. In general, practical systems

place limitations on design flexibility, such limitations could be exploited in sched-

uler policy design to reduce system complexity. It is this ideology which is exploited

throughout this thesis.
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Chapter 3

Energy Efficient Downlink Bit-Level

Scheduler for Static MIMO Wireless Links

In the previous chapters, we highlighted the importance of cross-layer protocols, par-

ticularly in meeting QoS constraints. Recently, there has been a large body of research

surfacing which employs the cross-layer ideology to meet QoS constraints in the wire-

less environment [20, 21, 48, 50–54]. In [51] and [20] for example, the authors focus

on constrained QoS where they show that knowledge of the instantaneous buffer oc-

cupancy, also known as queue state information (QSI), combined with knowledge of

the wireless channel state can minimize the average transmission power subject to

constraints on MAC layer throughput and average delay. These works however are

mainly focused on a single queue which is serviced over a single channel which we

herein denote these as {1× 1} systems. Most modern wireless communications sys-

tems however, are comprised of multiple input queues with various QoS requirements,

and can be transmit over multiple parallel channel (such as those channels provided

by multiple antenna or MIMO systems). More generally, we define a {K×M} system

as a transmission system with K queues as inputs to the system and M is the num-

ber of parallel channels available for transmission (as discussed in Chapter 2. While

several recent parallel works [47, 48, 50, 54] have looked at scheduling techniques for

supporting QoS in {K ×M} systems, to the best of our knowledge there exists no

prior works which exploits full QSI in these systems while meeting hard, heteroge-

neous QoS constraints. In Lau and Chen’s work [48] for example, a framework for

a delay-optimal power and resource allocation is proposed for such a heterogeneous

traffic system, however the weights employed for delay in the optimization framework

do not impose hard guarantees on heterogenous average delay and losses which is

required for QoS stringent traffic streams.
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In this chapter, we propose a design for a cross-layer scheduler in the presence

of full QSI for a generic {K ×M} system to target specific average delay and packet

loss rates. Through application of a novel MAC layer rate assignment scheme, we

design a scheduler that is able to exploit full QSI to meet QoS requirements while

reducing long-term average power consumption and reduced complexity compared to

the full-scale optimization problem.

The remainder of this chapter is divided into 5 sections. First, in Section 3.1

we detail both the MAC and PHY layers which are used throughout the chapter.

The MAC layer consists of an arbitrary number of finite queues with varying delay

and throughput requirements. Packets from these queues, are serviced over multiple

channels provided by MIMO singular value decomposition (SVD).

Section 3.2 presents the details of the scheduler design. Due to the problem

complexity of considering the QSI of all queues simultaneously, this chapter presents

a method of decoupling the problem into a two-step scheduling policy by exploiting

practical limitations on the system, namely the packet service rate.

Next, in Section 3.3, the details of how to formulate the framework from Sec-

tion 3.2 is formulated using traditional optimization frameworks. Section 3.4 provides

detailed simulation results on the average power allocation as a function of key quan-

tities and finally Section 3.5 summarizes the key findings of this chapter. These key

findings of this chapter are also found in Dechene et al. [6].

3.1 System Model

The system model used in the work is a general {K × M} downlink model where

K is used to denote the number of independent MAC layer queues as an input to

the system and M is used to denote the number of PHY layer channels available for

transmission. The overall system model is shown in Figure 3.1 where the MAC and

PHY layer subcomponents are discussed below.



C
h
a
p
ter

3
:

E
n
ergy

E
ffi

cien
t
D

o
w
n
lin

k
B
it-L

evel
S
ch

ed
u
ler

fo
r

S
ta

tic
M

IM
O

W
ireless

L
in

ks
31

2

M

1

K – Traffic 

Class 

Scheduling 

Base Station

1

2

K

BPSK or 

M-QAM 

Encoders 

(MCS)

Packets Dropped due to 

Channel Error, Pl,i

M - Parallel Channels

Transmitter MAC Transmitter PHY

 1

 2

 K

Receiving 

Station

BPSK or 

M-QAM 

Decoders 

(MCS)

SVD 

Encoder 

and Power 

Allocation

SVD 

Decoder

1

2

M

Packets Dropped due to 

Overflow, Pd,i

Receiver PHY Receiver MACPhysical MIMO Channel

1

2

M

1

2

K

MCS 

Selector

CSI Feedback Channel

SVD Feedback Channel

Li

Bi

Figure 3.1: Downlink Multi-Queue, SVD MIMO Cross-Layer Model
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3.1.1 MAC Layer Model

The media access control (MAC) layer model used in this work is as follows. Consider

the downlink system shown in Figure 3.1. Traffic is received from upper layers and

classified into K traffic streams. A single traffic stream has an associated set of QoS

parameters {Di, Li, λi, Bi, δi} which denotes the maximum tolerable average delay,

fixed packet length, average arrival rate, buffer size and maximum tolerable packet

loss rate respectively for that stream. Each stream may represent a broad service

class (such as voice over IP or video) or a particular application-layer stream. Each

incoming stream is stored in a finite-length first-in, first-out (FIFO) buffer where

incoming packets are dropped when the buffer is full.

The probability of packet loss in the system (δi) is comprised of packets dropped

at the source (due to buffer overflow, Pd,i) and packets dropped at the destination

(due to channel errors, Pl,i). The total probability of an erroneous packet entering

queue i is then δi = 1− (1− Pd,i)(1− Pl,i). It is assumed that target probability of

both loss types is known a priori.

The time horizon is divided into fixed scheduling intervals denoted as frames.

Each frame has a duration of Tf seconds. Frame n is denoted as the interval of time

bounded by [nTf , (n+ 1)Tf ).

The K buffers are statistically multiplexed into a QoS-aware K-queue scheduler

which makes scheduling decisions based on the CSI feedback from the subscribing

station, the number of packets in each of the K MAC buffers, and their parameter

set. As discussed in the previous chapter, while the theoretical number of queues

(i.e., K) with varying QoS constraints is large, practical implementations employ a

finite number of classes [11] as most multimedia services can be categorized into one

of several QoS classes.

3.1.2 PHY Layer Model

The PHY layer transmits packets scheduled for transmission during each frame. Pack-

ets are separated into M parallel streams and encoded with BPSK or M-QAM, where

the constellation is decided based on channel conditions and MAC rate demands.
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The M streams are then reconstructed at the receiver and forwarded to the receiver

MAC. The M streams are provided by MIMO singular value decomposition (SVD)1

achieved by assuming full channel knowledge is available at the transmitter error-

free. The state of the M channels is characterized by their ordered eigenvalues where

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
M ≥ 0. In general, MIMO SVD can provide M ≤ min(MT ,MR)

streams (equal to the number of non-zero eigenvalues), however we assume that M

is known and all eigenvalues are greater than 0. For simplicity at this stage, we also

assume these eigenvalues are known, and do not change for all time (during the time

interval (0,∞).

In general, the maximum number of parallel channels is equal to the minimum

number of antennas at either the transmitting or receiving station. Recent measure-

ment campaigns conducted in urban environments however suggest [55,56] that there

are only a finite number of resolvable non-zero eigenvalues, which in general, can be

less than the number of antennas.

Each independent channel is subject to noise. In the presence of additive white

Gaussian noise (AWGN), the bit error rate of an uncoded M-ary signal is approxi-

mately [57]

Pb(γj,Mj) ≈ 0.15 exp

(−1.55γj

Mj − 1

)
, j = 1, 2, . . . ,M (3.1)

where Mj is the size of the constellation set used in channel j, γj is the per symbol

SNR given as γj = Pjγ0λ
2
j , Pj is the power allocated to channel j and γ0 is the

reference SNR level.

As discussed later, there is no constraint on the maximum instantaneous power

selection, however we focus on minimizing the long-term average power consumption.

The implications of this are discussed are discussed in Section 3.5.3.

1. The framework can easily be extended to any multi-channel system with known sub-
channel error performance.



Chapter 3: Energy Efficient Downlink Bit-Level Scheduler for Static MIMO Wireless Links 34

3.1.3 System Operation

From frame n− 1 to frame n, the evolution of each buffer i follows

ui(n) = min{Bi,max{0, ui(n− 1)− ci(n)}+ Ai(n)} (3.2)

where ui(n) describes the buffer occupancy (number of buffer spaces in use) at the

end of time frame n, Bi denotes the maximum buffer occupancy, ci(n) denotes the

number of transmitted packets during the frame n (i.e., the transmission action taken

by queue i) and Ai(n) denotes the number of arrivals in the queue. The queue

evolution is shown pictorially in Figure 3.2. Figure 3.2a is the state of the queue

at the beginning of frame n, Figure 3.2b is the arrivals to the queue during frame

n and Figure 3.2c is the state of the queue at the end of frame n. Packets arriving

during frame n (i.e., Ai(n)) are assumed to be enqueued at the end of the frame.

The quantities ci(n), ui(n), Ai(n) ≥ 0, ∀n and ci(n), ui(n), Ai(n) ∈ I where I is the

set of all integers. The number of arrivals during frame n to a given queue (or Ai(n))

is a Poisson process with an average arrival rate of λ̄i and a constant packet length

of Li. Further to this, packet arrivals are assumed to be independent of the current

queue occupancy, service process and arrivals to other queues. For a Poisson process,

the probability of k packets arriving to queue i during a frame of duration Tf is

well-known to be

Pr[Ai(Tf ) = k] =





(λ̄iTf )k exp(−λ̄iTf )

k! , if k ≥ 0

0, otherwise
(3.3)

Packets are serviced in FIFO discipline over the previously described MIMO

physical layer. In each individual parallel channel, bits are encoded from a finite

modulation and coding scheme (MCS) alphabetM which determines the number of

bits that can be encoded onto a single symbol. The selection of the set is described

in later sections. Denoting kj as the spectral efficiency2 in bits/symbol for choosing

2. Spectral efficiency in this chapter refers to the number bits/symbol that can be trans-
mitted in a given symbol duration, i.e., 1 for BPSK, 2 for QPSK, and so on.



Chapter 3: Energy Efficient Downlink Bit-Level Scheduler for Static MIMO Wireless Links 35

Bi

Ai(n)

ci(n)

ui(n-1)

ui(n)

(a)

(b)

(c)

Figure 3.2: Timing Diagram of Queue Evolution

a constellation of size Mj ∈ M for the jth channel and Ts as the symbol duration,

the maximum number of bits that can be transmitted through the jth channel over

a duration of Tf seconds is
kjTf
Ts

with a bit error rate given in (3.1).

3.2 {K ×M} Scheduler Design

The proposed scheduler utilizes queue state information (QSI) to design a scheduling

policy Ω. A given scheduling policy Ω describes the channel, power and rate assign-

ment for all time frames n. The benefit of utilizing QSI has been well demonstrated
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by [20] and [21] in the case of a {1×1} system, however extensions for general {K×M}
systems are non-trivial due to the complexity scaling and joint consideration of queue

and channel state information. However, consider the following practical observation.

Examining only the buffer states for a set ofK queues, the global set of states to

describe the joint occupancy level across all queues is a K-dimensional set spanning

the possible occupancy levels for the model discussed above and can be expressed

as U := U1 × · · · × UK where Ui = {0, 1, . . . , Bi} is the state set for any buffer i

and where 0 denotes an empty buffer

It was previously noted that arrivals to each queue are independent, however

the service process couples the queues. In practice however, the number of possible

service rates is comprised of a finite subset of the possible buffer states, and in our

work physically represents the number of packets taken from the queue during a

given frame. We previously denoted this quantity as ci(n) (i.e., the transmission

action taken by queue i during frame n). Now suppose, we have a set of rates which

we denote Ci as the set of possible MAC rates (measured in packets) that can be

serviced during each frame for queue i (i.e., all possible values that can be taken

on by ci(n), ∀n). This set is independent of the current frame n and we assume

that Ci is chosen such that the maximum simultaneous packet transmission rate is

achievable (i.e., admission control is performed in advance to ensure the maximum

transmission rate of all streams is less than the maximum rate on the channel).

The overall MAC rate state-space of transmission actions is by extension simply

C := C1 × · · · × CK . Assuming that |Ci| << |Ui| which we argue occurs in practice

due to various physical limitations such as employed symbol rates and scheduling

intervals. By trivial extension is it is easily shown that |C| << |U|, where | · | denotes

the size of a set. The preceding implies that any channel mapping and power control

scheme need only consider |C| possible MAC layer rates rather than |U| possible states

as a method of reducing the system complexity.

Using the above arguments, given a predetermined number of MAC service

rates Ci for each queue i, we propose that the design of a {K ×M} scheduler can be

constructed as two components:

A: A mechanism to determine how to map a set of packets during each frame
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across all parallel channels while performing rate and power adaptation to

minimize power usage and maintain channel error rate requirements. This is

computed for each c ∈ C, where C is the MAC layer rate state-space, and

B: A mechanism to select the appropriate MAC layer transmission rate from each

queue during each time frame to minimize total average transmission power

found for c ∈ C in addition to ensuring QoS constraints are met by exploiting

QSI.

The above problem segmentation allows the power, rate and channel allocation

problems to be solved with reduced complexity by considering only a subset of infor-

mation in each stage. As a result of the segmentation, components comprising the

total average packet losses (i.e., dropping probability and channel error probability)

are no longer jointly optimized, and must be constrained individually at each stage.

3.2.1 Channel Mapping and Power Control

The first component of the scheduling mechanism maps a set of packets during a frame

over the set of parallel channels. This procedure is performed for each possible MAC

layer rate combination (i.e., each c ∈ C). The resulting outputs of this component

are:

• A bit loading map Xj,i(c), ∀j, i which denotes the number of bits per queue i

that are mapped to channel j during the time frame,

• Constellation selection for each channel (kj(c), ∀j), and

• Power assignment for each channel (Pj(c), ∀j)
where c ∈ C. Relevant complexity issues will be addressed in a later section. The

constraints applied in this component are on packet losses on the channel, symbol

rate selection and channel allocation. We note here that we do not constrain instan-

taneous power directly but allocated power is a function of the objective function.

The following sections details the constraints applied in this component.
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3.2.1.1 Packet Loss Due to Channel Error Constraint

Firstly, the average packet error rate on the channel experienced by a packet from

stream i in state c given as

PERi(c) = 1−
M∏

j=1

(1− Pb,j(c))
xj,i(c)Li, ∀i (3.4)

where Pb,j(c) is the bit error rate for channel j with power Pj(c) assigned, spectral

efficiency of kj(c) during state c given from (3.1) as

Pb,j(c) = Pb(Pj(c)γ0λ
2
j , 2

kj(c)) (3.5)

and xj,i(c) is the percentage of bits per packet transmitted in the channel j from

queue i such that
∑M

j=1 xj,i(c) = 1.

Next, we assume the average packet error rate is targeted at each instant of time

(i.e., PERi(c) = Ec[PERi(c)] where Ec[·] is the expectation over C). The constraint

on channel losses is then

1−
M∏

j=1

(1− Pb,j(c))
xj,i(c)Li ≤ Pl,i, ∀c, i (3.6)

where Pl,i is the target channel loss rate and is a portion of the total loss rate.

To further simplify (3.6), it can be approximated as shown in Appendix C as

1−



1−
M∑

j=1

xj,i(c)Pb,j(c)




Li

≤ Pl,i, ∀i (3.7)

The above approximation assumes that the instantaneous bit error rate is Pb,j(c) <<

1 which is true for target constraints on channel loss. Next, defining Xj,i(c) as the

number of bits mapped to channel j from queue i over a frame of duration Tf .

Relating this to the quantity xj,i(c) discussed above we have

Xj,i(c) = xj,i(c)ci(c)Li = xj,i(c)Ri(c) (3.8)
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where ci(c) is defined as before in number of packets taken from queue i in state c

and Ri(c) is this quantity measured in bits. From (3.7), the final expression for the

packet loss constraint is

Pl,i ≥ 1−


1−

M∑

j=1

Xj,i(c)Pb,j(c)

Ri(c)




Li

, ∀i (3.9)

Which can be constrained in terms of the bit error rates such that

M∑

j=1

Xj,i(c)Pb,j(c)

Ri(c)
≤ BERi, ∀i, (3.10)

where BERi = 1− (1− Pl,i)
1
Li

3.2.1.2 Rate Selection Constraints

We also select constellation schemes for each channel such that the requested MAC

layer rate requirement is met. The total MAC layer rate requirement is given as
∑K

i=1Ri(c). Therefore we note that

M∑

j=1

kj(c)Tf

Ts
≥

K∑

i=1

Ri(c) (3.11)

is a necessary condition. We also note that the set {kj}Mj=1 that satisfies the above

such that
∑M

j=1 kj should be minimized to achieve the minimum power usage.

Since by design kj ∈ M is a discrete set and (3.1) is monotonic in kj, one can

easily show that any set {kj} ∈ M that minimizes transmission power must satisfy

M∑

j=1

kj(c) =



Ts

Tf

K∑

i=1

Ri(c)




(3.12)

where in this case, d·e denotes rounding up to the nearest valid sum of kj values.

The set of all valid MCS mode combinations that satisfies the above for each c ∈ C
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is denoted Kmin(c).

While (3.12) is true if valid spectral efficiencies in each channel increment by 1,

the values that can be taken on by kj fall within the set of allowable MCS modes and

in this work is further restricted to {0, 1, 2, 4, 6} representing no transmission, BPSK,

QPSK and 16/64-QAM respectively. Therefore a marginal increase in transmission

rate may result in an minimum increase of spectral efficiency of 2 in one channel. To

integrate this phenomenon, the search set of valid MCS modes is extended such that

K(c) =

{
Kmin(c)

⋃Kmin+1(c),
∑K

i=1Ri > 0

0 otherwise
(3.13)

where Kmin+1(c) is the set of MCS modes satisfying

⌈
Ts
Tf

∑K
i=1Ri(c)

⌉
+ 1.

3.2.1.3 Channel Mapping Constraints

Based on the system design, we also have the following constraints on the mapping

coefficients Xj,i(c):

M∑

j=1

Xj,i(c) = Ri(c), i = 1, 2, . . .K (3.14)

K∑

i=1

Xj,i(c) ≤
kj(c)Tf

Ts
, j = 1, 2, . . . ,M (3.15)

3.2.1.4 Power Control

Minimization of the average applied power is the objective function. Average power

is the sum of power allocated in each subchannel multiplied by the number of symbols

transmitted over that subchannel or simply

M∑

j=1

Pj(c)

kj(c)

K∑

i=1

Xj,i(c) (3.16)
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The above set of constraints, which contains both integer and discrete variables can

be formulated as a mixed-integer non-linear programming (MINLP) problem. The

details of the MINLP formulation and elements are discussed in Section 3.3.1.

3.2.2 Locally Optimized MAC Rate Selection

The second component of the {K ×M} scheduler design is to select a MAC layer

transmission rate (or ci ∈ Ci) to determine the number of packets to transmit during

frame n from queue i. This decision is based on both the QoS constraints and the

power allocation determined by (3.16).

Each queue is characterized by its current state ui ∈ Ui denoting the current

occupancy level. During anytime n, ci packets may be taken from the queue where Ci
is the set of all transmission actions (packets that can be transmitted) during a given

frame. The scheduling policy Ω defines the set probabilities of choosing ci when the

current queue state is ui for each queue i. From (3.2) it can be seen that the queue

occupancy during any frame n depends only on the occupancy during frame n−1 and

arrivals during that frame. As such, the above can be solved as constrained Markov

decision process (CMDP) [51] to obtain a scheduling policy Ω. Let θi(ci, ui|Ω) be a

steady-state distribution function that exists for a particular policy Ω which denotes

the probability of being in state ui and transmitting ci packets during frame n. The

scheduling policy Ω is obtained through application of the constraints on average

delay and MAC layer throughput given as follows.

3.2.2.1 Throughput Constraint

The dropping probability is related to the MAC throughput by

χi = λi(1− Pd,i)Tf (3.17)

Therefore we do not constrain the dropping probability directly, but rather constrain

the minimum MAC layer throughput. The throughput at each state ui is dependant

on both the queue state and the action taken (i.e., ui and ci). For a given set {ci, ui}
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during frame n, the throughput is

χi:n(ci, ui) = min(ci, ui) (3.18)

3.2.2.2 Delay Constraint

From Little’s Theorem, the average queueing delay constraint is

Di ≥ Di =
q̄i

λq,iTf
(3.19)

where q̄i is the average queue size and λq,i is the average enqueued arrival rate for

queue i. By design we can express q̄i using the steady-state distribution θi(ci, ui|Ω)

as:

q̄i =
∑

ui∈Ui

ui

∑

ci∈Ci
θi(ci, ui|Ω) (3.20)

and since λq,i is also equal to the average service rate in steady-state, it can be

expressed as

λq,i =
∑

ui∈Ui

∑

ci∈Ci
min(ci, ui)θi(ci, ui|Ω) (3.21)

3.2.2.3 Transition Probabilities

The transition probabilities denote the probability of transitioning from one queue

state to another. By design this is based on the arrival process, the given state, the

next state and the transmission action taken. With all quantities defined as before,

we denote p
ci
ui;u

′
i

as the probability of transitioning from state ui to u′i given action ci

is taken. From (3.2) and (3.3) this is given as

p
ci
ui;u

′
i

=





P (Ai(Tf ) = u′i − [ui −min(ui, ci)]),u
′
i < Bi

∞∑

j=Bi−[ui−min(ui,ci)]

P (Ai(Tf ) = j), u′i = Bi
(3.22)

By design, the steady-state distribution θi(ci, ui|Ω) must also satisfy the fol-
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lowing balance property

∑

u′
i
∈Ui

∑

c′
i
∈Ci

θ(c′i, u
′
i|Ω)p

c′i
u′
i
;ui

=
∑

ci∈Ci
θ(ci, ui|Ω), ∀ui (3.23)

3.2.3 Per Queue Objective Function

The power allocation found in the first component is used to derive the objective

function for the local MAC layer rate assignment. First, the average marginal cost

for taking an action ci in queue 1 can be given as

Υ1,x =
∑

c2∈C2
. . .

∑

cK∈CK
P (x, c2, . . . , cK) · π2(c2|Ω)× . . .× πK(cK |Ω) (3.24)

where there are i − 1 summations. Similar expressions can be found for all actions

ci ∈ Ci and found for all queues k = 1, . . . , K and where

πi(x|Ω) =
∑

ui∈Ui

θ(x, ui|Ω), x ∈ Ci (3.25)

The above steady-state action probabilities are coupled through the policy

Ω. The value P (c1, c2, . . . , cK) is the total power associated with taking actions

c1 through cK in each queue (or one for each state c ∈ C) found as the solution

to (3.16). Here we need to highlight that the above expression contains the steady-

state probability of choosing an action in each queue. The result of which implies

that it is not possible to directly decouple and consider each queue independently.

We can however consider the following special cases.

1) Single Queue: For the single queue case, the cost function in (3.24) reduces

to the total power required and can be solved as an linear programming (LP)

problem.

2) Two Queues: For the two queue scenario, the cost function model can be con-

sidered a Quadratic Programming (QP) problem where the number of degrees

of freedom is twice that of the single queue problem or |C1 × U1| + |C2 × U2|,
rather than |C1 × U1 × C2 × U2|.
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3) General Number of Queues: In general, the problem can be solved using iter-

ative methods. This process is as follows. Firstly, given the power allocation

values, we iteratively solve the C-MDP problem (as an LP problem) for each

queue and update the corresponding cost function until the steady state distri-

bution θi(ci, ui|Ω) in each queue converges. Convergence details are discussed

in Section 3.4.3.

A summary of frequently used notation is provided in Table 3.1.

3.3 Formulating the Problem Using Optimization

Framework

Both the channel/power allocation and the local MAC rate assignment mechanisms

are formulated as optimization problems using framework described in Appendix B.

The channel and power allocation scheme can be formulated as a generic MINLP

problem, while the local MAC rate assignment can be formulated as a general LP (or

QP) problem.

3.3.1 Formation of MINLP Problem

A general solution to a NLP problem is non-trivial, this is further complicated by

introduction of discrete or integer constraints on several variables. To relax these

discrete constraints we perform the following:

1) Consider Xj,i(c) as a continuous variable as we note in practice rounding Xj,i

to the nearest integer affects only a single bit of information. Since during

any frame where there is an active the transmission the number of transmitted

bits is in general much larger than 1, rounding does not dramatically affect

the result, and

2) We formulate a general NLP problem for each subset satisfying (3.12) and

choose the allocation strategy achieving the lowest power consumption.

Based on the above, we formulate a general NLP problem such that we solve

arg minx f(x) subject to Ax ≤ b, Aeqxeq = beq, x ≥ 0 and c(x) ≤ 0 where A
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Table 3.1: Frequently Used Notation Used Throughout This Chapter

Quantity Symbol Quantity Symbol

Number of Traffic Streams K Subchannel SNR γj

Number of Parallel Channels M BER of Channel j Pb,j

Average Delay Constraint Di Scheduling Policy Ω

Packet Size in Bytes Li Buffer state-space Ui

Average Arrival Rate λ̄i MAC Rate state-space Ci
Buffer Size Bi Joint MAC Rate state-space C
Total Average Loss Constraint δi Transition probability pci

ui,u
′

i

Packet Dropping Probability Pd,i Fraction of bits allocated to channel j from stream i xj,i

Probability of Channel Packet Loss Pl,i Number of bits allocated to channel j from stream i Xj,i

Frame Duration Tf Stream Rate of channel i Ri

Symbol Duration Ts Throughput of stream i χ̄i

Frame Number n Per queue cost function Υi,x

Subchannel Eigenvalue λ2
j Steady-State policy distribution θi(ci, ui|Ω)

Reference SNR γ0 Steady-state action probability πi(x|Ω)

Set of Valid MCS Modes M Number of Arrivals during frame n Ai(n)

Spectral efficiency in channel j kj Buffer Occupancy during frame n ui(n)

M-ary Mode Mj Packet Service rate of queue i during frame n ci(n)
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and Aeq are matrices, b and beq are vectors, c(x) is a vector of non-linear functions

evaluated at x and f(x) is a scalar non-linear function evaluated at x. The above is

evaluated at each state c ∈ C and over the space K(c) which is the space containing

each combination {kj}Mj=1 that meets the rate selection restrictions above described

in (3.12).

The derivations of the NLP elements is given below. The vector x is a (M +

MK) × 1 vector with elements Pj , j = 1, 2, . . . ,M and Xj,i, j = 1, 2, . . . ,M, i =

1, 2, . . . , K given as

x = [P1, . . . , PM , X1,1, . . . , X1,K , . . . , XM,K ]T (3.26)

3.3.1.1 Objective Function

The objective function from f(x) given in (3.16) is formulated as

f(x) =

M∑

j=1

x(Pj)

kj

∑

i∈I′
j

x(i) (3.27)

where I′j and Pj are the sets containing location indices ofXj,i, ∀i and Pj respectively

in x.

3.3.1.2 Equality Constraints

The K equality constraints from (3.14) are given in the K × (M +MK) matrix Aeq

with entries

Aeq:i,k =

{
1, k ∈ Ii
0, otherwise

(3.28)

where Ii is the set containing location indices of Xj,i, ∀j in x. The coefficient vector

beq is given as

beq = [R1, R2, . . . , RK ]T (3.29)
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3.3.1.3 Inequality Constraints

The M equality constraints from (3.15) are defined in the M × (M +MK) matrix A

with entries

Aj,k =

{
1, k ∈ I′j
0, otherwise

(3.30)

The coefficient vector b is given as

b =
Tf

Ts
[k1, k2, . . . , kM ]T (3.31)

3.3.1.4 Non-Linear Inequality Constraint

The K non-linear inequality constraints are given as a K×1 vector of functions of x.

For simplicity of notation with further define Ij,i as the indices of Xj,i, ∀i, j. Using

the bit error rate expression in (3.1), we then have

c(x) = [c1(x), . . . , cK(x)]T (3.32)

where

ci(x) =

M∑

j=1

0.15 exp

(
−1.55x(Pj)γ0λ

2
j

(2kj − 1)

)
x(Ij,i)

Ri
− BERi

The solution can be found for the above framework using general NLP methods

such as those provided by fmincon included in the MATLAB optimization toolbox.

3.3.2 Forming LP Problem

As in [51], the constrained MDP problem formulated for the local MAC rate selection

can be solved using Linear Programming (LP) techniques for each queue. LP tech-

niques efficiently solve convex optimization problems of the form arg min
x

cTx, subject

to Ax ≤ b, Aeqx = beq, x ≥ 0 where A and Aeq are matrices and x,b,beq and c

are column vectors. The vector x is the solution to the optimization problem. In our
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problem, the elements are given as

x = [θi(Ci, 0|Ω), . . . , θi(Ci, Bi|Ω)]T (3.33)

with each θi(Ci, ui|Ω) being a row vector with entries for each ci ∈ Ci.

3.3.2.1 Objective Function

The objective function is of the form cTx. The vector c is comprised of the total

power cost for taking an action. Each entry of c corresponds to the entry in x with

the value of entries in c given by Υi,ci
in (3.24).

c = [Υi,1, . . . ,Υi,|Ci|︸ ︷︷ ︸
1

,
2..Bi︷ ︸︸ ︷. . . , . . . , . . .,Υi,1, . . . ,Υi,|Ci|︸ ︷︷ ︸

Bi+1

] (3.34)

3.3.2.2 Equality Constraints

The equality constraints are comprised of the balance equations and the causality

constraint (total probability space) given in (3.22) and (3.23) respectively. In matrix

form, the balance equations can be expressed as P×x = Φ0×x where P is given by

P =




p
Ci
0;0 · · · · · · p

Ci
Bi;0

... p
Ci
1;1 · · ·

...
...

...
. . .

...

p
Ci
0;Bi

· · · · · · p
Ci
Bi;Bi




(3.35)

with p
Ci
q;q′

as a 1× |Ci| row vector with entries

p
Ci
q;q′

= [p1q;q′ , . . . , p
|Ci|
q;q′

] (3.36)



Chapter 3: Energy Efficient Downlink Bit-Level Scheduler for Static MIMO Wireless Links 49

and the quantity Φ0 is given as the Bi + 1 row matrix

Φ0 =




11×|Ci| 0 · · · 0

0 11×|Ci| · · · 0
...

...
. . .

...

0 0 · · · 11×|Ci|




(3.37)

Combining the above with the causality constraint on the total probability space

we have our overall equality constraints given as

Aeq =

[
P−Φ0

11×(|Ci|(Bi+1))

]
beq = [01×(Bi+1) 1]T (3.38)

3.3.2.3 Inequality Constraints

The inequality constraints are used to describe the throughput and delay constraints

and are given by (3.17) and (3.19) respectively. These constraints are given in two

parts as

A =

[
w1

w2

]
b =

[
z1

z2

]
(3.39)

where w1 is given as

w1 = −[χi:n(Ci, 0), . . . ,χi:n(Ci, Bi)] (3.40)

where χi:n(Ci, ui) is a row vector with entries χi:n(ci, ui) for all ci ∈ Ci and z1 is

given as

z1 = −λ̄i(1− Pd,i)Tf (3.41)

Further, using (3.19)-(3.21), and after some trivial manipulation we can obtain

w2 = Q×Φ0 −DiU z2 = 0 (3.42)
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where Q = [0, 1, . . . , Bi] and U is given as

U = [min(ci(1), 0), . . . ,min(ci(|Ci|), 0),min(ci(1), 1), . . . ,min(ci(|Ci|), Bi)] = −w1

(3.43)

where ci(x) denotes the xth MAC rate in Ci.
The above framework can be computed using general LP methods such as those

provided by linprog included in the MATLAB optimization toolbox for both the single

queue and iterative methods. Extensions are trivial for the special case of two queues

using QP methods.

The LP problem above yields the steady-state distribution θi(ci, ui|Ω), ci ∈
Ci, ui ∈ Ui, i ∈ {1, 2, . . . , K}. The physical meaning of this solution is that in a given

queue i while the buffer is in a given state ui, the scheduler selects ci packets from

the queue for transmission with probability given by

Pr[ci|ui, i,Ω] =
θi(ci, ui|Ω)∑

c′
i
∈Ci

θi(c
′
i, ui|Ω)

(3.44)

3.3.3 Scheduler Implementation

The above optimization problem is solved offline, in advance with proper channel

measurements. The advantage of this method is that all quantities can be stored in

a lookup table (LUT). The LUT stores information on the power, MCS mode and

bit allocation for each state c ∈ C. The offline scheduler works as follows. At the

beginning of each frame n, each queue has ui packets waiting for transmission. All

queues then choose actions ci with probability given in (3.44). Given a joint action

c = {ci, ∀i}, the scheduler selects the stored MCS and power modes for each channel

and allocates bits from all queues as found in the stored bit allocation.

All quantities in the LUT can be accurately stored as 64 bit double. The space

required to store each state is

Sizec = 64(KM + 2M) bits/state (3.45)
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as we require storage of KM bit allocations, M power levels and M MCS mode

selections. Further, we note the system has |C| states, therefore the total size of the

LUT in bits is given as

SizeLUT = |C|Sizec = 64|C|(KM + 2M) bits (3.46)

where the above describes the relation of number of channels, the number of queues

and the possible MAC rates to the storage size of the LUT.

3.4 Simulation Results and Discussion

We provide simulation results for the three MAC layer rate assignment approaches.

Firstly, results are provided for the special case of a single queue using the LP ap-

proach, followed by application of the QP approach for the case of two queues. Finally

we validate the iterative approach by comparing the accuracy of the two queue system

with QP approach. Convergence details of the iterative method are also provided.

Table 3.2: Simulation Parameters

Parameter Value

Number of Antennas (M) 4

Number of Queues (K) 1

Spectral Efficiencies {0, 1, 2, 4, 6}
Length of Packet (bits) 200

Arrival Rate (Packets/frame) 1

Queue Size (Packets) 25

Average Packet Delay (Frames) 5

Total Loss Rate (δ, % of Packets) 1%

Target Channel Loss Rate δ/2

Frame Duration (Tf ) 1

Symbol Duration (Ts) 0.01

MAC Rates (Packets per Frame) {0, 1, 2, 3, 4, 5}
MIMO Channel Eigenvalues [2, 1.5, 0.6, 0.4]

Reference SNR (γ0) 20dB
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Further, we also provide some metrics for the system complexity. Universal and sin-

gle queue simulation parameters are shown in Table 3.2 while parameters for the two

queue system are given in Table 3.3.

The performance of the proposed scheme is compared with a strict scheduler.

The strict scheduler implementation employs the same physical layer as the proposed

scheme, however the transmission rate (packets per frame) is constant. This trans-

mission rate is chosen from the set of allowable transmission rates such that it is

the minimum rate that ensures QoS constraints (dropping probability and delay) are

guaranteed and is found through a M/D/1/N model [58].

3.4.1 Single Queue Performance

Figures 3.3-3.6 show the results for total average power for the single queue scenario

for varying of major parameters. In all cases the proposed scheduler requires lower

average power for transmission. For the case of increasing arrival rate or packet size

we note an increase in the power selection which is expected while in the case of delay,

increasing delay constraints result in a reduction of power. Once the delay constraint

exceeds a certain threshold, power is no longer reduced as the scheduler is no longer

dominated by the delay constraint. In the case of increasing loss rate we see a steady

decline in power. This is due to the large amount of power required to maintain

the stringent loss requirements (by maintaining a low channel error rate and lower

number of packets dropped in the buffer). Finally, power selection is u-shaped when

the buffer size is varied. This variation is negligibly small relative to the difference

Table 3.3: Simulation Parameters for 2 Queue Scenario

Parameter Value

Length of Packet (bits) [200 250]

Arrival Rate (Packets/frame) [1 1]

Queue Size (Packets) [25 25]

Average Packet Delay (Frames) [4 5]

Total Loss Rate (δ, % of Packets) [1 1]%

Target Channel Loss Rate δ/2
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Figure 3.6: Total Average Power vs.
Buffer Size - Single Queue

between the proposed method and the strict scheduler (shown in Figure 3.6). The

explanation for this phenomenon is as follows. In the smaller buffer region, power

selection is dominated by trying to maintain acceptable loss in the buffer while in the

larger buffer region, the power selection hits a plateau due to the limitation in the

maximum tolerable delay is no longer a dominant factor.

3.4.2 Two Queue Performance

In Figures 3.7-3.10 the results for the two queue scenario is shown. As expected, the

trends for the two queue scenario follow those for the case of a single queue
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Figure 3.9: Total Average Power vs.
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with higher transmission power. This is due to the increase in the total required

physical layer transmission rate. Further, for the case of two queues, we utilize both

the iterative and QP methods to validate its convergence. Our proposed iterative

method converges to the same solution as the QP approach. Further, the storage

requirements of the LUT in this case is only 36, 864 bits (or 4.5 kilobytes).

3.4.3 Iterative Convergence Discussion

For 3 or more queues, it is necessary to utilize the iterative LP method where each

queue is solved as a LP problem and updates the cost function in (3.24). This

method is guaranteed to find a local minimum due to the monotonicity of (3.24) in

ci irrespective of the values of πi′(ci′|Ω) for ∀i′, i′ 6= i and due to the convexity of the

LP problem within each queue.

We further demonstrate the global convergence using Monte Carlo simulations

for both 2 and 3 queue scenarios over 10000 random initial solutions. For the two

queue scenario, results are compared with the QP result, and with the 3 queue sce-

nario results are measured as relative error (deviation from minimal solution). The

average relative error versus iteration number in this case is shown in Figure 3.11. As

shown, the iterative solution has a maximal deviation of less than 10−7 over 10000 ran-

dom realizations after just 3 iterations strongly suggesting that the iterative method

converges to the global minimum.

3.4.4 Loss Constraint Related Tradeoffs

As previously discussed, we briefly overview the tradeoff between buffer and channel

losses on the energy efficiency of the proposed design since joint optimization of these

losses is a drawback of our proposed framework. Figure 3.12 shows the total average

power versus the percentage of the total loss rate for both the buffer and channel

losses. This is given for a several configurations of total loss rates, average delay

constraints and buffer sizes. Overall, the trends demonstrate that is more efficient to

incur a larger percentage of losses in the channel, particularly when the buffer size
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is large. However for smaller buffer sizes (i.e., delay is the dominant factor), it is

beneficial to target a tradeoff between types of losses.

3.4.5 Computational Complexity Discussion

System complexity can be looked at from both the first and second stage optimiza-

tions. Due to the non-generalities of non-linear programming solutions, in general it

is not possible to model the complexity of the proposed NLP problem directly. We

herein address this in two parts:

1) Demonstrate that the complexity of the sub optimization problem is less com-

plex than the full-scale optimization problem, and

2) Demonstrate that the number of sub problems is less than the number of sub

problems of the full-scale optimization technique.

For point 1, the full-scale optimization problem requires exploiting the joint

queue state-space (U) combined with the constraints and MAC rate state-space (C).
As the first stage of our optimization formulation does not rely on the u ∈ U states,

the resulting computational complexity is not affected by the joint queue state-space

size. As such, the complexity of the first-stage of our optimization is less complex

than considering the full queue state-space.
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The system complexity from the second stage (point 2), incurs a large complex-

ity reduction. As we note from the previous section, the convergence of the series of

LP problems occurs within several iterations. The dimension of each LP problem is

Φi = |Ci|(Bi + 1). Assuming computation time is polynomial in Φi, the computation

time of the above is

Titer ∝ κ
K∑

i=1

Φi (3.47)

where κ denotes the number of iterations and ∝ means proportional to. Further, the

computation time of the full-scale problem is

Tfull ∝
K∏

i=1

Φi (3.48)

Comparing (3.47) and (3.48) its clear to see that for small κ, the computation

time of (3.48) is sufficiently larger (even for K = 2).

In Figure 3.13 we further study the complexity by showing the computation

time measured in seconds of the MAC rate assignment component for a one, two and

three queue configuration averaged over 50 realizations using the iterative method.

In the graph, we also provide an estimate of the computational time of both two and

three queue systems assuming a full-scale optimization scheme (i.e., C ×U as defined

before) and under the assumption that full-scale optimization scales in polynomial

time. We note that there is a large reduction in terms of computation time using the

proposed iterative method when examining the MAC rate assignment.

3.5 Chapter Summary

In this chapter, a general {K ×M} model is presented with a corresponding sched-

uler to minimize average transmission power by utilizing both channel and queue

knowledge. Through a novel MAC rate assignment scheme, it is possible to decouple

the problem and utilize queue state information in all queues to derive a QoS-aware

scheduling policy over both static and time-varying MIMO SVD channels. The pro-
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posed dynamic scheduler is shown to outperform static scheduling and is able to meet

hard QoS constraints.

3.5.1 Bit-Loading Across Channels

In this chapter, bits from individual packets were loaded across multiple channels. The

drawback of this approach is practical considerations from signalling. In Chapter 5,

we extend this approach to packet loading which also allows use of coded modulation

schemes.

3.5.2 Steady-State Assumption

The scheduling policy in this chapter is derived assuming steady-state operation of

the system. While this has been shown in other works [59] that this steady state

operation exists, the magnitude of the time interval to operate in steady-state has

not been studied. This time interval to achieve steady state could be the study of

future work.

3.5.3 Instantaneous Power Constraint

In this chapter, instantaneous power constraints were not considered as the objective

was to minimize overall average power allocated. While this limits the practicality of

the proposed method, the resulting optimization with a limited instantaneous power

constraint may result in an infeasible solution. In the case of static channels described

in this chapter, such infeasible regions exist for all time. In time-varying scenarios

(such as those presented in Chapter 5), such events could be simply modeled as

an outage event. This outage event is the study of future work and introduced in

Chapter 8.
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Chapter 4

Tracking of Sparse MIMO Channels

The application of adaptive transmission schemes (ATS) plays a vital role in the area

of wireless communication systems. Recently proposed ATS [20,21] exploit knowledge

of the underlying time-varying parameters of the wireless channel to adapt physical

and/or medium access parameters of the channel to improve performance.

In the case of MIMO channels, knowledge of the distribution and temporal be-

havior of the eigenvalues of the channel matrix (and corresponding distribution and

time variational properties of the capacity) are parameters of interest in the design of

channel ATS. There have been a number of attempts to characterize quantities of in-

terest such as the Level-Crossing Rate (LCR), Average Fade Duration (AFD) [60–62]

and time correlation of the channel capacity [63]. Most of the publications assume

rich scattering and the Jakes spectrum [64] of individual SISO channels. In addition,

the covariance function of the capacity is often assumed just to follow that of the

Jakes channel model [61, 63]. However, measurements [55, 56], conducted in urban

environment revealed that the scattering process is often dominated by a small num-

ber of scatterers. Such channels, known as sparse channels [56] are well investigated

in terms of average capacity. A geometric based MIMO model of sparse channels was

presented in [65].

In this chapter, we look at the first and second order statistics, including LCR

and AFD, for these sparse MIMO channels. The results presented are useful in under-

standing the effect of the scattering environment on cross-layer design of MIMO aware

adaptive systems. Some notable results in this chapter are exploited in Chapter 5.

The remainder of the chapter is organized as follows. A general model of a sparse

MIMO channel is presented in Section 4.1. First order statistics of the eigenvalues,

SNR and capacity are discussed in Section 4.2 while Section 4.3 examines relevant
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Figure 4.1: Sparse MIMO Geometric Model

time-varying parameters of these quantities. Section 4.4 details a finite state Markov

model using our results. Simulation results for the statistical properties are provided

in Section 4.5 and conclusions are summarized in Section 4.6. Some key results found

in this chapter are also found in Dechene et al. [7].

4.1 Sparse MIMO Channel Model

Consider the scenario where the number of transmit and receive antennas, MT and

MR respectively, is high relative to the number of clusters, where the scattering envi-

ronment is dominated by a small number L ≤ min{MT ,MR} of angularly separable

scatters (clusters) [55]. Such a system is shown in Figure 4.1. In this figure we see

that the transmitted signal power reaches the receiver by scattering from two angu-

larly separated clusters (e.g., L = 2). The power of the scatters from each cluster is

concentrated in a narrow angular width ∆α`. The transmit and receive arrays are

linear with a spacing of dT and dR respectively where dT = dR = λ/2 and where

λ is the carrier wavelength. The transmit array is stationary while the receiver is

moving at a speed of vR in the direction of α` relative to direction of each cluster.

The maximum Doppler frequency is fD where

fD =
f0
c
vR (4.1)

and where f0 is the carrier frequency, and c is the speed of propagation.
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In this case, the MIMO channel matrix H(t) can be represented as [65]

H(t) =
L∑

`=1

√
P` a`b

†
`ξ`(t) exp(j2πfD cosα`t) (4.2)

Here α` is the angle of arrival of the signal from the `th scatterer, fD is the maximum

Doppler frequency, P` is the relative power of the `th path, where
∑L

`=1P` = 1, a` and

b` are the receive and transmit steering vectors of the `th path and ξ`(t) is a complex

Gaussian process of zero mean and a covariance function ρ`(τ) = E
{
ξ`(t+ τ)ξ∗` (t)

}

given by [65]

ρ`(τ) = σ2sinc (2∆α` cosα`fDτ) exp(j2πfD cosα`τ) (4.3)

where ∆α` � 1 is a narrow angular spread of `th cluster. The steering vectors are

mutually orthogonal due to cluster separation in the angular domain, i.e. a
†
Lak =

MRδ`k, b
†
Lbk = MT δk`. As the result, the matrix W(t) = H(t)H†(t) can be ex-

panded as

W(t) = MT

L∑

`=1

a`a
†
`P`|ξ`(t)|2 = AP(t)A† (4.4)

where the matrix A, AA† = MRIMR
is composed of the steering vectors a` and

P(t) = diag
{
P`MT |ξ`(t)|2

}
is a diagonal matrix. By inspection of equation (4.4)

and the fact that L ≤ min{MT ,MR} one can conclude that it represents eigenvalue-

decomposition of the matrix W. To compute the eigenvalues for MIMO SVD trans-

mission, consider the following manipulations of (4.4).

Let H(t) = UΣ(t)V† be the SVD decomposition of the channel matrix H(t).

Here both U and V are unitary. From (4.4) we have

W(t) = H(t)H(t)† = UΣ(t)V†(VΣ(t)U†) (4.5)

= UΣ2(t)U† = AP(t)A† (4.6)
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Recalling that AA† = MRIMR
, the above becomes

UΣ2(t)U† = XMRP(t)X† = XZ(t)X† (4.7)

where now X is unitary and Z(t) = diag
{
P`MTMR|ξ`(t)|2

}
. Clearly from the above

we have

Σ2(t) = diag
{
P`MTMR|ξ`(t)|2

}
(4.8)

with non-zero diagonal elements of Σ2(t) given as

λ2
`(t) = P`MTMR|ξ`(t)|2, ` = 1, 2, . . . , L (4.9)

The above corresponds to the time-varying eigenvalues.

4.2 Statistical Properties

The above eigenvalues appear in both expressions for channel capacity, as well as they

are related to the effective error rate of the individual parallel SVD channels through

the SISO equivalent SNR [64]. Therefore, the statistical properties of (4.9) are useful

quantities and it is important to understand both their distribution and how they

evolve in time.

4.2.1 Unordered Eigenvalue and SNR Distribution

Since ξ` is a complex proper zero-mean Gaussian process with well-known [66] sta-

tistical properties, the distribution of η(t) = |ξ`(t)|2 is also well-known [66] as an

exponential distribution with a scale parameter of 1 or with a PDF

fη`
(x) = exp(−x) (4.10)

and by a simple transformation of variables, one can obtain the distribution of (4.9)

as

fΛ`
(x) =

1

MRMTP`
exp

(
− x

MRMTP`

)
(4.11)
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Consequently, one can obtain equivalent SNR distribution of each subchannel.

For an SVD system with equal power allocation, and assuming a reference SNR level

of γ0, one can relate this to the eigenvalues as [67]

γ` =
γ0

MT
λ` (4.12)

with a corresponding per subchannel SNR density function at a reference SNR γ0

given through a trivial transformation of variables as

fΓ`
(γ`) =

1

γ0MRP`
exp

(
− γ`

γ0MRP`

)
(4.13)

The above SNR density can be used to determine performance parameters (such

as bit-error rate) of the individual channels.

4.2.2 Ordered Eigenvalue and SNR Distribution

In addition to the individual distributions, the ordered eigenvalue distribution is often

a quantity of interest. We denote the ordered eigenvalues as

λ′L ≥ λ′L−1 ≥ · · · ≥ λ′1 ≥ 0 (4.14)

With equal power arriving from all clusters (i.e. P` = 1/L, ` = 1, 2, . . . , L), the

kth eigenvalue can be found as [64]

fλ′
k
(x) = k

L!

k!(L− k)!F
k−1
X (x)[1− FX(x)]L−kfX(x) (4.15)

where

fX(x) =
L

MRMT
exp

(
− xL

MRMT

)
(4.16)

and

FX(x) =

x∫

0

fX(x̄)dx̄ = 1− exp

(
− xL

MRMT

)
(4.17)

and similar expressions can easily be found for SNR.
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In the general case when eigenvalues/SNR are not identically distributed, the

ordered distribution can be obtained by applying the Bapat-Beg Theorem [68]. In

general however, such expressions must be solved numerically and are not the focus

of this work.

4.2.3 Channel Capacity

It is well known [67] that the instantaneous capacity of an open loop MIMO system

is given as

C(t) = ln det

[
IMR

+
γ0

MT
W(t)

]
(4.18)

with all quantities given as before. Furthermore, (4.18) can also be expressed a

summation of terms containing the eigenvalues of the MIMO channel as

C(t) =
L∑

`=1

ln [1 + γ0MRP`η`(t)] (4.19)

As such, statistics of C(t) could be studied in terms of statistics of η`(t).

4.2.3.1 Capacity Distribution

In the above, (4.19) shows that the contribution to capacity for sparse MIMO channels

is the summation of capacity contributions by individual scatters. Using this principle,

we derive the capacity distribution as follows.

As the first step, let us consider the capacity contribution by any single scatter

` (i.e., C`(t)). It is given as

C`(t) = ln[1 + γ̄`η`(t)] (4.20)

where γ̄` = γ0MRP` and the distribution of η`(t) is exponential as in (4.10). Let

FC,`(c) denote the distribution function of the capacity contribution of the `th cluster.

The distribution FC,`(c) can be found through a transformation of random variables
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as follows.

FC,`(c) = Pr[C ≤ c] (4.21)

= Pr [ln(1 + γ̄`η`) ≤ c] (4.22)

= Pr

[
η` ≤

exp(c)− 1

γ̄`

]
(4.23)

= Fη`

(
exp(c)− 1

γ̄`

)
(4.24)

= 1− exp

(
−exp(c)− 1

γ̄`

)
(4.25)

where the PDF is then easily found as

fC,`(c) =
∂

∂c

[
FC,`(c)

]
=

1

γ̄`
exp

(
−exp(c)− 1

γ̄`
+ c

)
(4.26)

Finally since the contribution by each cluster is independent, the overall distribution

is

fC(x) = fC,1(c1) ∗ fC,2(c2) ∗ · · · ∗ fC,L(cL) (4.27)

where ∗ denotes the convolution operation.

4.2.3.2 Exact Mean and Variance of Capacity

While direct computation of the above provides information about the capacity dis-

tribution, it is often [69] more efficient to approximate the above as a Gaussian dis-

tribution, which can be completely described through its mean and variance.

From (4.19) we can obtain the exact expression for the mean capacity, µ̄C , as

follows

µ̄C = E[C(t)] = E




L∑

`=1

ln(1 + γ̄`η`(t))


 (4.28)
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=

L∑

`=1

E [ln(1 + γ̄`η`(t))] (4.29)

=
L∑

`=1

∞∫

0

ln(1 + γ̄`x) exp(−x)dx (4.30)

In a similar manner, the second moment of capacity is given as

E[C2(t)] =
L∑

`=1

∞∫

0

ln2(1 + γ̄`x) exp(−x)dx (4.31)

Therefore the variance σ2
C is given as

σ2
C = E[C2(t)]− E2[C(t)] (4.32)

To evaluate both (4.30) and (4.31), let us consider an integral of the form

Im =

∞∫

0

lnm(1 + γ)fγ(γ)dγ (4.33)

where fγ̄`
(γ) is the PDF of the random variable γ and relating the above to the

integrals in (4.30) and (4.31) is fγ̄`
(γ) = γ̄`

−1 exp (−γ/γ̄`)

Exact evaluation of the integral (4.33) could be based on the following identity

lnm(1 + γ) = lim
ν→0

dm

dνm (1 + γ)ν (4.34)

Therefore, evaluation of Im can be reduced to evaluation of

J =

∞∫

0

(1 + γ)νfγ̄`
(γ)dγ (4.35)

followed by differentiation and taking the limit

Im = lim
ν→0

dm

dνmJ (4.36)
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In particular, given the exponential distribution above for the capacity contri-

bution from cluster `, one can obtain the following

J(`) = exp

(
1

γ̄`

)
γ̄`

νΓ

(
1 + ν,

1

γ̄`

)
(4.37)

where Γ(x, a) is the incomplete Gamma function.

For m = 1, we have

I
(`)
1 = lim

ν→0

d

dν
exp

(
1

γ̄`

)
γ̄`

νΓ

(
1 + ν,

1

γ̄`

)
= exp

(
1

γ̄`

)
E1

(
1

γ̄`

)
(4.38)

where E1(·) is the exponential integral [70] defined as

E1(x) ≡
∞∫

x

exp(−u)du
u

(4.39)

Routines for numerical evaluation of E1(x) is available in most mathematical software

packages. Using (4.30) and (4.39) one can obtain an expression for the mean of

capacity as

µ̄C =

L∑

`=1

I
(`)
1 =

L∑

`=1

exp

(
1

γ̄`

)
E1

(
1

γ̄`

)
(4.40)

Similarly, one can obtain the second moment of capacity from (4.31) as

E[C2(t)] =

L∑

`=1

I
(`)
2 = lim

ν→0

d2

dν2
J(`) =

L∑

`=1

2 exp

(
1

γ̄`

)
G30

23

(
1, 1

0, 0, 0

∣∣∣∣∣
1

γ̄`

)
(4.41)

where Gmn
pq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

is the Meijer-G function [70], which is readily available

in many numerical packages. Using the above, the variance of capacity is simply as

usual

σ2
C =

L∑

`=1

[
2 exp

(
1

γ̄`

)
G30

23

(
1, 1

0, 0, 0

∣∣∣∣∣
1

γ̄`

)
−
(

exp

(
1

γ̄`

)
E1

(
1

γ̄`

))2
]

(4.42)
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The above variance requires numerical computation. In the next sections, we examine

different approaches for tractable computation of both the mean and variance of

capacity.

4.2.3.3 Approximate Mean and Variance - Moment-Based Approach

Alternatively, one can directly apply the moment-based method in [71] to obtain a

tractable approximation for the exact mean and variance of capacity found above. In

this case, one can express the Taylor series about the average SNR value γ̄` of the

quantity in (4.33) as

ln(1 + γ) = ln(1 + γ̄`) +
∞∑

ω=1

(−1)ω−1(γ − γ̄`)
ω

ω(1 + γ̄`)
ω (4.43)

≈ ln(1 + γ̄`) +
γ − γ̄`

1 + γ̄`
− (γ − γ̄`)

2

2(1 + γ̄`)
2

+O
[
(γ − γ̄`)

2
]

(4.44)

The mean is given as before in (4.30) and is

µ̄C =
L∑

`=1

∞∫

0

ln(1 + γ̄`x) exp(−x)dx (4.45)

=
L∑

`=1

∞∫

0

ln(1 + γ)fγ`
(γ) (4.46)

=

L∑

`=1

∞∫

0

(
ln(1 + γ̄`) +

∞∑

ω=1

(−1)ω−1(γ − γ̄`)
ω

ω(1 + γ̄`)
ω

)
exp(−γ)dγ (4.47)

= ln(1 + γ̄`) +

∞∑

ω=1

(−1)ω−1

ω(1 + γ̄`)
ωµω (4.48)

where µω is the ωth central moment of γ. Taking an approximation to ω = 2 we have

µ̄C ≈
L∑

`=1

ln(1 + γ̄`)−
γ̄`

2

2(1 + γ̄`)
2

+O
[

µ3

3(1 + γ̄`)
3

]
(4.49)

as by definition µ1 = 0. Similarly, this approach can be used for the second moment
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as

σ2
C + µ̄C

2 =

L∑

`=1

∞∫

0

(
ln(1 + γ̄`) +

∞∑

ω=1

(−1)ω−1(γ − γ̄`)
ω

ω(1 + γ̄`)
ω

)2

fγ̄`
(γ)dγ (4.50)

where after reducing the above to ω = 2 and solving for the variance, we obtain

σ2
C ≈

L∑

`=1

γ̄`
2

(1 + γ̄`)
2
− γ̄`

4

4(1 + γ̄`)
4

(4.51)

where model validations are found in Section 4.5.

It is important to study the factor µω
ω(1+γ`)

ω as in general central moments may

increase without limit and limiting the number of terms may dramatically affect the

accuracy of the approximation, particularly for moderate to high SNR. The value of

the above factor for increasing ω is shown in Figure 4.2 for L = 1,MR = 8. Due

to the difficulty in obtaining an analytical solution, these values are computed using

numerical techniques. In this Figure, we observe that even under high SNR conditions
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(30dB), the factor decays for increasing ω as a result of the denominator exponent.

As a result, we suggest that solving to ω = 2 may provide a good approximation to

the Taylor expansion in (4.33).

4.2.3.4 Approximate Mean and Variance - Low and High SNR Asymp-

totics

A different approach to the approximation for the low and high SNR region is to use

the following approximations

log(1 + x) ≈
{
x, x� 1 (Low SNR)

log(x), x� 1 (High SNR)
(4.52)

Using the above, the mean in the low SNR region reduces to

µ̄C
(Low) =

L∑

`=1

∞∫

0

γfγ̄`
(γ)dγ =

L∑

`=1

γ̄` (4.53)

and similarly one can obtain the variance as

σ
2 (Low)
C =

L∑

`=1

γ2
` (4.54)

In the high SNR region, one can use a similar approach to the exact computation

with ln(1 + γ) ≈ ln(γ). In this case, we obtain

J(`) = γ̄`
vΓ(1 + v) (4.55)

where Γ(x) is the Gamma function. Following arguments as before we have

µ̄C
(High) =

L∑

`=1

(ln(γ`)− γ̄0) (4.56)

where γ̄0 = 0.577215665... is the Euler-Mascheroni constant [70].
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The high SNR variance is found by taking the asymptotic expansion of

lim
v→0

d2

dv2

(
J(`)

)
−
(
I
(`)
1

)2

To the second order, this is given as

σ
2 (High)
C =

L∑

`=1

2[γ̄0 − ln(γ̄`)− (ln(γ̄`)− γ̄0)
2]

γ̄`
+
π2

6
(4.57)

From the above its easy to see that the variance converges as SNR goes to infinity

σ2
C = lim

γ`→∞,∀`
=

L∑

`=1

π2

6
=
Lπ2

6
(4.58)

This is consistent with the results obtained in [72].

4.3 Time-Varying Statistics

In addition to time-independent statistics, it is often useful in the design of adaptive

transmission schemes to utilize time-varying parameters [20, 21] including the level-

crossing rate (LCR) and the average fade duration (AFD). These quantities describe

useful characteristics about the how quickly the channel changes in time and how

these changes affect the reliability of the channel.

4.3.1 Unordered Eigenvalues

It follows from (4.3) that for any unordered eigenvalue, the correlation function of

the envelope of ξ` is given by

ρenv,`(τ) = σ2sinc (2∆α` cosα`fDτ) (4.59)
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It is well known [66] that the LCR of a single eigenvalue with a exponential density

function given in (4.11) is exactly

NΛ,`(λ) = 2

√
λ

MRMTP`
exp

( −λ
MRMTP`

)√
σ̇2
`

2π
(4.60)

where σ̇2
` is the variance of the derivative process. For a Gaussian process, this is

known to be

σ̇2
` = − ∂2

∂τ2
{ρenv,`(τ)}

∣∣∣∣
τ=0

(4.61)

=
σ2

3
(2π∆α` cosα`fD)2 (4.62)

with corresponding AFD as

AFDΛ,`(λ) =
FΛ,`(λ)

NΛ,`(λ)
(4.63)

where FΛ,`(λ) is the CDF of the exponential distribution given in (4.11) and equal to

FΛ,`(x) = 1− exp

(
− x

MRMTP`

)
(4.64)

4.3.2 Capacity

4.3.2.1 Single Cluster Capacity LCR and AFD

An exact expression for LCR and AFD of channel capacity for a single cluster en-

vironment can be found as follows. First the channel capacity of a single cluster is

given as before

C`(t) = ln(1 + γ̄`η`(t)) (4.65)

As with (4.60), the LCR of the γ̄`η`(t) process is also exponentially distributed and

given as

Nγ̄`η`
(r) = 2

√
r

γ̄`
exp

(−r
γ̄`

)√
σ̇2
`

2π
(4.66)
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where all quantities are as before. Due to the monotonically increasing and non-

negative nature of (4.65), there exists a one-to-one mapping of C`(t) to η`(t). Further,

the LCR at a threshold c, where

c = ln(1 + r) (4.67)

is equal to LCR at a threshold r given in (4.66). Since r = exp(c)− 1, the LCR of

capacity of a single cluster is given as

NC`
(c) = Nγ̄`η`

(exp(c)− 1) =

√
2β`(exp(c)− 1)

πγ̄`
exp

(
−exp(c)− 1

γ̄`

)
(4.68)

and the AFD is given as usual

AFDC`
(c) =

FC`
(c)

NC`
(c)

(4.69)

where FC`
(c) is the cumulative density function of (4.26).

4.3.2.2 Approximation of Multi-Cluster Capacity LCR and AFD

It was noted in Section 4.2 that the contribution of individual clusters to the capacity

is independent. However, this is not the case in the computation of LCR and AFD,

therefore requiring direct use of the general formula Rice formula [66] which requires

knowledge of the joint PDF of the capacity and its derivative process (which is not

usually known [61,73]). Since a derivative of a stationary process is often a symmetric

function uncorrelated with the original process, it is usually the case that LCR can

be approximated as

NC(c) = pc(c)

√
σ2
ċ

2π
(4.70)

where σ2
ċ is the variance of the capacity derivative process.

Assuming the validity of (4.70) the approximation for σ2
ċ is given by the follow-

ing lemma:
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Lemma 1. The capacity derivative process Ċ is approximately a zero-mean Gaussian

random variable with an approximate variance of

σ2
ċ ≈ 4 exp(−1)πσ2

c

L∑

`=1

P`σ̇
2
`

Justification: Firstly, as before we note that due to the non-negative nature of

the underlying Rayleigh process |ξ`(t)|, there exists a one to one mapping between

C`(t) and |ξ`(t)| such that at any instant of time, C`(t) = log(1+ γ̄`|ξ`(t)|2). Further-

more, the non-negative property of |ξ`(t)| implies that the average number of times

the |ξ`(t)| process crosses a threshold r is equal to the average number of times the

C`(t) process crosses a threshold c where c = log(1 + γ0MRP`|r|2).
Under this observation, we suggest that the maximum value of the LCR of the

underlying Rayleigh process is the same as the capacity process. Under our Gaussian

capacity approximation, where the capacity variance is σ2
c , we obtain a maximum

distribution value of 1/
√

2πσ2
c where the LCR peaks. Using this feature matching

method, the ratio of the underlying Rayleigh process (where σ2 = 0.5) maximum to

the Gaussian capacity is:

κ =
√

2 exp(−1

2
)
√

2πσ2
c

Finally, one can obtain the approximate process variance as a weighted com-

bination of the variances of each individual contribution of capacity scaled by the

distribution ratio above

σ2
ċ ≈

L∑

`=1

κ2P`σ̇
2
`

≈ 4 exp(−1)πσ2
c

L∑

`=1

P`σ̇
2
`

where all quantities have been previously described.

Using the LCR in (4.70), the AFD is simply

AFDC(c) =
FC(c)

NC(c)
(4.71)
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Figure 4.3: Eigenvalue Evolution for the `th eigenvalue

Here FC(c) is a Gaussian CDF with mean and variance given in (4.40) and (4.42)

respectively.

4.4 Finite State Channel Model

Alone, quantities such as the LCR and AFD of a process can be of little use. Com-

bining this with use of finite-state Markov chains (FSMCs) [19] forms the well-known

Wang-Moyaeri model, and provides of mechanism of quantifying the dynamics in a

form useful for cross-layer scheduling techniques [20, 21].

4.4.1 Eigenvalue Based

The unordered channel eigenvalues can be described as an L-dimensional FSMC which

models the evolution of the eigenvalues as a function of time. By partitioning each

eigenvalue process into a finite level of states, with corresponding probabilities of

transmission between states, we can model the evolution of the entire process. Such

a model is vital in the design of adaptive systems such as those which employ SVD

eigenmode transmission as the error performance of the system relies on the instan-

taneous eigenvalues.

The design of the L-FSMC model is as follows. For each of the L eigenvalues,

partition the process into K finite states denoted S` ∈ {S
(`)
k }, k = 1, 2, . . . , K where
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each state is bounded by [ϕ`,i, ϕ`,i+1) with ϕ`,1 = 0 and ϕ`,K+1 = ∞ for each `th

eigenvalue. There are numerous partitioning methods discussed in the literature [19,

20], however for the sake of brevity we do not discuss those here and assume that we

have chosen these thresholds. Overall we obtain the entire L-FSMC represented by

KL independent states (or by S = S1 × · · · × SL).

The transition probabilities between states can be computed in a manner such

as that in [19]. We denote the frame of interest having a duration Tf . We also assume

during a frame of interest, each eigenvalue can evolve to only a neighbouring state.

In this way, the transition probabilities for each of the L individual eigenvalues can

be given as:

P
(`)
i,i+1 ≈

NΛ,`(ϕ`,i+1)Tf

FΛ,`(ϕ`,i+1)− FΛ,`a(ϕ`,i)
i = 1, . . . , K − 1 (4.72)

P
(`)
i,i−1 ≈

NΛ,`(ϕ`,i)Tf

FΛ,`(ϕ`,i+1)− FΛ,`(ϕ`,i)
i = 2, . . . , K (4.73)

P
(`)
i,i ≈ 1− P (`)

i,i−1 − P
(`)
i,i+1 i = 2, . . . , K − 1 (4.74)

P
(`)
1,1 ≈ 1− P (`)

1,2 i = 1 (4.75)

P
(`)
K,K ≈ 1− P (`)

K,K−1 i = K (4.76)

where the evolution for each eigenvalue is shown in Figure 4.3 and the overall eigen-

value Markov chain is comprised of L of these independent eigenvalue chains.

4.4.2 Capacity Based

The study of channel capacity is often of equal interest when analyzing the perfor-

mance of a given channel. This is no different when quantifying how it changes in

time and has been used in a number of ATSs [74].

In this case, the channel capacity can be modeled as a one-dimensional FSMC.

The FSMC is comprised of K finite states with each bounded by [ϕi, ϕi+1) and with

ϕ1 = 0 and ϕK+1 =∞. The corresponding state transition probabilities are as before
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and given as

Pi,i+1 ≈
NC(ϕi+1)Tf

FC(ϕi+1)− FC(ϕi)
i = 1, . . . , K − 1 (4.77)

Pi,i−1 ≈
NC(ϕi)Tf

FC(ϕi+1)− FC(ϕi)
i = 2, . . . , K (4.78)

Pi,i ≈ 1− Pi,i−1 − Pi,i+1 i = 2, . . . , K − 1 (4.79)

P1,1 ≈ 1− P1,2 i = 1 (4.80)

PK,K ≈ 1− PK,K−1 i = K (4.81)

4.5 Numerical Validation

In order to evaluate the accuracy of our model and approximations, simulation anal-

ysis is performed. All default parameters are listed in Table 4.1.

4.5.1 Time-Invariant Statistics

In Figure 4.4 we demonstrate the simulated and analytical capacity distribution for

various antenna configurations. We observe that for the most part the analytical

distribution closely matches the simulated results. For the case of the 8 × 8 system

with 3 clusters we observe this is not exactly the case. In this case, the number

of clusters relative to the number of antennas is increasing resulting in incomplete

separability of the individual clusters. Further, for the 2 and 3 cluster case, we apply

Table 4.1: Simulation Parameters

Parameter Value Parameter Value

Number of Samples 20000 γ0 0dB

Fs 1250Hz vR 60km/hr

Antenna Spacing λ/2 fC 2.4GHz

∆α`, ∀` 5◦ P`, ∀` 1/L

α1 0◦ α2 30◦

α3 60◦
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Figure 4.4: Capacity Distribution for Various Antenna and SNR Values
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Figure 4.5: Mean Channel Capacity as a Function of SNR
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Figure 4.6: Variance of Channel Capacity as a Function of SNR

the KS-TEST with a significance level of 0.05 to verify the accuracy of the Gaussian

approximation. The KS-TEST fails to reject this approximation under all scenarios,

except for the case of 8 × 8 system with 3 clusters. The rationale behind this is as
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Figure 4.7: Single Eigenvalue Level-Crossing Rate and Average Fade Duration

before.

The capacity exact and approximate mean is shown in Figure 4.5 for low and
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high SNR respectively. In the low SNR region the low SNR approximation only holds

close for less than about −14dB. The moment-based method closely follows the mean

from low to high SNR. In the high SNR region, the high SNR approximation very

closely approximates the mean capacity for 15dB and greater.

The variance is shown in Figure 4.6. For the case of the variance, the approxi-

mations are not as close. The low SNR approximation is only valid for very low SNRs

(less than 20dB). The moment-based method holds tightly until about −10dB and

reasonably close until about 0dB. The high SNR approximation approaches the exact

around 15dB for a single cluster, and as high as 30dB for the 3 cluster scenario.

4.5.2 Time-Varying Statistics

Figures 4.7a and 4.7b shows the LCR and AFD for single eigenvalues respectively for

various antenna configurations. The analytical results in this case exactly follow the

simulated performance.

Further, figures 4.8a-4.8f show the LCR and AFD for the channel capacity for

several antenna configurations. Trends of the LCR and AFD (exact and approximate)

are as expected. The single cluster contribution is exact (since this is simply an

extension of the eigenvalue LCR/AFD findings above). The multi-cluster results

closely approximates the simulated performance justifying its use. The only scenario

where there is dramatic disagreement between analytical expressions and simulated

results is for L = 3 for 8 × 8 MIMO. Here we observe similar phenomenon as the

capacity distribution (the independence assumption no longer holds due to clusters

not being completely separable).

4.6 Chapter Summary

In this chapter we derived expressions for the first and second order statistics of

sparse MIMO channels. We provide exact expressions for the LCR and AFD of the

unordered channel eigenvalues and capacity contributed by a single narrow cluster.
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Figure 4.8: Level-Crossing Rate and Average Fade Duration of Capacity for Various
Cluster Sizes
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Tractable approximations to capacity in the case of multiple clusters is also provided

and verified through numerical simulations. All quantities as derived play a vital role

in design of adaptive transmission systems.

The application of findings in this chapter can be used in a number of ways. For

example, in the next chapter, the SNR distribution of individual channels is used in

design of a multi-queue scheduling algorithm. Furthermore, using the Wang-Moyaeri

model, one can measure other useful system metrics such as how fast the channels

evolve in time, or quantifying the duration of time the channel can be assumed static

when applying block fading model assumptions. Details of future work on this chapter

is described in Chapter 8.
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Chapter 5

Time-Varying Energy Efficient Bit and

Packet-Based Scheduling in Sparse

Channels with CDI

In Chapter 4 we studied a particular class of MIMO channels where the channel is

composed of a small number of finite clusters. In this chapter, we are interested in the

distribution of the subchannel SNR and exploiting this knowledge in the scheduler

design for the {K×M} system as described in Chapter 3. The benefits of optimization

to meet QoS constraints was previously shown in Chapter 3 for the case of static.

The purpose of this chapter is to propose a method to extend the work described in

Chapter 3 to the case of time-varying channels as well as to incorporate the use of

coded modulation schemes. We also propose several complexity reduction methods

in the formulation of the optimization problem.

The remainder of this chapter is divided into five sections. Section 5.1 briefly

outlines the medium access control (MAC) and physical (PHY) layer models of the

downlink system. The MAC model was discussed in detail in Section 3.1 of Chapter 3.

In this chapter, we relax the previous assumption that the subchannels are static in

time. It is assumed that knowledge of only the channel distribution information

(CDI) is exploited in the scheduler policy design since the policy is computed offline1.

Next, in Section 5.2 we detail the overall time-varying scheduler design. Next, in

Section 5.3, the PHY layer allocation mechanism is presented and formulated using

general optimization framework. Results comparing the average arrival rate and

1. While only CDI is used in the scheduling policy determination, full channel state
information (CSI) is assumed at the transmitter while transmitting using this policy online.
We note that full CSI is required for MIMO singular value decomposition (SVD).
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delay tradeoff on average allocated power is then shown in Section 5.4 along with

discussion on tradeoffs with the number of channel partitions in the PHY. Finally,

a brief summary is drawn in Section 5.5. Part of this work appears in Dechene et

al. [8].

5.1 System Model and Overview

The multi-queue, multi-channel downlink system is composed of a base station trans-

mitting traffic to a single subscriber station as shown in Figure 3.1 in Chapter 3.

The system operates is divided into a MAC component and PHY component. The

MAC component schedules packets subject to QoS constraints, queue occupancy in-

formation and transmission cost information from the PHY layer. The PHY layer

is responsible for performing channel, rate and power allocation subject to channel

state information and instantaneous packet service rates to minimize transmission

cost while satisfying channel loss constraint. This MAC model was described in de-

tail in Chapter 3 and summarized below while the modified PHY model to account

for the time-varying channel is presented here.

There are K traffic classes using independent FIFO buffers with parameter

set {Di, Li, λi, Bi, δi} describing the maximum tolerable average delay, packet size,

average arrival rate, buffer size and maximum tolerable packet loss rate respectively.

The tolerable loss rate give a packet arrives to the queue can further be expressed by

its components: δi = 1−(1−Pd,i)(1−Pl,i); where Pd,i and Pl,i denote the probability

of packets dropped entering the queue and packets dropped due to channel errors

respectively. Similar to Chapter 3, it is assumed that these losses are both known

and constrained independently. During each frame, a number of packets are taken

from each queue and transmitted to the subscriber station. The scheduling algorithm

employed is QoS-aware and formulates scheduling decisions based on the expected

transmission cost and information about its instantaneous buffer levels and individual

traffic class QoS requirements.

The scheduling time horizon is divided into a number of frames as shown in

Figure 5.1. Each frame has a duration of Tf seconds and has a fixed number of symbols
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of duration Ts seconds in each subchannel. There are a number of transmission rates

that can be chosen which is referred to as the modulation and coding scheme (MCS).

For each possible MCS, each subchannel can carry a given number of bits. From frame

to frame, the evolution of each buffer can be described by the number of departures

ci(n), the number of arrivals Ai(n) and the previous buffer occupancy level ui(n).

An example frame allocation is shown in Figure 5.1. Here, we see four streams being

transmitted over four subchannels.

The base station and receiver are both equipped with multiple antennas. There

are MT antennas at the base station and MR antennas at the receiving station. The

system employs singular value decomposition (SVD) eigenbeamforming. In general a

MIMO SVD system allows up to M = min{MT ,MR} parallel subchannels for trans-

mission. Measurement campaigns however have suggested [55, 56] that the number

of non-zero eigenvalues in general is less than the minimum number of antennas (i.e.,

L ≤ min{MT ,MR}). Such channels are known as sparse, and in fact can be modeled

using a well-described geometric approach [65] to which the underlying time-varying

parameters were well-studied earlier in this thesis and are described in Chapter 4. It

is assumed that in this chapter, L is known.

From Chapter 4, we know the `th unordered subchannel eigenvalue has a known

Frame m+3 Frame m+4Frame m Frame m+1 Frame m+2

TfTfTf

Buff_1

Buff_1

L

Buff_1

Buff_3 Buff_3

Buff_2 Buff_2 Buff_2 Buff_2

Buff_4 Buff_4

Buff_4

Buff_4

Figure 5.1: Frame Timing Layout for Packet Allocation
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probability density function (PDF) of2

fΛ`
(λ`) =

1

MRMTP`
exp

(
− λ`

MRMTP`

)
(5.1)

where P` is the relative power of that contributing cluster (described in [65]) such

that
∑L

`=1 P` = 1. The equivalent SNR of each subchannel of the SVD system for a

reference SNR γ0 is then [67]

γ` =
γ0

MT
λ` (5.2)

Finally, the density function of the subchannel at a reference SNR γ0 is simply

fΓ`
(γ`) =

1

γ0MRP`
exp

(
− γ`

γ0MRP`

)
(5.3)

While each time-varying subchannel SNR can be described by the distribution

in (5.3), recent cross-layer design techniques [20, 21] partition the subchannels into

a finite number of states [19] in scheduler design which helps to reduce decision

complexity by reducing the number of states needed to describe the system.

In the case of multiple parallel subchannels, the overall state of the channel can

be described by jointly considering the state of all parallel subchannels. Each sub-

channel is divided into J`+1 states; J` active states as well as 1 null (or outage state).

It is assumed that no transmission occurs in a subchannel in an outage state. The

impact and existence of an outage state is discussed later in this chapter. Denoting

J` as a set of J` finite active states of the `th unordered subchannel SNR, each jth`

subchannel state is bounded by [ϕ`,j`
, ϕ`,j`+1) where ϕ`,1 = ε, and ϕ`,J`+1 = ∞ for

each subchannel `. The 0th state bounded by [0, ε) denotes the null state where ε is a

small positive number chosen so the probability of outage is near 0 (Pr[j` = 0] ≈ 0).

Further, we can express J (or the joint subchannel state) as

J = J1 × · · · × JL (5.4)

2. While we focus on the illustrative case of sparse MIMO channels, extensions are
trivial for any multichannel model with known SNR distribution. As a result the presented
framework can be applied in a general multiple channel scenario.
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There are a number of partitioning methods discussed in the literature [19,

20]. Further research has shown [21] that properly designed channel partitioning

thresholds can offer another degree of design freedom in adaptive transmission design,

however we do not focus on that here3. Here, we employ an equal probability method

such that the bounds are chosen to satisfy

ϕ`,j`+1∫

ϕ`,j`

fΓ`
(r)dr =

1

J`
,

j` = 1, 2, . . . , J` and

` = 1, 2 . . . , L
(5.5)

where for a given number of partitions J` and for a subchannel SNR distribution

in (5.3), the above can be easily found as

ϕ`,j`+1 = −γ0MRP` ln

(
1− j`

J`

)
, j` = 1, . . . , J` − 1 (5.6)

Consider the following example where both the base station and subscriber sta-

tion are equipped with 8 antennas, a reference SNR of γ0 = 10dB and the channel is

dominated by 4 independent scatters with relative powers P` = {0.4, 0.3, 0.2, 0.1}.
Partitioning each eigenvalue into 5 active states and using the equal probability

method described above, the probability of being in a certain active state to equal

1/5 = 0.2. As such each boundary can be given as:

ϕ`,j`+1 = −γ0MRP` ln (1− 0.2j`) , j` = 1, . . . , J` − 1 (5.7)

and for the example above, all boundaries are given in Table 5.1.

The power level required to maintain a given loss rate on the channel, Pl,i, will

depend on both the subchannel states described above, the subchannel of interest,

the packet size and chosen MCS mode in that subchannel of interest. By using packet

level allocation, packet error rates for coded transmissions can be easily accounted

for using known analytical expressions. Here, we use the block outage probability

3. We note that while the number of partitions can impact the scheduler computational
complexity, the method of choosing partition thresholds of the channel does not.
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Table 5.1: Channel Partition Boundaries of FSMC Model

Boundaries ` = 1 ` = 2 ` = 3 ` = 4

ϕ`,0 0 0 0 0

ϕ`,1 ε ε ε ε

ϕ`,2 7.141 5.355 3.570 1.785

ϕ`,3 16.346 12.260 8.173 4.087

ϕ`,4 29.321 21.991 14.661 7.330

ϕ`,5 51.502 38.627 25.751 12.876

ϕ`,6 ∞ ∞ ∞ ∞

(BLOP) derived in [10] to model the instantaneous packet error rate of the subchannel

which is given as

PER(γ, k`, Li) ≈ Q


 log(1 + γ)− log(2)k`√

2k`
Li

γ
1+γ


 (5.8)

where γ is a given SNR level, k` is the spectral efficiency (number of bits per symbol)

and Q(·) is the Q-function. The factor log(2) is reflection of the fact that we measure

spectral efficiency in bits per symbol instead of nats/symbol. The above was shown

to closely approximate the block error rate (BLER) for medium block lengths such

as those used later.

Therefore the loss rate on the subchannel is given as the average PER over

active state j` of subchannel ` with applied power P as

Pl,i =
1

|J`|

j`+1∫

j`

PER(γ`P, k`, Li)fΓ`
(γ`)dγ` (5.9)

The value of P satisfying the above for a given Pl,i in queue i in subchannel

` in state j` with a spectral efficiency of k` is denoted P (i, `, j`, k`). For any outage

state P (i, `, 0, k`), ∀i, `, k`, the solution P evaluates to infinity. For any subchannel

in an outage state (i.e., j` = 0) there is no transmission in that subchannel therefore

the only allowable spectral efficiency is 0 (i.e., k` = 0).
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Table 5.2: Queue Configuration Parameters

Di Li λ̄i Bi δi

Queue 1 3 200 2 25 0.05

Queue 2 5 400 1 30 0.01

Queue 3 5 250 2 25 0.10

Now suppose the system has 3 queues over the physical layer example previously

described with parameter set {Di, Li, λi, Bi, δi} with quantities measured in frames,

bits, packets per frame, packets and percentage respectively and values given in Ta-

ble 5.2. Further, suppose during any frame n, the scheduler can take between 0 and

4 packets from each queue. Suppose valid spectral efficiencies are of {0, 1.5, 3, 4.5, 6}
bits per symbol. Furthermore, without loss of generality, Tf is normalized such that

Tf = 1 and the symbol duration is Ts = 0.005Tf . In this case, the maximum data

rate of the channel is then given as 6 × 4 × Tf/Ts = 4800 bits/Tf which is less

than our maximal required datarate of (200 + 400 + 250)× 4 = 3400 bits/Tf . Fi-

nally suppose the maximal tolerable packet loss rate on the channel is half the total

loss rate (Pl,i = 0.5δi). We can then compute the above for each i, `, j`, k`. Due

to the monotonicity of (5.8) in P for fixed parameters, the above can be solved by

numerical bisection. For example, for i = 2, ` = 3, j` = 2, k` = 4.5 one obtains

P (2, 3, 2, 4.5) = 6.6494. Similar values can be obtained for all other values of i, `, j`,

and k`.

5.2 Scheduler Design and Formulation

The scheduler has two-stages originally described in Chapter 3 where the scheduler

allocates a set of MAC rates (queue service rates) based on the QoS parameters (i.e.,

delay, throughput and buffer occupancy levels), and performs power, rate and channel

allocation based on the required MAC rate in conjunction with channel CSI. In this

chapter, we propose a modified algorithm for the power, rate and channel allocation

stage, for use in conjunction with the MAC rate assignment stage we presented in
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Chapter 3. The benefits of the proposed method in this chapter is the extension to

time-varying channels, as well as the ability to utilize coded transmissions.

Due to physical transmission limitations, only a small number of packets relative

to the queue size can be serviced from the queue during each frame. Let Ci be the set

of possible MAC rates (i.e., a set containing the possible quantity of packets that can

be serviced from queue i during any frame). Subsequently, C can then describe all

possible combinations of queue service rates across the set of queues or equivalently

as

C =
K∏

i=1

Ci (5.10)

Given a set C expressing the exhaustive MAC transmission rates for the MAC

layer, each c ∈ C = {c1, c2, . . . , cK}, target channel losses Pl,i, the set of channel

states J and the set of valid MCS modes M, the physical layer allocation scheme

can be formulated as follows.

First, one can express the channel state and MAC rate assignment state space

as S = C × J . For each s ∈ S, the problem is formulated as follows.

To select a set of MCS modes k(s) = {k`(s), ∀`} and a channel mapping scheme

X̄`,i(s), ∀`, i such that the total average power level selection is minimized. Let X̄`,i(s)

denote the number of packets from queue i to be transmitted in subchannel ` while in

system state s with a transmission power of P (i, `,J`(s), k`(s)), and where J`(s) is

the state of subchannel ` while in system state s. The power level P (i, `,J`(s), k`(s))

is found from solving (5.9) for P for a given target channel loss rate Pl,i. Due to

the monotonicity of (5.8) in γ, P can be found from (5.9) using efficient numerical

techniques.

With the above definition, we define the power, channel and MCS allocation

optimization (for s ∈ S) subproblem to minimize the average applied transmission

power as

P̄ (s) = min
k(s),X̄(s)

f(k(s), X̄(s)) (5.11)
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where

f(k(s), X̄(s)) =
K∑

i=1

L∑

`=1

M∑

k`∈M
Sk`,`

(s) · P (i, `,J`(s), k`)

⌈
X̄`,i(s)Li

k`

⌉
(5.12)

where k(s) and X̄(s) are the vector and matrices containing k`(s), ∀` and X̄`,i(s), ∀`, i
respectively, k`(s) is the spectral efficiency of the chosen MCS mode in bits per

symbol and d·e denotes rounding up to the nearest integer (ceiling function). The

quantity Sk`(s),`
(s) is an indicator function such that Sk`(s),`

(s) = 1 if a particular

MCS mode k` is used for transmission in subchannel ` and 0 otherwise. Therefore

k`(s) = {k`|Sk`,`
(s) = 1}. Further, we have the following additional constraints

L∑

`=1

X̄`,i(s) = ci(s), ∀i (5.13)

K∑

i=1

X̄`,i(s)Li ≤
k`(s)Tf

Ts
, ∀` (5.14)

∑

k`∈M
Sk`,`

(s) = 1, ∀` (5.15)

X̄`,i(s) ∈ I, ∀i, ` (5.16)

X̄`,i(s) ≥ 0, ∀i, ` (5.17)

Sk`,`
(s) ∈ {0, 1}, ∀` (5.18)

The constraint in (5.13) ensures that the number of allocated packets for each

stream across all subchannels satisfies the MAC requested rate ci(s), while (5.14)

ensures that the selected MCS mode in each subchannel satisfies the amount of data

transmitted over that subchannel. The constraint in (5.15) enforces that only a sin-

gle MCS mode can be applied per subchannel during a given time frame. Finally,

constraints (5.16)-(5.18) enforce integer/binary restrictions and non-negativity con-

straints on X̄`,i(s) and Sk`,`
(s).

Solutions to the above problem requires enumeration of all possible combina-

tions of Sk`,`
(s). This scales as O(|M|L) and results in a large number of possible
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MCS mode combinations for the optimization routine above. To improve computa-

tion efficiency, we take the following two steps in the pre-solution stage. First, the

constraints given from (5.13)-(5.18) suggest that only a subset of eligible candidate

sets {Sk`,`
(s), ∀`} that satisfy the constraints exists. The second is by using subchan-

nel ordering (assigning the highest rate to that of the best quality channel and so

on).

5.2.1 MCS Selection Space Reduction

The MCS space reduction is as follows. For each s ∈ S, let K be the set of all MCS

mode combinations by enumerating each possible combination of Sk`,`
(s). Further,

let Kinf (s), Ke(s), and Ko(s) be non-overlapping subsets of K such that

K = Kinf (s)
⋃
Ke(s)

⋃
Ko(s) (5.19)

Here Kinf (s) is the set of MCS modes assignments that are infeasible due to insuffi-

cient sum rate (fails to satisfy (5.14))

Kinf (s) =



k ∈ K

∣∣∣∣∣∣

L∑

`=1

k` ≤ xεinf (s)y,



 (5.20)

where

εinf (s) =
Ts

Tf

K∑

i=1

ci(s)Li (5.21)

with x·y denoting rounding down to the next smallest possible MCS mode combina-

tion for a given set of allowable spectral efficiencies.

The subset Ko(s) defines what we refer to as the overfeasible set. This is the

subset of MCS mode combinations that likely do not yield the most energy efficient al-

location. In general, this set is not unique. By maximizing the size of the overfeasible

set, one can minimize the system complexity (i.e., the number of optimization sub-

problems). We strongly suggest that the largest obtainable overfeasible set without
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eliminating the most energy efficient allocations is given as

Ko(s) =



k ∈ K

∣∣∣∣∣∣

L∑

`=1

k` > pεo(s)q,k = {k1, . . . , kL}



 (5.22)

where

εo(s) =
Ts

Tf



Lmax{L1, . . . , LK}+
K∑

i=1

ci(s)Li



 (5.23)

and p·q denotes rounding up to the next valid MCS mode combination for a given

set of allowable spectral efficiencies. The argument for the above is as follows. First,

from (5.20) and by the monotonically increasing nature of (5.8) in k`, increasing the

spectral efficiency of any single channel beyond what is required for channel allocation

is inefficient (requires an increase in power to maintain a target PER). Combining this

with the granularity of the problem (packet-level assignment granularity), it is possible

that the most energy efficient MCS mode selection scheme must be able to assign up

to 1 more of the largest granular quantity (largest packet) into any subchannel `.

Finally since Ko(s), Ke(s), and Kinf (s) are non-overlapping sets satisfying (5.19),

one can find Ke(s) as4

Ke(s) = (K \ Kinf (s)) \ Ko(s) (5.24)

where Ke(s) is the set possible MCS mode combinations used below.

4. Here we attempt to clarify a couple points to the reader. Firstly, there may exist
(due to channel mapping granularity restrictions) modes that propose infeasible solutions
to the optimization subproblem, and secondly, not all modes in Ke(s) yield the most energy
efficient MCS mode selection. We emphasize the purpose of this set is to determine a small
subset of all possible MCS modes to perform the above optimization in order to reduce the
search space in advance.
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5.2.2 MCS Assignment and Subchannel Ordering

The subchannel ordering operation is as follows. First, the mean SNR value of sub-

channel ` in state J`(s) is given by

µ`(s) =

∫

J`(s)

γ`fΓ`
(γ`)dγ` (5.25)

Each k ∈ Ke(s) vector contains the MCS modes for all L subchannels. Let k̄

represent the ordered vector k such that k̄1 ≥ · · · ≥ k̄x ≥ · · · ≥ k̄L. Let x = F(`) (with

corresponding inverse function ` = F−1(x)) return the subchannel level rank x of sub-

channel `. A subchannel level rank of x means that subchannel ` has the xth highest

mean as given by (5.25) (i.e., µ
F−1(1)(s) ≥ · · · ≥ µ

F−1(`)(s) ≥ · · ·µF−1(L)(s)). Each

MCS mode k̄x is mapped to each ordered subchannel µ
F−1(x)(s).

5.2.3 MCS Mode Selection Example

In order to better understand derivation of the potentially energy efficient MCS mode

subset, consider the following. Employing the example described earlier in this chap-

ter and supposing that the system is solving for s ∈ S and that the respective MAC

rates require transmission of 2 packets from queue 1, 4 from queue 2 and 1 from queue

3.

5.2.3.1 Infeasible Set

First to determine the infeasible set from (5.20) we have

εinf (s) =
0.005

1
(2 · 200 + 4 · 400 + 1 · 250) = 11.25 (5.26)

where we can see from (5.20) that any set of MCS modes k such that
∑L

`=1 k`(s) ≤
x11.25y. Supposing valid spectral efficiencies are {0, 1, 2, 4, 6} corresponding to no

transmission, BPSK, QPSK, 16QAM and 64QAM respectively (uncoded), it can eas-

ily be shown that x11.25y = 11.
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Table 5.3: Potentially Energy Efficient MCS Mode Sets

C1 C2 C3 C4 C1 C2 C3 C4

6 6 0 0 6 4 2 0

4 4 4 0 6 4 1 1

6 2 2 2 4 4 2 2

6 6 1 0 6 4 2 1

4 4 4 1 6 6 2 0

6 4 4 0 6 6 1 1

6 4 2 2 4 4 4 2

6 6 2 1 6 4 4 1

6 6 4 0 6 6 2 2

6 4 4 2 4 4 4 4

6 6 4 1 6 6 6 0

6 6 4 2 6 4 4 4

5.2.3.2 Overfeasible Set

Similarly from (5.22) one can find MCS modes combinations that exist in the sug-

gested overfeasible set where

εo(s) =
0.005

1
(4 · 400 + 2 · 200 + 4 · 400 + 1 · 250) = 19.25 (5.27)

where again it is easy to show that p19.25q = 20.

5.2.3.3 Energy Efficient Set

Based on the above example and allowable spectral efficiencies, the potentially energy

efficient set is given as the set of MCS modes yielding the following sum of spectral

efficiencies:
L∑

`=1

k`(s) = {12, 13, 14, 15, 16, 17, 18} (5.28)

From this, combined with MCS subchannel ordering, we can obtain a total of 24 po-

tential ordered assignment modes detailed in Table 5.3 where C` denotes the ordered

subchannel index such that µC1
(s) ≥ µC2

(s) ≥ µC3
(s) ≥ µC4

(s).
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5.2.3.4 Complexity Reduction

In the above example, one can see the complexity reduction achieved using the pro-

posed method. An exhaustive set of Sk`,`
for the above example suggests there are

64 = 625 possible ways an MCS mode can be selected for each state s ∈ S, however

the resulting potentially energy efficient subset of MCS modes yields only 24 ordered

sets. A resulting reduction in complexity by factor of 26 times through simple pre-

computation.

5.2.4 Revised Optimization Formulation

One can revise the transmission cost function from (5.12) to be a function of the

allocation matrix X(s) as

f k̄(s)(X̄(s)) =

K∑

i=1

L̄∑

x=1

P (i,F−1(x),J
F−1(x)(s), k̄x(s)) ·

⌈
X̄

F−1(x),i(s)Li

k̄x(s)

⌉
(5.29)

where L̄ is the number of subchannels where k` > 0 (in use during a given state) and

where the solution to the optimization problem follows as

P̄ (c, j) = P̄ (s) = min
k̄(s)∈Ke(s)

(
min
X̄(s)

f k̄(s)(X̄(s))

)
(5.30)

For each s ∈ S (or j ∈ J , c ∈ C), the above can be solved in two stages since

in our model the channel evolves independently of the action space, which results in

significantly lower complexity than joint optimization. This is true in this formulation

as the queue action determination is based on the long-term average allocation, and

not the instant of time. Finally, P̄ (c), used in (3.24) in Chapter 3, can be found by

averaging over all possible subchannel states or as

P̄ (c) =
1

|J |
∑

j∈J
P̄ (c, j) (5.31)
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where | · | denotes the size of a set. As before, the above framework can solve for all

quantities offline and in advance, where the resulting resource allocation quantities

can be stored in a look up table (LUT) at the base station. Full details of the LUT

were described in Chapter 3.

5.3 Formulation of Optimization Problem

The channel, rate and power allocation described in the previous section can be

formulated using the well-known branch and bound technique. The branch and bound

algorithm can be used to solve a LP problem where one or more components of the

solution vector are integers. A general branch and bound problem is formulated to

solve f(x) = arg min
x

cT x subject to Ax ≤ b, Aeqx = beq and x ≥ 0 where A and

Aeq are matrices, b, beq and c are vectors and some or all entries in x are constrained

to integers.

The vector x is a L̄K×1 vector with integer elements X̄
F−1(x),i, x = 1, 2, . . . , L̄, i =

1, 2, . . . , K given as

x = [X̄
F−1(1),1(s), . . . , X̄F−1(1),K(s), . . . , X̄

F−1(L̄),K(s)]T (5.32)

The objective function from (5.29) can be described as a coefficient vector c

with entries

c = [ζ
F−1(1),1(s), . . . , ζF−1(1),K(s), ζ

F−1(2),1(s), . . . , . . . , ζF−1(L̄),K(s)] (5.33)

where s ∈ S and ζ`,i(s) is

ζ`,i(s) = P (i, `,J`(s), k
′
F(`))

⌈
Li

k′
F(`)

⌉
(5.34)
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Table 5.4: Simulation Parameters

Parameter Value

Number of Antennas (MT , MR) 8

Valid Spectral Efficiencies (M) {0, 1.5, 3, 4.5, 6}
Length of Packet (Li bits) 200

Arrival Rate (λ̄i packets/frame) 2

Buffer Size (Bi packets) 25

Average Packet Delay (Di frames) 4

Total Loss Rate (δ, % of Packets) 10%

Target Channel Loss Rate (Pl,i) δ/2

Symbols per Frame per Channel (Tf/Ts) 200

MAC Rates (C, packets/frame) {0, 1, 2, 3}
Number of independent scatters (L) 4

Scatter relative power (Pl) {0.4 0.3 0.2 0.1}
Number of active subchannel partitions (J`) 5

Reference SNR (γ0) 10dB

ε 10−6

5.3.1 Equality Constraints

The K equality constraints from (5.13) are given in the K × L̄K matrix Aeq with

entries

Aeq:i,z =

{
1, z ∈ Ii
0, otherwise

(5.35)

where Ii is the set containing location indices of X̄`,i, ∀` in x. The coefficient vector

beq is subsequently given as

beq = [c1(s)L1, c2(s)L2, . . . , cK(s)LK ]T (5.36)

where ci(s) is the number of packets taken from queue i when the system is in state

s.
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5.3.2 Inequality Constraints

The L̄ equality constraints from (5.14) are defined in the L̄ × L̄K matrix A with

entries

Ax,z =

{
1, z ∈ I′x
0, otherwise

(5.37)

where I′x is the set containing location indices of X̄
F−1(x),i, ∀i in x. The vector b is

given as

b =
Tf

Ts
[k′1, k

′
2, . . . , k

′̄
L
]T (5.38)

Combining the above constraints, the problem can be computed through application

of the branch and bound technique, which is described in Appendix B.

5.4 Numerical Evaluation

Selected simulation results are presented using parameters as given in Table 5.4. As

in Chapter 3 the proposed framework is able to meet delay and throughput require-

ments. In this section we solely present results demonstrating the total average power

level selection as well as the effect of subchannel partitioning in terms of complexity

compared to average allocated power. These results are for a single user to isolate the

direct tradeoffs of interest, however in all scenarios the proposed method was able to

meet various QoS requirements of multiple traffic streams.

5.4.1 Average Power Usage

In Figure 5.2 we show the average power performance as a function of the delay

constraint and arrival rate in using our newly extended PHY with the MAC described

in Chapter 3. As expected, the power performance is largely dominated by the average

arrival rate. Further, and as expected, the average power is related to the delay in

that an increase in the delay tolerance reduces the total average power (albeit at a

lesser impact than the average arrival rate). This is a result of the system being

able to exploit channels higher SNR states, for higher rate transmission. Further, we
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Figure 5.2: Total Average Power vs. Delay and Arrival Rate

see that a region of arrival rate/delay constraints is infeasible as a result of the set

of MAC service rates employed. This is also consistent with well-known queueing

theory stability results. A major observation above, is that while the impact on

average power performance is impacted by the delay constraint, a larger impact is a

result of the arrival rate.

5.4.2 Partitioning Performance

The total number of subchannel partitions has a large impact on system performance.

In Figure 5.3 we show the impact on the number of partitions contrasted with the

average power consumption. The computation time is measured with respect to the

base case of 2 partitions per subchannel. On the one hand, we show that increasing

the number of partitions increases the power efficiency of the system by allowing a

greater degree of adaptability, however, the resulting complexity increases (resulting

in increased computation time). Further, the memory requirement for the size of the

lookup table greatly depends on the number of partitions. It is given as

SIZELUT = 64(2K + 1)L

K∏

i=1

|Ci|
L∏

`=1

(J`) bits (5.39)

where all relevant parameters are assumed to be stored as 64 bit doubles.
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Figure 5.3: Impact Effect of Channel Partitioning on Average Applied Power

5.5 Chapter Summary

In this chapter, we extended the results of Chapter 3 to a packet based transmis-

sion scheme in addition to applying this framework to time-varying channels. This

proposed framework proposes a method of incorporating of arbitrary MCS schemes

in the optimization framework. In addition, we also study the effect of subchannel

partitioning on resource allocation power and complexity.

There still remain a number of open problems and drawbacks to the system

above. One large drawback is the small probability of an outage event. While by

design the probability of this event is very small and has negligible impact on the

overall queue performance in terms of delay and throughput, it is important to study

a method to incorporate larger outage events in future work. Another drawback of the

approach above is the disparity between channel information that can be exploited

at the various stages of the scheduling policy. For example, for MIMO SVD, CSI is

required at the transmitter, however only CDI in the form of average performance

over all states of the channel is exploited in the queue service rate part of the policy.

This presents an additional degree of flexibility that can be studied. Details of these,

and other related open problems are discussed in future work given in Chapter 8.
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Chapter 6

Energy Efficient HARQ-Aware SC-FDMA

Uplink Resource Allocation

In previous chapters, we examined methods of scheduling multiple streams over mul-

tiple parallel channels, for downlink scenarios. Studying of the uplink scenario is

also of importance, particularly in prolonging mobile battery lifetimes. Modern cellu-

lar technologies such as 3GPP-LTE utilize localized single carrier frequency division

multiple access (SC-FDMA) in the uplink in order to share channel resources. SC-

FDMA overcomes major issues for mobile devices associated with high peak to average

power ratio (PAPR) when compared to traditional techniques such as OFDM. Unlike

OFDM, localized SC-FDMA requires frequency resources to be allocated contiguously

in frequency.

Focusing again on the multi-user uplink scenario from an abstracted view, a

multi-user SC-FDMA channel is simply a multi-service, multi-channel system, where

each user operates a single service and the individual frequency resources are available

for allocation similar to parallel subchannels. In this case, the number of subchan-

nels is large compared to previous examples using MIMO, and therefore exhibits

large computational complexity. Moreover, with localized SC-FDMA, frequency re-

sources must be allocated contiguously in frequency, unlike traditional methods such

as OFDM.

In this chapter we look at the challenges presented by SC-FDMA with syn-

chronous hybrid automatic repeat request (HARQ). Synchronous HARQ is a process

used in LTE as it provides a mechanism to increase redundancy of transmissions while

limiting overhead needed for asynchronous HARQ. Unfortunately, this introduces an

additional complexity issue since the periodicity of this process needs to be consid-

ered by the scheduler since a user cannot be allocated new transmissions if there is an
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ongoing retransmission in a subframe due to the HARQ process, which we refer to as

ARQ blocking. To combat this problem, we propose a method of performing resource

allocation that exploits this periodicity of the HARQ process in scheduler design.

We propose use of a block time-frequency domain packet scheduler (BTFDPS). This

proposed approach reduces the amount of scheduling decisions required for uplink

traffic in time, in addition to simplifying incorporation of synchronous HARQ into

the framework. At each block time-frequency frame, users are allocated contiguous

frequency blocks, and the weighted average power allocation is minimized.

The remainder of this chapter is organized as follows. In Section 6.1 we overview

the details of the employed uplink system model including the channel and scheduling

models and in Section 6.2 we describe the scheduling ideology. In Section 6.3 we for-

mulate the optimal energy efficient allocation problem with given HARQ constraints.

Due to the complexity associated with the optimal allocation, we propose two sub-

optimal methods in Section 6.4 in order to improve computational tractability. In

Section 6.5 simulation results are provided to demonstrate the performance versus

complexity of all three approaches while in Section 6.6, conclusions are drawn on this

work. A portion of this chapter appeared in Dechene et al. [9].

6.1 System Model

The simplified MAC model of a multi-user SC-FDMA system used for uplink in

3GPP’s LTE, [75] is shown in Figure 6.1. Here, each user has access to a single

physical uplink shared channel (PUSCH) for transmission of their uplink data. Within

a single cell there are K users (UEs) and a single base station (eNB). For the purpose

of our work, it is assumed that intercell interference is negligible. The cell spectrum

consists of Nsub narrowband subcarriers grouped into M resource blocks (RBs) of 12

subcarriers each. Without loss of generality, there is an integer number (M) of RBs.

The system is assumed to be operating in frequency division duplexed (FDD) mode.

There are Nsym symbols per subcarrier in a given subframe where the exact

number of subcarriers depends on the uplink configuration. The PUSCH is used for

transmission of uplink data and shared between UEs (as shown in Figure 6.1). It is
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assumed the PUSCH occupies Nsym − Nctrl symbols per subcarrier, per subframe

where Nctrl is the number of symbols used for uplink control data.

In 3GPP LTE, CQI values describe a range of targeted modulation and coding

schemes (MCSs) and are given in Table 6.1 reproduces from [76]. The overall TB

size is given as the effective spectral efficiency combined with the number of allocated

RBs. Consequently, the overall number of data bits, the transport block (TB) size,

that can be transmitted per subframe over a set N of RBs in frequency given the

assumptions above is

η(b,N ) =
⌊
12(Nsym −Nctrl)b · |N |

⌋
(6.1)

where b is the spectral efficiency in bits per symbol, N is a set of RBs in frequency and

| · | is the size of a set. For Nsym = 14 (regular cyclic prefix in LTE [76]) and assuming

Nctrl = 3, the above reduces to η(b,N ) = b132b · |N |c. The minimum and maximum

spectral efficiencies are found in Table 6.1 as bmin = 0.1523 and bmax = 5.5547.

Furthermore, the application of localized SC-FDMA constrains allocated RBs to

any UE such that they are adjacent in frequency. Individual UEs are further limited to

a single TB using a common MCS mode per subframe1 and retransmissions employing

HARQ must be transmitted over the same number of resource blocks using the same

MCS after exactly 8 (ARQw) subframes have passed from original transmission (non-

adaptive HARQ).

eNB

PUSCH1

PUSCH2

PUSCHK

SC-FDMA 

Shared Channel

1

2

K

1

2

3

M

RBs
UEs

Figure 6.1: SC-FDMA Shared Channel Model

1. For single layer (non-MIMO) transmissions [76] which is assumed in this work.
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Figure 6.2: SC-FDMA Frame Layout with Synchronous HARQ

6.1.1 Scheduling Model

The minimum duration of time that can be allocated to a single UE is a scheduling

block (SB). The nth SB is in the time duration bounded by [nTf , (n + 1)Tf ) where

Tf is the subframe duration (equal to 1ms) and is one RB in frequency.

Resource allocation decisions in LTE are made at each scheduling epoch. A

scheduling epoch is the interval of time over which resource allocation decisions can

Table 6.1: List of CQI Indices (Modulation/Coding Schemes) [76]

Index Modulation Coding Rate Spectral Efficiency - b in (6.1)

0 — — 0 bits

1 QPSK 78/1024 0.1523

2 QPSK 120/1024 0.2344

3 QPSK 193/1024 0.3770

4 QPSK 308/1024 0.6016

5 QPSK 449/1024 0.8770

6 QPSK 602/1024 1.1758

7 16QAM 378/1024 1.4766

8 16QAM 490/1024 1.9141

9 16QAM 616/1024 2.4063

10 64QAM 466/1024 2.7305

11 64QAM 567/1024 3.3223

12 64QAM 666/1024 3.9023

13 64QAM 772/1024 4.5234

14 64QAM 873/1024 5.1152

15 64QAM 948/1024 5.5547
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be made. While in general the scheduling epoch can be equal to the scheduling

block (i.e., Te = Tf ), we define the mth scheduling epoch as the time duration in

[mTe, (m+ 1)Te) and each epoch consists of Te/Tf subframes in time where m is the

index of the scheduling epoch. The time Te is chosen to be equal to

ARQwTf

TXOP
(6.2)

where TXOP denotes the maximum number of new TBs that can be allocated per

ARQw subframes where

TXOP =
ARQw

Maxtx
(6.3)

and Maxtx is the maximum number of times a packet can be (re)transmitted. The

justification behind this selection Te is discussed in later sections. Figure 6.2 shows an

example of the uplink frame layout with relevant time durations shown. Successful

transmission are shown in gray, while failures are red. As shown, retransmissions

occur exactly ARQw subframes following the initial transmission using the same

number of resource blocks.

We assume that each UE has a single radio data bearer established between

itself and the core network. Each bearer has an access network bitrate of χi bit per

unit time or an average newly allocated TB size of T̄i bits per ARQ slot.

6.1.2 Channel Model

The channels between each UE and the eNB and from RB to RB are independent.

A block fading model is assumed, where the channel is static for the duration of

the decision epoch Te and independent from epoch to epoch. Channel estimation

is assumed to be error-free and available at the eNB and each channel follows the

Rayleigh SNR distribution given as

p(γ) =
1

γ0
exp

(
− γ

γ0

)
(6.4)

where γi,k(m) is the instantaneous SNR in resource block k seen from UE i during

subframe m and it is average SNR γ0 for a reference applied power level. where
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γi,k(m) is the instantaneous SNR will be used to denote the uplink channel of user i

over RB k in epoch m.

The block error rate (BLER) is the average failure rate of TBs. This depends on

γi,eff (the effective signal to noise ratio, SNR, of a transmission), Ti (the TB size),

and bi (the effective MCS). To the best of our knowledge, there are no analytical

solutions to compute the BLER of a general coded transmission. In practical imple-

mentations, estimates of BLER are obtained through receiver measurements. The

measure of Information Outage probability (IOP) derived in [10] is used as a measure

for BLER. The IOP was shown to closely model BLER for moderate block lengths.

Any extensions to our proposed framework are trivial when estimates of the BLER

can be more accurately obtained for a particular implementation using appropriate

training and calibration techniques.

Following from [10], we can obtain the expression for BLER as

BLER(γ,Ni, Ti) ≈ Q




log(1 + γ)− log(2)Ti
132|Ni|√

2
132|Ni|

γ
1+γ


 (6.5)

where Ni is set of RBs allocated to UE i, Q(·) is the well-known Q-function and

γi,eff is the effective SNR. The quantity 132|Ni| and
Ti

132|Ni| corresponds to the

number of modulated symbols and effective spectral efficiency per allocation respec-

tively described earlier. The factor log(2) is required and follows from [10] in that we

measure spectral efficiency in bits per symbol rather than nats per symbol. Due to

the monotonicity of the Q-function arguments, the above can be solved efficiently us-

ing bisection techniques for the required SNR. Alternatively, a more computationally

efficient method is to obtain a least squares approximation to the above as a function

of data rate, target BLER and the number of RBs allocated (similar to the approach

in [20]). We found the following fitting function closes approximates the SNR as a

function of data rate

γ
(r)
i,eff ≈ ax exp(bxTi)− γ0,x (6.6)

where x = |Ni|. The values of ax, bx, and γ0,x are given in Table 6.2 for BLERtgt =

10% for up to 24RBs. Using the above, along with channel estimates, it is easy to
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Table 6.2: Least-Squares Approximate Model Parameters for BLER=10% - Using
Fit Function (6.6)

RBs (x) ax bx · 103 γ0,x

1 1.1748 5.2471 1.1019

2 1.1208 2.624 1.0723

3 1.0977 1.7495 1.0591

4 1.0841 1.3122 1.0512

5 1.0749 1.0498 1.0458

6 1.0682 0.8749 1.0418

7 1.063 0.7499 1.0387

8 1.0588 0.6562 1.0362

9 1.0553 0.5833 1.0342

10 1.0524 0.525 1.0324

11 1.0499 0.4772 1.0309

12 1.0478 0.4375 1.0296

13 1.0459 0.4038 1.0284

14 1.0441 0.375 1.0274

15 1.0426 0.35 1.0265

16 1.0412 0.3281 1.0256

17 1.04 0.3088 1.0249

18 1.0388 0.2917 1.0242

19 1.0378 0.2763 1.0235

20 1.0368 0.2625 1.0229

21 1.0359 0.25 1.0224

22 1.0351 0.2386 1.0219

23 1.0343 0.2283 1.0214

24 1.0336 0.2188 1.0209

obtain the required applied power to achieve a target block error rate. The accuracy

of this approximation is verified in Section 6.5.

The measured effective SNR for a reference power level of a transmission is

related to the SNR of the RBs comprising it. As in [77], the effective SNR of an

SC-FDMA symbol cannot be approximated using EESM or MIESM (as in OFDM),

but rather it can be approximated as the average SNR over the set of RBs allocated
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or as

γ
(0)
i,eff(m,Ni) =

1

|Ni|
∑

k∈Ni

γi,k(m)

|Ni|
(6.7)

Here Ni is the set of RBs in the computation and the superscript (x) is used to denote

the xth retransmission number where 0 is the initial transmission. The additional

|Ni| in the above equation describes that power is equally allocated across the all

assigned resource blocks. We emphasize here that extension of the above is trivial

where measurements/estimates of the effective SNR is obtained and known for a given

implementation.

6.1.3 Retransmission Model

Synchronous HARQ is used for uplink retransmission to improve the probability that

a TB can be decoded at the base station while limiting signalling overhead required

for asynchronous HARQ. In the LTE implementation, a TB is first encoded with a 1/3

rate turbo code. From this, four possible codes blocks are obtained denoted as redun-

dancy versions (RVs). Each redundancy version is a different set of coded bits from

the TB. Each retransmission of a TB utilizes a different RV so that retransmissions

can be combined with the initial transmission to improve overall reliability.

Consequently, this improved reliability can be considered as an increase in the

measured effective SNR as done in [78] which is also used here. We employ this model

with coefficients for SNR gains given in Table 6.3 but note that for a given implemen-

tation, these gain factors can be obtained through receiver calibration measurements.

The effective SNR of retransmission z can be computed as (in dB)

γ
(z)
i,eff,(dB)

(m,Ni, ki) = γ
(0)
i,eff,(dB)

(m,Ni) + µ(z, ki) · Rcode + ε(z, ki) (6.8)

where Rcode is the code rate ×1024 which is given from [76] (i.e., 78, 120, . . .), µ(z, ki)

and ε(z, ki) are given from [78] for each retransmission and modulation scheme, ki is

the modulation scheme and where γ
(0)
i,eff(m,Ni) is the effective SNR for UE i given

in (6.7). These parameters are summarized in Table 6.3. The modulation scheme is
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Table 6.3: SNR Gain for Retransmissions [78]

Modulation rvidx µ · 103 ε

QPSK
1 0.8024 2.89

2 1.628 4.57

3 2.006 5.62

16-QAM
1 0.420 1.1

2 8.435 0.74

3 9.464 1.15

64-QAM
1 8.996 -1.23

2 12.288 -0.71

3 12.728 0.15

derived from the CQI mode in Table 6.1 yielding the next highest spectral efficiency

mode than
Ti

132|Ni| .

6.1.4 Transmission Power Selection

For a given target block error rate (BLER) of BLERtgt, the required power is simply

Pi(Ni, Ti) =
γi,eff(Ni, Ti)

γ
(z)
i,eff(m,Ni)

(6.9)

where γi,eff(Ni, Ti) is the γ argument in (6.5) when (6.5) is set equal to BLERtgt for

given arguments Ni and Ti (or using the approximation given in (6.6)). The above

corresponds to the power needed for allocation.

6.2 Scheduling Ideology

Recent research, particularly for LTE systems [79–81], proposes segmenting the packet

scheduling problem into a time-domain packet scheduling (TDPS) and frequency-

domain packet scheduling (FDPS) problem. Such methods choose a set of users at
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each scheduling interval to schedule (TDPS) and allocate them in frequency (FDPS)

to maximize cell throughput (rate adaptive, RA).

In the energy limited regime, the goal is to minimize transmission energy while

meeting throughput requirements. In this regime, the optimal allocation for MA

differs from that of an RA problem. As a result, RA methods are not directly ap-

plicable in solving the MA problem. Further, due to limitations imposed by syn-

chronous HARQ, the above described approaches may experience ARQ blocking since

the TDPS is limited in knowledge to a single subframe in time. ARQ blocking here

is defined as the inability to allocate a new TB to transmit during a given subframe

due to the requirement of retransmitting a previously transmitted TB as part of the

synchronous HARQ process.

A simple to implement method to eliminate ARQ blocking is to limit the number

of new transmissions a station can initiate in each ARQ window. In synchronous

HARQ, retransmissions are limited to exactly ARQw subframes following the initial

transmission (where ARQw = 8 in LTE uplink) and the maximum number of times

a packet can be transmitted is 4. Based on these observations, the maximum number

of new transmissions that any station should initiate during any ARQw subframes is

ARQw/4 = 2 to eliminate any ARQ blocking. Based on this, we can define an ARQ

slot as the duration of time such that each UE can be allotted at most one new TB

for transmission. Consequently, each ARQ slot m has a duration of 4 subframes or

1/2 of an ARQw (i.e., Te = 4Tf ).

Using this segmentation approach, we can formulate the resource allocation

problem by segmenting it into a two-stage formulation, namely a TDPS and block

time-frequency domain packet scheduler (BTFDPS). At the beginning of scheduling

epoch (ARQ slot) m, the TDPS chooses which UEs can access the channel (and

with how much data, Ti(m)) based on the buffers and priority of each UE over ARQ

slot m. The BTFDPS then allocates the UEs within the Time-Frequency grid of a

ARQ slot based on channel conditions and knowledge about on-going retransmissions.

The benefit of such an approach as described above is that it reduces the number of

scheduling decisions needed in time as well as eliminates ARQ blocking. The drawback

of this however is that it requires estimates of the channel for the overall ARQ slot.
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6.2.1 Time Domain Packet Scheduling

During ARQ slot m, the TDPS determines the amount of new data to be trans-

mitted over the channel. The TDPS decisions can be done in a number of ways.

Existing works have proposed TDPS designs which demonstrate methods of exploit-

ing information including but not limited to buffer occupancy, and quality of service

requirements. The focus of this chapter is on the design of the BTFDPS and for the

remainder this chapter, we assume a static TDPS where all UEs are allocated a new

TB of size Ti(m) during ARQ slot m.

Further, the TDPS may define a static (or dynamic) weight parameter αi(m)

denoting the relative priority of each station. Without loss of any generality we can

assume
∑K

i=1 αi(m) = 1, ∀m. Weights can be designed to satisfy fairness or priority

criteria. In our work, we do not focus on the design of weights and simply assume

they are known.

6.2.2 Block Time-Frequency Domain Packet Scheduling

The goal of the BTFDPS is to allocate both retransmissions and new TBs within

the Time-Frequency grid of an ARQ slot. For a given set of TBs from each UE

{T1(m), T2(m), . . . , TK(m)} for all m, channel state information γ, and knowledge

about TBs for retransmission, the BTFDPS applied power minimization problem

can be formulated to solve for resource assignment. The resource assignment policy

is comprised of the resource element assignment (Si,j,n(m) and S̃i,j,n(m), ∀i, j, n,m),

power assignment (Pi,n(m), ∀i, n,m), and rate assignment (ki,n(m), ∀i, n,m) where

n = 0, 1, 2, 3 are the individual subframes within an ARQ slot. The quantities

Si,j,n(m) and S̃i,j,n(m) are binary indicators used to denote whether a given RB

j is allocated to a given UE i for both new transmissions and retransmissions respec-

tively, Pi,n(m) denotes the power allocated to UE i and bi,n(m) denotes the spectral

efficiency of the MCS chosen for UE i all during subframe n of ARQ slot m.

The design of the BTFDPS policy requires the following constraints to be sat-

isfied:

• Minimum rate constraints (to ensure the TB is allocated)
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• HARQ constraints (to ensure the retransmitted TB is allocated 8 LTE sub-

frames following its failed transmission)

• New transmission limitation (only a single TB can be allocated per ARQ slot

m)

• Contiguity constraints (to ensure RBs for a single TB are allocated contiguously

in frequency)

• Allocation constraints (to ensure at most one UE can occupy a given RB during

any subframe)

• BLER constraints (to ensure power is adjusted to meet BLERtgt)

Retransmissions are handled as follows. Due to the synchronous HARQ mech-

anism, any transmission that was erroneous, and has not exceeded the maximum

number of transmissions is rescheduled exactly 8 (ARQw) subframes following its

original transmission. These transmissions are scheduled using the same set of RBs2

and using the same MCS.

6.3 Optimal Allocation Formulation

Due to the dependance on previous retransmission, m, it is not possible to solve the

optimal allocation for all time m. We therefore formulate the allocation problem to

solve for the locally optimal allocation problem in each ARQ slot m as follows.

2. While non-adaptive HARQ limits retransmission to the same MCS, number of resource
blocks and subframe, there is no limitation on which resource blocks are assigned. In our
work we further limit retransmissions to the same RBs in frequency. This reduces signalling
requirements and problem complexity. Retransmissions can easily be incorporated in the
proposed model by considering retransmission blocks as additional users. The impact of
such an assumption is discussed in the chapter summary.
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6.3.1 Optimization Problem

The per-subframe power-optimal BTFDPS is formulated as follows. First, the objec-

tive function can be given as

min




K∑

i=1

M∑

j=1

3∑

n=0

αi(m)(Si,j,n(m) + S̃i,j,n(m))Pi,n(m)



 (6.10)

where αi(m) is the relative importance parameter of power minimization for UE i

and subframe n ∈ {0, 1, 2, 3} within ARQ slot m defined by the TDPS.

6.3.1.1 Rate Constraints

The amount of new information that must be transmitted during a frame is con-

strained as
M∑

j=1

3∑

n=0

Si,j,n(m)bi,n(m) ≥ Ti(m), ∀i (6.11)

6.3.1.2 HARQ Constraints

The ARQ constraints ensure that resource allocation cannot occur in a subframe

where a retransmission exists. This means Si,j,n(m) = 0, n ∈ Si(m − 2), ∀i, where

Si(m − 2) is the set of subframes during ARQ slot m − 2 whose transmissions were

unsuccessful and have not reached the maximum number of retransmissions. Further,

the number of RBs allocated to a user during a retransmission must equal the original

amount of RBs assigned, i.e.,

M∑

j=1

S̃i,j,n(m) =
M∑

j=1

(S̃i,j,n(m− 2) + Si,j,n(m− 2)), n ∈ Si(m− 2), ∀i (6.12)
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6.3.1.3 New Transmission Limitation

In order to ensure ARQ blocking does not occur, each station is limited to a new

transmission in a ARQ slot. This constraint is given as

∑

n∈SC
i

(m−2)

I




M∑

j=1

Si,j,n(m)



 ≤ 1, ∀i (6.13)

where I(x) = 0 when x = 0 and 1 otherwise and SC
i (m − 2) is the complementary

set of Si(m− 2).

6.3.1.4 Allocation and Contiguity Constraints

Additionally, localized SC-FDMA is limited to RB allocations in contiguity, this con-

straint can be given jointly as

K∑

i=1

(Si,j,n(m) + S̃i,j,n(m)) ≤ 1, Si,j,n(m), S̃i,j,n(m) ∈ {0, 1}, ∀j, n (6.14)

ensuring only a single user can occupy an RB during an instant of time and following

from [82] as

Si,j,n(m)−Si,j+1,n(m)+Si,x,n(m) ≤ 1, x = j+2, . . . ,M, ∀i, j, n ∈ SC
i (m−2) (6.15)

S̃i,j,n(m)− S̃i,j+1,n(m)+ S̃i,x,n(m) ≤ 1, x = j+2, . . . ,M, ∀i, j, n ∈ Si(m−2) (6.16)

6.3.1.5 Power Level Allocation

The applied power allocation level is given from (6.9) and expressed as

Pi,n(m) =
γi,eff(Ni,n, Ti(m))

γ
(0)
i,eff(m,Ni,n)

, ∀i, n ∈ SC
i (m− 2) (6.17)

Pi,n(m) =
γi,eff(N̄i,n, Ti(m))

γ
(zi,n)

i,eff (m, N̄i,n)
, ∀i, n ∈ Si(m− 2) (6.18)
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where zi,n(m) is the retransmission number in subframe n for UE i during ARQ slot

m and Ni,n = {j|Si,j,n(m) = 1} and N̄i,n = {j|S̃i,j,n(m) = 1}. We note that we do

not place an upper limit on the power level directly, however as shown in the next

section, the goal is to minimize the average allocated power at each ARQ slot m.

Combining (6.10)-(6.18), forms the optimal BTFDPS allocation for inputs αi(m),

Ti(m), ∀m. Due to the time dependance on m and the instantaneous channel condi-

tions, the above must be solved for each ARQ slot m online.

6.3.2 Optimization Formulation Using Binary Programming

The above problem can be formulated using a similar approach as that used in [83].

In this fashion, the contiguity constraints are exploited in a manner that reduces the

binary search space.

The optimization problem is solved at each ARQ slot m. For the remainder of

this section the index m is dropped however all quantities are assumed to be specific

to ARQ slot m. The problem can be expressed as a general set-packing problem and

formulated using binary programming as

min
x

cTx (6.19)

s.t. Ax ≤ 14M , Aeqx = 1K , xj ∈ {0, 1}, ∀j ∈ x

where c is the real-valued vector containing the weighted power of choosing a given

allocation, x is the vector of allocation selections, Aeq is a binary equality constraint

matrix of K rows and A is a binary inequality constraint matrix of 4M rows. Each

non-zero entry of the solution vector x corresponds to selecting the corresponding

column allocation in A.

6.3.2.1 Inequality Constraints

The matrix A describes the set of potential RB allocations for all users. It is comprised

of individual allocations given as

A = [A1, · · · , AK ] (6.20)
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where Ai is a matrix containing the set of feasible allocations for UE i. Each column

of Ai corresponds to a feasible allocation while each row corresponds to a specific

resource. Within a given column, the kth row corresponds to the (k mod M)th RB

and subframe n = bk−1
M c of ARQ slot m.

Each entry in Ai can take a value of {0, 1}. An entry of 1 if the particular

resource is required by a UE for that allocation and 0 otherwise.

The set of possible allocation is determined as follows for each UE. During any

ARQ slot, a UE is allocated a TB of Ti bits. For a given Ti, the maximum and

minimum number of RBs can be found from Table 6.1 using bmin and bmax as

Nmin =

⌈
Ti

132bmax

⌉
(6.21)

Nmax = min

(⌈
Ti

132bmin

⌉
,M

)
(6.22)

The effective MCS scheme is a function of the number of RBs and Ti. For each

possible contiguous block of RBs of size [Nmin, Nmax], the power level needed to

maintain BLERtgt for all possible allocations of contiguous resource blocks is found

using (6.5). For each such possible contiguous blocks above and each subframe of

ARQ slot m, a column allocation in given Ai with corresponding transmission power

in the corresponding entry of c.

Example:

To demonstrate how to generate Ai, consider the following example. Suppose

during ARQ slot m and for UE i, Ti(m) = 1000 bits and there are 10 uplink resource

blocks (M = 10). Using the set of CQIs in Table 6.1, we see that obtain 2 and 10 as

the minimum and maximum unique quantity of RBs that satisfy the above. Therefore

we let all eligible RB allocations fall within 2 and 10 RBs inclusive [2, 10] (we denote

this set E) with spectral efficiencies given as solving (6.1) set equal to Ti(m).

Suppose we consider M ′(bi) = 6. It can easily be shown that for M = 10 (to

simplify the example), there are 5 (M −M ′(bi) + 1 = 10− 6 + 1) ways to allocate 6

RBs contiguous in frequency. As a result, we define a submatrix Ā
(6)
i computed as
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the 5 possible allocations or as

Ā
(6)
i =




1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1




(6.23)

Next, we define (n)Ā
(6)
i as the eligible allocations of 6 RBs for subframe n. It

is given as

(n)Ā
(6)
i =

{
Ā

(6)
i , if User i has no ReTx in n

∅, otherwise
(6.24)

where here ∅ is used to denote a 0× 0 (empty) matrix. From this we obtain A(6) as

A
(6)
i =




(0)Ā
(6)
i

(1)0 (2)0 (3)0

(0)0 (1)Ā
(6)
i

(2)0 (3)0

(0)0 (1)0 (2)Ā
(6)
i

(3)0

(0)0 (1)0 (2)0 (3)Ā
(6)
i




(6.25)

where (n)0 is a matrix of zeros identical to size of (n)A
(6)
i . The above corresponds

to the feasibility of allocating any user in any subframe of the ARQ slot in which it

does not have an ongoing retransmission. Finally we obtain Ai as

Ai =
[
A

(2)
i , A

(3)
i , A

(4)
i , A

(5)
i , A

(6)
i , A

(7)
i , A

(8)
i , A

(9)
i , A

(10)
i

]
(6.26)

where the above is found by concatenating each submatrix obtained from each entry

of E .
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6.3.2.2 Equality Constraints

The equality matrix Aeq is simply a matrix of K rows constraining the number of

selected allocations such that each UE is only allotted one allocation selection from

their matrix Ai. This is given as

Aeq =




1T
C1
· · · 0T

CK
...

. . .
...

0T
C1
· · · 1T

CK


 (6.27)

where Ci is the number of columns in Ai and 1x and 0x are column vectors of length

x.

6.3.2.3 Cost Function

The objective function vector cT = [cT
1 , . . . , c

T
K ] is simply the cost of choosing the cor-

responding allocation for each ci. From (6.19) we see the cost is simply the weighted

power of choosing an allocation. Since the power is directly a function of the set of

resources, the channel, and the TB size, individual entries of ci can be then be given

as

ci:ji = αiPi(Ni(ji), Ti), ji = 1, 2, . . . , Ci (6.28)

where the function Pi(·) is given in (6.9), αi is the priority weight of UE i and where

Ni(ji) = {x|ai:x,ji
= 1, x = 1, 2, . . . ,M}. The quantity ai:x,ji

denotes the {x, ji}
entry in Ai and ji is the jthi column of Ai.

The above problem is solved at each ARQ slot m online for given Ti(m), ∀i 3.

While the above will yield the optimal solution at each decision epoch, and is less

computationally intensive than the OFDM MA method with additional contiguity

constraints as the search space is reduced pre-computation. The resulting framework

is still computationally prohibitive for online operation. In the next section, we

propose two methods to reduce the problem complexity.

3. Ti(m) can be a constant or vary in time
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6.4 Sub-Optimal Resource Allocation Schemes

Due to the rather large search space above, we propose two sub-optimal methods

for the above approach. The first approach is a subset reduction technique which is

herein referred to as the Best-N scheme. In this method, we exploit the potential of

choosing a subset of the best allocations (in terms of minimizing transmission power)

for each user and allocating to satisfy this set. The second method, herein denoted

as the iterative allocation method, allocates time-frequency resources to all users to

maximize the power level gain at each iteration. Both methods are described in the

following sections.

6.4.1 Method 1 - Best-N Subset Reduction

The Best-N method provides for a varying degree of complexity and operates as fol-

lows. By including a limited number (N) of the most energy efficient allocations for

a UE determined based on channel measurements (a subset of matrix Ai), the opti-

mization framework can consider a reduced search space. The search space increases

as N increases, and in the limiting case when N is large, this method approaches the

previously described optimal allocation at each ARQ slot m. The algorithm operates

as follows. At the beginning of each ARQ slot m determine the subset of best allo-

cations available for transmission as described in below. Each allocation corresponds

to an allocation in the matrix Ai described previously.

The Best-N allocations represent the N allocations (set of RBs, MCS mode, and

power allocated) that are the most energy efficient for the UE to use for transmission.

This is essentially a pre-computed subset matrix of the previously described Ai. We

denote this new constraint matrix as Bi.

Once efficient allocations have been computed, the revised set-packing problem

and can be formulated using binary programming as

min
x

dTx (6.29)

s.t. Bx ≤ 14M , Beqx = 1K , xj ∈ {0, 1}, ∀j ∈ x
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where d is a real-valued vector, x is the vector of allocation selections, Beq is the

equality constraint matrix of K rows and B is the inequality constraint matrix of

4M rows. Each non-zero entry of the solution vector x corresponds to selecting the

corresponding column allocation in B.

The matrix B is found as

B = [B1, · · · , BK ] (6.30)

where entries Bi are given as

Bi =




(0)B̄i
(1)0 (2)0 (3)0

(0)0 (1)B̄i
(2)0 (3)0

(0)0 (1)0 (2)B̄i
(3)0

(0)0 (1)0 (2)0 (3)B̄i




(6.31)

where 0 is a matrix of zeros identical to size of (n)B̄i and (n)B̄i is

(n)B̄i =

{
B̄i, if User i has no ReTx in n

∅, otherwise
(6.32)

The matrix B̄i is an M × N matrix containing the set of Best-N allocations.

The matrix B̄i is obtained as follows. Let N (i, n) be the set of RB allocations for the

nth best4 allocation of i. Then we have entries of B̄i as

bi:n,j =

{
1, j ∈ N (i, n)

0, otherwise
, j = 1, 2, . . . ,M (6.33)

4. The nth best allocation refers to the allocation that achieves the nth smallest required
power allocation subject to any additional constraints.
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Consequently, the matrix Beq is given as

Beq =




1T
C̄1
· · · 0T

C̄K
...

. . .
...

0T
C̄1
· · · 1T

C̄K


 (6.34)

where C̄i is used to denote the number of columns in Bi. The vector d is obtained

identical to c for entries corresponding to allocations in B.

In rare cases the solution may be infeasible during a given scheduling epoch as

we do not exhaustively allow selection of every possible allocation. To minimize the

probability of this occurrence, the following steps can be taken:

• Employ appropriate admission control design in the TDPS.

• Limit the maximum number of resource blocks that can be allocated to a single

user as a function of available resources and required data rate.

• Enforce overlap restrictions on the Best-N selection scheme such that no two

possible allocations for a single UE may share any resource blocks (employed

in this implementation).

• Increment N and resolve the problem if the solution is found infeasible (em-

ployed in this implementation).

There are no guarantees that the Best-N method will guarantee a solution

without large increases in N , if the system is highly loaded (size of TBs and number

of users is large). As a result, it is not an ideal approach to the allocation problem.

In the next section, we propose an additional method that iteratively allocates RBs

to each user.

6.4.2 Method 2 - Iterative Allocation

The second suboptimal method tries to iteratively allocate resources to all UEs. At

each iteration, resources are allocated to the user to maximize the power level gain.

This method is described mathematically in Algorithm 1. The function F(x, i) returns

the subframe index corresponding to index x for UE i and G(N,Ni,Zi) returns a set
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Ni of subsets Ni,x containing all unique contiguous RBs of size N in all subframes

n 6∈ Zi (subframes which are not allocated for retransmission for UE i). The number

of subsets in Ni is |Ni|x and the size of each subset Ni,x is |Ni,x| = N .

The proposed algorithm operates as follows. The initialization of the algorithm

is described by lines 1-12. The iterative allocation portion of the algorithm (described

in lines 13-51 inclusive) is divided into two major components: the power level gain

computation (lines 13-33) and the allocation stage (lines 37-50).

6.4.2.1 Initialization Procedure

The initialization stage is described through lines 1 to 12. As with the previously de-

scribe solutions, retransmissions are allocated first to determine the residual resources

available for new transmissions. Additionally, the minimum and maximum amount

of number of resource blocks for each UE i is determined.

6.4.2.2 Power Level Gain

The power level gain (PLG) stage operates as follows. For users who have been

already allocated resources, the PLG of a resource is calculated as the difference in

power allocated if the new resource is added to the current resource allocation and

the currently allocated resources (line 17). The newly added resource is constrained

Algorithm 1 Iterative Resource Allocation: Initialization
1: K = {1, 2, . . . , K}
2: Allocate ReTx with required power

3: N (r)
n ← Set of RBs in n with ReTx, n = 0, 1, 2, 3

4: Zi ← Set of subframes with ReTx for UE i, n = 0, 1, 2, 3 ∀i ∈ K
5: n(i) = −1, ∀i ∈ K
6: N (a)

n = {1, 2, . . . , M} \ N (r)
n , n = 0, 1, 2, 3

7: Ni = ∅, ∀i ∈ K
8: for i ∈ K do

9: N (f)
i

=
⋃3

n=0,n6=Zi
N (a)

n

10: Nmin,i =

⌈
Ti(m)

132bmax

⌉

11: Nmax,i = min

(⌈
Ti(m)

132bmin

⌉
, M

)

12: end for
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Algorithm 1 Iterative Resource Allocation: Iterative Component

13: while max(PLGi) > 0 &&
⋃3

n=0N
(a)
n 6= ∅ do

14: for i ∈ K do

15: if Ni 6= ∅ && |Ni| < Nmax,i then

16: for j ∈ N (f)
i
∩N (a)

n(i)
do

17: ∆pi,j = αi(P (Ni, Ti, γ)− P (Ni ∪ j, Ti, γ))
18: end for

19: PLGi = max({∆pi,j |j ∈ N
(f)
i
∩ N (a)

n(i)
})

20: else

21: N (c)
i

= G(Nmin,i, {N
(a)
n |∀n})

22: if |N (c)
i
|x == 1 then

23: i∗ = i
24: x∗ = 0
25: Go To Line 38
26: end if

27: for x = 0; x < |N (c)
i
|x do

28: pi,x = αiP (N (c)
i,x

, Ti, γ)

29: end for

30: N (B) = {0, 1, . . . , |N (c)
i
|x − 1}

31: PLGi = min({pi,x, x ∈ N (B) \ arg min

x∗∈N (B)
(pi,x∗)})

−min({pi,x, ∀x ∈ N (B))
32: end if

33: end for

34: if max(PLGi) < 0 then

35: break

36: end if

37: i∗ = argmax
i

(PLGi)

38: if n(i∗) == −1 then

39: x∗ = arg max
x

({pi,x|i = i∗})

40: Ni∗ = N (c)
i∗,x∗

41: n(i∗) = F(x∗, i∗)
42: n∗ = n(i∗)

43: N (a)
n∗

= N (a)
n∗
\ N (c)

i∗,x∗

44: else

45: n∗ = n(i∗)
46: j∗ = argmax

j
({∆pi,j |i = i∗})

47: Ni∗ = Ni∗ ∪ j∗

48: N (a)
n∗

= N (a)
n∗
\ j∗

49: end if

50: N (f)
i∗

= {min(Ni∗)− 1, max(Ni∗) + 1} ∩ N (a)
n∗

51: end while
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to those resources within a users feasible allocation set (N (f)
i ). Alternatively, for any

user who has yet to be allocated a resource, the PLG of that user is measured as

the difference between the power allocation required if that best available resource is

allocated and that of the second best available resource (line 31).

If at any instant of time, a user has only one eligible allocation, the user is

allocated that resource (described in lines 22-25).

6.4.2.3 Resource Allocation Stage

The user with the maximum PLG at any iteration is allocated the corresponding

resource (line 38-50). For users being allocated an initial resource, this constrains the

feasible resources for allocation within that given subframe n.

The overall allocation continues until the maximum PLG is negative or there

is no additional resources for transmission.

6.5 Numerical Evaluation

Simulations results are provided measuring the power and computation timing of the

optimal, Best-N and iterative scheme. In addition, we measure the impact of static

scheduling of retransmissions. Default simulation parameters are given in Table 6.4.

6.5.1 Least-Squares Fit Function

The justification behind use of the pre-described fit function is shown in Figure 6.3.

Here we see in this comparison for 2, 4, and 8 RBs with BLERtgt = 10%. The

Table 6.4: Simulation Parameters

Parameter Value Parameter Value

γ0 10 dB Tf 1ms

αi(m) 1 (∀i) Te 4ms

Nctrl (symbols) 3 N (Best-Ndepth) 3

Nsym (symbols) 14 T̄i 250 bits

Number of Subframes 20000 BLERtgt 10%
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Figure 6.3: Least-Squares Approximation Accuracy

least-squares approximation is shown to hold tightly to the actual BLER function;

providing for a more tractable computation of the required SNR level and justifying

its use as a suitable alternative in computation of the required SNR.

6.5.2 Retransmission Power - Static Scheduling

Worth noting is the importance of the impact of static scheduling on retransmissions.

While using the above framework, packet error rates are 10%, the overall power

allocated for retransmission packets accounts for over 50% of allocated power. As

a result, in some simulations, the Best-N method requires less overall power to be

allocated than the optimal method as a result of power expended for retransmissions.

Overall, the iterative method tends to perform worse in this area in all scenarios as

in general, the average number of resource blocks assigned to any user is lower. This

is particularly detrimental if a user experiences a low quality channel in those RB(s)

as the channel is not averaged over a larger set of resources.

This overall result highlights the importance of re-allocating TBs for retrans-

mission within a given ARQ slot. To accomplish this, the previously described mech-

anisms could be modified as follows. For both the optimal and Best-N scheme, each

user with a retransmission can be considered as an additional user to allocate. Unlike
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new transmissions, these transmission have a fixed number of RBs, in addition are

limited to a single subframe. As a result, there is a relatively small complexity increase

for these additional users. For the iterative mechanism, retransmissions can be incor-

porated by considering them as additional users. In this case, Nmin = Nmax = |Ni|
where here Ni denotes the set of resource blocks for the initial transmission of a given

TB (replacing lines 10 and 11 in Algorithm 1).

6.5.3 Optimal Power Expenditure Gap

The average power expenditure per ARQ slot for the initial transmission of a TB is

shown in Figure 6.4. Here we observe the following. In general the amount of power

expended increases with both datarate and the number of UEs. For lower datarates,

the iterative mechanism outperforms the Best-N scheme, however as the per ARQ slot

datarate increases, Best-N performance surpasses that of the iterative method. At

approximately Ti = 1400 bits, the iterative method experiences an uncharacteristic

trend. This is a result of an increase to Nmin at that datarate, forcing the iterative

scheme to maximize power level gain of more than one RB for the initial allocation.

In this way, the scheduler is better able to allocate a block of RBs. The effect of the

number of UEs on the power between the two suboptimal methods is negligible as it

largely depends on the datarate. Both suboptimal methods obtain near optimal per

ARQ slot performance.

6.5.4 Complexity Comparison

The system complexity (measured in relative computation time) is shown in Fig-

ure 6.5. This is measured as the percentage increase in computation time taken com-

pared to the base case (iterative method and M = 6 for both figures and Ti = 200

and K = 1 for Figures 6.5(a) and 6.5(b) respectively). As expected, the iterative

method has the lowest complexity of all schemes. Further, the number of UEs and/or

RBs results in a large increase in complexity, while the datarate is shown to have

negligible impact.
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6.6 Chapter Summary

In this chapter we proposed a framework for energy efficient resource allocation in the

SC-FDMA multi-user uplink. Firstly, we proposed an alternative method of selecting

an appropriate scheduling epoch based on the impact of synchronous HARQ. By

utilizing the proposed method, we can reduce the number of allocation procedures in

time and ensure users can always initiate a new transmission during any frame (i.e..,

do not experience ARQ blocking).

Secondly, we proposed two sub-optimal power efficient resource allocation meth-

ods. Both methods were compared to the optimal method in terms of complexity and

power efficiency. We found that the sub-optimal methods closely obtain the power

efficiency of the optimal allocation with reduced complexity. Further, we found that

the efficiency of the power allocation scheme is dramatically reduced when static

scheduling is employed for retransmissions.

One of the large drawbacks in this chapter, is the assumption on the availability

of channel estimates for the duration of an ARQ slot. While this may be the case

in a slow fading channel, this assumption will not hold in a fast fading environment.

In future work, this issue should be addressed. The concept of an ARQ slot can be

used to eliminate ARQ blocking, however allocation within the ARQ slot to individ-

ual subframes for users can be based on estimates of the evolution of the channel.

Details of this, and other related open problems are discussed under future work in

Chapter 8.
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Chapter 7

Energy Efficient QoS Constrained

Scheduler for SC-FDMA Uplink

In previous chapters we have independently looked at low complexity scheduling

methods for both SC-FDMA and multiple users/streams with QSI. In this chap-

ter, we introduce and demonstrate a method to extend this work to incorporate our

energy efficiency multiple stream scheduling framework in the uplink SC-FDMA sce-

nario. The remainder of this chapter is divided as follows. In Section 7.1 we overview

the details of the employed uplink system model including the channel and schedul-

ing models and in Section 7.2 we describe the scheduling ideology. In Section 7.3

simulation results are provided while in Section 7.4, conclusions are drawn on this

work.

7.1 System Model

The system model is shown in Figure 7.1 and similar to the model presented in

Chapter 6, however we do not consider the HARQ process. For clarity to the reader

we briefly describe it again here.

We assume that there are K users (denoted as UEs) within a single cell, com-

municating with a single base station (denoted as an eNB). Since we are concerned

with resource allocation within a single cell, for the purpose of our work, it is as-

sumed that intercell interference is negligible. The cell spectrum is divided into Nsub

subcarriers which are grouped into M resource blocks. Each resource block (RB) is

comprised of 12 equivalent subcarriers. Without loss of generality we assume there is

an Integer number (M) of RBs available for allocation. The system is assumed to be

operating in FDD mode.
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There are Nsym symbols per subcarrier in a given subframe where the exact

number of subcarriers depends on the uplink configuration. The physical uplink

shared channel (PUSCH) is used for transmission of uplink data and comprises a

portion of symbols along with other controls channels. For the purpose of our work,

it is assumed the PUSCH occupies Nsym − Nctrl symbols per subcarrier, per sub-

frame where Nctrl is the number of symbols used for all other physical channels and

signalling.

Each UE receives uplink traffic from upper layers of their protocol stack des-

tined for transmission to the eNB. Each UE’s traffic has associated QoS parameters

{Di, Li, λi, Bi, δi} which denotes the maximum tolerable average delay, SDU length,

average arrival rate, buffer size at the radio link control (RLC) layer and maximum

tolerable packet loss rate respectively for that stream. Each stream may represent a

broad service class (such as voice over IP or video) or a particular application-layer

stream being used at the time. Each incoming stream is stored in a finite-length

first-in, first-out (FIFO) buffer where incoming packets are dropped when the buffer

is full.

The scheduling horizon is divided into subframes consisting of 2 LTE time slots

(of duration 1ms). During each subframe m, users can transmit up to Ti bits of data

as determined by the eNB. On average each user will receive a service rate of µi

packets per second.

During each frame, each of the K users can transmit a single transport block

of Ti(m) bits. For now, it is assumed that eligible transport block sizes are an integer

number of SDUs plus a header (i.e., no SDU segmentation is required by the RLC).

In this case, the scheduling objective for the MAC is to determine either a priori

or online, a way to allocate each user a quantity of data to transmit Ti(m) for all

subframes m to meet the individual loss, delay and throughput requirements of all

users and while minimizing the average weighted energy expenditure. The MAC layer

scheduling decision is as follows. For each user, design the set of scheduling policy

decisions to minimize the long-term average allocated transmission power.

The MAC allocation component is formulated as a constrained Markov decision

process where the system state of user i is denoted by its buffer level and the action
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Figure 7.1: SC-FDMA Uplink System Model: (a) Each UE, (b) Overall System.

space describes the number of packets that can be transmitted during a subframe

subject to a randomized policy. The solution to the problem for any scheduling policy

Ω is a random policy which described by the distribution θi(ci, ui|Ω) which denotes

the probability of choosing the action ci as the number packets for transmission given

that queue i is in state ui. The aforementioned policy is derived for all users. The

goal of the optimization formulation is to find θi(ci, ui|Ω) for all ci, ui, as well as i that

minimizes the average applied transmission power. The resultant policy is coupled by

Ω which defines the scheduling actions for each queue i and each queue state ui ∈ Ui.

Using this policy, in each subframe m, Ti(m) bits are chosen for transmission from

UE i (where Ti(m) = Lici(m) + Lhdr) and ci(m) is ci chosen randomly at time m

subject with probability defined by θi(ci, ui|Ω).

For anytime m, {ci(m)|0 ≤ ci(m) ≤ Zi, ∀i} denotes the joint action space taken

for all UEs. The set of all feasible joint action spaces is C (known a priori). In order

to solve for the aforementioned policy Ω to minimize transmission power, one must
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first determine the power cost of taking each joint action c ∈ C. This is handled by

the physical (PHY) layer component.

Firstly, we clarify the following assumptions

• The CSI matrix corresponding to the channel between each UE and the eNB

over all RBs is available at the eNB error free.

• The eNB feedback channel informs UEs in advance of the resource blocks and

quantity of data for transmission for a user during any uplink subframe.

• The eNB has knowledge about buffer occupancy levels and QoS parameters of

each UE.

7.1.1 Finite Transport Block Sizes

In a packet based transmission system, due to physical limitations, each user can only

service a finite number of packets from the queue. Assuming no packet segmentation

at the physical layer before transmission, we can denote Zi as the maximum number

of packets (maximum value of ci, with rationale described in Chapter 3) that can be

serviced during any time subframe m by UE i where ci ∈ Ci = {0, 1 . . . , Zi}. As a

result, the eligible size of each UE’s transport block sizes is also finite and given as

Ti = {0, Li +Lhdr, 2Li +Lhdr, . . . , ZiLi +Lhdr} where Li is the packet length in bits

and Lhdr is the header size. During each subframe, the eNB allocates to user i an

uplink slot of Ti(m) ∈ Ti bits.

7.1.2 Channel State Information (CSI)

Channel state information is assumed available at the eNB for the next scheduling

time-frame. We assume this information is available error-free. The channel is mod-

elled as block fading where the channel is static for the duration of a subframe and

independent from subframe to subframe. The channel experienced from user to user

is assumed independent. For now, the channel transfer function for each RB is also

assumed to be independent of adjacent RBs and each channel follows the Rayleigh

SNR distribution given as

p(γ) =
1

γ0
exp

(
− γ

γ0

)
(7.1)
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where γi,k(m) will be used to denote the uplink channel of user i over RB k in

subframe m.

7.1.3 Queue Evolution

From slot m to slot m + 1 the evolution of the RLC queue of each user evolves

according to

ui(m) = min{Bi,max{0, ui(m− 1)− ci(m)}+ Ai(m)} (7.2)

where ui(m) is the number of packets in queue i at the end of subframe m, Ai(m)

is the number of packets arriving during subframe m to the queue and ci(m) is the

number of packets taken from queue i during subframe m.

7.2 Scheduler Formulation

The scheduler formulation is defined through a scheduling policy Ω. Let θi(ci, ui|Ω)

be a steady-state distribution function that exists for a particular policy Ω which

denotes the probability of being in state ui and transmitting ci packets during frame

n. The scheduling policy Ω is obtained through application of constraints on average

delay and MAC layer throughput which are given as follows. This approach was

described in Chapter 3 where the major contributions here is in generation of the

cost function used in conjunction with the MAC layer constraints in generation of

the scheduling policy.

7.2.1 PHY Layer Transmission Constraints

The uplink physical layer employs SC-FDMA. Resources during any given subframe

must be allocated contiguously in frequency, and only a single contiguous transport

block can be allocated per subframe.

The PHY allocation is done employing an iterative, near-optimal allocation

technique using Algorithm 2 or using an optimal allocation approach as described in
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Appendix D. In Appendix D, it is shown that this method performs near-optimal

subcarrier and power allocation when the number of users scheduled per time frame

to less than half the number of the RBs (i.e., 2K ≤ M) and under the TB size of

interest using the pre-described channel conditions. We assume that the number of

users is less than half the number of RBs and therefore justify its use. For a given set

of MAC layer allocations {Ti(m), ∀i}, the physical layer allocates power and RBs to

each user. The selected power level is given as the ratio of the required SNR to the

measured SNR for a given target error rate. We utilize the block outage probability

from [10] to model the block error rate (BLER) of coded transmissions1. This is a

function of the number of resource blocks (total number of symbols) and the data

rate. Given a target BLER, a data rate Ti (measured in bits per scheduling frame)

and a set of resource blocks Ni, we know that

BLER(γ
(r)
i,eff ,Ni, Ti) ≈ Q




log(1 + γ
(r)
i,eff )− log(2)Ti

η(Ni)√√√√ 2
η(Ni)

γ
(r)
i,eff

1+γ
(r)
i,eff




(7.3)

where γ
(r)
i,eff is the SNR level required for a given BLER.

In order to use the above for margin adaptive resource allocation, we must

solve for γ
(r)
i,eff as a function of Ti and Ni. From this, one can obtain the required

allocation power from the SNR gap between the measured effective SNR and the

required SNR. Due to the monotonicity of the Q-function arguments, the above can

be solved efficiently using bisection techniques. Alternatively, a more computationally

efficient method is to obtain a least squares approximation to the above as a function

of data rate, target BLER and the number of RBs allocated (similar to the approach

in [20]). We found the following fitting function closes approximates the SNR as a

1. While here we utilize BLOP to model the error rate of coded transmissions, extensions
are trivial given measurements of BLER performance obtained via proper training and
calibration or in cases where analytical expressions are obtainable
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function of data rate

γ
(r)
i,eff ≈ ax exp(bxTi)− γ0,x (7.4)

where x = |Ni| and validation of this approximation is given in Section 7.3.1.

Using the above, the required applied power is given as

P (Ni, Ti,γ) =
γ

(r)
i,eff

γ
(m)
i,eff

=
a|Ni| exp(b|Ni|Ti)− γ0,|Ni|

1

|Ni|2
∑

k∈Ni

γi,k

(7.5)

where Ni is the set of RBs that we allocate to a UE and Ti is the number of bits for

transmission. Parameters ax, bx, and γ0,x are given from the least-squares approxi-

mation derived in Chapter 6 depends on the target block error rate of the channel

(BLERtgt).

7.2.2 MAC Layer Constraints

The primary MAC layer constraints are on throughput and delay. These are measured

as follows.

7.2.2.1 MAC Throughput

Throughput is measured as the amount of goodput over the channel. Assuming each

transmission experiences a block error rate of BLERtgt the average throughput is

given by2

Throughput = Em[Ti(m)](1− BLERtgt) (7.6)

Further, we note that dropping probability of a given queue is related to the

service rate as

Pdrop,i = 1− Em[Ti(m)]

λi
(7.7)

2. We note in the above equation, the number of packets does not appear. This is
important to note as in general packets encoded at the physical layer are sent as one block.
If the block is erroneous, all packets within the subframe are erroneous.
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7.2.2.2 Packet Delay

The packet delay can be found from Little’s Theorem. Here, the average queueing

delay can be given as

Di =
qi

λq,iTf
(7.8)

where qi is the average queue size and λq,i is the average enqueued arrival rate3 for

queue i. By design we can express qi using the steady-state distribution θi(ci, ui|Ω)

as:

qi =
∑

ui∈Ui

ui

∑

ci∈Ci
θi(ci, ui|Ω) (7.9)

and since λq,i is also equal to the average service rate in steady-state, it can be

expressed as

λq,i =
∑

ui∈Ui

∑

ci∈Ci
min(ci, ui)θi(ci, ui|Ω) (7.10)

We also note that λq,i is related to the throughput as

Em[Ti(m)] = λq,iLi (7.11)

7.2.2.3 Per-Queue Transition Probability

The transition of each queue is solely based on the arrivals and departures from

that queue. For poisson arrivals with average rate λi in packets per subframe, the

transition probability is given as

p
ci
ui;u

′
i

=





Pr
[
Ai(m) = u′i − [ui −min(ui, ci)]

]
,u′i < Bi

∞∑

j=Bi−[ui−min(ui,ci)]

Pr[Ai(m) = j], u′i = Bi
(7.12)

3. Average rate at which packets enter the queue without being dropped.
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where

Pr[Ai(m) = k] =





λi

k
exp(−λi)

k! , if k ≥ 0

0, otherwise
(7.13)

for a given average arrival rate λi, buffer size Bi and all eligible packet service rates ci.

The transmission cost is found for each c ∈ C. Let P(c) be the joint cost of choosing

action c (action c1, c2, . . . cK for each UE). As in Chapter 3, the marginal cost for

each queue can be obtained using P(c) combined with the steady state distribution

as in equation 3.24 of Chapter 3 to obtain the marginal cost function used in the

MAC constrained optimization.

P(c) is dependant on the channel. Moreover, it is difficult to obtain a closed

form expression on P(c) for all c in the SC-FDMA system due to the large number of

resources. A near optimal uplink allocation algorithm is shown in Algorithm 2 where

the closeness of the gap is given in Appendix D. In our work, we measure P(c) for all

c by iteratively using the algorithm to obtain an approximation to P(c) for all c ∈ C.
By design, the steady-state distribution θi(ci, ui|Ω) must also satisfy the fol-

lowing balance property

∑

u′
i
∈Ui

∑

c′
i
∈Ci

θ(c′i, u
′
i|Ω)p

c′i
u′
i
;ui

=
∑

ci∈Ci
θ(ci, ui|Ω), ∀ui (7.14)

7.2.3 Per Queue Objective Function

The computed power allocation found in the first component is used to derive the ob-

jective function for the local MAC layer rate assignment. First, the average marginal

cost for taking an action ci in queue 1 can be given as

Υ1,x =
∑

c2∈C2
. . .

∑

cK∈CK
P (x, c2, . . . , cK) · π2(c2|Ω)× . . .× πK(cK |Ω) (7.15)
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Algorithm 2 Iterative Power Efficient Resource Allocation

1: N = {1, 2, . . . ,M}
2: Ni = ∅, ∀i ∈ K
3: K(a) = K
4: N (f)

i = N , ∀i ∈ K
5: while |N | > |K(a)| do
6: for i ∈ K do
7: if Ni 6= ∅ then

8: for j ∈ N (f)
i ∩N do

9: ∆pi,j = αi(P (Ni, Ti,γ)− P (Ni ∪ j, Ti,γ))
10: end for
11: else
12: for N do
13: pi,j = αiP (Ni, Ti,γ)
14: end for
15: ∆pi,j = min({pi,j, j ∈ N \ arg min

j∗∈N
(pi,j∗)})

−min({pi,j, ∀j ∈ N})
16: end if
17: end for
18: if max(∆pi,j) < 0 then
19: break
20: end if
21: (i∗, j∗) = arg max

i,j
∆pi,j

22: K(a) = K(a) \ i∗
23: Ni∗ = Ni∗ ∪ j∗
24: N (f)

i∗ = {min(Ni∗)− 1,max(Ni∗) + 1} ∩ N
25: N = N \ j∗
26: end while
27: if |K(a)| 6= ∅ then

28: for i ∈ K(a) do
29: for j ∈ N do
30: pi,j = αiP (Ni, Ti,γ)
31: end for
32: end for
33: while |K(a)| 6= ∅ do
34: (i∗, j∗) = arg min

i∈K(a),j∈N
pi,j

35: K(a) = K(a) \ i∗
36: Ni∗ = j∗
37: N = N \ j∗
38: end while
39: end if
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where there are i − 1 summations. Similar expressions can be found for all actions

ci ∈ Ci and found for all queues k = 1, . . . , K and where

πi(x|Ω) =
∑

ui∈Ui

θ(x, ui|Ω), x ∈ Ci (7.16)

P (c1, c2, . . . , cK) denotes the average power allocated to transmit {c1, c2, . . . , cK}
packets for each queue i. In compact notation we denote this P(c) where each c ∈ C
corresponds to a set {c1, c2, . . . , cK} for all users.

7.2.4 Determining Power Applied Per State

Determination of P(c) is as follows. The bitrate Ti is easily obtained as Ti = ciLi +

Lhdr for that state c. Using Ti, ∀i in Algorithm 2, one can obtainNi for each iteration

and find the weighted transmission power using (7.5). The value of P(c) is obtained by

averaging the weighted transmission power over all realizations of the channel matrix.

Since we assume the channel is continuous, and the number of resource blocks is large,

it is difficult to do this for all realizations. For the rest of this work, we obtain P(c)

by averaging over a finite number of random realizations for each c.

Consider the following example where there are 5 UEs, and 24 RBs and each

user is transmitting 400 bits (for this state c, i.e., T1 = T2 = . . . = T5) over one

subframe. In Figure 7.2, we see a histogram of the actual applied power per iteration

(instantaneous P̃(c) over 10000 iterations) for this state c (where RBs and power are

allocated at each iteration based on the channel CSI). For each c, P(c) is the mean

value (i.e., 0.1879 or −7.26dB in this example). Similar values can be obtained for

all other c ∈ C.
In general these values can be calculated in advance and stored. The proposed

method is functional for a small to moderate number of instantaneous users as the

size of C is given as

|C| =
K∏

i=1

(Zi + 1) (7.17)
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Figure 7.2: Histogram of Power Applied per Iteration

For the case above, where we assume Zi = 4, we see that |C| = 5(4+1) =

3125. While we observe that the number of states increases exponentially, it is still

considerably more efficient than consideration of the joint buffer occupancy states.

For example, if each user had a buffer size of up to 25 SDUs, the resulting space

would be 5(25+1) = 1.49× 1018.

7.2.5 Iterative Policy Solver

The above steady-state action probabilities are coupled through the policy Ω. The

value P (c) is the total power associated with taking actions c1 through cK in each

queue (or one for each state c ∈ C) found earlier. Here we need to highlight that the

above expression contains the steady-state probability of choosing an action in each

queue. The result of which implies that it is not possible to directly decouple and

consider each queue independently. As a result, we employ the per-queue iterative

policy solver developed in Chapter 3. The solver operates as follows.
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Firstly, each queue policy vector is initialized to

πi(x|Ω(0)) =
1

Zi + 1
, ∀x, i (7.18)

where Ω(n) denotes the policy computed at iteration n. Let K denote the set of users

where K = {1, 2, . . . , K} and n denote the iteration number where initially n = 1. At

each iteration, i∗ = (n mod K) + 1 where n is incremented for each iteration. For

each iteration we solve for πi∗(x|Ω(n)) as follows.

As in Chapter 3, the constrained MDP problem at each iteration is solved using

Linear Programming (LP) techniques formulated as arg min
x

cTx, subject to Ax ≤ b,

Aeqx = beq, x ≥ 0 where A and Aeq are matrices and x,b,beq and c are column

vectors. The vector x is the solution to the optimization problem. In our problem,

the elements are given as

x = [θi∗(Ci∗ , 0|Ω(n)), . . . , θi∗(Ci∗ , Bi∗|Ω(n))]T (7.19)

with each θi∗(Ci∗, ui∗|Ω(n)) being a row vector with entries for each ci∗ = 0, 1, . . . , Zi∗.

The objective function is of the form cTx. The vector c is comprised of the

total power cost for taking an action. Each entry of c corresponds to the entry in x

with the value of entries in c given by Υi∗,ci∗
in (7.15).

c = [Υi∗,1, . . . ,Υi∗,Zi∗+1︸ ︷︷ ︸
1

,
2...Bi∗︷︸︸︷. . . ,Υi∗,1, . . . ,Υi∗,Zi∗+1︸ ︷︷ ︸

Bi∗+1

] (7.20)

The equality constraints are comprised of the balance equations and the causal-

ity constraint (total probability space). In matrix form, the balance equations can be
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expressed as P× x = Φ0 × x where P is given by

P =




p
Ci∗
0;0 · · · · · · p

Ci∗
Bi∗ ;0

... p
Ci∗
1;1 · · · ...

...
...

. . .
...

p
Ci∗
0;Bi∗

· · · · · · p
Ci∗
Bi∗ ;Bi∗




(7.21)

with p
Ci∗
q;q′

as a 1× (Zi∗ + 1) row vector with entries

p
Ci∗
q;q′

= [p1q;q′ , . . . , p
Zi∗+1

q;q′
] (7.22)

and the quantity Φ0 is given as the Bi∗ + 1 row matrix

Φ0 =




11×(Zi∗+1) 0 · · · 0

0 11×(Zi∗+1) · · · 0
...

...
. . .

...

0 0 · · · 11×(Zi∗+1)




(7.23)

Combining the above with the causality constraint on the total probability space

we have our overall equality constraints given as

Aeq =



 P−Φ0

11×((Zi∗+1)(Bi∗+1))



 (7.24)

beq = [01×(Bi∗+1) 1]T (7.25)

The inequality constraints are used to describe the throughput and delay con-

U = [min(0, 0),min(1, 0), . . . ,min(Zi∗, 0),min(0, 1), . . . ,min(Zi∗, Bi∗)] = −w1(7.30)
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straints. These constraints are given in two parts as

A =

[
w1

w2

]
b =

[
z1

z2

]
(7.26)

where w1 is given as

w1 = −[χi∗:n(Ci∗ , 0), . . . ,χi∗:n(Ci∗ , Bi∗)] (7.27)

where χi∗:n(Ci∗ , ui∗) is a row vector with entries χi∗:n(ci∗, ui∗) for all ci∗ ∈ Ci∗ and

z1 is given as

z1 = −λ̄i∗(1− Pdrop,i∗)Tf (7.28)

Finally, w2 is given as

w2 = Q×Φ0 −Di∗U z2 = 0 (7.29)

where Q = [0, 1, . . . , Bi∗] and U is given in (7.30).

The total system power at iteration n is given as

P(n) =
∑

c1∈C1
. . .

∑

cK∈CK
P (c1, c2, . . . , cK) · π1(c1|Ω(n))× . . .× πK(cK |Ω(n)) (7.31)

The process continues iteratively until reaching one of the following stopping

conditions

(i) |P(n−k) − P(n−k−1)| < ε, k = 0, . . . , K − 1, n ≥ K

(ii) n > MAXiter

where MAXiter is the preset maximum number of iterations and ε is a small positive

number. The above convergence details were presented in Chapter 3.
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7.3 Simulation Results and Discussion

Results are presented with universal parameters summarized in Table 7.1 with the

system modelled in MATLAB. Details are provided for the least-squares approxima-

tion as well as the applied power versus various parameters.

7.3.1 Least-Squares Applied Power Approximation

The justification behind use of the pre-described fit function was shown in Figure 6.3

in Chapter 6. Here we see in this comparison for 2, 4, and 8 RBs with BLERtgt =

10%. The least-squares approximation is shown to hold tightly to the actual BLER

function; providing for a more tractable computation of the required SNR level and

justifying its use as a suitable alternative in computation of the required SNR.

7.3.2 Average Applied Power

Results for the average applied power is shown in Figure 7.3. From these we observe

several trends. Firstly, we observe a very low impact on the delay beyond 2 frames

in terms of percentage difference. This finding is consistent with the results found in

previous chapters. The impact on SDU size is significantly larger in terms of average

power applied. We also observe the impact on the number of users in Figure 7.3(b).

Table 7.1: Simulation Parameters

Parameter Value Parameter Value

γ0 10dB Lhdr 30 bits

Nsym 14 αi 1 ∀i
Nctrl 3 Pdrop,i 0.1% ∀i
BLERtgt 10% Bi 25 packets ∀i
Number of Subframes 10000 λ̄i 1.5 packets per frame, ∀i
Tf 1ms Di 4 frames ∀i
Number of RBs (M) 24 Zi 4 ∀i
Number of UEs (K) 2 Ti 150 + 50i, ∀i
ε 10−7 MAXiter 10K
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Figure 7.3: Average applied power per subframe versus system parameters

Here as expected the system expends additional power to accommodate the increase

in users. In this graph the computed and simulated results are shown (computed
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and given as the solution to the optimal policy, simulated obtained through imple-

mentation of the computed policy). The simulated results closely follow the expected

scheduling policy performance.

7.4 Chapter Summary

In this chapter we designed and evaluated the design of an energy efficient sched-

uler for multiuser SC-FDMA uplink. By exploiting part of our previously designed

iterative scheduling technique, with a near optimal iterative resource allocation mech-

anism, a low-complexity scheduling policy was obtained. The proposed design was

compared versus various parameters.

Future work in this area can take a number of directions. For example, per-

formance of the system described in this chapter depends highly on the allocation

method at the PHY layer and as such, there is a need to develop low-complexity op-

timal or near optimal algorithms for resource block assignment for margin adaptive

SC-FDMA. In the next chapter, details of this, and other related open problems are

discussed under future work.
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Chapter 8

Thesis Summary and Future Work

As time goes on, the need for energy efficient scheduling techniques becomes more

and more paramount. Interestingly enough, while the penetration rate for mobile

users and breadth of device features continues to increase, the need for more energy

efficient communication is still of importance as still a large percentage of mobile

device energy consumption is in the mobile radio.

8.1 Thesis Summary

In this thesis designs are proposed for both scheduling and resource allocation meth-

ods that offer reduced complexity in multi-stream (multi-user), multi-channel (MS-

MC) scenarios in both downlink and uplink systems. In Chapter 3 we examined

how we can apply MDP theory to a multi-queue environment using MIMO SVD in a

way that reduces complexity and exploits QSI to minimize transmission energy. This

novel approach can be used to efficiently schedule traffic streams with differing QoS

parameters without needing to result to full scale optimization techniques while still

guaranteeing throughput and average delay constraints. While we present some novel

approaches, the work in this chapter was limited to the case of static channels.

However, next in Chapters 4 and 5 this static assumption was relaxed. First,

the main contributions in Chapter 4 resulted in a detailed study of sparse MIMO

channels. This research work provided a better understanding of the time-average

and time-varying statistics in this class of channels. This information was used in

Chapter 5 to design an extended scheduling scheme that exploited this information

about the underlying channel statistics. The main contribution of this Chapter 5 was
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an extension of the work in Chapter 3 to utilize coded modulation schemes and relax-

ation of the static channel assumption. Further, the important tradeoff of complexity

and energy efficiency in reference to channel partitioning was also examined.

In Chapters 6 and 7, we turned to the multi-user uplink scenario. This work

focused on the heterogeneous multiuser case as the incoming traffic streams and SC-

FDMA as the multiple channel medium. Unlike the MIMO SVD system, SC-FDMA

introduced additional complexity considerations. In these chapters, the complexity

considerations were able to be exploited in a way that effectively reduced the com-

putational complexity. Specifically in Chapter 6 we proposed a way to reduce the

scheduling intervals when synchronous HARQ was considered by exploiting its peri-

odicity. We further proposed reduced complexity methods and compared these with

the optimal per ARQ slot allocation. Chapter 7 relaxed the HARQ constraints and

looked at combining the novel work in Chapters 3 and 5 with the allocation mech-

anisms found in Chapter 6. In this way, the scheduler was able to exploit QSI to

energy efficiently allocate users each subframe with only a priori knowledge of the

channel distribution. Such knowledge could easily be obtained through measurement

campaigns.

Overall, one of the primary arguments made in this thesis is the large complexity

associated with heterogenous scheduling techniques, particularly when attempting to

minimize energy expended in the mobile radio. While in this thesis, methods of

complexity reduction in scheduling were shown while attempting to minimize energy

expenditure, it is important to note that this research area is still wide open and that

there is no single solution to this complexity problem. This is particularly true as the

constraints imposed by practical systems vary dramatically from system to system.

8.2 Future Work

The work in this thesis presents some investigation into the multi-stream, multi-

channel scheduling problem, particularly with a focus on complexity issues. While we

have proposed some novel techniques to reduce complexity and address this problem,
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there still remains numerous open issues in this area. In this section we highlight

some of these major issues.

8.2.1 Outage and Partial Outage Events in MAC Rate

Allocation

In Chapter 3, we described the problem associated with no limitation on the maximum

instantaneous power. This problem was further complicated in Chapter 5. The need

to characterize outage events (either due to low subchannel SNRs or exceeding the

instantaneous sum-rate from all queues) is an important next step in extending our

scheduling algorithm derived in these chapters.

One method of accomplishing this goal is considering an abstracted channel

quality indicator in the MAC rate allocation stage while leaving the PHY allocation

(channel, rate and power) to operate independently as before. This could be done

as follows. Let θi(ui, ci, %|Ω) be the steady-state probability of queue i existing in a

state where ui is the number of packets in the queue, ci is the action taken and % is

the state of the physical layer for a given policy Ω.

The state of the physical can be described in any way. In fact, since the PHY

layer allocation is handled to minimize average allocated transmission power locally,

this additional coupling parameter can be used to describe the PHY layer in detail or

almost completely abstracted. In the case of handling the outage problem discussed

previously, the parameter can take on the values % ∈ V = {0, 1} where 0 denotes

an outage event, and 1 denotes a non-outage event. In this case, it only doubles the

state-space of the locally optimized queue rate allocation. Transition probabilities for

% are independent of the MAC policy Ω.

It is also possible to have a multi-state % ∈ V which can provide less abstraction

of the physical layer. Unlike CSI or partial CSI, % can be used to quantify any part

of the physical layer at the MAC. The benefit of this approach is that it provides

granularity control over complexity. Research into V beyond outage information can

be the study of future research projects.
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8.2.2 Availability and Quantity of Channels

In all chapters throughout this thesis, one of the assumptions is the known quantity of

available channels for use (either through MIMO or resources in frequency with SC-

FDMA). It may arise however that the number of channel resources may be random

and change in time. Such problems can arise in a number of ways, such as with

MIMO as scattering conditions change dramatically in time. It is therefore important

to extend some of the proposed methods in this thesis to the case where the number

of channels are random in future work.

8.2.3 Ordered Statistics for Sparse MIMO

In Chapter 4, we derived statistics for the unordered eigenvalues and SNR as well

as the unordered level-crossing rates and average fade durations. While these are

important measurements, it is also important to understand these measurements for

ordered statistics, particularly for use in resource allocation.

Recently, a method was proposed in [84] to determine these level crossing statis-

tics for ordered random processes. It is possible that these results could be applied

to the sparse MIMO scenario presented in Chapter 4 which would strengthen the

understanding of their performance in terms of ordered statistics and time-varying

parameters, as well as be beneficial in future scheduler designs.

8.2.4 Accurate Channel Modelling for BTFPDS

In Chapter 6, we assumed that the channel was static for the duration of an entire

ARQ slot (block fading over an ARQ slot). While this may be true in the slow fading

environment, this assumption may not hold in fast fading conditions. One method

that could be used to combat this assumption is to employ some of the concepts

of the BTFDPS allocation method in terms of admission control for users limited

to one per ARQ slot. Further, the scheduler could employ estimates of the future

channel of those users throughout the ARQ slot based on past and current channel

measurements. Estimation accuracy in this case plays a vital role in the performance

of the allocation as accuracy will decrease as a function of the subframe in the ARQ
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slot and this accuracy, and its impact on performance should be studied in detail in

future work.

8.2.5 Low Complexity Margin Adaptive Allocation for

SC-FDMA

In Chapters 6 and 7 we presented a low complexity algorithm for margin adaptive

(MA) resource allocation for localize SC-FDMA. The algorithm iteratively allocated

frequency resource to maximize the power level gain per iteration. While this method

was shown to perform close to optimal power allocation for smaller transport block

(TB) sizes, this gap deviates for very large blocks.

While efficient MA methods have been studied heavily for OFDM, SC-FDMA

has received significantly less attention. This is particularly important, as this tech-

nology has become popular in recent years due to its low peak-to-average power ratio

(PAPR) as a solution for mobile devices. More importantly, it is these devices where

MA is of greater importance due to their battery limited nature. It is therefore im-

portant to design low-complexity, near optimal MA algorithms that work under a

wide range of conditions (i.e., channels, TB sizes, etc) in future work.

8.2.6 Frequency Correlated Performance of SC-FDMA

Allocation Methods

In Chapters 6 and 7, we assumed a block fading model where each channels were

also independent as a function of user and RBs in frequency. In realistic conditions,

there may be some correlation in frequency between the SNR of individual channels.

Intuitively, such channels should improve the performance of our iterative allocation

schemes as for a given initial allocation, there is a higher probability of finding a good

quality adjacent channel. This however, may not be true as the same can be said

for an initially poor selected channel. It is therefore important to study this impact

on MA iterative allocation algorithms, particularly for localized SC-FDMA in future

work.
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Appendix A
Probability Theory and Finite State

Markov Channels

Throughout this thesis, there are a number of mathematical tools employed. For clar-

ity, this chapter overview various mathematical tools, fundamentals and definitions

that are used throughout this thesis including probability theory, finite state Markov

chains and optimization techniques/formulations.

A.1 Probability Theory and Distributions

Let X be a real-valued, non-negative, continuous random variable (RV). This implies

that for any realization of this random variable, the value of X will fall in (0,∞).The

probability density function (PDF) of this random variable X is denoted fX(x) and

completely describes the random variable. For any non-negative random variable, the

PDF must satisfy
∞∫

0

fX(x)dx = 1 (A.1)

As fX(x) denotes the PDF, the probability of a continuous RV taking on a value

between a and b (inclusive) is given as

Pr[a ≤ X ≤ b] =

b∫

a

fX(x)dx (A.2)

implying the probability of a continuous RV taking on a specific value is 0:

Pr[X = b] = Pr[b < X ≤ b] =

b∫

b

fX(x)dx = 0 (A.3)
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The above only holds true for continuous random variables. For discrete, or discon-

tinuous RVs, the density function is not continuous and therefore a RV may take on

a specific value with a probability greater than 0.

In addition to the PDF, the cumulative distribution function (CDF) also de-

scribes the RV. The CDF by definition for a non-negative RV is given as

FX(x) = Pr[X ≤ x] =

x∫

0

fX(y)dy (A.4)

where fX(y) is the PDF derived above. It’s easy to observe that FX(0) = 0, FX(∞) =

1.

A.2 Moments

The mth moment of an RV X is given as

EX [Xm] =

∞∫

0

xmfX(x)dx (A.5)

where the definition of expectation function E[·] with respect to random variable X

is

EX [g(X)] =

∞∫

0

g(x)fX(x)dx (A.6)

The first moment of an RV is known as the mean which we denote µ̄X . Similarly,

the mth central moment of a random variable is the mth moment about the mean,

namely

EX [(X − µ̄X)m] =

∞∫

0

(x− µ̄X)mfX(x)dx (A.7)

The variance, or the second central moment, is a commonly used central moment to

describe an RV. Frequently it is denoted as σ2
X . Alternatively, it is easy to show that
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the variance is also

σ2
X = EX [X2]− (EX [X])2 (A.8)

For a Gaussian random variable following the distribution

fX(x) =
1√

2πσ2
X

exp

(
−(x− µ̄X)2

2σ2
X

)
(A.9)

only the mean and variance are required to completely describe the random variable.

In later chapters, the notation N (µ̄X , σ
2
X) is used to denote a Normal (or Gaussian)

distribution with mean µ̄X and variance σ2
X .

A.3 Second Order Statistics

A continuous time random process X(t) is a process that evolves randomly in time.

In general a random process is defined as [66] a family of time functions depending

on a particular parameter(s). At any instant of time, e.g., t1, the process may be

sampled. A sample of the random process at anytime such as t1 is a random variable

which we can denote as X1.

In the interest of this thesis, Chapter 4 focuses on study of the evolution of sparse

MIMO channels. Two well-known and important measures of a random process in

the context of communication systems are its level crossing rate and average fade

duration. These parameters are used frequency for scheduling techniques as well as

determining burst errors in communication systems.

A.3.1 Level Crossing Rate (LCR)

The level crossing rate (LCR) of a process is a measure of the expected rate of a

process crossing a threshold in a given direction (either positive or negative). In

general, the LCR of a process provides an idea of how quickly a process evolves in

time. The general formula for the LCR of a non-negative process over a threshold x
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in one direction was originally found by Rice and is given as [85]

NX(x) =

∞∫

0

ẋf
X,Ẋ

(x, ẋ)dẋ (A.10)

where f
X,Ẋ

(x, ẋ) is the joint PDF of X and its time derivative process Ẋ. In general,

this joint PDF is relatively hard to obtain. In certain cases, and is often assumed,

that the derivative process is independent of the process itself. As a result the joint

PDF can be expressed as

f
X,Ẋ

(x, ẋ) = fX(x)f
Ẋ

(ẋ) (A.11)

From this, (A.10) becomes

NX(x) = fX(x)

∞∫

0

ẋf
Ẋ

(ẋ)dẋ (A.12)

Finally, for a Gaussian process, f
Ẋ

(ẋ) is also a Gaussian RV with zero mean and

variance σ2
Ẋ

. In this case Rice showed that the LCR is given as

NX(x) = fX(x)

√
σ2
Ẋ

2π
(A.13)

where for a Gaussian process

σ2
Ẋ

= − ∂2

∂τ2
{ρX(τ)}

∣∣∣∣
τ=0

(A.14)

and ρX(τ) is the time correlation function of process X(t).

A.3.2 Average Fade Duration (AFD)

The average fade duration (AFD) of a process is a measure of the expected duration

of time a process remains below a threshold during each instance that process is below
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that threshold. The AFD effectively is

AFD =
Average Amount of Time Below a Threshold

Number of Times Below A Threshold
(A.15)

which is easily given mathematically as

AFD(x) =

x∫

0

fX(y)dy

NX(x)
(A.16)

A.4 Finite State Markov Channel

The idea of finite state Markov Channels (FSMC) was originally introduced in [86]

and is known as the Wang-Moyaeri model. In general, channels measurements such

as the SNR level of a wireless channel are continuous time quantities. Using FSMC,

the channel can be considered as a finite number of states from an adaptation or

resource allocation perspective. In this way, instead of performing adaptation on the

continuous SNR of the channel, adaptation is solely based on the current state of the

channel as well as information about transitions between states.

Let the instantaneous SNR of a channel be γ(t) such that 0 < γ(t) < ∞, ∀t
with SNR distribution fγ(γ). Let S be a set of K finite, non-overlapping states such

that S = {s1, s2, . . . , sK}. Each state is bounded by [ϕk, ϕk+1) with ϕ1 = 0 and

ϕK+1 =∞. For any time t, the γ(t) falls within a single state sk ∈ S.

The quantities ϕk are known as the partition boundaries. The probability of

the channel falling in state sk is a function of these boundaries and given as

Pr[sk ∈ S] =

ϕk+1∫

ϕk

fγ(γ)dγ (A.17)

The transition probabilities between states can be computed in a manner such

as that in [19]. We denote the frame of interest having a duration Tf . If the changes

in-time are assumed to be small compared to the frame duration of interest (Tf ) then
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s1 s2 · · · sK−1 sK

P1,1

P1,2

P2,1

P2,2

P2,3

P3,2

P2,3

P3,2

PK−1,K−2

PK−2,K−1

PK−1,K−1

PK−1,K

PK,K−1

PK,K

Figure A.1: State Transitions for FSMC Model of Channel SNR

it can be assumed that from frame to frame, the channel may only change to adjacent

states. In this way, the transition probabilities are approximately given as in [19]:

Pk,k+1 ≈
NΛ(ϕk+1)Tf

FΛ(ϕk+1)− FΛ(ϕk)
k = 1, . . . , K − 1 (A.18)

Pk,k−1 ≈
NΛ(ϕk)Tf

FΛ(ϕk+1)− FΛ(ϕk)
k = 2, . . . , K (A.19)

Pk,k ≈ 1− Pk,k−1 − Pk,k+1 k = 2, . . . , K − 1 (A.20)

P1,1 ≈ 1− P1,2 (A.21)

PK,K ≈ 1− PK,K−1 (A.22)

where Pm,n denotes the probability of entering state n in the next frame, while the

system is currently in state m, NΛ(ϕ) is the LCR of the SNR process in crossings per

second at level ϕ and FΛ(ϕ) is the CDF of γ evaluated at ϕ. Figure A.1 shows the

one dimensional state transition diagram describing the FSMC.
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Appendix B

Optimization Techniques

Optimization theory plays an important role in a wide range of problem solving

applications. The main purpose of this broad class of theories can be summarized

follows.

To maximize or minimize an objective function subject to a number of

constraints (linear or non-linear).

With such a broad use, it is clear why optimization methods have found way into a

broad range of fields ranging from economics, to control system theory.

Optimization algorithms can be characterized into two subfields of problem

solving methods. Those classified as static or dynamic in nature.

B.1 Static Programming

Methods of solving static programming problems are resolved from the fundamental

problem to solve. Problems solved using these methods focus on optimizing the

overall objective function. Problems solved using static methods may contain linear

or non-linear constraints. Solving methods depend on the type of constraints.

B.2 Linear Programming

The general minimization problem for linear systems takes the structures described

by

min
x

cTx (B.1)

s.t. Ax ≤ b and x ≥ 0
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where c denotes the costs (or rewards) to maximize for each value of x and A, b are

the constraints of the linear system. There are numerous methods for solving these

type of problems known as Linear Programming (LP) methods. Most famous is the

Simplex Method.

Methods of solving LP problems normally require introduction of non-negative

slack variables to convert the inequality to an equality. For example given a system

with a single constraint ax1 ≤ b, x ≥ 0, this constraint can be represented as

ax1 + xs1 = b, x1, xs1 ≥ 0 (B.2)

where xs1 is denoted as a slack variable. Because linear programming algorithms solve

constraint problems in this way, its easy to represent introduce a series of equality

constraints into a system and therefore an additional constraint set can exist resulting

in an extended linear problem given by

min
x

cTx (B.3)

s.t. Ax ≤ b,A′x = b′ and x ≥ 0

B.3 Non-Linear Programming

Non-linear programming is a more general formulation of an optimization problems

given as

min
x

f(x) (B.4)

s.t. Ax ≤ b, Aeqxeq = beq, x ≥ 0, c(x) ≤ 0

where A and Aeq are matrices, b and beq are vectors, c(x) is a vector of non-linear

functions evaluated at x and f(x) is a scalar non-linear function evaluated at x. There

are numerous methods used to solve non-linear programming problems. Such methods

include linearizing the problem, linear approximations, Lagrange multipliers, amongst

others. Commercial software packages such as MATLAB [87], also incorporate a
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combination of these methods to solve problems of the form given in (B.4).

B.4 Quadratic Programming

Quadratic programming (QP) is a special structure of NLP program with linear

constraints and the cost function is in a quadratic form

min
x

1

2
xT Qx (B.5)

s.t. Ax ≤ b, Aeqxeq = beq, x ≥ 0

QP solvers are also built into packages such as MATLAB. It has been shown [88]

that QP problems can be solved in polynomial time using the ellipsoid method if the

matrix Q is positive definite.

B.5 Binary Programming

A binary programming (BP) problem is a linear programming problem where the

variables can take on values of {0, 1}. The optimization problem is given in the

general form used in this thesis is

min
x

cTx (B.6)

s.t. Ax ≤ 1N , Aeqx = 1M , xj ∈ {0, 1}, ∀j ∈ x

where c is the real-valued vector containing the weighted power of choosing a given

allocation, x is the vector of allocation selections, Aeq is a binary equality constraint

matrix of M rows and A is a binary inequality constraint matrix of N rows. Well-

known methods of solving BP problems include branch and bound and LP relaxation.
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B.6 Dynamic Programming

Dynamic programming methods differ from traditional optimization methods as they

focus on subsets of problems in an attempt to determine the optimal solution. More

specifically, such problems are generally recursive in nature as solutions of individual

subproblems are dependant.

B.7 Greedy Algorithm

A greedy algorithm is a dynamic method of solving optimization problems. The

greedy algorithm is a well-known dynamic programming technique. In greedy based

algorithms, optimization is performed on each subproblem in sequence in an attempt

to solve the global optimization problem. By finding the locally optimal solutions,

the greedy method may solve a large-scale, multi-stage optimization problem in low

polynomial order.

There are no guarantees that greedy algorithms reach the globally optimal solu-

tion. However this trade-off is afforded in the use of a greedy algorithm as it provides

speedy optimization to large-scale multi-step problems and may in some problems

guarantee to provide a global optimization solution. One of the most famous greedy

based algorithms offering the global optimal solution is Dijkstra algorithm for finding

the shortest path [89]. In cases where the global optimal solution is not guaranteed,

greedy algorithms may still be used as the tradeoff in computational complexity can

outweigh the gap between the optimal and sub-optimal solution performance.

B.8 Constrained Markov Decision Process

MDP-based optimization provides a framework for solving optimization problems

to maximize the total expected reward, given a reward is earned for each possible

decision made during a given state and is a well-known [90] dynamic programming

framework. MDP is described by a state space S, an action space A(s), a transition

probability matrix P(a, s) and a reward or cost R(a, s).
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Constrained MDP (or C-MDP) theory is an extension to traditional MDP-

based optimization framework in that optimization problems can be formulated with

a series of constraints and corresponding state rewards. Like MDP, state transitions

with C-MDP require the Markov Property.

The optimal solution to an MDP problem is policy µopt defining the actions

taken in each system state such that the average expected reward is maximized. In

C-MDP, the optimal policy is described as a marginal action density function µopt(a|s)
denoting the probability of choosing action a given that the system is currently in

state s. This density function is related to the steady-state probabilities as

µopt(a|s) =
π(a, s)

π(s)
=

π(a, s)∑

a∈A(s)

π(a, s)
(B.7)

where π(a, s) is the steady-state probability of the system occupying state s and taking

action a. Solving an C-MDP problem requires deriving the steady-state probability

set π(a, s), ∀a ∈ A(s), ∀s ∈ S. In general, methods of solving these probabilities vary

based on the problem construction. In [51], these are solved using general LP methods.

In this way, the constraints, rewards and system properties may be described through

a series of linear equalities/inequalities and through an objective function. More

specifically recalling the general form of an LP problem

f(x) = arg max
x

cTx, Ax ≤ b,Aeqx = beq and x ≥ 0 (B.8)

where x contains the steady-state probabilities π(a, s) and A,Aeq,b,beq contains

the linear system constraints. The vector c contains the rewards associated with each

action/state pair. Due to the structure of the objective function in the LP problem

shown in B.8, c should contain negative valued rewards. In addition to problem

specific constraints, the following constraints are inherent and must be considered

when forming the optimization problem for C-MDP:
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• Unity Property (the complete probability space):

∑

a∈A(s),s∈S
π(a, s) = 1 (B.9)

• State Transition Balance Property (probability of entering a state must equal

the probability being in that state)

∑

s∈S

∑

a∈A(s)

π(a, s)pas,s′ =
∑

a′∈A(s′)

π(a′, s′), ∀s′ ∈ S (B.10)

• Non-Negativity Property (probability cannot be less than 0):

π(a, s) ≥ 0, ∀a ∈ A(s), ∀s ∈ S (B.11)

where pa
s,s′

is the transition probability from state s to state s′ given action a.
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Appendix C

Proof of PER Approximation in Chapter 3

Lemma 2. For a packet error rate that satisfies the following

PER = 1−
M∏

j=1

(1− BERj(γ))
αjL,

where αj denotes the portion of bits subject to BERj(γ) such that
∑

j αj = 1 and L

denotes the number of bits per packet. The resulting packet error rate is approximately

PER ≈ 1−


1−

M∑

j=1

αjBERj(γ)




L

Proof. Let f(γ) denote 1− PER such that

f(γ) =
M∏

j=1

(1− BERj(γ))
αjL

Taking the log of both sides we have

log[f(γ)] = log




M∏

j=1

(1−BERj(γ))
αjL




=

M∑

j=1

αjL log[1−BERj(γ)]

Since BERj(γ) << |1| in any region of interest and log(1 + x) ≈ x near 0, we have

log[f(γ)] ≈
M∑

j=1

−αjL · BERj(γ)
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Figure C.1: PER approximation, 4 channels, BER vector [10−5 10−4 10−3 10−2]
and random bit assignments for αj

By the same argument we note that αj ≤ 1 by design and therefore
∑M

j=1−αj ·
BERj(γ) << |1| implying

log[f(γ)] ≈ L log


1−

M∑

j=1

αjBERj(γ)




≈ log






1−
M∑

j=1

αjBERj(γ)




L



and by taking the exponential of both sides we have

exp(log[f(γ)]) = f(γ) ≈


1−

M∑

j=1

αjBERj(γ)




L

thereby implying

PER ≈ 1−


1−

M∑

j=1

αjBERj(γ)




L

In Figure C.1 one can observe the close approximation of the approximate PER

to the actual PER (solid lines) for randomly generated sets of αj for 4 channels.
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Appendix D

SC-FDMA Resource Allocation Optimal

Gap

In order to address the performance of the iterative allocation algorithm described

in Algorithm 2 used in Chapter 7, we compare its performance with the optimal

allocation. The optimal optimizations formulation is as follows.

The formulation can be done using a similar approach as that used in [83] and

in Chapter 6, however modified to operate for the MA resource allocation problem.

In this fashion, the contiguity constraints are exploited in a manner that reduces the

binary search space.

The optimization problem is solved at each subframe m. For brevity the index

m is dropped however all quantities are assumed to be specific to subframe m. The

problem can be expressed as a general set-packing problem and formulated using

binary programming as

min
x

cTx (D.1)

s.t. Ax ≤ 1M , Aeqx = 1K , xj ∈ {0, 1}, ∀j ∈ x

where c is the real-valued vector containing the weighted power of choosing a given

allocation, x is the vector of allocation selections, Aeq is a binary equality constraint

matrix of K rows and A is a binary inequality constraint matrix of M rows. Each

non-zero entry of the solution vector x corresponds to selecting the corresponding

column allocation in A.
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The matrix A describes the set of potential RB allocations for all users. It is

comprised of individual allocations given as

A = [A1, · · · , AK ] (D.2)

where Ai is a matrix containing the set of feasible allocations for UE i. Each column

of Ai corresponds to a feasible allocation while each row corresponds to a specific

resource. Each entry in Ai can take a value of {0, 1}. An entry of 1 if the particular

resource is required by a UE for that allocation and 0 otherwise.

The set of possible allocation is determined as follows for each UE. During

any subframe, a UE with data for transmission will utilize between 1 and M RBs

in frequency. Any unique possible allocation is given as a column entry in Ai. For

example in the case where M = 4:

Ai =




1 0 0 0 1 0 0 1 0 1

0 1 0 0 1 1 0 1 1 1

0 0 1 0 0 1 1 1 1 1

0 0 0 1 0 0 1 0 1 1




(D.3)

The effective MCS scheme is a function of the number of RBs and Ti. For each

possible contiguous block of RBs of size, the power level needed to maintain BLERtgt

for all possible allocations of contiguous resource blocks is found using (7.5). For each

such possible contiguous blocks above given by columns in Ai, the corresponding

transmission power is given in the corresponding entry of c.

The equality matrix Aeq is simply a matrix of K rows constraining the number

of selected allocations such that each UE is only allotted one allocation selection from

their matrix Ai. This is given as

Aeq =




1T
C1
· · · 0T

CK
...

. . .
...

0T
C1
· · · 1T

CK


 (D.4)
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where Ci is the number of columns in Ai and 1x and 0x are column vectors of length

x.

The objective function vector cT = [cT
1 , . . . , c

T
K ] is simply the cost of choosing

the corresponding allocation for each ci. By the design of the problem, one can see

the cost is simply the weighted power of choosing an allocation. Individual entries of

ci can be then be given as

ci:ji = αiP (Ni(ji), Ti), ji = 1, 2, . . . , Ci (D.5)

where the function Pi(·) is given in (7.5), αi is the priority weight of UE i and where

Ni(ji) = {x|ai:x,ji = 1, x = 1, 2, . . . ,M}. The quantity ai:x,ji denotes the {x, ji}
entry in Ai and ji is the jthi column of Ai.

In Figure D.1 and D.2 we show the result of the power allocation gap as a

function of number users and resource blocks under the channel assumptions discussed

in Chapter 7. Here we for example, all users to have a required data rate of 400 bits

per frame with the same relative priority (αi = 1, ∀i). Figure D.2 is zoomed into

a region of interest of Figure D.1. What we observe is under these conditions, that

as long as the number of resource blocks is at least twice the number of users, the

gap between the optimal and suboptimal allocation schemes is less than 15%. While

this results in a relatively small increase in power allocated compared to the optimal

allocation, there is relatively large reduction in computational complexity, and the

latter method can be easily implemented in real-time. The holds true for TB sizes

of interest presented in Chapter 7. For large TB sizes, the algorithm in Chapter 7

deviates from the optimal allocation. To improve its performance, this algorithm can

be modified similar to that of Chapter 6 where the initial RB selection (lines 12–15 in

Algorithm 2, Chapter 7) requires a minimum chunk allocation, (i.e., Nmin > 1 using

notation developed in Chapter 6).
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Figure D.1: Optimal/Suboptimal Allocation Gap
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Figure D.2: Optimal/Suboptimal Allocation Gap - Zoom
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