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Abstract 

A set of fault location algorithms for underground medium voltage cables, two incipient fault 

detection schemes for distribution cables and a state estimation method for underground 

distribution networks are developed in this thesis. 

Two schemes are designed to detect and classify incipient faults in underground distribution 

cables. Based on the methodology of wavelet analysis, one scheme is to detect the fault-

induced transients, and therefore identify the incipient faults. Based on the analysis of the 

superimposed fault current and negative sequence current in time domain, the other scheme 

is particularly suitable to detect the single-line-to-ground incipient faults, which are mostly 

occurring in underground cables. To verify the effectiveness and functionalities of the 

proposed detection algorithms, different fault conditions, various system configurations, real 

field cases and normal operating transients are examined. The simulation results have 

demonstrated a technical feasibility for practical implementations of both schemes. 

Based on the methodology of the direct circuit analysis, a set of location algorithms are 

proposed to locate the single phase related faults in the typical underground medium voltage 

cables. A large number of complex equations are effectively solved to find the fault distance 

and fault resistance. The algorithms only utilize the fundamental phasors of three-phase 

voltages and currents recorded at single end, normally at substation. The various system and 

fault conditions are taken into account in the development of algorithms, such as effects of 

shunt capacitance, mutual effects of metallic sheaths, common sheath bonding methods and 

different fault scenarios. The extensive simulations have validated the accuracy and 

effectiveness of the proposed algorithms. 

In order to extend the proposed fault location algorithms to underground distribution 

networks, a state estimation algorithm is developed to provide the necessary information for 

the location algorithms. Taking account of the complexity and particularity of cable circuits, 

the problem of the state estimation is formulated as a nonlinear optimization problem that is 

solved by the sequential quadratic programming technique. The simulation studies have 

indicated that the proposed fault location scheme incorporating with the state estimation 

algorithm can achieve good performance under different load and fault conditions. 
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Chapter 1  

1 Introduction 

Underground cables have been widely applied in power distribution networks due to the 

benefits of underground connection, involving more secure than overhead lines in bad 

weather, less liable to damage by storms or lightning, no susceptible to trees, less 

expensive for shorter distance, environment-friendly and low maintenance. However, the 

disadvantages of underground cables should also be mentioned, including 8 to 15 times 

more expensive than equivalent overhead lines, less power transfer capability, more 

liable to permanent damage following a flash-over, and difficult to locate fault. 

Faults in underground cables can be normally classified as two categories: incipient faults 

and permanent faults. Usually, incipient faults in power cables are gradually resulted 

from the aging process, where the localized deterioration in insulations exists. Electrical 

overstress in conjunction with mechanical deficiency, unfavorable environmental 

condition and chemical pollution, can cause the irreparable and irreversible damages in 

insulations. Eventually, incipient faults would fail into permanent faults sooner or later. 

The detection of incipient faults can provide an early warning for the breakdown of the 

defective cable, even trip the suspected feeder to limit the repetitive voltage transients. 

The location of permanent faults in cables is essential for electric power distribution 

networks to improve network reliability, ensure customer power quality, speed up 

restoration process, minimize outage time, reduce repairing cost, dispatch crews more 

efficiently and maintain network reliability. The state estimation (SE) is an auxiliary tool 

to provide the necessary information for the proposed location algorithms. The related 

methods published in journals and proceedings are reviewed, summarized and compared 

in the next subsections. 

1.1 Incipient Fault Detection Methods 

Comparing with the detection methods for arcing faults in overhead lines, there are 

relatively fewer literatures and reports discussing the detection of incipient faults in 
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underground cables. The existing detection methods are generally based on the analysis 

of waveforms rather than phasors. Basically, the process of detection is to examine the 

characteristics of voltages and currents in time domain, frequency domain and time-

frequency domain. 

The advantages and disadvantages of four existing techniques developed for field 

applications were reviewed and evaluated from the point of a power engineer in [1]. 

These techniques include detection of partial discharges, time and frequency domain 

reflectometry, measurements of dielectric ohmic and polarization, and acoustic and 

pressure wave techniques. 

Charytoniuk et al. studied the feasibility of detecting arcing faults in underground cables 

[2]. An experiment was carried out in one secondary distribution network by personnel 

from the Consolidated Edison Company of New York. Through analyzing the collected 

data, three feasible methods are considered, i.e. analysis of voltages and currents in time 

domain, in frequency domain and in time-frequency domain with the aid of the wavelet 

analysis. Furthermore, it is pointed out that the potential approaches can process the 

instantaneous values of currents, and combine the arc fault features in time, frequency 

and time-frequency domains. 

Kojovic et al. proposed an incipient cable splice failure detection scheme, which is 

integrated into a universal relay platform as an additional function to enhance the 

distribution feeder protection [3], [4]. The basic principle is to monitor instantaneous 

overcurrent, counter the number of fault occurrences, record the frequency of fault 

occurrences, and provide alarming or tripping capability. 

Kasztenny et al. proposed a simple, fast and robust method for detecting incipient faults 

in cables and implemented it in a commercial relay [5]. The method employs the 

superimposed current components and neutral current to monitor the consistency of 

currents before and after the event, find the phase where the event occurs, check the event 

duration, and set the alarming or tripping signal. 
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Both the magnitude of neutral current and the magnitude of rate of change of neutral 

current were used to detect self-clearing cable transient faults and distinguish them from 

normal system switching as well as other system faults, such as fast fuse operations [6]. 

The faulty phase is selected by a phase current rate of change based detector. 

The wavelet analysis and neural network were combined to detect on-line incipient 

transients in underground distribution cable laterals and predict the remaining life of the 

cable lateral [7]. The wavelet packet analysis technique is applied to decompose the 

current into separate frequency bands and to extract features. Then, a type of artificial 

neural network, self-organizing map, is used for pattern identification. Therefore, the data 

sets are clustered and incipient behavior is identified and categorized. 

The pattern analysis techniques were applied to classify load change transients and 

incipient abnormalities in an underground distribution cable lateral [8]. A set of features 

are exacted by the wavelet packet analysis and output to k-nearest-neighbor classifiers. 

The methods of dimensionality reduction are used to reduce the dimensionality for the 

pattern recognition and preserve the good classification accuracy as well. 

1.2 Fault Location Methods for Cables 

Basically, the location methods for cables are divided into the offline and online methods. 

The offline methods employ the special instruments to test the out of service cable in 

field. On the other hand, the online methods utilize and process the sampled voltages and 

currents to determine the fault point. 

1.2.1 Offline Methods 

There are two offline location approaches, i.e. terminal approaches and tracer approaches. 

Terminal methods rely on measurements made from either one or both terminals of the 

cable to prelocate fault points approximately, but not accurately enough to allow dig. 

Tracer methods rely on measurements taken along the cable to pinpoint the fault location 

very accurately. Both methods are on-site technique and performed with low efficiency. 

Eighteen terminal methods are introduced in [9] and listed below.  
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• Halfway Approach Method  • Voltage Drop Ratio Method  

 • Charging Current Method  • Insulation Resistance Ratio Method 

 • Murray Loop Method  • Capacitance Ratio Method  

 • Murray Loop Two-End Method • Murray-Fisher Loop Method 

 • Varley Loop Method  • Hilborn Loop Method  

 • Open-and-closed Loop Method • Werren Overlap Method  

 • Impulse Current Method  • Pulse Decay Method   

 • Standing Wave Differential  • DC Charging Current Method 

 • Time Domain Reflectrometer (TDR)/Cable Radar Method   

 • TDR/Cable Radar and Thumper Method 

Following the prelocation by the terminal methods, a tracer method is generally applied 

to pinpoint the fault point and this method usually requests the repair crews to walk along 

the cable route. Nine tracer methods introduced in [9] are listed below. 

• Magnetic Pickup Method  • Tracing current Method  

 • Earth gradient Method  • Hill-of-Potential Method  

 • Thumper/Acoustic Method  • Thumper/Electromagnetic Wave Method 

 • Sheath Coil Method   • Pick Method     

 • DC Sheath Potential Difference Method 

Some extension works were proposed as an aid for the offline methods. An expert system 

was developed for the Electric Power Research Institute (EPRI) [10]. The system creates 

a reference manual [9] to provide the guidance for field crews to diagnose a cable failure, 

recommend applicable fault location techniques, and trouble-shoot resulting difficulties 

which occur during the process of locating underground cable faults. 

For the sake of clarifying the results obtained from the terminal methods, an expert 

system approach was proposed to locate fault on high voltage underground cable systems 

[11]. The experience and expertise of many different engineers is accumulated to build a 

truly expert system. With the data acquired from diagnostic tests, the system can infer the 

fault type, advise the further location techniques, and conclude the probable fault location. 

The operator is then advised to carry out the tracer methods to locate the fault precisely. 
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1.2.2 Online Methods 

The online location methods for underground cables are comparatively fewer than the 

ones applied for overhead lines. Two principal techniques have been proposed for the 

online location, i.e. signal analysis and knowledge-based [12]. The former one is further 

classified into the approaches based on fundamental frequency phasor quantities and high 

frequency traveling waves. 

1.2.2.1 Fundamental Phasor-based Methods 

The fundamental phasor-based methods utilize the voltage and current phasors at the 

fundamental frequency. Basically, the impedance is calculated and used to decide the 

fault distance, so it is also called the impedance-based methods [13], [14]. 

Filomena et al. extended the traditional impedance-based location algorithms to calculate 

the apparent impedance of cables in cases of single phase to ground fault (SLG) and 

three-phase fault (3L) [15]. The single-end voltages and currents are used. An iterative 

algorithm is proposed to compensate the capacitive characteristic in typical underground 

cables. The fault location scheme can be applied in balanced or unbalanced distribution 

systems with laterals and tapped loads. 

Based on the estimation of the fault-loop impedance, Saha et al. presented four location 

algorithms to consider the following scenarios [16]: SLG fault with measurements 

available in the faulty feeder (voltages and currents), SLG fault with measurements 

available at the substation level (total currents are measured at the supplying transformer), 

phase to phase (LL) or 3L fault with measurements available in the faulty feeder, LL or 

3L fault with measurements available at the substation. Only positive sequence 

impedance calculation is needed for LL or 3L fault, while the zero-sequence impedance 

calculation is required for SLG fault. The algorithms can be applied in radial medium 

voltage (MV) systems, which include many intermediate load taps. The non-homogeneity 

of the feeder sections is also taken into account. 

The apparent seen impedance was calculated using local measuring quantities available at 

substation [17]. Upon the different fault type, the different apparent impedance 
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parameters, voltage and current quantities are utilized. Then, a fault distance is estimated 

using the conventional apparent impedance computation. Finally, an iterative 

compensation mechanism is executed to eliminate the estimation errors caused by the 

charging currents in cables. The basic procedure is similar to the work in [15] except that 

the symmetrical components are used. 

The location algorithm in [18] extended the traditional Takagi’s method [19] into 

distribution cable networks. The sequence phase impedance model is used to model 

laterals and circuit sections. The line shunt capacitance is taken into account to optimize 

the result so that the major source of error in conventional impedance based methods, 

particularly for cable networks, is minimized. 

Differentiating from the above extended impedance-based methods, an iterative 

algorithm was proposed for locating faults in cables [20]. The circuit is modeled by the 

distributed parameter approach and the voltage and current equations are formulated 

based on the sequence networks. The Newton–Raphson method is applied to calculate the 

fault distance. The algorithm is also extended to the radial multi-section cables with 

tapped loads. 

A double-end based location algorithm was presented, particularly for aged power cables 

[21]. The aging process in cables would cause the change of the relative permittivity and 

in turn result in the changes in the positive, negative, and zero sequence capacitance. The 

fault location scheme is based on phasor measurements from both ends of the cable, 

incorporating with the distributed line model, Clarke transformation theory and discrete 

Fourier transform (DFT). 

One algorithm implemented in the Con Edison of New York was presented in [22]. The 

voltages and currents are recorded by the power quality monitors and processed for 

calculations in the control center. The reactance to fault is calculated based on the fault 

measurements and prior knowledge of known fault information. The calculation results 

combined with up-to-date distribution feeder models and geographic information system 

data are used to generate the estimated fault location tables and viewing maps. The 

estimation would typically take ten minutes after the inception of a fault. The location 
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accuracy is within 10% of the total number of feeder structures, for about 80% of the 

single phase faults. 

One more implementation in the Dutch grid operator Alliander was presented in [23], 

[24]. The fault locators only use the calculated reactance since the reactance of fault 

impedance is zero and the cable reactance is well known and not current dependent. Then, 

the scenarios of short circuits on all nodes in the faulted feeder are simulated on an actual 

network model. The calculated impedance is compared with the simulated impedances to 

find the exact location. The location algorithm is known to find the distance within 5 

minutes after the occurrence of a fault. The system is able to locate LL and 3L faults 

within 100 meters and SLG faults within 500 meters. 

1.2.2.2 Traveling wave-based Methods 

Traveling waves are generated by the change of stored energy in capacitance and 

inductance in lines or cables after the occurrence of a fault. Both voltage and current 

traveling waves propagate along the circuit at the speed as high as the light speed until 

meeting any impedance discontinuities, and then the fault-induced high frequency waves 

would reflect back to the origin and transmit through towards other side.  

Almost all traveling waves-based methods are based on the principle of the Bewley 

lattice diagram [25], and the fault distance is calculated by the multiplication of the 

propagation velocity and the interval, which is the time difference between the arrival 

instant of the initial wavefront and the arrival instant of the reflected wavefront. The 

basic location principle and common locator types are introduced in [26]. 

Appendix A visually illustrates and explains an example of the traveling wave, which is 

generated by an SLG fault in a transmission line and can be used for the purpose of the 

line protection and fault location. 

Bo et al. designed a special transient capturing unit to extract the fault-generated high 

frequency voltage transient signals in cables [27]. The principle of the fault location 

method is to identify the successive arrivals of the traveling high frequency voltage 

signals arriving at the busbar where the locator is installed. Particularly the first and the 
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subsequent arriving wavefronts with reference to the first wavefront are used to locate the 

fault position. The above work is enhanced by applying new technique, wavelet 

transform, to effectively extract a band of high frequency transient voltage signals [28]. 

A cable fault location scheme was proposed based on the principle of the traditional 

traveling wave principle, synchronized sampling technique and wavelet analysis [29]. 

The current signals at the two terminals are synchronized with the help of GPS and the 

arrival time of fault-induced traveling waves is precisely detected by the wavelet analysis. 

Then, the location is obtained from the multiplication of the propagation velocity and the 

time interval. 

Similarly, based on the principle of the traditional Bewley lattice, a double-end traveling 

wave fault location scheme was proposed for locating faults in aged cables [30]. The 

wavelet analysis is applied to analyze the synchronized voltage singles at the two 

terminals to capture the singularity in high frequency transients. The calculations are 

processed with the modal quantities rather than the phase quantities. The effect of 

changes in the propagation velocity of traveling wave is eliminated. 

The fault section and location was determined by the analysis of traveling waves in 

current signals [31]. First, the fault section is identified by the comparison between the 

distance of each peak in the high frequency current signals and the known reflection 

points in distribution feeders. Then, the simulation is processed with the possible location 

in a transient power system simulator, which is modeled from the actual network. The 

simulated currents are cross correlated with the measured currents to find the match 

degree in high frequency transients of both current signals. The cross-correlation 

coefficients would be a high positive value if the estimated fault location is correct. 

1.2.2.3 Knowledge-based Methods 

Knowledge-based techniques, such neural network, fuzzy logic and expert system, are 

applied to fault location for cables. The usage of artificial intelligence techniques usually 

requires the specific learning process for each analyzed feeder. Additionally, the signal 
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processing techniques can also be used to preprocess the signals and extract the features 

fed into the analysis of artificial intelligence. 

Sadeh et al. proposed a fault location algorithm for combined overhead transmission line 

with underground power cable [32]. First, one adaptive network-based fuzzy inference 

system (ANFIS) is used to classify the fault type. Then, another ANFIS is applied to 

detect the faulty section, whether the fault is on the overhead line or on the underground 

cable. Other eight ANFIS networks are utilized to pinpoint the fault, in which two 

networks are used for one fault type. The neuro-fuzzy inference systems are trained by 

the data obtained from simulations. 

Moshtagh and Aggarwal proposed a location algorithm combined the neural network and 

wavelet analysis [33]. The power distribution system transient signals are generated by 

the EMTP software, analyzed using the wavelet analysis to extract the useful fault 

features, and applied to the artificial neural networks (ANNs) for locating ungrounded 

shunt faults. A three-layer feed-forward ANN with Levenberg-Marquardt learning 

algorithm is used for the fault classification and fault location. One network is designed 

to classify the fault type and several ANNs related to each fault type are designed to 

locate the actual ungrounded fault position. 

1.3 Fault Location Methods for Distribution Networks 

The fault location techniques have been well developed and applied in transmission 

systems. However, relatively less research work has been conducted in the development 

of fault location approaches for distribution networks. An effective and accurate fault 

location algorithm is essential for electric power distribution networks to locate the fault 

point, improve the service reliability, ensure the customer power quality, and speed up 

the restoration process. Particularly, it appears more important for locating faults in 

underground distribution cables due to the complexities in electrical characteristics of 

cables, underground placement environment and wide applications in high density 

commercial districts. 
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Similarly, two principal techniques have been proposed for such methods, i.e., signal 

analysis and knowledge-based [12]. The former one is further classified into the 

approaches based on fundamental frequency phasor quantities and high frequency 

traveling waves. The knowledge-based and traveling wave-based techniques have been 

briefly discussed in Section 1.2.2. 

The utility companies and researchers have been turning more and more attention to the 

location methods only using voltages and currents recorded at substation [34]. The 

fundamental phasor-based methods utilize and process the recorded voltages and currents 

to determine the fault point. Since the proposed algorithm is to use the fundamental 

phasors, the existing fundamental phasor-based methods would be discussed in this 

subsection. 

The basic location methods, such as the reactance method and Takagi method, have been 

reviewed in [13], [14] and [35]. Ten most cited impedance-based fault location methods 

are compared, analyzed and tested, and thereafter the main problems existing in these 

methods are concluded [36]. The practical experience and the fault location systems used 

in utilities are introduced in [37] and [38]. Most of the previously proposed location 

techniques concern the location problem in overhead distribution lines, and a few of 

literatures discuss the algorithms for underground distribution cables. Twenty algorithms 

are selected, compared and summarized in Table 1.1 and Table 1.2. The specifications of 

the proposed algorithm are listed as well. 

Table 1.1: Summary of Fault Location Methods for Distribution Networks – I 

Distribution Networks Voltage and Current 
Line / Cable 

Fault 
Location 
Methods PrF DF PsF Phasor or 

Sequence 
Line 
Cable Model CAP UTL HOL

Srinivasan et al. 
[39] √ √  Sequence Line Distributed √   

Girgis et al.  
[40] √ √  Sequence Line Lumped   √ 

Zhu et al.  
[41] √ √ √ Phasor Line Lumped  √ √ 
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Table 1.1: Summary of Fault Location Methods for Distribution Networks – I 

(Continued) 

Distribution Networks Voltage and Current 
Line / Cable 

Fault 
Location 
Methods PrF DF PsF Phasor or 

Sequence 
Line 
Cable Model CAP UTL HOL

Aggarwal et al. 
[42][43] √ √  Superimposed 

Phasor Line Lumped   √ 

Das et al. 
[44][45] √ √  Sequence Line Distributed √  √ 

Novosel et al. 
[46] √ √  Sequence Line Lumped    

Santoso et al. 
[47] √ √  Sequence Line Lumped   √ 

Saha et al. 
[16][48][49] √ √  Sequence Line 

Cable Lumped  √ √ 

Lee et al. 
[50] √ √  Phasor Line Lumped  √ √ 

Jamali et al. 
[18] √ √  Superimposed 

Sequence Line Distributed √  √ 

Senger et al. 
[51] √ √  Phasor Line Lumped  √ √ 

Yang et al. 
[20] √ √  Sequence Cable Lumped √  √ 

Salim et al. 
[52] √ √  Phasor Line Lumped  √ √ 

Pereira et al. 
[53] √ √  Phasor Line Lumped  √ √ 

Filomena et al. 
[15] √ √  Phasor Cable Lumped √ √ √ 

Morales-Espana 
et al. [54]  √  Phasor Line Lumped  √ √ 

Alamuti et al. 
[55] √ √  Sequence Line Distributed √  √ 

Mirzai et al. 
[56] √ √  Superimposed 

Phasor 
Line 
Cable Lumped √ √ √ 

Kawady et al. 
[17]  √  Sequence Cable Lumped √  √ 

Liao 
[57] √ √  Phasor Line Lumped  √ √ 
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Table 1.1: Summary of Fault Location Methods for Distribution Networks – I 

(Continued) 

Distribution Networks Voltage and Current 
Line / Cable 

Fault 
Location 
Methods PrF DF PsF Phasor or 

Sequence 
Line 
Cable Model CAP UTL HOL

Proposed method 
in this work √ √  Phasor Cable 

Two-layer π 
model by 
approx. 
distributed 
model 

√ √ √ 

PrF: Prefault; DF: During Fault; PsF: Postfault; CAP: Capacitance; UTL: Untransposed 

Line; HOL: Heterogeneity of Lines. 

 

Table 1.2: Summary of Fault Location Methods for Distribution Networks - II 

Distribution Networks 
Load Other Techniques 

Fault 
Location 
Methods Lateral 

Load Tap 
Load 
Model UBL Load 

Estimation 
Multiple 
Estimation 

Additional 
Information 

Srinivasan et al. 
[39] Tap Static 

response    Iterative 

Girgis et al. 
[40] Both Constant 

impedance √   Iterative 
SLG 

Zhu et al. 
[41] Both Current 

injection √ 
Radial power 
flow1 

Fault 
Diagnosis 

Iterative 
PM 

Aggarwal et al. 
[42][43] Both Voltage 

related √   Iterative 

Das et al. 
[44][45] Both Static 

response √ Scaling Fault 
indicator Iterative 

Novosel et al. 
[46] Tap Constant 

impedance    Iterative 

Santoso et al. 
[47] Both Constant 

impedance √   Extension of 
[40] 

 

                                                 
1
 Concept is mentioned with no reference and detail. 
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Table 1.2: Summary of Fault Location Methods for Distribution Networks – II 

(Continued) 

Distribution Networks 
Load Other Techniques 

Fault 
Location 
Methods Lateral 

Load Tap 
Load 
Model UBL Load 

Estimation 
Multiple 
Estimation 

Additional 
Information 

Saha et al. 
[16][48][49] Both Constant 

impedance √  Eliminated A set of 
algorithms 

Lee et al. 
[50] Both Constant 

impedance √  Current 
Pattern Iterative 

Jamali et al. 
[18] Both Constant 

impedance √   Takagi’s 
algorithm 

Senger et al. 
[51] Both Constant 

impedance √ Nominal TF 
rating 

Ranked by 
possibility  

Yang et al. 
[20] Tap Constant 

impedance    Iterative 
SLG 

Salim et al. 
[52] Both Constant 

impedance √ Power flow 
[58]  Iterative 

Pereira et al. 
[53] Both Constant 

impedance √ Load flow 
analysis[59]  Iterative 

Filomena et al. 
[15] Both Constant 

impedance √ Power flow 
[58]  Extension of 

[52] 
Morales-Espana 
et al. [54] Both Constant 

impedance √  Eliminated Iterative 

Alamuti et al. 
[55] Both Constant 

impedance √   Iterative 

Mirzai et al. 
[56] Both Constant 

impedance √ Load flow 
file 

Current 
Pattern Iterative 

Kawady et al. 
[17] Tap Constant 

impedance √   Iterative 

Liao 
[57] Both Constant 

impedance √   Analytical 

Proposed method 
in this work Both Static 

response √ 
State 
estimation 
by SQP 

Eliminated 
A set of 
iterative 
algorithms 

UBL: Unbalanced Load; TF: Transformer; SLG: Single-Line-Ground; PM: Probabilistic 

Modeling. 
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The voltages and/or currents measured at substation are used in all selected methods. 

Most of them utilize the prefault and during-fault quantities. 

The phasors, symmetrical components, and/or superimposed components of voltages and 

currents are employed. However, the usage of symmetrical components restricts its 

application to ideally balanced and transposed feeders, which is not true in a typical 

distribution network. 

The location methods for cables should take the capacitance into account since the 

capacitance has significant effect on the voltage and current along cables and cannot be 

ignored. 

The untransposed lines and cables are very normal in a distribution system, which makes 

the system unbalanced and restricts the application of symmetrical components. 

Heterogeneity of feeders is characterized by the presence of multiple sections of different 

size and length of overhead lines and underground cables. 

The distribution network is unbalance due to the presence of single-phase, double-phase 

and three-phase loads. 

The laterals and tapped loads along the main feeder are presented in a typical distribution 

network. 

The representative technical cruces, load models and line models in selected methods are 

concluded in the following subsections. 

1.3.1 Technical Cruces in Selected Location Methods 

The general logic principle in most of the selected algorithms, including the proposed 

one, is first to determine the fault point in a single plain line or cable with no laterals and 

tapped loads. Subsequently, the location algorithm is extended to distribution networks 

taking account of the presence of laterals, tapped loads, unbalanced loads, and 

heterogeneity of lines, etc. 
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Some very general fundamentals in the selected methods are somehow similar and 

behave like a technical crux in the development of the location algorithms. However, the 

principle and procedure of a specific method may appear considerable diversity, which 

depends on many factors, such as locating strategy and logic, assumptions, unknown 

variables, utilized quantities, applied line and load models, and particular application 

environment. Three mostly used cruces in the selected location methods are explained 

below. It should be mentioned that only the very basic fundamentals are introduced and 

the application details may have considerable diversity and can be referred to the related 

literatures. 

1.3.1.1 Apparent Impedance-based 

It is well known that the apparent impedance can be calculated by the voltages and 

currents of the faulty phase and/or zero sequence current. For example, the apparent 

impedance for an SLG fault in phase A can be expressed as,  

0

V Vselect aZapp I I kIaselect
= = +        (1.1) 

and, 

0 1

1

Z Z
k

Z

−
=  

where Zapp is the apparent impedance, Va is the phase A voltage, Ia is the phase A current, 

k is the compensating factor, I0 is the zero sequence current, Z0 and Z1 are the zero and 

positive impedances of the line. 

The KVL equation for Va can be given as, 

( ) 10V I kI Z I Rcomp fa a= + +       (1.2) 

where Rf is the fault resistance, Icomp is the compensating current flowing through the fault 

resistance, which can be described as below for an SLG fault, 
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3 0I Icomp =          (1.3) 

Therefore, 

3 0
1

0 0

I RV fa Dz
I kI I kIa a

= ++ +        (1.4) 

where D is the fault distance, z1 is the positive impedance per unit length. 

There are two unknown real variables in Equation (1.4), i.e. D and Rf, and other variables 

can be measured at the substation or obtained from the database. The equation can be 

rewritten in terms of real and imaginary components so that the unknown variables can 

be solved. 

The apparent impedance for other faults can be calculated accordingly. Basically, the 

apparent impedance-based technique is used in [40], [46], [47] and [17]. 

The impedance measurement principle is also used in [16], [48] and [49], and the real 

value nature of the fault resistance is employed to find the fault distance. 

1.3.1.2 Direct Circuit KVL Equations-based 

Taking an SLG in phase A as an example, the KVL equation describing the circuit 

between the sending terminal and the fault point can be given as, 

0

0

I RV z z z I f fa aa ab ac a
V D z z z Ib ba bb bc b
V z z z Ic ca cb cc c

       
       
       = +
       
             

     (1.5) 

where Va,b,c is the three-phase voltages, Ia,b,c is the three-phase currents, If is the fault 

current, Rf is the fault resistance, D is the fault distance, zaa is the self-impedance of phase 

A, zab is the mutual impedance between phase A and B, and so on. 

The KVL equation for phase A can be expressed as, 
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( )V D z I z I z I I Rf fa aa a ab b ac c= + + +      (1.6) 

where Va is the phase A voltage, Ia, Ib, and Ic are the currents of phases A, B, and C. 

In [41], [50], [51], [52], [15] and [56], the fault current or load current is first assumed or 

estimated, thus the fault distance D and the fault resistance Rf can be solved by two real 

equations , which are generated by separating Equation (1.6) into the real part and the 

imaginary part. Then, an iterative process is carried out to update the fault current or load 

current until a small tolerance is satisfied. 

In [42] and [43], starting with a set of assumed fault distances and using the 

superimposed components, the KVL equations describing the circuit between the fault 

point and the receiving terminal are also formulated to determine the fault distance on the 

condition that there exists a minimal value of the difference between healthy phase 

currents around the exact fault point. 

The equations are simplified on the assumption that the fault current is equal to the phase 

current [54]. 

1.3.1.3 Fault Resistance-based 

The fault resistance is a non-negative real number, which can be used as a criterion to 

find the fault distance. Taking an SLG in phase A as an example, the imaginary part of 

fault resistance is given as, 

( ) 0
V V V Vf fp fn fz

Imag R Imag Imagf I I I If fp fn fz

   + + 
   = = =
   + +
   

   (1.7) 

where Rf is the fault resistance, Vf is the fault voltage, If is the fault current, Vfp, Vfn, and 

Vfz are the positive, negative and zero sequence voltages at the fault point, Ifp, Ifn, and Ifz 

are the positive, negative and zero sequence fault currents. 

Basically, an initial variable, for example, the fault distance, is first guessed or estimated, 

Vf and If can be estimated by the application of some skills, an iterative procedure is used 
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to calculate the mismatch between the new estimated variable and the old one, then the 

assumed variable is adjusted until a small tolerance is satisfied [39], [44], [45] and [55]. 

1.3.2 Summary of Line Model 

An appropriate line model is required to obtain a more accurate location result. However, 

a distribution system consists of multiple sections of lines and cables with different types, 

sizes and lengths, which may result in the different model for each section. It seems 

inefficient to combine multiple line models into one fault location scheme. Therefore, the 

strategy and logic of a fault location method can determine the specific line model to be 

applied. The commonly used distribution feeder line models are reviewed in [60]. Two 

line models are normally used in the selected methods. 

 Distributed parameter model is normally used to model long lines, considering the 

capacitive and inductive effects [61]. This model is used in [18], [39], [44], [45], and 

[55]. 

cosh( ) sinh( )

sinh( )
cosh( )

x Z xc VV SR
x

xI IR SZc

λ λ

λ λ

− 
    
   =  −        

 

     (1.8) 

and, 

( )( )r jwl g jwcλ = + +  

r jwl
Zc g jwc

+=
+

 

where VR and VS are voltages at the receiving and sending terminals, IR and IS are 

currents at the receiving and sending terminals, x is the length of line section, λ is the 

propagation constant, Zc is the surge impedance, r is the line resistance per unit 

length, l is the line inductance per unit length, g is the line conductance per unit 

length, and c is the line capacitance per unit length. 
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 Lumped parameters model is normally used to model short lines. A general model is 

also called π model as illustrated in Figure 1.1. 

 

Figure 1.1: Lumped π line model. 

 

The voltages and currents of a three-phase circuit can be described as, 

0 0
1

0 0
2

0 0

A A AA V I VV z z z ys s sr aa ab ac aa
B B B BV V z z z I y Vr s ba bb bc s bb s
C C z z z C y CV V I Vca cb cc ccr s s s

                              = − −                                          

   (1.9) 

0 0
1 0 0
2

0 0

A AA AI VI Vs sr ryaa
B B B BI I y V Vbbr s r s

yC CC CccI VI Vr rs s

 
 
 
 
 
 

       
       
       

= − +       
       
                  

    (1.10) 

Phase A yaa/2 yaa/2 

zaa 

Phase B 
ybb/2 ybb/2 

zbb 

Phase C 
ycc/2 ycc/2 

zcc 

zab= zba 

zbc= zcb 

zac= zca 

A AV Is s A AI Vr r

B BI Vr r
B BV Is s

C CV Is s
C CI Vr r
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where Vr
A,B,C and Ir

A,B,C  are voltages and currents at the receiving terminal, Vs
A,B,C  

and Is
A,B,C are voltages and currents at the sending terminal, zab, zac, zba, zbc, zca and zcb 

are the mutual impedances between three phases, zaa, zbb and zcc are the self-

impedances of three phases, yaa, ybb and ycc are the shunt admittances of three phases. 

If the capacitance is not considered, the above model can be simplified as, 

AA VV Az z z Isr saa ab ac
B B BV V z z z Isr s ba bb bc

CIC C z z z sV V ca cb ccr s

 
 
 
 
 
 
 

  
   
   
 = −  
   
         

     (1.11) 

AA II sr
B BI Ir s
C CI Ir s

  
  
  

=   
  
  
    

         (1.12) 

The above model is used in [41], [50], [51], [52], [53], [15], [54], [56] and [57]. If all 

mutual impedances have the same value, the lumped model can be simplified as, 

AA VV Az z z Isr ss m m
B B BV V z z z Isr s m s m

CIC C z z z sV V m m sr s

 
 
 
 
 
 
 

  
   
   
 = −  
   
         

      (1.13) 

where zm is the mutual impedance and zs is the self-impedance.  

This model can be further transformed to the symmetrical components due to the 

balance nature of the impedance matrix. This model is used in [40], [42], [43], [46], 

[47], [16], [48], [49], [20] and [17]. 
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1.3.3 Summary of Load Model 

An appropriate load model is helpful for improving the location accuracy; however, it is 

not easy to get an accurate load model on account of the time-variant loads. Most 

methods use the constant impedance load model, which is independent of voltages and 

currents at load terminals. Besides, other three load models are also applied in some of 

the selected methods. 

 The static response type models in Equation (1.14) have been found to satisfactorily 

explain the behavior of large composite loads at most points [39]. 

2 2

0 0

n np qV V
Y G jBr rV V

− −
= +       (1.14) 

where Y is the load admittance, V is the voltage at the load point, V0 is the nominal 

voltage, np and nq are the response parameters for the active and reactive components 

of the load, Gr and Br are the constants proportional to the load conductance and load 

susceptance. 

The response parameters of np and nq reflect the dynamic response of a particular 

type of customer load. The values can be selected to describe three types of loads as 

follows. 

 np = nq = 0 for constant power load. 

 np = nq =1 for constant current load. 

 np = nq =2 for constant impedance load. 

It has been mentioned in [39] that the composite effect of many loads leads to np 

values in the range of 1.0 to 1.7 and nq in the range of 1.8 to 4.5. The response 

parameters can be determined from the prefault data and hence can be assumed to be 

known [62]. The practical values of np and nq for a particular type of load are 

suggested in [63]. 
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With the known np and nq, the values of Gr and Br can be estimated by the following 

equation. 

2 2

0 0

n np qV VI r rrY G jBr r rV VVr

− −
= = +      (1.15) 

where Ir and Vr are the current and voltage at the load terminal. 

The static response load model is used in [39], [44] and [45]. 

 A current injection load model is similar to the static response load model. 

2 2

0 0

n np qV V
I I jIr iV V

− −
= +       (1.16) 

where V0 is the nominal voltage, Ir and Ii are the active and reactive current 

components which can be estimated by integrating energy consumption information 

stored in the customer database with the daily load patterns of customers [41]. 

 A voltage related load model is used in [42], [43]. 

2

1cos
VLZ pL fM

−= ∠        (1.17) 

where VL is the voltage at the load point, M is the nominal transformer rating, and pf 

is the load power factor which varies typically from about 0.8 to 0.95. 

1.3.4 Existing Limitations and Problems 

The methods discussed in the referred papers may have one or more limitations and 

problems in the following aspects. 

 Application of transformations. Due to the unbalanced circuit parameters, the whole 

circuit cannot be completely decoupled by the commonly used transformations. 
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 Presence of tap loads and laterals. The tap loads and/or laterals are not considered in 

some fault location algorithms. 

 Heterogeneity of line sections. The heterogeneity of line sections is not considered in 

some fault location algorithms. 

 Untransposed line. Most line and cable sections in a typical distribution network are 

not ideally transposed so that the usage of symmetrical components is not proper. 

 Applications for underground cables. Most methods are applied for overhead lines in 

distribution systems. However, only very few papers discuss the applications for 

underground cables in distribution systems. The possibility and functionality is not 

discussed if the algorithms developed for overhead lines are applied in the cases of 

underground cables. 

 Effect of capacitance. The capacitance in cables is relatively larger than that in lines, 

which would affect the voltage and current along the cable circuit. 

 Effect of sheaths in cables. There exist the voltage and current in the metallic sheaths 

surrounding the core conductors. 

 Effect of bonding methods. Five bonding methods are widely used, namely, single 

point bonding at sending terminal (SPBS), single point bonding at receiving terminal 

(SPBR), single point bonding at middle point (SPBM), solid bonding at both ends 

(SBBE), and cross bonding (XB). None of the published location algorithms 

considered all bonding situations. 

 Problem of the multiple estimations. The present algorithms may find multiple fault 

points, which specially exist in the impedance-based location algorithms. In some 

papers, the multiple estimated points are ranked by possibilities [51], limited by fault 

indicators [44] and [45], or eliminated by the fault diagnosis techniques [41], [54] 

and [56]. 

 Estimation of loads. In order to ensure the accuracy and performance of the location 

algorithms in distribution networks, the techniques of load estimation, power flow 
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analysis or state estimation have to be applied. The load information can be acquired 

either by the power flow analysis or load estimation based on the real time 

measurements and historical load profile [15], [41], [52] and [53] where the existing 

analysis methods [58] and [59] are used, or by the scaling methods based on the real 

time measurements, load flow files and/or nominal transformer ratings [44], [51] and 

[56]. 

1.4 Distribution State Estimation Methods 

The state estimation for distribution networks is an important application in the 

distribution management system (DMS) to provide the essential information for 

operation, management, control and planning in distribution networks. It also assists in 

the fault location algorithms by providing the necessary information of load flows and 

bus states (voltage magnitudes and phases). 

The present distribution state estimation (DSE) methods are reviewed below since a DSE 

algorithm is proposed for underground distribution networks in this work. 

Usually, the weighted least squares (WLS) technique is employed. Wan et al. proposed 

two WLS approaches to estimate loads in unbalanced power distribution networks [64], 

[65]. One is the WLS load parameter method to solve the constrained optimization 

problem where loads are treated as variables. The constrained optimization problem is 

transformed into an unconstrained problem by the exterior penalty method. The loads and 

voltages are estimated simultaneously. Incorporating the operating and loading 

constraints, the other one is a constrained WLS distribution state estimation-based 

method to estimate voltages by a constrained WLS DSE, then to estimate loads 

sequentially based on the estimated voltages. 

Baran et al. proposed a three-phase state estimation method based on the WLS method in 

[66]. A two-stage algorithm is developed to overcome the observability problems 

associated with the branch current magnitude measurements. Rather than using nodal 

voltages as estimation variables, the branch currents are used as state variables in the 

state estimation to solve the WLS problem [67], where the Jacobian matrix is well 
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conditioned and can be decoupled on a phase basis. This method was substantially 

revised in [68] where a new algorithm with the constant gain matrix and a decoupled 

form was developed. 

The problem of load estimation was formulated as a weighted least absolute values 

estimation problem and solved by WLS [69]. The Newton-Raphson approach is applied 

to eliminate the nonlinear effect of power losses. 

In addition to WLS methods, the modified conventional algorithms were also proposed. 

Extending the work in [59], the custom-tailored Gauss-Seidel load flow analysis was 

proposed in [70]. A computationally efficient solution scheme based on the Newton-

Raphson method was proposed in [71]. An algorithm was developed to build a constant 

Jacobian matrix [72] and the Newton-Raphson algorithm was also used to solve the load 

flow problem. 

The load flow problem of a radial distribution system was formulated as a convex 

optimization problem, particularly a conic quadratic program [73]. The solution of the 

distribution load flow problem can be obtained in polynomial time using interior-point 

methods. 

1.5 Objectives of the Thesis 

The following objectives are proposed to be achieved during the course of this thesis: 

 Design of the incipient fault detection scheme for distribution cables; 

 Development of the fault location scheme for a medium voltage cable with no 

laterals; 

 Design of the state estimation algorithm for underground distribution networks; 

 Extension of the proposed location algorithm to underground distribution networks 

with the aid of the proposed state estimation algorithm. 
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1.6 Contributions of the Thesis 

The contributions of the thesis are summarized as follows: 

 A wavelet analysis-based method is developed to detect incipient faults in cables in 

time and frequency domains, additionally, identify transient and fault types, remove 

effect of noise and supervise almost entire cable circuit. 

 A simple and practical algorithm based on the analysis of superimposed components 

and negative sequence is particularly designed to detect single-line-to-ground 

incipient faults in cables. The fewer thresholds and less computation are required. 

 A two-layer π circuit is formulated and examined to approximate the behavior and 

characteristic of a typical medium voltage cable. 

 A set of fault location algorithms are proposed for underground cables. The 

characteristics of underground cables in real systems are comprehensively considered 

and analyzed in the development of algorithms, such as the shunt capacitance, 

metallic sheath, heterogeneity and untranspositon. The cable configurations and fault 

scenarios are taken into account as well, such as five bonding methods and three fault 

pathways. Besides, a large number of fault equations are solved effectively and 

efficiently and the fault resistance can be calculated. 

 The state estimation for underground distribution networks is formulated as a 

nonlinear optimization problem and solved by the sequential quadratic programming 

technique. The characteristics and configurations of underground cables and 

distribution networks are considered in the development of the algorithm, such as the 

shunt capacitance, metallic sheath, bonding method, unbalance loads and presence of 

laterals and tapped loads. 

 A section-by-section estimation algorithm combined with the backward/forward 

sweep algorithm is presented to estimate the nodal voltage and branch current for 

each circuit section in a distribution network with laterals and tapped loads. 
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 The combination of the fault location and state estimation algorithms is proposed to 

solve the fault location problem in distribution cables. 

 The faulty section in distribution networks can be determined and the problem of 

multiple estimations is eliminated. 

 Only the fundamental voltage and current phasors recorded at the single-end are 

utilized in the proposed fault location and state estimation methods. 

 The performance and functionalities of the all proposed algorithms are examined and 

verified with the extensive simulations, considering various fault conditions and 

system configurations. 

1.7 Scope of the Thesis 

The thesis is organized in five chapters and two appendices. The first chapter outlines and 

compares the present methods in the fields of incipient fault detection for cables, fault 

location for cables, fault location for distribution networks and state estimation for 

distribution networks. The objectives, contributions and scope of the thesis are introduced 

and summarized as well. 

Chapter 2 describes the development of the incipient fault detection algorithms for 

distribution cables. The basic concept of incipient faults in cables is first introduced and 

the model of arc is formulated. Then two algorithms are proposed, one is based on the 

wavelet analysis and the other is based on the analysis of the superimposed fault current 

and negative sequence current in time domain. Two test distribution systems, extensive 

simulation cases and field cases are investigated. 

Chapter 3 focuses on proposing a set of fault location algorithms for underground 

medium voltage cables with no laterals. First, a series of the basic background knowledge 

is introduced. Then the principle and procedure of the location algorithms are specially 

explicated for a cable with sheaths grounded at the sending terminal. The differences and 

similarities of the algorithms for other bonding methods are compared and summarized as 

well. The estimation of constant load impedance is explained and the application of the 
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static response load model is also discussed. The extensive simulations are carried out 

and explained to demonstrate the accuracy and effectiveness of the proposed algorithms. 

Chapter 4 is to extend the proposed fault location algorithms to underground distribution 

networks. Since the distribution state estimation is capable of providing the additional 

information for the fault location algorithms, this chapter includes two parts: 

development of a state estimation algorithm for underground distribution networks and 

extension of the proposed location algorithms to underground distribution networks with 

the aid of the proposed state estimation algorithm. The basic background knowledge is 

first introduced and the details of the proposed state estimation algorithm are discussed. 

Then a general location procedure combined with the state estimation is described as 

well. The algorithms are examined on a radial underground distribution network with 

different load and fault conditions. 

Chapter 5 presents the conclusions and the suggested future works, followed by the list of 

references. 

Appendices describe the supplement document and additional work performed during the 

course of this research. An example of traveling waves is illustrated in a spatiotemporal 

domain to demonstrate a clear process of the propagation and reflection of traveling 

waves in a transmission line. The voltage, current and resistance of an arc are also 

illustrated. 
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Chapter 2  

2 Incipient Fault Detection Schemes for Distribution 
Cables 

The incipient faults in underground cables are largely caused by voids in cable 

insulations or defects in splices or other accessories. This type of fault would repeatedly 

occur and subsequently develop to a permanent fault sooner or later after its first 

occurrence. Two algorithms are presented to detect and classify the incipient faults in 

underground cables at the distribution voltage levels. Based on the methodology of 

wavelet analysis, one algorithm is to detect the fault-induced transients, and therefore 

identify the incipient faults. Based on the analysis of the superimposed fault current and 

negative sequence current in the time domain, the other algorithm is particularly suitable 

to detect the single-line-to-ground incipient faults, which are mostly occurring in 

underground cables. Both methods are designed to be applied in real systems. Hence, to 

verify the effectiveness and functionalities of the proposed schemes, different fault 

conditions, various system configurations and real field cases are examined, and other 

normal operating transients caused by permanent fault, capacitor switching, load 

changing, etc., are studied as well. 

The basic concept of incipient faults in cables is first introduced and the model of arc is 

formulated. Then the wavelet-based scheme is explained and the system structure, time 

sequence diagram, detection rules and classification rules are also discussed. 

Subsequently, the details of the superimposed components-based scheme are presented. 

Two test distribution systems, extensive simulation cases, field cases, and simulation 

results are examined, where, more specially, the detailed detection process is explicated 

by analyzing four incipient faults recorded from real systems. 

2.1 Background 

2.1.1 Incipient Faults in Cables 

Underground cables may first experience incipient faults for an unpredicted duration 

before they fail into permanent faults. Usually, incipient faults in power cables are 
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gradually resulted from the aging process, where the localized deterioration in insulations 

exists. The local defect or void initiates a process such that the insulation damage spot 

can propagate through a section of the insulation, branch into channels, and evolve to a 

tree-shape damage area. Two trees are mostly observed, i.e. water tree (WT) and 

electrical tree (ET). 

The water tree in insulation can initiate from a water-filled microcavity and would be 

growing under the influence of moisture and electric field [74]. The voltage drop on a 

water tree is quite small compared to the voltage across the dry insulation surrounding it 

since the insulation at the water tree area has a higher conductivity. The progress of water 

trees is permanent and there is no detectable partial discharge existing in water trees. 

The electrical tree can initiate from a point of high stress due to a local defect and/or 

water tree in dry dielectrics and propagate relatively quickly through the insulation due to 

the repetitive partial discharges [75]. The formation of electrical trees would lead to final 

cable failure sooner or later within a relatively short time. 

The example of water tree and electrical tree are shown in Figure 2.1, which are cited 

from [76]. 

 

Figure 2.1: Illustrations of water tree (WT) and electrical tree (ET) [76]. 
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Overall, electrical overstress in conjunction with mechanical deficiency, unfavorable 

environmental condition, and chemical pollution, can cause the irreparable and 

irreversible damages in insulations. The details of the inception of aging and propagation 

mechanisms are explained in [77]. 

The formation of electrical trees would generate partial discharges, which can be 

considered as the early stage of incipient faults before the condition of insulation gets 

worse. The partial discharge is characterized by a series of short discharge current pulses 

with the width of about one nanosecond and with the time interval of several tens of 

nanoseconds between successive discharges. Therefore, the detection of early cable 

defects or failures can be classified into two categories: detection of partial discharges 

and detection of incipient faults. Both of them are concerned by the utility companies, 

and the power protection engineers would pay more attention on the latter one. The 

proposed method is also directly associated with the latter one. 

Incipient faults are normally characterized as the faulty phenomena with the relatively 

low fault currents and the relatively short duration ranging from one-quarter cycle to 

multi-cycle. These short lasting current variations cannot be detected by the traditional 

distribution protection schemes because of their short duration and low increment in 

magnitude. However, such faults must be detected at the early stage to avoid the 

consequent catastrophe induced by the degradation themselves. The field experience and 

laboratory experiments of incipient faults are investigated in [78], [79]. 

In underground cables, the incipient fault is one type of transients in power systems, 

which is prone to an intermittent arc fault. The typical incipient faults are composed of 

two types: sub-cycle incipient fault and multi-cycle incipient fault. The sub-cycle 

incipient fault always occurs near a voltage peak where arc is ignited, lasts around one-

quarter cycle, and self-clears when the current crosses zero. Figure 2.2 shows the three-

phase feeder currents when a sub-cycle incipient fault occurs between phase A and 

ground at the 2 km location of a 9 km cable in the first test system in Section 2.4.2. The 

multi-cycle incipient fault also likely occurs near a voltage peak, lasts 1-4 cycles, and 
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self-clears when arc is quenched. The waveforms of the currents for such a fault are 

shown in Figure 2.3. 

 

Figure 2.2: Sub-cycle incipient fault. 

 

 

Figure 2.3: Multi-cycle incipient fault. 

 

2.1.2 Model of Arc 

The incipient fault is prone to the intermittent arc fault in underground cables. The model 

of arc is essential to effectively process the arcing fault analysis. A series of arc models is 

introduced in [80]-[85]. It has been commonly recognized in the theory and experiments 

that the nature of arc manifests itself in the nonlinear and time-varying variation that 

would produce high frequency components. In turn, the waveform of arc voltage is 

distorted into a near square wave. 
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Due to the simple implementation and good representation of the arc properties, the 

Kizilcay’s model [85] is the mostly used model in arcing faults analysis [86], where the 

arc can be represented by a time-varying nonlinear resistance. Accordingly, this model is 

selected in this work and presented as below. 

The arc conductance is given as, 

( )1dg
G g

dt τ
= −         (2.1) 

where τ is the arc time constant, g is the instantaneous arc conductance, and G is the 

stationary arc conductance. 

The stationary arc conductance is defined as, 

iarcG
ust

=          (2.2) 

0 0u u r iarcst = +         (2.3) 

where iarc is the current flowing through arc. 

The arc time constant is defined as, 

0
0

larc
l

α
τ τ

 
 
 
 

=         (2.4) 

where τ0 is the initial time constant, l0 is the initial arc length, and α is the coefficient of 

negative value. 

The elongation speed of the arc is given as, 

7 0
0.2

0.2

dl larc
dt vthvmax

=
+

       (2.5) 
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where vth is the instantaneous value of voltage at the inception instant, and vmax is the 

maximum magnitude of voltage at the normal condition. 

An example of Kizilcay’s arc model is shown in Appendix B. 

2.2 Wavelet-based Detection Scheme 

2.2.1 Principles 

It is well known that the wavelet analysis has an attractive function of analyzing 

electromagnetic transients in power systems [87]. The wavelet analysis can analyze the 

physical situations where signals contain discontinuities, abrupt changes and sharp 

spikes, and then separate different frequency components into different frequency bands. 

More specifically, the wavelet analysis can decompose the measured signal into the low 

frequency approximation coefficients to represent the fundamental frequency component 

and the high frequency detail coefficients to express the transient state. The detailed 

process of the decomposition and implementation of the wavelet analysis are explained in 

[87]. Since the mother wavelet of ‘Daubechies 4’ has good performance in capturing the 

fast transient in power systems [88], the signals in this paper are decomposed and 

analyzed by this mother wavelet [89]. The fault current in Figure 2.3 is decomposed into 

three levels by the mother wavelet of ‘Daubechies 4’, as shown in Figure 2.4. 
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Figure 2.4: Detail and approximation coefficients after wavelet decomposition and 

reconstruction. 

 

It is apparent that there exist the remarkable changes in the detail coefficients at the 

moments of the inception and termination of the transient. This phenomenon can be 

utilized to detect the presence of the transient. The small spikes, locating among the two 

large changes in the detail coefficients in the level one, represent the process of arc 

reignition and extinction. 

2.2.2 System Description 

The proposed system is to detect the transient first, classify the transient type, and thus 

identify the incipient fault in real time. The emphasis is to detect the incipient fault, 

which does not trigger the conventional relays since the fault current is relatively low and 

the duration is relatively short. The designed system is desired to be embedded in the 

existing numerical relay, therefore, only the sampled currents are utilized and the 

sampling rate is 64 samples/cycle. 
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The system is comprised of two modules, detection module and classification module. 

The wavelet analysis is applied in the detection module to detect the inception of any 

transients. The classification module is to identify the transient type and find the incipient 

fault as required. The detailed detection and classification procedure is introduced in 

Figure 2.5, and the principles of the detection and classification will be explained in the 

next subsections. 

 

Figure 2.5: Flowchart of detection and classification procedures. 
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The detection module includes two detection steps. The first step is to detect the 

inception of transient, and the second is to recognize the possible subsequent transient, 

such as the breaker operation, end of incipient fault, and arc quench, etc. 

The classification module also includes two steps. The first step is to pre-classify the 

transient type at the moment of the disappearance of the first transient or 2.5 cycles later 

than the inception of the first transient. This pre-classified result is not definitely correct 

because some events may have the similar initial transient phenomena after the 

occurrence of the first transient. Hence, the second classification is applied to revise the 

previous result at the moment of the disappearance of the second detected transient or at 

the moment of the preset deadline time. Usually, the deadline time can be set up as 4 or 5 

cycles after the first transient is detected. 

The time sequence diagram of the detection and classification procedures is shown in 

Figure 2.6. Two examples are illustrated in Figure 2.7 and Figure 2.8 to give a more 

visualized demonstration. 
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Figure 2.6: Time sequence diagram. 
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Figure 2.7: Feeder current for the event of multi-cycle incipient fault. 

 

 

Figure 2.8: Current for the event of capacitor switching. 
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2.2.3 Detection and Classification Rules 

After the decomposition by the wavelet analysis, the measured currents are divided into 

the different frequency bands. The detail coefficients in the high frequency band and 

approximation coefficients in the low frequency band are used for the detection and 

classification respectively. 

2.2.3.1 Detection Rules for 1st Detection 

Two rules are involved in the first detection. The transient would be detected if either one 

is triggered. 

Rule W1: This detection rule processes the detail coefficients in the frequency band of 

240-960Hz and is less related to the fundamental frequency. If Equation (2.6) is satisfied, 

then a transient is detected. 

( )

( )

Energy MEAN EnergypastlatestENGR threshold
STD Energypast

−
= >    (2.6) 

where Energylatest is the energy of the latest detail coefficients, Energypast is an array of 

the energy of the past detail coefficients, MEAN is the average function, and STD is the 

standard deviation function. 

In the low noise environment, most transients can be detected by this rule. It can capture 

the abrupt changes, singularities, and short duration spikes, which contain the large 

energy in the high frequency domain. It is insensitive to the slow change of fundamental 

frequency because it does not consider the low frequency component. Although noise 

may also have the energy to a certain extent, this rule has partially eliminated this 

negative effect to avoid the false detection. However, the heavy noise may still cause the 

missing detection. 

Rule W2: This detection rule processes the approximation coefficients in the frequency 

band of 0-240Hz and is less related to the high frequency components. If Equation (2.7) 

is satisfied, then a transient is detected. 
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RMS RMSlatest half cycle one cycle before
RMSCR threshold

RMSone cycle before

−
= >  (2.7) 

where RMS is the root mean square value. 

In the high noise environment, most transients can be detected by this rule. It can capture 

the abrupt and slow continuous changes in amplitude. It is not related to the high 

frequency components, so it is insensitive to the heavy noise. This rule would result in a 

short detection delay. 

2.2.3.2 Classification Rules for 1st Classification 

Rule WA: RMS ratio of the approximation coefficients between the prior-transient stage 

and post-transient stage. 

RMS post transientRMSR
RMS prior transient

−=
−

      (2.8) 

Rule WB: Balance of RMSR in three phases. 

( )
( )

MAX RMSRBRMSR
MIN RMSR

=         (2.9) 

Rule WC: Ratio of maximum amplitude. 

( )

( )

MAX AMPLITUDEpost transientMAR
MAX AMPLITUDEprior transient

−=
−

    (2.10) 

where RMS is the root mean square value, MAX is the maximum value, and MIN is the 

minimum value. 

When the values of RMSR, BRMSR, and MAR fall into some particular zones, the 

combination of three rules can approximately determine the transient type. However, 

some transients, for instant, the multi-cycle incipient fault and permanent fault, have very 
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similar phenomena during a short interval after the inception, therefore, the exact 

transient type will be confirmed by the second classification. 

2.2.3.3 Detection and Classification Rules for 2nd Step 

Rule W1 in the second stage is exactly same as the one in the first stage, even the 

thresholds can be kept the same. Rule W2 is similar to the one in the first stage, only 

differing in less than a predetermined threshold. 

Rule WA and Rule WB in this stage are the same as the ones in the stage of the first 

classification. Rule WC is very similar to Rule WA, while the latter one is less than a 

threshold and the former is greater than a value. 

After being classified by this stage, the transient type can be identified determinedly. 

2.2.4 Thresholds 

To set the thresholds, the meaning and behavior of the relative detection or classification 

rule is analyzed. Then, based on the qualitative analysis, an appropriate value is selected 

while considering two opposite aspects, i.e., robustness and sensitivity. To decrease the 

false alarm and misclassification, it is desired that the approach is robust to noise, 

disturbance, or variations in parameters, structures, and system conditions. To decrease 

the missing detection, the sensitivity to changes in signals is required. Since the proposed 

algorithm is designed to be applied in real systems, the effect of variations, which 

inherently exist in different systems, has the higher priority to be taken into account. 

Therefore, the principal consideration in the threshold setting is to reduce the false alarm 

and misclassification while sustaining the satisfactory detection accuracy. 

The simulations assist in the setting process. Moreover, large numbers of simulations are 

performed to verify the validity of the established thresholds. It should be mentioned that 

the same thresholds are used for all simulation cases and field cases. Therefore, it is safe 

to say that the values in this work can be used as a group of the reference values and 

slightly adjusted according to the particular application environment and the requirement 

of utility companies. The meanings of the thresholds or behaviors of the rules are 

explained below. 



43 

 

The threshold in Rule W1 shows the changing tendency of the energy in the high 

frequency domain. 

The threshold in Rule W2 indicates the changing percentage of the current RMS value in 

the low frequency domain. 

Rule WA assigns two zones representing the changing ratio of the current RMS value. 

Rule WB also defines two zones expressing the balance degree among the changing 

ratios of three-phase currents. 

Rule WC establishes two zones describing the ratio of the peak value between the post-

transient current and prior-transient current. Since noise has been eliminated from the 

approximation coefficients after the wavelet analysis, this rule can identify abrupt 

changes, especially for short duration spikes. 

2.3 Superimposed Components-based Detection Scheme 

Utilizing the superimposed fault current and negative sequence current in time domain, 

an algorithm is developed to be embedded into the existing relays by easily upgrading the 

firmware so that the new functionality is supported. 

Most faults are of SLG type in distribution cables. Therefore, this scheme is particularly 

designed to detect an SLG incipient fault. Only three steps are included in this scheme, 

namely, detection of transient inception, selection of faulty phase and classification. 

2.3.1 Detection of Transient Inception 

Two rules are used together to detect the transients. Rule S1 is related to the negative 

sequence current and superimposed fault current. Rule S2 is to find the magnitude of the 

superimposed fault current at the power frequency. The detection algorithm is 

independent to the transformer winding connections, CT locations, and balance of three-

phase load currents. 
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/21 2( ) ( ( ) ( )),,/ 2 1
( ( ( 1: ))), ,

( ) /

i k i k i k Nj jj
i k i k i k N i k NBNEG A A C
i k i k i k N i k NBNEG B C A
i k i k i k N i k NBNEG C C A

N
E k i k i kj jNEG jN k
I MAG FFT i k N kmg j j
E kj

= − −Δ
= + − − −

= + − − −

= + − − −

= − Δ=
= − +Δ Δ

( ) 1, 11
( ) 2, 12

, ,

I k K Rule Smg j
I k K Rule Smg j
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< −Δ
> −Δ

=

    (2.11) 

where N is the number of samples in one cycle, MAG is the magnitude value, iΔ is the 

superimposed fault current, iNEG is the negative sequence current, K11 and K12 are the 

thresholds, and IΔmg is the magnitude of the superimposed fault current at the power 

frequency, which is extracted by the Discrete Fourier Transform (DFT) [90]. 

The unbalanced fault or unbalanced load will cause the occurrence of the negative 

sequence current, which is calculated in time domain in Equation (2.11) and it can also be 

calculated in frequency domain by using phasors extracted by DFT. The neutral current is 

not used due to its availability in some transformer winding connections. 

The examples of waveforms of different events obtained by Rule S1 and Rule S2 are 

illustrated in Figure 2.9 to Figure 2.22, where the currents are sampled from the feeder. 

 

Figure 2.9: Waveforms from Rule S1 – Phase-A-ground sub-cycle incipient fault. 
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Figure 2.10: Waveforms from Rule S1 – Phase-A-ground multi-cycle incipient fault. 

 

 

Figure 2.11: Waveforms from Rule S1 – Phase-A-ground permanent fault. 

 

 

Figure 2.12: Waveforms from Rule S1 – Phase-B-C permanent fault. 
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Figure 2.13: Waveforms from Rule S1 – Phase-A-B-ground permanent fault. 

 

 

Figure 2.14: Waveforms from Rule S1 – Three-phase-ground permanent fault. 

 

 

Figure 2.15: Waveforms from Rule S1 – Capacitor switching. 
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Figure 2.16: Waveforms from Rule S2 – Phase-A-ground sub-cycle incipient fault. 

 

 

Figure 2.17: Waveforms from Rule S2 – Phase-A-ground multi-cycle incipient fault. 

 

 

Figure 2.18: Waveforms from Rule S2 – Phase-A-ground permanent fault. 

20 40 60 80 100 120 140 160 180 
0 

500 

1000 

1500 

Time (ms)

A 
B 
C  I

Δ
m

g 

20 40 60 80 100 120 140 160 180 
0 

200 

400 

600 

Time (ms)

A 
B 
C 

 I
Δ

m
g 

10 20 30 40 50 60 70 80 90 
0 

500 

1000 

1500 

  

  

 I
Δ

m
g 

Time (ms)

A 
B 
C 



48 

 

 

Figure 2.19: Waveforms from Rule S2 – Phase-B-C permanent fault. 

 

 

Figure 2.20: Waveforms from Rule S2 – Phase-A-B-ground permanent fault. 

 

 

Figure 2.21: Waveforms from Rule S2 – Three-phase-ground permanent fault. 
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Figure 2.22: Waveforms from Rule S2 – Capacitor switching. 

 

Apparently, when a transient occurs, the quantities obtained by Rule S1 would decrease 

to small values, on the other hand, the quantities obtained by Rule S2 would increase to 

large values. Then, this transient can be detected, however, only the transient type of SLG 

fault is considered and this fault type needs to be determined. 

2.3.2 Selection of Faulty Phase 

After the inception of the transient is detected, the faulty phase needs to be selected. By 

observing the waveforms obtained from Rule S2 in Figure 2.16-Figure 2.22, it is 

obviously shown in Figure 2.16 and Figure 2.17 that IΔmg of the faulty phase appears to be 

more than three times larger value compared to those of other two healthy phases when 

an SLG fault occurs. This phenomenon is especially unique for the SLG fault, which can 

be employed to select the faulty phase. 

When the currents are sampled from the feeders or secondary side of transformer, Rule 

S3(a) is applied. 
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where IΔmg is the magnitude of the superimposed fault current, MAX is the maximum 

value, and MEDIUM is the medium value in three-phase superimposed currents. 

The Rule S3(a) can be applied for the situations where CTs are installed at the low side of 

transformer and feeders, and the transformer connections have no effect on this rule. 

However, when CTs are installed at the primary side of transformer, the selection rule 

needs to be modified accordingly. 

When currents are sampled from the primacy side of transformer and the transformer 

connection is Δ/Y0, IΔmg will have large changes in two phases in the case of SLG fault. 

And the changing degrees in two phases are almost same, shown in Figure 2.23. For other 

fault types, no similar phenomena can be observed. 

  

Figure 2.23: Waveforms of IΔmg (Phase-A-ground multi-cycle fault, primary side, 

Δ/Y0). 
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where IΔmg is the magnitude of the superimposed fault current, and MAX, MEDIUM, MIN 

are the maximum, medium, and minimum values. 

When currents are sampled from the primacy side of transformer and the transformer 

connection is Y/Y0, IΔmg will have large changes for all three phases in the cases of SLG 

fault and three-phase-ground fault (3LG). And the changing degrees in three phases are 

almost same as shown in Figure 2.24. For other fault types, no similar phenomena can be 

observed. 

  

Figure 2.24: Waveforms of IΔmg (Phase-A-ground multi-cycle fault, primary side, 

Y/Y0). 

 

To further distinguish the SLG and 3LG, the amplitude of fault currents can be utilized. 
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Figure 2.25: Amplitude of currents (3LG, primary side, Y/Y0). 

 

 

Figure 2.26: Amplitude of currents (SLG, primary side, Y/Y0). 
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where IΔmg is the magnitude of the superimposed fault current, Iam is the amplitude of the 

fault current, and MAX and MIN are the maximum and minimum values. 

The rules for other common and theoretical connection windings can also be determined 

in the similar manner. 

2.3.3 Classification 

The event of SLG fault is already determined, so the final step is to discriminate the 

incipient fault from permanent fault. The process of classification is quite simple since it 

is only required to find whether the fault can last for up to 4 cycles, which can also be set 

to 5 cycles if considering the detection and classification delay. 

, ,
3

,

, 4

post preI Iam j am jIf AMPCR K j is faulty phasepreIam j

Then Incipient fault is detected Rule S

−
= <

−

   (2.15) 

where Iam is the amplitude of the prefault or post-fault current of the faulty phase at the 

power frequency. 

2.3.4 Thresholds 

The setting strategy and procedure is similar to the one explained in Section 2.2.4. There 

are two thresholds for detection, one for classification, and one or two for selection, 

which are all easily set. The meanings of the thresholds or behaviors of the rules are 

described below. 

Rule S1 holds a large value at the normal situation, while it would decrease when a fault 

occurs. Then, K11 is set to a small value. 

K12 in Rule S2 means a tolerance percentage that the superimposed fault current 

surpasses the normal current. 

K2 in Rule S3(a) demonstrates a minimum degree that the faulty phase is larger than the 

other two healthy phases. 
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K21 in Rule S3(b) denotes a maximum degree of the largest ratio among the 

superimposed currents and K22 denotes a minimum degree of the largest ratio among the 

faulty currents. 

K23 in Rule S3(c) indicates a maximum degree of the ratio between the superimposed 

currents with the maximum and medium amplitude, while K24 indicates a minimum 

degree of the ratio between the superimposed currents with the medium and minimum 

amplitude. 

K3 in Rule S4 shows a range for which the amplitude of the faulty current may drop back 

after a certain period. 

2.4 Simulations 

2.4.1 Configuration of Simulation System 

The simulation system includes two modules as illustrated in Figure 2.27. The first 

module is to simulate the test power systems and store the currents as COMTRADE [91] 

files in PSCAD/EMTDC. The simulations in this module cover the different events under 

various system and fault conditions. The detection algorithms are implemented in the 

second module where the data are analyzed in Matlab. The extra noise is also added into 

the original simulated signals. 
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Figure 2.27: Configuration of simulation system. 

  

2.4.2 Test Systems 

Two distribution systems are selected for simulations. The first one is modified from a 

110/10.5 kV distribution network [85], containing five underground cables, two overhead 

lines, and one combination of line and cable as shown in Figure 2.28. 
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Figure 2.28: Test system 1. 

 

The important system data include: 
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 110/10.5 kV transformer: 30 11.8%; 0S MVA u YyrT k= =； . 

 Overhead line: Al/St, 70/12, 19.5 km in total. 

 Underground cable: NA2XS2Y, 3x1x185, 45 km in total. 

 Capacitor bank: 2MVA, 3MVA, 5MVA. 

 The second test system is simplified from an IEEE 13-node test feeder [92], including 

two underground cables and eight overhead lines shown in Figure 2.29. 
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Figure 2.29: Test system 2. 

 

The important system data can be referred to [92].  
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 Noise levels, white noise are mixed into simulated data to make SNR (Signal-to-

Noise Ratio) range from 8.8 to 44 dB; 

 Fault distances, close-in terminal to far-end terminal in different feeders; 

 Fault types, balanced and unbalanced, grounded and ungrounded; 

 Fault resistances, zero to 50 ohm; 

 Fault inception angles, 0-270 degree; 

 CT locations, feeder, secondary and primary; 

 Transformer windings; 

 Capacitor and load switching; 

 Relay auto-reclosure; 

 Unbalanced/Balanced load; 

 Faults in underground cables and overhead lines. 

2.4.4 Simulation Results 

2.4.4.1 Wavelet-based Scheme 

Simulated in the wavelet-based scheme, this group of simulations concerns the various 

noise levels in the measured currents, different fault conditions, and other transient 

events. The total amount of 404 events is simulated and each event is simulated more 

than 300 times in a wide range of noise levels. The detection and classification results are 

given in Table 2.1. 

It is evident that there is no false detection. Also it can be found that not all of the events 

can be detected correctly, nevertheless, it does not mean the proposed algorithm cannot 

obtain the desired performance. When SNR=44dB, 20 undetected sub-cycle faults and 12 

undetected multi-cycle faults have the relatively high fault resistance, so the currents 
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have relatively small increment. In other SNR cases, the reason that causes the missing 

detection is exactly same. For example, the waveforms of two undetected events with 

high fault impedance are shown in Figure 2.30 and Figure 2.31. 

Table 2.1: Detection and Classification Results (Wavelet-based Scheme) 

Correct Classified/Detected 
Event 

Event 
Amount SNR=44 SNR=33 SNR=20 SNR=8.8 

Sub-Cycle 114 94/94 94/94 90/90 89/93 
Multi-Cycle 114 102/102 102/102 102/102 102/102 
Permanent 142 133/133 130/130 131/131 133/133 
Cap. Switch 15 14/14 14/14 14/14 14/14 

Load Change 19 9/10 9/10 9/10 9/11 

 

 

Figure 2.30: Undetected sub-cycle fault (30 ohm). 
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Figure 2.31: Undetected multi-cycle fault (50 ohm). 

 

It should be mentioned that some events have the exactly same transient phenomena in 

voltages and currents, such as capacitor switching, load changing, and 3LG fault with 

high impedance, as shown in Figure 2.32. Therefore, only the general classification 

conclusion can be decided for these events with the similar phenomena. Actually, the 

detected events can be correctly classified when SNR is greater than 20dB, which is 

always satisfied in most measurements. 

0 50 100 150 200 250 300 
-150 

-100 

-50 

0 

50 

100 

150 
Inception of multi-cycle fault  

End of multi-cycle fault  

Sampling Points

N
or

m
al

iz
ed

 C
ur

re
nt

 



61 

 

 

Figure 2.32: Events with similar changing. 

 

One more group of simulations extends the simulations to consider the transformer 

windings and CT locations. With a few of the modifications of rules, both algorithms can 

be applied when the transformer has different windings or the currents are sampled from 

the different sides of transformer. The simulation results are similar to the previous ones. 

2.4.4.2 Superimposed Components-based scheme 

Similarly, same 404 events in two test systems are simulated, containing 177 SLG 

incipient faults and 90 of them have low (<5 ohm) or zero fault impedance. The SNR 

level is fixed to 44dB.  The simulation results are shown in Table 2.2. 
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Table 2.2: Detection and Classification Results (Superimposed Components-based 

Scheme) 

CT 
Location 

Detected  
(SLG/low 

impedance) 

False 
Alarm 

Incorrect 
Classification 

Primary 88/71 0 0 
Secondary 119/85 0 0 

Amt. Of Event: 404 
Amt. Of Incipient SLG: 177 
Amt. Of Incipient SLG with  

low impedance: 90 Feeder 158/87 0 0 

 

The missing detection is similarly resulted from the high fault impedance, small 

amplitude increment, or large threshold settings. 

2.4.5 Results Using Field Recorded Data 

Four multi-cycle cases and four sub-cycle cases, which were obtained from real systems, 

were also examined. All of them were correctly detected and classified by two proposed 

schemes. The detailed detection processes are illustrated by analyzing two types of 

incipient faults in Figure 2.33-Figure 2.36.  

The top graph in Figure 2.33 is a sub-cycle incipient fault, and the currents are sampled 

from the secondary side of transformer. The incipient fault occurs at the time instant of 

35.5ms and lasts for around 4ms.  Due to the effect of the current summation of other 

feeders, the amplitude of the superimposed component is not large, about 60% of the 

maximum value of the prefault current in normal condition. Analyzed by the wavelet-

based scheme, the fault is detected at 37.8ms, preliminarily classified as a sub-cycle 

incipient fault 26ms after the inception, and determinately confirmed 4 cycles after the 

detection. 

Another sub-cycle incipient fault is processed in Figure 2.34 by the superimposed 

components-based method. The currents are measured in the feeder so that the faulty 

current reaches eight times larger than the regular peak value. The fault begins at 29.7ms 

and disappears at 36ms. The transient is instantly detected with 2ms delay and the faulty 

phase is selected simultaneously. It is classified correctly 4 cycles after the occurrence. 
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Figure 2.35 describes the analysis process of a 5-cycle incipient fault. As mentioned in 

Section 2.1.1, the multi-cycle incipient faults usually last one-quarter cycle to four cycles, 

however, both the frequency of fault occurrence and the duration of fault increase with 

time. In this situation, the larger margin for the detection delay can be adopted. The fault 

starts at 36.5ms and persists for next 89ms. Processed by the wavelet-based scheme, the 

fault is detected at 37.6ms, and pre-classified as a permanent fault or a multi-cycle 

incipient fault 1.5 cycles after the detection because both of them have the similar 

phoneme in the short period after the inception. The disappearance of fault is also 

detected at 126.2ms, and 2 cycles later, it is re-classified and verified as a multi-cycle 

incipient fault. 

A 3-cycle incipient fault is shown in Figure 2.36 and analyzed by the superimposed 

components-based scheme. Commencing from 52.5ms, this fault vanishes at 105ms. It is 

initially caught at 55.6ms and finally classified at 139ms. The phase is selected at 60.8ms. 



64 

 

 

Figure 2.33: Analysis process of a sub-cycle incipient fault (Wavelet-based). 
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Figure 2.34: Analysis process of a sub-cycle incipient fault (Superimposed 

components-based). 
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Figure 2.35: Analysis process of a multi-cycle incipient fault (Wavelet-based). 
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Figure 2.36: Analysis process of a multi-cycle incipient fault (Superimposed 

components-based). 
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cycles after the detection; 3) the fault can be detected even if its duration is as short as 

4ms; 4) the fault can be detected even if its superimposed amplitude is as less as 60% of 

the regular peak value. In addition, these conclusions are verified by the simulation cases 

in PSCAD/EMTDC. 
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Chapter 3  

3 Fault Location Algorithms for Medium Voltage Cables 

The fault location in underground cables is characterized as the technical difficulties due 

to the complexities in cables. Based on the direct circuit analysis, a set of location 

algorithms are proposed to locate the single phase related faults in the typical single-

conductor cross-linked polyethylene (XLPE) cables rated at the medium voltage levels. A 

number of complex equations are effectively solved to find the fault distance and fault 

resistance. The algorithms only utilize the fundamental phasors of three-phase voltages 

and currents recorded at the substation. Particularly, the distinctive cable characteristics 

are considered, such as the effects of shunt capacitance, effects of metallic sheaths and 

common sheath bonding methods. The different fault scenarios are taken into account as 

well. 

The background knowledge is first introduced, including the structure of a typical XLPE 

cable, the common sheath bonding methods, the complexities existing in fault location 

calculations for cables and the different fault scenarios. Then a two-layer π model is 

formulated to approximate the characteristics and behaviors of a typical MV XLPE cable. 

The principle and procedure of the location algorithms are specially explicated for a cable 

with sheaths grounded at the sending terminal. The differences and similarities of the 

algorithms for other bonding methods are compared and summarized as well. The 

estimation of load impedance is discussed for the constant impedance load model and 

static response load model respectively. The algorithms are examined on three types of 

MV cables with different fault types, fault resistances, fault distances and bonding 

methods in the last section of this chapter. The simulation studies demonstrate that the 

proposed algorithm can achieve the high accuracy under various system and fault 

conditions. 
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3.1 Background 

3.1.1 Structure of a Typical XLPE Cable 

The typical structure of a widely used single-conductor cable is shown in Figure 3.1 and 

the each part numbered in the figure is explained as below:  

 1 - Aluminum or copper stranded conductor. 

 2 - Semi-conducting conductor screen extruded around conductor. 

 3 - Insulation, XLPE are used in most modern MV and HV cables. 

 4 - Semi-conducting insulation screen. The semi-conducting swelling tapes wrapped 

around the insulation screen are considered as part of the insulation screen since the 

electrical properties of this layer are similar to those of the insulation screen. 

 5 - Copper wire sheath. 

 6 – Outer jacket, usually polyethylene (PE). 

 

Figure 3.1: Structure of a typical single-conductor XLPE cable and laid formations 

of three-phase cables. 

 

1 2    3   4 5  6 

(a) Structure. 1: conductor, 2: conductor screen, 
3: insulation of XLPE, 4: insulation screen, 5: 
wire sheath, 6: outer jacket of polyethylene (PE).

(b) Flat formation 

(c) Trefoil formation 
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The cables could be directly buried or installed in an underground duct laid in the flat or 

trefoil formation. The choice depends on several factors like sheath bonding method, 

conductor area and available space for installation. 

3.1.2 Sheath Bonding Methods 

The magnetic field generated from the alternating current in the core conductor would 

induce a voltage in the metallic sheath linked to this field. Besides, the current flowing in 

the sheath of a cable would result in the extra power losses. Therefore for the sake of safe 

and economic operation, the sheath of a single-conductor cable must be bonded to the 

ground in different points to (1) reduce the sheath voltage, (2) reduce sheath current and 

sheath loss to a minimum, (3) maintain a continuous sheath circuit for fault current return 

and adequate lightning and switching surge protection, (4) decrease the possibility of the 

failure of outer jacket and sheath corrosion, and (5) possibly increase the load current 

carrying capacity. 

The prevalent grounding methods contain the single point bonding at the sending 

terminal (SPBS), receiving terminal (SPBR), or middle point (SPBM); solid bonding at 

both ends (SBBE); and cross bonding (XB). Three of them are briefly introduced below 

and illustrated in Figure 3.2, and the details can be referred to [94]. 

 

Figure 3.2: Sheath bonding methods. 

(a) Solid bonding at both ends 

(b) Single point bonding at sending terminal 

(c) Cross bonding 

Core 
Sheath 
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The solid bonding method grounds sheaths at both ends, which can reduce the induced 

voltage. The disadvantages of this bonding method include that it provides the loop path 

for circulating currents at normal operation conditions, causes power losses in sheaths, 

and further reduces the cable ampacity. The single-point bonding method grounds sheaths 

at one point along the cable circuit, typically at one of the two terminals or at the middle 

point of a cable. Although there are no significant circulating currents flowing in sheaths, 

a voltage will be induced between the core conductor and sheath and between the sheath 

and earth. Therefore, the surge voltage limiters must be used to protect the floating end of 

sheaths from overvoltage danger. The cross bonding method grounds sheaths at both ends 

and sheaths are cross-connected at the joints by which the cable is sectionalized into three 

sections of equal length. The circulating currents and power losses are significantly 

reduced and the induced voltages are partially neutralized as well. The maximum induced 

voltage appears at the joint boxes. 

3.1.3 Complexities in Fault Location for Cables 

The location principles for underground cables are comparatively different from the ones 

for overhead transmission lines or distribution lines due to the following electrical 

characteristics of cables [95]-[99]. 

 The impedance per unit length of cables is less than that of lines. 

 The series inductance of cables is typically 30~50% lower than that of lines. 

 The shunt capacitance of cables is 30~40 times higher than that of lines. 

 The zero-sequence impedance of cables is not constant and depends on many factors, 

such as bonding method, fault current, presence of parallel circuit and resistivity of 

ground. 

 The zero-sequence impedance angle of cables is less than that of lines. 

 The X/R ratio of cables is much lower than that of lines. 
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In addition to the differences in the electrical characteristics, the complexities of location 

techniques for cables also involve [9], [95]-[99]: 

 The metallic sheath or shield of a single-conductor cable is bonded to ground in 

different points, which affect the return path of ground fault currents. The five most 

frequently applied methods are introduced in the previous subsection, i.e. SBBE 

SPBS, SPBR, SPBM and XB. Therefore, the ground fault currents have the different 

return paths, such as through the sheath only, through the ground only, through the 

sheath and the ground in parallel, or through the ground and the sheaths of adjacent 

cables. 

 The most commonly observed permanent faults in a single-conductor cable can be 

identified as the core-sheath-ground fault (CSGF), core-ground fault (CGF) and core-

sheath fault (CSF). 

 Three single-conductor cables have six conductors: three core conductors and three 

metallic sheaths. Usually, only voltages and currents of core conductors are 

measured. Although there might have few loop currents and small voltages along 

sheaths in the normal operating condition, the sheaths would cause distinct effect on 

the voltage and current along the core circuit in a faulty situation. 

 For the reason that the series impedance matrix of cable is unsymmetrical, the direct 

application of the traditional modal transformations, like Fortescue [100] and Clarke 

[101], is improper [102], [103]. 

 Due to the different bonding methods, the reduction of neutral wires (sheaths) by the 

Kron’s reduction [104] is also improper. 

3.1.4 Fault Scenarios 

The fault types in a single-conductor cable usually can be classified as the core-sheath-

ground fault, core-ground fault and core-sheath fault, which are shown in Figure 3.3. The 

combination of values of three fault resistances is tabulated in Table 3.1 which can be 

used to decide the actual fault scenario. 
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Figure 3.3: Fault scenarios. 

 

Table 3.1: Decision of Fault Scenarios in Theory 

Fault Resistance Fault Scenarios 
Rf1 Rf2 Rf3 

Core-Sheath-Ground X X ∞ 
Core-Ground ∞ ∞ X 
Core-Sheath X ∞ ∞ 

 

It should be noted that X in Table 3.1 can be any practical non-negative real value. 

3.2 Model of Cable 

The cable models used in the EMTP (Electromagnetic Transients Program) can be 

divided into two categories: lumped parameter models and distributed parameter models 

[105], [106]. The lumped parameter models simplify the multiphase coupled circuits into 

the idealized electrical components, such as resistors, capacitors and inductors, 

constituting a π type circuit. The calculations are processed at a given frequency, 

normally power frequency, and the shunt conductance is usually ignored. The distributed 

characteristics of whole circuit can be approximately represented by cascading a series of 

identical π circuits into a ladder network. The distributed parameter models theoretically 

divide the whole circuit into infinitesimal elements, so the voltage at each node and 

current at each branch are not uniform. This model first decouples the differential 

equations in normal phase quantities into multiple separate differential equations in 

modal quantities or frequency quantities by transformation matrices, and solves the 

R f3R f1 

R f2
Sheath 

Ground 

Core 
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decoupled equations in modal quantities or frequency quantities, then converts the results 

back to phase quantities. 

The Frequency Dependent (Phase) model in the element library of PSCAD/EMTDC is 

claimed to be “the most numerically accurate and robust line/cable model available 

anywhere in the world” [107]. So this model is used for the simulation and the 

development of the algorithm. With the verification through the extensive simulations, a 

lumped parameter model, the two-layer π model, is formulated to accurately approximate 

the behaviors and characteristics of the frequency dependent model in PSCAD/EMTDC, 

especially for short cables. The model for three single-conductor cables is illustrated in 

Figure 3.4. 

 

Figure 3.4: Model of three single-conductor XLPE cables. There exist the mutual 

impedances among all six conductors (Only the mutual impedances related to the 

core conductor of phase A are shown in the dash-dot lines above). 
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In the figure, zcc is the self-impedance of core, znn is the self-impedance of sheath, ycn is 

the admittance between the core and sheath, and yng is the admittance between the sheath 

and ground. It should be noted that there exist the mutual impedances among all six 

conductors and the sheaths are normally bonded to ground in some manner. 

Based on the two-layer π model, the mathematical equations to represent the voltages and 

currents along the cable are expressed as, 

2

V V Z Z I Y Y Vrc sc cc cn sc cc cn scLL
V V Z Z I Y Y Vrn sn nc nn sn nc nn sn

            
            
                        

= − −    (3.1) 

2

I I Y Y V Vrc sc cc cn sc rcL
I I Y Y V Vrn sn nc nn sn rn

       
       
              

+
= −

+
     (3.2) 

where,  

; ;
T TA B C A B CV V V V V V V Vrc rnrc rc rc rn rn rn

   
      

= =  

; ;
T TA B C A B CV V V V V V V Vsc snsc sc sc sn sn sn

   
      

= =  

; ;
T TA B C A B CI I I I I I I Irc rnrc rc rc rn rn rn

   
      

= =  

; ;
T TA B C A B CI I I I I I I Isc snsc sc sc sn sn sn

   
      

= =  

; ;

AA AB AC AA AB ACz z z z z zcc cc cc nn nn nn
BA BB BC BA BB BCZ z z z Z z z zcc nncc cc cc nn nn nn
CA CB CC CA CB CCz z z z z zcc cc cc nn nn nn

   
   
   
   
   
   
      

= =
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; ;

AA AB ACz z zcn cn cn
BA BB BCZ z z z Z Zcn nc cncn cn cn
CA CB CCz z zcn cn cn

 
 
 
 
 
 
  

= =  

0 0 0 0

0 0 ; 0 0 ;

0 0 0 0

AA AAy ycc nn
BB BBY y Y ycc nncc nn

CC CCy ycc nn

   
   
   
   
   
   
      

= =  

Y Y Ync cn cc= = −  

and, 

; ; ;AA BB CC AA BB CC AA BB CCz z z z z z z z zcc cc cc cn cn cn nn nn nn= = = = = =  

;

AB BA BC CB AB BA BC CBz z z z z z z zcc cc cc cc cn cn cn cn
AB BA BC CBz z z znn nn nn nn

= = = = = = =

= = = =
 

;AA BB CC AA BB CCy y y y y ycc cc cc nn nn nn= = = =  

where V without the superscript is the voltage phasor vector, V with the superscript is the 

voltage phasor of a single phase, I without the superscript is the current phasor vector, I 

with the superscript is the current phasor of a single phase, Z is the series impedance 

matrix, Y is the shunt admittance matrix, and L is the length of cable. The capital 

subscripts denote the phase A, B, or C. The lowercase subscript s means quantities at the 

sending terminal, similarly, r at the receiving terminal, c for the core conductor and n for 

the sheath. Taking AB
cnz  as an example, it indicates the mutual impedance per unit length 

between core A and sheath B, while giving one more example, BB
ccz  expresses the self-

impedance per unit length of core B, and so forth. 
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3.3 Location Algorithm for Cables with SPBS 

3.3.1 Problem Formulation 

This subsection is to propose a location algorithm for cables with the configuration of the 

single point bonding at the sending terminal (SPBS). Assuming a core-sheath-ground 

fault (CSGF) occurs in phase A of three single-conductor cables with SPBS, as illustrated 

in Figure 3.5. 

The fault equations describing the circuit section from the sending terminal to the fault 

point are formulated as, 

2

V V Z Z I Y Y Vfc sc cc cn sc cc cn scDD
V V Z Z I Y Y Vsn nc nn sn nc nn snfn

                                                 

= − −    (3.3) 

2

I V VscI Y Yfc fcsc cc cnD
I I Y Y V Vsn nc nn snfn fn

                           

+
= −

+
     (3.4) 

The fault equations describing the circuit section from the fault point to the receiving 

terminal are established as, 

( ) 1

2
1

V I VV Z Z Y Yfc f c fcrc cc cn cc cnL DL D
V V Z Z I Y Y Vrn nc nn nc nnfn f n fn

                                                  

−= − − −  (3.5) 

1

2
1

I V VrcI Y Yf c fcrc cc cnL D
I I Y Y V Vrn nc nn rnf n fn

                           

+
−= −

+
    (3.6) 

The fault equations at the fault point are formed as, 

,1 1
B B C CI I I Ifc f c fc f c= =        (3.7) 

,1 1
B B C CI I I Ifn f n fn f n= =        (3.8) 
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Figure 3.5: A CSGF in cable with SPBS. 
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1
1

A AV V
fc fn

R f A AI I
fc f c

−
=

−
        (3.9) 

2
1 1

AV
fn

R f A A A AI I I I
fc f c fn f n

=
− + −

      (3.10) 

where Rf1 is the fault resistance between the core and sheath, and Rf2 is the fault resistance 

between the sheath and ground. 

At the receiving terminal, the loads are modeled as the constant impedance, and there 

exists the following relation,  

V Z Irc rcload=         (3.11) 

where Zload is the load impedance matrix. 

The boundary conditions due to the grounding of sheaths are given as, 

0; 0V Isn rn= =         (3.12) 

The whole cable circuit during the fault is represented by Equations (3.3)-(3.12). The 

known variables and preconditions in the above equations are summarized as follows. 

 Six measurements comprise three-phase voltages (Vsc) and three-phase currents (Isc) 

of the core conductors recorded at the substation. 

 Cable parameter matrices (Z and Y) would be well documented in the database of 

utility companies, obtained from the datasheet of the manufacturers, calculated by 

the EMTP software , or estimated by the classical equations  [108]-[110]. 

 The length of cable, L, is known. 

 Six preconditions of voltages and currents in Equation (3.12) are known as zeros due 

to the fact that the sheaths are grounded at the sending terminal. 



81 

 

 Fault resistances (Rf1 and Rf2) are non-negative real numbers. 

 The load is modeled as the constant impedance or assumed that the load impedance 

would not change during 1-2 cycles right after the inception of a fault. The 

impedance can be estimated by the prefault voltage and current, which is explained 

in Section 3.9.1.1. In addition, the application of a more general load model is 

investigated in Section 3.9.2 as well. 

The unknown variables need to be determined is the fault distance, and if required, the 

fault resistance as well. 

For such a fault situation illustrated in Figure 3.5 and formulated in Equations (3.3)-

(3.12), there have 75 unknown real variables and 78 real equations as listed in Table 3.2 

and Table 3.3. 

Table 3.2: List of Unknown Variables – SPBS & CSGF 

 Variable Name Number of Real 
Variables 

Sending End Vsn, Isn 2*3*2=12 
Fault Point Vfc, Vfn, Ifi, Ifn, If1i, If1n 6*3*2=36 

Receiving End Vrc, Vrn, Irc, Irn 4*3*2=24 
Real Variable Rf1, Rf2, D 3 

Total  75 

 

Table 3.3: List of Equations – SPBS & CSGF 

 Equation Index Number of Real 
Equations 

All Sections (3.3)-(3.6) 4*2*3*2=48 
Current at Fault Point (3.7)-(3.8) 2*2*2=8 

Bonding (3.12) 2*3*2=12 
Load (3.11) 1*3*2=6 

Fault Resistance (3.9)-(3.10) 2*2=4 
Total  78 
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However, it is impractical and time-consuming to solve this set of equations by directly 

using some mathematic solving tools, such as the solving functions in Matlab [111]. The 

fast solving algorithm would be proposed in the next subsection. 

3.3.2 Locating Core-Sheath-Ground Fault 

The proposed algorithm in this subsection is to locate the single-phase core-sheath-

ground fault (CSGF) in three single-conductor cables, especially with sheaths only 

grounded at the sending terminal. 

It is doubtless that all variables in Equations (3.3)-(3.12) would be definitely solved 

provided that the sheath currents (Isn) and fault distance (D) were known. There are six 

real variables for Isn, which values are time-varying and the range is hardly predictable. 

Nonetheless, there is only one real variable for D with a known range, i.e. from 0 to the 

length of cable, L. Therefore, a conceptual framework is proposed that a set of fault 

distances are first assumed, and then, the related sheath currents at the sending terminal 

are estimated for each assumed distance, subsequently all unknown quantities are solved 

by Equations (3.3)-(3.12), finally the exact fault point is accurately pinpointed. 

3.3.2.1 Estimation of Sheath Currents of Healthy Cables 

First, a fault distance (D) is assumed and three-phase sheath currents at the sending 

terminal (Isn) are initially set to zeros or assigned to the values calculated from the 

estimation for the previous assumed distance.  

The voltages at the fault point are calculated by, 

2 00

V Z Z I Y Y VVfc sc cc cn sccc cnsc DD
I Y YV Z Z sn nc nnnc nnfn

                     

      = − −        
  (3.13) 

The currents at the immediate left side of the fault point are formulated as, 

2

I V VscI Y Yfc fcsc cc cnD
I I Y Y Vsn nc nnfn fn

                           

+
= −      (3.14) 
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The voltages and currents at the receiving terminal are represented as, 

( )1I M V NVrc fn fc
−= −        (3.15) 

( )1V J V KIrn fc rc
−= −        (3.16) 

V Z Irc rcload=         (3.17) 

where, 

( ) ( )2 2
;

2 2

L D L D
J Z Y Z Ycc cn cn nn

− −
= +  

( ) ( )

( )

2

2
2

;
2

L D
K Z L D Z Z Y Zcc cc ccload load

L D
Z Y Zcn nc load

−
= + − +

−
+

 

( ) ( )

( ) ( )

2
1

2
2 2

1
2 2

2( ) 1 ;
2

L D
M J K L D Z Z Y Znc nc cc load

L D L D
Z Y J K Z Y Znc cn nn nc load

L D Z Y J Knn nn

−−= − + − +

− −−− +

− −−

 

( ) ( )2 2
1 1 1;

2 2

L D L D
N J Z Y J Z Y Jnc cn nn nn

− −− − −= + +  

0 0

B0  0

0 0

AZload

Z Zload load
CZload

 
 
 
 
 
 
  

=  
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Based on the results from Equations (3.13), (3.15)-(3.17), the currents at the immediate 

right side of the fault point are described as, 

1

201

I V VrcY YIf c fccc cnrc L D
I Y Y V Vnc nn rnf n fn

                        

+
−= +

+
    (3.18) 

It is apparent that the core and sheath currents at the immediate left side and immediate 

right side of the fault point are exactly same in the healthy phases, i.e. phase B and C in 

this case. Thus, on the assumption that the currents of sheaths A and C are unchanged, a 

certain value of the current of sheath B can minimize the condition in Equation (3.19) 

when changing the real part and imaginary part of B
snI . 

2

1
B B BCone I Ifn f n= −        (3.19) 

where B
fnI  and 1

B
f nI  can be calculated by Equations (3.14) and (3.18) respectively. 

The above process is illustrated in Figure 3.6, where the vertex of the cone is related to 

the minimal point for the condition in Equation (3.19) and its x-y coordinates correspond 

to the real part and imaginary part of the desired current of sheath B. 

The equation of a general conical surface can be represented as, 

( ) ( ) ( )
2 2

20 0
02 2

x x y y
z z

a b

− −
+ = −       (3.20) 

Comparing with the conical surface in Figure 3.6, x0 corresponds to B
snReal(I )  and y0 to 

B
snImag(I ) , z0 is very close to 0 and can be ignored, z2 is the condition in Equation (3.19). 

If assuming several pairs of x and y and calculating the relative z, the unknown 

coefficients a, b, x0 and y0 can be solved readily. 

Based on the equation of the conical surface in such a shape, the simple solving 

procedure is explained in the following steps. 
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Figure 3.6: Conical surface to estimate current of the healthy sheath. 

 

 Step 1: Assuming that the currents of sheaths A and C ( A
snI  and C

snI ) are unchanged, 

which can be zeros or the values from the estimation for the previous assumed fault 

distance. 

 Step 2: Setting A
snI 0,1,-1, j,-j= , and calculating 1 2 3 4 5

B B B B B BCone C ,C ,C ,C ,C=  respectively 

using Equations (3.13)-(3.19). 

 Step 3: The x-y coordinates of the vertex can be simply obtained by 

532 4
2(2 ) 2(2 )51 2 4 1 3

B BB B C CC CBI jsn B B B B B BC C C C C C

−−
= +

− − − −
    (3.21) 

The estimation of the sheath current of the healthy phase C has the very similar process, 

differentiating in the condition below: 
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2

1
C C CCone I Ifn f n= −        (3.22) 

3.3.2.2 Estimation of Sheath Current of Faulty Cable 

Hitherto, a fault distance is assumed and the currents in the healthy sheaths have been 

estimated. In order to solve all variables in the circuit, it is necessary to estimate the 

sheath current in the faulty phase. 

The known precondition of the faulty phase at the fault point is the fault resistance has 

the non-negative real number. Therefore, with changing of the real part and imaginary 

part of the current of sheath A, the three-dimensional shape of the imaginary part of the 

calculated fault resistances can be observed to find any hints for estimating a suitable 

sheath current, as shown in Figure 3.7 where the inclined plane represents the imaginary 

part of Rf1 and the curved surface shows the imaginary part of Rf2. 

 

Figure 3.7: Three-dimensional illustration to estimate current of the faulty sheath. 
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Since the imaginary part of the fault resistance is zero, the three-dimensional surface is 

contoured to a two-dimensional plane in Figure 3.8 in which the contour of 2( ) 0fImag R =  

is a circle and the one of 1( ) 0fImag R =  is a straight line. Apparently, two crossing dots, 

the square one and round one, are associated with the current of sheath A satisfying the 

zero value of the imaginary parts of the fault resistances. As the fault resistance has the 

non-negative value, the round dot is selected as the desired estimation accordingly. 

 

Figure 3.8: Contour of Figure 3.7 at zero planes. 

 

In summary, the estimation process for sheath A can be concluded as the following steps. 

 Step 1: Setting an initial current of sheath A ( A
snI ), which can be zero or the value 

from the estimation for the previous assumed fault distance. 

 Step 2: Calculating the imaginary part of Rf1 for several points around the initial 

current using Equations (3.13)-(3.18) and (3.9). 
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 Step 3: Finding the line equation by using the least square error technique. 

 Step 4: Calculating the imaginary part of Rf2 to find one in-circle point and three out-

circle points using Equation (3.10). 

 Step 5: Finding the circle equation by three points on the circle, which are iteratively 

calculated by four points obtained in Step 4. 

 Step 6: Solving the line equation and the circle equation to find the crossing points 

and selecting the one with the non-negative fault resistance as the estimated current 

of the faulty sheath. 

3.3.2.3 Pinpoint the Exact Fault Location 

The currents of three sheaths have been estimated, therefore, the unknown variables in 

Equations (3.3)-(3.12) can be solved. However, the above results are based on a set of 

assumed fault distances, which will accordingly find a set of estimated sheath currents, as 

the round dots representing the estimated currents of sheath A, shown in Figure 3.9. 

 

Figure 3.9: A set of estimated currents of sheath A marked as round dots. 

-0.5       -0.4       -0.3        -0.2       -0.1         0 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

AReal(I )sn  

@D+1km
@D

@D-0.5km
@D-1km

Imag(R ) 0f2 =

Real(R ) 0f2 =

AImag(I )sn  

Imag(R ) 0f1 =



89 

 

 

Considering the consistent behavior of the healthy phases at the fault point, the correct 

distance could be pinpointed by one or combination of the following four criteria. 

( ) ( )1 ; 2. ( ) ;1 1

3. ; 4.

1 1

B B C C. min abs I I min abs I Ifc f c fc f c

B B C CV V V V
fc fn fc fn

max abs max absB B C CI I I Ifc f c fc f c

 − − 
 

     − −     
     − −            

   (3.23) 

The four pinpoint criteria are shown in Figure 3.10 for a fault at 2 km of a 9 km cable, 

where the location results are quite accurate. The more accurate distance can be obtained 

by averaging the results from the calculations of more samples. 

  

Figure 3.10: Example to show results of pinpoint criteria. 
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3.3.2.4 Location Procedure 

Overall, the location procedure for CSGF is summarized in Figure 3.11. The whole 

procedure can be divided as two steps, the estimation step followed by the pinpoint step. 

The estimation step is to estimate the sheath currents at each assumed fault distance, and 

the pinpoint step is to find the exact fault point based on the results obtained in the first 

step. 

 

Figure 3.11: Location procedure for CSGF & SPBS. 
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3.3.3 Locating Core-Ground Fault 

The core-ground fault (CGF) only has one fault resistance shown in Figure 3.3 and 

defined in Equation (3.24), thus there is no crossing point to estimate the current of 

sheath A. 

3
1

AV
fc

R f A AI I
fc f c

=
−

        (3.24) 

However, the current of sheath A has no change at the fault point which is similar to the 

situation for sheaths B and C, i.e., 

1
A AI Ifn f n=          (3.25) 

So the similar estimation condition applied for sheaths B and C in Equations (3.19) and 

(3.22) can be employed to estimate the current of sheath A, shown in Equation (3.26). 

2

1
A A ACone I Ifn f n= −        (3.26) 

Consequently, the estimation process for the current of sheath A is similar to the one for 

currents of sheaths B and C, which is discussed in the previous subsection. The location 

procedure in Figure 3.11 can also be used except that the Block 3 should change to 

“Estimate sheath current of faulty phase from vertex of cone.” The same pinpoint criteria 

can be used as well. 

Besides, there have 74 unknown real variables and 78 real equations in such a situation as 

listed in Table 3.4 and Table 3.5. 
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Table 3.4: List of Unknown Variables – SPBS & CGF 

 Variable Name Number of Real 
Variables 

Sending End Vsn, Isn 2*3*2=12 
Fault Point Vfc, Vfn, Ifi, Ifn, If1i, If1n 6*3*2=36 

Receiving End Vrc, Vrn, Irc, Irn 4*3*2=24 
Real Variable Rf3, D 2 

Total  74 

 

Table 3.5: List of Equations – SPBS & CGF 

 Equation Index Number of Real 
Equations 

All Sections (3.3)-(3.6) 4*2*3*2=48 
Current at Fault Point (3.7)-(3.8), (3.25) (2*2+1)*2=10 

Bonding (3.12) 2*3*2=12 
Load (3.11) 1*3*2=6 

Fault Resistance (3.24) 1*2=2 
Total  78 

 

3.3.4 Locating Core-Sheath Fault 

With respect to the core-sheath fault (CSF), the only fault resistance exists between the 

core and sheath denoted by Rf1 in Equation (3.9), which can be alternatively represented 

as, 

'
1

1

A AV V
fn fc

R f A AI I
fn f n

−
=

−
              (3.27) 

It has been observed that the contour of '
1( ) 0fImag R =  is a circle and the one of 

1( ) 0fImag R =  is a straight line. Therefore, the very similar location procedure in Figure 

3.11 can be applied. 
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Besides, there have 75 unknown real variables and 79 real equations to express the 

situation of CSF as listed in Table 3.6 and Table 3.7. 

Table 3.6: List of Unknown Variables – SPBS & CSF 

 Variable Name Number of Real 
Variables 

Sending End Vsn, Isn 2*3*2=12 
Fault Point Vfc, Vfn, Ifi, Ifn, If1i, If1n 6*3*2=36 

Receiving End Vrc, Vrn, Irc, Irn 4*3*2=24 
Real Variable Rf1, Rf1’, D 3 

Total  75 

 

Table 3.7: List of Equations – SPBS & CSF 

 Equation Index Number of Real 
Equations 

All Sections (3.3)-(3.6) 4*2*3*2=48 
Current at Fault Point (3.7)-(3.8) 2*2*2=8 

Bonding (3.12) 2*3*2=12 
Load (3.11) 1*3*2=6 

Fault Resistance (3.9), (3.27) 2*2=4 
Extra Equation Rf1=Rf1’ 1 

Total  79 

 

3.3.5 General Location Scheme 

A general location scheme for all fault scenarios is described in Figure 3.12. Upon the 

occurrence of a fault, all three location algorithms are applied to find the fault. The fault 

resistances, Rf1, Rf1’, Rf2, and Rf3, at the pinpointed fault distance are calculated by 

Equations (3.9), (3.27), (3.10), and (3.24) respectively. Then the specific fault type is 

obtained by the rules in Table 3.8, where X is a practical non-negative value, XR and XI 

could be any value. 
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Figure 3.12: General location scheme - SPBS. 

 

Table 3.8: Decision of Fault Scenarios in Practice 

Fault Resistance Fault Scenarios 
Rf1 Rf1’ Rf2 Rf3 

CSGF X+j0 XR+jXI X+j0 XR+jXI 
CGF XR+jXI XR+jXI XR+jXI X+j0 
CSF X+j0 ≈Rf1 XR+jXI XR+jXI 

 

The location algorithm for SPBS has been explicated in this section, thus the location 

algorithms for other bonding methods will be compared with this algorithm unless 

otherwise specified. 

3.4 Location Algorithm for Cables with SPBR 

The location algorithm for cables with the configuration of the single point bonding at the 

receiving terminal (SPBR) is very similar to the one for SPBS. The differences and 

similarities between two algorithms will be discussed respectively in this subsection. 

3.4.1 Differences from SPBS 

There are four main differences in the algorithm for SPBR from the one for SPBS, i.e. 

bonding conditions, quantities to be estimated, load estimation and calculation equations. 

Locate using algorithm for 
CSGF in Section 3.3.2 

Determine the fault 
types based on the 

principle in Table 3.8 

Fault distance 
Fault resistance 

Fault type

Locate using algorithm for 
CGF in Section 3.3.3 

Locate using algorithm for 
CSF in Section 3.3.4 
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 Due to the different bonding points, the sheath currents at the sending terminal are 

zeros and the sheath voltages at the receiving terminal are zeros. The fault equations 

describing the faulty section in the situation of CSGF are same as Equations (3.3)- 

(3.11), except that the boundary conditions in Equation (3.12) are changed to, 

0; 0I Vsn rn= =         (3.28) 

 The quantities to be estimated in the location algorithm are accordingly changed to 

the sheath voltages at the sending terminal (Vsn). 

 The process of the load impedance estimation will be introduced in Section 3.9.1.2. 

 The most different point is the calculation equations to describe the relations at the 

sending terminal, fault point and receiving terminal. Similarly, a fault distance (D) is 

assumed and three-phase sheath voltages (Vsn) are initially set to zeros or assigned to 

the values from the estimation for the previous assumed distance.  

The voltages at the fault point are calculated by, 

20

V V Z Z I Y Y Vfc sc cc cn scsc cc cn DD
Y Y VV V Z Z nc nn snsn nc nnfn

                     

       = − −         
  (3.29) 

The currents at the immediate left side of the fault point are formulated as, 

20

I V VscY YIfc fcD cc cnsc
I Y Y V Vnc nn snfn fn

+        = −      +      
     (3.30) 

The voltages and currents at the receiving terminal are represented as, 

( )1I M V NVrc fc fn
−= −        (3.31) 

( )1I J V KIrn fn rc
−= −        (3.32) 
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V Z Irc rcload=         (3.33) 

where, 

( ) 1 ;
2

L D
M Z L D Z Z Z Z IU Y Zload cc cn nn nc cc load

− − = + − − +    
 

1;N Z Zcn nn
−=  

( ) ;J L D Znn= −  

( ) ( )2
;

2 2

L DL D
K L D Z IU Y Z Z Y Zncnc nn loadcc load

−− = − + + 
 

 

0 0

B0  0

0 0

AZload

Z Zload load
CZload

 
 
 
 
 
 
  

=  

Then, the currents at the immediate right side of the fault point are described as, 

1

21

I V VrcI Y Yf c fcrc cc cnL D
I I Y Y Vrn nc nnf n fn

                           

+
−= +     (3.34) 

Comparing with the location procedure for SPBS, Equations (3.29)-(3.34) are used 

for solving problem in the case of SPBR instead of Equations (3.13)-(3.18) used for 

SPBS. 

3.4.2 Similarities with SPBS 

The similar issues between the algorithms for SPBR and SPBS are summarized as below. 

 The known variables and preconditions in the calculation equations are almost same 

except for the boundary conditions. 
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 Similarly, there have 75 unknown real variables and 78 real equations for CSGF & 

SPBR, 74 unknown real variables and 78 real equations for CGF & SPBR, and 75 

unknown real variables and 79 real equations for CSF & SPBR. 

 The principle and procedure are basically similar in estimating sheath quantities of 

the healthy cables. 

 The principle and procedure are quite similar in estimating sheath quantities of the 

faulty cable. 

 The pinpoint criteria are completely same. 

 The location principles for CSF and CGF are similar. 

 The general location scheme and the fault type decision logic are exactly same. 

3.5 Location Algorithm for Cables with SPBM 

The cable with sheaths grounded at the middle point (SPBM) can be regarded as two 

cable sections, one equivalent to SPBR and the other to SPBS. It is clear that the 

algorithms presented in the previous subsections can be respectively applied for each 

section. However, the presence of one cable section would affect the calculations for the 

other section. 

3.5.1 Fault in the First Half Section 

3.5.1.1 Problem Formulation 

The first half section with SPBM (SPBM-1) can be considered as a cable with SPBR. It is 

illustrated in Figure 3.13 where a CSGF occurs in SPBM-1. 
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Figure 3.13: A CSGF in cable with SPBM-1. 
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The fault equations describing the circuit section from the sending terminal to the fault 

point are formulated as, 

2

V V Z Z I Y Y Vfc sc cc cn sc cc cn scDD
V V Z Z I Y Y Vsn nc nn sn nc nn snfn

                                                 

= − −    (3.35) 

2

I V VscI Y Yfc fcsc cc cnD
I I Y Y V Vsn nc nn snfn fn

                           

+
= −

+
     (3.36) 

The fault equations describing the circuit section from the fault point to the middle point 

m are established as, 

( ) 1

21

V I VV Z Z Y Yfc f c fcmc cc cn cc cnL DL D
V V Z Z I Y Y Vmn nc nn nc nnfn f n fn

                                                  

−= − − −  (3.37) 

1

21

I V VmcI Y Yf c fcmc cc cnL D
I I Y Y V Vmn nc nn mnf n fn

                           

+
−= −

+
    (3.38) 

The fault equations describing the circuit section from the middle point to the receiving 

terminal are presented as, 

21

IV V Z Z Y Y Vmcrc mc cc cn cc cn mcLL
IV V Z Z Y Y Vrn mn nc nn nc nn mnm n

           
           
                      

= − −   (3.39) 

21

II Y Y V Vmcrc cc cn rc mcL
II Y Y V Vrn nc nn rn mnm n

      
      
            

+
= −

+
     (3.40) 

The fault equations at the fault point are formed as, 

,1 1
B B C CI I I Ifc f c fc f c= =        (3.41) 
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,1 1
B B C CI I I Ifn f n fn f n= =        (3.42) 

1
1

A AV V
fc fn

R f A AI I
fc f c

−
=

−
        (3.43) 

2
1 1

AV
fn

R f A A A AI I I I
fc f c fn f n

=
− + −

      (3.44) 

The boundary conditions due to the grounding of sheaths are given as, 

0; 0; 0I I Vsn rn mn= = =        (3.45) 

At the receiving terminal, the loads are modeled as the constant impedance, and there 

exists the following relation, 

V Z Irc rcload=         (3.46) 

The whole cable circuit during the fault is represented by Equations (3.35)-(3.46). The 

known variables, preconditions and unknown variables in the equations are similar to the 

ones in Section 3.3.1. 

For such a fault situation illustrated in Figure 3.13 and formulated in Equations (3.35)-

(3.46), there have 105 unknown real variables and 108 real equations as listed in Table 

3.9 and Table 3.10. 

Table 3.9: List of Unknown Variables – SPBM-1 & CSGF 

 Variable Name Number of Real 
Variables 

Sending End Vsn, Isn 2*3*2=12 
Fault Point Vfc, Vfn, Ifi, Ifn, If1i, If1n 6*3*2=36 

Middle Point Vmc, Vmn, Imc, Imn, Im1n 5*3*2=30 
Receiving End Vrc, Vrn, Irc, Irn 4*3*2=24 
Real Variable Rf1, Rf2, D 3 

Total  105 
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Table 3.10: List of Equations – SPBM-1 & CSGF 

 Equation Index Number of Real 
Equations 

All Sections (3.35)-(3.40) 6*2*3*2=72 
Current at Fault Point (3.41)-(3.42) 2*2*2=8 

Bonding (3.45) 3*3*2=18 
Load (3.46) 1*3*2=6 

Fault Resistance (3.43)-(3.44) 2*2=4 
Total  108 

 

3.5.1.2 Comparison with SPBR 

There are two differences between the algorithm for SPBM-1 and the one for SPBR, i.e. 

the calculation equations and the process of load impedance estimation. 

The voltages at the fault point are calculated by, 

20

V V Z Z I Y Y Vfc sc cc cn scsc cc cn DD
Y Y VV V Z Z nc nn snsn nc nnfn

                     

       = − −         
  (3.47) 

The currents at the immediate left side of the fault point are formulated as, 

20

I V VscY YIfc fcD cc cnsc
I Y Y V Vnc nn snfn fn

+        = −      +      
     (3.48) 

The voltages and currents at the receiving terminal are represented as, 

( )1I M F V NVrc fc fn
−= −        (3.49) 

V Z Irc rcload=         (3.50) 

V DEIrn rc=          (3.51) 
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where, 

2

22 2

2 2 2

2 2 2

L L LM Z F K KY Z KY DE LZ Z Y Zcc cc ccload loadcc load cn

L L LZ Y DE Z Y Z Z Y DEcc cn cn nc cn nnload

 = − + + + + 
 

+ + +

 

( ) 1
;

2 2

L DL
F IU KY KYcc cc

− −
= − −  
 

 

1 ;N Z Zcn nn
−=  

12 2
;

2 2
L L

D IU Z Y Z Ync cn nn nn

− 
 = + +
 
 

 

2 2
;

2 2
L L

E LZ Z Y Z Z Y Znc nc cc load nn nc load

 
 = − + +
 
 

 

( ) ( )1 ;K L D Z Z Z L D Zcn nn nc cc
−= − − −  

0 0

B0  0

0 0

AZload

Z Zload load
CZload

 
 
 
 
 
 
  

=  

Then, the voltages at the middle joint are described as, 

200

V Z Z I Y Y VV rc cc cn rcrc cc cnmc LL
Y Y VV Z Z nc nn rnrn nc nn

                     

    
= + +    

     
   (3.52) 

The currents at the middle joint are described as, 
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201

I Y Y V VImc cc cn mc rcrc L
I Y Y Vnc nn rnm n

      
      
            

+
= +      (3.53) 

The sheath currents at the immediate left side of the joint point are described as, 

I JV RI WVmn mc mnfn= − −        (3.54) 

where, 

1 1;J ZnnL D
−=

−
 

1 ;R Z Znn nc
−=  

1
2 2

L D L D
W Z Z Y Ynn nc cn cn

− −−= +  

Finally, the currents at the immediate right side of the fault point are described as, 

1

21

I V VmcI Y Yf c fcmc cc cnL D
I I Y Y Vmn nc nnf n fn

                           

+
−= +     (3.55) 

Comparing with the location procedure for SPBR, Equations (3.47)-(3.55) are used for 

SPBM-1 instead of Equations (3.29)-(3.34) for SPBR. The load impedance estimation 

will be described in Section 3.9.1.3. 

The similarities between the algorithm for SPBM-1 and the one for SPBR are concluded 

as below. 

 The known variables and preconditions in the calculation equations are almost same 

except for the boundary conditions in Equation (3.45). 

 As mentioned above, there have 105 unknown real variables and 108 real equations 

for a situation with CSGF & SPBM-1, similarly, 104 unknown real variables and 108 
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real equations for CGF & SPBM-1, and 105 unknown real variables and 109 real 

equations for CSF & SPBM-1. 

 The following aspects are basically similar to the algorithm for SPBR. 

 Principle and procedure of estimating sheath quantities of the healthy cables; 

 Principle and procedure of estimating sheath quantities of the faulty cable; 

 Pinpoint criteria; 

 Location principles for CSF and CGF; 

 General location scheme for the first section; 

 Fault type decision logic. 

3.5.2 Fault in the Second Half Section 

The second half section with SPBM (SPBM-2) can be considered as a cable with SPBS 

and the algorithm for SPBS can be directly used if the core voltages (Vmc) and currents 

(Imc) at the middle point are known. 

Assuming a fault occurs in SPBM-2 in Figure 3.13, the fault equations describing the 

circuit section from the sending terminal to the middle point are formulated as, 

20 0

V Z Z Y Y VV Isc cc cn cc cn scmc sc LL
V Z Z Y Y Vsn nc nn nc nn sn

           
           
                      

= − −    (3.56) 

20

I Y Y V VImc cc cn sc mcsc L
I Y Y Vmn nc nn sn

      
      
            

+
= −      (3.57) 

The unknown variables in the above two equations are Vmc, Imc, Imn and Vsn. The amount 

of equations is exactly same as the amount of the unknown variables, so all variables can 

be solved, and Vsn is given as, 
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( )1V J MI NVsn sc sc
−= −        (3.58) 

where, 

2 2
;

2 2
L LJ IU Z Y Z Ync cn nn nn= + +  

;M LZnc=  

2 2

2 2
L LN Z Y Z Ync cc nn nc= +  

It is obvious that the location problem here is equivalent to the one for SPBS after Vmc 

and Imc are estimated by Equations (3.56)-(3.58). Hitherto, the location algorithm for 

SPBS in Section 3.3 can be used completely. 

3.5.3 Location Scheme for Entire Cable 

The location scheme for entire cable is described in Figure 3.14. The first half section is 

examined by the algorithm for SPBM-1. If the obtained fault distance (D1) is very close 

to the middle point, the algorithm for SPBM-2 is applied then. Otherwise, the distance 

D1 is the true fault distance and the location process stops here. If the located distance 

(D2) is close to the joint point again, the real fault distance would be around the joint 

point. Otherwise, the distance D2 is the true fault distance. 
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Figure 3.14: Location scheme for entire cable - SPBM. 

 

3.6 Location Algorithm for Cables with SBBE 

The location algorithm for cables with the configuration of the solid bonding at both ends 

(SBBE) is very similar to the one for SPBS. 

3.6.1 Differences from SPBS  

There are three main differences in the algorithm for SBBE from the one for SPBS, i.e. 

bonding conditions, calculation equations and load estimation. 

 Due to the different bonding conditions, the sheath voltages at both terminals are 

zeros. The fault equations describing the faulty section in the situation of CSGF are 

same as Equations (3.3)- (3.11), except that the boundary conditions in Equation 

(3.12) are changed to, 

0; 0V Vsn rn= =         (3.59) 
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SPBM-1 in Section 3.5.1 

Fault distance in the 
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Average of D1 and D2 as 
fault distance

D1≥0.98L

Yes

No

Locate using algorithm for 
SPBM-2 in Section 3.5.2 

D2≤0.02L
No

Yes 

Fault distance in the 
second half section 
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 The process of the load impedance estimation will be introduced in Section 3.9.1.4. 

 The most different point is the calculation equations to describe the relations at the 

sending terminal, fault point and receiving terminal. Similarly, a fault distance (D) is 

assumed and three-phase current voltages (Isn) are initially set to zeros or assigned to 

the values from the estimation for the previous assumed distance. 

The voltages at the fault point are calculated by, 

2 00

V Z Z I Y Y VVfc sc cc cn sccc cnsc DD
I Y YV Z Z sn nc nnnc nnfn

                     

      = − −        
  (3.60) 

The currents at the immediate left side of the fault point are formulated as, 

2

I V VscI Y Yfc fcsc cc cnD
I I Y Y Vsn nc nnfn fn

                           

+
= −      (3.61) 

The voltages and currents at the receiving terminal are represented as, 

1
11 12

21 22

VM MI fcrc
I VM Mrn fn

            

− 
 =
  

      (3.62) 

V Z Irc rcload=         (3.63) 

where, 

( ) ( )

( )

2

11 2
2

;
2

L D
M Z L D Z Y Z Zcc cc ccload load

L D
Y Z Znc cn load

−
= + − +

−
+
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( ) ;12M L D Zcn= −

 ( ) ( ) ( )2 2
;21 2 2

L D L D
M L D Z Y Z Z Y Z Znc cc nc nc nnload load

− −
= − + +

 ( ) ;22M L D Znn= −  

0 0

B0  0

0 0

AZload

Z Zload load
CZload

 
 
 
 
 
 
  

=  

Then, the currents at the immediate right side of the fault point are described as, 

1

21

I V VrcI Y Yf c fcrc cc cnL D
I I Y Y Vrn nc nnf n fn

                           

+
−= +     (3.64) 

Comparing with the location procedure for SPBS, Equations (3.60)-(3.64) are used 

for SBBE instead of Equations (3.13)-(3.18) used for SPBS. 

3.6.2 Similarities with SPBS  

The similar issues between the algorithms for SPBS and SBBE are summarized as below. 

 The known variables and preconditions in the calculation equations are same except 

for the boundary conditions in Equation (3.59). 

 Similarly, for a situation with CSGF & SBBE formulated in Equations (3.3)-(3.11) 

and (3.59), there have 75 unknown real variables and 78 real equations, 74 unknown 

real variables and 78 real equations for CGF & SBBE, and 75 unknown real 

variables and 79 real equations for CSF & SBBE. 

 The following aspects are basically similar to the algorithm for SPBS. 

 Quantities to be estimated: sheath currents; 

 Principle and procedure of estimating sheath quantities of the healthy cables; 



109 

 

 Principle and procedure of estimating sheath quantities of the faulty cable; 

 Pinpoint criteria; 

 Location principles for CSF and CGF; 

 General location scheme; 

 Fault type decision logic. 

3.7 Location Algorithm for Cables with XB 

A cable with the cross bonding (XB) is divided into three sections of equal length and the 

sheaths are cross-connected at the joints. The first section is similar to SPBS at the 

starting terminal of the first section, but there have voltages and currents in sheaths at the 

ending terminal of the first section. The middle section has the voltages and currents in 

sheaths at both starting and ending terminals of this section. The last section is similar to 

SPBR at the ending terminal of the last section, but there have voltages and currents in 

sheaths at the starting terminal of the last section. 

3.7.1 Fault in the First Section 

3.7.1.1 Problem Formulation 

A CSGF occurs in the first section with XB (XB-1), as illustrated in Figure 3.15. 

The fault equations describing the circuit section from the sending terminal to the fault 

point are formulated as, 

2

V V Z Z I Y Y Vfc sc cc cn sc cc cn scDD
V V Z Z I Y Y Vsn nc nn sn nc nn snfn

                                                 

= − −    (3.65) 

2

I V VscI Y Yfc fcsc cc cnD
I I Y Y V Vsn nc nn snfn fn

                           

+
= −

+
     (3.66) 
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Figure 3.15: A CSGF in cable with XB-1. 
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1

1

B BV Vpn p n
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1

1

B BV Vtn t n

B BI Itn t n
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1
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C CV Ipc pc C CV Itc tc
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1
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The fault equations describing the circuit section from the fault point to the first joint 

point p are established as, 

( ) 1

21

V I VV Z Z Y Ypc fc f c fccc cn cc cnL DL D
V V Z Z I Y Y Vpn nc nn nc nnfn f n fn

                                                  

−= − − −  (3.67) 

1

21

I V VpcI Y Ypc f c fccc cnL D
I I Y Y V Vpn nc nn pnf n fn

                           

+
−= −

+
    (3.68) 

The fault equations describing the circuit section from the first joint point p to the second 

joint point t are presented as, 

21 1 1

V I Vpc pc pcV Z Z Y Ycc cn cc cnLtc L
V I VZ Z Y Yt nc nn nc nnrn p n p n p n

                                                  

= − −   (3.69) 

21 1

I V VI pc pcY Y tctc cc cnL
I V VI Y Y tnnc nntn p n p n

                           

+
= − +      (3.70) 

The fault equations describing the circuit section from the second joint point to the 

receiving terminal are presented as, 

21 1 1

V I VV Z Z Y Ytc tc tcrc cc cn cc cnLL
V I VV Z Z Y Yrn nc nn nc nnt n t n t n

                                             

= − −   (3.71) 

21 1

I V VI Y Y rctc tcrc cc cnL
I V VI Y Y rnrn nc nnt n t n

      
      
            

+
= −

+
     (3.72) 

The fault equations at the fault point are formed as, 

,1 1
B B C CI I I Ifc f c fc f c= =        (3.73) 
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,1 1
B B C CI I I Ifn f n fn f n= =        (3.74) 

1
1

A AV V
fc fn

R f A AI I
fc f c

−
=

−
        (3.75) 

2
1 1

AV
fn

R f A A A AI I I I
fc f c fn f n

=
− + −

      (3.76) 

The boundary conditions due to the grounding of sheaths are given as, 

0; 0V Vsn rn= =         (3.77) 

The conditions at the first joint are given as, 

; ;1 1 1
A B B C C AV V V V V Vpn pn pnp n p n p n= = =      (3.78) 

; ;1 1 1
A B B C C AI I I I I Ipn pn pnp n p n p n= = =      (3.79) 

The conditions at the second joint are given as, 

; ;1 1 1
A B B C C AV V V V V Vtn tn tnt n t n t n= = =       (3.80) 

; ;1 1 1
A B B C C AI I I I I Itn tn tnt n t n t n= = =       (3.81) 

At the receiving terminal, the loads are modeled as the constant impedance, and there 

exists the following relation, 

V Z Irc rcload=         (3.82) 
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The whole cable circuit during the fault is represented by Equations (3.65)-(3.82). The 

known variables, preconditions and unknown variables in the equations are similar with 

the ones in Section 3.3.1. 

For such a fault situation illustrated in Figure 3.15 and formulated in Equations (3.65)-

(3.82), there have 147 unknown real variables and 150 real equations as listed in Table 

3.11 and Table 3.12. 

Table 3.11: List of Unknown Variables – XB & CSGF 

 Variable Name Number of Real 
Variables 

Sending End Vsn, Isn 2*3*2=12 
Fault Point Vfc, Vfn, Ifi, Ifn, If1i, If1n 6*3*2=36 
First Joint Vpc, Vpn, Vp1n, Ipc, Ipn, Ip1n 6*3*2=36 

Second Joint Vtc, Vtn, Vt1n, Itc, Itn, It1n 6*3*2=36 
Receiving End Vrc, Vrn, Irc, Irn 4*3*2=24 
Real Variable Rf1, Rf2, D 3 

Total  147 

Table 3.12: List of Equations – XB & CSGF 

 Equation Index Number of Real 
Equations 

All Sections (3.65)-(3.72) 8*2*3*2=96 
Current at Fault Point (3.73)-(3.74) 2*2*2=8 

Bonding (3.77) 2*3*2=12 
Joint Point (3.78)-(3.81) 4*3*2=24 

Load (3.82) 1*3*2=6 
Fault Resistance (3.75)-(3.76) 2*2=4 

Total  150 

 

3.7.1.2 Calculation Equations 

First, a transformation matrix T is defined to associate the quantities at each joint point. 
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1

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1 0 0

T T −

   
   
   
   

= =   
   
   
   
   

    (3.83) 

With the help of the transformation matrix, the relations at the joints in Equations (3.78)-

(3.81) can be represented as, 

1 1
1 1

1 1

1 1

A A AV V Ipc pc pc

B B BV V Ipc pc pc

C C CV V Ipc pc pc
V TV T Ip p pA A AV V Ip n pn p n

B B BV V Ip n pn p n

C C CV V Ip n pn p n

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

= = = =

AI pc

AI pc

AI pc
TI Tp AI pn

BI pn

CI pn

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= =   (3.84) 

1 1
1 1

1 1

1 1

A A AV V Itc tc tc
B B BV V Itc tc tc
C C CV V Itc tc tcV TV T I TI Tt t t tA A AV V It n tn t n
B B BV V It n tn t n
C C CV V It n tn t n

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
          

= = = = = =

AItc
BItc
CItc
AItn
BItn
CItn

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (3.85) 

The voltages at the fault point are calculated by, 

2
D

V V DZ I YVf s s s
 = − − 
 

       (3.86) 
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The currents at the immediate left side of the fault point are formulated as, 

( )2
D

I I Y V Vsf s f= − +        (3.87) 

The voltages and currents at the receiving terminal are represented as, 

1I M Vr f
−=          (3.88) 

V Z Ir rload=          (3.89) 

where, 

( ) ( )1 11 ;
2

L D
M T N L D Z T J YA N

 −− −−= + − +  
 

 

2 2
1 1 1 ;

2 2
L L

N LZT ZT YZ T Z LZ ZYZload load load

  − − −  = + + + +
    

 

3
1

4

2
1 ;

22

L
J T IU LYZ YZYZload load

LL
Y N T Z LZ ZYZload load

 −  = + +
 
 
  −  + + + +

    

 

0 0 0 0 0

B0  0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

AZload

Zload
CZZ loadload

 
 
 
 
 
 
 
 
 
 
 
 
  

=  

The voltages and currents at the sending end of the last section are described as, 
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1 2
Y

V V LZ I Vt r r r
 = + + 
 

       (3.90) 

( )1 12
L

I I Y V Vt r r t= + +        (3.91) 

The voltages and currents at the receiving end of the middle section are described as, 

1
1V T Vt t

−=          (3.92) 

1
1I T It t

−=          (3.93) 

The voltages and currents at the sending end of the middle section are described as, 

1 2
Y

V V LZ I Vp t t t
 = + + 
 

       (3.94) 

( )1 12
L

I I Y V Vp t t p= + +        (3.95) 

The voltages and currents at the receiving end of the first section are described as, 

1
1V T Vp p

−=          (3.96) 

1
1I T Ip p

−=          (3.97) 

Then, the currents at the immediate right side of the fault point are described as, 

( ) ( )1 2

L D
I I Y V Vf p f p

−
= + +       (3.98) 

3.7.2 Fault in the Middle Section 

The middle cable section with XB (XB-2) is different with all situation discussed in the 

previous subsections since there exist the voltages and currents in sheaths at both ends of 
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this section. The formulation is similar to the one in Equations (3.65)-(3.82) except that 

the fault occurs in the middle section. 

3.7.2.1 Calculation Equations 

The voltages and currents at the receiving end of the first section are calculated by, 

2
L

V V LZ I YVp s s s
 = − − 
 

       (3.99) 

( )2
L

I I Y V Vp s s p= − +        (3.100) 

The voltages and currents at the sending end of the middle section are calculated by, 

1V TVp p=          (3.101) 

1I TIp p=          (3.102) 

The voltages at the fault point are calculated by, 

1 1 12
D

V V DZ I YVf p p p
 = − − 
 

      (3.103) 

The currents at the immediate left side of the fault point are formulated as, 

( )1 12
D

I I Y V Vpf p f= − +        (3.104) 

The voltages and currents at the receiving terminal are represented as, 

1I M Vr f
−=          (3.105) 

V Z Ir rload=          (3.106) 

where, 
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( ) ( ) 2
1 1 1 ;

22

L D L L
M L D ZT ZT YZ NT Z LZ ZYZload load load

 −− − −  = − + + + +
 
 

 

( ) ( )21 ;
2 2

L D L L D
N IU ZT YT ZY

− −−= + +  

0 0 0 0 0

B0  0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

AZload

Zload
CZZ loadload

 
 
 
 
 
 
 
 
 
 
 
 
  

=  

The voltages and currents at the sending end of the last section are described as, 

1 2
Y

V V LZ I Vt r r r
 = + + 
 

       (3.107) 

( )1 12
L

I I Y V Vt r r t= + +        (3.108) 

The voltages and currents at the receiving end of the middle section are described as, 

1
1V T Vt t

−=          (3.109) 

1
1I T It t

−=          (3.110) 

Then, the currents at the immediate right side of the fault point are described as, 

( ) ( )1 2

L D
I I Y V Vf t f t

−
= + +        (3.111) 
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3.7.3 Fault in the Last Section 

The last cable section with XB (XB-3) has voltages and currents in sheaths at the starting 

terminal of the last section. The formulation is similar to the one in Equations (3.65)-

(3.82) except that the fault occurs in the last section. 

3.7.3.1 Calculation Equations 

The voltages and currents at the receiving end of the first section are calculated by, 

2
L

V V LZ I YVp s s s
 = − − 
 

       (3.112) 

( )2
L

I I Y V Vp s s p= − +        (3.113) 

The voltages and currents at the sending end of the middle section are calculated by, 

1V TVp p=          (3.114) 

1I TIp p=          (3.115) 

The voltages and currents at the receiving end of the middle section are calculated by, 

2
L

V V LZ I YVt p p p
 = − − 
 

       (3.116) 

( )2
L

I I Y V Vpt p t= − +        (3.117) 

The voltages and currents at the sending end of the last section are calculated by, 

1V TVt t=          (3.118) 

1I TIt t=          (3.119) 

The voltages at the fault point are calculated by, 
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1 1 12
D

V V DZ I YVf t t t
 = − − 
 

       (3.120) 

The currents at the immediate left side of the fault point are formulated as, 

( )1 12
D

I I Y V Vtf t f= − +        (3.121) 

The voltages and currents at the receiving terminal are represented as, 

1I M Vr f
−=          (3.122) 

V Z Ir rload=          (3.123) 

where, 

( ) ( )2
;

2

L D
M L D Z Z ZYZload load

 − = − + +
 
 

 

0 0 0 0 0

B0  0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

AZload

Zload
CZZ loadload

 
 
 
 
 
 
 
 
 
 
 
 
  

=  

Then, the currents at the immediate right side of the fault point are described as, 

( ) ( )1 2

L D
I I Y V Vf r f r

−
= + +       (3.124) 
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3.7.4 Other Issues 

Comparing with the detailed principle and procedure for SPBS, the similarity issues for 

all three XB methods are summarized as below. 

 The known variables and preconditions in the calculation equations are same except 

for the boundary conditions in Equation (3.77). 

 There have 147 unknown real variables and 150 real equations for CSGF & XB, 146 

unknown real variables and 150 real equations for CGF & XB, and 147 unknown 

real variables and 151 real equations for CSF & XB. 

 The following aspects are basically similar to the algorithm for SPBS. 

 Quantities to be estimated: sheath currents; 

 Principle and procedure of estimating sheath quantities of the healthy cables; 

 Principle and procedure of estimating sheath quantities of the faulty cable; 

 Pinpoint criteria; 

 Location principles for CSF and CGF; 

 General location scheme for each section 

 Fault type decision logic. 

Besides, the process of the load impedance estimation will be introduced in Section 

3.9.1.5. 

3.7.5 Location Scheme for Entire Cable 

Similar to the location scheme for SPBM, the location scheme for entire cable with XB is 

described in Figure 3.16.  
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Figure 3.16: Location scheme for entire cable - XB. 

 

3.8 Summary of Location Algorithms 

The principle and procedure of the proposed algorithms for all bonding methods are 

summarized in Table 3.13 and Table 3.14. 

 

 

Locate using algorithm for 
XB-1 in Section 3.7.1 

Fault distance in 
the first section 

Average of D1 and D2 as 
fault distance 

D1≥0.98L

No

No

Locate using algorithm for 
XB-2 in Section 3.7.2 

D2≤0.02L

Yes 

Fault distance in 
the middle section D2≥0.98L

No

Yes 

Yes 

Locate using algorithm for 
XB-3 in Section 3.7.3 

Average of D2 and D3 as 
fault distance 

No

D3≤0.02L
Yes 

Fault distance in the last section 
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Table 3.13: Summary of Algorithms for Single Point Bonding 

SPBM  
SPBS SPBR 

First Half Second Half 

Formulation equations (3.3)-(3.12) (3.3)-(3.11) 
(3.28) (3.35)-(3.46) 

(3.56)-(3.58)
(3.3)-(3.11) 

(3.45) 
CSGF 75 75 105 105 
CGF 74 74 104 104 Number of real 

Variables 
CSF 75 75 105 105 

CSGF 78 78 108 108 
CGF 78 78 108 108 Number of real 

Equations 
CSF 79 79 109 109 

Bonding condition (3.12) (3.28) (3.45) 

Calculation equations (3.13)-(3.18) (3.29)-(3.34) (3.47)-(3.55) (3.56)-(3.58)
(3.13)-(3.18)

Quantity to be 
estimated 

Sheath 
Current 

Sheath 
Voltage 

Sheath 
Voltage 

Sheath 
Current 

Healthy 
Sheaths 

Cone 
Equation (3.19), (3.22) 

CSGF 
Line (3.9) Imag(Rf1)=0 

CSGF 
Circle (3.10) Imag(Rf2)=0 

CSF 
Line (3.9) Imag(Rf1)=0 

Faulty 
Sheath 
(CSGF&
CSF) 

CSF 
Circle (3.27) Imag(Rf1’)=0 

Cone 
Equation (3.26) 

Estimation 

Faulty 
Sheath 
(CGF) Rf3 (3.24) 

Pinpoint criteria (3.23) 
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Table 3.14: Summary of Algorithms for Solid and Cross Bonding 

XBB 
 

SBBE 
First Middle Last 

Formulation equations (3.3)-(3.11) 
(3.59) (3.65)-(3.82) Similar to 

(3.65)-(3.82) 
Similar to 

(3.65)-(3.82)
CSGF 75 147 147 147 
CGF 74 146 146 146 Number of real 

variables 
CSF 75 147 147 147 

CSGF 78 150 150 150 
CGF 78 150 150 150 Number of real 

equations 
CSF 79 151 151 151 

Bonding condition (3.59) (3.77) 

Calculation equations (3.60)-(3.64) (3.86)-(3.98) (3.99)-(3.111) (3.112)-
(3.124) 

Quantity to be 
estimated 

Sheath 
Current Sheath Current 

Healthy 
Sheaths 

Cone 
Equation (3.19), (3.22) 

CSGF 
Line (3.9) Imag(Rf1)=0 

CSGF 
Circle (3.10) Imag(Rf2)=0 

CSF 
Line (3.9) Imag(Rf1)=0 

Faulty 
Sheath 
(CSGF&
CSF) 

CSF 
Circle (3.27) Imag(Rf1’)=0 

Cone 
Equation (3.26) 

Estimation 

Faulty 
Sheath 
(CGF) Rf3 (3.24) 

Pinpoint criteria (3.23) 

 

Although there need twenty four sub-algorithms in total to cover all five bonding 

methods and three fault scenarios, actually, the very basic principle and procedure are 

very similar. With respect to a specific system where the bonding method is already 

assigned, the major difference is just to employ the related calculation equations. 
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3.9 Load Impedance Estimation 

3.9.1 Constant Impedance Load Model 

The load used in the location algorithms is modeled as the constant impedance which will 

keep unchanged during the fault. Since the voltages and currents at the load terminal are 

not available, the load impedance should be estimated based on the prefault voltages and 

currents recorded at the substation. In addition, the accurate estimation should take the 

effect of sheaths and bonding methods into account. 

3.9.1.1 SPBS 

The following procedure describes the load impedance estimation for a cable with SPBS. 

 Step 1: Based on Equations (3.1), (3.2) and (3.12), the sheath currents at the sending 

terminal are calculated. 

1( )I D EV FIsn sc sc
−= +        (3.125) 

where, 

2 2
;

2 2
L LD IU Y Z Y Znc cn nn nn= + +  

2 2
2

2 2 2

2 2
;

2 2 2

L LLE Y IU Z Y Z Ync cc cc cn nc

L LL Y Z Y Z Ynn nc cc nn nc

 
 = + +
 
 
 
 + +
 
 

 

2 2

2 2
L LF Y Z Y Znc cc nn nc= − −  

 Step 2: The voltages ( rcV ) and currents ( rcI ) at the receiving terminal are obtained by 

Equations (3.1), (3.2), and (3.12). 

 Step 3: The load impedance is then found by, 
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/

/

/

A A AZ V Irc rcload
B B BZ V Irc rcload
C C CZ V Irc rcload

=

=

=

        (3.126) 

3.9.1.2 SPBR 

The following procedure describes the load impedance estimation for a cable with SPBR. 

 Step 1: Based on Equations (3.1), (3.2) and (3.28), the sheath voltages at the sending 

terminal are calculated. 

1( )V D EV FIsn sc sc
−= +        (3.127) 

where, 

2 2
;

2 2
L LD IU Z Y Z Ync cn nn nn= + +  

2 2
;

2 2
L LE Z Y Z Ync cc nn nc= − −  

F LZnc=  

 Step 2: The voltages ( rcV ) and currents ( rcI ) at the receiving terminal are obtained by 

Equations (3.1), (3.2), and (3.28). 

 Step 3: Similar to the step 3 in Section 3.9.1.1. 

3.9.1.3 SPBM 

The load estimation for SPBM can be divided into two steps, one for SPBR followed by 

the other for SPBS. 

 Step 1: Based on Equations (3.56)-(3.58), the core voltages and currents at the 

middle points are estimated. 
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 The rest steps are same as the steps 1-3 used for SPBS in Section 3.9.1.1. 

3.9.1.4 SBBE 

Since the sheath voltages at both ends are zeros, the estimation for load impedance is 

quite simple in such situation. 

 Step 1: Based on Equations (3.1), (3.2) and (3.59), the sheath currents at the sending 

terminal are calculated. 

I EV FIsn sc sc= +         (3.128) 

where, 

3
;

2 2
L LE Y Z Z Ync nn nc cc= +  

2F L Z Znn nc= −  

 Step 2: The voltages ( rcV ) and currents ( rcI ) at the receiving terminal are obtained by 

Equations (3.1), (3.2), and (3.59). 

 Step 3: Similar to the step 3 in Section 3.9.1.1. 

3.9.1.5 XB 

The cable with XB has negligible circulating currents in sheaths and the sheath voltages 

at both ends are zeros, so the effect of the sheath can be ignored at the normal condition. 

The load impedance can be calculated by the voltage and current estimated below. 

3
3

2
L

V V LZ I Y Vrc sc cc sc cc sc
 = − − 
 

      (3.129) 

( )3
2
L

I I Y V Vrc sc cc sc rc= − +       (3.130) 
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3.9.2 Static Response Load Model 

The proposed algorithms employ the constant impedance load model. The application of 

the static response type models discussed in Section 1.3.3 is investigated. The static 

response load model is rewritten below, 

2 2

0 0

n np qV V
Y G jBr rV V

− −
= +       (3.131) 

where Y is the load admittance, V is the voltage at the load point, V0 is the nominal 

voltage, np and nq are the response parameters for the active and reactive components of 

the load, Gr and Br are the constants proportional to load conductance and load 

susceptance. 

To find the load admittance, the voltage at the load point during fault and the values of 

Gr and Br need to be determined. 

The Gr and Br can be estimated by the prefault voltage and current in Equation (3.132). 

2 2

0 0

n np qV VI r rrY G jBr r rV VVr

− −
= = +      (3.132) 

where Ir and Vr are the current and voltage at the load terminal, which can be estimated 

by the algorithms discussed in Section 3.9.1. 

The voltage V in Equation (3.131) is the voltage at the load terminal during fault, which 

can be estimated based on the fact that the voltage drop along the circuit is small and 

almost proportional to the circuit length. Therefore, V can be approximately estimated by, 

L D pre preV V V Vf s rL
−  = − − 

 
      (3.133) 
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where D is the fault distance, L is the cable length, preVs  is the prefault voltage measured 

at the sending terminal, preVr  is the prefault voltage at the receiving terminal estimated by 

algorithms in Section 3.9.1, and Vf is the fault voltage calculated in the location process. 

3.10 Simulations 

3.10.1 Test Cases 

To validate the effectiveness and functionality of the proposed algorithms, the extensive 

simulation cases are carried out in PSCAD/EMTDC, involving the following variation of 

parameters and conditions: 

 Three types of MV cables are modeled, one 8 km N2XS2Y-1*185-25/20kV, one 9 

km NA2XS2Y-1*400-35/20kV and one 9 km N2XS2Y-1*185-25/20kV. 

 Fault distances are distributed along the whole cable, from the first 50 meter to the 

last 50 meter. 

 Fault resistances range from zero to 50 Ω. 

 Three fault scenarios are involved, i.e. core-sheath-ground fault, core-ground fault 

and core-sheath fault. 

 Five bonding methods are considered, including single point bonding at the sending, 

receiving, or middle point; solid bonding at both the sending and receiving ends; and 

cross bonding. 

3.10.2 Simulation Results 

The location error is defined in [35] as, 

100%
Estimated Distance-Exact Distance

error =
Total Line Length

×    (3.134) 

And the average of absolute values of location errors of the simulation results are 

concluded in Table 3.15. 
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Table 3.15: Average of Absolute Values of Location Errors 

 Core-Sheath- 
Ground Core-Ground Core-Sheath Average 

Solid Bonding 0.044% 0.045% 0.048% 0.046% 
3.68m of 8km 

Single Point 
@ Sending 0.058% 0.051% 0.11% 0.072% 

6.48m of 9km 
Single Point 
@ Receiving 0.15% 0.047% 0.25% 0.15% 

13.5m of 9km 
Single Point 
@ Middle 0.17% 0.036% 0.52% 0.24% 

21.6m of 9km 

Cross Bonding 0.069% 0.072% 0.058% 0.066% 
5.94m of 9km 

 

In all simulations, the computation is first processed for 100 points along a cable with 

equal interval. After a suitable range is detected using the pinpoint criteria, the step length 

of five meters are applied to further find the more accurate fault point. In average, the 

computation time for eight samples in one cycle is less than one minute in an ordinary 

personal computer. The final fault distance is given as the average of eight calculations in 

one cycle, which will reduce, to certain extent, errors caused by the factors such as, 

phasor measurement erros and dynamic change of the fault resistance. Some of the 

simulation cases are selected for more discussion below. 

3.10.2.1 Effect of Fault Type 

Three fault types are examined for the five bonding methods respectively. The first 

scenario is to examine the effect of the different fault types at the condition with SPBS. A 

set of cases are investigated with the following conditions and the location errors are 

shown in Figure 3.17. 

 Fault distance: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Bonding method: Single-point bonding at the sending terminal. 

 Fault resistances: (1) Rf1=0Ω, Rf2=0Ω for core-sheath-ground fault; (2) Rf1=0Ω for 

core-sheath fault; (3) Rf3=0Ω for core-ground fault. 
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Figure 3.17: Effect of fault type - SPBS. 

 

It can be observed that there is an error increase for the faults at the close-in point, which 

is owing to the effect of fault distance and will be discussed in Section 3.10.2.3. 

Basically, the fault type has no effect on the location accuracy for the bonding method of 

SPBS. 

The second scenario is to examine the effect of the different fault types at the condition 

with SPBR. A set of cases are investigated with the following conditions and the location 

errors are shown in Figure 3.18. 

 Fault distance: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Bonding method: Single-point bonding at the receiving terminal. 
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 Fault resistances: (1) Rf1=0Ω, Rf2=0Ω for core-sheath-ground fault; (2) Rf1=0Ω for 

core-sheath fault; (3) Rf3=0Ω for core-ground fault. 

 

Figure 3.18: Effect of fault type - SPBR. 

 

It can be observed that the CSF has the relatively large error at the first third section. 

The third scenario is to examine the effect of the different fault types at the condition 

with SPBM. A set of cases are investigated with the following conditions and the location 

errors are shown in Figure 3.19. 
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 Fault resistances: (1) Rf1=0Ω, Rf2=0Ω for core-sheath-ground fault; (2) Rf1=0Ω for 

core-sheath fault; (3) Rf3=0Ω for core-ground fault. 

 

Figure 3.19: Effect of fault type - SPBM. 
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 Bonding method: Solid bonding at both sending end and receiving end. 

 Fault resistances: (1) Rf1=0Ω, Rf2=0Ω for core-sheath-ground fault; (2) Rf1=0Ω for 

core-sheath fault; (3) Rf3=0Ω for core-ground fault. 

 

Figure 3.20: Effect of fault type - SBBE. 
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 Bonding method: Cross bonding. 

 Fault resistances: (1) Rf1=0Ω, Rf2=0Ω for core-sheath-ground fault; (2) Rf1=0Ω for 

core-sheath fault; (3) Rf3=0Ω for core-ground fault. 

 

Figure 3.21: Effect of fault type - XB. 
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CSGF. A set of cases are investigated with the following conditions and the location 

errors are shown in Figure 3.22. 

 Ten fault distances, from the first 50 m to the last 50 m. 

 SBBE: 0.05, 1, 2, 3, 3.9, 4.1, 5, 6, 7, 7.95 km. 

 SPBS, SPBR: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 SPBM: 0.05, 1, 2.5, 3.5, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 XB: 0.05, 1, 2, 3, 4, 5, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath-ground at phase A. 

 Fault resistance: Rf1=10Ω, Rf2=5Ω. 

 

Figure 3.22: Effect of bonding method - CSGF. 
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In the situation of CSGF, there is the relatively large error for the cases with SPBR and 

SPBM. The other bonding methods have no effect on the location accuracy. 

The second scenario is to examine the effect of the different bonding methods at the fault 

condition of CSF. A set of cases are investigated with the following conditions and the 

location errors are shown in Figure 3.23. 

 Ten fault distances, from the first 50 m to the last 50 m. 

 SBBE: 0.05, 1, 2, 3, 3.9, 4.1, 5, 6, 7, 7.95 km. 

 SPBS, SPBR: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 SPBM: 0.05, 1, 2.5, 3.5, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 XB: 0.05, 1, 2, 3, 4, 5, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath at phase A. 

 Fault resistance: Rf1=10Ω. 
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Figure 3.23: Effect of bonding method - CSF. 
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 SPBM: 0.05, 1, 2.5, 3.5, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 XB: 0.05, 1, 2, 3, 4, 5, 6, 7, 8, 8.95 km. 

 Fault type: Core-ground at phase A. 

 Fault resistance: Rf3=10Ω. 

 

Figure 3.24: Effect of bonding method - CGF. 
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to examine the effect of fault distance. The first scenario is to examine the effect of the 

different fault distance at the condition with SBBE and CSGF. A set of cases are 

investigated with the following conditions and the location errors are shown in Figure 

3.25. 

 Fault distance: 0.05, 1, 2, 3, 3.9, 4.1, 5, 6, 7, 7.95 km or 0.1, 1, 2, 3, 3.9, 4.1, 5, 6, 7, 

7.9 km. 

 Fault type: Core-sheath-ground at phase A. 

 Bonding method: Solid bonding at both terminals. 

 Fault resistance: (1) Rf1=10Ω, Rf2=5Ω; (2) Rf1=10Ω, Rf2=0Ω; (3) Rf1=0Ω, Rf2=5Ω; 

(4) Rf1=0Ω, Rf2=0Ω. 

 

Figure 3.25: Effect of fault distance – SBBE&CSGF. 
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It can be clearly observed that the higher error occurs if the fault is close to two terminals, 

especially to close-in terminal. Besides, the location error is negligible for faults 

occurring in most section of the cable. 

The second scenario is to examine the effect of the different fault distance at the 

condition with XB and CGF. A set of cases are investigated with the following conditions 

and the location errors are shown in Figure 3.26. 

 Fault distance: 0.05, 1, 2, 3, 4, 5, 6, 7, 8, 8.95 km. 

 Fault type: Core-ground at phase A. 

 Bonding method: Cross bonding. 

 Fault resistance: (1) Rf3=10Ω; (2) Rf3=0Ω. 

 

Figure 3.26: Effect of fault distance – XB&CGF. 
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Similarly, the higher error occurs if the fault is close to two terminals and crossing points. 

Besides, the location error is negligible for faults occurring in most section of the cable. 

The third scenario is to examine the effect of the different fault distance at the condition 

with SPBM and CSF. A set of cases are investigated with the following conditions and 

the location errors are shown in Figure 3.27. 

 Fault distance: 0.05, 1, 2.5, 3.5, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath at phase A. 

 Bonding method: Single point bonding at the middle point. 

 Fault resistance: (1) Rf1=10Ω; (2) Rf1=0Ω. 

 

Figure 3.27: Effect of fault distance – SPBM&CSF. 
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The much higher error occurs if the fault is at the first third section. Besides, the 

relatively large errors in other situations are caused by the bonding method of SPBM. 

It has been observed that there has error increase for faults located around the close-in, 

far-end and crossing points in simulations. This phenomenon is caused by the cable 

model and setting of the simulation software rather than the location algorithm itself. The 

PSCAD/EMTDC software requires the simulation time step should be less than the one 

tenth of the traveling time of the shortest cable length for better accuracy if the frequency 

dependent (phase) cable model is used. The traveling time of a 50 meter cable section is 

around 333.33 nanoseconds in theory. However, the traveling time for the same length 

cable is calculated as 31.8 nanoseconds in PSCAD/EMTDC, so the simulation time step 

should be set as low as 3.18 nanoseconds, which in turn would result in the very long 

simulation time for a single fault case. 

3.10.2.4 Effect of Fault Resistance 

Similarly to the investigation in the previous subsection, three bonding methods 

combined with three fault types are selected to examine the effect of fault resistance. The 

first scenario is to examine the effect of the different fault resistance at the condition with 

SPBS and CSGF. A set of cases are investigated with the following conditions and the 

location errors are shown in Figure 3.28. 

 Fault distance: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath-ground at phase A. 

 Bonding method: Single-point bonding at the sending terminal. 

 Fault resistance: (1) Rf1=10Ω, Rf2=5Ω; (2) Rf1=10Ω, Rf2=0Ω; (3) Rf1=0Ω, Rf2=5Ω; 

(4) Rf1=0Ω, Rf2=0Ω; (5) Rf1=50Ω, Rf2=25Ω. 
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Figure 3.28: Effect of fault resistance – SPBS&CSGF. 
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Figure 3.29: Effect of fault resistance – SBBE&CGF. 

 

It can be observed that the location accuracy is independent of the fault resistance. 

The third scenario is to examine the effect of the different fault resistance at the condition 

with XB and CSF. A set of cases are investigated with the following conditions and the 

location errors are shown in Figure 3.30. 

 Fault distance: 0.05, 1, 2, 3, 4, 5, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath at phase A. 

 Bonding method: Cross bonding. 

 Fault resistance: (1) Rf1=10Ω; (2) Rf1=0Ω. 

0 1 2 3 4 5 6 7 8
-0.15 

-0.1

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

Rf1=10 
Rf1=0 

Fault Distance (km) 

L
oc

at
io

n 
er

ro
r 

(%
) 



146 

 

 

Figure 3.30: Effect of fault resistance – XB&CSF. 

 

The location accuracy is independent of the fault resistance. 

3.10.2.5 Effect of Changes of Cable Parameters 

To investigate the effect of changes of cable parameters, the true cable parameters in 

series impedance matrix Z and shunt admittance matrix Y are randomly perturbed within 

a range of ±20%. A series of cases is investigated with the following conditions: 

 Fault distance: 0.1, 1, 2, 3, 3.9, 4.1, 5, 6, 7, 7.9 km. 

 Bonding method: Solid bonding at both ends. 

 Cable parameters: 100 groups of cable parameters randomly perturbed within a range 

of ±20%. 
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The distribution of absolute values of location errors (DAE) is defined in Equation 

(3.135) and the results are listed in Table 3.16. 

100%
Number of  faults in an absolute error range

DAE =
Total number of  faults

×   (3.135) 

Table 3.16: Distribution of Absolute Values of Location Errors 

Error range 0~1% 1~2.5% 2.5~5% 5~10% >10% 
Core-Sheath- 
Ground 32.30% 22.35% 20.55% 16.82% 7.98% 

Core-Ground 33.75% 20.85% 20.60% 16.80% 8.00% 
Core-Sheath 33.70% 20.95% 20.55% 16.80% 8.00% 
All cases 33.01% 21.63% 20.56% 16.81% 7.99% 

 

Around 54% faults can be located with the error less than 2.5%, equivalently 200 meters 

in this set of cases. It should be mentioned that an online parameter estimation method 

would be helpful to reduce the location error. 

3.10.2.6 Calculation of Fault Resistance 

The fault resistances can also be accurately calculated except for the cases of close-in and 

far-end faults, which could be affected by the ground bonding. The first scenario is to 

calculate the fault resistance at different fault conditions with SPBR. A set of cases are 

investigated with the following conditions and the fault resistances are shown in Figure 

3.31. 

 Fault distance: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Fault type: (1) Core-sheath-ground; (2) Core-ground; (3) Core-sheath. 

 Bonding method: Single point bonding at the receiving terminal. 

 Fault resistance: (1) Rf1=10Ω, Rf2=5Ω for CSGF; (2) Rf1=10Ω for CGF; (3) Rf3=10Ω 

for CSF. 
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Figure 3.31: Calculation of fault resistance – SPBR. 

 

It has been shown that the core-related fault resistance can be accurately estimated, which 

is independent of the fault distance. The relatively large errors occur for the case of CGF. 

The second scenario is to calculate the fault resistance at CSGF fault condition with 

SBBE. A set of cases are investigated with the following conditions and the fault 

resistances are shown in Figure 3.32. 

 Fault distance: 0.05, 1, 2.5, 3.5, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Fault type: Core-sheath-ground. 

 Bonding method: Single point bonding at the middle point. 

 Fault resistance: (1) Rf1=10Ω, Rf2=5Ω; (2) Rf1=0Ω, Rf2=5Ω. 
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Figure 3.32: Calculation of fault resistance – SPBM. 

 

Normally, the sheath-ground fault resistance can be accurately estimated for the faults 

occurring away from the bonding point. The ground bonding would result in the large 

error when faults are close to the bonding point due to the changing of the fault current 

path. 

The third scenario is to calculate the fault resistance at different fault conditions with XB. 

A set of cases are investigated with the following conditions and the fault resistances are 

shown in Figure 3.33. 

 Fault distance: 0.05, 1, 2, 3.2, 4.5, 5.2, 6, 7, 8, 8.95 km. 

 Fault type: (1) Core-sheath-ground; (2) Core-ground; (3) Core-sheath. 

 Bonding method: Single point bonding at the sending terminal. 
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 Fault resistance: (1) Rf1=0Ω, Rf2=0Ω for CSGF; (2) Rf1=0Ω for CGF; (3) Rf3=0Ω for 

CSF. 

 

Figure 3.33: Calculation of fault resistance – SPBS. 

 

The zero fault resistance can be accurately estimated in the cases of CSGF and CSF. 

However, there has relatively large error in the case of CGF owing to the fact that the 

fault resistance is not involved in the calculation of the CGF algorithm. 

3.10.3 Summary of Effects 

It has been tested that the fault resistance has no effect on the location accuracy. 

Basically, the fault distance has no effect on the location accuracy, except that there has 
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parameters would result in the large increase of the location error, but it can be averted by 

an online parameter estimation method. 

The effects of the bonding methods and fault types on the location accuracy are 

summarized in Table 3.17. 

Table 3.17: Effects of Bonding Methods and Fault Types on Location Accuracy 

 Core-Sheath- 
Ground Core-Ground Core-Sheath 

Solid Bonding No effect No effect No effect 
Single Point 
@ Sending No effect No effect No effect 

Single Point 
@ Receiving 

Relatively 
large No effect Relatively large at  

the first third section 
Single Point 
@ Middle 

Relatively 
large No effect Relatively large at  

the first half section 
Cross Bonding No effect No effect No effect 
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Chapter 4  

4 Extension of the Proposed Fault Location Algorithms to 
Medium Voltage Cables in Distribution Networks 

A set of the fault location algorithms for a plain cable with no laterals have been 

presented in Chapter 3. The extensive simulations have validated the accuracy and 

effectiveness of the proposed scheme. This chapter is to extend the proposed location 

algorithms to underground distribution networks. In order to ensure the effectiveness of 

location calculations, the voltages and currents at the sending terminal of the faulty cable 

section, and the seen impedance behind the faulty section should be accurately estimated. 

The power flow analysis or state estimation approach can provide the additional 

information required by the location algorithm. Taking account of the complexity and 

particularity of cable circuits in distribution networks, the state estimation for 

underground distribution systems is formulated as a nonlinear optimization problem that 

is solved by the sequential quadratic programming (SQP) technique. A section-by-section 

estimation algorithm combined with the backward/forward sweep algorithm is proposed 

to estimate the nodal voltage and branch current for each line section. The simulation 

studies indicate the proposed fault location algorithm and the state estimation algorithm 

can achieve good performance under different system and fault conditions. 

The background knowledge is first introduced, including the complexities existing in 

fault location calculations for cables, complexities existing in the state estimation for 

distribution networks, problems emerging from the extension, and introduction to the 

SQP nonlinear programming. Then the details of the proposed state estimation method 

are discussed. A general location procedure combined with the proposed state estimation 

technique is described as well. The application of the static response load model is 

investigated. The algorithm is examined on a 31-node radial underground distribution 

network, with consideration of laterals, tapped loads, unbalanced loads, different fault 

types and fault distances. 
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4.1 Background 

4.1.1 Complexities in Fault Location in Distribution Networks 

The traditional fault analysis algorithms applied for transmission systems cannot 

effectively achieve the expected performance in distribution systems due to the following 

reasons. 

 Existence of short and heterogeneous feeders, including various size and length lines 

and cables with different configurations. 

 Presence of laterals along the main feeder. 

 Presence of tapped loads distributed along the main feeder and laterals. 

 Unbalanced loads due to the presence of single phase, double-phase and three-phase 

loads. 

 Untransposed lines and cables. 

4.1.2 Complexities in State Estimation for Distribution Networks 

Similarly, the traditional state estimation or power flow analysis algorithms applied for 

transmission systems cannot be directly applied for distribution systems due to the 

following facts [112]. 

 Unbalanced system in nature, including laterals, tapped loads, and untransposed and 

heterogeneous feeders. 

 Limited availability of real-time measurements. 

 Large number of loads. 

For the sake of the accurate estimation, the state estimation for underground distribution 

networks should consider the characteristics of cables, such as the relatively large 

capacitance, effect of metallic sheath, sheath bonding method and unbalance impedance 

matrix. 
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4.1.3 Emerging Issues Caused by Extension to Distribution 
Networks 

It has been mentioned that the general logic principle in most of location algorithms is 

first to determine the fault point in a plain line or cable with no laterals. Subsequently, the 

location algorithm is extended to distribution networks taking account of the presence of 

laterals, tapped loads, unbalanced loads, heterogeneity of lines, etc. The extension of such 

a location algorithm for a plain line/cable into distribution networks causes three 

technical issues. 

 How to obtain the voltage and current at the sending terminal of the faulty section? 

 How to estimate the seen load impedance at the receiving terminal of the faulty 

section if the load impedance is required in calculations? 

 How to resolve the multiple estimates for possible faulty points due to the existence 

of laterals? This problem specially exists in the impedance-based location 

algorithms. 

Due to the limited availability of measurements, the voltages and currents are usually 

recorded at the substation in a distribution system. Therefore, the voltage and current can 

be simply obtained by lumping all upstream loads and laterals between the substation and 

faulty section, or gradually calculated node by node starting from the substation to the 

faulty section. To carry out the above calculations, one prerequisite is the information of 

laterals and tapped loads between the substation and faulty section should be available for 

calculations. Similarly, the data of laterals and tapped loads behind the faulty section 

should also be known to solve the second issue.  

Overall, the load information prior to fault and during fault should be estimated for the 

purpose of the accurate location. The sequential quadratic programming technique is 

applied in this work to estimate the prefault voltage and load information of each node in 

distribution networks. 
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4.1.4 Introduction to Sequential Quadratic Programming 

Sequential quadratic programming (SQP) algorithms have proved to be fast and robust 

for solving the general nonlinear optimization problem of the form [113], 

,
1, 2, ...,

( ) 0 1, 2, ...,

( ) 0 1, 2, ...,

Minimize f(x)
subject to

l x u m nm
CI x i pi
CE x j qj

≤ ≤ =
≥ =
= =

      (4.1) 

where f(x), CI(x) and CE(x) are nonlinear smooth continuous functions which have 

continuous second partial derivatives. The nonlinear problem has one quadratic objective 

function f(x), n variables x, p inequality constraints CI(x), q equality constraints CE(x). 

The notations l and u express the bound constraints on x. 

The basic concept of SQP is to convert the nonlinear problem in Equation (4.1) into a 

sequence of quadratic programming (QP) subproblems in Equation (4.2) where the 

objective function is quadratic and the constraints are linear. Thus, SQP is converted to 

an iterative method which solves a QP problem at each iteration. 

,
Minimize f(x)
subject to

Ax b
Cx d

=
≥

         (4.2) 

where f(x) is the quadratic objective function, and the matrices of A and C and the vectors 

of b and d compose the linear constraints. 

The solving procedure of SQP is available in many numerical optimization books such as 

[113] and [114], free third party software, such as SQPlab [115], and commercial 

mathematical tools, such as Matlab. 
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4.2 Development of State Estimation Algorithm 

4.2.1 Problem Formulation 

The state estimation for distribution networks can be used for different needs, such as 

voltage monitoring and control at each bus, load control and service restoration for 

individual loads, nodal pricing for aggregated loads, and fault location as suggested in 

this work. Considering an underground distribution network, the known quantities and 

preconditions can be summarized as follows. 

 Limited measurements, including three-phase voltages and three-phase currents of 

the core conductors recorded at the substation, and other sparse measurements placed 

in feeder transformers or important loads where voltage, current and/or power 

quantities can be measured. 

 Load information can be acquired from the analysis of load forecast, documented in 

the historical database, or analyzed from the load profiles. 

 Cable configuration and parameter would be stored in the database of utility 

companies or obtained by other ways mentioned in Section 3.3.1. The information 

includes the cable length, series impedance matrix, shunt admittance matrix and 

sheath bonding method. 

Owing to the availability of measurements and the uncertainty of load information, the 

problem of the distribution state estimation can be formulated as a constrained nonlinear 

optimization problem that incorporates the operating and loading constraints. The 

voltages at each node are firstly estimated by solving the optimization problem, and 

subsequently the loads are calculated based on the estimated voltages. 

4.2.2 State Estimation Algorithm 

The formulation of the state estimation is described as a constrained nonlinear 

programming given as, 

( ( )) 2Minimize W z f V
V

−              (4.3) 
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subject to, 

min maxV V Vn n n≤ ≤          (4.4) 

min max
n n nθ θ θ≤ ≤           (4.5) 

est iniP Pn nPLB PUBn niniPn

−≤ ≤         (4.6) 

est iniQ Qn nQLB QUB for each node nn niniQn

−≤ ≤      (4.7) 

In the objective function (4.3), the voltage vector V is the set of state variables. The 

vector z is the set of measurements. The function f(V) is the measurement function, where 

the estimated measurements are calculated from the state variables. The matrix W is the 

diagonal weighing matrix to rank different types of measurements with different 

emphasis. The notation 
2
 denotes the Euclidean norm to evaluate the fitness of 

weighted measurement residuals. 

In the voltage constraints (4.4) and (4.5), the magnitude of the state variable V at each 

node would be limited into a range from |V|min to |V|max. Similarly, the angle of the state 

variable V at each node would be limited into a range from θmin to θmax. 

In the loading constraints (4.6) and (4.7), the injected real power and reactive power Pest 

and Qest at each node are estimated by f(V). The initial real power and reactive power at 

each node Pini and Qini are obtained from the initial load information in advance. The 

relative error between them should be in a range bounded by [PLB, PUB] and [QLB, 

QUB]. 

4.2.2.1 Objective Function 

The objective of the formulated optimization problem is to minimize the weighted errors 

between the measurements (z) and the calculated results from the measurement function 
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(f(V)). Therefore, the estimated load flows can best fit measured load flows and adapt a 

balance between the initial load information and calculated load outcome. 

The measurement vector z denotes the measurements of the real power and reactive 

power injected into each node, including the real-time measurements, zero-injection 

measurements and load pseudo measurements. The real-time measurements are 

physically sampled from sensors placed in networks sparsely. Since there have no enough 

real-time measurements for the calculations of estimation, the load pseudo measurements 

are introduced, which consider the known load information as a type of measurement 

with less accuracy. The zero-injection measurements particularly represent the zero 

injected power at the zero injection nodes and can also be regarded as the real-time 

measurements or highly accurate pseudo measurements. There have twelve 

measurements for a three-phase node, including three measurements of real part of real 

power, three measurements of imaginary part of real power, three measurements of real 

part of reactive power, and three measurements of imaginary part of reactive power. 

Similarly, there have eight measurements for a two-phase node, and four for a single 

phase node. 

The measurement function f(V) is to calculate the injected power at each node based on 

voltages at all adjacent nodes. For example, the injected power at node n can be 

calculated as, 

( )S S f Vn nk nkk An k An
= = 

∈ ∈
            (4.8) 

where Sn is the injected load flow at node n, Snk is the power flowing out of node n to 

node k, and An is the set containing the nodes directly connected to node n. In the 

example shown in Figure 4.1, An ={m, s, t}. The function fnk(V) is to calculate the branch 

load flowing out of node n to node k based on the voltages at nodes n and k. 
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Figure 4.1: Example to calculate injected power. 

 

Since the electrical characteristics and structural configurations of underground cables are 

different with those of overhead lines, the more accurate calculation of power flow for a 

cable circuit should consider the cable capacitance, effect of sheath and sheath grounding 

method. Taking three single-conductor cables with sheaths grounded at the sending 

terminal as an example, the power flow is calculated as below, where the mathematical 

description and cable model have been explained in Section 3.3.1. 

*( ) .*f V S V Isr sr sc sc= =           (4.9) 

1( )I M NV RVsc sc rc
−= −           (4.10) 

where, 

M LZ Mcc
N IU N
R IU R

= + Δ
= + Δ
= + Δ

 

3

2
LM Z UY Zcn nn ncΔ = −  

2 2

2 2
L LN Z Y LZ T Z Ycc cc cn cn ncΔ = − +  

Vm  Vn

Vt

Snm
Sns

Snt

Load 
S P jQn nn = +  

Vs
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2

2
LR Z UYcn ncΔ =  

3 3
( )
2 4 4
L L LT U Y Y Z Y Y Z Ync nn nc cc nn nn nc= + +  

2 1( )
2

LU IU Y Znn nn
−= +  

where V is the voltage phasor vector, I is the current phasor vector, Z is the series 

impedance matrix, Y is the shunt admittance matrix, IU is the identity matrix, and L is the 

length of cable. The symbol .* denotes the elementwise multiplication. The lowercase 

subscript s means quantities at the sending terminal, similarly, r at the receiving terminal, 

c for core conductor and n for sheath. Taking Zcn as an example, it indicates the mutual 

impedance matrix per unit length between three cores and three sheaths, and so forth. 

It is clear in Equation (4.10) that the power flow calculation for cables differs from the 

classical equation for lines in the fact that there have three correction factors, ΔM, ΔN and 

ΔR, which are caused by the particular characteristics and configurations of cables. 

The matrix W in the objective function is the diagonal weighing matrix, which is 

determined by the accuracy of corresponding measurements. For example, the real-time 

measurements are most accurate and credible, so the largest weight values would be 

assigned to the residuals of them. The notation 
2
 denotes the Euclidean norm, which is 

defined as, 

2 2 2...1 22
x x x xn= + + +           (4.11) 

where the vector x={x1, x2, …, xn}. 

4.2.2.2 Voltage Constraints 

The voltage at each node will maintain in a limited range around the nominal rating in the 

normal operating condition. Therefore, this limited range can be used as the operating 

constraints in Equations (4.4) and (4.5) to restrict the search region. Normally, this range 
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can be uniformly set within the ±3~5% of the voltages measured at the substation. The 

values of real part and imaginary part can also be used as constraints rather than the 

magnitude and angle. The state variables at each node contain six real variables for a 

three-phase node, four for a two-phase node or two for a single phase node. 

4.2.2.3 Loading Constraints 

As mentioned in the above subsection, the known load information is considered as the 

load pseudo measurements. However, this initial load information is obtained from the 

load forecast, historical database or load profile, so it cannot accurately represent the true 

load flow, which may be in a range around the initial load values. This range can be set as 

the constraints in Equations (4.6) and (4.7) to further narrow down the search region, 

which can also be expressed as, 

.*est ini iniP P PB Pn n n n= +                (4.12) 

PLB PB PUBn n n≤ ≤          (4.13) 

.*est ini iniQ Q QB Qn n n n= +         (4.14) 

QLB QB QUB for each node nn n n≤ ≤       (4.15) 

where estPn  and estQn  express the injected real and reactive power calculated by 

Equations (4.8)-(4.10), PBn and QBn are the load variation factors ranging from PLBn and 

QLBn  to PUBn and QUBn respectively. 

Hitherto, the state estimation problem formulated in Equation (4.3) is in fact similar to 

the general nonlinear optimization problem described in Equation (4.1), which can be 

solved by the sequential quadratic programming methods. 

4.3 General Location Procedure Combined with State 
Estimation 

The general location procedure combined with the state estimation is described in this 

section, which can be divided into four steps, i.e. prefault load estimation by DSE, 



162 

 

estimation of voltages and currents during fault, determination of faulty section, and fault 

location. 

In order to explain each step more clearly, the procedure will be processed on a 31-node 

radial unbalanced underground distribution network shown in Figure 4.2. Besides, the 

simulation will also be carried out on this test system. 

 

Figure 4.2: A radial unbalanced underground distribution network. 
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B, or C near a cable section expresses the phase of that lateral, and the section is a three-

phase feeder or lateral if there is no character near that section. The branch number is 

equal to the receiving bus number minus one. 

4.3.1 Prefault Load Estimation by DSE 

The loads prior to the inception of a fault should be estimated in order to provide the real-

time load information for the fault location algorithm. This estimation process can be 

regularly carried out in DMS, like every fifteen or thirty minutes. The results include the 

estimated voltage at each node. Also the following quantities can be calculated by 

Equations (4.8)-(4.10): 

 Branch current of each branch. 

 Branch real and reactive powers flowing in and out of a branch. 

 Injected load at each node. 

 Seen impedance behind each circuit section. 

First, the initial load information can be acquired from the analysis of load forecast, 

documented in the historical database, or analyzed from the load profiles. The initial 

information can be used for two purposes: 

 Composing the pseudo measurements. 

 Calculating the voltage, Vprofile, at each node related to this specific load profile. The 

applied algorithm is a section-by-section estimation algorithm combined with the 

backward/forward sweep algorithm (BFSA) [58], which will be introduced in 

Section 4.3.2.1. 

Then, the state variables should be determined, including six real variables for each three-

phase node, four for each two-phase node or two for each single phase node. For example, 

in the system in Figure 4.2, the total number of state variables is (24-1)×6+7×2=152. It 

should be mentioned that the voltage at the substation bus is not counted as the state 

variable. 
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Next, the initial values of state variables are calculated by scaling as below. 

_
_ _ 0

_ 0

Vprofile i
V Vinitial i initial Vprofile

=       (4.16) 

where Vprofile_i is the voltage at bus i estimated by the initial load profile. Vprofile_0 is the 

voltage at the substation, which should be accurate for the corresponding load profile. 

Vinitial_i  is the initial voltage at bus i used for solving SE. Vinitial_0  is the voltage at the 

substation, which is measured in real-time. 

The voltage constraints are easily to be set. Normally, the constraint at each node can be 

uniformly set within the ±3% of the Vinitial_i so that the voltage constraints can be 

rewritten as, 

0.97 1.03_ _V V Viinitial i initial i≤ ≤        (4.17) 

0.97 1.03_ _V V Vinitial i i initial i∠ ≤ ∠ ≤ ∠       (4.18) 

where Vi is the voltage at bus i, and is regarded as the state variable. 

The initial loads are chosen to close to the true loads; however the real biases between 

them are unknown. The loading constraints, PLBn, QLBn, PUBn and QUBn, can be 

uniformly set as the constants. That is, the lower boundaries, PLBn and QLBn, are set to a 

constant for all nodes, and the upper boundaries, PUBn and QUBn, are also set to a 

constant for all nodes. The values of constants depend on the accuracy of the initial load 

information. For example, if the initial load information is obtained from the load 

forecast, which is supposed to be more accurate, the upper constant can be set to 0.05 and 

the lower one to -0.05. And if the load is documented from a set of incomplete 

information, the upper constant can be set to a value in the range from 0.05 to 0.2 and the 

lower one could have the same value with the negative sign. 
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4.3.2 Estimation of Quantities during Fault 

In order to apply the proposed location algorithm upon the occurrence of a fault, the 

following quantities have to be estimated: 

 Nodal voltage at the sending terminal of the faulty section. 

 Branch current of the faulty section at the sending terminal. 

 Seen impedance behind the receiving terminal of the faulty section. 

During a fault, the faulty section is first unknown, so every section would be assumed as 

the faulty section. The related voltage, current and seen impedance should be estimated 

for each cable section. 

4.3.2.1 Estimation of Voltages and Currents 

First, the loads are modeled as the constant impedance which would keep unchanged 

before and during the fault. The general load model will be discussed in Section 4.4. 

Therefore, the available information includes the voltages and currents measured at the 

substation and the load impedances at each injection node estimated by the state 

estimation algorithm. 

A section-by-section estimation algorithm combined with the backward/forward sweep 

algorithm is proposed to estimate the nodal voltage and branch current for each line 

section. Before the explanation of the proposed estimation algorithm, some sub-

algorithms (SA) are introduced first. For a general cable section between two nodes 

shown in Figure 4.3, the sub-algorithms can be categorized in Table 4.1.  

 

Figure 4.3: General circuit section to categorize sub-algorithms. 

Vsc Vrc  

S Irs rc

Load 
Sr  or Zr  

Load 
Ss  or Zs  

I Ssc sr
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In the figure, Vsc and Isc are the voltages and currents of core conductors at the sending 

terminal. Vrc and Irc are the voltages and currents of core conductors at the receiving 

terminal. Ssr is the power flowing from node s to r, and Srs is the power flowing from 

node r to s. Ss and Zs are the injected power and load impedance at node s. Sr and Zr are 

the injected power and load impedance at node r. Besides, Vrn and Isn will be used, which 

represent the sheath voltage at the receiving terminal and sheath current at the sending 

terminal. 

Table 4.1: Category of Sub-Algorithms 

SA Known 
Variables 

Main variables 
to be calculated Type 

1 Vsc, Isc Vrc, Irc Analytical 
2 Vsc, Vrc Ssr, Srs Analytical 
3 Vrc, Irc Vsc, Isc Analytical  
4 Vsc, Zr Vrc, Ssr Iterative 
5 Vsc, Ssr Vrc, Srs Analytical 
6 Vrc, Srs Vsc, Ssr Analytical 

 

The calculation details of each sub-algorithm are explained below. It should be 

mentioned that the cable capacitance, sheath bonding method (SPBS in this case) and 

effect of sheath are considered in the calculations. 

 SA1: Vsc, Isc → Vrc, Irc 

1( )I D EV FIsn sc sc
−= +        (4.19) 

20 0

V Z Z I Y YV Vrc cc cn sc cc cnsc scLL
V Z Z I Y Yrn nc nn sn nc nn

           
           
                      

= − −    (4.20) 

2

I I Y Y V Vrc sc cc cn sc rcL
I I Y Y V Vrn sn nc nn sn rn

       
       
              

+
= −

+
     (4.21) 



167 

 

where, 

2 2

2 2
L LD IU Y Z Y Znc cn nn nn= + +  

2 2
(2 )

2 2 2
2 2

( )
2 2 2

L L LE Y IU Z Y Z Ync cc cc cn nc

L L LY Z Y Z Ynn nc cc nn nc

= + +

+ +
 

2 2

2 2
L LF Y Z Y Znc cc nn nc= − −  

 SA2: Vsc, Vrc → Ssr, Srs 

1( )I X WV UVsc sc rc
−= +        (4.22) 

1( )I D EV FIsn sc sc
−= +        (4.23) 

20 0

V Z Z I Y YV Vrc cc cn sc cc cnsc scLL
V Z Z I Y Yrn nc nn sn nc nn

           
           
                      

= − −    (4.24) 

2

I I Y Y V Vrc sc cc cn sc rcL
I I Y Y V Vrn sn nc nn sn rn

       
       
              

+
= −

+
     (4.25) 

*S V Isr sc sc=          (4.26) 

*S V Irs rc rc=          (4.27) 

where, 

3

2
L

X LZ Z RY Zcc cn nn nc= −  



168 

 

2 2

2 2
L L

W IU Z Y LZ M Z Ycc cc cn cn nc= + − +  

2

2
L

U IU Z RYcn nc= − −  

3 3

2 4 4
L L L

S R Y Y Z Y Y Z Ync nn nc cc nn nn nc

 
 = + +
 
 

 

12

2
L

R IU Y Znn nn

− 
 = +
 
 

 

2 2

2 2
L LD IU Y Z Y Znc cn nn nn= + +  

2 2
(2 )

2 2 2
2 2

( )
2 2 2

L L LE Y IU Z Y Z Ync cc cc cn nc

L L LY Z Y Z Ynn nc cc nn nc

= + +

+ +
 

2 2

2 2
L LF Y Z Y Znc cc nn nc= − −  

 SA3: Vrc, Irc→ Vsc, Isc 

1( )V D EV FIrn rc rc
−= +        (4.28) 

20 0

V Z Z Y Y VV Irc cc cn cc cn rcsc rc LL
V Z Z Y Y Vrn nc nn nc nn rn

           
           
                      

= + +    (4.29) 

2

I I Y Y V Vsc rc cc cn sc rcL
I I Y Y Vsn rn nc nn rn

       
       
              

+
= +      (4.30) 

where, 
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2 2

2 2
L LD IU Z Y Z Ync cn nn nn= + +  

2 2

2 2
L LE Z Y Z Ync cc nn nc= − −  

F LZnc= −  

 SA4: Vsc, Zr→ Vrc, Ssr 

This sub-algorithm is an iterative algorithm which is similar to the 

backward/forward sweep algorithm, as shown in Figure 4.4 

 

Figure 4.4: Flowchart of SA4. 

 

Assume Vrc=Vsc 

| Vsc -Vsc-est | < ε ? 
No

Yes 

Irc=Vrc/Zr 

Calculate Vsc-est, Isc 

by sub-algorithm 3 

Calculate Vrc 

by sub-algorithm 1 

Irc=Vrc/Zr 

Calculate Ssr 

by sub-algorithm 2 
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 SA5: Vsc, Ssr→ Vrc, Srs 

*
SsrIsc Vsc

 
 =
 
 

         (4.31) 

1( )I D EV FIsn sc sc
−= +        (4.32) 

20 0

V Z Z I Y YV Vrc cc cn sc cc cnsc scLL
V Z Z I Y Yrn nc nn sn nc nn

           
           
                      

= − −    (4.33) 

2

I I Y Y V Vrc sc cc cn sc rcL
I I Y Y V Vrn sn nc nn sn rn

       
       
              

+
= −

+
     (4.34) 

where, 

2 2

2 2
L LD IU Y Z Y Znc cn nn nn= + +  

2 2
(2 )

2 2 2
2 2

( )
2 2 2

L L LE Y IU Z Y Z Ync cc cc cn nc

L L LY Z Y Z Ynn nc cc nn nc

= + +

+ +
 

2 2

2 2
L LF Y Z Y Znc cc nn nc= − −  

 SA6: Vrc, Srs→ Vsc, Ssr 

*
SrsIrc Vrc

 
 =
 
 

         (4.35) 

1( )V D EV FIrn rc rc
−= +        (4.36) 
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20 0

V Z Z Y Y VV Irc cc cn cc cn rcsc rc LL
V Z Z Y Y Vrn nc nn nc nn rn

           
           
                      

= + +    (4.37) 

2

I I Y Y V Vsc rc cc cn sc rcL
I I Y Y Vsn rn nc nn rn

       
       
              

+
= +      (4.38) 

*S V Isr sc sc=          (4.39) 

where, 

2 2

2 2
L LD IU Z Y Z Ync cn nn nn= + +  

2 2

2 2
L LE Z Y Z Ync cc nn nc= − −  

F LZnc= −  

Basically, the voltages and currents are estimated section by section starting from the 

substation. If there are laterals or tapped loads at one certain bus, four situations are 

involved and summarized as below. Assuming Vx and Ixr are known from the previous 

estimation, and the quantities at node x+1 need to be estimated. 

 The bus x has no lateral and tapped load, as shown in Figure 4.5.  

 

Figure 4.5: Node with no lateral and tapped load. 

 

Since Ixs=Ixr, Vx+1 and I(x+1)r can be estimated directly by SA1. 

 The bus x has the tapped load but with no lateral, as shown in Figure 4.6.  

1Vx−  Branch x-1                       Branch x 

( 1)I x r+  Ixr

Vx 1Vx+  

Ixs
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Figure 4.6: Node with tapped load and with no lateral. 

 

Since Ixs=Ixr-Vx/Zx, then Vx+1 and I(x+1)r can be estimated directly by SA1. 

 The bus x has the lateral but with no tapped load, as shown in Figure 4.7.  

 

Figure 4.7: Node with lateral and with no tapped load. 

 

First, Iys is estimated by the backward/forward sweep algorithm where SA1-SA6 

may be applied, then Ixs=Ixr-Iys, Vx+1 and I(x+1)r can be estimated directly by SA1. 

 The bus x has both tapped load and lateral, as shown in Figure 4.8.  

 

Figure 4.8: Node with lateral and tapped load. 
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I yr

1Vx−  Branch x-1                      Branch x 

( 1)I x r+  Ixr

Vx 1Vx+  

Ixs
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First, Iys is estimated by the backward/forward sweep algorithm where SA1-SA6 

may be applied, then Ixs=Ixr-Vx/Zx -Iys, Vx+1 and I(x+1)r can be estimated directly by 

SA1. 

To explain the estimation algorithm more clearly, the estimation details for the system in 

Figure 4.2 are illustrated in Table 4.2. 

In the table, Vx means the voltage at bus x. Ixs denotes the current flowing in branch x and 

Ixr denotes the current flowing out of branch x. The subscripts of apparent power S have 

the same denotation as the one for current I. Zx is the injected load impedance at node x. 

The quantities with the bold font are the quantities needed for the location algorithm. 

4.3.2.2 Estimation of Seen Impedance 

The seen impedance behind the receiving terminal of the faulty section should be 

estimated as well for the purpose of the application of the location algorithm. The seen 

impedance estimated by the state estimation can be used here since the seen impedance is 

unchanged after the occurrence of fault, which is proven below. 

Assuming there is a fault in the cable section between node x-1 and x, the cable section 

between node x and x+1 is behind the faulty section, as shown in Figure 4.9. 

 

Figure 4.9: Calculation of seen impedance. 

Load 
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( 1)
AV x c+( 1)

AV x c−  

( 1)
AI x n−  

( 1)
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A AV Ixc xc

AIxn

( 1)
AI x c−  ( 1)
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Sheath 
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_Zseen load



174 

 

Table 4.2: Estimation of Nodal Voltages and Branch Currents 

Faulty 
Branch No. 

Known 
Variables 

Variables 
to be calculated 

Algorithm or 
Equations 

1 V1, I1s V2, I1r (I2s) SA1 
2 V2, I2s V3, I2r SA1 
3 V3, I2r, Z3 I3s, V4, I3r SA1 
 V4, Z31 V31, S30s→I30s SA4 on 30 

4 V4, I3r, I30s I4s, V5, I4r (I5s) SA1 
5 V5, I5s V6, I5r (I6s) SA1 
6 V6, I6s V7, I6r SA1 

 V7, Z29, Z30 V28, V29, V30, I27s 
BFSA on 27 28 29,  

SA3, SA1 
7 V7, I6r, I27s I7s, V8, I7r SA1 
 V8, Z27 V27, S26s→I26s SA4 on 26 

8 V8, I7r, Z8, I26s I8s, V9, I8r SA1 
9 V9, I8r, Z9 I9s, V10, I9r SA1 

10 V10, I9r, Z10 I10s, V11, I10r SA1 
 V11, Z26 V26, S25s→I25s SA4 on 25 

11 V11, I10r, I25s I11s, V12, I11r SA1 

 V12, Z24 I22s 
BFSA on 22-23,  

SA6 SA5 
12 V12, I11r, I22s I12s, V13, I12r SA1 

 V13, Z25 V25, S24s→I24s SA4 on 24 
13 V13, I12r, I24s, Z13 I13s, V14, I13r SA1 

 V14, Z16, Z17, Z18 I14s 
BFSA on 14-17,  

SA3 SA1 
18 V14, I13r, I14s, Z14 I18s, V19, I18r SA1 
19 V19, I18r, Z19 I19s, V20, I19r SA1 

 V20, Z22 V22, S21s→I21s SA4 on 21 
20 I19r, I21s, Z20 I20s SA1 

 V20, Z21 V21, S20s→I20s SA4 on 20 
21 I19r, I20s, Z20 I21s SA1 

 V14, Z19, Z20, Z21, 
Z22 I18s 

BFSA on 18-21,  
SA3 SA1 SA4 

14 V14, I13r, I18s, Z14 I14s, V15, I14r (I15s) SA1 
15 V15, I15s V16, I15r SA1 
16 V16, I15r Z16 I16s, V17, I16r SA1 
17 V17, I16r Z17 I17s, V18 SA1 

 V12, All Z 
between 13-22 I12s 

BFSA on 13-22,  
SA3 SA1 SA4 

22 23 V12, I11r, I12s I22s, V23, I22r (I23s) SA1 
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The load impedance Zload is estimated by the prefault quantities. The seen impedance 

Zseen_load is required for locating the fault in the faulty section, which can be calculated by 

Equations (4.40)-(4.42). 

( 1)

20 0( 1)

V Z Z I Y YV Vx c cc cn xc cc cnxc xcLL
V Z Z I Y Ync nn xn nc nnx n

                                             

+
= − −

+
  (4.40) 

( 1)( 1)
20 ( 1)

V VxcI I Y Y x cxc cc cnx c L
I Y Y Vxn nc nn x n

                            

+++ = −
+

    (4.41) 

_

Z M MV loadxc M GZseen load I M Z Mxc loadF N

−
= = −      (4.42) 

where, 

12

2
L

M IU Y ZA nn nn

− 
 = − −
 
 

 

3 3

2 4 4
L L L

M M Y Y Z Y Y Z YB A nc nn nc cc nn nn nc

 
 = − − −
 
 

 

2
LM M YncC A= −  

2

2
LM M Y Znn ncD A=  

( ) 1
M IU LZ ME cn C

−
= +  
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2 2

2 2
L L

M M IU Z Y Z Y LZ MF E cc cc cn nc cn B

 
 = + + −
 
 

 

( )M M LZ LZ MF E cc cn D= − −  

12 2

2 2
L L

M IU Z Y Z YH nc cn nn nn

− 
 = + +
 
 

 

2 2

2 2
L L

M M Z Y Z YJ H nc cc nn nc

 
 = − −
 
 

 

M LM ZncK H= −  

1

2
L

M IU Y ML cn K

− = + 
 

 

2 2
L L

M M IU Y M Y M MM L cc G cn J G
 = − − 
 

 

2 2 2
L L L

M M Y Y M Y M MN L cc cc F cn J F
 = − − − 
 

 

In Equation (4.42), MM, MG, MN, and MF are constants, Zload are estimated by the prefault 

voltage and current. Therefore, if the load is modeled as the constant impedance, three 

facts can be implied,  

 The seen impedance behind the faulty section depends on the load impedance and 

circuit parameters and is independent of voltage and current, that is, the magnitudes 

of voltage and current have no impact on this seen impedance. 

 The seen impedance can be calculated by the prefault voltages and currents obtained 

by the SE analysis. 
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 All downstream feeders, laterals and loads behind the faulty section can be lumped 

as the seen impedance by this way. 

4.3.3 Determination of Faulty Section 

So far, the voltage and current at the sending terminal of each section, and the seen 

impedance behind each section have been estimated. The proposed location algorithm 

can be applied for each cable section, starting from the source. 

If the location calculation is processed on a healthy cable, one or more of the following 

phenomena could be observed: 

 No line-circle crossing point when estimating the current of the faulty sheath; 

 Multiple zigzags in the curves of the pinpoint criteria; 

 Singular matrix in the process of calculations. 

Therefore, the true faulty section is identified as the section with the definite line-circle 

crossing points, smooth curves of the pinpoint criteria, and well-conditioned matrix in 

calculation. 

Based on the test system in Figure 4.2, three examples with CSGF are given to show the 

process of determination of the faulty section. 

The first example shows a fault occurs at the branch 1 between node 1 and 2. As 

illustrated in Figure 4.10, there exists the line crossing circle zone along the cable, the 

pinpoint criteria are smooth, and the minimal point can be clearly found in the curve of 

the pinpoint criterion. However, these phenomena cannot be observed in Figure 4.11 

where the location calculation is processed in the healthy branch 2. Other healthy 

branches have the similar problem. Therefore, the faulty section can be identified as the 

branch 1. 
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Figure 4.10: Calculation processed on branch 1 (CSGF at branch 1). 

 

 

Figure 4.11: Calculation processed on branch 2 (CSGF at branch 1). 
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The second example shows a fault occurs at the branch 14 between node 14 and 15. The 

adjacent branches include the branch 13 between node 13 and 14, branch 15 between 

node 15 and 16, and branch 18 between node 14 and 19. As illustrated in Figure 4.12, 

there exists the line crossing circle zone along the cable, the pinpoint criteria are smooth, 

and the minimal point can be clearly found in the curve of the pinpoint criterion. 

However, these phenomena cannot be observed in Figure 4.13-Figure 4.15, where the 

location calculation is processed in the adjacent healthy branches. Other healthy branches 

have the similar problem. Therefore, the faulty section can be identified as the branch 14. 

 

Figure 4.12: Calculation processed on branch 14 (CSGF at branch 14). 
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Figure 4.13: Calculation processed on branch 13 (CSGF at branch 14). 

 

 

Figure 4.14: Calculation processed on branch 15 (CSGF at branch 14). 
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Figure 4.15: Calculation processed on branch 18 (CSGF at branch 14). 

 

The third example shows a fault occurs at the branch 21 between node 20 and 22. The 

adjacent branches include the branch 19 between node 19 and 20, and branch 20 between 

node 20 and 21. As illustrated in Figure 4.16, there exists the line crossing circle zone 

along the cable, the pinpoint criteria are smooth, and the minimal point can be clearly 

found in the curve of the pinpoint criterion. However, these phenomena cannot be 

observed in Figure 4.17 and Figure 4.18, where the location calculation is processed in 

the adjacent healthy branches. Other healthy branches have the similar problem. 

Therefore, the faulty section can be identified as the branch 21. 
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Figure 4.16: Calculation processed on branch 21 (CSGF at branch 21). 

 

 

Figure 4.17: Calculation processed on branch 19 (CSGF at branch 21). 
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Figure 4.18: Calculation processed on branch 20 (CSGF at branch 21). 

 

The same phenomena can also be observed in the calculation process for the cases of 

CSF. However, since the calculation of CG has no such crossing points, the faulty section 

can be determined by the uniform behavior of two criteria. Similarly, three examples are 

described in Figure 4.19 and Figure 4.20 for a CGF at branch 1, Figure 4.21-Figure 4.24 

for a CGF at branch 14 and Figure 4.25-Figure 4.27 for a CGF at branch 21. 

1.6 

2 

2.4 

0 0.5 1 1.5 2 
0 

10 

20 

30 

Pinpoint Criterion 1 

< 10 Line crossing circle 
> 10 Line not crossing circle 

×10-6 

Cable Length (km) 



184 

 

 

Figure 4.19: Calculation processed on branch 1 (CGF at branch 1). 

 

 

Figure 4.20: Calculation processed on branch 2 (CGF at branch 1). 
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Figure 4.21: Calculation processed on branch 14 (CGF at branch 14). 

 

 

Figure 4.22: Calculation processed on branch 13 (CGF at branch 14). 
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Figure 4.23: Calculation processed on branch 15 (CGF at branch 14). 

 

 

Figure 4.24: Calculation processed on branch 18 (CGF at branch 14). 

0 

2 

4 

6 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
1 

2 

3 

4 

5 

×10-4 

×10-4 

Cable Length (km) 

Pinpoint Criterion 1 

Pinpoint Criterion 2 

9.52

9.56 

9.6 

0 0.5 1 1.5 2 
2.105 

2.115 

2.125 

×10-6 

×10-5 

Pinpoint Criterion 2 

Pinpoint Criterion 1 

Cable Length (km) 



187 

 

 

 

Figure 4.25: Calculation processed on branch 21 (CGF at branch 21). 

 

 

Figure 4.26: Calculation processed on branch 19 (CGF at branch 21). 
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Figure 4.27: Calculation processed on branch 20 (CGF at branch 21). 
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 Step 1: The state estimation problem is regularly solved by SQP methods in DMS, 

and the voltage at each node is estimated. Then the branch current of each branch, 

injected load at each node and seen impedance behind each circuit are calculated. 

This step is explained in Section 4.3.1. 

 Step 2: Upon the occurrence of a fault, the voltages and currents at the sending 

terminal of each circuit section are estimated with the assumption that the fault may 

occur at this certain section. The employed quantities are the real measurements 

during the fault, and estimated load impedance at each node obtained in Step 1. This 

step is explained in Section 4.3.2. 

 Step 3: The faulty section has been assumed, the voltage and current have been 

estimated in Step 2, and the seen impedance has been estimated in Step1. The 

proposed location algorithm in Chapter 3 is applied for each cable section, starting 

from the source. The true faulty section would be selected. This step is explained in 

Section 4.3.3. 

 Step 4: The location algorithm can be applied for more samples in the determined 

faulty section as mentioned in Section 4.3.4. 

With respect to the three emerging issues mentioned in Section 4.1.3, the first issue is 

resolved in Step 2, the second one in Step 1 and the third one in Step 3. 

4.4 Application of Static Response Load Model 

The above algorithm is based on the assumption that the load model is the constant 

impedance. Similarly to Section 3.9.2, the effect of the static response type models will 

be investigated. This load model is introduced in Section 1.3.3 and [39], and given as, 

2 2

0 0

n np qV V
Y G jBr rV V

− −
= +       (4.43) 

The Gr and Br can be estimated by the prefault voltage and current obtained from the 

state estimation. 
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The voltage V in Equation (4.43) is the voltage at the load terminal during fault, and its 

magnitude can be approximately estimated by, 

preVlL D pre preV V V Vf s rL preVr

 −  = − −  
  

     (4.44) 

where D is the fault distance, L is the cable length. pre
sV  is the prefault voltage at the 

sending terminal, pre
rV  is the prefault voltage at the receiving terminal, pre

lV  is the 

prefault voltage at the load point, all of them are estimated by the state estimation 

method. Vf is the fault voltage calculated in the location process. 

Since the load impedance is changed during the fault, the seen impedance calculated by 

the prefault quantities cannot be used. However, it can be estimated by Equation (4.42) 

during the fault. Due to the large computation in such situation, the constant parameters 

used in the calculation can be preprocessed and stored in the database. 

4.5 Simulations 

4.5.1 Test System and Cases 

A radial underground distribution network shown in Figure 4.2 is used to examine the 

state estimation algorithm and fault location algorithm. The test system has the following 

aspects: 

 31 buses. 

 23 three-phase feeders or laterals and 7 single-phase laterals. 

 9 three-phase, 2 double-phase and 9 single-phase loads. 

 All circuits are composed of underground cables with sheaths grounded at the 

sending terminal of circuit sections. 
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 Only measurements of the voltage and current are available at the substation, i.e. bus 

1. For other distribution systems, there may have more measurement points sparsely 

placed in the system. 

The details of the test system are listed in Table 4.3. 

Table 4.3: Details of Test System 

Branch No. Starting 
Node 

Ending 
Node Phase Length 

(km) 
1 1 2 ABC 2 
2 2 3 ABC 2.1 
3 3 4 ABC 9.8237 
4 4 5 ABC 11.43 
5 5 6 ABC 9.06 
6 6 7 ABC 2.3 
7 7 8 ABC 3.112 
8 8 9 ABC 2 
9 9 10 ABC 6.23 

10 10 11 ABC 2.2 
11 11 12 ABC 11.22 
12 12 13 ABC 2 
13 13 14 ABC 2.2 
14 14 15 ABC 2.3 
15 15 16 ABC 2 
16 16 17 ABC 2.1 
17 17 18 ABC 2.2 
18 14 19 ABC 2.3 
19 19 20 ABC 2 
20 20 21 ABC 2.1 
21 20 22 ABC 2.2 
22 12 23 ABC 3 
23 23 24 ABC 5 
24 13 25 A 2.1 
25 11 26 B 7.11 
26 8 27 B 2.1 
27 7 28 A 2.3 
28 28 29 A 14.676 
29 29 30 A 4.188 
30 4 31 B 2.2 
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In order to apply the proposed state estimation technique, a set of initial load patterns 

(LP) should be assigned as the load pseudo measurements. Therefore, seven load patterns 

given below are introduced by uniformly or randomly perturbing the true loads within a 

range. 

 LP1: higher within 4~6%. 

 LP2: higher within 0~5%. 

 LP3: higher within 5~10%. 

 LP4: higher within 5~15%. 

 LP5: within -5~5%. 

 LP6: within -10~10%. 

 LP7: within -20~20%. 

The patterns LP1-LP4 demonstrate the uniform load profiles, which have a uniformly 

positive bias regarding to the true loads. The patterns LP5-LP7 represent the generic load 

profiles. 

The fault cases involve the following variation of parameters and conditions: 

 Faults occur at each three-phase cable. 

 Fault distances are fixed at 25%, 50% and 75% length of each cable section. 

 Fault resistances are fixed as 4 ohm. 

 Three fault scenarios are respectively involved for each fault point. 

 The location algorithm is processed for each load pattern. 
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4.5.2 Performance Indices 

The fault location performance is evaluated by the relative location error defined in [35] 

as, 

100%
Estimated Distance-Exact Distance

error =
Length of  Faulty Line

×    (4.45) 

The functionality of the state estimation algorithm is evaluated by three performance 

indices. 

 Average voltage magnitude relative error (AVM) 

, ,1 , , ,
1 ,

k kN V Vb i est i true
AVM(%) 100 k A B C

N ki Vb i true

−
= × =

=
   (4.46) 

where Nb is the amount of buses, ,
kVi est  is the estimated voltage of phase k at bus i, 

similarly, ,
kVi ture  is the true voltage of phase k at bus i.  

 Average weighted real power load relative error (AWP) 

, , , , ,
1 ,

k kN P Pb i est i truekAWP(%) w 100 k A B Ci ki Pi ture

 
 
 
 
 

−
= × =

=
   (4.47) 

where ,
kPi est  is the estimated real power of phase k injected into node i, ,

kPi ture  is the 

true real power of phase k injected into node i. kwi  is the factor to weigh the ratio 

value of phase k at bus i and given as, 

, , , ,

,1

kPi truekw k A B Ci N kb Pj truej

= =
 =

      (4.48) 

 Average weighted reactive power load relative error (AWQ) 
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, , , , ,
1 ,

k kN Q Qb i est i truekAWQ(%) w 100 k A B Ci ki Qi ture

 
 
 
 
 

−
= × =

=
   (4.49) 

where ,
kQi est  is the estimated reactive power of phase k injected into node i, ,

kQi ture  

is the true reactive power of phase k injected into node i. kwi  is given as 

, , , ,

,1

kQi truekw k A B Ci N kb Q j truej

= =
 =

      (4.50) 

4.5.3 State Estimation Results 

The performance indices for the seven initial load patterns are listed in Table 4.4. The 

seven load patterns are applied into the state estimation algorithm and the corresponding 

SQP problem is solved by the optimization function in Matlab. Accordingly, the 

performance indices for the estimated loads are shown in Table 4.5. 

Table 4.4: Performance Indices for Initial Loads 

Error (%) Load 
Pattern Phase 

AVM AWP AWQ 
A 0.540 3.783 3.528 
B 0.270 4.218 4.257 LP1: 

4~6% 
C 0.319 4.297 4.136 
A 0.348 2.238 2.885 
B 0.073 3.140 2.290 LP2: 

0~5% 
C 0.312 2.739 2.264 
A 0.870 6.243 5.162 
B 0.426 7.715 5.904 LP3: 

5~10% 
C 0.430 7.269 4.949 
A 1.057 5.617 9.573 
B 0.530 6.631 9.475 LP4: 

5~15% 
C 0.646 5.950 9.990 
A 0.406 2.621 2.347 
B 0.207 2.344 4.014 LP5: 

-5~5% 
C 0.289 2.277 2.467 
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Table 4.4: Performance Indices for Initial Loads (Continued) 

Error (%) Load 
Pattern Phase 

AVM AWP AWQ 
A 0.685 5.143 4.782 
B 0.290 5.650 6.433 LP6: 

-10~10% 
C 0.688 4.390 6.375 
A 0.214 11.493 10.087 
B 0.934 10.121 8.452 LP7: 

-20~20% 
C 0.879 11.644 6.097 

 

Table 4.5: Performance Indices for Estimated Loads 

Error (%) Load 
Pattern Phase 

AVM AWP AWQ 
A 0.025 0.667 0.814 
B 0.013 0.629 1.144 LP1: 

4~6% 
C 0.017 0.977 0.629 
A 0.043 1.455 1.850 
B 0.017 1.557 1.528 LP2: 

0~5% 
C 0.044 1.728 1.144 
A 0.011 1.571 1.762 
B 0.012 1.441 1.559 LP3: 

5~10% 
C 0.016 1.325 1.241 
A 0.069 1.504 2.576 
B 0.036 1.656 2.371 LP4: 

5~15% 
C 0.022 1.333 2.318 
A 0.018 2.576 2.400 
B 0.007 1.846 2.760 LP5: 

-5~5% 
C 0.014 1.586 2.042 
A 0.077 4.159 3.699 
B 0.028 2.889 5.865 LP6: 

-10~10% 
C 0.066 5.253 4.064 
A 0.051 8.087 9.937 
B 0.032 10.230 7.337 LP7: 

-20~20% 
C 0.049 8.244 6.619 

 

The improvement can be evaluated by the factor of Percent Reduction in Error (PRE), 

which is defined in Equation (4.51). The results are listed in Table 4.6. 
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100%
Initial Error New Error

PRE =
Initial Error

− ×      (4.51) 

Table 4.6: Percent Reduction in Error - Load Estimation 

PRE (%) Load 
Pattern AVM AWP AWQ 
LP1 93.8 81.5 78.3 
LP2 85.8 41.6 39.2 
LP3 97.7 79.6 71.5 
LP4 94.3 75.3 75.0 
LP5 95.7 17.0 18.4 
LP6 89.7 19.0 22.5 
LP7 93.5 20.1 0.03 

 

It can be observed that the voltages can be accurately estimated in all seven patterns. The 

estimation of real and reactive powers has the large improvement, especially for the 

uniform load profiles. 

4.5.4 Fault Location Results 

The average of absolute avlues of location errors of the simulation results are concluded 

in Table 4.7. 
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Table 4.7: Average of Absolute Values of Location Errors – Individual Load Pattern 

Load 
Pattern 

Core-Sheath- 
Ground Core-Ground Core-Sheath Average 

LP1 2.48% 
66.2m 

1.43% 
35.8m 

1.94% 
52.7m 

1.95% 
51.6m 

LP2 3.12% 
95.7m 

0.54% 
13.0m 

3.01% 
82.6m 

2.22% 
63.8m 

LP3 2.70% 
79.8m 

1.63% 
41.1m 

2.80% 
73.9m 

2.38% 
64.9m 

LP4 2.50% 
76.7m 

1.70% 
42.8m 

2.95% 
83.3m 

2.39% 
67.6m 

LP5 3.33% 
112.7m 

1.81% 
45.5m 

2.41% 
68.4m 

2.52% 
75.5m 

LP6 4.00% 
135.1m 

2.10% 
50.6m 

2.28% 
62.9m 

2.80% 
82.9m 

LP7 4.06% 
137.4m 

2.82% 
66.5m 

3.10% 
90.9m 

3.33% 
98.3m 

Average 3.17% 
100.5m 

1.72% 
42.2m 

2.64% 
73.5m 

2.51% 
72.1m 

 

The average relative error is 2.51% and the average absolute error is 72.1 meter. The 

generic load patterns LP5-LP7 have the relatively large error. Overall, the location errors 

are relatively larger than those in Section 3.10.2, but still in the acceptable range. 

The distribution of absolute values of relative errors (DRE) is defined in Equation (4.52) 

and the results are listed in Table 4.8. 

100%
Number of  faults in a relative error range

DRE =
Total number of  faults

×    (4.52) 
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Table 4.8: Distribution of Absolute Values of Relative Errors – Individual Load 

Pattern 

Relative Error Range Load 
Pattern Fault 

0~1% 1~2.5% 2.5~5% 5+% 
CSGF 31.9 29.0 27.5 11.6 
CGF 39.1 53.6 4.4 2.9 
CSF 52.2 20.3 17.4 10.1 

LP1 

Average 41.1 34.3 16.4 8.2 
CSGF 23.2 30.4 21.8 24.6 
CGF 97.1 0 0 2.9 
CSF 27.6 30.4 27.5 14.5 

LP2 

Average 49.3 20.3 16.4 14.0 
CSGF 31.9 27.5 26.1 14.5 
CGF 39.1 31.9 27.5 1.5 
CSF 36.3 30.4 15.9 17.4 

LP3 

Average 35.8 30.0 23.2 11.0 
CSGF 33.3 29.0 24.7 13.0 
CGF 30.4 30.4 39.2 0 
CSF 31.9 26.1 23.2 18.8 

LP4 

Average 31.9 28.5 29.0 10.6 
CSGF 18.9 24.6 37.7 18.8 
CGF 34.8 23.2 42.0 0 
CSF 39.1 26.1 18.9 15.9 

LP5 

Average 30.9 24.6 32.9 11.6 
CSGF 5.8 36.2 26.1 31.9 
CGF 43.5 13.0 40.6 2.9 
CSF 39.1 26.1 21.8 13.0 

LP6 

Average 29.5 25.1 29.5 15.9 
CSGF 16.0 29.0 27.5 27.5 
CGF 37.7 18.8 29.0 14.5 
CSF 31.9 15.9 27.6 24.7 

LP7 

Average 28.5 21.3 28.0 22.2 
Average of All 35.3 26.3 25.0 13.4 

 

It shows that more than 60 percent of faults can be located with the relative error less 

than 2.5%.  
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The distribution of absolute values of absolute errors (DAE) is defined in Equation 

(3.135) and the results are listed in Table 4.9. 

Table 4.9: Distribution of Absolute Values of Absolute Errors – Individual Load 

Pattern 

Absolute Error Range Load 
Pattern Fault 

0~50m 50~100m 100~200m 200+m 
CSGF 44.9 31.9 23.2 0 
CGF 85.5 11.6 2.9 0 
CSF 62.3 26.1 7.3 4.3 

LP1 

Average 64.3 23.2 11.1 1.4 
CSGF 34.8 26.1 29.0 10.1 
CGF 97.1 0 2.9 0 
CSF 40.6 30.4 24.6 43.4 

LP2 

Average 57.5 18.9 18.8 4.8 
CSGF 39.1 37.7 14.5 8.7 
CGF 55.1 42.0 2.9 0 
CSF 52.2 21.7 17.4 8.7 

LP3 

Average 48.8 33.8 11.6 5.8 
CSGF 44.9 29.0 23.2 2.9 
CGF 50.7 47.8 1.5 0 
CSF 42.0 24.6 26.1 7.3 

LP4 

Average 45.9 33.8 16.9 3.4 
CSGF 31.9 23.2 29.0 15.9 
CGF 52.2 47.8 0 0 
CSF 55.1 17.4 21.7 5.8 

LP5 

Average 46.4 29.5 16.9 7.2 
CSGF 26.1 21.7 27.6 24.6 
CGF 44.9 52.2 0 2.9 
CSF 50.7 29.0 17.4 2.9 

LP6 

Average 40.6 34.3 15.0 10.1 
CSGF 24.7 21.7 30.4 23.2 
CGF 47.8 34.8 14.5 2.9 
CSF 37.7 23.2 30.4 8.7 

LP7 

Average 36.7 26.6 25.1 11.6 
Average of All 48.6 28.6 16.5 6.3 

 

It shows that 77.2 percent of faults can be located with the absolute error less than 100 m. 
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The effects of cable length, faulty section, load profile, fault distance and fault type on 

the location accuracy will be discussed in the following subsections. 

4.5.4.1 Effect of Cable Length 

The effect of cable length is examined in this subsection. The first scenario includes the 

following conditions and the location errors are shown in Figure 4.28. 

 Cable length: All 23 three-phase feeders, ranging from 2-11.43 km. 

 Load Profile: (1) LP5; (2) LP6. 

 Fault distance: 25%. 

 Fault type: CSGF. 

 

Figure 4.28: Effect of cable length (CSGF @25%). 
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The second scenario includes the following conditions and the location errors are shown 

in Figure 4.29. 

 Cable length: All 23 three-phase feeders, ranging from 2-11.43 km. 

 Load Profile: (1) LP5; (2) LP6. 

 Fault distance: 50%. 

 Fault type: CSF. 

 

Figure 4.29: Effect of cable length (CSF @50%). 
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 Fault distance: 75%. 

 Fault type: CGF. 

 

Figure 4.30: Effect of cable length (CGF @75%). 
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 Faulty section: Distance from middle point of 23 three-phase feeders to the 

substation, ranging from 1-73.176 km. 

 Load Profile: LP4. 

 Fault distance: 25%. 

 Fault type: CSGF. 

 

Figure 4.31: Effect of faulty section (CSGF @25%). 
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 Fault distance: 50%. 

 Fault type: CSF. 

 

Figure 4.32: Effect of faulty section (CSF @50%). 
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Figure 4.33: Effect of faulty section (CGF @75%). 
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Figure 4.34: Effect of load profile (CSGF@50%, Generic profile). 

 

The second scenario includes the following conditions and the location errors are shown 

in Figure 4.35. 

 Cable: All 23 three-phase cables. 

 Load Profile: (1) LP2; (2) LP3; (3) LP4. 

 Fault distance: 50%. 

 Fault type: CSGF. 
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Figure 4.35: Effect of load profile (CSGF@50%, Uniform profile). 

 

The third scenario includes the following conditions and the location errors are shown in 

Figure 4.36. 

 Cable: All 23 three-phase cables. 

 Load Profile: (1) LP5; (2) LP6; (3) LP7. 

 Fault distance: 50%. 

 Fault type: CGF. 
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Figure 4.36: Effect of load profile (CGF@50%, Generic profile). 

 

The forth scenario includes the following conditions and the location errors are shown in 

Figure 4.37. 

 Cable: All 23 three-phase cables. 

 Load Profile: (1) LP2; (2) LP3; (3) LP4. 

 Fault distance: 50%. 

 Fault type: CGF. 
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Figure 4.37: Effect of load profile (CGF@50%, Uniform profile). 

 

Comparing the results obtained from the uniform load profiles and generic load profiles 

in Figure 4.34-Figure 4.37, it cannot be clearly concluded which one would result in the 

larger location error. However, the average data in Table 4.7 demonstrate the generic 

profile would lead to the relatively higher location error. 

4.5.4.4 Effect of Fault Distance 

The effect of fault distance is investigated in this subsection. The first scenario includes 

the following conditions and the location errors are shown in Figure 4.38. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP1. 

 Fault distance: (1) 25%; (2) 50%; (3) 75%. 

 Fault type: CSGF. 
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Figure 4.38: Effect of fault distance (CSGF, LP1). 

 

The second scenario includes the following conditions and the location errors are shown 

in Figure 4.39. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP1. 

 Fault distance: (1) 25%; (2) 50%; (3) 75%. 

 Fault type: CSF. 
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Figure 4.39: Effect of fault distance (CSF, LP1). 

 

The third scenario includes the following conditions and the location errors are shown in 

Figure 4.40. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP1. 

 Fault distance: (1) 25%; (2) 50%; (3) 75%. 

 Fault type: CGF. 
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Figure 4.40: Effect of fault distance (CGF, LP1). 

 

The location errors in Figure 4.38-Figure 4.40 are distributed randomly. Therefore, the 

fault distance has no effect on the location accuracy. Based on the analysis in Section 

3.10.2.3, the error increase may be observed in close-in and far-end faults. 

4.5.4.5 Effect of Fault Type 

The effect of fault type is investigated in this subsection. The first scenario includes the 

following conditions and the location errors are shown in Figure 4.41. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP2. 

 Fault distance: 25%. 

 Fault type: (1) CSGF; (2) CSF; (3) CGF. 
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Figure 4.41: Effect of fault type (25%, LP2). 

 

The second scenario includes the following conditions and the location errors are shown 

in Figure 4.42. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP4. 

 Fault distance: 50%. 

 Fault type: (1) CSGF; (2) CSF; (3) CGF. 
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Figure 4.42: Effect of fault type (50%, LP4). 

 

The third scenario includes the following conditions and the location errors are shown in 

Figure 4.43. 

 Cable: All 23 three-phase cables. 

 Load Profile: LP6. 

 Fault distance: 75%. 

 Fault type: (1) CSGF; (2) CSF; (3) CGF. 
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Figure 4.43: Effect of fault type (75%, LP6). 

 

It is apparent that the CGF has the smallest errors, and the CSGF and CSF have the 

relatively large errors. 

4.5.4.6 Summary of Effects 

The following conclusion can be summarized from the above analysis: 

 The large error may occur at cables with the short length and long distance to 

substation. Otherwise, the cable length and distance from the faulty section to 

substation have no effect on the location accuracy. 

 The generic load profile would lead to the larger error than the uniform load profile. 

 The fault distance has no effect on the location accuracy.  

 The CGF has the smaller error than CSGF and CSF. 
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4.5.4.7 More Accurate Results 

The above simulation results are based on one certain load profile individually. However, 

there may have several load profiles available for the state estimation and the most 

suitable one cannot be readily decided. Therefore, several available load profiles can be 

processed for the state estimation and fault location. The final results can be calculated by 

averaging. 

Three groups are simulated, in which five load profiles are randomly selected from the 

seven load patterns. The average of absolute values of location errors of each group are 

concluded in Table 4.10. 

Table 4.10: Average of Absolute Values of Location Errors – Combination of Load 

Patterns 

Load 
Patterns 

Core-Sheath- 
Ground Core-Ground Core-Sheath Average 

LP2, 4, 5, 6,7 2.02% 
59.5m 

0.63% 
16.3m 

1.65% 
45.4m 

1.43% 
40.4m 

LP2, 3, 4, 5, 6 1.94% 
58.3m 

1.14% 
28.9m 

1.4% 
38.1m 

1.49% 
41.8m 

LP1, 2, 3, 6, 7 2.08% 
62.2m 

0.68% 
17.0m 

1.37% 
36.7m 

1.38% 
38.6m 

 

The percent reduction in error is used to evaluate the improvement in location errors, as 

shown in Table 4.11. It can be found that, in average, both relative and absolute errors are 

reduced by more than 40%. 
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Table 4.11: Percent Reduction in Error – Combination of Load Patterns 

Load 
Patterns Error Type

Core- 
Sheath- 
Ground 

Core- 
Ground 

Core- 
Sheath Average 

Relative 36.3 63.4 37.5 43.0 LP2, 4, 5, 6,7 
Absolute 40.8 61.4 38.2 44.0 
Relative 38.8 33.7 47.0 40.6 LP2, 3, 4, 5, 6 
Absolute 42.0 31.5 48.2 42.0 
Relative 34.4 60.5 48.1 45.0 LP1, 2, 3, 6, 7 
Absolute 38.1 59.7 50.1 46.5 

 

The distribution of absolute values of relative errors is tabulated in Table 4.12. It can be 

observed that more than 80% faults can be located with the relative error less than 2.5%, 

increasing from 61.6% using the individual load pattern. 

Table 4.12: Distribution of Absolute Values of Relative Errors – Combination of 

Load Patterns 

Relative Error Range Load 
Pattern Fault 

0~1% 1~2.5% 2.5~5% 5+% 
CSGF 36.2 31.9 24.6 7.3 
CGF 89.9 7.3 0 2.9 
CSF 43.5 31.9 20.3 4.3 

LP2, 4, 5, 
6,7 

Average 56.5 23.7 15.0 4.8 
CSGF 39.1 34.8 17.4 8.7 
CGF 42.0 55.1 0 2.9 
CSF 56.5 27.5 10.2 5.8 

LP2, 3, 4, 
5, 6 

Average 45.9 39.1 9.2 5.8 
CSGF 30.4 31.9 33.3 4.4 
CGF 92.8 4.3 0 2.9 
CSF 52.2 29.0 17.4 1.4 

LP1, 2, 3, 
6, 7 

Average 58.5 21.7 16.9 2.9 

 

The distribution of absolute values of absolute errors is tabulated in Table 4.13. It is clear 

that more than 88% faults can be located with the absolute error less than 100 m, 

increasing from 77.2% using the individual load pattern. 
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Table 4.13: Distribution of Absolute Values of Absolute Errors – Combination of 

Load Patterns 

Absolute Error Range Load 
Pattern Fault 

0~50m 50~100m 100~200m 200+m 
CSGF 52.2 24.6 23.2 0 
CGF 97.1 0 2.9 0 
CSF 59.4 31.9 8.7 0 

LP2, 4, 5, 
6,7 

Average 69.6 18.8 11.6 0 
CSGF 59.4 20.3 18.8 1.5 
CGF 97.1 0 2.9 0 
CSF 73.9 17.4 8.7 0 

LP2, 3, 4, 
5, 6 

Average 76.8 12.6 10.1 0.5 
CSGF 44.9 39.1 14.5 1.5 
CGF 97.1 0 2.9 0 
CSF 69.6 27.5 2.9 0 

LP1, 2, 3, 
6, 7 

Average 70.5 22.2 6.8 0.5 

 

It should be noted that the application of the combination of load patterns would increase 

the computation time. This problem can be resolved by using two or more multi-core 

computers to process the algorithms in parallel. 
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Chapter 5  

5 Conclusions and Future Works 

Three schemes have been developed in this thesis, i.e. incipient fault detection for 

distribution cables based on the wavelet analysis and superimposed components, fault 

location for distribution cables based on the direct circuit analysis, and state estimation 

for underground distribution networks based on the sequential quadratic programming 

technique. Then, the proposed fault location algorithm and state estimation method have 

been applied together to locate faults in underground distribution networks. 

5.1 Conclusions 

Based on the methodology of wavelet transform and analysis of superimposed 

components, two schemes have been proposed to detect and classify the incipient faults 

in underground distribution cables. The following design goals have been achieved for 

the schemes. 

 Easy implementation in the existing digital relays; 

 High detection and classification accuracy; 

 Low rate of missing detection, false alarm, and incorrect classification; 

 Insensitive to fault type, fault location, fault resistance, and fault inception angle 

 Less dead zone; 

 Robust to noise, disturbance, and uncertainties; 

 Configurable for different CT locations; 

 Configurable for different transformer windings; 

 Capable to detect and classify in real time. 
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The wavelet-based scheme has the following advantages in terms of the accuracy, 

detectability, and identifiability. 

 Achieving higher detection accuracy, especially for high impedance incipient faults; 

 Supervising almost entire length of cable, i.e., less detection dead zone; 

 Detecting and classifying the different fault types; 

 Detecting and classifying the other transients, such as cold load pickup and capacitor 

switching; 

 Eliminating noise from signals. 

The superimposed components-based scheme is particularly designed to detect SLG 

incipient faults. In other respects, this method has the following advantages in terms of 

the configuration and simplicity. 

 Performing simple and less computation; 

 Setting fewer thresholds; 

 Implementing by easily upgrading firmware. 

The wavelet-based scheme can obtain the low rate of missing detection and zero rate of 

false alarm in the presence of the various noise levels, fault conditions, transient types 

and system configurations. The superimposed components-based scheme is capable of 

achieving the zero rates of false alarm and misclassification. The advantages of both 

schemes indicate a technical feasibility for practical implementations. 

Based on the direct circuit analysis of a two-layer π cable model, a set of fault location 

algorithms have been proposed to locate the single phase-related permanent faults in 

underground cables. The main characteristics of the location algorithms are concluded as 

follows. 
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 A two-layer π cable model has been formulated to approximate the behaviors and 

characteristics of cables and used to develop the location algorithms. 

 The various cable characteristics have been taken into account, such as the shunt 

capacitance, metallic sheaths, heterogeneity and untransposition. 

 A set of location algorithms have been developed to cover five bonding methods and 

three fault scenarios. 

 A large number of complex equations in the location algorithms have been solved 

effectively and efficiently. 

 Only fundamental voltage and current phasors measured at substation have been 

utilized. 

 The estimation of load impedance has been proposed and the application of the static 

response type load model has been investigated. 

 The location algorithms are capable to calculate fault resistance. 

 The location algorithms are capable to determine fault type. 

 The high location accuracy has been achieved. 

 The location algorithms are insensitive to fault resistance. 

 Basically, the location algorithms are insensitive to fault distance except that there 

has an error increase for faults closed to the close-in, far-end and crossing points, 

which is caused by the model and setting in the simulation software. 

 There may have relatively large error for CSGF or CSF with SPBR or SPBM, 

otherwise, the bonding methods and fault scenarios have no effect on the location 

accuracy. 

 The location algorithms are capable to locate in real time. 
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The state estimation for underground distribution networks has been formulated as a 

nonlinear optimization problem and solved by the sequential quadratic programming 

method. The proposed location algorithm incorporating with the proposed state 

estimation algorithm has the following characteristics. 

 The state estimation for underground distribution networks has been formulated as a 

nonlinear optimization problem and solved by the SQP method. 

 The shunt capacitance, effect of metallic sheath and bonding method have been taken 

into account for the development of the state estimation method. 

 The laterals and tapped loads have been taken into account. 

 A section-by-section estimation algorithm combined with the backward/forward 

sweep algorithm has been proposed to estimate the nodal voltage and branch current 

for each line section. Six sub-algorithms have been applied in the estimation 

algorithm. 

 Only fundamental voltage and current phasors measured at substation have been 

utilized. 

 The state estimation algorithm can accurately estimate the nodal voltages. The 

estimation accuracy of load flows is acceptable. 

 The estimation of the seen impedance behind the faulty section has been discussed 

and the application of the static response type load model has been investigated. 

 The state estimation algorithm can provide necessary information for the location 

algorithms. 

 The faulty section can be determined. 

 The location accuracy is acceptable. 



223 

 

 Basically , the location of the faulty section and the cable length have no effect on 

the location accuracy, however, faults in cables with short length and long distance to 

substation may have relatively large error. 

 The generic patterns would lead to the relatively higher location error than the 

uniform load patterns. 

 The fault distance has no effect on the location accuracy. 

 The CGF has the smaller error than CSGF and CSF. 

 A revised scheme has been proposed to increase the location accuracy. 

5.2 Future Works 

Nowadays, the fault location and state estimation for underground distribution networks 

are very challenging. This work may help in some degree to encourage further analytical 

and practical studies in the fields of fault location and state estimation for real 

underground distribution systems. The possibly interesting future works include, 

 Formulation of a simple cable model or development of a modified transformation 

matrix. The cable model used in this work can accurately present the characteristics 

and behaviors of cables; however, its complexity limits the possible simplicity of the 

fault location algorithms. 

 Online estimation of cable parameters. The cable parameters, especially the 

capacitance, may have a quite large change over age. An online estimation method 

using single end measurements can provide more accurate parameters for location 

algorithms and in turn improve the location accuracy. 

 Application of the state estimation algorithm in large-scale networks. The proposed 

state estimation algorithm has been examined in a 31-node radial distribution system 

with one measurement point; however, the application in the large-scale system 

would result in the longer computation time and possibly larger estimation error. 
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Therefore, the state estimation algorithm should be modified by adapting more 

measurements and/or dividing the large system into small zones. 

 Location of incipient faults. The permanent fault in cables would be averted if the 

incipient fault was located, which is significantly important for utility companies to 

have sufficient time to diagnosis the defective cable in advance. Considering the 

short duration of faults, the method using sample values would be one possible 

solution. 
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Appendices 

Appendix A: Illustration of Traveling Wave 

A single phase to ground fault occurs at 50 km of a 140 km transmission line and the 

fault currents are shown in Figure A.1. 

 

Figure A.1: Fault currents. 

 

It is apparent that there is no any special phenomenon can be observed in the fault 

currents in addition to the increasing magnitude. However, if the fault current of phase A 

is zoomed in around the occurrence instant of fault at the resolution of microseconds, the 

wavefronts of the traveling waves can be clearly observed, as shown in Figure A.2. The 

current has no changes at the inception instant in the monitor point which is located at the 

sending terminal, 50 km far to the fault point. The wavefront (1) is the initial wave 

directly caused by the fault, taking 169 us and traveling 50 km after the occurrence of the 

fault. The propagation velocity is 295.86m/us, which is close to the light speed. The 

wavefront (1) is reflected back to the line and reflected again at the fault point towards 

the sending terminal, which is detected as the wavefront (2). The initial wave at the fault 

point also propagates towards the receiving terminal, reflects there, transmits through the 
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fault point, arrives at the sending terminal, and forms the wavefront (3). Similar to the 

formation of the wavefront (2), the wavefront (4) is formed by two reflections of the 

wavefront (2) at the sending terminal and fault point. 

 

Figure A.2: Wavefronts of traveling waves. 

 

The three dimension and two dimension illustrations of the propagation process is 

described in Figure A.3 and Figure A.4, where the first two wavefronts can be clearly 

observed. The Bewley lattice diagram for such a situation is shown in Figure A.5. 
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Figure A.3: Illustration of propagation of traveling waves in spatiotemporal domain. 

 

Figure A.4: Two dimension illustration of propagation of traveling wave. 
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Figure A.5: Bewley lattice diagram. 

 

Appendix B: Example of Kizilcay’s Arc Model 

An example of Kizilcay’s arc model illustrates the behavior and characteristic of the arc 

voltage, current and resistance. The arc voltage appears like the near square wave with 

small spikes at the rising and falling edges, as shown in Figure A.6. The arc current looks 

like any regular fault current in Figure A.7. And the arc resistance is time-varying and 

nonlinear, changing from 0.01 to 5 ohm in this case shown in Figure A.8. 
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Figure A.6: Arc voltage. 

 

Figure A.7: Arc current. 

 

Figure A.8: Arc resistance.
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