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Abstract

The elliptic curve cryptography (ECC) has been identi�ed as an e�cient scheme for

public-key cryptography. This thesis studies e�cient implementation of ECC crypto-

processors on hardware platforms in a bottom-up approach. We �rst study e�cient

and low-complexity architectures for �nite �eld multiplications over Gaussian normal

basis (GNB). We propose three new low-complexity digit-level architectures for �nite

�eld multiplication. Architectures are modi�ed in order to make them more suitable

for hardware implementations specially focusing on reducing the area usage. Then,

for the �rst time, we propose a hybrid digit-level multiplier architecture which per-

forms two multiplications together (double-multiplication) with the same number of

clock cycles required as the one for one multiplication. We propose a new hardware

architecture for point multiplication on newly introduced binary Edwards and gen-

eralized Hessian curves. We investigate higher level parallelization and lower level

scheduling for point multiplication on these curves. Also, we propose a highly paral-

lel architecture for point multiplication on Koblitz curves by modifying the addition

formulation. Several FPGA implementations exploiting these modi�cations are pre-

sented in this thesis. We employed the proposed hybrid multiplier architecture to

reduce the latency of point multiplication in ECC crypto-processors as well as the

double-exponentiation. This scheme is the �rst known method to increase the speed

of point multiplication whenever parallelization fails due to the data dependencies

amongst lower level arithmetic computations. Our comparison results show that our

proposed multiplier architectures outperform the counterparts available in the lit-

erature. Furthermore, fast computation of point multiplication on di�erent binary

elliptic curves is achieved.

Keywords: Elliptic curve cryptography, Gaussian normal basis, digit-level �nite �eld

multiplication, hybrid multiplier, point multiplication, FPGA, ASIC.
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Chapter 1

Introduction

T
HE history of cryptography is back to 2000 years ago (time of Julius Caesar)

when it was required that two communicating parties to share a common secret,

i.e., the symmetric key for encryption and decryption. The main problem of this

approach is that the two parties must somehow met each other and agree on the

common key. In 1976, Di�e and Hellman [14] demonstrated an algorithm for secure

key exchange and lead to the development of today's public key cryptography systems

known as RSA [15]. Recent technology of small and always connected devices such

as mobile hand-held devices, RFID tags, near �eld communication (NFCs) devices,

smart cards, and wireless sensor nodes (WSNs), to name a few, require e�cient and

high-performance computation of cryptographic protocols. The traditional schemes

such as RSA is determined to be infeasible for these devices which resulted in adopting

of a new technology based on elliptic curves which is called elliptic curve cryptography

(ECC). ECC is proposed independently proposed by Neil Koblitz [16] and Victor

Miller [17] for public-key cryptography and has gained signi�cant attention in the

recent researches available in the literature. The use of ECC has been identi�ed as an

e�cient and suitable methodology to achieve public key cryptography in embedded

and resource-constrained environments and approved by IEEE [18] and NIST [19]

standards. The main advantage of ECC is that it o�ers similar security level compared

to the RSA, employing smaller key size and providing e�cient implementations for

resource-constrained devices with limited storage, bandwidth, and silicon area. The

security of ECC based cryptosystems relies on the di�culty of solving elliptic curve

discrete logarithm problem (ECDLP) [19].

All these topics can be viewed as an applied science in the overlap between math-

ematics, computer science, and computer engineering.
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1.1 Problem Statement and Motivation

Security in resource-constrained environments (such as smart cards, WSNs, Hand-

held devices, and RFID tags) and high-performance web server (such as secure e-

commerce transactions and online banking) highly requires e�cient cryptographic

computations (such as ECC). The former applications are su�ering from availability

of silicon area, while the latter ones are su�ering from low speed of the current security

protocols. Moreover, due to increasing number of small and connected devices to the

servers e�cient computation of cryptographic protocols are crucial.

Elliptic curves over �nite �elds can be represented using prime �elds and binary

extension �elds. There are several implementations in the literature considering im-

plementation of ECC over both �elds. However, depending to the application and

available resources prime �elds have been chosen for software implementations and bi-

nary �elds provide better performance over binary �elds. Recently proposed schemes

available in the the literature (for example, [20], [21], [10], [6], [22], [23], [24], [25], [26],

and [27]) did not consider a systematic implementations of ECC over binary �elds.

For instance, they have employed available �nite �eld multipliers in the literature

without considering their performance for the proposed crypto-processors. The hier-

archy of ECC computations requires an e�cient computations in the lower level, i.e.,

�nite �elds and then the curve and protocol levels. Therefore, a bottom-up approach

to design an ECC crypto-processor targeting the certain applications is one of most

important task that one need to explore.

Also, in some of the previous researches parallelism is known as the only method

to reduce the latency of curve level arithmetic computations to increase the speed of

overall point multiplication on ECC-based crypto-processors. However, one should

note that due to the data dependencies between curve level computations, paral-

lelism is not applicable in several situations such as point multiplication on binary

Edwards curves and double-exponentiation for elliptic curve digital signature veri�ca-

tions. These dependencies will limit the speed of the designs according to the number

of parallel processors.

1.2 Objectives of the Thesis

In this thesis, e�cient and low complexity ECC-based crypto-processors are pro-

posed. A bottom-up approach is proposed in designing a crypto-processor with de-

vising low complexity �nite �eld arithmetic units. This thesis, not only considers
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standard curves available in the literature, but it also describes e�cient implementa-

tion of newly introduced complete binary elliptic curves such as binary Edwards and

generalized Hessian curves. The objectives of this thesis are to design high perfor-

mance and fast ECC-based crypto-processors for web servers and as well as designing

low-complexity and e�cient ones for small and hand-held devices based on di�erent

security level and key size.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we will provide a literature review

on some of the existing works in the literature on normal basis multiplication and

elliptic curve cryptography.

In Chapter 3, we present low-complexity Gaussian normal basis multiplier archi-

tectures including parallel-in-parallel-out, parallel-in-serial-out, and serial-in-parallel-

out. Also, we propose a low-complexity architecture for bit-parallel multiplication in

this chapter.

In Chapter 4, we propose an e�cient ECC-based crypto-processor on binary Ed-

wards and generalized Hessian curves employing a parallel-in parallel-out digit-level

GNB multiplier proposed in Chapter 3. The implementation results are provided and

compared with the counterparts in the literature.

In Chapter 5, based on the low-complexity digit-level multiplier architectures pro-

posed in Chapter 3, a new hybrid multiplier to perform double-multiplication is pro-

posed. Also, in this chapter we evaluate the e�ciency of the new hybrid multiplier

and its application for reducing the latency of double-exponentiation and point mul-

tiplication on binary elliptic curves.

In Chapter 6, a highly parallel and fast ECC crypto-processor for point multipli-

cation on Koblitz curves is presented. The implementation results are reported and

compared with the leading ones in the literature.

Finally, in Chapter 7, we summarize our contributions and provide possible direc-

tions for future works.
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Chapter 2

Preliminaries and Literature Review

I
N this chapter, we provide preliminaries and review the previous works available

in the literature on farithmetic of �nite �elds and elliptic curve cryptography. The

following discussion is based on comprehensive presentations given in [28], [29], [11],

and [30].

2.1 Finite Fields

Finite �elds are usually referred to as Galois �elds (to honor Evariste Galois 1811-

1832, a French mathematician) and have importance in many applications such as

cryptography, network coding, and error control theory. Due to these applications

their implementations have been studied extensively by computer engineers and com-

puter scientists. A �nite �eld consists of a �nite set of objects called �eld elements

together with the description of two operations (addition and multiplication) that

can be performed on pairs of �eld elements. Finite �eld arithmetic plays an impor-

tant role in ECC and all the low-level operations are carried out in these �elds. It is

important to describe these �elds in order to closely specify cryptographic methods

based on ECC.

A set G and a binary operation ? form a group (G, ?) if they satisfy the following

�ve properties:

1. The operation ? is closed (i.e., a ? b ∈ G for all a, b ∈ G).

2. The operation ? is associative (i.e., a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ G).

3. The operation ? is commutative (i.e., a ? b = b ? a for all a, b ∈ G). In this case

set (G, ?) called Abelian.



5

4. There exists an identity element e ∈ G such that e ? a = a ? e = a for all a ∈ G.

5. For every a ∈ G, there exists an inverse element b ∈ G such that a ? b = e.

The group (G, ?) with group operation to be multiplication × is known as multiplica-

tive group (G,×) which its identity element is 1 and the inverse element is denoted by
a−1 ∈ G. Similarly, for group operation with addition (G,+) the identity element is 0

and inverse element is −a. The order of the group, ord(G), is the number of elements

in the setG . The group G is �nite if ord(G) is �nite. The order of an element a ∈ G,
i.e., ord(a), is the smallest positive integer, n, for which an = e.

The group G is cyclic if all its of the group can be generated by applying the

group operation repeatedly to an element a and hencea is a generator of G.

A �eld F is a set of elements with two binary operators, denoted as + (addition)

and × (multiplication) which exhibits the following properties:

1. F is an abelian group under the addition + operation.

2. The non-zero elements of F form an abelian group under the operation ×.

3. The operation × is distributive over the operation +, i.e., a × (b + c) = (a ×
b) + (a× c) and (b+ c)× a = (b× a) + (c× a) for all a, b, c ∈ F.

A �eld F with q elements is said to be �nite if q is �nite and is denoted by Fq which is

also referred to as Galois �eld as GF (q). The order of Fq is the number of elements in
Fq, and Fq exists if and only if q is prime or a power of a prime, i.e., q = pm for m ≥ 1.

Then, for m = 1 it is called a prime �eld and for m ≥ 2 it is called an extension �eld.

Extension �elds with p = 2, i.e., F2m or GF (2m) are called binary �elds (or �elds

with characteristic two) which can be seen as a vector space of dimension m over the

�eld F2 which has only 0 and 1.

As de�ned above Fq has two main operations, i.e., addition and multiplication.

Subtraction and inversion can be de�ned through addition (i.e., a−b = a+(−b) where
b+ (−b) = 0) and multiplication (a/b = a× b−1 where b× b−1 = 1 and b ∈ Fq −{0}),
respectively.

De�nition 2.1. An element α in a �nite �eld Fq is called a primitive element (or

generator) of Fq if Fq = {0, α, α2, · · · .αq−1}.

De�nition 2.2. The order of a non-zero element α ∈ Fq denoted by ord(α), is the

smallest positive integer k such that αk = 1.
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De�nition 2.3. The non-zero elements in Fq form a multiplicative group of Fq de-
noted by F?q which is cyclic with ord(F?q) = q − 1. Hence

aq = a, (2.1)

for all a ∈ Fq. This is also known as Fermat's Little Theorem as ap ≡ a(modp).

Then, for F2m the order of a multiplicative group is 2m − 1 and for an element

A ∈ F2m one has A2m−1 = 1. In this thesis, we use GF (2m) to indicate binary Galois

�elds instead of F2m .

2.2 Binary Fields Arithmetic

The binary �eld of characteristic two, GF (2m) is a �nite �eld [30] that contains 2m

di�erent elements. The elements of GF (2m) are represented as a vector space over

GF (2) which contains 0 and 1 with respect to a basis. As the two elements of GF (2)

can be represented with a bit, m bits are required to represent elements of GF (2m).

The binary �eld, GF (2m), is associated with an irreducible polynomial (i.e., can not

be represented as a product of two polynomials with positive degrees) F (z), with

deg(F (Z)) = m over GF (2), i.e.,

F (z) = fmz
m + fm−1z

m−1 + · · ·+ f1z + f0, fi ∈ GF (2). (2.2)

If fm = 1 the deg[F (z)] = m. Addition of two elements in GF (2m) is simply performed

bit-wise (modulo 2) XOR operation but the multiplication depends on the �eld basis

and dependencies between the �eld elements. From implementation point of view

binary �elds are faster than prime �elds as they provide carry-free operations. The

�eld elements can be represented using polynomial (or standard) basis, normal basis,

dual basis, and redundant basis. However, polynomial and normal bases are two

common type of bases that has been used in conventional hardware and software

applications and approved and recommended by the international standards such as

IEEE and NIST. In the following, we review brie�y polynomial basis and explain

normal basis in detail as it is used in this thesis.

2.2.1 Polynomial Basis

Let α ∈ GF (2m) be a root of the primitive polynomial F (z), i.e., F (α) = 0. Then the

set {1, α, α2, · · · , αm−1} is known as the polynomial basis and an element A ∈ GF (2m)



7

can be represented as linear combinations of this set with a polynomial of degree m−1

over GF (2), as A =
∑m−1

i=0 aiα
i, where ai ∈ GF (2). For simplicity, a bit-vector rep-

resentation is commonly used and so that A = (am−1, am−2, · · · , a1, a0), where am−1
and a0 are the most signi�cant bit (MSB) and least signi�cant bit (LSB), respectively.

In polynomial basis the identity element of addition, i.e., 0, is (0, 0, · · · , 0, 0) and the

identity element of multiplication, i.e.,1, is (0, 0, · · · , 0, 1).

Addition of two �eld elements, say, A = (am−1, · · · , a1, a0) and B = (bm−1, · · · , b1, b0)
in GF (2m) represented by polynomial basis is C = A + B and can be obtained by

pair-wise addition of the coordinates of A and B over GF (2) (i.e., modulo 2 addition)

as ci = ai ⊕ bi. Multiplication of two �eld elements A,B ∈ GF (2m) is complicated.

First, A and B are multiplied by using ordinary polynomial multiplication and then

the intermediate product needs further reduction by F (x), i.e., A ·B mod F (x) . The

squaring in polynomial basis is also complicated and its complexity depends on the

irreducible polynomial F (x) [31, 32, 33, 34].

2.2.2 Normal Basis

It is shown that there exists a normal basis for the binary extension �eld GF (2m)

for all positive integers m. The normal basis is constructed by �nding a normal

element β ∈ GF (2m), where β is a root of an irreducible polynomial of degree m.

Then set N = {β, β2, · · · , β2m−1} is a basis for GF (2m) and its elements are linearly

independent. In this case, A ∈ GF (2m), can be represented as A =
∑m−1

i=0 aiβ
2i , where

ai ∈ GF (2). The identity element of addition, i.e., 0, is (0, 0, · · · , 0, 0) and the identity

element of multiplication, i.e., 1, is (1, 1, · · · , 1, 1) as 1 = β + β2 + β22 + · · ·+ β2m−1
.

Normal basis is attractive mainly because it provides e�cient computation for

squaring. For an element, say, A ∈ GF (2m) its power of two can be written as

A2 =
∑m−1

i=0 aiβ
2i+1

and one can get β2m = β from (2.1). Then, squaring is a linear

operation and for A = (a0, a1, · · · , am−1) ∈ GF (2m) one can obtain it by a right cyclic

shift operation as A2 = (am−1, a0, a1, · · · , am−2). Similar to the polynomial basis the

addition can be obtained by bit-wise XOR operation for two given elements A and B

as A+B =
∑m−1

i=0 (ai ⊕ bi)β2i .

2.2.3 Finite Field Multiplication

Among �nite �eld representations, normal basis is more e�cient in hardware im-

plementations since squaring of a �eld element over GF (2m) can be performed by

a simple cyclic shift. This makes normal basis more attractive for the cryptosys-
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tems that utilize frequent squarings (e.g., point multiplication on Koblitz curves and

exponentiation-based cryptosystems).

2.2.3.1 Multiplication Using Normal Basis

Let A = (a0, a1, · · · , am−1) =
∑m−1

i=0 aiβ
2i and B = (b0, b1, · · · , bm−1) =

∑m−1
j=0 bjβ

2j

be two �eld elements in GF (2m). Let C ∈ GF (2m) be their product, i.e., C =

(c0, c1, · · · , cm−1) = AB =
∑m−1

i=0

∑m−1
j=0 aibjβ

2i+2j . Let us represent the �eld element

β2i+2j ∈ GF (2m), 0 ≤ i, j ≤ m − 1, with respect to N = {β, β2, · · · , β2m−1} as

β2i+2j =
∑m−1

l=0 µ
(l)
i,jβ

2l .Then, one can �nd C as

C =
m−1∑
i=0

m−1∑
j=0

aibj

m−1∑
l=0

µ
(l)
i,jβ

2l =
m−1∑
l=0

m−1∑
i=0

m−1∑
j=0

aibjµ
(l)
i,jβ

2l . (2.3)

By representing C with respect to N , i.e., C =
∑m−1

l=0 clβ
2l , and equating with (2.3),

the l-th coordinate of C can be written as cl =
∑m−1

i=0

∑m−1
j=0 aibjµ

(l)
i,j . Then, it can be

written in a matrix form as

cl = aM(l)btr, 0 ≤ l ≤ m− 1, (2.4)

where M(l) = [µ
(l)
i,j ]

m−1
i,j=0, µ

(l)
i,j ∈ GF (2), 0 ≤ i, j ≤ m − 1, a = [a0, a1, · · · , am−1] and

btr denotes the matrix transpose of row vector b = [b0, b1, · · · , bm−1]. In (2.4), M(l)

is obtained from the l-fold right and down circular shifts of the multiplication matrix

M = M(0). The computation of entries of M can be found from [18]. Massey and

Omura in [35] have proposed a bit-level PISO multiplier by implementing (2.4) for

one coordinate, say c0 = aMbtr = F (A,B). Then, the l-th coordinate of C is obtained

by left cyclic shifts of the coordinates of A and B, i.e., cl = F (A � l, B � l) [35].

The number of ones, CN , 2m − 1 ≤ CN ≤ m2, in M de�nes the complexity of the

multiplication. It is well known that for CN = 2m − 1, the normal basis is called

optimal normal basis (ONB) [36]. There are two types of ONBs, referred to as Type

I and Type II ONBs. It should be noted that ONB does not exist for all m, for

example m = 163. As an extension of the work on ONBs a low complexity of normal

bases of type T , T > 1, is proposed by Ash et al. which are referred to as Gaussian

normal basis (GNB). For T = 1 and 2, the GNBs become the two types of ONBs of

[36] and hence, CN ≤ Tm − T + 1. In Chapter 2, we will discuss multiplication on

GNB in more details as it is the one that has been employed in this thesis and has

been included in many international standards [18] and [19].



9

2.2.3.2 Multiplication Using Gaussian Normal Basis

GNB has been constructed by Ash et al. [37] and is a special class of normal basis

which is included in the IEEE 1363 [18] and NIST [19] standards and exists for every

m > 1 that is not divisible by eight [29].

De�nition 2.4. [29] Let p = mT + 1 be a prime number and gcd(mT/k, m) = 1,

where k is the multiplication order of 2 module p. Then, the normal basis N =

{β, β2, · · · , β2m−1} over GF (2m) is called the Gaussian normal basis (GNB) of type

T , T > 1.

The complexities of type T GNB multiplier in terms of time and area depend on

T > 1. In this thesis, we only consider the GNBs with odd values of m which

implies that T is an even number. Such GNBs cover all �ve binary �elds, i.e.,

m ∈ {163, 233, 283, 409, 571}, recommended by the IEEE 1363 [18] and NIST [19]

standards for ECDSA The corresponding types for these �elds are T = 4, 2, 6, 4, and

10, respectively.

Let A = (a0, a1, · · · , am−1) =
∑m−1

i=0 aiβ
2i and B = (b0, b1, · · · , bm−1) =

∑m−1
j=0 bjβ

2j

be two �eld elements over GF (2m) and assume C ∈ GF (2m) be their product, i.e.,

C = (c0, c1, · · · , cm−1) = AB. Then, the �rst coordinate of C, i.e., c0 can be obtained

from an explicit formula given in [18] as follows

c0 = a0b1 +

p−2∑
k=2

aF (k)bF (k+1),

= a0b1 +
m−1∑
i=1

ai

 ∑
F (k)=i

bF (k+1)

 , 2 ≤ k ≤ p− 2, (2.5)

where in (2.5), the sequence F (1), F (2), · · · , F (p− 1) can be obtained by precompu-

tation using

F (k) = F (2iujmod p) = i, 1 ≤ i ≤ m− 1, 0 ≤ j < T, (2.6)

where u is an integer of order T mod p and p = Tm + 1 [18]. In Table the sequence

of F for type 4 GNB over GF (27) is given. It is noted that for each i, 1 ≤ i ≤ m− 1,

F (k + 1), 2 ≤ k ≤ p − 2 in (2.5), can be used as entries of a (m − 1) × T matrix

R. Let us denote the (i, j)-th element of this matrix as R(i, j), 0 ≤ R(i, j) ≤ m− 1,

1 ≤ i ≤ m − 1, 1 ≤ j ≤ T . Each row of the matrix R, contains T entries of integer

in [0,m− 1]. Then, one can write c0 as [5]
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Table 2.1: The Sequence of F for type 4 GNB over GF (27)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F (k) 0 1 5 2 1 6 5 3 3 2 4 0 4 6

K 15 16 17 18 19 20 21 22 23 24 25 26 27 28
F (k) 6 4 0 4 2 3 3 5 6 1 2 6 1 0

c0 = a0b1 +
m−1∑
i=1

ai

(
T∑
j=1

bR(i,j)

)
. (2.7)

Note that, to obtain the lth coordinates of C, i.e., cl one needs to add � l mod m�

to all indices in (2.7). Therefore, one can �nd all coordinates of C as follows:

Lemma 2.1. [5]The product of A and B in GF (2m) is

C = (A� (B � 1))⊕
m−1∑
i=1

(A� i)� S(i, B), (2.8)

where

S(i, B) = ((B � R(i, 1))⊕ (B � R(i, 2))⊕ · · · ⊕ (B � R(i, T ))) , 1 ≤ i ≤ m− 1.

(2.9)

and (X � i) is the i-fold left cyclic shift of X ∈ GF (2m) and X�Y = (x0y0, · · · , xm−1ym−1)
and X ⊕ Y = (x0 + y0, · · · , xm−1 + ym−1) denote bit-wise AND and XOR operations

between coordinates of X and Y , respectively.

Remark 2.1. From (2.6) one can realize that for T > 2 there are situations (for

example F (k) = m−1
2

and F (k) = m+1
2

for T = 4) where matrix R contains (two)

equal entries.

2.2.3.3 Inversion

Inversion, i.e., for a given element A ∈ GF (2m) �nding an element A−1 ∈ GF (2m)

such that A ·A−1 = 1, is considered an expensive operation. It is commonly required

in cryptographic applications of �nite �elds and its e�cient implementation is impor-

tant. There are two ways to compute inversion over �nite �elds: extended Euclidean

algorithm and Fermat's Little Theorem [38]. The inversion based on Fermat's Little

Theorem uses consecutive squarings and multiplication and is more suitable while

�eld elements are represented by normal basis. Based on De�nition 2.3, it follows
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that A2m−2 = A−1 and its computation (i.e., exponentiation) requires m − 1 squar-

ings and m− 2 multiplications as 2m − 2 = (11, · · · , 110)2. However, Itoh and Tsuji

[38] proposed an e�cient algorithm which reduces the number of multiplications to

blog2(m− 1)c + H(m − 1) − 1, where H(m − 1) represents the Hamming weight of

(m− 1).

2.2.3.4 Trace and Quadratic Equation Solution

The trace function Tr: GF (2m) → GF (2) is a linear map and for an element A =

(a0, a1, · · · , am−1) ∈ GF (2m) is de�ned as Tr(A) =
∑m−1

i=0 A2i ∈ {0, 1}. For normal

basis, when m is odd trace of element A can be computed as Tr(A) =
∑m−1

i=0 ai, which

is bit-wise XOR operation of all bits of vector A.

The quadratic equation X2 +X = A for X = (x0, x1, · · · , xm−1) ∈ GF (2m) has a

solution if and only if Tr(A) = 0, and hence if X is a solution, then X+1 is a solution.

In normal basis the solution can be found bit-wise. However, in polynomial basis it is

complicated and needs half-trace computations which requires m − 1 squarings and

(m− 1)/2 additions [11]. In Algorithm 2.1, an e�cient algorithm to solve quadratic

equation using normal basis is presented. The cost of solving quadratic equation

using normal basis is only m− 2 additions.

Example 2.1. Let element A = β+β16 = (10001) in the �nite �eld GF (25) for type

2 GNB. Then, the solutions of the quadratic equation X2 + X = A can be obtained

using Algorithm 2.1. First, we check that Tr(A) =
∑4

i=0 ai = 1 + 0 + 0 + 0 + 1 = 0.

Then, X can be obtained bit-wise as x0 = 1, x1 = 1, x2 = 1, x3 = 1, and x4 = 0 so

X = (11110). Also, X + 1 is solution too, i.e., X + 1 = (11110) + (11111) = (00001).

These two solutions satisfy the quadratic equation. As seen the cost of solving this

equation is only 3 module two additions (i.e., XORing).

In Chapter 4, we employ this algorithm to solve a quadratic equation for recovering

�nal point of point multiplication algorithm.

2.2.4 Multiplier Architectures

The implementation of �nite �eld multipliers using normal basis and more speci�cally

GNB can be categorized, in terms of their structures, into three groups: (i) bit-level

which includes: parallel-in serial-out (PISO) [35], serial-in parallel-out (SIPO) [39],

[4], [40], and parallel-in parallel-out (PIPO) [41], [42], (ii) digit-level including the

structures of: parallel-in serial-out (PISO) [43], parallel-in parallel-out (PIPO) [44],
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Algorithm 2.1 Solving quadratic equation X2 +X = A using normal basis [11].

Input: A = (a0, a1, · · · , am−1) ∈ GF (2m).
Output: X = (x0, x1, · · · , xm−1) ∈ GF (2m).
Step 1: x0 ← a0.
Step 2: For i from 1 to m− 2 do

xi ← ai ⊕ xi−1.
end for

Step 3: xm−1 ← 0.
Step 4: Return X.

[5], [45], and serial-in parallel-out (SIPO) [46], and (iii) bit-parallel which includes:

[47], [48], [49], and [50] multipliers.

2.2.4.1 Bit-Level NB Multiplication

Bit-level multipliers provide the lowest possible area complexity. The �rst bit-level

normal basis multiplier has been invented by Massey and Omura [35] which all coor-

dinates of both input operands should be presented during multiplication operation.

It is also known as a sequential multiplier with serial output in the literature [43].

Bit-level SIPO multipliers have been studied for normal basis and two di�erent struc-

tures, namely Least Signi�cant Bit (LSB) �rst and Most Signi�cant Bit (MSB) �rst

structures, have been proposed by Beth and Gollmann in [4]. A PIPO version of their

multiplier is also presented in [41] and its time and area complexities are derived.

Based on the way the input bits are processed and the output bits are produced

there are four kinds of of bit-level normal basis multipliers. They are called the

LSB-�rst and the MSB-�rst bit-level SIPO multipliers [31] and the LSB-�rst and the

MSB-�rst PISO normal basis multipliers [35].

LSB-�rst bit-level SIPO normal basis multiplier

In an LSB-�rst bit-level multiplication, having all elements of one operand, say B, to

be present, the other operand, i.e., A, is processed from its LSB, i.e., a0, and in each

clock cycle one bit is processed. In [4], Beth and Gollmann presented an architecture

for bit-level multiplication using normal basis. The key formulation of this multiplier

is presented below.

Lemma 2.2. [4] Let A and B be two elements of GF (2m) and C be their multiplica-
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tion, i.e., C = AB as

C =
m−1∑
i=0

(
aiβ

2i
)
B =

m−1∑
i=0

(
ai · βB2−i

)2i
=a0βB + a1

(
βB2−1

)2
+ · · ·+ am−1

(
βB2−(m−1)

)2m−1

, (2.10)

then similar to Horner's rule one can obtain

C =

((
· · ·
(

(a0βB)2
−1

+ a1βB
2−1
)2−1

+ · · ·
)2−1

+ am−1βB
2−(m−1)

)2−1

.

Let us denote P (B) = βB ∈ GF (2m) as a �eld element in GNB. In [5], P (B) can

be obtained for GNB multiplier based on the R matrix as

P (B) = (b1, s0(1, B), s0(2, B), · · · , s0(m− 1, B)) , (2.11)

where s0(i, B) =
∑T

j=1 bR(i,j) ∈ {0, 1}, 1 ≤ i ≤ m− 1. Then using (2.11) and Lemma

1, we can state the following.

Corollary 2.1. For GNB, the product of A = (a0, a1, · · · , am−1) ∈ GF (2m), given in

bit-serial fashion, and B ∈ GF (2m) can be written as

C =

((
· · ·
((
a0P (B)

)
� 1 + a1P (B � 1)

)
� 1 + · · ·

)
� 1 + am−1P (B � m− 1)

)
� 1,

(2.12)

where ��� denotes a left cyclic shift.

Equation (2.12) can be realized by an architecture depicted in Fig. 2.1a. The

implementation of P (B) ∈ GF (2m) given in (2.11) is performed by a P module shown

in Fig. 2.1c for type T GNB. The product of aiP (B) in Fig. 2.1a. denotes bit-wise

AND operation between ai and elements of P (B) and is performed using m 2-input

AND gates. Also the sum (adder block in Fig. 2.1a) is implemented using m 2-input

XOR gates. As one can see from Fig. 2.1a. all bits of the operand B are available,

while the coordinates of the operand A should be available in serial fashion with the

LSB �rst, i,e, a0. In this architecture, both m-bit registers 〈Y 〉 = 〈y0, y1, · · · , ym−1〉
and 〈Z〉 = 〈z0, z1, · · · , zm−1〉 should be initialized with operand B = (b0, b1, · · · , bm−1)
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Figure 2.1: The architecture of (a) LSB-�rst bit-level SIPO (b) MSB-�rst bit-level
normal basis multipliers [4] (c) The architecture of P module for type T GNB .

and 0 = (0, 0, · · · , 0) (i.e., Y (0) = B and Z(0) = 0), respectively. Let Z(0) denotes

the initial value of the register 〈Z〉 and Z(i), 1 ≤ i ≤ m, be the content of the

register 〈Z〉 in the clock cycle i. After one clock cycle the content of 〈Z〉 is Z(1) =

a0P (B) ∈ GF (2m). Then, the registers 〈Y 〉 and 〈Z〉 are cyclically shifted to the left

according to (2.12). A one can verify, after m-th clock cycle the register 〈Z〉 contains
the coordinates of Z(m) = C2 = (cm−1, c0, c1, · · · , cm−2) (see (2.12)). Thus, C can be

obtained by a left cyclic shift of register 〈Z〉, i.e., C = (Z(m) � 1). The presented

architecture requires at most (T − 1)(m − 1) XOR gates in the P module, m XOR

gates for the adder, m AND gates, and two m-bit registers. Also, its critical-path

delay due to delays through the P module (dlog2 T eTX), AND gates (TA), and XOR

gates (TX) is TA + (1 + dlog2 T e)TX .

The MSB-�rst bit-level SIPO normal basis multiplier

In a MSB-�rst bit-level SIPO GNB multiplication, the operand A is processed from

its MSB, i.e., am−1, and in each clock cycle one bit is considered.

Let A, B be two elements of GF (2m) and C be their product, i.e., C = AB, then

similar to Horner's rule one can obtain [4]:
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Table 2.2: The values of F for type 2 GNB over GF (25)

k 1 2 3 4 5 6 7 8 9 10

F (k) 0 1 3 2 4 4 2 3 1 0

Table 2.3: Content of Variables in the LSB-�rst and MSB-�rst multiplication of
A = (01110) and B = (10101) over GF (25).

j
LSB-�rst MSB-�rst

Y A Z Y A Z

0 10101 � 00000 11010 � 00000
1 10101 0 00000 11010 0 00000
2 01011 1 11011 01101 1 10100
3 10110 1 10000 10110 1 01101
4 01101 1 10101 01011 1 01101
5 11010 0 C2 = 01011 10101 0 C = 10110

C = AB =

(
· · ·
((

am−1βB
2−(m−1)

)2
+ am−2βB

2−(m−2)

)2

+ · · ·

)2

+ a0βB. (2.13)

To realize the implementation of (2.13), one needs to perform multiplication by β as

βB = βtr · (β · btr) = (βtr · β) · btr = M · btr which is a matrix-by-vector multiplication

for GNB and then compute C as

C =
(
· · ·
((
am−1 � P (Y )

)
� 1 + am−2 � P (Y � 1)

)
� 1 + · · ·

)
� 1+

a0 � P (Y � m− 1),

where Y = B2−(m−1)
= B2. The architecture for the MSB-�rst SIPO GNB multiplica-

tion is depicted in Fig. 2.1b. As one can see every bit of operand B is available, while

operand A should be available in serial with the MSB �rst. In this multiplier structure,

both registers 〈Y 〉 and 〈Z〉 are initialized to Y = (B � 1) = (bm−1, b0, b1, · · · , bm−2)
and 0 = (0, 0, · · · , 0), respectively. In the �rst clock cycle, the register 〈Z〉 contains
Z(1) = am−1 � P (B � 1). Then, registers 〈Y 〉 and 〈Z〉 should be cyclically shifted

to the right. Thus, as one can verify, after m-th clock cycle the register 〈Z〉 contains
the coordinates of C, i.e., Z(m) = C.
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2.2.4.2 An Example

Consider the �nite �eld GF (25) generated for type 2 GNB and we have the following

multiplication matrix from Table 2.2 given in [19] as

M =


0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 0

0 0 1 0 1


5×5

,R =


0 3

3 4

1 2

2 4


4×2

.

Let A = (01110) and B = (10101) be two �eld elements in GF (25). Based on the

the architectures depicted in Fig. 2.1, Table 2.3 illustrates the contents of various

variables of registers 〈Y 〉 and 〈Z〉 which are updated with the clock cycles. For

the MSB-�rst structure, �rst, registers 〈Y 〉 and 〈Z〉 are initialized (in row with j

being 0) with B2−4
= B2 = 11010 and 00000, respectively. Then, after j = 5 clock

cycles the register 〈Z〉 contains the product, i.e., C = 10110. For the LSB-�rst

structure, in the initialization step, registers 〈Y 〉 and 〈Z〉 are loaded with operand

B and 00000, respectively. Then, after 5 clock cycles the register 〈Z〉 contains C2 =

01011. Therefore, after a left cyclic shift (i.e., rewiring) one can obtain the result of

the multiplication as C = 10110.

2.2.4.3 Digit-level GNB multiplication

Digit-level multipliers are alternatives for bit-level and bit-parallel multipliers in which

the digit size can be chosen depending on the amount of the resources available. A

digit-level PIPO version of Massey-Omura multiplier [51] and its improved version

[44] are used in ECC based crypto-processors in [10], [6], and [26]. It has been

mentioned that in order to satisfy high speed and low complexity requirements of

cryptographic applications, there is a need to design e�cient architectures for �nite

�eld multiplication using normal basis. In [5], two e�cient digit-level PISO and PIPO

GNB multipliers are presented in [9], a subexpression sharing algorithm is introduced

and applied to obtain the least number of gates for the digit-level PIPO multiplier.

In the following, we summarize the contributions of this work.

2.2.4.4 Digit-level PISO GNB multiplier

In [5], a digit-level PISO GNB multiplier architecture is proposed. This architecture

which uses the following formulation is depicted in Fig. 2.2.
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Lemma 2.3. [5] Let us denote zl = xM(l)ytr, where M(l) denotes l-fold right and

down circular shift of multiplication matrix M. Then, for a digit level architecture

one needs to implement all entries of d vectors of

v(l) = [v
(l)
0 , v

(l)
1 , · · · , v

(l)
m−1]

tr = M(l)ytr, 0 ≤ l ≤ d− 1, (2.14)

Then, by y = b

zl = xv(l) =
m−1∑
i=0

xiv
(l)
i . (2.15)

for x = a and cl = zl. Consecutive d coordinates of C = AB can be obtained

from (2.14) and (2.15) by d-fold left cyclic shift of x and y. This multiplier requires

q =
⌈
m
d

⌉
, 1 ≤ q ≤ m, 1 ≤ d ≤ m, clock cycles to generate all the m coordinates of

the C = AB.

The architecture which realizes (2.14) and (2.15) is shown in Fig. 2.2. A d-fold

left cyclic shift is denoted by �
d
�� in this �gure.

It is noted that the presented R matrix in (2.7) can be easily obtained from the

M. Speci�cally, the (i, j)-th, 1 ≤ i ≤ m − 1,1 ≤ j ≤ T , entry of the matrix R, i.e.,

R(i, j), 0 ≤ R(i, j) ≤ m− 1 contains the column index of the non-zero entries in row

i of M. If the number of 1s in row i of M is T , then all R(i, j), 1 ≤ j ≤ T , contain

an integer in [0, m− 1]. Otherwise, rows of R with even number of entries should be

initialized with a constant value [5]. Therefore, one can obtain
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cl = albl+1 mod m +
m−1∑
i=1

al+i mod m

(
T∑
j=1

bl+R(i,j) mod m

)
, (2.16)

and implement d copies of cl in hardware to achieve a digit-level architecture for

0 ≤ l ≤ d− 1.

2.2.4.5 Digit-level PIPO GNB Multiplier

In [5] and [6] a digit-level GNB multiplier with parallel output (DL-PIPO) is proposed.

It requires q, 1 ≤ q ≤ m, clock cycles to generate all m coordinates of C = AB

simultaneously at the end of the �nal clock cycle. The original multiplier structure

of DL-PIPO is shown in Fig. 2.3. Let 〈X〉 and 〈Y 〉 be the input registers of this

multiplier. Then, it implements [5]

J(X, Y ) =
m−1∑
k=0

xm−ks
′

0(k, Y )β2i , (2.17)

where

s
′

0(k, Y ) =
∑
i∈Rk

yi−k, (2.18)

and Rk is a set containing the locations of non-zero entries of row 2k, 0 ≤ 2k ≤ m−1,

of the multiplication matrix M = M(0) de�ned in (2.4). Based on the properties of

M for GNB, one can �nd s
′
0(0, Y ) = y1 and s

′
0(k, Y ) = s

′
0(m − k, Y ), 1 ≤ k ≤ m−1

2

[5]. Also, it is shown in [44] and [5] that the number of elements in Rk is even and less

than or equal to T, i.e., |Rk| ≤ T . The J block in Fig. 2.3 performs (2.17) using m

AND gates. For the multiplication operation, the registers 〈X〉 and 〈Y 〉 of this �gure
are initially loaded by the coordinates of A and B, respectively. Also, the output

register 〈Z〉 should be cleared before starting the multiplication operation. Then,

after q clock cycles, the output register 〈Z〉 contains the coordinates of C = AB. In

the following section, we modify this multiplier to reduce the number of XOR gates.

2.3 Elliptic Curve Cryptography

To date, several forms of elliptic curves over �nite �elds of characteristic two have

been considered for hardware implementation of such cryptosystems in the literature;

see for example, [20], [21], [10], [6], [22], [23], [24], [25], [26], and [27]. They cover
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where the i-fold right cyclic shift is denoted by i
� and r is a number 0 ≤ r ≤ d− 1

such that m = qd− r.

a wide variety of cases regarding di�erent basis representations (e.g., polynomial ba-

sis and normal basis), di�erent coordinate systems (e.g., a�ne, projective, mixed,

etc.), and di�erent curve forms (e.g., generic and Koblitz). In these implementa-

tions, various hardware platforms such as �eld-programmable gate array (FPGA)

and application-speci�c integrated circuit (ASIC) have been utilized. For di�erent

target applications, e�cient implementations of ECC on these platforms with a bal-

ance between complexity of computations and availability of the resources are crucial

to provide highly e�cient cryptographic systems.

Binary Edwards curves have been introduced recently by Bernstein, Lange, and

Farashahi in [1]. They showed that all generic elliptic curves over binary �elds can be

written in Edwards form to obtain e�cient complete and uni�ed addition formulas

which work for all pairs of inputs. In [2], a generalized form of binary Hessian curves

is proposed which has similar characteristics to the binary Edwards curves. Both of

these curves o�er uni�ed and complete formulas for point operations which provides

resistance against side-channel attacks (SCAs). Despite the e�ciency of binary Ed-

wards and generalized Hessian curves, a limited number of articles in the literature

such as [52], [53], and [54] have investigated their implementations. In [52], an ASIC

implementation of point multiplication on a special case of binary Edwards curves

has been presented addressing energy consumption and simple power analysis attacks

over GF (2m) using polynomial basis representation. A SCA resistance evaluation of



20

binary Edwards curves has been discussed in [53] employing uni�ed addition formula

for doubling. The work presented in [54] mainly focuses on software implementation

of point multiplication on these curves employing di�erent curve parameters.

2.3.1 Elliptic Curve Arithmetic

In this thesis we mainly focus on binary �elds and limit de�nitions of elliptic curves

on GF (2m).

Let EW,a,b be a non-supersingular binary generic elliptic curve (short Weierstrass)

de�ned as

EW,a,b : y2 + xy = x3 + ax2 + b, (2.19)

where a, b ∈ GF (2m), and b 6= 0. A set of points (x, y) and a special point at in�nity O
(group identity) form a �nite Abelian group under a de�ned addition operation that

satisfy (2.19) and the so called chord-and-tangent rule (as shown in Fig. 2.4) is used

to de�ne the group operation [11]. For all P ∈ EW,a,b (GF (2m)), P +O = O+P = P .

The negative of point P = (x, y) is -P = (x, x+ y), where (x, y) + (x, x+ y) = O.
Then, for two points P1,P2 ∈ EW,a,b (GF (2m)), the third point P3 = P1 + P2 ∈

EW,a,b (GF (2m)) exist and can be produced using arithmetic operations in GF (2m)

which is called point addition. Also, for point P = (x1, y1) and P 6= −P the point

doubling is P4 = 2P = (x4, y4).

Elliptic curve point multiplication is de�ned over the Abelian group and it is

Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k

, (2.20)

where P and Q are two points on EW,a,b and k > 1 is an integer. The point P is

called the base point and Q is the result point.

De�nition 2.5. Given the cyclic additive group generated by P on EW,a,b(GF (2m),

the order of point P , ord(P ), is the smallest integer r, for which rP = O. Then, the
integer k is bounded as 1 < k ≤ ord(P )− 1.

Although the point multiplication of the form (2.20) is the most common operation

in elliptic curve cryptosystems, but in some applications (such as digital signature) a

double point multiplication with the form of mP + nQ is required to be performed,

where P,Q ∈ EW,a,b (GF (2m)) are points of order r and 1 ≤ m,n ≤ r − 1.
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De�nition 2.6. Given two points P and Q, where Q = kP , it is computationally

infeasible to obtain k which is known as elliptic curve discrete logarithm problem

(ECDLP). The ECDLP currently has exponential complexity and has no polynomial-

time solutions (without considering quantum computers).

Point addition in a�ne coordinates P3 = (x3, y3) = P1 + P2, where P1 6= P2 is

given by [28]: x3 = λ2 + λ+ x1 + x2 + a, λ = y2−y1
x2+x1

,

y3 = λ (x1 + x3) + x3 + y1,
(2.21)

where it costs I + 2M + S + 8A. Point doubling is P4 = (x4, y4) = 2P1 as given byx4 = x21 + b
x21

y4 = x21 +
(
x1 + y1

x1

)
x4 + x4,

(2.22)

and it costs I+ 2M+S+ 4A. As computing the inversion is costly in the �nite �elds

and as a result, some alternative approaches have been considered.

2.3.2 Inversion free Coordinates

Inversion is known as an expensive operation in �nite �elds. Therefore, instead of

having point coordinates represented in a�ne coordinate, it is e�cient to de�ne them

in projective coordinates. In the following, di�erent types of projective coordinates

are presented.
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2.3.2.1 Standard Projective Coordinates

In standard projective coordinates, a point is represented with the triple (X, Y, Z)

to represent (X/Z, Y/Z) in a�ne with Z 6= 0 and O = (0, 1, 0). Then, the curve

equation will be

Y 2Z +XY Z = X3 + aX2Z + bZ3,

where the cost of point addition and doubling is 16M+ 2S+ 6A and 8M+ 4S+ 5A,

respectively.

2.3.2.2 Lopez-Dahap Projective Coordinates

For Lopez-Dahab coordinates, [3] the triple (X, Y, Z) is used to represent (X/Z, Y/Z2)

in a�ne when Z 6= 0 and O = (1, 0, 0). The curve equation is

Y 2 +XY Z = X3Z + aX2Z2 + bZ4,

where the cost of point addition and doubling is 13M+ 4S+ 9A and 5M+ 4S+ 5A,

respectively. In Lopez-Dahap coordinates when one of the points represented in a�ne

the cost of mixed projective point addition, i.e., (X3, Y3, Z3) = (X1, Y1, Z1) + (x2, y2),

reduces to 9M + 5S + 9A [55].

2.3.2.3 Jacobian Projective Coordinates

In Jacobian projective coordinates, the triple (X, Y, Z) corresponds to the a�ne point

(X/Z2, Y/Z3) with the curve equation as

Y 2 +XY Z = X3 + aX2Z2 + bZ6,

where the costs of mixed point addition and doubling are 10M+3S+7A and 5M+5S,

respectively.
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Algorithm 2.2 Left-to-right Double-and-add point multiplication algorithm [11]

Inputs: An integer k > 1, k := (kl−1 · · · k1k0)2, and P = (x, y) ∈ E(GF (2m))
Output: Q = kP ∈ E(GF (2m))
Initialize: Q = P
For i := l − 2 down to 0 do

Q = 2Q
if ki = 1 then
Q = Q+ P
end if

end for
return Q

2.3.3 Point Multiplication

The elliptic curve point multiplication is de�ned in the Abelian group as Q = k ·P =

P +P + · · ·+P, (k times), where k is a positive integer, and Q and P are two points

on the elliptic curve Q,P ∈ E(GF (2m)) [3]. The e�ciency of point multiplication

depends on �nding the minimum number of steps to reach kP from a given point P .

In the following two mostly used algorithm for point multiplication is presented.

2.3.3.1 Double-And-Add Point Multiplication

The simplest method to perform point multiplication is the double-and-add method

as shown in Algorithm 2.2. As one can see, the scalar k is given in binary form, i.e.,

k =
∑l−1

i=0 ki2
i and the algorithm iterates through each bit of k. For each iteration a

point doubling is performed and when k is one, a point addition is also performed.

Clearly, the computational cost of the double-and-add method depends on the number

of ones in the binary expansion of k, i.e., H(k) which is the Hamming weight of k.

Therefore, this method requires l − 1 point doublings and H(k) − 1 (H(k) ≈ l/2 on

average) point additions. As the H(k) determines the performance of double-and-

add point multiplication algorithm, reducing it is always desired. A Non-Adjacent

Form (NAF) representation of k is used to reduce H(k). In this representation two

consecutive digits are never nonzero, i.e., kiki+1 = 0 and ki ∈ {0,±1} for all i. The
NAF method reduces the Hamming weight to H(k) ≈ l/3.

The double-and-add point multiplication is not secure against side channel attacks

and an attacker can reveal k by tracing the power consumption for doubling and

addition in each iteration. This method is suitable for the applications where point
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addition and doubling have equal cost of computation, for example in binary Edwards

[1] and generalized Hessian curves [2].

2.3.3.2 Montgomery Point Multiplication

Lopez and Dahab [3] generalized the Montgomery's idea [13] to binary generic curves

(2.19) and obtained a very e�cient algorithm for point multiplication. This method

is known as Montgomery point multiplication or Montgomery's ladder and is widely

used in the literature. It relies on the fact that the y-coordinate is not required during

point multiplication because it can be recovered at the end. Then, the x-coordinate

of point addition can be obtained as P3 = P1 + P2 from

Algorithm 2.3 Lopez-Dahab Scalar Multiplication [12]

Inputs: An integer k > 1, k := (kl−1 · · · k1k0)2, and P = (x, y) ∈ E
Output: Q = kP
Step 1: X1 := x, Z1 := 1, X2 := x4 + b, Z2 := x2

Step 2: For i := l − 2 down to 0
if ki = 1 then

Step 3: (X1, Z1) =ADD(X1, Z1, X2, Z2), (X2, Z2) =DBL(X2, Z2)
else

Step 4: (X2, Z2) =ADD(X1, Z1, X2, Z2), (X1, Z1) =DBL(X1, Z1)
Step 5: return Q = Mxy(X1, Z1, X2, Z2)

Z3 = (X1 · Z2 +X2 · Z1)
2 , X3 = x · Z3 + (X1 · Z2) · (X2 · Z1) , (2.23)

with the cost of 4M+S+ 2A and the x-coordinate of point doubling, P4 = 2P1 from

X4 = X4
1 + b · Z4

1 , Z4 = Z2
1 ·X2

1 (2.24)

with the cost of 2M + 3S + A. Then, the y-coordinate is recovered with the cost

of I + 10M + S + 6A [3]. In point multiplication using Montgomery algorithm in

each step point addition and point doubling should be performed. Then, due to its

uniform structure it reveals no information to distinguish it performs point addition

point doubling an hence is resistive to simple power analysis attack. It also provides

fast computations in comparison to the case where explicit addition and doubling

formulation are employed. The cost of combined point addition and doubling based
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on the x-coordinates only is 6M + 4S + 3A. Algorithm 2.3, presents Montgomery

point multiplication for a given point P ∈ EW,a,b (GF (2m)). Also, Mxy, converts the

Lopez-Dahab coordinates to a�ne ones and it is the only operation in this algorithm

which requires inversion. The Montgomery point multiplication is fast, uniform, and

secure against side channel attacks such as simple power analysis attacks. For detail

information about elliptic curve cryptography and its mathematical computations

one can refer to [11].

In the next chapter, we will present low-complexity hardware architectures for

digit-level GNB multipliers.
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Chapter 3

Low-Complexity Architectures for

Digit-level and Bit-parallel GNB

Multipliers over GF (2m)

O
UR objective in this chapter is to reduce the area complexity of digit-level

GNB multiplier architectures presented in the previous chapter. The multi-

plication of two �eld elements in binary �eld of characteristic two, i.e., GF (2m), is

more complicated than the other operations (e.g., addition and squaring) and plays

an important role in determining the e�ciency of cryptographic systems. Massey

and Omura (MO) [35] invented a bit-level, parallel-in serial-out GF (2m) normal basis

multiplier. Such a bit-level multiplier is slow as it generates the results of multiplica-

tion after m clock cycles. The fastest type of multipliers is the bit-parallel one whose

results are available after the propagation delay through the gates in one clock cycle.

We note that for type 2 GNB (which is type 2 optimal normal basis), there are several

e�cient multipliers available in the literature. For instance, in [56], Sunar and Koç

proposed a bit-parallel multiplier based on a permuted normal basis. An e�cient and

systolic type of their multiplier has been proposed later by Kwon [57] for type 2 GNB

which is highly regular. Also, sub-quadratic style multipliers have been proposed in

[58], [59], and [60] which require smaller area but higher delays. A digit-level version

of MO multiplier [35] is investigated for FPGA implementation of ECC in [10]. Also,

Kwon et al. [44] proposed an improved digit-level GNB multiplier which has been

employed in [6] for FPGA implementation of ECC over GF (2163). In order to satisfy

high speed and low complexity requirements of an ECC crypto-processor, one needs

to design an e�cient architecture for �nite �eld multiplication using normal basis

[10].
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The contributions of this chapter can be summarized as follows. The result pre-

sented in this chapter can be found in [9] and partly in [61].

• We present a low complexity architecture for digit-level parallel in parallel out

(DL-PIPO) GNB multiplier and propose a common subexpression elimination

algorithm. We also reduce the complexity of digit-level parallel in serial out

(DL-PISO) architecture presented in the previous chapter.

• We propose a new formulation and an improved architecture for digit-level serial

in parallel out (DL-SIPO) GNB multiplier architecture and derive its time and

area complexities. It is noted that the proposed architecture requires smaller

area in comparison to the leading ones in the literature.

• We simulate the performance of the complexity reduction algorithm and for

di�erent digit sizes for the proposed digit-level multiplier architectures.

• A low complexity bit-parallel architecture has been obtained by extending the

presented DL-PISO multiplier architecture and its time and area complexities

compared with the counterparts in the literature.

• Finally, our proposed multiplier architectures are implemented on the Xilinxr

VirtexTM-4 FPGA and synthesized using 65-nm CMOS library (ASIC) technol-

ogy for di�erent digit sizes. The timing and required area is also reported.

The rest of this chapter is organized as follows. In Section 3.1, a low complexity digit-

level parallel in parallel out multiplier architecture is presented. In Section 3.2, a new

architecture for digit-level serial in parallel out multiplier proposed and its time and

area complexities derived. In Section 3.3, the presented architecture for digit-level

parallel in serial out architecture in the previous chapter is improved. In Section 3.4, a

low-complexity bit-parallel architecture is proposed and its time and area complexities

compared with its counterparts. In Section 3.5, the proposed multiplier architectures

are implemented on FPGA and ASIC and the results are reported for di�erent digit

sizes. Finally, we conclude this chapter in Section 3.6.

3.1 An Improved Architecture for Digit-level PIPO

GNB Multiplier

In this section, we propose an improved architecture for the digit-level PIPO multi-

plier presented in the previous chapter. The number of XOR gates of the DL-PIPO
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multiplier can be reduced by reusing the common terms appeared at the outputs of

the P blocks. The DL-PIPO GNB multiplier architecture, has several P blocks shown

as p0 to pd−1 in Fig. 2.3. As shown in this �gure, P blocks use the shifted combina-

tion of the input operand B (preloaded in register 〈Y 〉). Therefore, we �rst determine
these combinations and after these combinations are computed, we use their results

in di�erent computations to optimize the area complexity by reducing the number of

signals and consequently number of XOR gates. We propose a method to combine

the computations of the P blocks into a ρ block as illustrated in the architecture of

Fig. 3.1. As seen in this �gure, the number of outputs of an unoptimized P block in

this �gure is m+1
2
. These are based on the following signals [5]

Pk(Y ) = (y1−k, s
′
0(1, Y � k), s

′
0(2, Y � k), · · ·

, · · · , s′0(m−12
, Y � k)), 0 ≤ k ≤ d− 1, (3.1)

for the P block that generates Pk(Y ). All signals in (3.1) are used to build the block

ρ in Fig. 3.1. As shown in this �gure, y1−ks are removed from the block ρ. To reduce

the complexity of the ρ block in Fig. 3.1, we divide the ρ block in two blocks ρ1 and

ρ2, where ρ1 includes all common pairs used to generate all signals in (3.1). In the

following we explain the procedure to build the ρ block and propose a complexity

reduction algorithm to obtain the optimized blocks of ρ1 and ρ2 having the time

complexity to be the same as the original block ρ, i.e., the addition of gate delays of

the two blocks ρ1 and ρ2.

Constructing the ρ Block

1. Corresponding to the output signals of the P block in Fig. 2.3, an m−1
2
× T

matrix denoted by µ = [µk]
m−1

2
k=1 is constructed, where µk is the row k, 1 ≤ k ≤

m−1
2

of the matrix µ. The entries of µk are at most T integers in the range of

[0,m − 1] and can be found from (2.18) which can be written as s
′
0(k, Y ) =∑

j∈µk yj, 1 ≤ k ≤ m−1
2
.

2. Based on the matrix µ and the given digit-size d, a matrix denoted by ρ is
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Figure 3.1: The proposed improved architecture for DL-PIPO GNB multiplier

obtained by appending the d− 1 matrices of µ− [i] mod m to µ as follows:

ρ =



µ

µ − [1] mod m

µ − [2] mod m
...

...
...

µ − [d− 1] mod m


(d×m−1

2
)×T

, (3.2)

where [i], 1 ≤ i ≤ d, denotes an m−1
2
× T matrix whose all entries are i.

3. Let ρi be a set which contains the entries in row i of the matrix ρ. Then, all

signals

sj =
∑
j∈ρi

yj, 1 ≤ j ≤ d
(m− 1)

2
(3.3)

should be implemented by the block ρ shown in Figure 3.1.

Complexity Reduction Algorithm

We want to �nd the common addition pairs to realize (3.3) with the least number of

XOR gates without changing the delay of the modi�ed multiplier as compared with

the original one.

1. Generate a pairset to form all pairs that should be implemented in the block

ρ1.
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2. Initialize the pairset in Step 1 by all pairs with only two entries in the rows of

the matrix ρ.

3. Based on the numbers of times that these pairs are repeated, update the ρ

matrix by removing the pairs obtained in Step 2. Then, go to Step 1.

4. Repeat the above iteration until there is no rows with more than two entries in

ρ matrix.

5. Generate the the ρ1 inside the ρ block based on the common pairs stored in the

pairset.

6. Reuse the output of the block ρ1 and generate all signals from the block ρ2 in

Figure 3.1.

It is noted that unlike the complexity reduction schemes available in the literature,

see for example [62], the proposed algorithm does not increase the gate delay of the

proposed architecture as compared to the original one.

3.1.1 Complexities

In this subsection, the complexity of the proposed digit-level PIPO multiplier is given

in terms of gate counts and critical-path delay.

Proposition 3.1. The proposed improved architecture for DL-PIPO type T GNB

multiplier over GF (2m) requires dm AND gates, 3 m-bit registers, and np + vp(
T
2
−

1) + dm XOR gates, where np, np 6 min
{
vpT

2
,
(
m
2

)}
is the number of XOR gates

(pairs) required to construct the block ρ1 in the proposed structure and the number of

rows inside the matrix which builds ρ is vp = d× m−1
2
. Also its critical path delay is

TDL−PIPO = TA + (dlog2 T e+ dlog2(d+ 1)e)TX , (3.4)

where TA and TX are the time delay of a two-input AND gate and an XOR gate,

respectively.

Proof. The number of rows in the matrix which builds ρ is vp = d × m−1
2

and each

row consists of at most T
2
pairs. Then, the number of pairs inside the ρ1 block will

be less than or equal to vp × T
2
. In the case where d = m (bit-parallel), one can

�nd the upper bound of np as
(
m
2

)
= m(m−1)

2
. Therefore, for the digit-level structure,

i.e., 1 < d < m, the upper bound for np is less than the minimum of
{
vpT

2
,m(m−1)

2

}
.
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Moreover, at most vp× (T
2
−1) XOR gates in the ρ2 block are required to build all the

signals of the ρ block. To construct the GF (2m) adders, one needs dm XOR gates.

As a result, the complexity of the proposed multiplier is np + vp(
T
2
− 1) + dm XOR

gates, dm AND gates, and 3m 1-bit registers.

The critical-path delay of the proposed architecture can be obtained by adding

the delays of the three blocks of ρ1, ρ2, J , and the GF (2m) adder which are TX ,⌈
log2

T
2

⌉
TX , TA, and dlog2(d+ 1)eTX , respectively. This results in the total delay of

TX+
⌈
log2

T
2

⌉
TX + TA + dlog2(d+ 1)eTX = TA + (dlog2 T e+ dlog2(d+ 1)e)TX , which

completes the proof.

In the following section, we present an illustrative example for the proposed com-

plexity reduction algorithm.

3.1.2 An Example over GF (27)

To better understand the complexity reduction algorithm, we illustrate an example

for the proposed algorithm for type 4 digit-level multiplier over GF (27) when the

digit-size is d = m = 7. The matrix M for type 4 GNB over GF (27) is

M =



0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1


7×7

.

The matrix µ can be generated according to the output of the P blocks in Fig. 2.3

as s
′
0(1, Y ) = y1−1+y3−1+y4−1+y5−1 = y0+y2+y3+y4, s

′
0(2, Y ) = y2−2+y6−2 = y0+y4,

and s
′
0(3, Y ) = y1−3 + y4−3 + y5−3 + y6−3 = y5 + y1 + y2 + y3. Then µ can be written as

µ =

 0 2 3 4

0 4 − −
5 1 2 3


3×4

.
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ρ =



0 2 3 4

0 4 − −
5 1 2 3

6 1 2 3

6 3 − −
4 0 1 2

5 0 1 2

5 2 − −
3 6 0 1

4 6 0 1

4 1 − −
2 5 6 0

3 5 6 0

3 0 − −
1 4 5 6

2 4 5 6

2 6 − −
0 3 4 5

1 3 4 5

1 5 − −
6 2 3 4


21×4

Pairset1=



y04

y63

y52

y41

y30

y26

y15

ρ(1) =



0 2 3 4

5 1 2 3

6 1 2 3

4 0 1 2

5 0 1 2

3 6 0 1

4 6 0 1

2 5 6 0

3 5 6 0

1 4 5 6

2 4 5 6

0 3 4 5

1 3 4 5

6 2 3 4



ρ(2) =



2 3

1 3

1 2

1 2

0 1

0 1

6 0

6 0

5 0

5 6

4 6

4 5

3 5

2 4



Pairset2 =



y23

y13

y12

y01

y60

y50

y56

y46

y45

y35

y24

Based on the digit-size d = 7 and the matrix µ(3×4), the matrix ρ(21×4) can be

generated corresponding the complexity reduction algorithm. One can obtain from

the matrix ρ(21×4) in which 7 rows of the matrix have just two entries. Therefore,

the pairs corresponding to these rows should be implemented as collected in the

pairset1. The matrix ρ is updated to ρ(1) by deleting all the two entries mentioned

in the pairset1. Then the elements of the pairset1 should be searched in ρ(1) and

all common pairs are removed and ρ(1) is updated to ρ(2). This iteration is repeated

until there is no rows with more than two entries. As a result, all the remaining

pairs as mentioned in the pairset2 should be implemented and repeated pairs (which

are underlined in the updated ρ(2) matrix) are removed. The union of pairset1 and

pairset2 includes the total of 18 pairs that should be implemented for the block ρ1 as

follows:

pairset={y04, y63, y52, y41, y30, y26, y15, y23, y13, y12, y01, y60,

y50, y56, y46, y45, y35, y24},

where yij = yi + yj. In addition to the implementation of the ρ block which requires

18 XOR gates, one need dm−1
2
− d = 14 (as, d = m) extra XOR gates for the block

ρ2 to construct its outputs. Therefore, the total number of XOR gates required to
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Figure 3.2: Comparison between the number of XOR gates required in the DL-PIPO
and the improved DL-PIPO for (a): m = 163 (T = 4), (b): m = 283 (T = 6).

implement the ρ block will be 18 + 14 = 32, whereas the unoptimized P blocks need

49 XOR gates and the scheme proposed in [5] requires 35 XOR gates.

It is noted that the other complexity reduction algorithms available in the litera-

ture may result in fewer number of gates at the expense of more delay. To compare

our complexity reduction algorithm with the one proposed in [62], we have applied

the complexity reduction algorithm proposed in [62] for the block ρ of this example.

It decreases the number of XORs to 23 with the increase of critical path delay to

8TX (eight level of XOR gates). Note that our scheme for this block results in the

complexity of 32 XOR gates with the same critical path delay as the original one,

i.e., 2TX .

3.1.3 Simulation Results for the DL-PIPO GNB Multiplier

over GF (2163) and GF (2283)

To evaluate the e�ciency of proposed complexity reduction algorithm, a MATLAB

code is written to generate common pairs and signals used in the blocks ρ1 and ρ2

of Fig. 3.1. It is noted that for type 2 GNB which is a type 2 optimal normal

basis over GF (2m), there is no common terms to be reused in the block ρ. Therefore,

the algorithm presented here cannot reduce the number of XOR gates for T = 2.

The simulation results of the algorithm for the improved DL-PIPO GNB multipliers

over GF (2163) and GF (2283) are obtained and plotted in Fig. 3.2a and Fig. 3.2b,

respectively. In these �gures, we plot the number of required XOR gates versus the
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digit size for the �elds GF (2163) (T = 4) and GF (2283) (T = 6) recommended by

NIST for ECDSA [19] as compared to ones of the original DL-PIPO architecture. For

a given number of clock cycle, q, 1 ≤ q ≤ m, the least value of digit sizes in the form

of d =
⌈
m
q

⌉
, 1 ≤ d ≤ m, is implemented so that the area complexity is optimized for

both multipliers.

From Fig. 3.2a and 3.2b, one can see that as the digit size increases, more common

pairs will be found. As an example, in Fig. 3.2a for the digit size d = m = 163,

the total number of XOR gates required in the original DL-PIPO is 66178 gates

whereas, the improved one, requires 50400 XOR gates for GF (2163). It means that

the complexity of the proposed improved DL-PIPO is about 24% less than the original

multiplier. More reduction can be found in Fig. 3.2b for the GF (2283) with d = m =

283. As seen the number of XOR gates needed by the original DL-PIPO is 279,604,

whereas the proposed DL-PIPO requires 185,375 XOR gates which is about 34% less

than that of the original multiplier. The exact values of np, i.e., the number of pairs

to construct ρ are given in Table 3.1 which are obtained by simulations.

Table 3.1: Comparison of number of XOR gates between bit-parallel GNB multipliers
for GF (2163) and GF (2283).

m T np Original

DL-PIPO

This work

163 4 10,791 66, 178 50,400

283 6 25,763 279, 604 185,375

3.2 New Architecture for Digit-Level SIPO GNBMul-

tiplier

In a digit-level SIPO multiplier, the bits of an operand are grouped into digits and in

each clock cycle one digit is processed. We extend the architecture of the LSB-�rst

bit-level GNB multiplier architecture presented in Chapter 2 and propose a low-

complexity LSD-�rst digit-level SIPO GNB multiplier architecture. In the following,

we present formulation, architecture, and complexity of the proposed multiplier ar-

chitecture.



35

3.2.1 Formulation

Let us assume A =
∑m−1

i=0 aiβ
2i = (a0, a1, · · · , am−1), then one can group the bits

into q =
⌈
m
d

⌉
digits denoted by Ai, 0 ≤ i ≤ q − 1 as (a0, · · · , ad−1) for the �rst

digit followed by (ad, · · · , a2d−1) for the second digit and �nally (ad(q−1), · · · , am−1)
for the qth digit where d, 2 ≤ d ≤ m − 1, is denoted as the number of bits in

each digit. Note that if the last digit does not have d bits, it will be appended

by zeros as its most signi�cant bit ends. Then, each digit can be represented as

Ai = (aid, aid+1, · · · aid+d−2, aid+d−1) =
∑d−1

j=0 aj+idβ
2j , Ai ∈ GF (2m) with respect to

the GNB and thus operand A can be written as

A =

q−1∑
i=0

A2id

i = (A0, A1, · · · , Aq−1).

Therefore, one can write their product AB = C ∈ GF (2m) as

C = AB

=

q−1∑
i=0

A2id

i ·B =

q−1∑
i=0

(
Ai ·B2−id

)2id
=

q−1∑
i=0

(
C(i)

)2id
, (3.5)

where

C(i) = AiB
2−id

. (3.6)

In order to derive a formulation for multiplication whose implementation is more

hardware-oriented we state the following.

Corollary 3.1. Given the ith digit of A, i.e., Ai with d bits and a �eld element of

B2−id ∈ GF (2m), their product C(i) ∈ GF (2m) can be obtained as

C(i) =
d−1∑
j=0

J2j
(
aj+id, B

2−(id+j)
)
,

where J(x, Y ) = x · P (Y ) ∈ GF (2m).

Proof. Using (3.6), one has

C(i) =
d−1∑
j=0

aj+idβ
2j ·B2−id

=
d−1∑
j=0

(
aj+id · βB2−id−j

)2j
. (3.7)
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Now we de�ne J(x, Y ) as a function of the product of a bit x ∈ GF (2) and a �eld

element P (Y ) ∈ GF (2m) as

J(x, Y ) = x · P (Y ). (3.8)

Then, using (2.11) and Corollary 1, one can write βB = P (B) to simplify C(i) in

(3.7) as follows

C(i) =
d−1∑
j=0

(
aj+id · P

(
B � (id+ j)

))2j
,

=
d−1∑
j=0

J2j
(
aj+id, B

2−(id+j)
)

(3.9)

This completes the proof.

Then, the multiplication of A and B can be obtained from

C = AB =

q−1∑
i=0

(
C(i) � id

)
. (3.10)

In the following, we present the architecture of the proposed DL-SIPO GNB multi-

plier.

3.2.2 New Architecture

In order to map the formulation obtained in previous subsection to hardware, an ar-

chitecture for the LSD-�rst DL-SIPO GNB multiplier is depicted in Fig. 3.3. Initially,

the register 〈Y 〉 is loaded by B = (b0, b1, · · · , bm−1) and the register 〈Z〉 is cleared
to 0. The d-fold left cyclic shifts are realized by �

d
�� as shown in Fig. 3.3. Also,

as one can see in this �gure, the last digit of operand A, i.e., Aq−1, is appended by

r = qd−m, 0 ≤ r ≤ d−1, zeros as its most signi�cant bit ends. The remaining input

bits are correspond to the terms appearing in Aq−1 (as m is not always a multiple of

digit-size d). This avoids redundant computations in the last clock cycle.

The DL-SIPO GNB multiplier architecture, has several P blocks shown as p0 to

pd−1 in Fig. 3.3b as a P array. As shown in this �gure, P blocks use the shifted

combination of P (Y ) ∈ GF (2m) de�ned in (2.11) for the input operand B (preloaded

in register 〈Y 〉). Therefore, we �rst determine these combinations and after these
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combinations are computed, we use their results in di�erent computations to optimize

the area complexity by reducing the number of signals and consequently number of

XOR gates. We propose a method to combine the computations of the P blocks into

a Q block as illustrated in the architecture of Fig. 3.3a.

The Q block is generated for the digit size d and type T GNB for operand B

as Q(Y ) = (P (Y ), P (Y )� 1, · · · , P (Y )� d− 1) as illustrated in Fig. 3.3 where

P (Y ) � l, 0 ≤ l ≤ d − 1 denotes l-fold right cyclic shift of P (Y ) ∈ GF (2m). As

shown in this �gure, yl+1, 0 ≤ l ≤ d − 1 are removed from the block Q as they are

correspond to the lines on vs-bus connected to register 〈Y 〉. The Q block can also be

represented by the Q matrix as

Q =



R(0)

R(1)

R(2)

...

R(l)


vs×T

, 0 ≤ l ≤ d− 1, (3.11)

where using (2.16), R(l) can be obtained by adding the (i, j)-th, 1 ≤ i ≤ m − 1,1 ≤
j ≤ T , entry of the matrix R = R(0), i.e., R(i, j), 0 ≤ R(i, j) ≤ m−1 with � l mod m�,

as R(i, j) + l mod m. Also, vs = d(m− 1)− d(d−1)
2

is the total number of rows inside

the Q matrix. This is due to the fact that every two R(i′) and R(i′′), 0 ≤ i′, i′′ ≤ d−1,

have a common row with the total of
(
d
2

)
= d(−1)

2
in the Q matrix [5]. Then, as one

can see, the multiplication of every bit of Ai in (3.9) by the outputs of the Q block

which is connected to vs-bus, is performed by J , (J0 to Jd−1) blocks, using (3.8) where

each J block includes m two-input AND gates as shown in Fig. 3.3a. After the �rst

clock cycle, the content of register 〈Y 〉 is B2−d
and in general it contains B2−id

after

ith clock cycle. Let Z(q) ∈ GF (2m) denotes the �eld element after the q-th clock

cycle whose its coordinates stored in the m-bit register 〈Z〉. Then, after one clock

cycle, with the use of (3.9) the register 〈Z〉 contains

C(0) = A0B =
d−1∑
j=0

J2j
(
aj, B

2−j
)
. (3.12)

Then, both registers 〈Y 〉 and 〈Z〉 should be d-fold cyclically shifted to the left to

obtain C(1), C(2), · · · , C(q−1), accordingly. The sum of d m-bit intermediate results

with one m-bit initial results in register 〈Z〉 is performed in the accumulator which is

implemented using a GF (2m) adder (as shown in Fig. 3.3). Therefore, one can verify
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that considering (3.10), after q-th clock cycle, the register 〈Z〉 contains

Z(q) =

(
· · ·
((

(C(0))2
−d

+ C(1)
)2−d

+ C(2)
)2−d

+ · · ·
)2−d

+ C(q−1). (3.13)

By comparing (3.10) with (3.13) one can write Z(q) = C2−d(q−1)
= C2m+(d−r)

=

C2d−r
. Thus, the coordinates of C = AB can be obtained by (d − r)-fold left cyclic

shift of the register 〈Z〉, i.e., C = (Z(q)� d− r).

Remark 3.1. Using the above formulation, one can design similar architecture for

the MSD-�rst digit-level SIPO GNB multiplier.

3.2.2.1 Complexities

In this section, the complexity of the proposed digit-level SIPO multiplier is given in

terms of gate counts and critical-path delay.

The number of rows in the matrix which builds Q is vs = d(m − 1) − d(d−1)
2

and

each row consists of at most T
2
pairs. We divide the Q block into two blocks Q1

and Q2 blocks. Block Q1 contains at most ns, ns ≤ vs × T
2
, XOR gates with the

delay of an XOR gate as shown in Fig. 3.3a. Block Q2 consists of trees of XOR

gates for the GNB, with T > 2. The Q2 block connects its input bus to the vs-bus

having each of its output to be addition of at most T coordinates of 〈Y 〉 which can

be obtained by adding at most T
2
signals from the output of Q1. Therefore, if no

common subexpression in Q block are reused, the number of XOR gates in Q1 block

and Q2 block of Fig. 3.3a are at most vs T2 and vs(T2 −1), respectively. It is noted that

for the case where d = m (i.e., bit-parallel architecture), the upper bound for ns can

be obtained as
(
m
2

)
= m(m−1)

2
and hence in general ns ≤ min

{
vsT
2
,
(
m
2

)}
. Also, the

number of XOR gates in the GF (2m) adder (which adds d+1 m-bit inputs together) is

dm XOR gates. Moreover, the J blocks require dm two-input AND gates. Therefore,

based on the above discussions, the followings can be stated to obtain the gate count

and time complexity of the proposed multiplier architecture.

Proposition 3.2. The gate complexities of the proposed LSD-�rst DL-SIPO multi-

plier architecture is
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#AND =dm,

#XOR ≤vs(T − 1) + dm.

Remark 3.2. The area complexity of proposed LSD-�rst DL-SIPO multiplier can be

further reduced by incorporating a common subexpression elimination algorithm to

ns+vs×
(
T
2
− 1
)

+dm XOR gates which ns is upper bounded by ns ≤ min
{
vsT
2
,
(
m
2

)}
and its exact number can be obtained by simulation.

To obtain the maximum clock frequency for the proposed multiplier, one can see

that the critical-path delay of the proposed multiplier architecture includes those for

the Q1 and Q2 blocks (i.e., TX and
⌈
log2

T
2

⌉
TX respectively), the J blocks, (i.e., TA)

and the GF (2m) adder (i.e., dlog2(d+ 1)eTX). Then, the total critical-path delay due
to delays through the above mentioned blocks is TA + (dlog2 T e+ dlog2(d+ 1)e)TX .

3.2.2.2 Complexity Reduction

As explained in the previous subsection, the number of rows inside the Q matrix is

vs = d(m− 1)− d(d−1)
2

to generate all signals at the output of Q(Y ). As mentioned in

Conjecture 1, the matrix R contains rows with two equal entries (these entries cancel

each other in the formulation). Then, the Q matrix has some rows with only two

entries (i.e., one pair). Base on this fact and the number of times that these pairs

are repeated, a subexpression sharing method presented in [9] is used here to obtain

the optimized number of pairs in Q1, i.e., ns. In the following, we give an illustrative

example for the proposed multiplier architecture.

3.2.3 An Illustrative Example

We consider the multiplication matrix R for type T = 4 GNB over GF (27) as follows:
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Table 3.2: Contents of variables in the proposed architecture for LSD-�rst DL-SIPO
type 4 GNB multiplier over GF (27).

Clock LSD-First
j A Y Acc Z

0 � B = 1100011 � 0000000
1 11 1100011 0111010 0111010
2 00 0001111 0000000 1101001
3 01 0111100 1100111 1000000
4 10 1110001 1111010 C2 = 1111000

R =



0 2 5 6

1 3 4 5

2 5 3 3

2 6 0 0

1 2 3 6

1 4 5 6


(6×4)

. (3.14)

This matrix can be obtained from the location of non-zero entries (excluding the

�rst row) of the multiplication matrix M as

M =



0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1


7×7

.

Having the digit size to be d = 2, the matrix Q(11×4) can be generated as
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)0(
R

)1(
R

Removed

In this matrix, R(1) is obtained by adding the (i, j)-th entry of R = R(0) by �1

mod 7�. As one can see, the number of rows in this matrix is vs = 2×(7−1)−
(
2
2

)
= 11

(as R(0) and R(1) have a common row which is removed from this matrix) and it has

2d = 4 rows with just two entries (as the equal underlined entries cancel each other

in those four rows). Then, we �rst collect these pairs (in rows with two entries),

i.e., (2,5), (2,6), (3,6), and (0,3) as a pairset to initialize Q1 matrix. The numbers

of times that these pairs are repeated are 2,3,2, and 2, respectively. Then, applying

the common subexpression elimination algorithm presented in [9], one can obtain

the pairs inside the matrix Q1 as Q1 = {y25, y26, y36, y03, y05, y13, y45, y16, y24}, where
yij = yi + yj and ns = 9 is the number of pairs in Q1. Also, as each row in Q needs

(T
2
− 1) gates excluding the rows with only two entries (which is 2d here) and there

are vs rows in total, then vs(
T
2
− 1) − 2d = 7 XOR gates in block Q2 is required

to produce the the outputs of Q(Y ). The architecture of the proposed multiplier

over GF (27) for d = 2 is depicted in Fig. 3.3c. Therefore, the complexity of the

presented improved DL-SIPO multiplier is ns + vs(
T
2
− 1) − 2d + dm = 30 XOR

gates. Note that the unoptimized structure (without common subexpression sharing)

requires
(
d(m− 1)− d(d−1)

2

)
(T − 1)− 2d+dm = 43 XOR gates and the architecture

proposed in [7] requires m(dT + 1)− d = 61 XOR gates. Also, the critical-path delay

is TA + 4TX .

For the multiplier operation, as one can see in Fig. 3.3c, operand A is grouped

into four digits as A0 = (a0, a1), A1 = (a2, a3), A2 = (a4, a5), and A3 = (a6, 0), each

with the size of two bits, i.e., d = 2. Before starting the clock, the register 〈Y 〉 is
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Figure 3.4: Comparison among the numbers of XOR gates required in the original
and the improved digit-level SIPO multiplier architectures [7] for (a) type T = 4 GNB
over GF (2163) and (b) type T = 6 GNB over GF (2283).

loaded with the coordinates of B = (b0, b1, · · · , b6) and register 〈Z〉 is cleared to zero,

i.e., 〈Z〉 = (0, 0, · · · , 0). Then, in the �rst clock cycle, two LSD bits, i.e., a0 and a1
of operand A, are the inputs of the corresponding AND gates. One can realize that

after q =
⌈
7
2

⌉
= 4 clock cycles, the result of C2d−r

is available in parallel at register

〈Z〉. The contents of registers are given in Table 3.2 for A = B = (11000011). Note

that as mentioned before, the result of multiplication C = AB is obtained after one

(d − r =1) left cyclic shift of the content of register 〈Z〉 at the last clock cycle, i.e.,

C = (Z(q)� 1) = 1110001.

3.2.4 Simulations

To compare the complexity of the proposed improved DL-SIPO GNB multiplier to the

counterpart a MATLAB code is written to generate common pairs and signals used

in the blocks Q1 and Q2 of the proposed architectures in Fig. 3.3a. The simulation

results of the algorithm for the improved DL-SIPO GNB multiplier for T = 4 over

GF (2163) and T = 6 over GF (2283) are obtained and plotted in terms of di�erent

digit sizes in Fig. 3.4a and 3.4b, respectively.
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3.3 New Architecture for Digit-Level PISO GNBmul-

tiplier

3.3.1 Low-Complexity Digit-Level PISO GNB Multiplier

In this subsection, we present a low-complexity architecture for the digit-level PISO

GNB multiplier presented in Chapter 2. The improvement of the new architecture is

based on a formulation of the multiplication operation, which is given in the following.

3.3.1.1 Improved Architecture

In this section, similar to the previous section, we present an improved architecture

for DL-PISO GNB multiplier and reduce its area complexity. As shown in Fig. 2.2,

the digit-level PISO multiplier architecture has several BTX blocks that use the same

combination of the input operand B (preloaded in the register 〈Y 〉). We combine the

computations of the parallel computed functions into a Q block (which is the same

as the one presented in previous section for DL-SIPO architecture) as illustrated in

the architecture in Fig. 3.5. As shown in this �gure, y1+ds are removed from the

block Q as they are corresponding to the lines on vs-bus connected to the register

〈Y 〉. The vs-bus contains all signals to generate all di�erent terms required in (2.14).

These signals are implemented by the blocks of Q1 and Q2 inside the Q block. We

�rst use the block Q1 to implement all pairs required for all signals in (2.14). In
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this architecture, each J block consists of m 2-input AND gates to implement (2.15).

Then, a level of XOR trees are utilized to implement all z0, z1, · · · , zd−1 coordinates
in (2.15). The proposed improved architecture provides the LSD of multiplication at

the �rst clock cycle (LSD-�rst).

For the purpose of illustration, the improved architecture of DL-PISO (d = 2) for

type 4 GNB over GF (27) is shown in Fig. 3.5b. As shown in this �gure, the Q1 and

Q2 blocks are generated for the given matrix R in (3.14). The registers 〈X〉 and 〈Y 〉
should be initialized with the coordinates of A and B and then after each clock cycle

two bits of C = AB become available at the output.

In the following, we derive the complexity of the improved LSD-�rst DL-PISO

GNB multiplier.

3.3.1.2 Complexities

To determine the area and time complexities of the presented architecture, the fol-

lowing is stated.

Proposition 3.3. For type T GNB over GF (2m), the improved digit-level PISO

GNB multiplier requires dm AND gates and ns+vs×
(
T
2
− 1
)

+d(m−1) XOR gates.

Also, the critical-path delay of the improved architecture is the same as the original

structure, i.e., TA + (dlog2 T e+ dlog2me)TX .

Proof. The proof is similar to the one presented in Subsection 3.2.2.1.

We further optimize the number of XOR gates required for the improved LSD-�rst

DL-PISO GNB multiplier similar to the one proposed for DL-SIPO multiplier. The

results of simulations obtained for di�erent digit-size and are plotted in Figs. 3.6a

and 3.6b for m = 163 and m = 283, respectively. As one can see, the improved

architecture requires fewer number of XOR gates.

3.3.2 Complexity Comparison

In Table 3.3, the time and area complexities of the presented DL-SIPO multiplier

(before applying common subexpression elimination algorithm) are compared with

the ones, namely, DL-SIPO [7], DL-PISO [5], and DL-PIPO [45] multipliers as they

appear to be the most recently proposed works available in the literature. It is noted

that our presented multiplier architecture (Fig. 3.3) requires fewer number of gates
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than the previously proposed ones DL-SIPO [7] and DL-PIPO [45]. Also, as seen in

this table, in terms of time complexity our presented multiplier (Fig. 3.3) is favorably

comparable with the DL-SIPO [7]. Moreover, in Fig. 3.4, the area complexity of

the improved architecture over GF (2163) and GF (2283) after applying the common

subexpression elimination algorithm is illustrated in terms of di�erent digit sizes and

compared with the ones of its counterpart [7]. As illustrated in Figs. 3.4 and 3.6, the

presented improved architectures require fewer XOR gates than the one proposed in

[7] and the original one proposed in [5], respectively.

In the following section, we propose a new bit-parallel multiplier.

3.4 An Extension to Bit-Parallel GNB Multiplier

Based on the formulation used in the previous sections, we present a new bit-parallel

GNB multiplier over GF (2m) in this section. The proposed digit-level GNB multiplier

architectures can be easily scaled up to the bit-parallel type. To obtain the bit-parallel

multiplier, one can implement (2.4) in hardware for all cl, 0 ≤ l ≤ m − 1. Thus,

the hardware architecture of a bit-parallel multiplier is obtained by implementing m

copies of identical structures used for c0 with cyclic shifts of their inputs.

The architecture of the proposed bit-parallel GNB multiplier is depicted in Fig.

3.7. In Propositions 3.1 and 3.3 for DL-PIPO and DL-PISO multiplier architectures

we de�ned np and ns as the number of pairs (inside the blocks ρ1 and Q1) to build

the ρ and Q blocks, respectively. For a bit-parallel architecture the upper bound

for the number of pairs in these blocks are the equal to the the all combinations of
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two coordinates of A, i.e., n =
(
m
2

)
= m(m−1)

2
combinations. Note that for T = 2,

n = m(m−1)
2

and the block ρ2 connects its input bus to the next bus without using

any XOR gates. Note that the exact complexities of Q1 and Q2 depend on the GNB.

However, one can �nd the upper bound for the number of XOR gates and time delay

of this structure as follows.

Proposition 3.4. For Type T GNB over GF (2m), the proposed bit-parallel GNB

multiplier architecture requires m2AND gates and at most (T +4)(m(m−1)
4

) XOR gates

with the critical path delay of

TC = TA + (dlog2 T e+ dlog2me)TX , (3.15)

where TA and TX are the time delay of a two-input AND gate and an XOR gate,

respectively.

Proof. The proof can be obtained by equating n = ns = np = m(m−1)
2

in Propositions

3.1 and 3.3. Then, one can obtain the upper bound for the total number of XOR

gates as m(m−1)
2

+ m(m−1)(T−2)
4

+m(m− 1) = (T + 4)(m(m−1)
4

).

The critical-path delay of the proposed architecture can be obtained by adding

the delays of the three blocks of Q1, Q2, J , and the GF (2m) adders which are TX ,⌈
log2

T
2

⌉
TX , TA, and dlog2meTX , respectively. This results in the total delay of

TX+
⌈
log2

T
2

⌉
TX +TA+dlog2meTX = TA+(dlog2 T e+dlog2me)TX , which completes

the proof.

3.4.1 Comparison

The time and area complexities of the proposed bit-parallel GNB multiplier and the

previous schemes are compared in Table 3.4 for general and special values of T .

As shown in this table, the critical path delay of the proposed multiplier matches

the fastest results available in the literature. For type T = 2 GNB, the number

of XOR gates also matches the fastest result available in the open literature, i.e.,

1.5m(m− 1). However, it is much greater than the sub-quadratic results proposed in

[63] and [59] which require much higher delay as compared to the one proposed here.

It is interesting to note that for T > 2, the proposed multiplier requires smaller area

in comparison to its counterparts which are proposed most recently with the same

delay as shown in this table.
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It should be noted that, to obtain the exact number of XOR gates for a given

GNB, the exact value of n should be obtained by simulations. Using the complexity

reduction algorithm proposed in Section 3.1, a comparison between the number of

XOR gates of bit-parallel GNB multipliers is illustrated in Table 2 for GF (2163) and

GF (2283) �elds recommended by NIST for ECDSA.
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Table 3.4: Area and time complexity comparison of bit-parallel GNB multipliers over
GF (2m). Note that for Type T GNB: CN ≤ Tm− T + 1.

Multiplier typeT ≥ 2

#AND #XOR Critical path

Massey & Omura [35] m2 m(CN − 1) TA + dlog2CNeTX
Gao & Sobelman[51] m2 m(CN − 1) TA + (dlog2 T e+ dlog2me)TX

[50] m2 ≤ m
2 (CN +m− 2) TA + (dlog2(CN + 1)e)TX

DLGMp [5], [6] (d = m) m2 ≤ m
2 (CN +m) TA + (dlog2 T e+ dlog2(m)e)TX

DLGMs [5] (d = m) m2 ≤ m(m−1)
2 (T + 1) TA + (dlog2 T e+ dlog2(m)e)TX

DL-PIPO [45] (d = m) m2 ≤ Tm(m− 1) +m TA + (dlog2 T e+ dlog2(m)e)TX
DL-SIPO [7] (d = m) m2 ≤ (T − 1)m2 +m(m− 1) TA + (dlog2 T e+ dlog2(m)e)TX

This work m2 ≤ (m(m−1)
4 )(T + 4) TA + (dlog2 T e+ dlog2(m)e)TX

T = 2

[35, 51] m2 2m(m− 1) TA + dlog2(2m− 1)eTX
Koc & Sunar [48] m2 1.5m(m− 1) TA + (1 + dlog2me)TX
Fan & Hasan [59] 2m1.6 11m1.6 − 12m+ 1 TA + (2 log2m+ 1)TX

Gathen et. al [63] 2m1.6 7.6m1.6 +O(m logm) TA + (2 log2m+ 1)TX

[50, 5, 6], This work m2 1.5m(m− 1) TA + (1 + dlog2me)TX

T = 4

[35], [51] m2 4m2 − 4m TA + (2 + dlog2(m)e)TX
[50] m2 2.5m2 − 4.5m TA + d1 + log2(2m− 1)eTX

DLGMp [5], [6] (d = m) m2 2.5m2 − 1.5m TA + (2 + dlog2(m)e)TX
DLGMs [5] (d = m) m2 2.5m2 − 2.5m TA + (2 + dlog2(m)e)TX

DL-PIPO [45] (d = m) m2 4m2 − 3m TA + (2 + dlog2(m)e)TX
DL-SIPO [7] (d = m) m2 4m2 −m TA + (dlog2 T e+ dlog2(m)e)TX

This work m2 ≤ 2m2 − 2m TA + (2 + dlog2(m)e)TX

T = 6

[35], [51] m2 6m2 − 6m TA + (3 + dlog2(m)e)TX
[50] m2 3.5m2 − 3.5m TA + (dlog2(6m− 4)e)TX

DLGMp [5], [6] (d = m) m2 3.5m2 − 2.5m TA + (3 + dlog2(m)e)TX
DLGMs [5] (d = m) m2 3.5m2 − 3.5m TA + (3 + dlog2(m)e)TX

DL-PIPO [45] (d = m) m2 6m2 − 5m TA + (3 + dlog2(m)e)TX
DL-SIPO [7] (d = m) m2 6m2 −m TA + (3 + dlog2(m)e)TX

This work m2 ≤ 2.5m2 − 2.5m TA + (3 + dlog2(m)e)TX
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Table 3.5: FPGA implementation of BL-SIPO (Fig. 2.1) multiplier for type 4 over
GF (2163) on xc4vlx100-�1148 device.

Multiplier CPD [ns] FF LUT Slice Time [ns]

BL-SIPO 1.9 326 486 323 309.7

Table 3.6: ASIC synthesis results for BL-SIPO (Fig. 2.1) multiplier for type 4 over
GF (2163).

Multiplier CPD [ns] Area [µm2] Time [ns]

BL-SIPO 0.34 6817.2 55.42

3.5 FPGA and ASIC Implementations

In this section, we implement the presented architectures in the previous sections to

evaluate their area and time requirements. We have selected the Xilinxr VirtexTM-4

xc4vlx100-�1148 device as the target FPGA. In terms of available resources, xc4vlx100-

�1148 contains 49,152 slices (98,304 LUTs and 98,304 registers). Each slice contains

two �ip-�ops (FFs) and two 4-input look-up tables (LUTs) [64].

The proposed multiplier architectures are modeled in VHDL and synthesized for

di�erent digit sizes using XSTTM of Xilinxr ISETM version 12.1 design software. Also,

65-nm Complementary Metal-Oxide-Semiconductor (CMOS) library has been chosen

for the synthesis on application-speci�c integrated circuit (ASIC) technology. The

proposed architectures synthesized using Synopsysr Design Visionr which is a GUI

for Synopsysr Design Compilerr tools. The correctness of the multiplier architec-

tures is veri�ed by Xilinxr ISETM Simulator (ISim) and m-bit 2-to-1 multiplexers are

used to preload operands to the registers in each architecture. For the FPGA imple-

mentations, the optimization goal is set to the speed (i.e., default) and optimization

e�ort is set to normal and the area (Slices, LUTs, and FFs) and timing (ns) for the

critical-path delays (CPD) are obtained for di�erent digit sizes. It is noted that the

results of the implementations on FPGA, are all after post place and route results.

For the ASIC implementations, the map e�ort is set to medium with a target clock

period of 5 ns and the area (µm2) and timing (ns) are obtained for each of the designs.

We �rst implemented the LSB-�rst BL-SIPO (Fig. 2.1) multiplier and the results

are tabulated in Table 3.5 and 3.6, for FPGA (after post place and route) and ASIC

(after synthesis), respectively. Then, we have implemented the proposed architectures

for LSD-�rst SIPO, digit-level PISO, and digit-level PIPO, multipliers for di�erent
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Table 3.7: FPGA (Xilinxr VirtexTM-4 xc4vlx100-�1148 device) and ASIC (65-nm
CMOS library) synthesis results for the improved DL-SIPO (Fig. 3.3) multiplier
architectures for type 4 GNB over GF (2163) for di�erent digit sizes.

digit q = FPGA Implementation ASIC Synthesis
size

⌈
m
d

⌉
Slices FF LUT CPD [ns] T [ns] Area [µm2] CPD [ns] T [ns]

11 15 1,691 326 3,365 4.8 72.0 34,278.4 0.93 13.95
21 8 3,099 326 6,185 5.8 46.4 63,283 1.56 12.48
33 5 5,739 326 10,281 6.3 31.5 97,420.4 2.16 10.80
41 4 7,229 326 12,783 6.5 26.0 120,295 2.57 10.28
55 3 9,323 326 16,715 6.7 20.1 160,298.3 3.25 9.75

Table 3.8: FPGA (Xilinxr VirtexTM-4 xc4vlx100-�1148 device) and ASIC (65-nm
CMOS library) synthesis results for the improved DL-PISO (Fig. 3.5) multiplier
architecture for type 4 GNB over GF (2163) for di�erent digit sizes.

digit q = FPGA Implementation ASIC Synthesis
size

⌈
m
d

⌉
Slices FF LUT CPD [ns] T [ns] Area [µm2] CPD [ns] T [ns]

11 15 1,899 444 3,912 5.7 85.5 34,837.4 1.38 20.70
21 8 3,754 408 6,995 6.1 48.8 63,397.2 1.85 14.80
33 5 5,908 365 10,735 6.8 34.0 97,804.2 2.37 11.85
41 4 7,385 378 13,218 6.9 27.6 121,356 2.94 10.96
55 3 9,678 419 17,348 7.3 21.9 161,494.8 3.85 10.65

digit sizes. The results of the implementations for di�erent digit sizes are reported in

Tables 3.7, 3.8, and 3.9. As one can see the digit-level PIPO multiplier architecture

requires smallest area for both FPGA and ASIC implementations. Moreover, it is

faster than the other multiplier architectures. We note that one can reduce the

critical-path delay of the proposed multiplier architectures by pipelining the multiplier

architectures and maintain high-throughput performance. It should be noted that for

any particular application the digit-size should be chosen in such a way to achieve

highest performance considering the time-area trade-o�s.

3.6 Conclusion

In this chapter, we have proposed three improved multiplier architectures, namely

DL-PIPO, DL-PISO, and DL-SIPO, for digit-level GNB multiplication. We have pro-

posed a complexity reduction algorithm to reduce the complexity of each multiplier.

Then, we have derived the area and time complexities of the proposed architectures

and compared them with the counterparts in the literature. It has been shown that
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Table 3.9: FPGA (Xilinxr VirtexTM-4 xc4vlx100-�1148 device) and ASIC (65-nm
CMOS library) synthesis results for the improved DL-PIPO (Fig. 3.1) multiplier
architecture for type 4 GNB over GF (2163) for di�erent digit sizes.

digit q = FPGA Implementation ASIC Synthesis
size

⌈
m
d

⌉
Slices FF LUT CPD [ns] T [ns] Area [µm2] CPD [ns] T [ns]

11 15 1,563 495 2,399 4.7 70.5 28,667 0.91 13.65
21 8 2,545 532 4,261 4.9 39.2 52,663 1.48 11.84
33 5 4,033 554 7,194 5.4 27.0 80,566 2.16 10.8
41 4 4,628 502 8,503 5.6 22.4 99,546 2.59 10.36
55 3 6,484 500 11,412 5.8 17.4 132,225 3.39 10.17

the proposed architectures require smaller area in comparison to the leading ones in

the literature in terms of area and time complexities. For studying the application

of the proposed multiplier architectures, we have implemented them on FPGA and

ASIC and the results are compared. We also extended the DL-PISO multiplier archi-

tecture to a bit-parallel architecture and its time and area complexities also compared

with the counterparts. As seen from the FPGA and ASIC implementation results,

the DL-PIPO multiplier architecture requires the smallest area and runs in highest

clock frequencies in comparison to the DL-SIPO and DL-PISO architectures. These

multiplier architectures are suitable for the applications such as exponentiation and

point multiplication on binary elliptic curves where GNB multiplication is desired. In

the next chapter, we employ the DL-PIPO multiplier architecture to design a ECC-

based crypto-processor. We also provide an e�cient pipelined architecture for this

multiplier as well.
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Chapter 4

E�cient FPGA Implementation of

Point Multiplication over Binary

Edwards and Generalized Hessian

Curves Using Gaussian Normal Basis

I
N the previous chapter, we presented a low complexity digit-level parallel-in

parallel-out (DL-PIPO) architecture for Gaussian normal basis multiplier. In

this chapter, we e�ciently pipeline the DL-PIPO proposed architecture and study its

time-area trade-o�s. Then, we choose e�cient values for the digit-size and compare

the results with the non-pipelined architecture. We employ the proposed multiplier

architecture for e�cient implementation of point multiplication over binary ellip-

tic curves, including binary generic, Edwards, and generalized Hessian curves. We

demonstrate how parallelization in higher levels can be performed by full resource

utilization of computing point addition and point doubling formulas for the binary

Edwards and generalized Hessian curves. We employ the w-coordinate di�erential

formulations for computing point multiplication. Using a look-up table (LUT) based

pipelining and e�cient digit-level GNB multiplier, we evaluate the LUT complexity

and time-area trade-o�s of the proposed crypto-processor on FPGA. We compare the

implementation results of point multiplication on these curves with the ones on the

traditional binary generic curve. We note that, this is the �rst FPGA implementation

of point multiplication on binary Edwards and generalized Hessian curves represented

by w-coordinates.

The main contributions of this chapter are as follows. It is noted that these

contributions have been also presented in [65] and can be can be summarized as
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follows:

• We propose an e�cient hardware architecture for point multiplication on binary

Edwards and generalized Hessian curves incorporating higher level paralleliza-

tion and optimum lower level scheduling. This increases the overall performance

considering maximum utilization of available resources.

• We incorporate w-coordinate version of Montgomery's ladder for point multipli-

cation in binary Edwards and generalized Hessian curves using mixed di�erential

representation.

• For the proposed crypto-processor architecture over GF (2m), we obtain the

optimum digit sizes in terms of time-area trade-o�s for the proposed fast and

low-complexity digit-level Gaussian normal basis multiplier.

• Finally, we perform e�cient FPGA implementations of point multiplication on

binary Edwards and generalized Hessian curves over GF (2163) on a Xilinxr

VirtexTM-5 device and investigate the LUT-based time-area e�ciency for dif-

ferent digit sizes. We have also implemented ECC on binary generic curve and

compared its FPGA implementation results with the ones obtained for binary

Edwards and generalized Hessian curves.

The rest of the chapter is organized as follows. In Section 4.1, preliminaries

of arithmetic on binary Edwards and generalized Hessian curves are presented. In

Section 4.2, point multiplication and parallelization of point addition and doubling

are explained. The proposed hardware architecture for elliptic curve crypto-processor

is presented in Section 4.3. In this section, a pipelined version of digit-level PIPO

GNB multiplier architecture proposed in the previous chapter is also presented and

analyzed in terms of time-area trade-o�s for di�erent digit sizes. Section 4.4 presents

the results of FPGA implementations for the proposed ECC crypto-processor. Finally,

we conclude this chapter in Section 4.5.

4.1 Preliminaries

4.1.1 Arithmetic over Binary Edwards and Generalized Hes-

sian Curves

It is well known that a non-supersingular binary generic (short Weierstraÿ) elliptic

curve can be de�ned by a set of points (x, y) and a special point at in�nity O (group



57

identity) that satisfy the following equation

Ea,b/GF (2m) : y2 + xy = x3 + ax2 + b, (4.1)

where a, b ∈ GF (2m) and b 6= 0 [11]. These curves are also called anomalous binary

curves or Koblitz curves if a ∈ {0, 1} and b = 1, i.e., de�ned over GF (2) [66].

Binary Edwards curves belong to a special class of generic elliptic curves de�ned

over binary �eld when m ≥ 3 [1]. The merit of binary Edwards curves over generic

curves is that they have two special properties of being uni�ed and complete [1]. The

former is that the point addition formulations can be used for point doubling while

the latter means that point addition formulations can be used for all pairs of inputs

on the curve.

De�nition 4.1. [1] Let K be a �nite �eld of characteristic two, i.e., char(K) = 2 and

d1 and d2 be the elements of K with d1 6= 0 and d2 6= d21 + d1. The binary Edwards

curve with coe�cients d1 and d2 is the a�ne curve

EB,d1,d2/GF (2m) :

d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2, (4.2)

where d1, d2 ∈ GF (2m).

Given a point P = (x, y), its negation, −P , is obtained as (y, x) which has no

cost [1]. The point (0, 0) is the neutral element and (1, 1) has order 2 [1]. The binary

Edwards curves are complete if Tr(d2) = 1, i.e., d2 cannot be written as e2 + e for any

e in K, where Tr is the absolute trace of GF (2m) over GF (2) [1].

De�nition 4.2. [2] Let c and d to be elements of K such that c 6= 0 and d3 6= 27c.

The generalized Hessian curve Hc,d over K is de�ned by the equation

Hc,d/GF (2m) : x3 + y3 + c = dxy, (4.3)

where c = 1 results in a Hessian curve, i.e., Hd.

Note that the generalized Hessian curves are complete if and only if c is not a

cube in K.
The standard formulas on generic curves [3] fail in computing addition of two

points on curves if one of the points or their addition is at in�nity. These possibilities

should be tested before designing an elliptic curve cryptosystem. Note that point
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Table 4.1: Cost of point operations on binary Edwards curves (BECs), generalized
Hessian curves (GHCs), and binary generic curves (BGCs) over GF (2m) [1], [2], and
[3].

Curve
Curve Combined Addition and Doubling1

Parameter Projective Di� Mixed Di�

BEC d1 6= d2 8M + 4S + 2D 6M + 4S + 4D
[1] d1 = d2 7M + 4S + 2D 5M + 4S + 2D

GHC c 6= 1 7M + 4S + 3D 5M + 4S + 3D
[2] c = 1 7M + 4S + 2D 5M + 4S + 2D

BGC [3] b 6= 0 7M + 5S + 1D 5M + 5S + 1D

1. M, S, and D, are the costs of multiplication of two �eld

elements, a squaring, and a multiplication by a constant, respectively.

addition and doubling formulas on binary Edwards and generalized Hessian curves

work for all input pairs. This characteristic is called completeness. In what follows,

we discuss the point addition and doubling using w-coordinates for binary Edwards

and generalized Hessian curves.

4.1.2 Point Addition and Doubling Using Di�erential Formu-

lations in w-coordinates

Di�erential addition [13] is the computation of Q + P , given points of Q, P , and

Q − P . In [1] and [2], the idea of Montgomery's ladder [13] is used to present fast

formulas for w-coordinate di�erential addition on binary Edwards and generalized

Hessian curves, respectively. Let us assume w to be a linear and symmetric function

in terms of the coordinates x and y of the point P and is de�ned as wi = xi + yi,

where w(P ) = w(−P ). Bernstein et al. [1] have de�ned w-coordinate di�erential

addition for computing w(Q+P ) given w(Q), w(P ), and w(Q−P ). Similarly, the w-

coordinates di�erential doubling is the computation of w(2P ) given w(P ). Therefore,

using w-coordinates of di�erential addition and doubling formulas, w((2n + 1)P )

and w(2nP ) can be computed given w(nP ) and w((n + 1)P ), recursively [1]. In

the following, we revisit the di�erential addition and doubling formulas for binary

Edwards and generalized Hessian curves using w-coordinates [1] and [2].

Let P1 = (x1, y1) and P2 = (x2, y2) be two a�ne points on the binary Edwards

curve EB,d1,d2 . Let us de�ne P3 = P1 + P2 = (x3, y3), P4 = 2P2 = (x4, y4) =

(x2, y2) + (x2, y2), and P0 = P2 − P1 = (x0, y0) = (x2, y2) − (x1, y1). Then, one can

write w3 = w(P1 + P2), w4 = w(2P2), and w0 = w(P2 − P1) as de�ned above. In

the mixed coordinate representation of wi can be written as the fractions Wi/Zi in



59

projective, as w1 = w(P1) = W1/Z1 and w2 = w(P2) = W2/Z2, and w0 is given as an

a�ne �eld element. Then, the mixed w-coordinate addition (MDiffADD) of these two

points can be obtained from [1] as

C = W1 · (Z1 +W1), D = W2 · (Z2 +W2),

E = Z1 · Z2, F = W1 ·W2, V = C ·D,W3 = V + w0Z3,

Z3 = V + (
√
d1 · E +

√
d2/d1 + 1 · F )2, (4.4)

and the formulas for w-coordinate doubling (DiffDBL) [1] are

C = W2 · (Z2 +W2),W4 = C2,

Z4 = W4 + (( 4
√
d1 · Z2 + 4

√
d2/d1 + 1 ·W2)

2)2. (4.5)

For the generalized Hessian curves, the w-coordinate di�erential addition formulas

can be written as follows [2]

A = W1 · Z2, B = W2 · Z1, C = AB,

U = d3 · C,Z3 = (A+B)2,

W3 = U + w0 · Z3, (4.6)

and similarly for doubling, those are presented as follows [2]:

A = W 2
2 , B = Z2

2 , C = A+
√
c3(d3 + c) ·B,

D = d3 ·B,W4 = C2, Z4 = AD. (4.7)

The costs of di�erent coordinates to compute di�erential addition and doubling are

given in Table 4.1 for binary Edwards [1], generalized Hessian [2], and generic curves

[3]. Let M, S, and D be the costs of multiplication of two �eld elements, a squaring,

and a multiplication by a constant curve parameter, respectively. As illustrated in

this table, the mixed w-coordinate o�ers fast and comparable PA and PD formulas.

Therefore, we use the mixed w-coordinate di�erential addition and doubling formulas

[1]. Note that the di�erence of two points for di�erential addition is given in a�ne, i.e.,
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w0 = w(P2−P1). Moreover, the mixed w-coordinate addition and doubling formulas

are complete which means there is no need to check for the exceptional cases [1]. In

order to have e�cient computation of point operations, i.e., PAs and PDs, one needs

to employ an e�cient point multiplication algorithm. In the following section, we

give an explanation of using Montgomery's ladder for point multiplication.

4.2 Point Multiplication on Binary Edwards and

Generalized Hessian Curves

In this section, we consider Montgomery's ladder [13] and its modi�ed version [3] to

present point multiplication algorithm over w-coordinates for binary Edwards, gener-

alized Hessian, and binary generic curves. Using combined PA and PD formulations,

we explain how parallelization can increase the performance of point multiplication.

At the end, the cost of recovering �nal coordinates of point multiplication is derived.

4.2.1 Point Multiplication

The elliptic curve point multiplication is de�ned in the Abelian group as Q = k ·P =

P +P + · · ·+P, (k times), where k is a positive integer, and Q and P are two points

on the elliptic curve Q,P ∈ E(GF (2m)) [3]. The e�ciency of point multiplication

depends on �nding the minimum number of steps to reach kP from a given point

P = (x0, y0). In binary Edwards and generalized Hessian curves, point multiplication

can be de�ned similar to the one on generic curves [3]. Let P be a point on a binary

Edwards curve EB,d1,d2 and let us assume w(nP ) and w((n + 1)P ), 0 < n < k are

known. Therefore, one can use the w-coordinate di�erential addition and doubling

formulas to compute their sum as w((2n+ 1)P ) and double of w(nP ) as w(2nP ).

Among di�erent algorithms to perform point multiplication on elliptic curves,

the Montgomery's ladder [13] is widely used in the literature. It has a uniform

double-and-add structure which makes it secure against non-di�erential (simple) side-

channel attacks [1], [53]. In [3], an e�cient version of Montgomery's algorithm is

proposed over GF (2m). The Montgomery's ladder algorithm for point multiplication

using mixed w-coordinates is provided in Algorithm 4.1. As shown in in Step 1

of this algorithm, the point P = (x0, y0) is converted to the mixed w-coordinates

by computing w0 = w(P ) = x0 + y0 and setting W1 = w0 and Z1 = 1. Assume

the scalar k is represented in binary, i.e., k =
∑l−1

i=0 ki2
i, ki ∈ GF (2). Then, the

initialization steps, i.e., Steps 1a and 1b of Algorithm 4.1, produce w(P ) = (W1, Z1)



61

Algorithm 4.1 Montgomery's algorithm [13] for point multiplication using w-
coordinates.

Inputs: A point P = (x0, y0) ∈ E(GF (2m)) on a

binary curve and an integer k = (kl−1, · · · , k1, k0)2.
Output: w(Q) = w(kP ) ∈ E(GF (2m)).

1: set : w0 ← x0 + y0 and initialize

a: W1 ← w0 and Z1 ← 1

b: (W2, Z2) = DiffDBL(W1, Z1)

2: for i from l − 2 down to 0 do

a: if ki = 1 then

i): (W1, Z1) = MDiffADD(W1, Z1,W2, Z2, w0)

ii): (W2, Z2) = DiffDBL(W2, Z2)

b: else

i): (W1, Z1) = DiffDBL(W1, Z1)

ii): (W2, Z2) = MDiffADD(W1, Z1,W2, Z2, w0)

end if

end for

3: return w(kP )← (W1, Z1) and w((k + 1)P )← (W2, Z2)

and w(2P ) = (W2, Z2) using (4.5) [67]. For binary Edward curves, the formulations

of (4.4) and (4.5) are implemented in MDiffADD and DiffDBL functions of Algorithm

4.1, respectively. Therefore, after l − 1 iterations as presented in Steps 2a and 2b of

Algorithm 4.1, the w-coordinates of kP and (k + 1)P , i.e., w(kP ) = (W1, Z1) and

w((k + 1)P ) = (W2, Z2), will be available. Similarly, for generalized Hessian curves

w0 = w(P ) = 1 + dx0y0, d 6= 0 is computed in Step 1 and (W1, Z1) = (w0, 1) is

initialized in Step 1a for point multiplication [2]. For this curve, the formulations

of (4.6) and (4.7) are implemented in MDiffADD and DiffDBL functions of Algorithm

4.1, respectively.

4.2.2 Parallelism in Point Multiplication Algorithm

Parallelism is an approach to reduce the number of �eld arithmetic operations, mainly

multiplications, in the critical-path by using multiple multipliers concurrently [10].

In addition, merging point operations, i.e., the PA and PD, can result in less data de-

pendency and can reduce the latency of the point multiplication over binary Edwards

and generalized Hessian curves. Computing the w-coordinates of PA and PD for

binary Edwards curves together in one step of the Montgomery's algorithm requires

six general �nite �eld multiplications and four �eld multiplications by constants as
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Figure 4.1: Data dependency graphs for parallel computing of the combined PA and
PD operations on binary Edwards curves (a): d1 6= d2 and (b): d1 = d2 assuming
M = 2. It requires �ve registers of T1, T2, T3, T4, and T5. The constant parameters,
c1 =

√
d1, c2 =

√
d2/d1 + 1, c3 =

√
c1, and c4 =

√
c2 are assumed to be precomputed

and stored in the memory.

reported in Table 4.1. As summarized in this table, for generalized Hessian curves,

the cost of combined PA and PD is �ve �eld multiplications and two multiplications

by constants [2]. In the following, we explain how parallel �eld operations can be

utilized to reduce the latency of the point multiplication operation.

4.2.2.1 Scheduling Field Operations for PA and PD

We have obtained the data dependency graphs for the combined PA and PD on

binary Edwards and generalized Hessian curves as illustrated in Fig. 4.1 (Fig. 4.1a

for d1 6= d2 and Fig. 4.1b for d1 = d2) and Fig. 4.2a, respectively. As shown in

these �gures, the latency (in terms of number of clock cycles) of each step is the

latency of an operation with the longest latency. As one can see in Fig. 4.1a and

4.1b, the �rst four operations of PA, i.e., Step 0 to Step 3, on binary Edwards curve

should be performed before any PD operation. This is because computation of PD

depends on the PA. For generalized binary Hessian curve (Fig. 4.2a), operations

of PA and PD can be performed in parallel at any time. Note that the latency of

�eld additions and �eld squarings are negligible in comparison to the latency of the
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Figure 4.2: Data dependency graph for parallel computing of the combined PA and
PD operations for M = 2 available multipliers on (a) generalized Hessian curves,
assuming c1 = d3, and c2 = 1√

d3
and (b) binary generic curves (BGCs) [8].

�eld multipliers. Therefore, we calculate the latency of the critical-path in terms of

number of �eld multiplications. Let M be the latency (in terms of number of clock

cycles) for multiplying two �eld elements and D be the latency of multiplication of

a �eld element by a constant (e.g., curve parameters, d1 or d2). Let us denote M
as the number of parallel �nite �eld multipliers. In the following, we investigate the

parallelization using di�erent number of multipliers M = 1, 2 and 3.

4.2.2.2 Parallelization for Binary Edwards Curve (BEC)

For binary Edwards curves with d1 6= d2 and one available multiplier (M = 1), the

latency of the combined PA and PD is 6M + 4D as reported in Table 4.1. Utilizing

two multipliers, i.e., M = 2, reduces the latency to 4M + 1D and 3M + 1D for

d1 6= d2 (Fig. 4.1a) and d1 = d2 (Fig. 4.1b), respectively. As one can see in Steps

3, 5, 6, 7, and 10 of Fig. 4.1a, two independent multipliers are fully utilized. Thus,

the utilization factor of two multipliers in Fig. 4.1a is 100%. Similarly, in Steps 3, 4,

and 6 of Fig. 4.1b, two multipliers are fully utilized. However, in Step 8 of Fig. 4.1b,

only one of the two multipliers is utilized (shown in Fig. 4.1b) and the other one is

idle (not shown in Fig. 4.1b). Therefore, the utilization factor of two multipliers in

Fig. 4.1b is 7/8× 100 = 87.5%.

If three parallel multipliers, i.e.,M = 3, are employed, the latency will become 4M

and 3M for d1 6= d2 and d1 = d2, respectively. Therefore, adding one multiplier only
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reduces the latency by one multiplication by a constant. Moreover, one can �gure out,

the utilization factors for d1 6= d2 and d1 = d2 will reduce to 10/12 × 100 = 83.34%

and 7/9×100 = 77.78%, respectively. In addition, employing four multipliers reduces

the latency to 3M for d1 6= d2 and has no impact for the case where d1 = d2. Note

that employing more multipliers, i.e., M > 4, does not decrease the latency. As a

result, one can see the maximum utilization of the multipliers with low latency for

the combined PA and PD operations is achieved only by choosing M = 2. Multiplier

utilization factors for data dependency graph of di�erent curves are summarized in

Table 4.2. It is also worth noting that employing two multipliers for the case where

d1 6= d2, reduces the latency nearly 50% as compared to the case where only one

multiplier is utilized.

4.2.2.3 Parallelization for Generalized Hessian Curve (GHC)

For generalized Hessian curve with M = 1, the latency of combined PA and PD

algorithm is 5M+2D. In such a case, the multiplier is always performed the operation

and hence the utilization of multiplication for M = 1 is 100%. The data dependency

graph for GHC is illustrated in Fig. 4.2a using the combined PA and PD. In this �gure,

two multipliers, are available, i.e.,M = 2. As shown in Steps 2, 3, and 4 of Fig. 4.2a,

two multipliers operate in parallel, whereas, in Step 5 only one multiplier performs

the multiplication. Therefore, the utilization for M = 2 is 7/8 × 100 = 87.5%.

Also, the latency of computing the combined PA and PD operations in parallel is

3M + 1D. Note that employing three parallel multipliers (M = 3) reduces the

latency to 2M + 1D. However, one can �gure out that only in a new step (including

combination of Steps 2 and 3 in Fig. 4.2a) all three multipliers will be utilized and in

Step 4, i.e., multiplication by constant, only one multiplier will perform the operation

and the other two multipliers are idle. As a result, the utilization factor will reduce

to 7/9 × 100 = 77.78%. As one can �gure out, increasing the number of multipliers

from two to three reduces latency only 14% while increasing the required area about

33%.

4.2.2.4 Parallelization for Binary Generic Curve (BGC)

For the sake of comparison, we have included data dependency graph for binary

generic curves employing two multipliers M = 2 in Fig. 4.2b [8]. As seen from this

�gure, the latency of the combined PA and PD operations in parallel is 3M . Incorpo-

rating three multipliersM = 3 reduces the latency to 2M with multiplier utilization
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Table 4.2: Multiplier Utilization factors for data dependency graph of di�erent curves.

Curve
Utilization factor
M = 2 M = 3

BEC d1 6= d2 (Fig. 4.1a) 100% 83.34%
BEC d1 = d2 (Fig. 4.1b) 87.5% 77.78%

GHC (Fig. 4.2a) 87.5% 77.78%
BGC (Fig. 4.2b) 100% 100%

of 100% [6]. It is worth mentioning that employing more than three multipliers, i.e.,

M ≥ 4, will not reduce the latency of point multiplication. This has been investi-

gated in a di�erent way with M = 4 to parallelize PA and PD operations as well as

parallelizing �nite �eld operations in [8]. We note that parallel computation of point

multiplication over binary generic curves has been widely studied in the literature,

for instance one can refer to [20], [21], [10], [6], [25], and [8].

In the proposed architecture, multiplication by a constant is performed using one

of the available multipliers. As a result, its cost is calculated the same as one of a

multiplier.

As illustrated in Figs. 4.1 and 4.2, in each step, two words (e.g., W1 and Z1 in

Step 0 of Figs. 4.1a and 4.1b) are read from the memory as the inputs (it is discussed

in details in Section 4.3.3). Consequently, this reduces the memory requirements.

Scheduling has been made by two multipliers (M = 2), two adders, and two squarers

for e�cient implementations. Also, addition and squaring can be performed in one

clock cycle and multiplication using digit-level multiplier requires several M =
⌈
m
d

⌉
clock cycles with an additional clock cycles for loading the inputs. Note that the order

of operations are scheduled to achieve optimum number of clock cycles as illustrated in

each step of data dependency graphs. At the end of point multiplication (the bottoms

of data dependency graphs), the results of PAs and PDs for point multiplication

are written to the memory. In what follows, we explain how to recover Q = kP

from P , w(kP ), and w((k + 1)P ) at the end of the proposed Montgomery's point

multiplication.

4.2.3 Recovering the Final Coordinates of x and y

In this thesis, having w-coordinates in the last step of point multiplication, one can

obtain w(kP ) = w1 = W1 · Z−11 and w((k + 1)P ) = w2 = W2 · Z−12 . The procedure

of recovering the �nal point from w-coordinates is presented in [1]. At the end of

di�erential addition, one has w(kP ), w((k + 1)P ), and (x, y) for the base point P .
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Table 4.3: Latency of the operations in the point multiplication with M = 1, 2, 3,
where M is the number of clock cycles required for multiplication of two arbitrary
�eld elements.

Operation Latency of Point Multiplication Operations

Curve BEC [1] GHC [2] BGC [3]
Parameter d1 6= d2 d1 = d2 c = 1
Initialization 1M + 5 1M + 5 1M + 3 5

PA & PD,M = 1 10M + 21 7M + 16 7M + 10 6M + 10
PA & PD,M = 2 5M + 15 4M + 11 4M + 8 3M + 8
PA & PD,M = 3 4M + 9 3M + 7 3M + 9 2M + 5
w-coord/a�M = 1 22M + 109 21M + 104 20M + 98 19M + 75
w-coord/a�M = 2, 3 15M + 105 15M + 105 15M + 98 15M + 74

First, one needs to check if w2
1 + w1 6= 0 and then obtain x22 + x2 = A′ from the

equation given in [1]. Since Tr(A′) = 0 [1], then employing linear half-trace H:

GF (2m)→ GF (2) computation over GF (2163), one has x2 or x2 + 1 as the output for

polynomial basis. With solving the curve equation for x2 (or x2 + 1), one can get y2
(or y2 + 1) whose cost is I + 13M + 167S+ 81A for m = 163. Note that using normal

basis solving the quadratic equation and computing inversion can be performed very

e�ciently as explained in Chapter 1. Inversion requires blog2(m− 1)c+HW (m−1)−1

multiplications and m − 1 squarings, where HW (m − 1) is the hamming weight

(number of ones) of the binary representation of m− 1. Thus, for m = 163, the cost

of an inversion is 9M + 162S, where M and S are the costs (in terms of number

of clock cycles in our analysis) to perform a �nite �eld multiplication and squaring,

respectively. Then, the total cost of recovering (x, y) coordinates of kP as a �nal

point is 22M + 109 clock cycles.

4.2.4 Latency of Point Multiplication Operations

The latency of point multiplication operations are summarized in Table 4.3 for M =

1, 2, 3. The total latency consists of latencies of initialization (Linitial), computing

PA and PD in the main loop (Lloop), and recovering the �nal point (LR) for binary

Edwards and generalized Hessian curves as follows

LTotal = Linitial + (l − 1)× Lloop + LR. (4.8)

As shown in Table 4.3, M is the number of clock cycles to multiply two �eld elements

as well as a multiplication of a �eld element by a constant curve parameter. As an
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Figure 4.3: Architecture of the proposed elliptic curve crypto-processor for binary
Edwards, generalized Hessian, and binary generic curves.

example, the latency of combined PA and PD with M = 2 is calculated from Fig.

4.1a as 5M + 15, by adding all clock cycles in 15 steps shown in Fig. 4.1a, with an

assumption of D = M.

4.3 Architecture of the Proposed Elliptic Curve Crypto-

Processor

In this section, we propose a hardware architecture for point multiplication over binary

Edwards, generalized Hessian, and binary generic curves. A generic structure for the

implementation of the point multiplication on FPGA platform is depicted in Fig. 4.3.

The architecture is comprised of several blocks: a �nite �eld arithmetic unit (FAU), a

control unit and memory. The FAU includes two �eld multipliers, two adders, and two

squarers, as well as �ve 163-bit registers to store intermediate results. The controller

uses program instructions and implements �nite state machine (FSM). The memory

includes Block RAMs (BRAMs) and ROM to store the intermediate/�nal results and

program instructions. The lower level (�nite �eld) arithmetics are implemented in

FAU and higher levels, i.e., PA and PD, are implemented in control logic as a FSM.

In the following, we explain these blocks in details.
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4.3.1 Field Arithmetic Unit (FAU)

In the binary �eld with characteristic two, GF (2m), addition is a bit-wise XOR and

can be computed in one clock cycle. In normal basis, squaring of a �eld element

is almost free (in hardware) in terms of both timing and area as it is equivalent to

rewiring. The �nite �eld multiplier plays the main role in determining the perfor-

mance as it dominates the costs of point operations. Therefore, it is essential to

design an e�cient multiplier.

Bit-parallel multipliers can perform the �nite �eld multiplication in one clock

cycle. These multipliers are fast but require a large area complexity. Bit-serial mul-

tipliers require m clock cycles for the entire multiplication operation and they are

e�cient in terms of area but they are slow. Digit-level multipliers are the most suit-

able ones because the digit-size can be chosen for speci�c cryptographic applications

based on the available resources. In this work, we use a digit-level multiplier which

is explained in the following.
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4.3.2 A Fast and Low-Complexity Digit-Level GNB Multi-

plier over GF (2m)

In this subsection, we �rst present a pipelined low-complexity hardware architecture

for digit-level GNB multiplier over GF (2m). Then, we evaluate the practical time-

area e�ciency of the presented multiplier by implementing it on a Xilinxr VirtexTM-5

FPGA device.

4.3.2.1 Hardware Architecture

Let A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) be the �eld elements repre-

sented by type T GNB over GF (2m). Let C = (c0, c1, · · · , cm−1) denote their mul-

tiplication, i.e., C = AB. Reyhani-Masoleh in [5] has proposed a digit-level GNB

multiplier with parallel output and digit-size d, 1 ≤ d ≤ m. It requires M =
⌈
m
d

⌉
,

1 ≤M ≤ m, clock cycles to generate all the m coordinates of C = AB simultaneously

at the end of the �nal clock cycle. In [9], a modi�ed and low-complexity version of the

digit-level GNB multiplier proposed in [5] is presented. In this section, we pipeline

this architecture to make a faster VLSI architecture which operates at very high clock

frequencies.

The used pipelined multiplier is depicted in Fig. 4.4. It consists of a ρ block, J

blocks in Path-1, and the pipelined GF (2m) adder in Path-2. The ρ block includes

two sub-blocks ρ1 and ρ2 and its structure depends on type T , T ≥ 2, of GNB and

multiplication matrix. Each J block consists of m two-input AND gates and each

GF (2m) adder consists of binary trees of XOR gates. As illustrated in Fig. 4.4, the

multiplier is pipelined by adding a stage of pipelined registers inside the GF (2m) adder

in order to allow the multiplier to operate at very high clock frequencies. Therefore,

instead of performing GF (2m) addition of dm inputs (as shown in Fig. 4.4), which are

connected to the outputs of AND gates in J blocks, we perform the additions in two

stages, i.e., over
⌈
dm
`

⌉
-inputs. The �rst stage contains ` GF (2m) adders, each of which

has at most K =
⌈
d
`

⌉
m-bit inputs and are depicted by j0 to jd−1 in the architecture.

The outputs of the �rst adders are added with the output of the Z register using

another GF (2m) adder in the second stage. Choosing the optimum value of ` plays

an important role in designing the fast multiplier. This will be considered later in

this section. It is shown in [5] and [9] that the critical-path delay of the non-pipelined

multiplier is composed of the delays of the components located in Path-1 and path-2,

i.e., (dlog2 T eTX +TA) and (dlog2(d+ 1)eTX) for 1 ≤ d ≤ m, respectively. Note that

these are functions of the type of the multiplier T and the digit size d. As shown in
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Fig. 4.4, Path-2 is divided into Path-2a and Path-2b by inserting a stage of pipelined

registers in between (hereafter we call it `-level of accumulation). This technique

reduces the number of logic gates in the critical-path and simpli�es the routing.

4.3.2.2 Complexities

In this subsection, we give the number of registers and time complexities of the

pipelined digit-level GNB multiplier over GF (2m). The gate counts of the pipelined

multiplier remains the same as the ones of the non-pipelined modi�ed architecture

presented in [9]. It requires dm AND gates and np + vp(
T
2
− 1) + dm XOR gates,

where np, np 6 min
{
vpT

2
,
(
m
2

)}
[9].

Proposition 4.1. The pipelined multiplier structure of Fig. 4.4 requires (3 + `)m

registers and its critical-path delay is

max {(TA + (dlog2 T e+ dlog2Ke)TX) , (dlog2(`+ 1)eTX)} , (4.9)

where ` is the level of accumulation and K =
⌈
d
`

⌉
.

Proof. As one can see from Fig. 4.4, `m registers are required between Path-2a

and Path-2b for the pipeline purposes. As a result, the (` + 3)m 1-bit registers

required in the presented multiplier. The critical-path delay of Path-1, DPath-1 is

composed of the delays of the components in Path-1, i.e., TX ,
⌈
log2

T
2

⌉
TX , and

TA. The delay of Path-2a, DPath-2a is the delay of an m-bit GF (2m) adder with

at most K =
⌈
d
`

⌉
m-bit inputs, i.e., dlog2KeTX , and the delay of Path-2b, DPath-2b

is dlog2(`+ 1)eTX . Therefore, the critical-path delay of the presented architecture is

max {(DPath-1 +DPath-2a) , (DPath-2b)} which completes the proof.

The critical-path delay of the pipelined and non-pipelined architecture of the pre-

sented multiplier in terms of number of levels of accumulation, ` and digit-size, d are

illustrated in Table 4.4. It is noted that employing the proposed `-level of accumula-

tion using one stage of pipelined registers increases the latency of the multiplication

by one clock cycle to
⌈
m
d

⌉
+ 1.

Lemma 4.1. The number of feasible accumulators is upper bounded by l ≤
⌈
d
2

⌉
and

is lower bounded by l ≥ 2.
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Table 4.4: Critical-path delay of the pipelined and non-pipelined architecture of
presented digit-level type 4 GNB multiplier over GF (2163).

Non-Pipelined [5], [9] Pipelined

d
DPath-1 +
DPath-2: K

DPath-2a:
dlog2KeTX

`
DPath-2b:

dlog2(`+ 1)eTX
2 ≤ d ≤ 3 TA + 4TX 2 < K ≤ 4 2TX 2 ≤ ` ≤ 3 2TX
3 < d ≤ 7 TA + 5TX 4 < K ≤ 8 3TX 3 < ` ≤ 7 3TX
7 < d ≤ 15 TA + 6TX 8 < K ≤ 16 4TX 7 < ` ≤ 15 4TX
15 < d ≤ 31 TA + 7TX 16 < K ≤ 32 5TX 15 < ` ≤ 31 5TX
31 < d ≤ 63 TA + 8TX 32 < K ≤ 64 6TX 31 < ` ≤ 63 6TX

Proof. It is clear that from (4.9), the followings should be true in order to achieve

the goal of pipelining:(a): dlog2(l + 1)e < DPath-1 + dlog2(d+ 1)e , l ≥ 1

(b): dlog2 ke < dlog2(d+ 1)e , k ≥ 2
, (4.10)

where k is de�ned before. From 4.10(a), one can realize that dlog2(l + 1)e < dlog2(d+ 1)e
and the level of accumulation should be less than the digit-size, i.e., l < d, and from

4.10(b) one can get a tighter upper bound for l as k ≥ 2 and k < d + 1. The former

requires the number of accumulators to be 1 < l < d and the latter requires the

number of accumulators to be about less than half of the digit-size, i.e., 1 < l ≤
⌈
d
2

⌉
.

This completes the proof.

4.3.2.3 LUT-based Critical-path Delay Analysis

In this subsection, we investigate the critical-path delay of the presented pipelined

scheme based on the 6-input programmable look-up tables (LUTs) available in Xilinxr

VirtexTM-5 FPGA device. To estimate resource consumption and critical-path delay

we need to convert the gate-oriented schematics to LUT-based schematics. Then,

when the tree of XOR gates are converted into Γ-input (Γ = 6 in this case) LUT-

oriented schematics the Γ − 1 XOR gates can be replaced by one LUT in the best

case. For type T ≤ 4, each output of the ρ block is obtained by adding (XORing)

of T inputs and considering the J block which includes an additional input for the

AND operation. Therefore, such outputs can be implemented using 6-input LUTs

in 1TLUT delay. Then, the LUT-based critical-path delay of the Path-1 is 1TLUT for
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Table 4.5: LUT-based critical-path delay (CPD) (TLUT ) of the presented pipelined
multiplier for di�erent digit sizes (d) and levels of accumulation (`) for type 4 GNB
multiplier over GF (2163) where K =

⌈
d
`

⌉
.

d DPath-1
DPath-2a: `

DPath-2b :
dlog6Ke dlog6(`+ 1)e

11 ≤ d ≤ 28 1TLUT 1TLUT 2 ≤ ` ≤ 5 1TLUT
33 ≤ d ≤ 163 1TLUT 1TLUT 6 ≤ ` ≤ 28 2TLUT

type T ≤ 4. The critical-path delay of Path-2 is summarized in Table 4.5 in terms of

di�erent levels of accumulation, ` and digit-size d. The critical-path delay of Path-2a

and Path-2b are dlog6KeTLUT and dlog6(`+ 1)eTLUT , respectively. Therefore, K

and ` should be chosen in such a way to have a balance for the LUT-based critical-

path delay. For example, assume digit-size, d = 55 then the critical-path delay

of the non-pipelined multiplier is 1TLUT + dlog6 56eTLUT =4TLUT . Employing ` =

10 levels of accumulation results to have at most K =
⌈
55
10

⌉
= 6 inputs for each

GF (2163) adders in Path-2a. Then, the critical-path delay of the presented multiplier

is max {(1TLUT + dlog6 6eTLUT ) , (dlog6 11e)TLUT} = 2TLUT . Therefore, for practical

implementations one needs to obtain optimum level of pipelining considering number

of inputs of LUTs.

In this work, we have proposed an LUT-based pipelining scheme. We have tried

several di�erent pipelining techniques including the re-timing scheme of ISE tools

but none of them was as e�cient as the LUT-based analysis. Therefore, inserting

pipelined registers in appropriate locations has a signi�cant impact on the critical

path delay of the proposed structure as the GF (2m) adder of the multiplier has the

major critical path delay. In the following subsection, we implement the presented

multiplier on FPGA.

4.3.2.4 Implementation

To evaluate the practical performance, the presented pipelined digit-level type 4 GNB

PIPO multiplier over GF (2163) is implemented on a Xilinxr VirtexTM-5 FPGA device.

First, feasible values for digit size d are chosen in such a way to decrease the critical-

path delay while increasing the area (as a result of upper ceiling). Then, a careful

LUT-based with �oor-planing design is performed based on the given number of

accumulators ` and digit-size d. The e�ciency of the multiplier is measured in terms

of reciprocal of the time-area products, i.e., (time×area)−1 and is plotted for di�erent

digit sizes d, 11 ≤ d ≤ 82, in Fig. 4.5. As shown in this �gure, the local optimum
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Figure 4.5: Time-Area ratio of the presented pipelined low-complexity digit-level
GNB multiplier for type 4 over GF (2163) for di�erent digit sizes d.

(for time-area e�ciency) in terms of digit sizes for the presented multiplier can be

chosen as d ∈ {21, 24, 28, 33, 41, 55}. It is noted that two largest digit sizes of d = 82

and d = 163 degrade the maximum clock frequencies as the place and route (PAR)

operation becomes complicated. Therefore, we exclude d = 163 from our analysis

and keep d = 82 for comparison purposes. The presented multiplier is faster (i.e.,

operates at high clock frequencies) and is smaller than the digit-level MO multiplier

employed in [10] for FPGA implementations of ECC over GF (2163) [5].

4.3.3 Memory and Control Unit

4.3.3.1 Memory

The proposed architecture requires RAM to store intermediate and variables output

as from the FAU and registers and ROM to store program instructions and constant

values. As illustrated in Figs. 4.1 and 4.2, in each cycle two words (163-bit) from

memory are accessed. Then, dual port BRAMs are con�gured as two single port

BRAMs with independent data access [64]. One can perform two read operations

per cycle by using a dual port BRAM. This feature allows us to reduce the number

of required BRAMs and achieve greater utilization of this resource. In the utilized

Xilinxr VirtexTM-5 FPGA device, 36-Kbit (1024, 36-bit words) dual port BRAM

blocks are available with a combined 72-bit bus width (36-bit per port). The dual
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Figure 4.6: Con�guration of BRAMs for the proposed architecture.

port RAM is assigned through Xilinxr Synthesis Tool (XSTTM). In Fig. 4.3, the

storage RAM has been designed to allow the reading and writing of the 163-bit words

for m = 163. This results in minimizing the number of accesses to the memory.

Therefore, as shown in Fig. 4.6, the storage RAM is constructed with
⌈
163×2
72

⌉
= 5

BRAMs resulting in the storage of 512 × 163-bit words to store the intermediate

inputs as illustrated in the data �ow diagrams of Figs. 4.1 and 4.2.

The basic �eld arithmetic operations, i.e., multiplication, addition, and squaring,

are implemented in the FAU. The constants d1, d2, c1, c2, c3, and c4 are stored in the

ROM. The ROM to store constants, is implemented with the same BRAM explained

above by reserving a few addresses. A register �le of 5× 163-bit registers (shown by

Ti in Figs. 4.1 and 4.2) is incorporated in the FAU to reduce the overhead of the

communication between the FAU and the RAM. It is noted that the load and store

between the FAU and the memory storage require a single clock cycle. We count all of

these clock cycles when calculating the total latency of the point multiplication. The

ROM is also generated using Xilinxr BRAMs as illustrated in Fig. 4.3. In Table 4.3,

the latency of the operations required to perform arithmetic operations are reported.

4.3.3.2 Control Unit

The control unit of the ECC crypto-processor controls the FAU and memory and it

is implemented as a FSM. As shown in Fig. 4.3, the control unit has two address

signals, Addr_A and Addr_B, which control the interface between the FAU and the

memory. The program instructions are stored in ROM and the control unit fetches

and decodes instructions and sends appropriate control signals to the other units

based on the presented data dependency graphs of Figs. 4.1 and 4.2. Note that the

ROM that stores the program instructions is instantiated using BRAMs as 1024×36-
bit words. Therefore, to store program instructions one extra BRAM is required. It
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is noted that the control unit decides where to store and conditionally swamp (based

on ki) the results of the combined PA and PD operations.

4.4 Comparisons and Implementations

In this section, we discuss the results obtained in the previous sections and compare

them with the counterparts in terms of side-channel analysis and implementation

results.

4.4.1 Side-Channel Analysis

As mentioned before, Montgomery's Ladder is highly regular and suitable choice to

protect scalar k against simple power analysis attacks [68]. Newly introduced binary

Edwards and generalized Hessian curves have two special properties of being uni�ed

and complete [1]. The former is that the point addition formulations can be used for

point doubling while the latter means that point addition formulations can be used

for all pairs of inputs on the curve. Then, the point multiplication algorithm based

on uni�ed addition and doubling operations, will not cause side-channel leakage and

hence it is protected against side-channel attack (SCA). Baldwin et al. [69], have

investigated resistivity against simple power analysis (SPA) attacks of the uni�ed

operations for twisted Edwards curves over prime �elds GF (p). Also, this fact has

been investigated in [53] using the uni�ed addition formula of binary Edwards curves.

They have also taken advantage of incorporating a simple random order execution

(i.e., randomly changing the storage location of the results) in the Montgomery's

ladder that makes the di�erential power analysis (DPA) attack di�cult [53]. In this

work, we take advantage of completeness of w-coordinates di�erential PA and PD

formulas on Montgomery's ladder which is also SPA resistant.

The cost of explicit point addition is 8M+5S+1D for generic curves [55], 13M+

3S+3D for binary Edwards curves [1], and 8M+3S for Hessian curves [2]. Therefore,

the generalized Hessian curves o�er the fastest addition formulas for binary elliptic

curves. Although the explicit addition formulas for generic curves are faster than

binary Edwards curves, they are not complete and uni�ed. Therefore, one can realize

that the cost of one step of point multiplication on binary Edwards curves using

explicit addition formulas in [53] is higher than employing Montgomery's di�erential

addition algorithm, i.e., combined di�erential PA and PD. It is interesting to note

that one can reduce this cost by employing explicit addition formulas for generalized
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Table 4.7: FPGA implementation results for GHC over GF (2163) andM = 2.

d
M +
1

Total Latency fmax Area P.M. Time
Clock Cycles (LTotal) (MHz) LUTs FFs Slices [µs]

21 9 7419 272.3 8158 2934 3181 27.2
24 8 6751 271.8 8750 3260 3371 24.8
28 7 6083 269.3 10309 3260 4078 22.5
33 6 5415 268.2 11139 3586 4681 20.1
41 5 4747 267.1 14235 3912 5788 17.7
55 4 4079 266.2 17432 4890 6536 15.3
82 3 3411 196.1 23301 6194 8872 17.3

Table 4.8: FPGA implementation results for BGC over GF (2163) andM = 2.

d
M +
1

Total Latency fmax Area P.M. Time
Clock Cycles (LTotal) (MHz) LUTs FFs Slices [µs]

21 9 5884 272.3 8158 3097 3181 21.6
24 8 5383 271.8 8750 3423 3371 19.8
28 7 4882 269.3 10309 3423 4078 18.1
33 6 4381 268.2 11139 3249 4681 16.3
41 5 3880 267.1 14235 4075 5788 14.5
55 4 3379 266.2 17432 5053 6536 12.7
82 3 2878 196.1 23301 6357 8872 14.7
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Hessian curves.

4.4.2 Implementation Results and Discussion

We have selected the Xilinxr VirtexTM-5 xc5vlx110-2�1760 device as the target

FPGA. In terms of available resources, xc5vlx110-2�1760 contains 17,280 slices (69,120

LUTs and 69,120 registers), 128 BlockRAMs (BRAMs), and 800 input/output (I/O)

pins. Each slice contains 4 �ip-�ops (FFs) and 4 look-up tables (LUTs) [64].

Choosing Xilinxr VirtexTM-5 FPGA would increase the performance and speed of

our design. This is mainly due to the availability of 6-input LUTs and large word size

in its high 36-Kbit BRAMs. Having 6-input LUTs helps the design to be implemented

with fewer logic levels and availability of large word size makes it easier to build large

memory arrays (for storing large-bit �eld elements over GF (2m)) with less routing

delay. As a result, using Xilinxr VirtexTM-5 FPGAs increases the speed by reducing

both the critical-path delay and number of clock cycles (latency). Note that for the

comparison purpose, we also implement the proposed design on a Xilinxr VirtexTM-4

xc4vlx100 device (which o�ers four input LUTs) and compared it to the counterparts.

The presented architecture for elliptic curve crypto-processor of Section 4.3 is

coded in VHDL and synthesized for di�erent digit sizes d, d ∈ {21, 24, 28, 33, 41, 55, 82}
using XSTTM of Xilinxr ISETM version 12.1 design software. The optimization goal

for synthesize is set to the default value (i.e., speed). The results of the timing anal-

ysis of the implementations after the post place and route are reported in Tables 4.6

and 4.7 for binary Edwards and generalized Hessian curves, respectively. The number

of required clock cycles for computing the point multiplication is also presented in

these tables for the di�erent digit sizes and di�erent curve parameters, i.e., d1 = d2,

d1 6= d2, and c = 1. Moreover, the total latencies are found from (4.8) using l = 163

as the summation of the required clock cycles for the initialization, the total PA and

PD in of the point multiplication, and the conversion as obtained from Table 4.3.

The area requirements are stated in terms of the number of occupied slices (in-

cluding LUTs and FFs) as reported in Tables 4.6 and 4.7. Note that the proposed

architecture for the FAU is the same for binary Edwards (with d1 = d2 and d1 6= d2)

and generalized Hessian curves, but they only di�er in the control logic provided

by instruction program (in ROM) and the number of required registers. Therefore,

the area is equal for theses curves as presented in Tables 4.6 and 4.7. The fastest

point multiplications are computed for digit size d = 55 at approximately 17.3 µs

and 15.3 µs for binary Edwards and generalized Hessian curves, respectively. The
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proposed architecture requires almost 6, 536 occupied slices (17, 432 LUTs and 5, 053

FFs) and 6 BRAM blocks for d = 55. Similar implementation results are found for

binary generic curve as illustrated in Table 4.8.

It is noted that from our implementations results (Tables 4.6, 4.7, and 4.8), one can

see that the slices occupation is usually larger than the number of LUTs divided by

four (#LUT
4

) for VirtexTM-5. It is because the ISE design software starts the unrelated

logic packing after the CLB pack factor (100% for the default value) is reached [64].

A higher percentage number will result in lower density packing and a lower pack

factor results in a denser design with a di�cult place and route and consequently

higher delays.

Several implementations of ECC have been published in the literature targeting

various applications with di�erent requirements in terms of time-area trade-o�s. The

implementation results of this work are reported in Table 4.9 and are compared with

the results for generic and Koblitz curves available in the literature. We note that

because di�erent curves and di�erent FPGA technologies are used to implement dif-

ferent crypto-processors, meaningful quantitative comparisons of the area and time

results are di�cult. Therefore, as mentioned above we have implemented the crypto-

processor for d = 55 on VirtexTM-4 device and its area and timing results are reported

in Table 4.9. Moreover, as the �nite �eld multiplier plays an important role in de-

termining the performance of an ECC crypto-processor, we discuss the performance

results in terms of e�ciency of the �nite �eld multiplier and fairly compared them

with the counterparts.

It is worth mentioning that in these implementations, we have chosen normal

basis as it o�ers free repeated squarings. Also, we could have taken more advantages

of normal basis as it is utilized for Koblitz curves in [10] and [23]. However, by

using normal basis, we have eliminated the extra hardware for squarings for the

proposed ECC crypto-processor over binary Edwards and generalized Hessian curves.

Moreover, recovering �nal coordinates (x, y) ofQ = kP (represented in w-coordinates)

requires several repeated squarings and Half-trace computation, that their costs are

reduced by using normal basis.

In [10], Järvinen et al. have presented the use of parallelization on di�erent levels

of point multiplication and have extensively studied the speed and area requirements

for NIST B-163 and K-163 curves. For generic curves, the time-area performances are

investigated using one, two, and four digit-level MO [35] multipliers over GF (2163).

As discussed in [5], the area complexity of a digit-level MO multiplier and its im-

proved version is larger than the one presented in this work. Also, as one can realize,
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Table 4.9: Comparison of ECC implementations on FPGA over GF (2163).

Work1 Device Basis d M Area Time [µs]
BGC [10] Stratix II NB 14 4 11,800 ALMs 48.88
BKC [10] Stratix II NB 11 4 13,472 ALMs 25.81

BKC [26] Stratix II NB 17 4
23,580 ALMs (26,647
ALUTs, 20575 FFs)

9.48

BGC [10] Stratix II NB 41 2 18,489 ALMs 51.56
BKC [10] Stratix II NB 41 2 19,498 ALMs 35.1

BGC Virtex-5 NB 41 2
5,788 Slices (14,235
LUTs, 4,075 FFs)

14.4

BEC
(d1 6= d2)

Virtex-5 NB 41 2
5,788 Slices (14,235
LUTs, 4,075 FFs)

24.9

BEC
(d1 = d2)

Virtex-5 NB 41 2
5,788 Slices (14,235
LUTs, 3,749 FFs)

19.5

GHC
(c = 1)

Virtex-5 NB 41 2
5,788 Slices (14,235
LUTs, 3,912 FFs)

17.4

BGC [6] Virtex-4 NB 55 3 24,363 Slices 10.11

BGC Virtex-4 NB 55 2
12,834 Slices (22,815
LUTs, 6,683 FFs)

17.2

BEC
(d1 6= d2)

Virtex-4 NB 55 2
12,834 Slices (22,815
LUTs, 6,683 FFs)

23.3

BEC
(d1 = d2)

Virtex-4 NB 55 2
12,834 Slices (22,815
LUTs, 6,520 FFs)

22.9

GHC
(c = 1)

Virtex-4 NB 55 2
12,834 Slices (22,815
LUTs, 6,520 FFs)

20.8

BGC Virtex-5 NB 55 2
6,536 Slices (17,305
LUTs, 4,075 FFs)

12.9

BEC
(d1 6= d2)

Virtex-5 NB 55 2
6,536 Slices (17,432
LUTs, 5,053 FFs)

22.3

BEC
(d1 = d2)

Virtex-5 NB 55 2
6,536 Slices (17,432
LUTs, 4,727 FFs)

17.3

GHC
(c = 1)

Virtex-5 NB 55 2
6,536 Slices (17,305
LUTs, 4,890 FFs)

15.3

1. BGC: binary generic curve, BKC: binary Koblitz curve, BEC: binary Edwards curve, GHC:

generalized Hessian curve.
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Figure 4.7: Implementation results of point multiplication for binary Edwards, gen-
eralized Hessian, and binary generic curves reported in Tables 4.6, 4.7, and 4.8 on
Xilinxr VirtexTM-5 xc5vlx110-2�1760 FPGA device. The points are related to digit
sizes of d = 21, 24, 28, 33, 41, 55, 82.

time complexity of our presented multiplier is less than digit-level MO multiplier as

compared in [5]. In addition, we have reached higher clock frequencies with LUT-

based pipelining techniques as well. Further, the implementations in ([10], Table

VII) for generic curves over GF (2163) require higher latency and subsequently larger

computation time.

In [26], the same digit-level MO multiplier, has been used for point multiplication

on Koblitz curves and has been compared with the results of using polynomial basis.

The authors indicated that implementation results using polynomial basis is faster

than the ones using normal basis having the same area ([26], Table 4). They have

also taken advantage of operation interleaving in their implementations on Koblitz

curves. However, it is worth mentioning that the large area consumption of the imple-

mentations results of using normal basis in [26] might be as a result of large number

of pipelined registers and the implementations results of [26] can be improved using

our proposed scheme. Therefore, if one employs our presented multiplier architecture

incorporating the techniques proposed in [26], the results of point multiplication using

normal basis would be comparable with the ones using polynomial basis. We further

note that our implementations are not claimed to be the best possible and faster than

counterparts using polynomial basis.

The point multiplication scheme proposed in [6] by Kim et al. has been per-
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formed on NIST B-163 generic curve employing M = 3 digit-serial GNB multi-

pliers (proposed by Kwon et al. in [44]) with Montgomery's ladder on a 4-input

Xilinxr VirtexTM-4 FPGA. The maximum clock frequency that is reported for the

ECC crypto-processor is fmax = 143 MHz achieved with digit-size d = 55. Therefore,

as the multiplier determines the upper bound for critical-path delay, one can estimate

that the maximum operating frequency for the multiplier is 143 MHz. However, our

presented multiplier operates at fmax = 196.5 MHz on VirtexTM-4 FPGA with only

one level of pipelining. We further note that the proposed LUT-based pipelining tech-

nique has signi�cant increase on fmax. Moreover, the latency of point multiplication

(i.e., the number of clock cycles) in [6] is LTotal = 1 + 162× (2M + 2) + 149 = 1446

employing three multipliers and hence the total time achieved for point multiplication

is TkP = LkP

fmax
= 1446

143
= 10.11 µs with occupying 24,363 slices. Our implementation on

VirtexTM-4 FPGA uses only two GNB multiplier and computes a point multiplication

in 17.2 µs with using only 12,834 slices as reported in Table 4.9.

Table 4.9 shows a number of related designs (on NIST B-163 andK-163) which are

implemented on di�erent FPGA platforms using di�erent types and number of mul-

tipliers. To have a fair comparison, we have implemented the ECC crypto-processor

based on NIST B-163 generic curve using the presented GNB multiplier for di�erent

digit sizes. Data dependency graph of point multiplication of this curve has been illus-

trated in Fig. 4.2b as its latencies are summarized in Table 4.3 . Their implemented

results are tabulated in Table 4.8.

In Fig. 4.7, the implementation results are illustrated and point multiplication

time is plotted versus area (number of occupied slices). As shown in this �gure,

increasing the area, as a result of increasing digit-size d, results in faster point mul-

tiplications. It is noted that larger digit sizes than 55, i.e., d > 55, are not e�cient

for the proposed architecture as it is seen from Fig. 4.7. Therefore, incorporating

multiple smaller multipliers is more e�cient than using of a large multiplier. As illus-

trated in Table 4.8 and Fig. 4.7, our results indicate that the point multiplication over

binary generic curve is faster than binary Edwards and generalized Hessian curves.

This is because it has smaller latency which requires fewer number of clock cycles.

We further note that the implementations of point multiplication over binary

generic curves (short Weierstraÿ) require special hardware to handle point at in�nity.

Then, during each point operation, a check should be performed to ensure that the

resulting point is not at in�nity. It should be noted that the proposed ECC crypto-

processor for binary Edwards and generalized Hessian curves works for all the input

pairs without any changes (i.e., it is complete). However, exceptional cases should
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be tested separately for the case employing NIST generic and Koblitz curves which

requires extra hardware and time.

4.5 Conclusions

In this chapter, we have investigated the hardware implementation of point multipli-

cation on binary Edwards and generalized Hessian curve over GF (2163) using GNB.

We have presented a pipelined version of digit-level GNB PIPO multiplier which op-

erates in higher clock frequencies and studied its time-area trade-o�s for di�erent

digit sizes. The e�ect of parallelization using two multipliers for computing the point

addition and point doubling on binary Edwards and generalized Hessian curves has

been investigated. For point multiplication, the widely-used Montgomery's ladder has

been incorporated for di�erential w-coordinates. The proposed architecture has been

implemented on FPGA to obtain the optimum digit-size. Also, we have examined the

completeness of the point operations. For binary Edwards and generalized Hessian

curves, the fastest point multiplication achieved with choosing d = 55. The proposed

architecture requires 6, 536 occupied slices (17, 432 LUTs and 5, 053 FFs), and com-

putes a single point multiplication in 17.3 µs and 15.3 µs for binary Edwards and

generalized Hessian curves, respectively. Our implementation results also indicate

that the point multiplication over binary generic curve is faster than binary Edwards

and generalized Hessian curves. On the other hand, the point multiplication over

binary Edwards and generalized Hessian curves is complete. In the next chapter,

we propose a new method to reduce the latency of point multiplication on binary

Edwards and generalized Hessian curves.
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Chapter 5

New Architecture for

Double-Multiplication Using GNB

and Its Applications for

Exponentiation and Elliptic Curve

Cryptography

I
N this chapter, based on the two low-complexity multiplier architectures proposed

in Chapter 3, we present a new digit-level hybrid multiplier which performs two

multiplications together with the same number of clock cycles required as the one for

one multiplication. It has advantages for high speed �nite �eld arithmetic operations

such as exponentiation and elliptic curves point multiplication. The hybrid struc-

ture is developed by connecting the output of the proposed digit-level PISO GNB

multiplier into the input of a new digit-level SIPO multiplier.

To the best of our knowledge, this is the �rst digit-level hybrid GNB multiplier

which performs two multiplications with the same latency as the one for one mul-

tiplier. In order to investigate the applicability of the proposed hybrid multiplier

architecture, we employ it for double-exponentiation which is the key operation for

Schnorr [70] and ElGamal-type signature veri�cation algorithms [71]. We further note

that this scheme can be incorporated to reduce the latency of point multiplication for

ECC-based cryptosystems when other schemes (such as parallelization and interleav-

ing) fail due to data dependencies. To obtain the actual implementation results, the

proposed hybrid multiplier architecture is coded using VHDL and then implemented
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Figure 5.1: (a) Proposed structure for the hybrid multiplier. (b) Two digit-level
multipliers with parallel output operating in two separate steps. (c) A hybrid multi-
plier operating in one step and composed of an improved DL-PISO and an improved
LSD-�rst DL-SIPO multipliers.

on Xilinxr VirtexTM-4 �eld-programmable gate array (FPGA) and synthesized using

65-nm CMOS library of application-speci�c integrated circuit (ASIC) technology for

di�erent digit sizes.

The rest of this chapter is organized as follows. In Section 5.1, the architecture

of the proposed hybrid multiplier is presented and its complexities studied for dif-

ferent digit sizes. In Section 5.2, the application of proposed hybrid multiplier are

investigated. In Section 5.3, the proposed hybrid multiplier is implemented on FPGA

and ASIC and the timing and area requirements are reported. In Section 5.4, we

concludes this chapter.

5.1 Hybrid Multiplication

The discussion of the previous chapters dealt with low-complexity and improved DL-

PISO and DL-SIPO GNB multipliers. Based on the information provided there,

we here present a new hybrid structure by connecting the output of the DL-PISO

multiplier to the serial input of the DL-SIPO multiplier. This entire hybrid multiplier

performs two multiplications simultaneously, where the results are available in parallel

after
⌈
m
d

⌉
+1 clock cycles assuming that one clock cycle is required to load the output

of the �rst multiplier (stored in the register) to the input of the second multiplier. The

structure of the proposed hybrid multiplier is illustrated in Fig. 5.1a. It computes

E = A×B ×D over GF (2m).
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5.1.1 Traditional Multiplication Scheme

The traditional method requires two separate multiplications, one to multiply A×B
and the other one to multiply its result by D. Thus, the latency of computing E

is two multiplications if a traditional multiplication scheme is used and its latency

can be obtained as follows. In Fig. 5.1b, two digit-level multipliers with parallel

output (DL-PIPO) are employed to compute E = A × B × D, E ∈ GF (2m). Let

us assume that registers 〈X〉, 〈Y 〉, and 〈F 〉 are preloaded with the operands A, B,

and D, respectively. Also, the register 〈Z〉 should be initialized with 0 ∈ GF (2m).

The top multiplier (of Fig. 5.1b) requires q clock cycle to compute C = A × B and

store the results to the m-bit register. Also, the bottom multiplier requires q clock

cycles to perform (AB)×D and store it to the register 〈Z〉. Therefore, to obtain the

results in register 〈Z〉, 2q + 1 clock cycles are required. It should be noted that the

critical-path delay is equal to tp which is the delay of a digit-level GNB multiplier

with parallel output. Then, the required time to compute E is T = tp × (2q + 1).

5.1.2 Hybrid Multiplication Scheme

Now, we consider Fig. 5.1c, which depicts the use of a hybrid multiplier which is

composed of a digit-level PISO GNB multiplier and a LSD-�rst digit-level SIPO

multiplier. This multiplier performs two dependent multiplications to reduce the

latency to the one of one multiplication. Let us assume that C ∈ GF (2m) be the

product of A and B, i.e., C = AB. Based on the output of digit-level PISO multiplier,

C will be available from its LSD as C0, C1, · · · , Cq−1 in each clock cycle. In the �rst

clock cycle it provides the �rst digit of C, in the order of c0, followed by c1, · · · , and
cd−1, i.e., C0 = (c0, c1, · · · , cd−1). In the second clock cycle, the bottom multiplier

(i.e., DL-SIPO) multiplies the �rst digit of C, i.e., C0 by D (stored in register 〈F 〉)
and the top multiplier computes the second digit of C, i.e., C1 = (cd, cd+1, · · · , c2d−1).
Then, one can realize that after q + 1 clock cycles, register 〈Z〉 contains the result of
multiplication of E = A × B × D. The critical-path delay of the hybrid multiplier

is equal to the maximum of the delays for the DL-PISO and DL-SIPO multipliers

i.e., ts = max {tp, ts}, and consequently one can obtain the time of multiplication as

T = ts × (q + 1).

Based on the information provided above, one can state the following to obtain

the complexities of the presented hybrid multiplier.

Proposition 5.1. The proposed hybrid multiplier architecture requires ≤ 2vs(T−1)+

2dm−d XOR gates, 2dm AND gates, four m-bit registers and one d-bit register. Also,
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its critical-path delay is equal to TA + (dlog2 T e+ dlog2me)TX which is due to the

delays through logic gates in the path with longer critical-path delay (i.e., DL-PISO

architecture).

5.1.2.1 Analysis

In Table 5.1, the latency and time delay of the proposed hybrid multiplier is investi-

gated in terms of di�erent digit sizes for type 4 GNB over GF (2163). As shown in this

table, the latency, critical-path delay, and time to perform the entire multiplication

are given for di�erent digit sizes d, 7 < d < 128. For the traditional method, i.e.,

the structure of Fig. 5.1b, the latency is 2q + 1 while for the hybrid structure, i.e.,

Fig. 5.1c, the latency is q + 1. The time of multiplication for the proposed hybrid

structure is T = (q + 1)TA + (10q + 10)TX which is about 17% less than the general

method for smaller digit-sizes, e.g., 7 < d ≤ 15 and is 38% less while choosing larger

digit sizes, e.g., 31 < d ≤ 63. Therefore, the proposed hybrid structure in Fig. 5.1c

reduces the latency and consequently the total time of multiplication and is faster

than the one depicted in Fig. 5.1b.

5.2 Applications of the Proposed Hybrid Multiplier

The proposed hybrid architecture is particularly applicable for reducing the latency

whenever there are repeated multiplications. In this subsection, we provide some of

the applications of the proposed hybrid multiplier architecture whenever high speed

double-multiplications are required.

5.2.1 Double-Exponentiation

The exponentiation on an Abelian group (e.g., �nite �elds) is one of the most im-

portant arithmetic operations for public key cryptography such as Di�e-Hellman [14]

key agreement, RSA, and encoding the Reed Solomon codes [72], [73], and [74]. The

exponentiation is usually accomplished by performing repeated �eld multiplications

and squarings [72]. Let A and B be two �eld elements and K and H be two integers.

Then, the computation of AKBH (denoted by Double-exponentiation) is a crucial

operation for cryptographic applications such as Schnorr- and ElGamal-like signature

veri�cations [70] and [71]. Computing double-exponentiation is presented in [74] by

multiplying the result of single exponentiations. Such an scheme is not the most

e�cient method and e�cient computation of double-exponentiation is required.
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As explained before, under normal basis representation of �eld elements squarings

are free. Thus, to speed up double-exponentiation one requires to reduce the total

number of �eld multiplications as well as the complexity of each multiplication. The

former reduces the latency (in terms of number of clock cycles) while the latter im-

proves the execution time of the multiplier (in terms of propagation delay through

logic gates). Based on the discussion regarding low-complexity multipliers presented

in the previous sections, we reduce the latency of double-exponentiation using the

proposed hybrid multiplier architecture. The following is used in [73] to compute the

double-exponentiation operation.

Lemma 5.1. [73] Let A and B be two �eld elements on GF (2m) and represented by

normal basis and assume K and H be the two positive integers represented by K =

(km−1, · · · , k1, k0)2 and H = (hm−1, · · · , h1, h0)2, respectively. Double-exponentiation

of the form AKBH is computed by

AKBH = Ak0+k12+···+km−12m−1

Bh0+h12+···+hm−12m−1

= (Ak0Bh0)(Ak1Bh1)2 · · · (Akm−1Bhm−1)2
m−1

=
(
...(Akm−1Bhm−1)2Akm−2Bhm−2)2...

)2
Ak0Bh0 .

The architecture of a multiplexer based double-exponentiation using one multiplier

is given in Fig. 5.2a. It is assumed that AB is precomputed [73]. As seen in

this �gure, the result of double-exponentiation is available after m − 1 iterations,

i.e., (m − 1) × q, q =
⌈
m
d

⌉
clock cycles. In Fig. 5.2b, we have proposed a new

architecture by employing our proposed hybrid multiplier architecture. This hybrid

multiplier performs two multiplications with the latency of one multiplication and

as seen the double-exponentiation results will be in the register 〈Z〉 available after⌈
m−1
2

⌉
iterations, i.e.,

⌈
m−1
2

⌉
×(q+1) clock cycles. This is due to the fact that in each

iteration two bits of K, kiki+1 and H, hihi+1 are processed from their LSB in parallel.

One should note that as the representation of �eld elements are under normal basis,

thus computation of repeated squarings are free. Therefore, our proposed scheme

reduces the latency of the double-exponentiation based on choosing e�cient values

for digit-size d. It is noted that the fast operation is achieved at the expense of extra

area. More importantly, one can obtain a trade-o� between time and area by choosing

suitable values for d. The presented architectures for double-exponentiation can be
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Figure 5.2: Architectures for multiplexer based double-exponentiation. (a) with one
multiplier (b) with incorporating the proposed hybrid multiplier.

easily modi�ed to eliminate the multiplication bye 1, i.e., (1, · · · , 1, 1) in normal

basis, whenever hi and ki are both zero. However, for the sake of simplicity we do not

investigate it here. In [74], a new exponentiation algorithm based on split exponents

is proposed. Using normal basis representation and the proposed hybrid multiplier,

it can be improved.

5.2.2 Reducing the Latency of Point Multiplication on Binary

Curves

In this Section, we employ the proposed hybrid multiplier to perform double-multiplication

and reduce the overall latency of point multiplication on binary elliptic curves.

5.2.2.1 Binary Edwards Curves

In Chapter 4, we have proposed a parallel processor for computing point multiplication

on binary Edwards curves employing two digit-level multipliers. In binary Edwards

curves, mixed w-coordinate has been incorporated to compute mixed di�erential PA

and PD for Montgomery point multiplication with d1 6= d2 as given in [1] as:
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Figure 5.3: Data dependency graph for fast computation of combined PA and PD for
binary Edwards curves (a): employing four di�erent PIPO multipliers. (b): employing
proposed hybrid multiplier. c1 =

√
d1, c2 =

√
d2/d1 + 1, c3 =

√
c1, and c4 =

√
c2.

C = W1 · (Z1 +W1), D = W2 · (Z2 +W2), E = Z1 · Z2,

F = W1 ·W2, V = C ·D,Z3 = V + (c1 · E + c2 · F )2,

W3 = V + w0 · Z3,W4 = D2,

Z4 = W4 + ((c3 · Z2 + c4 ·W2)
2)2, (5.1)

where c1 =
√
d1, c2 =

√
d2/d1 + 1, c3 =

√
c1, and c4 =

√
c2. As seen from the above

formulations, the cost of combined PA and PD operations is 10M , where M is the

cost of a multiplication. For achieving highest degree of parallelization, we employ

maximum number of parallel multipliers. The data dependency graph is depicted

in Fig. 5.3a employing four DL-PIPO multipliers. In Steps S2 and S3 of Fig. 5.3a

four DL-PIPO multipliers are operating in parallel and in Step 7 only two multipliers

performed the operation. Therefore, the multiplier utilization is 84%. As one can

see, the smallest latency for the combined PA and PD is achieved by employing four

multipliers as 3M + 12. Note that employing more than four multipliers dose not

reduce the latency due to data dependencies.

We modify the combined PA and PD formulations in (5.1) in such a way to
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incorporate the proposed hybrid multiplier and remove the data dependencies and

further reduce the number of multipliers in the data path (i.e., reduce the latency).

The modi�ed formulations are as follows

C = W1 · (Z1 +W1), D = W2 · (Z2 +W2),

E = Z1 · Z2 · c1, F = W1 ·W2 · c2, G = c3 · Z2

V = C ·D · w0, Z3 = C ·D + (E + F )2, H = c4 ·W2

W3 = V + (E + F )2 · w0 + CD,W4 = D2,

Z4 = W4 + ((G+H)2)2. (5.2)

The corresponding data dependency graph for the modi�ed formulations for com-

bined PA and PD is illustrated in Fig. 5.3b. As shown in this �gure, we employed the

proposed hybrid multiplier in Steps S2 and S5. In Step S2, we combined computation

of �eld multiplications by constants (c1 and c2) and performed them in one step with

the latency of M + 2 using two hybrid multipliers. Three multipliers regular multi-

pliers are also operating in this step. In Step S5, we modi�ed formulation of the PA

operation in computing (W3 and Z3) to take the advantage of the hybrid multiplier

as much as possible. As one can see, in this step the computation of V = C ·D ·w0 is

done using one hybrid multiplier with the latency of M + 2. As a result, the latency

of the overall point multiplication over binary Edwards curves is reduced to 2M + 12.

Therefore, applying the proposed technique reduces the latency of computation of

combined PA and PD to about 34%. We further note that the proposed approach is

a new method to reduce the latency of point multiplication while parallelization fails

due to data dependency. Therefore, one can achieves higher speeds in computing of

point multiplication for high speed applications mentioned before.

The proposed hybrid structure is also applicable for explicit addition formulas for

generic, Hessian, and Koblitz elliptic curves, wherever there is data dependency that

limit incorporating parallelization to reduce latency and achieve higher speeds.

5.2.2.2 Generalized Hessian Curves

Similar to binary Edwards curves, mixed w-coordinate has been incorporated to com-

pute mixed di�erential PA and PD for Montgomery point multiplication as follows

[2]:
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Figure 5.4: generalized Hessian curves with c1 = d3, and c2 = 1√
d3
, employing the

proposed hybrid multiplier.Generalized Hessian curves

A = W1 · Z2, B = W2 · Z1, Z4 = W 2
2 · Z2

2

Z3 = (A+B)2, D = W 2
2 + Z2

2

E = w0 · Z3, F = (A ·B), G = D · c2
H = F · c1,W3 = E +H,W4 = (Z4 +G)2 (5.3)

where c1 = d3, and c2 = 1√
d3
. As one can �gure out the cost of combined PA and

PD is 7M . In Fig. 5.4a, the data dependency graph for combined PA and PD is

depicted employing three parallel multipliers. As illustrated in this �gure the latency

is 3M+9 and employing more than three multipliers will not reduce the latency. This

is the maximum possible number of parallel multipliers that can be used to accelerate

the computation of combined PA and PD. However, by employing hybrid multiplier

we can reduce the latency to 2M + 10 as shown in Fig. 5.4b. As one can see, the

computation of A ·B · c1 is done in one step (Step 5) with the latency of M + 2 clock

cycles.

5.2.2.3 Binary Koblitz Curves

Jacobian Projective Coordinates

In Jacobian projective coordinates [11], the projective point (X : Y : Z), Z 6= 0,

corresponds to the a�ne point (X/Z2, Y/Z3) with the projective equation of the

curve being Y 2 +XY Z = X3 + aX2Z2 + bZ6. The addition formulas for computing
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P3 = (X3, Y3, Z3) = (X1, Y1, Z1) + (x2 + y2) in mixed coordinate cost 10M + 3S + 7A

with Z2 = 1 as

B = x2Z
2
1 , D = y2Z

2
1Z1, E = X1 +B,F = Y1 +D,

Z3 = EZ1, H = x2F + y2Z3, I = F + Z3, G = Z2
3 ,

X3 = aG+ FI + EE2, Y3 = IX3 +GH,

where a ∈ {0, 1}. In Fig. 5.5, the data dependency graph for computing point

addition on Koblitz curves with mixed coordinates is depicted. In Fig. 5.5a, we

have employed three parallel �eld multipliers to reduce the latency as much as data

dependency allows. As one can see, in Steps S5 and S8 three multipliers are operating

while in Steps S2 and S11 only two multipliers are operating. Thus, the latency of

the point addition is 4M + 13. As one can realize, employing four or more multipliers

does not reduce the latency due to the data dependencies in Steps S5, S8, and S11. In

Fig. 5.5b, we have slightly modi�ed the computation of point addition and employed

a hybrid architecture to reduce the latency. As seen in this �gure, in Step S2 a hybrid

multiplier is employed to perform a double-multiplication. Also, in Step S5 hybrid

multiplier is used to perform two double-multiplications. Note that in Step S5 we

recompute Z3 = E ·Z1 employing another parallel multiplier. However, one eliminate

this multiplier and obtain it from the �rst output of the hybrid multiplier, i.e., DL-

PISO. Through employing hybrid technique the latency of mixed point addition on

Koblitz curves with Jacobian coordinates reduced to 3M + 14 which is the smallest

one that has been achieved in the literature.

5.2.2.4 Attacking ECC2K-130

In [75], Fan et al. have performed an extensive investigation to solve one of the Certi-

com elliptic curve discrete logarithm problem (ECDLP) challenges, ECC2K-130 using

Pollard's rho method [76]. They have focused on Koblitz curves over GF (2131) and

because of performing several squarings, normal basis is incorporated as the Hamming

weight of x-coordinate is also represented with this basis [75]. Each iteration of their

method requires �ve multiplications that can not be reduced by employing parallel

multipliers due to data dependencies. However, our proposed hybrid multiplier for

GNB (for type 2) can be incorporated to reduce the latency of each iteration to four

multiplications and improve the overall speed of the attack.
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Figure 5.5: Parallel computation of point addition on Koblitz curves using Jacobian
coordinates (a): with three �nite �eld multipliers and (b): employing hybrid multi-
plier and three parallel multipliers.

5.3 Implementations

In this section, to study the time and area requirements of the proposed hybrid

multiplier we implemented it on Xilinxr VirtexTM-4 xc4vlx100-�1148 FPGA and 65-

nm Complementary Metal-Oxide-Semiconductor (CMOS) library for the synthesis on

application-speci�c integrated circuit (ASIC) technology. The proposed hybrid archi-

tecture for double-multiplication is modeled in VHDL and synthesized for di�erent

digit sizes using XSTTM of Xilinxr ISETM version 12.1 design software and Synopsysr

Design Visionr which is a GUI for Synopsysr Design Compilerr tools. The imple-

mentation results are reported in Table 5.2 for di�erent digit sizes over GF (2163). The

correctness of the multiplier architectures is veri�ed by Xilinxr ISETM Simulator

(ISim). For the FPGA implementations, the optimization goal is set to the speed

(i.e., default) and optimization e�ort is set to normal and the area (Slices, LUTs,

and FFs) and timing (ns) for the critical-path delays (CPD) are obtained for di�er-

ent digit sizes. It is noted that the results of the implementations on FPGA, are all

after post place and route results. For the ASIC implementations, the map e�ort

is set to medium with a target clock period of 5 ns and the area (µm2) and timing

(ns) are obtained for each of the designs.it on ASIC the proposed hybrid multiplier
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architecture

5.4 Conclusion

In this chapter, for the �rst time we proposed a digit-level hybrid multiplier over

GNB which performs two multiplications with the same latency as the one for one

multiplier proposed in the literature. We employed the proposed hybrid architecture

to reduce the latency of double-exponentiation. The analyzes results indicate that the

proposed hybrid multiplier architecture reduces the latency of double-exponentiation

about 50%. Moreover, we employed the hybrid multiplier architecture to reduce the

latency of point multiplication on binary Edwards, generalized Hessian, and Koblitz

curves. It is shown that the proposed scheme reduces the latency of point multipli-

cation about 33% for both binary Edwards and generalized Hessian curves and 25%

for Koblitz curves using Jacobean coordinates. Therefore, the point multiplication

on binary Edwards and generalized Hessian curves are competitive with the binary

generic curves using our hybrid multiplier and provide completeness for input points.

It is worth mentioning that the proposed architecture is suitable for the applications

when fast computations of point multiplication is desired.
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Chapter 6

Highly Parallel and Fast

Crypto-Processor for Point

Multiplication on Koblitz Curves

I
N this chapter, based on the DL-PIPO GNB multiplier architecture proposed in

chapter 3, we propose a highly parallel an fast crypto-processor for point multi-

plication on Koblitz curves. Binary Koblitz (or anomalous) curves, are special class

of binary generic curves that point multiplication can be e�ciently computed using

special properties for these curves. These curves employ Frobenius map (instead of

doubling) and point addition operation using projective mixed coordinates for com-

puting point multiplication. The binary Koblitz curves are speci�ed in NIST [19],

IEEE [18], and SEC2 [77] as the mostly standardized and speci�ed binary curves for

di�erent levels of security depending on the availability of the resources. In the re-

cent past, considerable e�orts have been made to accelerate the computation of point

multiplication over binary elliptic curves. Those include parallelization [78], [6], and

[10], interleaving [79], [26], and pipelining [80]. The two former techniques are used

to reduce the latency of the computation, whereas the latter is used to increase the

maximum operating clock frequency. In this chapter, we employ parallelization and

e�cient pipelining in our implementations for high speed applications.

Parallelization is a well-known approach to accelerate the ECC computations,

employing multiple parallel �eld arithmetic units (mainly multipliers) in the lower

level, i.e., �nite �eld computations, for instance one can refer to [81], [78], and [82].

It is worth mentioning that in case of dependencies amongst lower level computa-

tions, achieving parallelization is a challenging task and employing more than certain

number of parallel arithmetic units will not increase the speed of ECC computations.
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Recently, several methods to perform parallel computations for point addition on

Koblitz curves have been proposed [83], [10], and [26]. It has been claimed that the

maximum number of the �nite �eld multipliers to achieve the highest parallelization

in computing point multiplication on Koblitz curves is three parallel �nite �eld mul-

tipliers. However, here we modify the point addition formulation in such a way to

employ four multipliers to reduce the latency of point addition. This techniques will

increase the overall speed of point multiplication on Koblitz curves. To do so, we

�rst perform data-�ow analysis for ECC computations to understand how data has

to move between the di�erent logic and computational elements such as �eld multi-

pliers, adders, and squarers. Then, we perform a latency analysis to determine where

potential bottlenecks may occur and then �nd a balance between desired performance

and the cost of implementing the design. In this e�ect, we modify the point addition

formulation to employ four parallel �nite �eld multipliers to reduce the latency of

point multiplication about 25%.

For investigating the practical performance of the proposed architecture, we im-

plement it on FPGA for di�erent digit sizes over GF (2163) targeting the applications

where high speed is required and area usage should be considered as well. It is noted

that our method can be applied to any �nite �eld representation and for the sake of

e�cient implementation and comparison, we use GNB in this chapter.

The rest of this chapter is organized as follows. In Section 6.1, properties of

Koblitz curves and arithmetic on these curves are presented. In Section 6.2, parallel

computation of point multiplication is investigated. In Section 6.3, the hardware

architecture of proposed crypto-processor on Koblitz curves is presented. In Sections

6.4, the implementation results for proposed architecture on FPGA are presented.

Finally, we conclude this chapter in Section ??.

6.1 Properties of Koblitz Curves

In �nite �eld of characteristic two, Frobenius map φ is an endomorphism that raises

every element to its power of two, i.e., φ : x→ x2. The squaring over GF (2m) using

GNB is a free operation in hardware. Then, Frobenius endomorphism can be carried

out e�ciently (cost free) if the elements of �nite �eld are represented in normal basis

[11]. Koblitz [84] showed that point doublings can be performed e�ciently by utilizing

the Frobenius endomorphism if the binary curve is de�ned over GF (2) as

EK,a/GF (2m) : y2 + xy = x3 + ax2 + 1, (6.1)
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and a ∈ {0, 1}. Then, the Frobenius map can be de�ned as

φ :E(GF (2m))→ E(GF (2m))

(x, y)→ (x2, y2),

and one can show that

φ2(P )− µφ(P ) + 2P = 0 for every P ∈ EK,a(GF (2m)).

Let τ be the complex root of P (T ) = T 2 − µT + 2 which is the characteristic

polynomial of the Frobenius endomorphism. Then, if one represent the scalar k in

τ -adic NAF (τNAF), i.e., k =
∑l−1

i=0 kiτ
i for ki ∈ {0, 1,−1} and kiki+1 = 0, then point

multiplication can be computed as kP =
∑l−1

i=0 kiτ
i(P ) [11]. It results in the hamming

weight of τNAF to be the same as the one of the binary NAF, i.e., ≈ (log2 k)/3, and

its length to be approximately 2m which is twice the length of the binary NAF. Since

(φm − 1)P = φmP − P = P − P = O stands for all P ∈ EK,a(GF (2m)), Solinas [85]

proposed a method that if k
′ ≡ k(mod δ), δ = (τm − 1)/(τ − 1), then k

′
P = kP and

the length of the τNAF over remainder of k can be reduced to m. Recently, e�cient

hardware architectures for τNAF conversion have been proposed in [86], [87], and

[88].

In normal basis when P = (x, y) is known, τ i(P ) can be computed by i-fold right

cyclic shifts of the x and y coordinates representing P , i.e., τ i(P ) = (x2
i
, y2

i
) = (x�

i, y � i). As 2P = −τ 2(P ) + µτ(P ), then the point doubling operation requires two

squarings and a point addition. The faster computation of τ(P ) = (x� 1, y � 1) in

normal basis results in a faster point multiplication of Q = kp =
∑m−1

i=0 kiτ
i(P ) than

the traditional methods [89].

6.1.1 Point Addition on Koblitz Curves

Point addition on Koblitz curve can be performed using di�erent coordinate sys-

tems such as, Jacobian, standard projective, and Lopez-Dahab projective coordi-

nates. Among them Lopez-Dahab coordinate system provides e�cient point addition

formulation as coming in the following.
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6.1.1.1 Lopez-Dahab Projective Coordinates

For Lopez-Dahab coordinates, [3] the triple coordinates (X, Y, Z) is used to represent

(X/Z, Y/Z2) in a�ne when Z 6= 0 and O = (1, 0, 0). The curve equation in this

coordinate is

Y 2 +XY Z = X3Z + aX2Z2 + bZ4, a, b ∈ GF (2m),

and the cost of point addition and doubling is 13M + 4S + 9A and 5M + 4S +

5A, respectively. Note that M, S, and A, are the costs of multiplication, squaring,

and addition, respectively. In Lopez-Dahap coordinates where one of the points

represented in a�ne, the cost of mixed projective point addition, i.e., (X3, Y3, Z3) =

(X1, Y1, Z1) + (x2, y2), reduces to 9M + 5S + 9A [55].

The explicit formulation are given as follows [55]:

Z :


A = Y1 + y2Z

2
1 , B = X1 + x2Z1;

C = BZ1,

Z3 = C2,

X :

D = x2Z3,

X3 = A2 + C(A+B2 + aC),

Y :Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z
2
3 (6.2)

where a ∈ {0, 1} for Koblitz curves and hence its cost reduces to 8M + 5S + 9A.

The binary Koblitz curves sect163K1 with a = 1 [11], is speci�ed in SEC2 [77] as

the mostly standardized and speci�ed binary curve at the 83-bit security level.

6.1.2 Point Multiplication on Koblitz Curves

The algorithm for computing point multiplication i.e., Q = kP on Koblitz curves is

given in Algorithm 6.1, where the scalar k is presented in τNAF [11]. This algorithm

requires on average m − 1 Frobenius maps and m/3 − 1 point additions or subtrac-

tions. Since, Frobenius maps can be computed with free squarings in normal basis,

the computation of point addition determines the e�ciency of point multiplication.

Therefore, our main focus is on high performance computation of point multiplica-
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Algorithm 6.1 Point multiplication on Koblitz curves using Double-and-add-or-
subtract algorithm [11].

Inputs: A point P = (x, y) ∈ EK(GF (2m)) on curve
and integer k, k =

∑l−1
i=0 kiτ

i for ki ∈ {0,±1}.
Output:Q = kP .
1: initialize

a: if kl−1 = 1 then Q← (x, y, 1)
b: if kl−1 = −1 then Q← (x, x+ y, 1)

2:for i from l − 2 downto 0 do
Q← φ(Q) = (X2, Y 2, Z2)
if ki 6= 0 then

Q← Q+ kiP = (X, Y, Z)± (x, y)
end if

end for
3: return Q← (X/Z, Y/Z2)

tion employing multiple e�cient digit-level �nite �eld multipliers. In the following

we study the parallelization of point addition on Koblitz curves.

6.2 High-Speed Parallelization of Point Addition

Parallelization for hardware implementation of point addition on Koblitz curves has

been investigated employing di�erent number of �eld multipliers in [10], [78], [82],

and [81]. In [10], it is shown that employing two �nite �eld multipliers reduces the

number of multipliers (and hence the latency of ECC point multiplication) in the

data path to �ve multiplications. Also, it is shown in [10] that the maximum number

of parallel �nite �eld multipliers that can be employed to implement the fastest point

multiplication is three. It is shown that employing three parallel �nite �eld multipliers

reduces the number of multipliers in the longest data path to four multipliers. The

data dependency graph for point addition employing three multipliers is depicted in

Fig. 6.1a [10]. As one can see, the latency of point addition is 4M + 13, where M is

the latency for a multiplication. In Step S4 only one multiplier is operating and the

other two multipliers are idle. This is mainly because of the dependency of computing

C to B (as shown in 6.2). This does not allow us to compute B and C in parallel.

As seen from Fig. 6.1a, a potential bottleneck occurs in computing C which uses

only one multiplier in Step S4. This results in 66% multiplier utilization for the data
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Figure 6.1: Data dependency graph for parallel computation of point addition on
Koblitz curves (a): using three �nite �eld multipliers adopted from [10] (b): proposed
scheme employing four multipliers.
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dependency graph presented in Fig. 6.1a employing three parallel multipliers.

The formulation of point addition [55] can be modi�ed to employ one additional

parallel multiplication to reduce its latency as stated in the following proposition.

In computing the Z coordinate of the point addition formulation of (6.2), the data

dependency in computing C can be eliminated by the following

Z :

A = Y1 + y2Z
2
1 , B = X1 + x2Z1,

C = x2Z
2
1 +X1Z1, Z3 = C2,

(6.3)

As one can see from (6.3), computation of C can be performed in parallel with

B at the cost of employing one more multiplier as compared to the formulation

presented in (6.2). Therefore, we can employ four multipliers in parallel to compute

point addition. The data dependency graph for computing point addition based on

(6.3) is depicted in Fig. 6.1b which employs four parallel multipliers. As one can

see, in Step S2 of Fig. 6.1b four multipliers are operating in parallel. Therefore, the

multiplication in Step S4 in Fig. 6.1a is eliminated. As seen in Fig. 6.1b, the number

of �eld multipliers in the data path is reduced to three multipliers with the overall

latency of 3M+13 clock cycles. Therefore, employing four parallel multipliers results

in 25% reduction in the latency in comparison with the case where three multipliers

are employed. Note that the multipliers utilization is increased to 75%, as 9 out of 12

multiplications are performed using four multipliers. Our presented approach reduces

the latency of the point addition using four �eld multipliers and consequently speeds

up the point multiplication as explained before.

6.2.1 Latency of Point Multiplication

The point multiplication on Koblitz curves composed of three main blocks: τNAF

converter, the main processor (addition and Frobenius map), and the coordinate

converter. In [88], an e�cient circuitry is presented for τ -NAF conversion which

requires m + 6 clock cycles for m = 163. Also, the latency of coordinate conversion

from projective Lopez-Dahab to a�ne is 11M + 11 based on Itoh-Tsujii method [38].

Since these latencies are the �xed for all implementations, we only compare the latency

for the main processor in computing point additions as given in Table 6.1. We assume

that two adders and two squarers are available based on the data dependency graph

depicted in Fig 6.1b. In this table, H(k) is the Hamming weight of τ -NAF expansion

of k and the total latency of point addition is computed by multiplying the number of
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Table 6.1: Comparison of the latency for performing point addition in the main loop
on Koblitz curves in terms of number of multipliers .

# of Multipliers EK [10] This work

4 (H(k)− 1)(4M + 13) (H(k)− 1)(3M + 13)

Figure 6.2: The architecture of point multiplication crypto-processor
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non-zero terms in k to the latency of a point addition. the As shown in Table 6.1, for

higher speed implementations our proposed data dependency graph provides smaller

latency in comparison to the others assuming to have equal cost for Frobenius maps.

We note that if one employs polynomial basis to represent �eld elements, the cost of

Frobenius map should be considered as well.

6.3 Proposed Crypto-processor for Point Multiplica-

tion

In this section, we present a hardware architecture for point multiplication on Koblitz

curves. The architecture of the crypto-processor is depicted in Fig. 6.2. As one can

see, it consists of a �eld arithmetic unit (FAU), register �le, coordinate converter,

and a control unit. The registers are to store point coordinates, intermediate and

�nal values during point additions. In the following, we explain how the proposed

architecture operates and produces the point multiplication results for a given point

P and scalar k represented in τNAF.

6.3.1 Field Arithmetic Unit (FAU)

The FAU performs four basic arithmetic operations employing: four digit-level GNB

multipliers, two GF (2m) adders, and two squarers. Multiplication in GF (2m) plays



106

the main role in determining the e�ciency of the point multiplication in the crypto-

processor. Finite �eld multipliers are available in bit-level (with area complexity of

O(m) and time complexity of O(m)), digit-level (with area complexity of O(md) and

time complexity of O(m/d)), and bit-parallel (with area complexity of O(m2) and

time complexity of O(1)) architectures depending on the available resources. We

employ a low-complexity and pipelined digit-level parallel-in parallel-out GNB multi-

plier presented in Chapter 3. Recall that in a digit-level parallel-in parallel-out GNB

multiplier both input operands, A and B should be present through multiplication

process and the results will be available in parallel after M =
⌈
m
d

⌉
clock cycles. Thus

the latency of the multiplier (in terms of clock cycles) is given by M =
⌈
m
d

⌉
+ 1,

1 ≤ d ≤ m considers one clock cycle for one level of pipelining. For the given �eld

size m = 163 (which is type 4 GNB), digit-size d is chosen in such a way to reduce

the latency while increasing d. Therefore, we choose the digit sizes from the set

d = {11, 21, 33, 41, 55} for m = 163. We note that the �nite �eld multiplier deter-

mines the time and area requirements of the point multiplier of the crypto-processor.

A digit-level version of Massey-Omura multiplier [35] is investigated for FPGA imple-

mentation of ECC in [90], [91], [23], [26], and [10] on Koblitz curves. In terms of area

complexity, Massey-Omura multiplier requires dm AND gates and dT (m − 1) XOR

gates and its critical-path delay is TA + (dlog2 T e+ dlog2me)TX for type T GNB.

Note that our employed multiplier in this work requires smaller area in comparison

to the counterparts used in [91], [23], [26], and [10]. The GF (2m) adder uses m XOR

gates to perform the addition and requires only a clock cycle to store the results in

the registers. The squarer is simple rewiring in normal basis and requires a clock

cycle to store its results in the registers. Note that Frobenius map is performed for

coordinates of X, Y , and Z, independently.

6.3.2 Control Unit and the Register File

The control unit is designed with a �nite state machine (FSM) to perform the point

multiplication with other units. First, the coordinates of P = (x, y) are loaded to the

registers. Once k is available inthe τNAF representation, at the input of control unit,

the FAU starts the computations based on the FSM stored in the control unit. The

�nal and intermediate results are stored in the registers. The data bus width is set

to 163 bits.
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Table 6.2: The implementation results of the point multiplication on Koblitz curves
on Alterar StratixTM II EP2S180F1020C3 FPGA device.

d
M +
1

Latency fmax Area P.M. Time
(LTotal) (MHz) (ALMs) [µs]

11 16 3791 198 7,978 19.15
21 9 2601 195 13,032 13.45
33 6 2091 192 20,386 10.89
41 5 1921 191 24,815 10.22
55 4 1751 165 32,856 10.62

6.3.3 Coordinate Converter

The coordinate converter, gets the projective coordinates of Q = kP , i.e., (X, Y, Z),

and provides a�ne coordinate of Q = (x, y) = (X/Z, Y/Z2) using an inversion based

on the Itoh-Tsujii's scheme [38] and a �eld multiplication. As one can see in Fig.

6.2, it employs a multiplier and a squarer. Coordinate converter is implemented as a

dedicated hardware and its latency and area is included in the implementation results

presented in Table 6.2.

6.4 FPGA Implementations

FPGAs have advantages for prototyping and the proof of concepts. To have a fair com-

parison with previous works, we have selected Alterar StratixTM II EP2S180F1020C3

device as the target FPGA for our implementations. In terms of available resources

the target FPGA contains 71,760 ALMs (143,520 ALUTs and 143,520 registers) and

743 input/output (I/O) pins. Each ALMs contains two �ip-�ops (FFs) and two adap-

tive look-up tables (ALUTs). ALUTs are �exible and can be used to implement up to

a 7-to-1-bit LUT. The presented architecture for point multiplication of the crypto-

processor presented in Section 6.3 is coded in VHDL and synthesized for di�erent

digit sizes d, d ∈ {11, 21, 33, 41, 55} for the Koblitz curve de�ned over GF (2163).

We use Alterar Quartusr II version 11 design software for our implementations.

The results of the area and maximum clock frequencies of the implementations after

the place and route (provided by the �tter) are reported in Table 6.2. As one can see,

increasing the digit-size results in the reduction of the latency of the point multiplica-

tion, i.e., LTotal, at the cost of increase in the area and decrease in the operating clock

frequency. The point multiplication time is provided by diving the total number of

clock cycles (LTotal) by the maximum operating clock frequency (fmax). To achieve
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Figure 6.3: (a): Latency of point computation on Koblitz curves over GF (2163) for
di�erent digit sizes. (b): Latency-area product of the proposed architecture for point
multiplication.

higher clock frequencies, we pipelined the digit-level GNB multiplier with only one

level of pipelined registers. Therefore, we add one clock cycle to the latency of multi-

plier as seen in the second column of Table 6.2 (i.e., M + 1). The latency of loading

the operands to the multipliers are counted in the total latency as shown in the data

dependency graph illustrated in Fig. 6.1. Note that the fastest computation of point

multiplication is obtained for d = 41 which is 10.22 µs employing 24,815 ALMs.

In Fig. 6.3a, the latency of point multiplication is plotted in terms of digit sizes.

As one can see, as d increases the latency of point multiplication decreases and d = 41

is the largest digit-size than results in signi�cant reductions in latency. To investigate

the e�ciency of the proposed architecture in term of time-area trade-o�s, we plot the

latency-area product in terms of di�erent digit sizes in Fig. 6.3b. As one can see,

the latency-area product always increases as digit-size increases but the increase is

moderate when d ≤ 41.

In what follows, we compare the implementation results to the counterparts espe-

cially the ones recently proposed in the literature.

6.4.1 Comparisons

High performance FPGA implementation of point multiplication on Koblitz curves

have been considered in [90], [91], [23], [79], [26], and [10]. In Table 6.3, their best

results in terms of time and area are summarized for point multiplications on Koblitz

curve over GF (2163), i.e., NIST K-163. As one can see, we implement our point
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multiplication crypto-processor on the same FPGA device used by the counterparts.

This makes our time and area comparisons to be fair and feasible.

As mentioned in Subsection 6.3.1, the �nite �eld multiplier determines the area

and time requirements of an ECC crypto-processor. We note that the �nite �eld

multiplier employed in this work, i.e., digit-level GNB multiplier with parallel-in

and parallel-out, requires smaller area and operates in higher clock frequencies as

compared to the ones used in [90], [91], [23], [79], [26], and [10].

The latency of the proposed architecture for point addition is less than the coun-

terparts and is comparable with the one proposed in [26]. In [26] and [79], a new

scheme known as interleaving is proposed to reduce the latency of point addition on

Koblitz curves. The interleaving idea is based on the fact that the point addition

requires the result of the previous point addition. Thus, some parts of it (i.e., co-

ordinates Z and X) can be processed with the data available before the previous

operation (computing Y ) is �nished. This scheme reduces the latency of point ad-

dition about 50% of the one proposed in [10] employing four �nite �eld multipliers.

We note that in a reliable crypto-processor, a check for validating the resulting point

not to be at in�nity is required. Employing interleaving in [26] and [79] may result

redundant computations in the case of the existence of a point at in�nity. Therefore,

our proposed scheme provides faster result in computing point multiplication after

the one proposed in [26] which is slightly faster.

In [23], a method to reduce the number of point additions for computing point mul-

tiplication on Koblitz curves is proposed. Instead of representing k in τ -adic NAF,

a two-dimensional Frobenius expansion (based on Kleinian integers) is introduced.

This reduces the number of non-zero terms in k and consequently reduces the num-

ber of point additions. Also, instead of taking advantage of parallelism in lower level,

multiple processors are used to compute the point multiplication and the best results

(in terms of time-area trade-o�) have been reported with choosing the number of

processors to be four. A digit-level version of Massey-Omura multiplier with the digit

size d = 25 over GF (2163) is employed in each processor to perform �nite �eld multi-

plications. With e�cient choosing of the parameters for two-dimensional Frobenius

expansion of k, the smallest latency and time to compute a point multiplication are

obtained as 2033 clock cycles and 17.15 µs (13.38 µs without conversion), respectively.

It is worth mentioning that parallelization in arithmetic level is more bene�cial than

parallelization at higher levels, i.e., point multiplication as employed in [23]. Further-

more, one can achieve higher speeds employing two-dimensional Frobenius expansion

and our parallelization scheme.
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In [90], a double point multiplication algorithm proposed which employs a digit-

level Massey-Omura multiplier with the digit size d = 4. It only employs one multi-

plier to perform point addition on Koblitz curves. Since double point multiplication

is required in digital signature algorithm and its fast computation is important, our

highly parallel scheme can improve its timing results.

The proposed scheme to employ four parallel multipliers can also be applied for the

schemes based on polynomial basis and hence similar improvement can be achieved.

Note that in this chapter we did not consider resistivity against side channel attacks

as the main focus of this chapter is on highly parallel implementation of point multi-

plication. The reader is referred to [89] for detail information about countermeasures

against side channel attacks.

6.5 Conclusion

We have proposed a new fast data �ow graph for the point addition formulation using

lopez-Dahab mixed coordinates employing four parallel multipliers on Koblitz curves.

It is shown that the data �ow graph has three multipliers in its critical path as com-

pared to four multipliers for the best scheme available in the literature. We have used

a low-complexity digit-level GNB multiplier to perform �nite �eld multiplications.

The analyzes results show that our method results in smaller latencies in comput-

ing point addition. Moreover, the implementations results on Alterar StratixTM II

indicates that our parallel multipliers operates at higher clock frequencies and the

point multiplication results are faster than the ones previous ones available in the

literature and favorably comparable in terms of area with the one proposed in [26].

Our proposed architecture performs a point multiplication on NIST K-163 in 10.22

µs employing 24,815 ALMs.



112

Chapter 7

Summary and Future Work

7.1 Thesis Contributions

I
N this thesis, we have investigated �nite �eld multipliers using Gaussian normal

basis and proposed di�erent architectures. This includes novel high speed digit-

level multiplier architecture for ECC to make it fast. We have also considered the

design, implementation, and evaluation of di�erent elliptic curve crypto-processors

for binary elliptic curves. The following summarizes the contributions of this work.

• In Chapter 3, which has been published in [9] and [61], we have presented a

low complexity architecture for digit-level parallel in parallel out (DL-PIPO)

GNB multiplier and proposed a common subexpression elimination algorithm

to reduce its area complexity. We have also reduced the complexity of digit-level

parallel in serial out (DL-PISO) GNB multiplier architecture in this chapter.

Moreover, an improved architecture for digit-level serial in parallel out (DL-

SIPO) GNB multiplier architecture is proposed and its time and area complex-

ities are derived. It is noted that the proposed architecture outperforms the

leading ones in the literature in terms of time and area. Further, we have ex-

tended the digit-level architectures to a low-complexity bit-parallel architecture

and compared it with the counterparts. To evaluate the performance of the

proposed multiplier architectures, we have implemented them on FPGA and

ASIC and their area and timing results are reported which appear as the best

results in comparison to the counterparts in the literature.

• In Chapter 4, which recently has been appeared in [65], for the �rst time, we

have proposed an e�cient hardware architecture for point multiplication on

binary Edwards and generalized Hessian curves incorporating higher level par-
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allelization and optimum lower level scheduling. We have proposed an e�cient

pipelining method for digit-level GNB multiplier architecture and employed it

for the proposed ECC crypto-processor over GF (2m). Then, we have obtained

the optimum digit sizes in terms of time-area trade-o�s for the proposed crypto-

processor. Further, we have performed e�cient FPGA implementations of point

multiplication on binary Edwards and generalized Hessian curves over GF (2163)

on a Xilinxr VirtexTM-5 FPGA device and have investigated the LUT-based

time-area e�ciency for di�erent digit sizes. The implementation results have

been compared with the counterparts using binary generic curves.

• In Chapter 5, which has been outlined in [61], for the �rst time, we have pro-

posed a new digit-level hybrid architecture which performs two multiplications

together (double-multiplication) with the same number of clock cycles required

as the one for one multiplication. The hybrid structure takes advantage of

digit-level data interleaving and its structure is developed by combining the

architecture of the proposed digit-level PISO GNB multiplier and a digit-level

SIPO multiplier architecture. We have employed the proposed hybrid multiplier

to reduce the latency of �nite �eld double-exponentiation and point multiplica-

tion on binary elliptic curves. The analysis results indicated that the proposed

architecture is suitable for the high speed applications whenever higher level of

parallelization fails due to the data dependencies in computing point operations.

Finally, we have implemented the hybrid architecture on a Xilinxr VirtexTM-4

FPGA device and 65-nm ASIC and timing and area results have been reported.

• In Chapter 6, which has been presented in [92], we have proposed a highly

parallel and fast crypto-processor for point multiplication on Koblitz curves.

We have performed a latency analysis to determine where potential bottlenecks

may occur and then �nd a balance between desired performance and the cost of

implementing the design. In this e�ect, we have modi�ed the point addition for-

mulation to employ four parallel �nite �eld multipliers and reduced the latency

of point multiplication about 25% in comparison with the fastest one available

in the literature. For investigating the practical performance of the proposed

architecture, we have implemented the proposed ECC crypto-processor on an

Alterar StratixTM FPGA for di�erent digit sizes over GF (2163) targeting the

applications where high speed is required and area usage should be considered as

well. The implementation results have indicated that the proposed architecture

outperforms the most recent ones available in the literature.
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7.2 Future Work

As future works, for this thesis, the following can be pursued.

• Recently, a method to employ e�ciently computable endomorphism to speed

up point multiplication on ECC over quadratic extensions has been proposed.

As a future work the idea can be extended to binary Edwards curves with some

reasonable modi�cations which make it possible to use di�erential addition and

e�cient endomorphism to speed up point multiplication. This scheme is more

e�cient than many traditional doublings and the results from this will provide

new set of standards for e�cient implementations of ECC crypto-processor.

These standards are applicable for a wide range of ECC applications.

• Pairing-based cryptography has a potential for solving many open problems

in cryptography such as identity-based encryption and short signatures. The

pairing computation is the most time-consuming operation in pairing-based

schemes. The development of techniques and methods to optimize the pair-

ing computation is of great importance and remains as a challenging e�ort for

cryptosystems in commercial applications. There has been little research in the

literature on implementation of pairing on binary elliptic curves. Therefore, as

the lower level computations of pairing based cryptography relies on �nite �eld

arithmetic, the proposed low-complexity multiplier architectures in this thesis

can be employed for e�cient implementation of pairing as future works.

• Another future work for the proposed ECC crypto-processors that can be ex-

plored is the investigation against side channel attacks including simple power

analysis attack and di�erential power analysis attack. Binary Edwards and gen-

eralized Hessian curves provide complete and uni�ed addition formulation and

they are very suitable for the applications where side channel attacks should be

prevented. Therefore, fast computations of point multiplication on these curves

should be considered for such applications.

• Finally, one can work on devising reliable architectures for the proposed ECC

crypto-processors in this thesis against known faults and fault attacks in the

literature. In this e�ect, a novel concurrent error detection scheme should be

designed and tested for the point multiplication architectures presented in this

thesis. For this purpose, parity based approaches can be utilized as they provide

reasonable time/area overhead and e�cient error detection capability.
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