Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

11-17-2011 12:00 AM

Generalized Exponential Models with Applications

Iman Mabrouk, The University of Western Ontario

Supervisor: Serge B. Provost, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree
in Statistics and Actuarial Sciences

© Iman Mabrouk 2011

Follow this and additional works at: https://ir.lib.uwo.ca/etd

6‘ Part of the Applied Statistics Commons, and the Statistical Theory Commons

Recommended Citation

Mabrouk, Iman, "Generalized Exponential Models with Applications" (2011). Electronic Thesis and
Dissertation Repository. 344.

https://ir.lib.uwo.ca/etd/344

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=ir.lib.uwo.ca%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=ir.lib.uwo.ca%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/344?utm_source=ir.lib.uwo.ca%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

GENERALIZED EXPONENTIAL MODELS WITH APPLICATIONS
(Thesis format: Monograph)

Iman Mabrouk

Graduate Program in Statistics and Actuarial Science

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Iman Mabrouk 2011



THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Examiners:

Supervisor:

Dr. Serge B. Provost

Supervisory Committee: e

Dr. A. 1. McLeod

Dr. G. Kibria

The thesis by
Iman Mabrouk
entitled:
GENERALIZED EXPONENTIAL MODELS WITH APPLICATIONS

is accepted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Date Chair of the Thesis Examination Board

i



Abstract

We introduce a generalized exponential model whose exact moments and normalizing con-
stant are obtained in terms of Meijer’s generalized hypergeometric G-function. Actually, sev-
eral widely utilized statistical distributions such as the gamma, Weibull and half-normal con-
stitute particular cases thereof. The generalized inverse Gaussian distribution, which was pop-
ularized in the late seventies by Ole Barndorff-Neilsen, is also extended by incorporating an
additional parameter in its density function, the moments of the resulting distribution being
expressed in terms of Bessel functions. A number of data sets were then fitted with diverse
exponential-type models for comparison purposes. Additionally, it is shown that the inverse
Mellin transform technique may be employed to derive a multiple series representation of the
density function of linear combinations of chi-square random variables, which are encountered
for instance in connection with the distribution of certain quadratic forms and some asymptotic
distributional results arising in multivariate analysis. The accuracy of the truncated form of this
density function is compared to that obtained from a reparameterized generalized gamma dis-
tribution. A methodology whereby regression problems are converted into density estimation
problems is also proposed and applied to certain actuarial data sets. A technique for modeling
bivariate observations is presented as well.

Keywords: Bivariate density estimation; Density estimation; Exponential-type distribu-
tion; Inverse Gaussian distribution; Generalized exponential models; Generalized hypergeo-
metric functions; Goodness-of-fit; Inverse Mellin transform; Moments; Mortality data; Linear
combination of chi-square random variables .
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Chapter 1

Introduction

1.1 Introduction

As pointed out in Balakrishnan and Basu (1995), the gamma family of distributions was
discussed by Karl Pearson as early as 1895. However, it took another 35 years for the exponen-
tial distribution, which is a special case, to appear on its own: While discussing the sampling
distribution of the standard deviation, Kondo (1930) referred to the exponential distribution as
Pearson’s Type X distribution. Applications of the exponential distribution in actuarial, bio-
logical and engineering problems were respectively proposed by Steffensen (1930), Teissier
(1934) and Weibull (1939).

Both the shape and scale parameters of the gamma distribution can have non-integer val-
ues. The gamma distribution has two types of applications. First, applications based on in-
tervals between events; in this form, examples of its use include queuing models, the flow of
items through manufacturing and distribution processes, the load on web servers, and the many
and varied forms of telecom exchange. The other type of applications takes advantage of the
gamma distribution moderately skewed profile; accordingly, this model can be utilized in sev-
eral disciplines such as climatology where it is a workable model for rainfall and in actuarial
mathematics where it has been used for modeling insurance claims, the size of loan defaults,
and for determining the probability of ruin and the value at risk.

An extension of the exponential distribution referred to as the Weibull distribution was
proposed by Weibull (1951). The exponential distribution is a special case wherein the shape
parameter equals one. As explained in Lai et al. (2006), the Weibull distribution has many
applications in survival analysis and reliability engineering. Several applications in industrial
quality control are also discussed in Berrettoni (1964).

A generalized exponential model (GEM) distribution is being introduced in Chapter 2. Its
density function is given by

Fu(x) = c x50 e T To (), (1.1)

where J g(x) denotes the indicator function of the set B, R* is the set of real positive numbers
and c is a normalizing constant. The parameters v, 6, 7 and p are assumed to be positive
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while & can be any real number. The extension proposed in this thesis is more general than the
generalized inverse Gaussian model introduced by Jgrgensen (1982).

Numerous distributions are special cases of the proposed generalized exponential model.
For instance, the following distributions arise as special cases of (1.1) wherein 7 = 0:

(1) The gamma distribution — denoted I'(«, 8)— with density function
x"'exp(-x/p)
BI(0)
is obtained by lettingé = a—2,v=1/,and 6 = 1.

f(x) = Ip+(x), a,B>0,

(i1) The Weibull distribution with density function
f() =06 x" " exp(=6x") T (x),

is obtained by letting ¢ = —1,v=60and 6 = ¢.

(iii) The Maxwell distribution with density function

_ 4xexp(-x*/6%)
= o

is obtained by letting & =0, v = 1/6*> and 6 = 2.

f(x) Tr+(x),

(iv) The half-normal distribution with density function

2 exp(—x2/(26%))
= I + . 0 0,
f(x) 0\or r+(x), 6>

is obtained by letting & = -2, v = 1/26% and § = 2.

(v) The exponential distribution with density function

f0 =2 1, 9> 0,

is obtained by letting £ = —1,v=1/kand 6 = 1.

(vi) The chi-square distribution with density function

X lexp(—x/2)
2P T(v)2)

is obtained by letting ¢ = v/2 -2, v=1/2and ¢ = 1.

fx) =

Ig+(x), v>0,

(vii) The Rayleigh distribution with density function

2 2
flo = TR 1,
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is obtained by letting ¢ = —1, v = 1/(2a*) and 6§ = 2.

The density function of the inverse Gaussian distribution with real parameters u € R and
A > 0 has the following form:

f(x) = exp(=A(x — u)*/x ) Tps(x) . (1.2)

27 x3
This density function is a particular case of the density function given in (1.1) with & = -5/2,
v=24/u*»,6 = 1,7 = 1/2 and p = 1. It should be note that several other parameterizations
are possible and that, in this case, 7 # 0.

Jgrgensen (1982) proposed the so-called Generalized Inverse Gaussian (GZG) distribution
whose density function is given by

(¢/6)"?
2K(VO9)

where K,(-) denotes a modified Bessel function of the second kind. The density function given
in (1.3) is a special case of the five-parameter exponential distribution with é = 1 -2, v = ¢/2,
o0=1,7r=60/2,andp = 1.

One can also obtain special cases from the symmetrized form of (1.1), that is,

Ja(lx))
2

f(x) = xlexp(=(@x7" + ¢ x)/2) T (%), (1.3)

fs(x) = Tr(x).

For instance, the normal distribution with density function

1

o N2

fx) = exp(—x*/(20%)) Ir(x), 00> 0,

is obtained by letting 7 = 0, & = =2, v = 1/20%, and 6 = 2. The lognormal(y, o) distribution
is then obtained via the transformation y = e*. Another example is the double-exponential
distribution with density function

0
fx) = 3 exp(—0|x]) Ir(x), 8 > 0,
which turns out to be a particular case of fs(x) whereint =0, =—-1,v=0,and ¢ = 1.

Moreover, a location parameter m can readily be incorporated in the density functions by
replacing x with x — m.

The inverse Mellin transform technique will be used to determine the moments and the
normalizing constant of the proposed distribution and other sub-class distributions. A brief
introduction to this transform and its inverse is hereby provided.

If f(x) 1s a real piecewise smooth function that is defined and single valued almost ev-
erywhere for x > 0 and such that fooo 71 f(x)|dx converges for some real value k, then
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M(s) = EX) x*~1 f(x)dx is the Mellin transform of f(x). Whenever f(x) is continuous, the
corresponding inverse Mellin transform is

1 Cc+i0o
fx) = 3 j; X Mg(s)ds (1.4)

—joco

which, together with M(s), constitute a transform pair. The path of integration in the complex
plane is called the Bromwich path. Equation (1.4) determines f(x) uniquely if the Mellin
transform is an analytic function of the complex variable s for ¢; < R(s) = ¢ < ¢, where ¢; and
¢, are real numbers and R (s) denotes the real part of s. In the case of a continuous nonnegative
random variable whose density function is f(x), the Mellin transform is its moment of order
(s — 1) and the inverse Mellin transform yields f(x).

Letting

Vs [T T, + BioHITL T4 - a; - Ass)) s s
TN, T = by = B} ([T, T+ Ai9)] '

Jj=m+1 i=n+1

where an empty product (for example when n = p) is interpreted as unity and m, n, p, g are
nonnegative integers such that 0 <n < p,1 <m<ygq, A,i=1,...,p, B;,j=1,...,q,
are positive numbers and a;, i =1,...,p, b;, j=1,...,q, are complex numbers such that
-Aibj+v) # Bj(1-a;+A) forv,1=0,1,2,..., j=1,...,m,andi = 1,...,n, the H-function
can be defined as follows in terms of the inverse Mellin transform of M ¢(s):

_ aqmn (aj,Ay),... ,(ap,Ap) ~ L fCH'oo 3
f(x) = 7‘{17,’1 (x (b1,By),..., (bq, Bq)) T 2ni . h(s) x*ds (1.6)

where A(s) is as defined in (1.5) and the Bromwich path (¢ — ico, ¢ + ico) separates the points
s=-0bj+v)/B;, j=1,....,m, v=0,1,2,..., which are the poles of I'(b; + Bjs), j =
I,...,m, fromthe points s =(1-a;+A)/A;, i=1,...,n,4=0,1,2,..., which are the poles
of 'l —a; —A;s), i=1,...,n. Thus, one must have

/\/Iax1 << m‘R{—bj/Bj} <c< /\/Iin1 <i< n‘R{(l —a)/A;). (1.7)

If, for certain parameter values, an H—function remains positive on the entire domain, then
whenever the existence conditions are satisfied, a probability density function can be generated
by normalizing it. For example, the Weibull, chi-square, half-normal and F distributions can
all be expressed in terms of H-functions. For the main properties of the H—function as well as
its applicability to various disciplines, the reader is referred to Mathai and Saxena (1978) and
Mathai (1993).

WhenA; = B; =1 fori=1,...,pand j = 1,...,¢q, the H-function reduces to Meijer’s
G—function, that is,

mnl 1015 ap\ o [a1),...,(ap, 1)
: = ™ . 18
QM(X bl,...,bq) 7{M(x (i s (b D (1.8)
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Moreover, the G—function satisfies the following identity:

P ap,...,dp — 1 1—b1,...,1—bq
’ =g = . 1.9
g”’q(x'bl,...,bq) g‘“’(x l-ay....1-a, (19)

Chapter 3 introduces an extension of the generalized inverse Gaussian distribution, which
was extensively discussed in Jgrgensen (1982). A related model is proposed as well. The
effects of the parameters on these models are illustrated graphically. These distributions are
fitted to several data sets, the goodness of fit being determined by means of the Anderson-
Darling and the Cramér-von Mises statistics.

It 1s explained in Chapter 4 that quadratic forms in central normal vectors whose density
function is often approximated in terms of exponential-type densities, can be reduced to linear
combinations of chi-square random variables. We are making use of the inverse Mellin trans-
form technique to obtain a multiple series representation of the density function of such linear
combinations. The accuracy of the truncated form of density function is compared in several
examples to that obtained from the reparameterized generalized gamma distribution, which is
a particular case of the generalized exponential model.

The hazard and the mean residual life functions are determined for some of the proposed
distributions in Chapter 5. Two actuarial data sets are fitted with the generalized exponential
model. This is achieved by introducing a method whereby regression problems of this type can
be converted into density estimation problems.

In the final chapter, a technique is proposed for modelling bivariate data. First the data
is normalized and shifted to ensure that the variables be uncorrelated and that their support
be essentially positive. Then, each variable is fitted individually with some of the proposed
models, after which the inverse transformation is applied to the resulting bivariate density.
Histograms of the data sets and plots of the final bivariate density estimates are included for
comparison purposes. This approach could be extended to multivariate data sets.

The proposed extended and generalized exponential distributions should provide more ac-
curate univariate or multivariate models in connection with the host of applications that rely
on exponential-type distributions, which arise in numerous fields of scientific investigations.
For convenience the Mathematica codes utilized in connection with the main applications pre-
sented in this thesis are included in the Appendix.

We conclude this section with a diagram showing the relationships between the distribu-
tions that we introduced and several known exponential-type distributions.
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Chapter 2

The Generalized Exponential Model

2.1 Introduction

This chapter explores the properties of the proposed probability distribution called the Gen-
eralized Exponential Model (GEM) whose associated density function is given by

Fu(x) = e X0 T T (), 2.1)

where 7 g(x) denotes the indicator function of the set B, R* is the set of real positive numbers
and c is a normalizing constant. The parameters v, 6, T and p, are assumed to be positive while
& can be any real number. For simplification purposes, at times, 6 and p will be expressed as
fractions, that is, 6 = a/d and p = w/r where a, d, w, and r are positive integers.

Section 2.2 shows graphically how the GEM is affected by its five parameters and Section
2.3 presents the derivation of the 2-moment of the GEM distribution. Some statistical functions
such as the mean, certain central moments, the cumulative distribution function, the mode and
the moment generating function of the GEM and some of its sub-class models are given in
Section 2.4. In addition, a probability distribution model which approximates the GEM is
introduced in the same section. This distribution is referred to as the proxy distribution and
is computationally more convenient than the GEM. Section 2.5 gives an introduction on the
parameter estimation methods that are employed in this thesis, while Section 2.6 shows that
products and ratios of certain exponential-type distributions can be expressed in terms of the
moments of the proposed five-parameter exponential-type distribution, which in turn can be
expressed in terms of generalized hypergeometric functions. In section 2.7 three data sets,
namely the maximum flood levels, snowfall precipitation and repair time data sets, are fitted to
the GEM and its proxy distribution.

2.2 Parameter Effects

This section illustrates graphically how the generalized exponential model specified by
Equation (2.1) is affected by its parameters. Figure 2.1 and 2.2 show that & works as a scale
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and shift parameter. Figure 2.3- 2.6 shows the scale effect of ¢, v and p and the shift effect of T
on the proposed distribution.

0=1v=2;1=3,p=2
l4r

12}

08+

0.6 =1

0.2

Figure 2.1: The effect of ¢ on the GEM

0=1,y=2;1=3;p=2

015+
0.10

0.05 -

Figure 2.2: The effect of ¢ on the GEM (Continued)



2.2.

PARAMETER EFFECTS

é=-1v=2,1=3,p=2;

10

05

10

Figure 2.3: The effect of 6 on the GEM
&=T,0=17=3,p=2

07

06F

05F

02F

01l

Figure 2.4: The effect of v on the GEM
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¢=-2;6=0.5;y=5;p=2

05
04+
03+
02r

01r

Figure 2.5: The effect of T on the GEM

¢=-2;0=0.5;v=5;1=5
15}
10}

051

Figure 2.6: The effect of p on the GEM

2.3 Moments of the Generalized Exponential Model

Consider a random variable X whose density function is given by (2.1). In order to deter-
mine its 2" moment, one has to evaluate the integral,

cf KO gyl o T gy (2.2)
0

To this end, we define two random variables such that the density function of their product
can be expressed as an integral of the type given in (2.2). By also determining the density
function of the product as an inverse Mellin transform, a closed form representation of the
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integral is then obtained. So, let X; and X, be independently distributed random variables
whose density functions are

gi1(xy) = c1 x§ e Tg+(x1)

and
hi(xy) = cre™ Ip+(xa),

whose (z — 1) moments are respectively

and

as

The density function of U = XX, obtained by taking the inverse Mellin transform of
k(?),that is,

1
— f u'k(r)de,
27Tl C

where i = V-1 and C is a contour of integration which encompasses the poles of F(é) and
(s+1).is
51 Nt (T t
acr: f(uvs) tr(i)r(—) dt (2.3)
op 2miJe 0 Jol
C1Co a 20 1
= 7—{ ’ V& € , 24
5p 0’2(” (0. 1/p). (5, 1) ) @4

where the H-function is as defined in the Introduction.

When ¢ and p are rational numbers such that 6 = a/d and p = w/r, where a, d, w, r
are positive integers, one can express the integral in (2.3) as a Meijer’s G-function by letting
z = t/(a w) and making use of the Gauss-Legendre multiplication formula:
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q-1

- k+

Fr+gs) = Qo7 gt [ (= + (2.5)
k=0
The density function of U is then
cicrdr v_%(27r)_%_%+l(d w)%_%(r a)'?
uwywd X rrdw-1 k"‘% ra—1
((ra)ra(dw)dw) k=0 F (Z + W) k=0 r( + Z)
X . dz, (2.6)
c 2mi

that is,

1 dw de 1
creadrve2m) T dw) i (ra)?

dw+ra,0
X gOdW+ra(

u® wvwd

(ra)y a(d w)dw ket e

2.7
“kO wdw—-1,% k=0,.. ra—l) 2.7)

’ra’

Now, considering the transformation U = X;X, and W = Xj, it is seen that the density
function of U is also given by

* ]
r(u) = f — g1(w)hy(u/w) dw
0o W
|
= o f — v e e dw, (2.8)
o W

and letting € = £ + 6 + h + 1 and u = 77, the integral in (2.8) is seen to coincide with that
appearing in Equation (2.2). Thus the A"moment of X is

_ &+0+h+]

_ay o0 20 _1/p. 1/5
mx(h) —6/) 7’(0,2(7 v (0, 1/p), (§+6+h+1 1)} ) (2.9)
or, in light of Equation (2.7),

m®(h) = cdrv T QT dw) T T (ra)

d
dw+ra,0 T y"
0,dw+ra (ra)”’(dw)dw

k=0,..,.dw-1,—,k=0,..,ra— 1)
dw ra
(2.10)
where p and ¢ are rational numbers such that

0=ald



2.3. MOMENTS OF THE GENERALIZED EXPONENTIAL MODEL 13

and
o =w/r.
Now assuming that § = p and letting w = t/6,e = € + § + h + 1 and u = 77 in the integral
in (2.3), one obtains the 2" moment of X as

h+f+1 -1

)(h) = c —G, 2(V‘r

0 §+h+1 +1 ) ’
which can also be expressed in terms of a Bessel function of the second kind as
hté+o+1

_ h+érorl 11 25 1
2v (W‘To) Kh+£+6+l ZVVOTLV

0
where K,(-) is a modified Bessel function of the second type that has the following integral
representation:

1 ™ .
K =5 [ webre
0

Incidentally, K,(-) is a built-in function in the symbolic computing package Mathematica.
As explained in Abramowitz and Stegun (1972), the modified Bessel functions of the first and
second types, namely /,(w) and K,(w), are the two linearly independent solutions of the differ-

. . 2 d% dy 2 2 _
ential equation w”™ = + w4~ — (W™ + A7)y =0.

Since the null moments are equal to one, the normalizing constant c is seen to be the inverse
of the moment expressions my(h), mX )(h) and m(E)(h), wherein £ is set equal to zero and c is
omitted. When there are no restrictions on ¢ and p, the normalizing constant in (2.1) is

(5 VT+1
c= p , @.11)
11
7’(2’0(’1' \z £tl )
0.2 {(0 1/p)7(T + 1, 5)}
when ¢ and p are rational numbers, the normalizing constant will be
d(‘c +1(2 )' J*l(dw)*@*%(ra)l/z
C(R) — dr ’
dw+ra,0 77 aywd (f b,
O.dwira\ (ray“@w™ | B jo  dw-1;4 k=0,...,ra-1
(2.12)
and when ¢ = p, one has
&+1
6VT+1
B
QOZ(VTO ey 1)
E+6+1
ov s
= : . (2.13)

2 (vo) % Kess (277)
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2.4 Some Statistical Functions

2.4.1 Generalized Exponential Model (GEM)

Let X be a random variable whose p.d.f is specified by (2.1), then some related statistical
functions of the GEM are obtained.

(1) The expectation of X is

wd

dW)d/agdw+ra,0 /4y i 2
(4 o | i)
v 0. dw+ral (raya(dw)?» "*d—‘g,k:o ,,,,, dw-1,% k=0....,ra-1
E(X) (2.14)
d w+ra,0 Traydw
= | d(G+er)
v | o Nd
O,dw+ra((ra):a(dw) w Hd—vfk—o ’’’’’ dw—1,% k=0,.... ra—l)
(i1) The variance of X is
dw)% dw+ra,0 77 aydw d(a+
(4 ot | i)
ra 1w d
v 0,dw+ra\ (ray ¢(dw)?v "*Tf,k:o ,,,,, dw-1,£ k=0,...ra-1
Yar(X) =
d w+r a0 Traydw
N ——— d(ﬂ+f+l)
, 7 d
O,dw+ra((ra)'a(dw) W “d—‘;},k:o ,,,,, dw-1,£ k=0,..., m_l)
2
dw)% dw+ra,0 T aydw a(s
(4 i | o)
v 0.dw+ra\ (ra)y 4(dw)?» "*Tg,k:() ,,,,, dw-1,£ k=0,...ra-1
— (2.15)
3 .
dw+ra,0 77 aydw
7 — d(ﬂ+§+l)
ra dw | d
O,dw+ra((ra) (dw)ydw “d—‘f’k:o ,,,,, dw—l,%,k:O ,,,,, ra—1
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(ii1) The skewness of X is

W _ad
s(X) = S(dw)«v
4 ~dw+ra,0 Traydw
X {3 VagO,dW+ra (ra)y e dwy?
d w+ra,0 T aydw
+ {gﬁ,d w+ra((ra)’“(d wydw

> gdw+ra,0( T ayAw

0,dw+ra\ (ra) 4(d wy?"

d( i +§+2)

du

(d+.f+4) )
—k 0,....dw—1,£ k=0,....,ra-1

sra?
d(d+§+l)
d—

2
k=0,....dw— l—k 0,....,ra— 1)

k=0,...,dw— l—k 0,....,ra— 1)

0,dw+ra\ (ra) *(dw)?"

_ 3 gdw+ra,0( 77 aydw

(d+§+2) )
yeeta—1

k=0,....dw—1,% k=0,..

dw ‘ra’

(d+£+3) )}}
—a4  k=0,....dw— 1,% k= 0,...,ra—1

sra”

2
(d+§+1) )
,..ra—1

0,dw+ra\ (ray adw)?»

X (dw);—igdw+ra,0( 7 ayAdw

d w+r a,O( 7 aydw

[l y
0,dw+ra\ (ra)y ¢(dw)d» M 0. dw— l,z,k 0.
% {(dW)Zd{ dw+ra,0( T ayAw d(g+§+3) )
3 dw d
0,dw+ra\ (ra)"4(d w)dw ]”d—vg,k:()’m dw— 1’:;,]( 0,....,ra—1
dw+ra,0 T aydw
xXG ! ( Tw d(dJr&l) )
0,dw+ra\ (ra) “(dw)d" Tk 0....dw— I,E,k 0...ra-1
2
dw+ra0( Traydw
=== | a(4+e2)
0.dw+ra\ (ray a(dwyd” | k=42 ) }}
—k 0,....dw—1,% k=0,...,ra-1
dw ‘ra’
2y 3/2
dw+ra0( ray,dw )
(L A— d( +£+1) (2.16)
ra dw d
Odwrral ray “@wi™ |k —a—= } o dw-1,£ k=0,..ra-1

(iv) The kurtosis of X is
dw 4d
ko = {(Ehe

d w+ra,0 raydw

) T dy
Xy -4 gO,dW+ru((ra)”‘(dw)dW

4
s d( % +§+2) )
——— k=0,....dw—1,-- k=0,...,ra—1

!ra!

d(d+.$+2) )
T ' ,ra 1

k=0,....dw—1,%£ k=0,..

sra’

ra, dw
X 8gdw+ra,0( /4y

0.dw+ra\ (ra) a(dw)dw

d w+ra,0 Traydw
X gO,d w+ra( (ray" “(dw)®v

(d+f+1) )
—4a  k=0,...,dw— 1,£ k= 0,...,ra—1

sra’
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X gdw+ra’0( Tra—de l[(d+£+2)

0,dw+ra\ (ra) a(dw)dv

dw+ra,0 7 aydw a
0,dw+ra\ (ra) a(dw)dv k+d+
dw

3
d w+ra,0 77 ayAw
X Gt e | o) )
0.dw+ra\ (ra) 4«(dw)@” | k+ =0 ra—1
_ dw+ra,0 7 aydw
0,dw+ra\ (ra) a(dw)dv

+ 4gdw+ra,0( 7raydw

" d( d +£+3)

d( g +f+2) )
T =

Odwsral (ray (dwy™ K=0,...dw—1,% k=0,...,ra~1
----- -
d w+ra,0 Traydw
Xgo,dw+m((ra)"ww)dw A PR 1)}
d— ~~~~~ =1,77:6=0,..., -
d 0 v ?
W+ru, Tra w a
% go’dw”“((’“)m(d Wy —“d(dfﬂ) k=0,....dw—1,% k=0....ra 1)
~~~~~ s7q K=Y AT
d w+r a,0 Traydw
S e (il IR CEED) )
0,dw+ra\ (ra) ¢(dw)d» “d—w‘,’,k:O ..... dw—l,%,k=0 ’’’’’ o
d 0 ravd» 3
+ra T v
X g w ’ (— d(g+§+l) )
d ra Ndw d )
0,dw+ra\ (ra) 4(dw) ]‘*d—wa k=0...., dW—l,VL k=0....,ra—1
d 0 1 4
+ra Thayaw
X Gt e | o) )
0.dw+ra\ (ra) ¢(dw)d» Hd—n‘,’,k=0 ..... dw—l,%,k:O ..... _

(v) The mode of f(x) satisfies the following equation:
X=pTxP=0vx° +0+¢&.

It is obtained by equating the derivative of the probability density function of X given in (2.1)
to zero.

2.4.2 Reparameterized Generalized Gamma (RGG) Model

The RGG model is a reduced form of the GEM model, which is obtained by omitting e~ "
(or equivalently by letting 7 = 0) in the density function (2.1), which yields

6+§

f(x) = K T (), (2.17)

r(‘”‘f)

where 6+¢& > 0. This density function is in fact a Reparameterized Generalized Gamma (RGG)
density function, which is obtained by letting 8 =6, 6 = v''/# and k = ‘M” in the generalized
gamma density,

g1(x) = WLFU{) B e Tpo(x). (2.18)
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For specific distributional results in connection with the generalized gamma distribution, the

reader is referred to Johnson ef al. (1994).
Let X be an RGG random variable. Then,
(i) The k" moment of X is
sy = TER)
GO
(i1) The expectation of X is

V_l/gr( 6+§+1 ) .

re)

EX) =

(ii1) The variance of X is

V_z/gr 0+E+2 V_z/(;r O+E+1N\2
Var(X) = =) (=)

r(%%) ()’

(2.19)

(2.20)

(2.21)
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2.4.3 Reduced Extended Inverse Gaussian (REZG) Model

The REIG model is a reduced form of GEM model which is obtained by omitting e
(or equivalently by letting v = 0) in the density function (2.1). It is also a reduced form of the
extended inverse Gaussian distribution which is defined in Section 3.1, hence the name. Thus,
the density function of REJ G model is given by

Evp+l

oT

16 = T Em

P

Let X be an REJ G random variable. Then,
(i) The K moment of X is

X e Tri(x), E+p+1<0, (2.26)

Tk/p 1—-( _ k+é+p+1 )

e
; (2.27)
(- £22)

(i1) The expectation of X is

1

o F( _ {;'+Z+2)

EX)= — £ . (2.28)
F( _ §+Z+l)
(ii1) The variance of X is
Tg/p 1—-( _ §+ﬁ+3) Tz/pr( _ §+Z+2)2
Var(X) - 1"( _ 'f+,g+l) - r( _ §+z+1 )2 ’ (229)

(iv) The skewness of X is

ar(-£52) sr(-eg)r(-e42)r(-£52)ar(-E51 ) ()

s(X) = P R— (2.30)
(F( _ §+Z+l)r( _ §+Z+3) _ F( _ {-‘+:++2)2)

(v) The kurtosis of X is

e (5 T2 ar () r(-E)

k(X) = 1"(—&’;%)3 F(_&:%)z L
TZ/PF(—M) 7-2/,01“(_%)2 ?
o p
UTEE)  resy

(2.31)

resy T
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(vi) The mode of REL G model is
X = e_%p/% €3 +p)_1/p T/l) ;
(vii) Its cumulative distribution function (CDF) is

r(-est)

Fr(y) =

where I (@, 8) denotes the incomplete gamma function.

(viii) Its Moment Generating function (MGF) is

w+r)

(271')1_ > (_S)—(§+%'+1)r% W§+%+%

v E+¥ 41
o N A
S

><gdw+rv,0 7_- g __S v
0,dw+rv r w

Mx(s) =

k+ 2 +E+1

T,k = 0,...,W— l,l;c,k = O,...,I").
(2.32)

We now derive the moment generating function of the REZG. In order to determine the
MGEF of REI G model, one has to evaluate the integral,

_&prl o

pT F E+p sx—Tx7P

_— x"Pe dx. (2.33)
E+p+l

F(_ P ) 0

Let X; and X, be independently distributed random variables whose density functions are
g1(x1) = c1 x7e"™ 1 g .00)(X1)

and
S =ce™T (0.00)(X2) .

Let U = XX, and Y = X;; then the density function of U is given by

r(u)

<1
f = g1(hi(u/y)dy
o Y

| ,
c1 ¢ f —yE e e gy, (2.34)
o Y

The integral in (2.34) is seen to coincide with that appearing in Equation (2.33) when u = 7
and € = £ +p + 1. This indicates that the integral in Equation (2.34) is equivalent to the integral

_gaprl
in Equation (2.33) and ¢ ¢, = &5

,
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The (t — 1) moments of U = X, X, is

EU)

E(X)) E(X,)
(=s)"

c1 r(é)r(t + €)= k(t). s <0 (2.35)

The density function of U = X; X, can be obtained by taking the inverse Mellin transform
of k(¢), that is,

r) = L2 (gD f (—us)"T (5) T(t+&+p+1)dt
2pmi ¢ P
_ G (—5)"E*P+ D20 236
= 2— —S) 02 —Uus | ( . )

where the H-function is as defined in Section 1.1.
Using Gauss-Legendre multiplication formula presented by Equation (2.5) and letting p =
w/r and z = t/w the density function of U is then

C1C2 1-r 1-w

) = 2 FE ey
v (k+HE+HE+] Lk
xf(r_ w s (—u)") " H ( f +z) F(— +z) dz
c k=0 r
(27‘()]_(”;0(—S)_(§+7+1)}"TW5+T+§
= £+ Wl §+v_;/+1
T’ F(— ) )
X GO (T)r(—i)w .37
QOW”( r w) & +§+1 k=0,. —l;lf,k:O,...,r ( )

2.4.4 The Proxy Distribution

Parameter estimation is essential in order to fit a probability distribution to a data set. The
proposed probability distribution, as given in Equation (2.1), has five parameters. It is chal-
lenging to estimate these parameters at once since the normalizing constant, given in Equation
(2.11), is expressed in terms of an H-function, which is difficult to evaluate; besides, it is not
available in Mathematica. Equation (2.12) gives the normalizing constant expressed in terms
of the G-function which is available in Mathematica. However, in the latter case, the proposed
distribution will have seven parameters, which means that estimating the parameters will be
time consuming taking in consideration that the G-function takes time to be evaluated. There-
fore, we propose a proxy distribution that approximates the density function given in Equation
(2.1), which is obtained by replacing the exponential term e by a truncated Taylor series
expansion around a point m, assumed to be in the vicinity of the mean or the median of the
distribution. For instance, the three term expansion is given by
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fux) = ¢, x6+§e_”7ﬂ( - év%‘mv (xé - m)3 + %vze_mv (x‘s - m)
—ye ™ (x6 - m) + e_"w) Tr+(x), (2.38)

where c), is the normalizing constant of the proxy distribution.

It has been noted that expansions around the mean converge faster. Of course, in practice
one could use the sample mean. The normalizing constant can be found by integrating the
resulting function. For the density given in Equation (2.38) the normalizing constant ¢, is such
that

l/c, = e (1m3v37’6+§_+11“(—w) + %mzvzr‘%r(_é +&+ 1)

p \6 p P
+mv~r6+/§)_+ll"(——6+§+ 1)+7'6+f_)+11“(——6+§+ 1)
P P
_1m2v37-&f_>+1+£1“(——26 Tot 1) - mvz‘r&i;ugf(——% te+ 1)
2 P p
_VTJ%I%F(_Z(S +&+ 1) N 11,27(”5%”%‘}(_35 +&+ 1)
P P
+lmv376+g_+1+29_61“ _Jorerl) l1/3T5+ﬁ_+1+3p—61“ el ;
2 P 6 p

(2.39)

provided that 46 + & < —1. Figure 2.7 and Figure 2.8 show plots of the original GEM density
superimposed on the proxy model (red line) expanded with 3 and 4 terms, respectively, around
2/3 when ¢ = —-10,6 = 0.5, v = 2, 7 = 3 and p = 2. Note that the value of the original
normalizing constant is 167.986, the normalizing constant for the proxy distribution when it
is expanded for 3 terms being 170.959. For the proxy distribution expanded with 4 terms ¢,
equals 167.354. It can be seen from Figure 2.8 that the proxy distribution is nearly identical to
the original GEM model when it is expanded only with 4 terms.
We determined that the generalized normalizing constant of the proxy model is

. . O(n—it)+E+1 .
. (_l)n_,vn_,,r%r(_(n z+lp)6+§+1)

P4 (n =" ’

cp = (2.40)
which is determined by finding a general pattern for the normalizing constant starting with
expansions of the proxy distribution with 3, 4, 5 and 6 terms. Similarly, the general form of the
h" moment of the proxy distribution is determined by looking at its 4 moments for various
number of terms in the expansion, and then by investigating the general form. We determined
that the general form of the 4™ moment of the proxy distribution is

(_ 1 )"7’IV"7ITW 1—(_ h+(n—i+1)6+&+1 )

n p

i=0 (n—i)!
S(n—i+1)+&+1
I3

(2.41)

Z" (=1yriyn=iz F(— (Vl—ﬁll#)
i=0 (n—i)!
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20t
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Figure 2.7: Original GEM superimposed on the proxy model (red line) expanded with 3 terms
around 2/3

20}
15}
10}
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Figure 2.8: Original GEM superimposed on the proxy model (red line) expanded with 4 terms
around 2/3

Both the 4" moment and the normalizing constant of the proxy distribution can be ex-
pressed in terms of seven parameters when ¢ is replaced by v/d and p, by w/r. To test the
accuracy of the /" moment of the proxy distribution and that of GE M model which is speci-
fied by Equation (2.10), the first 4 moments are calculated using both formulas. Assuming that
n =4 and m = 2/3, and that the parameters are é = =10, 6 = 0.5, v =2, 7 =3 and p = 2, the
first four moments using Equation (2.10) are m; = 0.86692, m, = 0.80134, m3 = 0.796764,
and my = 0.861906 while making use of Equation (2.41), they are u; = 0.869954, u, =
0.810614, usz = 0.823303, and uy = 0.955122. However, if n = 6 the first four moments are
wr = 0.86715, uy = 0.802284, u3 = 0.801055, and py = 0.89503. For additional accuracy in
the higher moments, one would have to include more terms in the expansion.
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Noting that the proxy density function can be written as

n

1 . IV (1 s
— _x§+6 L Y : ( ) —a)iTJ 61’ 242
J) e e E § ]( m)" x (2.42)

|
Cp pr A

where c), is given in Equation (2.40), the distribution function of the proxy distribution is seen

to be
“‘5+f5+fE 1+6+j6+&+p

o

VT

_ e~ L ivi i i ~ i—jy
ro = S R ffem
Pi=0 j=0

0 i
Eln, 7] Ef - dr.
1 &

Similarly, the survival function associated with the proxy distribution is

e =1y G (i .
Sx@) = — > — Z(}.)(—m)lf
P =0 j=0

G (——f)p_ FEEE20) e

where

The density function of the proxy distribution given by Equation (2.42) is seen to be a
mixture of REJG densities as defined in Section 2.4.3. Accordingly, the moment generating
function of the proxy distribution can be expressed in terms of that of the REZ G distribution.

2.5 Parameter Estimation

2.5.1 Maximum Likelihood Estimation

Let X;, X5, ..., X, be a data set that is assumed to be the realization of a random variable X
that has the probability distribution function f(x|@), where the p-dimensional unknown vector
of parameters 0 € )y the parametric space. The maximum likelihood estimate of  is the value
6 that maximizes the likelihood or equivalently the loglikelihood, that is, £(6) = Log(]] f(x|0)).
Thus, the maximum likelihood estimate & (MLE) satisfies £(8) > £(6), for all § € Q, The
approximate covariance matrix associated with the MLE’s is Cov(@) = I()~' where I is the

(Fisher) information, I(0) = &[J(0)], and J(6;;) = —% is the ij™ element of the observed
information matrix. The observed and expected information matrices are of dimension pXp
when 6 is p-dimensional.

Asymptotic likelihood theory deals with statistical inference based on likelihood functions
under the assumption that the sample size approaches infinity. Let X;, X5, ..., X,, be a random
sample from a distribution specified by the density function f(x|@) and suppose that the true
value for the parameter is some constant(written 8, when used in the null hypothesis). As the

sample size approaches infinity the maximum likelihood estimator has the following properties:
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(1) It is normally distributed

(i1) It is unbiased

(1i1) It has the smallest variance among all estimators that are asymptotically normal.
In particular the following results hold:

Vi@ - 6) S N, (0,10)7), (2.44)
Vi@ - 0) 5 N0, J@)7). (2.45)
The RGG Model
For this model, which was defined in Section 2.4.2, given the observations xi, ..., x,, the
loglikelihood is
€, 0) = ) log f(x)
i=1
1 n n
_ w + nlog(d) - nlog(r(¥)) _(G+E- 1);10g(xi) - v;xf
(2.46)

where f(x) is given in (2.17). On equating the partial derivatives of (2.47) with respect to
&, v and ¢ to zero, one can obtain the maximum likelihood estimates of £, 7 and p by solving
the following equations:

n( log(v) — w(o)(g + 1)) n

5 + ; log (x;) =0, (2.47)
n(Ey@CE +1) - £log(v) + 6 n n
( : 52 ) + ; log(x;) —v ; x} log(x) = 0, (2.48)
n(§+1)— n =0 (2.49)
% l > .

i=1

where y"(z) = % is the polygamma function.
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The elements of the information matrix for the RGG model are given by

e w0 ()

3_52 =TT 2 (2.50)
e n(-slog) +oy® (%) + & (%))
= 2.51
3¢ 96 5 251)
0> n
= — 2.52
o€y ov (2.52)
2
% = (-n (6(2§1//(0)(6;§)+6 2610g01)) + € z,//(”( 5)))/5“ v Y, K log? (x)
(2.53)
9*t n 5 né
= - log (x;) — — 2.54
a6 dv Zx 0g(x) ~ 57 (2.54)
0>t n(d + &)
&2 (2.55)
The RETG Model
For this model, which was defined in Section 2.4.3, given the observations xi, ..., x,, the
loglikelihood is
(¢, 1,p) = nlog(p) — mE+p+ Dlog(m) —nlog (F (—M))
P P
HE+p) Z log (x)) =7 )" x;” (2.56)

i=1

where f(x; &, 7, p) is given in (2.26). On equating the partial derivatives of (2.57) with respect
to £, T and p to zero, one can obtain the maximum likelihood estimates of ¢, T and p by solving
the following equations:

n( = Tog(r) + w0 - £21))
1 ) = 2.57
. + Z og (x;) = (2.57)

n (—(§+1)w<°>( S22 Jrer) 1og<T>+p)
> + 2y log(x) — 7 X0, x; log(x) = (2.58)

P

_Metpt D)
pT

x”=0. (2.59)
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The elements of the information matrix for the REZG model are given by

8¢ gD (-£24)

7= (2.60)

o n

oeor  pr (2.61)

po_ n(opw O (F5R) + @+ e (-55) + plogm) (2.62)

0¢ dp 03

0t _ né+p+1)

pr= (2.63)

P e+ =,

grop it —;xl- (= log (x)) (2.64)

9 1 1

Pyl —E{n(p(2(§+l)log(r)+p)+(§+ 1)2;0(”(—&) (2.65)
— 2+ (- EHLE L) 4 e [Z X* log’ (x») ). (2.66)

p i=1

2.5.2 The Method of Moments

The method of moments is a method of estimation of population parameters whereby the
sample moments are equated to unobservable population moments. The parameters are thus
determined by solving the resulting equation system. That is, if X is a random variable with a
probability density function f(x, ) where 8 = (6,6, ...,6,), then the k" population moment
is

wo=EXY, k=12,....,p,

where population moments are functions in 6, that is, u}( = p}((@). Suppose that X, X>, ....., X,
is a random sample generated from that distribution, then the k" sample moment is

e,
= - o o k=1,2,...,p.
my n l:Z] X p
By equating the population moments with the corresponding sample moments, one has
m, =, (0), k=1,2,...,p.

Solving these equations we obtain the estimates 0=00,60,..., 0},) which are called the
method-of-moments estimates for 6.

The method of moments in general yields estimators that are consistent but are not as
efficient as the maximum likelihood estimators. They are often used because they usually
involve simple computations, unlike the maximum likelihood approach, which can become
cumbersome.
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2.6 Related Distributional Results

It is shown in this section that the product and ratios of certain exponential-type random
variables can be expressed in an integral form corresponding to (2.2) and thus in terms of H-
functions as explained in Section 2.3 .

(i) Let X; ~ T(6;, ¢) with p.d.f. fi(x)) = x¥ ™ exp(—x:/¢) /(" T(0) Tr+(x:), 6, ¢ > 0,0 = 1,2.
Letting z; = x;x, and 2, = x,, the absolute value of the Jacobian of the inverse transformation
is i Thus, the joint p.d.f of Z; and Z; is ﬁ(%)fZ(ZZ)i and the marginal p.d.f of Z; = X; X, is

ffl( )fz(Zz) de

1 * 1. .-
= 7 zi" lf zgz -1, 572, ¢]|Z2ldzZ ,0,b—6, >0,
T(6)T(6,)¢7' 67 0

g1(z1)

which corresponds to the integral (2.2) with ¢~ = T'(6, )F(92)¢f gzzl LéE=6,-0,-2,v=
é, o=1 7= Z—‘l, and p = 1. This result also holds for chi-square and exponential distributions,
which are particular cases of the gamma distribution.

(i1) Let X; ~ Weibull(6;, ¢;) with p.d.f. fi(x;)) = 6;¢; xfi_lexp(—e,- xf[)IR+(x,~), i = 1,2. Now,
letting z; = x;x, and z; = Xx,, the absolute value of the Jacobian of the inverse transformation
is é, and the joint p.d.f of Z, and Z, is fl(i—;)fz(&)%, so that the marginal p.d.f of Z, = X, X, is

82(z1)

ffl( )fz(Zz) de

-1 -
b1 620, 60,2" f B e 2 g
0

which is also in the form of the integral in (2.2) with ¢ = ¢, ¢, 6, 6, z‘f“l, E=—-¢p—-1,06 =
b2, v=0,,T=6, z‘fl ,and p = ¢;. This result also applies to the Rayleigh(a) and exponential(¢)
distributions as they are particular cases of the Weibull distribution with ¢ = 2, 6 = 1/(2a%)
and ¢ = 1, 0 = 1/k, respectively.

(iii) If one lets X;, i = 1,2, be distributed as in (1.1) with common parameters(¢y, 01, vy, T1, 01),
then, letting z; = i‘—; and z, = x,, the absolute value of the Jacobian of the inverse transformation

is 7 and the p.d.f of Z; = % is

&) = ffl(ZlZz)fz(Zz)szZz
0

00
5 5 -
= iy 8t f Z§§1+26]+1€_(V1Z1]+V1)22] e~z g dzy,
0

which corresponds to the integral (2.2) with & = 26, + 6, + 1, v = vlzf‘ +v, 0 =0, T=
712,”" + 11, and p = py.
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Thus, in light of the representations of the moments of the five-parameter exponential dis-
tribution provided in (2.9) and (2.10), the density functions g;(z;), i = 1,2, 3, respectively
obtained in (i), (ii) and (iii) are seen to be expressible in terms of generalized hypergeometric
functions.

2.7 Illustrative Examples

In order to assess the fit of a distribution with respect to a given data set, one may make use
of the following goodness-of-fit statistics:

(i) The Anderson-Darling statistic denoted by Aj and given by
v .
Af=-n-— Zlez ~ Dlog (z(1 = 2,1-)

where z; = cdf(x;), the x/s,i = 1,...,n, being the ordered observations;

(i1) The Cramér-von Mises statistic, which is

g 2i—1\2 1
Wg:Z(Zi_ l2n ) +12n'

i=1

The smaller these statistics are, the better the fit.

The five-parameter generalized exponential model defined in Section 2.1 is applied to the
Flood, Snowfall precipitation and Repair data sets where the parameters are estimated using
the maximum likelihood approach and the method of moments. Parameter estimates have been
obtained using the original density function with its normalizing constant (exact or determined
by numerical integration) and the proxy density function.

The flood data set, given in Table 2.1, corresponds to maximum flood levels (in millions
cubic feet per second) for the Susquehanna River at Harrisburg, Pennsylvania over 20 four-year
periods, ¢f. Dumonceaux and Antle (1973). The Buffalo snowfall data set, given in Table 2.4
(and available for instance from the S-PLUS data library) comprises a record of the annual
snowfall precipitations in centimeters over 63 consecutive years in the city of Buffalo. The
repair time data set given by Jgrgensen (1982) and presented in Table 2.5 represents the active
time in hours for an airborne communication transceiver.

2.7.1 Maximum Likelihood Estimates

The maximum likelihood method is being employed in this section to estimate the model
parameters. We fit for the three data sets to the distribution specified by (2.1), as well as
some particular cases thereof. We made use of the symbolic computing package Mathematica
in which the G-function is a built-in function, in conjunction with the command NMaximize
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Figure 2.9: The empirical CDF and the fitted Weibull CDF for the flood data set.

applied to the likelihood functions to estimate the parameters, assuming the Weibull and inverse
Gaussian models as defined in Chapter 1, and then assuming that v =d = w = r = 1, which
corresponds to the generalized inverse Gaussian distribution whose p.d.f. is given in (2.2), and
finally that 6 = v/d = 5/2 and p = w/r = 5/2 in the most general model specified by (2.1).
It can be seen from the results presented in Tables 2.2, 2.4 and 2.6 that the GEM distribution
provides a better fit than that obtained from the other models for all the three data sets. It has
been found that the parameter estimates of the lognormal model were found to be u = —0.898
and o = 0.269 for the flood data, u = 4.337 and o = 0.327 for the snow data, and u = 0.65839
and o = 1.10179 for the repair data.

Table 2.1: Maximum Flood Levels

654 | .613 | 402 | 379 | .269
740 | 416 | 338 | 315 | .449
297 | 423 | 379 | 3235 | 418
412 | 494 | 392 | 484 | .265
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Figure 2.10: The empirical CDF and the fitted lognormal CDF for the flood data set.
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Figure 2.11: The empirical CDF and the fitted generalized inverse Gaussian CDF for the Flood
data set.



2.7. ILLUSTRATIVE EXAMPLES 31

10 i
0.8 *
0.6 *
0.4}

0.2

Figure 2.12: The empirical CDF and the fitted five parameter GEM CDF for the Flood data
set.

Figure 2.13: The empirical CDF and the fitted inverse Gaussian CDF using the method of
moments for the Flood data set
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Table 2.2: Estimates of the Parameters and Goodness-of-Fit Statistics for Maximum Flood
Levels

MLE’s & 1% T Aé Wg
Inverse Gaussian —-2.50 | 15.745 | 2.819 || 7.17061 | 1.56141
Weibull(é = 3.526) -1 14.450 0 0.8213 | 0.13998
Lognormal - - - 0.34701 | 0.05396
o=p=1 —16.572 | 0.001 | 5.736 || 0.28605 | 0.04488
0=p=15/2 —-8.698 | 1.608 | 0.199 || 0.26880 | 0.04371

Table 2.3: The Bufffalo Snow Data Set

25 398 | 399 | 40.1 | 4677 | 49.1 | 49.6 | 51.2 | 51.6
535 | 547 | 555 | 559 58 603 | 63.6 | 654 | 66.1
693 | 709 | 714 | 715 | 71.8 | 729 | 744 | 76.2 | T1.8
78.2 | 78.4 79 793 | 79.6 | 80.7 | 82.4 | 824 83
83.6 | 83.6 | 84.8 | 855 | 87.4 | 88.7 | 89.6 | 89.8 | 89.9
909 | 97. | 983 | 101.4 | 1024 | 103.9 | 104.5 | 105.2 | 110.
110.5 | 110.5 | 113.7 | 114.5 | 115.6 | 120.5 | 120.7 | 124.7 | 126.4

2.7.2 Method of Moment Estimates

The method of moment was applied to the Flood data and the results are included in Table
2.7. It is seen that the goodness-of-fit results are similar to those obtained in Table 2.2 by
making use of the maximum likelihood approach.
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Figure 2.14: The empirical CDF and the fitted five parameter GEM CDF using the method of
moments for the Flood data set
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Figure 2.15: The empirical CDF and the fitted inverse Gaussian CDF using the method of
moments for the Flood Data set



34 CHAPTER 2. THE GENERALIZED EXPONENTIAL MODEL

Table 2.4: Estimates of the Parameters and Goodness-of-Fit Statistics for the Snowfall Data
Set

MLE’s I3 v T Aé WS
Inverse Gaussian 2.5 0.055 353.261 || 0.86761 | 0.15043
Weibull(é = 3.8338) -1 3.3748x1078 0 0.29638 | 0.04543
Lognormal — — — 0.77525 | 0.12835
o=p=1 8.354 0.129 1.003 0.48211 | 0.07684
60=3,0=8/3 0.427 | 2.267 x 107° | 0.0001 | 0.27864 | 0.04105

Table 2.5: The Repair Time Data Set

21315 5 5 6 | 6| .7 .7
g .8 1 1 1 |1.1]13]15
1515115 2 2 12212527 3 3
4
0.

o
=

33133 45| 47 | 5 (5454 7
75188 | 9 | 103 |22 |245

AN

2.7.3 Estimates Using a Proxy Distribution

The Proxy distribution described in Section 2.3.4 is utilized in order to be able to estimate
the five parameters at once. The exponential term e is expanded with 7 terms in order
to closely approximate the original GEM. Table 2.8 shows the parameter estimates and the
goodness-of-fit statistics obtained for the three data sets.

2.7.4 Determining the Normalizing Constant

In order to avoid fixing the parameters, ¢ and p and estimating the other parameters, we
obtained an approximation to the normalizing constant by using numerical integration. This
method has the advantage of estimating all the parameters at once without needing to spec-
ify any other quantities such as the number of terms in the expansion used to obtain the proxy
density. Tables 2.9 and 2.10 respectively give the estimates of the parameters and the goodness-
of-fit attained for the different data sets. It can be observed that the fit measures determined
from any of the three proposed approaches are comparable.
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Figure 2.16: The empirical CDF and the fitted five parameter GEM using the method of mo-
ments for the Flood Data set

F(x)

Figure 2.17: The empirical CDF and the fitted proxy GI G CDF using the maximum likelihood
method for the Flood data set
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Table 2.6: Estimates of the Parameters and Goodness-of-Fit Statistics for the Repair Data Set

CHAPTER 2. THE GENERALIZED EXPONENTIAL MODEL

MLE’s & 14 T A} Wi
Inverse Gaussian -5/2 1 0.33284 | 2.25 | 6.44415 | 0.58717
Weibull(6 = 0.89858) -1 0.33375 0 0.88782 | 0.12046
Lognormal — — — 0.33951 | 0.05468
o=p=1 -2.442 | 0.070 | 0.789 | 0.21718 | 0.03186
o0=p=3/2 —-2.814 | 0.013 | 0.306 || 0.20844 | 0.02502

Table 2.7: Estimates of the Parameters and Goodness-of-Fit Statistics for the Maximum Flood
data using the Moment Method

¢ 1% T A(z) W(z)
Inverse Gaussian 2.5 14.1892 | 2.5404 | 0.337483 | 0.05588
Weibull -1 15.8368 | 2.2252 | 0.347327 | 0.05749
Lognormal — — — 0.335996 | 0.05536
o=p=1 -10.274 | 5.871 4216 | 0.29652 | 0.04897
0=p=28/3 -8.760 1.265 0.148 | 0.264028 | 0.04436

2.7.5 Model Comparison Based on Likelihood Criteria

Comparison between the GEM and some other models based on likelihood criteria, namely
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for the the three
data sets is discussed in this section. As mentioned by Andrews (1999), the AIC criterion was
introduced by Akaike (1969,1974) and the BIC was introduced by Schwarz (1978). More
specifically AIC and BIC are defined as follows:

AIC = -2In(L) + 2k

BIC = -2In(L) + kln(n)

where L is the likelihood function, & is the number of parameters and 7 is the sample size.

Both the AIC and the BIC take into account the number of parameters; however a larger
penalty for the number of parameters results from making use of the BIC when the sample size
is greater than 7. Accordingly, we only present the results for the BIC in Table 2.13.
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Figure 2.18: The empirical CDF and the fitted proxy GEM CDF using the maximum likelihood
method for the Flood data set

Table 2.8: Estimates of Parameters and Goodness-of-Fit Statistics for the Three Data Sets
Using a Proxy Distribution with 7 Terms

Data Set | Model £ 5 % 7 0 Al W
Flood GIG -16 1 0.27707 | 5.55738 1 0.28452 | 0.04576
GEM -9 1 0.01201 | 0.32961 | 2.29095 || 0.26508 | 0.04306
Repair GIG -3 1 0.000001 1.174 1 0.35384 | 0.05995
GEM | —1.806 | 0.101 2.976 1.363 0.845 0.22607 | 0.03290

Table 2.9: Estimates of Parameters for Various Data Sets Using NIntegrate for Determining
the Normalizing Constant

3 v v T w|r
Flood | -7.0509 | 5 | 1 5 1.6636 | 5|2
Snow | 3.4075 | 11 | 6- | 0.00102963 | 0.143345 | 4 | 8
Repair | -2.383 | 1 | 1 0.0760 0.7129 | 2|2

Table 2.10: Goodness-of-Fit Statistics for Various Data Sets Using NIntegrate for Determining
the Normalizing Constant

A2 w2 D DS
Flood | 02568 | 0.0444 | 0.12603 | 0.00155
Snow | 0.343113 | 0.0522957 | 0.0721831 | 0.000754621
Repair | 02183 | 0.0303 | 0.07327 | 0.00047
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Table 2.11: Estimates of the Parameters for Various Data Sets Using NIntegrate for Determin-
ing the Normalizing Constant (5 Parameters)

3 0 1% T P

Flood | -7.089 | 1.530 | 2.098 | 0.141 | 2.701
Snow | 0.102 | 3.159 | 1 x 107° | 2.586 | 3.490
Repair | -3.046 | 1.55 0.008 | 0.611 | 1.156

Table 2.12: Goodness-of-Fit Statistics for Various Data Sets Using NIntegrate for Determining
the Normalizing Constant (5 Parameters)

AZ W2 D DS

Flood | 0.26665 | 0.04358 | 0.12710 | 0.0015209
Snow | 0.27397 | 0.04077 | 0.05809 | 0.0005710
Repair | 0.20747 | 0.02760 | 0.06521 | 0.0004050

Table 2.13: Loglikelihood Function and BIC for Various Data Sets

Flood Snowfall Repair
LogL BIC LogL BIC LogL BIC
IG 15.8488 | -25.7061 | -292.574 | 593.434 | -119.798 | 247.253

Weibull 13.264 | -20.5365 | -287.959 | 584.204 | -104.47 | 216.597
Lognormal | 52.5784 | -99.1653 | -176.398 | 361.081 | -15.474 | 38.6052
GIG 16.1382 | -23.2892 | -289.908 | 592.245 | -99.0509 | 209.588
GEM 16.3393 | -23.6915 | -288.069 | 588.567 | -99.0216 | 209.529
Proxy 16.3107 | -20.6385 — — — —
Bessel 16.3283 | -20.6737 | -290.367 | 597.306 | -98.9936 | 213.302




Chapter 3

An Extended Inverse Gaussian Model

3.1 Introduction

We are proposing an extension of the Generalized Inverse Gaussian (GZG) distribution
specified by the following density function:

(¢/6)"
2K(VO9)

where 4 € R and ¢ and 6 are positive numbers, which will be referred to as the Extended
Inverse Gaussian (67 G) distribution. Its density function is given by

fx) = X lexp(—(0x7" + ¢ x)/2) Tn-(x), (3.1

) (V/T)%X(Hf e—Tx’ﬁ—vxd

2Kz (27)

Je(x) = Lp+(x) (3.2)

where £ € R, v > 0, 7 > 0and § > 0 and K,(-) denotes a Bessel function of the second type,
which is defined in Section 2.3. By introducing a single additional parameter, we aim to obtain
a more flexible modeling distribution while keeping the resulting model relatively parsimo-
nious. A location parameter could also be introduced in (3.2) for modeling purposes. Note that
the GI G density function can be obtained from (3.2) by making the following substitutions:
0=1,1t=0/2, v=¢/2 and ¢§ = A —2. This distribution can also be obtained as a special case
of the GEM given by Equation (2.1) when 6 = p # 1.

A reduced model called the Reduced Extended Inverse Gaussian (REZG) distribution, is
obtained by omitting e (or equivalently letting v = 0) in the density function (4), which
gives

_ g0l

S ]
i) = - ‘ e Tpu(x), €€R,v>0,7>0, §>0, (3.3)

(- 559

provided that 1 +0 +¢& < 0. This model is also a reduced form of the GE M where the exponent
term that contains 7 and p is excluded

39
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T

Another reduced version of the &7 G model is obtained by omitting e~ " (or equivalently

by letting 7 = 0) in the density function (3.2), which yields

S+é+l

oV o

— &6 —vxd
g(x) F(6+§+1) XY T+ (x), (3.4)
where 0 +¢& > 0. This density function is in fact a Reparameterized Generalized Gamma (RGG)
density function, which is obtained by letting 8 = 6, # = v"'/# and k = % in the standard
generalized gamma density given by
g1(x) = _h_ B 1@ Tyo(x). (3.5)
BT (k)

The RGG model is also a form of the GEM model where the exponent term that contains 7
and p is excluded. For specific distributional results in connection with the generalized gamma
distribution, the reader is referred to Johnson er al. (1994).

3.2 Parameter Effects

This section illustrates graphically how the extended generalized inverse Gaussian model
and its reduced version are affected by their parameters.

3.2.1 The Extended Inverse Gaussian (67 G) Model

Figures 3.1-3.3 indicate that the parameters &, 6 and v somewhat affect the shape of the
&7 G model while ¢ and 7 have a noticeable shifting effect on the distribution. Moreover, the
parameters v and 7 in the density expression (3.2) are clearly scale parameters.

v=0.1,0=1,7=10 v=0.1,0=1,7=10

00251
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L " — .
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Figure 3.1: Effect of ¢ on the E1G distribution.
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Figure 3.2: Effects of ¢ (left panel) and v (right panel) on the E1 G model.
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Figure 3.3: Effect of T on the E1 G distribution.

3.2.2 The Reduced Extended Inverse Gaussian (RE7G) Model

as it did for the &7 G model.

Figure 3.4 and 3.5 suggest that the parameter ¢ acts somewhat as a shifting parameter while
¢ affects the shape of the REZ G distribution. The scale parameter 7 acts as a shifting parameter
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Figure 3.5: Effect of T on the REI G distribution.

3.3 Certain Statistical Functions

Some statistical functions are provided in this section for the &7 G model.
Let X be an &7 G random variable. Then,

(i) its 4™ moment is
v‘}«';(vr)z%Khﬂs# (2 \/W)

Kugs (2477)

(i1) its expectation, E(X), is as given above for h = 1;

(iii) its variance, E(X?) — (E(X))?, can be directly obtained from (3.6);

(iv) its skewness is given by (E(X®) — 3E(X®)u + 2u3)/0?;

(v) its kurtosis is given by (E(X*) — 4E(X*)u + 6EX*) u* - 3u*)/o* - 3;
(vi) its mode is

EX" = (3.6)

2—1/5

S+E+ \/452w+52+25§+§2]3 _
ov ’
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(vii) its survival function is

o+&+1
26 —
x6+§+1 (E) Ksier1 (V)C(S, X 6)
o

2 Koz (297)

Sx(x) =

(3.7)

where K, (x, y) is the incomplete Bessel function and, as explained in Harrisa (2008), has the
following integral representation :

K, (x, y) = f e iy, (3.8)
1

To derive the survival function of the £7 G distribution, the integral

0+&é+1

foo 0 (V/T) % S+& —TxO—vxS
X e
x 2K§+§+1 (2 \/VT)

b

has to be evaluated. First, we let Y = X°. Noting that the derivative of the inverse transforma-
. . 1
tion is ; y»~!, we have

5+&+1

v 2Kwen (2v7)

Since this last integral would be identical to that given by Equation (3.8) if its lower bound
were 1, a second change of variables, namely W = Y/y is utilized. Accordingly, the survival
function of Y can be expressed in terms of an incomplete Bessel function as follows

0+&+1 0+&+1

Sy(y) = y T v/oE Kssent (Vy, Z)-
2 Ksuent (2\/%) ° y

Since S x(x) = Fy(x°) J where J is the Jacobian, then

S+&+1
20 —
xOoreH! (f) K ssen (foS’ TX ‘5)
)

Sx(x) = ZK# (2 \/ﬁ)

3.4 The Observed Information Matrix

The elements of the information matrix for &7 G are given by
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where

'K
K% (v,z) = ,2)
o
'~ (n
_ (_5) kz_(;( L )K(Zk—n+v,z)
forneZandn >0, 3.9
0O"K
K"™0(,z) = —
oym
N 2_2/(22,{% (CSC(”V) (r(i—zﬁl) - r(i+vz+1)))

1
- 5”; k! :

mezZ.m>0,veZ. (3.10)

3.5 Proposed Maximization Methodology

Parameter estimation for a multi-parameter density function such as the &G model can
be challenging. The command NMaximize, available in Mathematica, attempts to find a global
maximum subject to certain constraints. In the context of maximum likelihood estimation, this
command requires setting an interval for each parameter to determine a region within which
Mathematica seeks the global maximum. Since the region where the global maximum lies
has yet to be determined, it is helpful to have a methodology that can specify the appropriate
parameter intervals to be used in conjunction with the command NMaximize. Such an iterative
methodology is proposed in this section. Accordingly, the parameter intervals are initially
chosen to be very wide, with such intervals containing at the very least five points. Then, the
log-likelihood function is evaluated for all the possible combinations of the points specified
within these intervals. Next, we consider potential candidates for the maximum value and their
corresponding regions. New intervals are chosen based only on the m highest values of the
log-likelihood so that narrower intervals with finer grids can be set, where m is the fourth root
(four being for instance the number of parameters to be estimated) of the number of the log-
likelihood values that were evaluated at the previous step . These steps are repeated until a
global maximum can be identified. The Mathematica code used for applying this methodology
is given below. (A complete numerical example is included in the Appendix.)
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vt2 = Table[Evaluate[LogLikelihood[¢, o, v, 7]], {£, — 10, 10, .5}, {6, .1, 10, .5},

{r,.1,10,.5},{r, .1, 10, .5}];

vtc = Table[{¢, 9, v, 7}, {£, —10, 10, .5}, {6, .1, 10, .5}, {v, .1, 10, .5}, {7, .1, 10, .5}];

Max[vt2]

ps = Position[vt2, Max[vt2]]

vm = vte[[ps[[1, 111, ps[[1, 211, ps[[1, 311, ps[[1, 4]111]

Evaluate[LogLikelihood[vm([[1]], vm[[2]], vm[[3]], vm[[4]]]]
Length{Dimensions[v2]]

rt = Floor (

. . 1
g Dimensions[vt2][[ j ]]J (Length[Dimensions[vt o0 )}

tb = Table[—Sort[Flatten[—vt2]][[j]], {/, 1, rt}]
psv = Flatten[Table[Position[vt2, tb[[ 1], {j, 1, rt}], 1]
Table[vtc[[psv([/, 111, psvI[); 211, psv[[j, 311, psvILj, 41111, {j, 1, rt}]
More specifically, this methodology was applied to the flood data, which is modeled in the

next section. The resulting maximum value of the loglikelihood turned out to be larger than
that corresponding to the best model in Table 3.2.

3.6 Numerical Examples

The following density functions, all related to the £7G model, will be considered. The
gamma density function which is given by

01 p=x/¢
¢°T'(0)
is clearly a particular case of the E7G density as specified by (3.2) with &€ = 6 -2, § = 1,
v=1/¢pand r = 0. On letting & = -5/2, § = 1, v = 1/(2u®) and 7 = A/2 in (3.2), the inverse
Gaussian distribution with parameters u € R and 1 > 0 whose density is given in Chapter 1, is
also seen to be a special case of the &7 G distribution. The reparameterized generalized gamma

RGG density as given in (3.4) can be obtained from the £7G model by letting 7 = 0 in (3.2).
The 1 G density reduces to the Weibull density function,

Fx)=0¢x" e Tg-(x), 6>0,¢>0, (3.12)

f(x) = Ix+(x), 6>0,¢>0, (3.11)

with the substitutions, 6 = ¢, 7 = 0v = 0 and € = —1 in (3.2). The relationship between
the GI G density, as given in (3.1), and the E7G density function is specified in Section 3.1.
Finally, the REZ G model as defined by the density (3.3) is obtained by letting v = 0 in (3.2).
Two data sets were fitted with each one of these models as well as the lognormal distribution,
and the resulting parameter estimates and goodness-of-fit statistics were tabulated. Several
of the fitted cumulative distribution functions are graphically displayed along the empirical
cumulative distribution functions for comparison purposes.
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3.6.1 Maximum Flood Level Data

Consider the data set presented in Table 3.1. This data which was studied by Dumonceaux
and Antle (1973), consists of maximum flood levels (in millions cubic of feet per second) of
the Susquehanna River at Harrisburg, Pennsylvania, observed over 20 four-year periods.

Table 3.1: Maximum Flood Level Data

654 | 613 | 402 | 379 | .269 | .740 | 416 | .338 | 315 | .449
297 | 423 | 379 | 3235 | 418 | 412 | 494 | 392 | 484 | .265

This data was fitted to several distributions including those specified by (3.2) and (3.3). We
made use of the symbolic computing package Mathematica in conjunction with the command
NMaximize applied to the loglikelihoods to estimate the parameters. This command always
attempts to find a global maximum subject to certain constraints. In this case, such constraints
are specified by inequalities that certain functions of the parameters should satisfy and intervals
within which the parameters can vary. The determination of such intervals was guided by the
parameter estimates obtained for the reduced models. The results are presented in Table 3.2.
For comparison purposes, the lognormal model whose parameters estimates were found to be
[ = —-0.8978 and o = 0.2692, was also considered. It can be seen that the proposed E1G
model and its reduced version provide a better fit than that resulting from the other models.
Figures 3.6 and 3.7 show the cumulative distribution functions of the lognormal, RGG, RETG
and &7 G models superimposed on the empirical cumulative distribution function. Admittedly,
the £7G and REI G models fit the data nearly equally well in this case. However, it should
be noted that the sample size is minute and that only scant data is available in the tails of the
distribution, which apparently precludes taking full advantage of the additional parameter in
this instance.

Table 3.2: Parameter Estimates and Aj & W; for the Flood Data

& 0 % T AS Wé
Weibull -1 3.5260 | 14.450 0 .8213 | 0.1400
Gamma 11 1 30.769 0 0.4433 | 0.0712
Inverse Gaussian -2.5 1 15.745 | 2.8195 | 0.3514 | 0.0558
Lognormal 0.3470 | 0.0540
RGG 339.113 | 0.0364 | 9600 0 0.3390 | 0.0560
GIG -16.567 1 0.005 | 5.7343 | 0.2861 | 0.0449
RELIG -10 2.3 0 0.3108 | 0.2567 | 0.0436
EIG -9.95 2.24 0.09 0.34 | 0.2551 | 0.0437
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Figure 3.6: CDF (solid line) and empirical CDF (dots) for the flood data set. Left panel:
Lognormal; Right panel: GIG.
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Figure 3.7: CDF (solid line) and empirical CDF (dots) for the flood data set. Left panel: E1G;
Right panel: REIG.

3.6.2 Snowfall Precipitations in Buffalo

The same models are now fitted to the Buffalo snowfall data set, as given in Table 3.3
(available for instance from the S-PLUS data library). This set comprises a record of the
annual snowfall precipitations in centimeters over 63 consecutive years in the city of Buffalo.
It can be seen from Table 3.4 that the £7G distribution provides the best fit. In this case, the
goodness-of-fit measures indicate that a close fit can also be obtained by making use of the
RG@G distribution. This is corroborated by the graphs of the cumulative distribution functions
superimposed on the empirical cumulative distribution function (Figures 3.8 and 3.9). Again,
the lognormal was considered as an alternative model. In this case, referring to Table 4.3, the
&I G model clearly produces a superior fit as compared to the REZG model. Note that the
parameter estimates of the lognormal model were found to be u = —4.3368 and o = .3270.
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Table 3.3: The Snowfall Precipitation Data

25 39.8 | 399 | 40.1 | 46.7 | 49.1 | 496 | 51.2 | 51.6 | 53.5 | 54.7
555 | 559 58 603 | 63.6 | 654 | 66.1 | 693 | 709 | 714 | 71.5
71.8 | 729 | 744 | 762 | 77.8 | 782 | 78.4 79 793 | 79.6 | 80.7
824 | 824 83 83.6 | 83.6 | 84.8 | 855 | 87.4 | 88.7 | 89.6 | 89.8
89.9 | 90.9 | 97. | 98.3 | 1014|1024 | 103.9 | 104.5 | 105.2 | 110 | 110.5
110.5 | 113.7 | 114.5 | 115.6 | 120.5 | 120.7 | 124.7 | 126.4

Table 3.4: Parameter Estimates and A% & Wg for the Snowfall Data

3 ) v T Al W
Inverse Gaussian | —2.5 1 0.0548 353.261 | 0.8676 | 0.1504
Lognormal 0.7752 | 0.1284
REIG —53.66 | 0.1671 0 650.2 | 0.7417 | 0.0886
Gamma 8 1 0.124536 0 0.4840 | 0.0792
GIG 7.97 1 0.1219 0.0025 | 0.4291 | 0.0532
Weibull -1 3.8338 | 3.37x107® 0 0.2964 | 0.0454
RGG 1.2889 | 3.629 | 9.31x107® 0 0.2817 | 0.0428
EIG -0.0557 | 3.144 | 1.03x107° | 1.743 | 0.2625 | 0.0403

3.6.3 Breaking Stress Data

The same models are now fitted to a data set, which is presented in Table 3.5 and was
obtained from Nicholas and Padgett (2006) of carbon fibres (in Gba). In addition confidence
intervals for the estimated parameters have been found using the observed information matrix.
In addition to the Anderson-Darling and the Cramér-von Mises statistics, the AIC (Akaike
Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn In-
formation Criterion) have been used to assess the fit of a given distribution with the Breaking
Stress data set in order to compare our models The parameter estimates and Anderson-Darling
and Cramér-von Mises statistics are given in Table 3.6. The AIC, BIC and HQIC statistics are
tabulated in Table 3.7. According to these five of goodness-of-fit criteria, the best fit is obtained
with &7 G model.



3.6. NuMEericaL EXAMPLES

10 [
0.8 *
0.6 *
0.4 ,

02r-

Fx)

10-

081
06
04r

02

L | @
20

40

.
60

.
80

.
100

51

Figure 3.8: CDF (solid line) and empirical CDF (dots) for the snowfall data set. Left panel:
Lognormal; Right panel: GIG.
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Figure 3.9: CDF (solid line) and empirical CDF (dots) for the snowfall data set. Left panel:

RGG; Right panel: E1G.

Table 3.5: The Breaking Stress Data

3.7
4.42
3.75
3.39
3.15
1.41
3.19
2.17
1.84
1.57

2.74
241
243
2.81
2.35
3.68
1.57
1.17
.39
1.08

2.73
3.19
2.95
4.2
2.55
2.97
81
5.08
3.68
2.03

2.5
3.22
2.97
3.33
2.59
1.36
5.56
248
2.48
1.61

3.6
1.69
3.39
2.55
2.38

98
1.73
1.18

.85
2.12

3.11
3.28
2.96
3.31
2.81
2.76
1.59
3.51
1.61
1.89

3.27
3.09
2.53
3.31
2.77
491
2
2.17
2.79
2.88

2.87
1.87
2.67
2.85
2.17
3.68
1.22
1.69
4.7

2.82

1.47
3.15
2.93
2.56
2.83
1.84
1.12
1.25
2.03
2.05

3.11
4.9
3.22
3.56
1.92
1.59
1.71
4.38
1.8
3.65

. X
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Table 3.6: Parameter Estimates and A(Z) & Wg for the Breaking Stress Data

2 5 B 7 Az w2
REIG | —111.967 | 0.0453 | 0 | 2543.7 | 1.51096 | 0.2831
RGG | —0.1875 | 23428 | 0.1141 | 0 | 0.4091 | 0.0692
EIG | —0.1875 | 2.3428 [ 0.1142 | 0.0040 | 0.0692 | 0.0692

Table 3.7: Parameter Estimates and Aé & Wg for the Breaking Stress Data

AIC BIC HQIC

REIG | 303.526 | 311.341 | 306.688
RGG | 288.692 | 296.507 | 291.855
&EIG | 288.687 | 296.502 | 291.85




Chapter 4

The Distribution of Weighted Sums of
Chi-square Random Variables

4.1 Introduction

The distribution of linear combinations of chi-square random variables and that of quadratic
forms in normal vectors which can be expressed as weighted sums of chi-square random vari-
ables, have already received much attention in the statistical literature. Box (1954) considered
a linear combination of chi-square variables having even degrees of freedom. Some represen-
tations of the density function of linear combinations of chi-square variables were derived by
Mathai and Saxena (1978).

It is pointed out in Szatrowski (1979) that the null distribution of certain likelihood ratio
tests on mean vectors and covariance matrices arising in multivariate analysis can be approxi-
mated by linear combinations of chi-square random variables, see for instance Willks (1946),
Votaw (1948)and Gleser and Olkin (1966, 1969).

Various representations of the distribution function of a quadratic form are available, and
several procedures have been proposed for computing percentage points and preparing tables.
Gurland (1948, 1953, 1956), Pachares (1955), Ruben (1960, 1962), Shah and Khatri (1961),
and Kotz et al. (1967a,b) among others, have given representations of the distribution function
of quadratic forms in terms of MacLaurin series and the distribution function of chi-square
variables. Gurland (1956) and Shah (1963) considered respectively central and noncentral
indefinite quadratic forms, but as pointed by Shah (1963), the expansions obtained are not
practical. Various representations of the exact density and distribution functions of indefinite
quadratic forms have been given by Imhof (1961), Davis (1973) and Rice (1980).

As pointed out in Mathai and Provost (1992), a wide array of statistics can be expressed in
terms of quadratic forms in normal random vectors. For example, one may consider the lagged
regression residuals developed by De Gooijer and MacNeill (1999) and discussed in Provost
et al. (2005), or certain change point test statistics derived by MacNeill (1978).

Hillier (2001) considered ratios of quadratic forms in normal random variables and ex-
pressed their density functions in terms of top-order zonal polynomials involving difference
quotients of the characteristic roots of the matrix in the numerator quadratic form. The sam-

53
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ple serial correlation coefficient as defined in Anderson (1990) and discussed in Provost and
Rudiuk (1995) as well as the sample innovation cross-correlation function for an ARMA time
series whose asymptotic distribution was derived by McLeod (1979) have such a structure.

Abadir and Larsson (1996, 2001) derived the exact finite-sample joint moment generating
functions of the three quadratic forms constituting the sufficient statistics of a discrete multi-
variate Gaussian autoregressive process of order one. Phillips (1978) considered the compar-
ative performance of two-well known approximation techniques in the case of the coefficient
estimator in the first order noncircular autoregression model, and Jeong (1985) developed a new
approximation of the critical point of the Durbin-Watson statistic for testing for autoregressive
disturbances in the linear regression model with a lagged dependent variable.

Monte Carlo simulations, whereby artificial data are generated and sampling distributions
and moments then are estimated, can be easily implemented on an extensive array of mod-
els. These simulations may, however, result in some limitations such as sampling variations
and simulation inadequacies, and their results may be specific to the set of parameter values as-
sumed in the simulations. Hendry and Harrison (1974), Dempster et al. (1977), Hendry (1979),
and Hendry and Mizon (1980) among others, attempted to cope with these issues.

On the other hand, the analytical approach derives results which hold over the entire pa-
rameter space but may find some limitations in terms of simplifications on the model which are
imposed to render the problem tractable. The analytical approach has been applied to various
statistics involving quadratic forms. Examples include certain heteroscedastic models studied
by Taylor (1977, 1978), the first-order autoregressive process considered by Sawa (1978) and
Phillips (1977, 1978), the regression models analyzed by Dwivedi and Srivastava (1979), a
linear model with unknown covariance structure studied by Yamamoto (1979), as well as the
Bayesian analysis of simultaneous equations models carried out by Zellner (1971) and Dreze
(1976).

A representation of the density function of a linear combination of independently dis-
tributed chi-square random variables is obtained by means of inverse Mellin transform tech-
nique in Section 4.2. The connection between a linear combination of independently distributed
chi-square random variables and central quadratic forms is explained in Section 4.3. This rep-
resentation of the density is utilized to calculate the distribution function of certain weighted
sums of chi-square random variables at certain percentiles of the distribution in Section 4.4.
The results are compared with those obtained by making use of the RGG model.

4.2 Derivation of the Density Function

LetS$ = Z’;zl m;X; where m; > 0 and X; are independently distributed chi-square random
variables having r; degrees of freedom each, j = 1,..., k. We will determine the density func-
tion of S by applying the inverse Mellin transform technique as described in Chapter 1. First,
we obtain a representation of E(S ™) :

k r/2 1 _xj/z

E(S™ = f f ~h n TG /2)dxj’ (4.1)
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where s = Z'J‘-ZI m;x;. But since
“h = ()} f ! ledr forR(h > 0), s> 0 4.2)
0

where R(.) denotes the real part of (.), we have

ri/2-1 —xj/2
h 1 p=t(myxy++mexi) .
woort - [ [H 2T /2) ’) @
x](m]t+l/2)
h
Ty f ]—[ f ] (4.3)

Noting that fori =1, ...k,

ES™

f r )} L et ) 4y = gt +1/2) 72 (4.4)
0
(4.3) becomes
—h _1 a -1 k (mjt+1/2)"1/2
ES™ = {T(h) fo t ]F_l[ 7 dr
00 k
= {T(h)™' f ! {ﬂ(zmjzﬂ)-’ﬂ} dr. (4.5)
0 j=1

Now letting u = 1/(1 + 1), that is, t = (1 — u)/u, one has |d¢/du| = 1/u?, and (4.5) becomes

k
ES™) = Ty | [@mp?x
=1

: h-1 h-1 . 2m; -1 2
p=h=1c1 _ ;)= | | 1- ‘ 4.
fo u (1—-u { u 2 } du 4.6)

J=1

wherep = (ri +ry+---+r)/2. Letp—h=qand y; = 2m; — 1)/(2m;); then

ﬁ (2m;)™"T(p)
T'(p)

J=]

I'(p) t " k o
x[mfo u™ (1 —u)y™ l_[(l—yju) du

ES™

j=1
k —r
_ (2m;)~""*L(p) 7 Ik,
. {l:[ F—(/?)}FD(Q’E""’5’71’---’%«)’ @7

provided R(g) = R —h) > 0, R(p —¢q) = R(h) > 0, and |y,| = |2m; — 1)/2m;)| < 1,
that is, m; > 1/4 for j = 1,...,k, where Fp(.) denotes Lauricella’s hypergeometric function
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of k variables (see Mathai and Saxena 1978, p. 162). We may now express (4.7) as an infinite

series:
k .
_ (2m;)~"1"*T(p)
ES™ = —
(™ {ﬂ o) }

j=1

S R S

v=0 vi+-+v=v

where (), = I'(6 + v)/T'(0),

vV V=V V=V]——V=2
Z f,.om) = ZZ Z fOu s Ve, v =vi = = Vi)
Vit A=y v1=0v,=0 V-1
this series being convergent for |y;| < 1, that is, for m; > 1/4,j = 1,...,k. If the condition
m; > 1/4 is not satisfied for j = 1,...,k, then we multiply m; by a scalar quantity B chosen

such that (Bm;) > 1/4 for all j.

Let T = S, then E(T") = E{(S*")}. We can therefore obtain the h”* moment of T upon
substituting ik for hin (4.8). Let b = p—hk where 0 < R(hk) < p and |y;| = |(2m;—1)/2m;| < 1.
Noting that

L(p)(p), =T +V) (4.9)
and that
T(b)(b), = T(b+v)=T(p—hk+v)=Tk®" et % — h))
k—1
_ vt p+v+1
= (n) 1R 2ppry=hk1/2 ]—[r(T —h), (4.10)

i=0
by the Gauss-Legendre multiplication formula:

m—1

[C(mz) = (27-[)(1 m)/2 mz—1/2 HF(Z + _) (411)

j=0
one has

=Y Y c. v,ﬂr(p ”” —h)( ) (4.12)

v=0 vi+...4+v=v

for 0 < R(h) <p/kandm; > 1/4, j=1... k, where

Qo) 1R(3), L (3), 00 YD)
L ACm) T+ vl v

From the uniqueness of the inverse Mellin transform, it is seen that the moment expression
in (4.12) uniquely determines g(T), the density function of T, where T = 1/S*. Hence

(4.13)

Vieve —
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Cc+ico

g(H) = 2n)™! E(T" " Vdp, (4.14)

where i = (—1)/2 . Since the infinite series in Equation (4.2.12) is uniformly convergent within
its radius of convergence (m; > 1/4), j = 1,...,k, the density of T may be written as follows:

g0 = i >

v=0 vi+...4+v=v

ctico Kk
X {(2@-1 f ]—[ 'l —-a, — h)(et)—hdh} ,
ooy

i >, ijé(et'aozz:::gk) (4.15)

v=0 vi+-+v=v

where 1 —a; = (p+v+1-1)/k, 0 = k-, C,,.y1s given in (4.13) and gﬁ;’g is the Meijer’s
G-function which is defined for 0 < |6T| < 1. Since |dt/ds| = ks~**1 and 0 < ¢ < 1/6 implies
that #'/% < s < oo, the density of R is therefore

() = ks™“Dg(1/s) (4.16)
Using (4.16) and the following identity:

Ly 1=by,...,1-
g’"( o ’“”)=§Z:§f(— o bq), (4.17)

b,....,b xll-ay,...,1-a,

we have

k 0,...... 0
ks~ D Cor.n G2 : ) 4.18
¢(s) = ks Z Z btk 9 1—ap,....,1—a ( )

v=0 vi+..+v=v

which becomes

i

PN

b 2 Te k(%5 )
po)=ks' D > Con DTG % (4.19)

v=0 vi+...4+v=v

using the identity

o 0,0\ @) he e
| .

The last identity was obtained from the Mathematica website, functions.wolfram.com, with

reference number 07.34.03.1081.01.
The density of s can be simplified to

(4.20)

v+p

k”’JG‘_(”) (), ()L yysre ek
$(s) = - (4.21)
; v1+;k =y l'zl(zmi)ri/z} F(p + V)(Vl! e Vk!)
n Tk Vi Vi
= Z Z G GWOT D) e 4.22)

e AT @m) 2 Do + (! vi)
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since 6 = k. This representation which is a mixture of gamma densities with 8 = 1 is suitable

when Vg(r;S)‘) = 1. Let Y be a linear combination of chi-square random variables such that

L) — B # 1,then let Y = BS, where 8 = Var(Xt, m;X))/E(C, m;X;) = XX 2rm? [ 3k rim,,

E(S)
one has the following representation of the density of Y:

(r] )V . (r_k)v (YW . Vk)yv+p—le—y/ﬁ Zk rim;
1 £ : . 4.23
o= Z(; Z L ATTL @m) 2 Do +v)(ni !B Zi 2rim] =

4.3 Connection to Central Quadratic Forms

We now show that central quadratic forms can be expressed as linear combinations of cen-
tral chi-square random variables.

Let X ~ N,(0,%) where X is a positive definite covariance matrix. On letting Z ~ N,(0, 1),
where / is a p X p identity matrix, one has X = $27Z where £ denotes the symmetric square
root of X. Then, the quadratic form Q = X’AX where A is a p X p real symmetric matrix and
X’ denotes the transpose of X can be expressed as follows:

0 = Z/'S1AX7,

= Z'PP'S'AS:PPZ

= Z'AZ (4.24)
where P is an orthogonal matrix that diagonalizes TIAYS , thatis, P'SIATIP = diag(4y,...,4))
= A, 4;,..., 4, being the eigenvalues of TIAYS (or equivalently those of AY) in decreasing or-
der.

As shown in Mathai and Provost (1992), the s cumulant of X’AX where X ~ N »(, X) is

k(s) = 2 Y (s—DItr(AT)* , (4.25)
tr(-) denoting the trace of (). It should be noted that tr(AX)* = 1 A where the A;’s, j =
1,..., p, are the eigenvalues of AX. The moments of a random Varlable Can be obtamed from

its cumulants by means of a recursive relationship that is derived for instance in Smith (1995).
Accordingly, the 2™ moment of X’AX is given by

h —
u = Z(h( k= ) i), (4.26)

where k() is as specified by Equation (4.24).
Alternatively, we can obtain the /"moment of a linear combination of chi-square random
variables specified in the previous section by making use of the following code in Mathematica:

; o 2r(i+Y)
X/ Ax- s ——2
[FZI H’U J { J- F(r—zj) }
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where k is number of variables in the linear combination, r; is number of degrees of freedom
of the j” chi-square random variable in the linear combination and

2T (i + %)

rz)

E(X)) =

4.4 Numerical Examples

We will make use of the representation of the density function of a linear combination of
independent chi-square random variables which is given in (4.23), and investigate its accu-
racy. The percentiles have been determined by simulating one million linear combination of
chi-square random variables involving 2, 4 and 5 terms. Since the density given in (4.23) is a
mixture of the gamma densities, the Reparameterized Generalized Gamma distribution (RGG)
is being used to fit the percentiles obtained by the simulation. The sum of the squared dif-
ferences between the sample and population moments are minimized using Mathematica for
determining the parameters. Tables 4.2-4.4 give the CDF obtained from the density function
given in (4.23) at different percentiles and the CDF resulting from the RGG model. Let v*
denote the number of terms used in the sum over v in (4.23), that is, v* is the truncation point.
Upon truncation, it is indicated to normalize the resulting function in order to obtain a bona
fide density function. The most accurate CDF values that were achieved are indicated in bold
face numbers. Table 4.1 presents the degrees of freedom and the k coefficients of the chi-square
variables in the linear combinations being considered. Tables 4.2-4.4 indicate that in order to
attain a reasonable level of accuracy, one should increase the values of v* as the number of
variables in the linear combination increases and that in general the approximated distribution
functions are in close agreement.

Table 4.1: Parameter Values of the Three Linear Combinations

k Iy | I | 13 r4 rs mi m, ms my ms
242 | —|—|— |13 23| — | — | —
44231 |—/|3/10|2/10|3/10|2/10 | —
S|4 (2|24 |2 1/10|2/10 |4/10 | 2/10 | 1/10

Figures 4.1-4.3 present the empirical CDF and the fitted RGG CDF for k = 2, k = 4 and
k = 5 based on the Tables 4.2-4.4 values.
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Table 4.2: CDF Approximations for a Linear Combination of Two Variables, (k=2), Using the

RGG Model and the Truncated Density (4.23)

CDF | Rank | Percentile V*=5 v*=10 v'=15 RGG
0.01 | 10000 | 0.369131 | 0.0100614 | 0.0100614 | 0.0100614 | 0.00908585
0.05 | 50000 | 0.693639 | 0.0499273 | 0.0499273 | 0.0499273 | 0.0485347
0.10 | 100 000 | 0.941485 | 0.100584 | 0.100585 | 0.100585 | 0.0996755
0.15 | 150000 | 1.14003 | 0.150754 | 0.150754 | 0.150754 | 0.150464
0.20 | 200000 | 1.31794 0.20068 0.200681 | 0.200681 0.200951
0.25 | 250000 | 1.48594 | 0.250489 | 0.250492 | 0.250492 | 0.251213
0.30 | 300000 | 1.65104 0.30067 0.300677 | 0.300677 | 0.301728
0.35 | 350000 | 1.81543 | 0.350784 | 0.350798 | 0.350798 0.352056
0.40 | 400000 | 1.98083 | 0.400491 | 0.400517 | 0.400517 0.401866
0.45 | 450000 | 2.15279 | 0.450678 | 0.450724 | 0.450724 | 0.452061
0.50 | 550000 | 2.33188 | 0.500711 | 0.500792 | 0.500792 | 0.502027
0.55 | 600000 | 2.52242 | 0.550932 | 0.551069 | 0.551069 | 0.552126
0.60 | 660000 | 2.7246 0.600447 | 0.600675 | 0.600675 0.601499
0.65 | 700000 | 2.94815 | 0.650431 | 0.650808 | 0.650808 0.65136
0.70 | 750000 | 3.19737 | 0.700203 | 0.700825 | 0.700825 0.701089
0.75 | 800000 | 3.48134 | 0.749494 | 0.750527 | 0.750527 0.750515
0.80 | 850000 | 3.81988 | 0.798645 | 0.800399 | 0.800399 0.80015
0.85 | 900 000 | 4.24535 | 0.847299 | 0.850396 | 0.850395 0.849989
0.90 | 950000 | 4.82435 | 0.894204 | 0.900054 | 0.900051 0.899619
0.95 | 990000 | 5.78943 | 0.936957 | 0.949954 | 0.949939 | 0.949675
0.99 | 990 000 | 8.00217 | 0.952753 | 0.990375 | 0.990193 0.990216

Figure 4.1: The empirical CDF (dots),
the fitted RGG CDF (solid line) k=2

the CDF resulting from Equation (4.22) (circles) and
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Table 4.3: CDF Approximations for a Linear Combination of Four Variables, (k=4), Using the
RGG Model and the Truncated Density (4.23)

CDF | Rank | Percentile V=5 v*=10 RGG
0.01 | 10000 | 0.995105 | 0.00987755 | 0.00987755 | 0.0097909
0.05 | 50000 | 1.59237 | 0.0498953 | 0.0498953 | 0.0498032
0.10 | 100 000 | 1.99972 | 0.0999317 | 0.0999318 | 0.0999005
0.15 | 150000 | 2.31116 0.149547 0.149547 0.149574
0.20 | 200000 | 2.58651 0.199936 0.199937 0.200011
0.25 | 250000 | 2.83862 0.249995 0.249997 | 0.250103
0.30 | 300000 | 3.07916 0.300027 0.300031 0.300156
0.35 | 350000 | 3.31547 0.350282 0.350288 0.35042
0.40 | 400 000 | 3.54929 0.400155 0.400166 0.400294
0.45 | 450000 | 3.78622 0.450038 0.450055 0.450172
0.50 | 550000 | 4.03145 0.500243 0.500269 0.500367
0.55 | 600 000 | 4.28532 0.550049 0.550088 0.550163
0.60 | 660 000 | 4.55482 0.599951 0.60001 0.600058
0.65 | 700 000 | 4.84807 0.650311 0.650398 0.650418
0.70 | 750000 | 5.16931 0.700425 0.700553 0.700547
0.75 | 800 000 | 5.52905 0.750146 0.750333 0.750305
0.80 | 850000 | 5.94958 0.799908 0.800186 0.800141
0.85 | 900 000 | 6.4669 0.849693 0.850118 0.850064
0.90 | 950000 | 7.15227 0.898963 0.899638 | 0.899589
0.95 | 990 000 | 8.27585 0.948909 0.950109 0.950083
0.99 | 990000 | 10.6338 0.987401 0.989849 | 0.989849

10+
08
06
0.4}

0.2

Figure 4.2: The empirical CDF (dots), the CDF resulting from Equation (4.22) (circles) and
the fitted RGG CDF (solid line) for k=4
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Table 4.4: CDF Approximations for a Linear Combination of Five Variables, (k=5), Using the

RGG Model and the Truncated Density (4.23)

CDF | Rank | Percentile v*=35 v*=40 v'=45 RGG
0.01 | 10000 1.6614 | 0.0100821 | 0.0100813 | 0.0100784 | 0.00922397
0.05 | 50000 | 2.36962 | 0.0497643 | 0.0497637 | 0.0497665 | 0.0487915
0.10 | 100 000 | 2.83474 | 0.0994873 | 0.0994868 | 0.0994873 | 0.0991038
0.15 | 150000 | 3.18827 0.14951 0.14951 0.149506 0.149741
0.20 | 200000 | 3.49272 | 0.199566 | 0.199565 | 0.199566 0.200302
0.25 | 250000 | 3.77031 | 0.249431 | 0.249431 | 0.249435 0.250536
0.30 | 300 000 | 4.03468 | 0.299432 | 0.299432 | 0.299438 0.300772
0.35 | 350000 | 4.29261 | 0.349488 | 0.349487 | 0.349491 0.350939
0.40 | 400000 | 4.54692 | 0.399115 | 0.399115 | 0.399113 0.400567
0.45 | 450000 | 4.80695 | 0.449286 | 0.449286 | 0.449284 | 0.450643
0.50 | 550000 | 5.07294 | 0.499234 | 0.499234 | 0.499237 0.500418
0.55 | 600000 | 5.35159 | 0.549388 | 0.549389 | 0.549393 0.550336
0.60 | 660 000 | 5.64557 0.5993 0.599299 0.5993 0.599968
0.65 | 700000 | 5.9661 0.649711 | 0.649711 | 0.649708 0.650074
0.70 | 750000 | 6.31386 | 0.699337 | 0.699337 | 0.699337 0.699397
0.75 | 800000 | 6.7102 0.749344 | 0.749344 | 0.749348 0.749123
0.80 | 850000 | 7.17469 | 0.799336 | 0.799336 | 0.799335 0.798889
0.85 | 900000 | 7.74978 | 0.849428 | 0.849428 | 0.849426 0.84885
0.90 | 950000 | 8.53224 | 0.899849 | 0.899848 | 0.899849 0.899289
0.95 | 990000 | 9.8016 0.949875 | 0.949881 | 0.949879 | 0.949559
0.99 | 990000 | 12.6141 | 0.973384 | 0.990161 | 0.989994 | 0.990033

Figure 4.3: The empirical CDF (dots), the CDF resulting from Equation (4.22) (circles) and
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the fitted RGG CDF (solid line) for k=5




Chapter 5

Actuarial Examples

5.1 Some Actuarial Functions

Closed form representations of the hazard function and mean residual life function for the
RGG, REIG, E1G and proxy distributions are presented in this section.

The hazard function is defined as Z(x) = f(x)/S (x) where S (x) is the survival function and
the mean residual life function is defined as

[FO=x0f0)dy

K(x) = S()

(i) The hazard function for RGG distribution (Section 2.4.2) is

B ev(—x‘i)x6+§—l V(¥

F(%,x‘sv)

Z(x) =

(i1) The hazard function for REI G distribution (Section 2.4.3) is

_ &tptl

o x§+p e‘r(—x’p)T o

F(-e) T (-2 o)

Z(x) =

provided that 1 + 6 + jo + & < 0.
(ii1) The hazard function for &7 G distribution (Section 3.1) is

—rx0—
e ™ vl

. 5.1
X Ksient (vx0, Tx79) ©-1)
o

(iv) Using the survival function of the proxy distribution as defined in Equation (2.44), its
hazard function is

x§+6 e,—‘r)c’/J Z?:O -1 ;:O (l’.)(_m)i—j X(Sj

i! Jj

. : jo+o+£+1 . . :
n =1yl i i\ Nim et _joHsHEFT) _joHoHENl
i=0 g1 j=0 (j)( m) =it p (F( Y I — , X PT

(5.2)

63



64 CHAPTER 5. AcCTUARIAL EXAMPLES

(v) The mean residual life function for RGG distribution is

yier (w x5v)
K(x) = 6+§6 : - X.
F(T,X(SV)

(vi) The mean residual life function for REL G distribution is

o (- 952) - D(-E52 oor)) e al (€52 ) - T (-552)

K(x) = p p
() e onf T (e )

(vii) The mean residual life function for &1 G distribution is

X Ksien2 (vx5, Tx_é)
0

- X
Ksven (vx‘s, T)C_‘S)
)

(5.3)

(viii) The Mean residual life function of the proxy distribution is

(Z—IV ()( m)lejd+6;£+l(—Tl’r( ]5+5+§-‘+2 —PT)

(16+6+§+1 _pT)—XF( ]6+6+§-‘+1) (]5+6+§+2)))

(Z Z()( oy M{r( 16+6+§+1) F( ](5+(5+§+1 x_pr)}],
i=0

(5.4)

provided that 2+ + j 6 +& < 0. A methodology for converting problems into density estimation
problem is proposed and applied to actuarial data sets in the next sections.

5.2 Canadian Quinquennial Mortality Rates

Canadian quinquennial mortality rates (times 1000) in 2006 for the age group 15 and over
where were obtained from Statistics Canada’s website, are included in Table 5.1. These rates
are fitted using the five-parameter GEM. A plot of this data set is presented in Figure 5.1.
Since fitting this data set is a regression problem, we need to convert it into a density estimation
problem. First, the ‘Interpolation’ Mathematica command (with third degree splines) is applied
to the data set. The resulting plot appears in Figure 5.2.

The second step in transforming a regression problem into a density fitting problem is
to obtain a density function from the Interpolation function. This is done by differentiating
numerically the interpolating function of the Canadian quinquennial mortality rates data set
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Figure 5.1: Plot of Canadian quinquennial mortality rates (times 1000) in 2006 for ages 15 and
over
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Figure 5.2: Interpolation function (third degree splines) for the Canadian quinquennial mortal-
ity rates data set
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Table 5.1: Canadian Quinquennial Mortality Rates (times 1000) in 2006 for Ages 15 and Over

Age | Mortality Rate | Age | Mortality Rate
15-19 0.453594 55-59 5.2008
20-24 0.58258 60-64 8.43232
25-29 0.560751 65-69 13.2571
30-34 0.63396 70-74 21.2655
35-39 0.899783 75-79 35.1512
40-44 1.35417 80-84 58.704
45-49 2.17811 85-89 99.7542
50-54 3.44684 90-95 195.448

50
40t
30
20+
10}
20 60 80

Figure 5.3: Derivative of the interpolating function for the Canadian quinquennial mortality

rates

and then reflecting the resulting function using the transformation 95 — x to obtain a right
skewed distribution. As a final step the resulting function is normalized. Figure 5.3 shows the
interpolation function after numerical differentiation and Figure 5.4 shows the density function
obtained after applying numerical differentiation, reflection and normalization.

The probability density corresponding to the Canadian quinquennial mortality rates data
set is fitted from its moments with different distributions and then the reverse steps are applied
to model the mortality rates. Goodness-of-fit is assessed by evaluating the average squared
differences (ASD) between the original and fitted mortality rates. Table 5.2 shows ASD’s for

the various fitted models.
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Figure 5.4: Density function corresponding to Canadian quinquennial mortality rates obtained
after applying numerical differentiation, reflection and normalization

Table 5.2: Parameter Estimates and ASD’s for the Canadian Quinquennial Mortality Rates

4 v T ASD
Exponential 6 = 1 -1 |0.1216 0 40.526
Inverse Gaussian -2.5 | 0.0394 | 2.665 7.25
Lognormal (1.641,.966) - 6.575

Bessel Distribution é = 0.553 | —.533 | 0.7729 | 0.6208 | 3.703
RGG Distribution é = 0.482 1.047 | 1.329 0 3.438
GEM § = 3/4,p=2/3 -1.906 | .1832 | 2.704 | 1.742

5.3 American Yearly Mortality Rates for Females

American Yearly Mortality Rates for Females in 2006 for the age group 8 and over where
were obtained from www.mortality.org website, are included in Table 5.3. Table 5.4 provides
parameter estimates and goodness-of-fit results for the following models: exponential, Weibull,
lognormal, RGG, EIG and GEM. 1t is seen from that table that the GEM provides the best
fit. The improvement in the fit with this model is not as noticeable as in the previous example
wherein the mortality rates were multiplied by 1000, which makes these rates more distinct.
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Figure 5.5: Original and fitted mortality rates using the RGG model
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Figure 5.6: Original and fitted mortality rates using the GEM
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Figure 5.7: Fitted function superimposed on the mortality rates
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Table 5.3: Mortality Rates for Females for ages 8-102

.00011
.00033
.00053
.00072
.00139
.00286
.00496
.01003
.02030
.04441
.10330
.20939

.00011
.00037
.00052
.00077
00154
.00307
.00544
01107
02286
04888
10971
22653

.00012
.00045
.00054
.00081
.00172
.00327
.00595
01185
.02489
.05509
11686
.24433

.00011
.00048
.00060
.00092
.00191
.00351
.00685
01315
02691
.06065
13134
.26269

.00012
.00045
.00056
.00098
.00207
.00378
.00683
01428
02976
06783
14673
28151

.00014
.00052
.00063
.00104
.00224
.00401
.00780
01556
03288
07427
16264
.30068

.00017
.00048
.00062
00117
.00235
.00438
.00861
01727
03635
08536
17865
.32007

.00022
.00047
.00069
.00133
.00263
.00468
.00966
.01882
.04023
.09193
.19297
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Table 5.4: Parameter Estimates and ASD’s for the Female Mortality Rates

{ 1% T ASD
Exponential 6 = 1 -1 0.072998 0 0.000124943
REIG Distribution p = 0.806 -3.49 0 11.5 | 0.000108267
Weibull(1.167) -1 0.0454 0 0.0000340835
Lognormal (2.357,0.7376) - - — 1 0.0000140229
RGG Distribution § = 0.48202 | 2.83462 | 2.09553 0 2.05652x107°
EIG6 =0.725 0.300 0.475 | 0.800 | 1.38445x107°
GEMS =r4/p = . 0.300 0.4750 | 0.800 | 1.38078x107¢




Chapter 6

Fitting Continuous Distributions to
Bivariate Data

6.1 Introduction

Suppose that U and W are jointly distributed random variables with density 4(u, w); then in
order to remove the correlation between the variables, the original data is normalized by using
the transformation

v 4T,
w=w

where V=7 is the inverse of the symmetric square root of the estimated covariance matrix,
which is denoted by V.

Since we are modeling the transformed variables with distributions defined on the positive
half-line, the following constants are added respectively to each coordinate so that the support
of the resulting distribution lies in the first quadrant. These constants are determined as follows:
v1=Absolute value of [Min[U]]+(Max[U]-Min[U])/2
v,=Absolute value of [Min[W]]+(Max[W]-Min[W])/2.

Thus,
() (e ()
y w-=w Y2
where
V_%: V11 V]Z) (6.2)
v v | '

Then the transformed data is fitted to the model specified by f(x,y) = fi(x) f2(y). This
is done by separately fitting the x;’s and y;’s with appropriate models. In the final step, the
distribution of the original data is obtained by applying the inverse transformation, that is,

() B3

70

) . (6.3)

S
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Since the Jacobian of the inverse of the inverse transformation is the determinant of V‘%,
the probability density function of the original data is taken to be

h(u, w) = V7| SO —u) +vip(w =w) + vy, vio(u — u) + vip(w = w) + 7). (6.4)

6.2 Applications

6.2.1 Bivariate Flood Data

This data which was previously analyzed by Yue (2001), consists of flood peaks (variable
u) and volumes (variable w), as observed in the Madawask basin, Quebec, Canada from 1990
to 1995. A bivariate histogram of this data set is shown in Figure 6.1. The bivariate density
obtained from the &7 G model (Figure 6.8) reflects more accurately the features of the original
data set than that based on the Inverse Gaussian distribution (Figure 6.9).

Table 6.1: The Flood Data Set

292, 12057 | 208, 10853 | 289, 10299 | 146, 10818 | 183, 7748 | 279,9763 | 260, 11127
279, 10659 | 137,8327 | 311, 13593 | 309, 12882 | 261,9957 | 162,5236 | 202, 9581
306, 12740 | 405, 11174 | 183,4780 | 219, 14890 | 210, 6334 | 200,9177 | 289,7133
239, 6865 | 294,8918 | 371,8704 | 245,6907 | 189,4189 | 229,8637 | 240, 8409
331, 13602 | 206, 8788 | 157,5002 | 184,5167 | 275,10128 | 286, 12035 | 230, 10828
233,8923 | 351, 11401 | 156,6620 | 168,3826 | 343,8192 | 214, 6414 | 303, 8900
300, 9406 | 143,7235 | 232,8177 | 182,7684 | 121,3306 | 186,8026 | 173,4892
292,8692 | 416, 11272 | 246, 8640 | 248,6989 | 297,9352 | 371, 12825 | 442, 13608
260, 8949 | 236, 12577 | 334, 11437 | 310, 9266 | 383, 14559 | 151,5057 | 197, 9645
, 283, 7241 | 390, 13543 | 405, 15003 | 176, 6460 | 181,7502 | 233,5650 | 187, 7350
216,9506 | 196, 6728 | 424, 13315 | 255,8041 | 257, 10174 | 232, 14769 | 286, 8711

The following models were used: the inverse Gaussian model (' G), GIG, REIG, RGG,

&EIG. Their parameter estimates are included in Table 6.2. The Anderson-Darling and Cramér-
von Mises the goodness-of-fit statistics are presented in Table 6.3.

6.2.2 Old Faithful Geyser Data

The Old Faithful Geyser data, presented in Table 6.4, is readily available in R as ‘faith-
ful {datasets}’. The first variable is the waiting time between eruptions and the second one
represents the duration of the eruptions. The bivariate histogram of this data set appears in
Figure 6.10. It is seen that the histogram and the density estimates exhibit similar features. The
goodness-of-fit results are tabulated in Table 6.5.
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Figure 6.1: Bivariate histogram of the flood data.
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Figure 6.2: £E1G univariate density estimate for the waiting time in the bivariate flood data
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Figure 6.3: RGG univariate density estimate for the waiting time variable in the bivariate flood
data
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Figure 6.4: The empirical CDF and the fitted &1 G CDF for the flood peaks variable in the
bivariate flood data
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Figure 6.5: The empirical CDF and the fitted RGG CDF for the flood peaks variable in the
bivariate flood data

Table 6.2: Parameter Estimates for the Bivariate Flood Data

& 0 Vi 7 & 02 12) 1o
RELTG | -16.1971 | 1.0141 — 55 -129.3242 | 0.1550 — 1050
1G -5/2 1 2.0556 | 47.3732 -5/2 1 1.76551 30
GIG 19.6891 1 4.51802 | 0.0010 8.60958 1 3 7
RGG 4.44 3.324 .0107 — 3.543 2.7225 | .04232 —
EIG 7.000 2.3685 | 0.0997 | 0.0011 -0.4420 | 3.3413 | 0.0100 | 16.2171
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Figure 6.6: The empirical CDF and the fitted &1 G CDF for the volume variable in the bivariate

flood data
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Figure 6.7: The empirical CDF and the fitted &1 G CDF for the flood peaks variable in the

bivariate flood data

Table 6.3: Aj & Wj for the Bivariate Flood Data

Al Wiz A2 W22

REIG | 0.849674 | 0.113627 || 0.651955 | 0.0951932
IG 0.841639 | 0.113539 || 0.413713 | 0.0585011
GIG | 0.511099 | 0.0628183 || 0.306132 | 0.0399535
RGG | 0.393214 | 0.0536596 || 0.268807 | 0.039934
&EIG | 0.335722 | 0.0360489 || 0.247784 | 0.033126
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Figure 6.8: 7 G bivariate density estimate for the bivariate flood data

Figure 6.9: E1 G bivariate density estimate for the bivariate flood data

Figure 6.10: Bivariate histogram for the Old Faithful data
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Table 6.4: The Old Faithful Data Set

1.800, 54
1.950, 51
2.167, 52
3.450, 78
4.433,79
1.867, 48
1.750, 58
4.800, 75
1.667, 64
1.817, 60
1.967, 56
3.883, 76
4.933, 88
1.867, 50
4.900, 82
4.700, 84
4.417,79
2.617,53
4.500, 82
1.833, 46
2.233, 60
5.100, 96
4.000, 70
2.000, 58
4.617, 93
4.500, 73
3.767, 83
4.800, 81
4.366, 77
4.600, 78
4.700, 80
2.000, 55
4.117,79
4.183, 86
2.333, 64
2.083, 57
4.500, 73
4.767,78
4.117, 81

3.333,74
4.350, 85
1.750, 62
3.067, 69
4.300, 73
4.833, 80
4.533,73
4.716, 90
4.567, 77
4.400, 92
4.500, 79
3.600, 83
3.950, 76
4.817,78
2.483, 62
1.783, 52
1.700, 59
4.067, 69
2.267, 55
4.383, 82
4.533, 82
1.800, 53
4.500, 81
3.833,78
1.917, 49
2417, 50
2.033, 51
1.833, 57
2.250, 51
1.783, 46
1.867, 49
4.150, 76
4.083, 78
2.217, 50
4.150, 75
4.367, 82
4.150, 88
4.533, 84
2.150, 46

2.283, 62
1.833, 54
4.800, 84
4.533, 74
4.467,77
1.833, 59
3.317, 83
1.833, 54
4.317, 81
4.167,78
4.000, 71
4.133,75
4.517, 80
1.833, 63
4.367, 88
4.850, 86
4.633, 81
4.250, 77
4.650, 90
1.883, 51
4.817,77
5.033,77
4.083, 93
3.500, 66
2.083, 57
4.000, 85
4.433,78
4.800, 76
4.667, 78
4.367, 77
3.833,75
1.867, 50
4.267,78
4.450, 90
2.350, 47
2.133, 67
3.817, 80
1.850, 58
4.417, 90

4.533, 85
3917, 84
1.600, 52
3.600, 83
3.367, 66
4.783, 90
3.833, 64
4.833, 80
2.233,59
4.700, 78
1.983, 62
4.333, 82
2.167, 48
4.300, 72
2.100, 49
3.683, 81
2.317, 50
1.967, 56
1.867, 45
4.933, 86
4.333,76
4.000, 77
1.800, 53
4.583,76
4.583, 77
4.167,74
4.083, 84
4.100, 84
2.100, 60
3.850, 84
3.417, 64
4.267, 82
3.917,70
1.883, 54
4.933, 86
4.350, 74
3917,71
4.250, 83
1.817, 46

2.883,55
4.200, 78
4.250, 79
1.967, 55
4.033, 80
4.350, 80
2.100, 53
1.733, 54
4.500, 84
2.067, 65
5.067,76
4.100, 70
4.000, 86
4.667, 84
4.500, 83
4.733,75
4.600, 85
4.600, 88
4.167, 83
2.033,53
1.983, 59
2.400, 65
3.967, 89
2.367, 63
3.333, 68
1.883, 55
1.833, 46
3.966, 77
4.350, 82
1.933, 49
4.233,76
1.750, 54
4.550, 79
1.850, 54
2.900, 63
2.200, 54
4.450, 83
1.983, 43
4.467, 74

4.700, 88
1.750, 47
1.800, 51
4.083,76
3.833,74
1.883, 58
4.633, 82
4.883, 83
1.750, 48
4.700, 73
2.017, 60
2.633, 65
2.200, 60
3.750, 75
4.050, 81
2.300, 59
1.817, 59
3.767, 81
2.800, 56
3.733,79
4.633, 80
4.600, 81
2.200, 45
5.000, 88
4.167, 81
4.583,77
4.417, 83
4.233, 81
4.133,91
4.500, 83
2.400, 53
4.483,75
4.083, 70
4.283,77
4.583, 85
4.450, 83
2.000, 56
2.250, 60

3.600, 85
4.700, 83
1.750, 47
3.850, 78
2.017, 52
4.567, 84
2.000, 59
3.717,71
4.800, 82
4.033, 82
4.567,78
4.067,73
4.333, 90
1.867, 51
1.867, 47
4.900, 89
4.417, 87
1.917, 45
4.333, 89
4.233, 81
2.017, 49
3.567,71
4.150, 86
1.933, 52
4.333, 81
4.250, 83
2.183,55
3.500, 87
1.867, 53
2.383,71
4.800, 94
4.000, 78
2417, 54
3.950, 79
3.833, 82
3.567,73
4.283,79
4.750, 75
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Table 6.5: AJ & Wj for the Old Faithful Data

Al} w12 A2? w22 A3? W3, A42 w42
RGG | 1.2641 | 0.2049 | 0.2947 | 0.0439 || 0.2947 | 0.0439 | 0.2708 | 0.0415
EIG | 03713 | 0.0644 | 0.2493 | 0.0374 | 0.2079 | 0.0259 | 0.2539 | 0.0370

Figure 6.11: RGG bivariate density estimate for the Old Faithful data

Figure 6.12: £ G bivariate density estimate for the Old Faithful data
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Parameter Estimates of the GEM (2.1) Using the MLE
Method for the Flood Data Set (Table 2.1)
(Sections2.5.1 & 2.7.1)

f[X_?NunberQ & ?NunberQ v_?IntegerQ d_?IntegerQ
v_?NunberQ t_ ?NunberQ w_?IntegerQ r_?IntegerQ]: =
f [xX?NunberQ &?NunberQ v?IintegerQ d?lntegerQ
v?Nurmber Q =?NunmberQ w?lntegerQ r ?IntegerQ] =
((((v)d (E+(v/d)+1) /v (2 7) ((rv)/2)+((dw)/2)-1 «d W)_((§+(v/d)+1)/(v/d))+0_5
(rv)%®)/(dr)) /MeijerG[{{}, {}},
{(Join[Table[(k+d (§+ (v/d) +1) /Vv) / (dw),
{k, 0, dw-1}], Table[k/ (rv), {k, O, rv-13}11, {}},
(.C)rv (V)Wd (r V)-rv (d w) -dw]) x €+ (v/d) e—vx(‘”d) e-tx“""”)
Lok3[§_?NunberQ, v_?lntegerQ d_7?IntegerQ v_?NunberQ
t_?NunberQ w_?IntegerQ r_?Int egerQ] D=
n Log [ ( ( ( (v)d (E+(v/d)+1) /v (2 ) ((rv)/2)+((dw)/2)-1

(dW)—((§+(v/d)+1)/(v/d))+0.5 (r V)O5)/(dr))/|\/E|JerG[
{{}, {3}, (Join[Table[(k+d (§+ (v/d) +1)/Vv)/ (dw),
{k, 0, dw-1}], Table[k/ (r v), {k, O, rv-1}11,

{3}, (©"Y Y v)"Y (dw"])]

n n
+Z(§+ (v/d)) Log[data[[i]1]] -V Zdata[[i 171v/¢
=1 i =

i i =1

n
-t Zdata[[i 1177
i =1

Printed by Mathematica for Students
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Logt3[g , v_, d_, v_, T, w, r_]:=
If [Lok3[g, v, d, v, T, W, r] eReals, Lok3[E, v, d, v, t, w, r], -10'7]
data = Sort [{. 654, .613, .402, .379, . 269,
. 740, . 416, .338, .315, .449, .297, .423, .379,
. 3235, .418, .412, .494, .392, .484, .265}];
n = Lengt h[dat a];
Xi :=data[[i]]
cdfl[y_]1:=
cdf 1[y] =Nintegrate[f[Xx, & Vv, d, v, t, w, r], {X, 0, y}1;
zi :=cdf1[x]

v=5 d=2;, w=5;r =2;

ClearAl [& v, T]

vt =

NMVaxi m ze[{Eval uate[Logt 3[&, v, d, v, T, W, r]], -10< &< -7,
1.5<v<2.3, .01<t<3}, {& v, t}, Maxlterati ons » 1000]

E=vt[[2, 1, 2]]
v=Vt[[2 2, 2]]
t=Vt[[2, 3, 2]]
ClearAl [AO, W]

1 n
AO=—n——Z((2i -1) Log[zi (1-2Zny1-i)])
ni=1

1 n 2i -1)2
V\0_12n+;(z, " T2n )
Plot [f [x, & Vv, d, v, t, w, r], {Xx, 0, 1.3}, PlotRange -» Al | ]
pl0 = ListPlot [Tabl e[{y, cdf1[y]}, {y, 0.05, 1.2, 0.05}],
AxeslLabel -» {x, F[x]}, PlotStyle -» R@Col or [1, 0, 0]1;
t =Table[{X;, (1 /n)-1/(2n)}, {i, 1, Length[data]}];
| p1 = Li st Pl ot [t];
Show[pl0, | pl]

Printed by Mathematica for Students
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Parameter s Estimates of the GEM (2.1) Using the M ethod of
Moments (Sections & 2.7.2)

v=3,d=1, w=8; r =3;
ML= ((v)= @™ (dw) /D MeijerG[{{}, {}},
{Join[Table[(k+d (§+ (v/d) +2) /Vv) / (dw),
{k, 0, dw-13}], Table[k/ (rv), {k, O, rv-13}11, {}},
(O Y)Y dw Y] ) /MeijerG[{{}, {}},
{Join[Table[(k+d (§+ (v/d) +1) /v) / (dw), {k, 0, dw-1}],
Table[k/ (rv), {k, O, rv-13}11, {}},
(t)"V (MY (rv)TY (dw)@Y];

M2 = ((v)=@9™) (dw)?/ /D MeijerG[{{}, {}},
{Join[Table[(k+d (£+ (v/d) +3) /Vv) / (dw),
{k, 0, dw-1}], Table[k/ (rv), {k, O, rv-13}11, {}},
(O )Y v)TY dw i ) /MeijerG[{{}, {1},
{Join[Table[(k+d (§+ (v/d) +1)/v)/ (dw), {k, 0, dw-1}],
Table[k/ (r v), {k, O, rv-13}11, {}},
(T)"V (MY (rv)TY (dw)@Y];

MB = ((v) G4 (dw)¥ /D MeijerG[{{}, {}},
{Join[Table[(k+d (§+ (v/d) +4) /v) / (dw),
{k, 0, dw-13}], Table[k/ (rv), {k, O, rv-13}11, {}},
(O )Y V)TV dw i ) /MeijerG[{{}. {1},
{Join[Table[(k+d (£+ (v/d) +1) /v) / (dw), {k, 0, dw-1}7,
Table[k/ (rv), {k, 0, rv-1}]1, {}},

Printed by Mathematica for Students



86 | APPENDIX

(O V)T dw Y,

rm:Z(x./n),
er:_il(xiz/n),
wB:_il(xﬁ/n),

f[Xx_?NunberQ & ?NunberQ v_?IntegerQ d_?IntegerQ
v_?NunmberQ t_?NunberQ w_?IntegerQ r_?IntegerQ]: =

f [x?NunberQ &?NunberQ v?IintegerQ d?lntegerQ
v?NunberQ t?NunberQ w?lntegerQ r ?lntegerQ] =
((((v)d (§+(v/d)+1) /v (2 7) ((rv)/2)+((dw)/2)-1 (d w) - ((&+(v/d)+1)/(v/d))+0.5

(rv)%®)/(dr)) /MeijerG[{{}, {1},
{Join[Table[(k+d (§+ (v/d) +1) /v) / (dw),
{k, 0, dw-1}], Table[k/ (rv), {k, O, rv-13}11, {}}.
(.C)rv (V)Wd (r V)-rv (d W) —dw]) x €+ (v/d) e—vx("’d) e-tx“""”)
data = Sort [{. 654, .613, .402, .379, .269, .740,
. 416, .338, .315, .449, .297, .423, .379,

. 3235, .418, .412, .494, .392, .484, .265}];
n = Lengt h[dat a];

Xi :=data[[i]]
cdf1[y_]1:=
cdf1[y] =Nintegrate[f[x, & Vv, d, v, T, W, r], {X, 0, y}1;
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zi =cdf1[x;]

CearAl [& v, t]

vt = Fi ndRoot [{(I’Tﬂ.—'\/ﬂ.)zn , (TTQ—NQ)2== , (rrB—I\/B)2==O},
{{€& -8.7"}, {v, 1.6"}, {r, 0.19"}}];

E=Vvt[[1, 2]]

v=Vt[[2, 2]]

T =Vt [[3, 2]]

ClearAl [AO, W]

1 n
AO=—n-—Z((2i -1) Log[zi (1 -2Zns-i)])
n.=1

1 n 2i-1)2

\m: (Z- -
12n+Z ! 2n

i =1

Plot [f [x, & Vv, d, v, t, w, r], {Xx, 0, 1.3}, PlotRange -» Al | ]

pl0 = ListPl ot [Tabl e[{y, cdf1[y]l}, {y, 0.05, 1.2, 0.05}],
AxeslLabel - {x, F[x]}, PlotStyle -» RECol or [1, 0, 0]1;

t =Table[{X;, (1 /n)-1/(2n)}, {i, 1, Length[data]}];

| p1 = Li st Pl ot [t];

Show[pl0, | pl]
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Parameter s Estimates of the GEM (2.1) Using the Proxy Dis-
tribution (Sections 2.4.4 & 2.7.3) for the Repair Data Set
(Table 2.5)

repair =Sort [{.2, .3, .5, .5, .5, .5, .6, .6, .7,
.7, .7, .8, .8, 1,1, 1,1, 1.1, 1.3, 1.5, 1.5, 1.5,
1.5, 2, 2, 2.2, 2.5, 2.7, 3, 3, 3.3, 3.3, 4, 4, 4.5,
4.7, 5, 5.4, 5.4, 7, 7.5, 8.8, 9, 10. 3, 22, 24.5}1;

n =Length[repair]

m= Mean [repair]

Normal [Series[e™Y, {y, m 7}11 /.y -»x®

46

3. 60652

e—3. 6065217391304345" v _ e—3. 6065217391304345" v (_3 6065217391304345" + X6) v o+

1 \

> @3 6065217391304345" v (_3 §065217391304345" +x®)* V2 -

1 \

5 @3 6065217391304345" v (_3 §065217391304345" +x°)” 3 +

% @3 6065217391304345" v (_3 §065217391304345" +x°)* v* -

—1;0 @3 6065217391304345" v (_3 §065217391304345" +x°)” 5 +
1 \

@3 6065217301304345" v (_3 §065217391304345  + x?)° V6 -

720

@3 6065217391304345" v (_3 6065217391304345" +x°)’ v7

5040
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fExp[x_, &, 6, v., t_, p_]:=fEXp[X, § & v, t, p] =x**°

e-3 6065217391304345" v _ e3 6065217391304345" v (_3 6065217391304345" + X:S) v+

@3-6065217391304345" v (_3 §065217391304345 +x°)” V2 -

| P N -

@3-6065217391304345" v (_3 §065217391304345 +x°)” 3 +
@3-6065217391304345" v (_3 §065217391304345 +x®)* v4 -

20 @3-6065217391304345" v (_3 §065217391304345 +x°)° Vo +

P N o
[N r—xhl"‘

_—_ o3 6065217391304345" v (_3 §065217391304345 +x®)° v6 -

720
@-3-6065217391304345" v (_3 6065217391304345" +x%) " v7
5040

et X~ (P)

val ues of t he par anet er has been obt ai ned f r omt he paper

£ =-2.813912569953034"; v =0.012865718614719886 ;

t =0.3061641062613921" ; 6=1.5; p=1.5;

cNum=NIntegrate[ fExp[X, & 6, v, T, p], {X, 0, 35}]

pl=Plot [fEXp[X, & &, v, t, p] /cNum {x, 0, 35}, Pl ot Range » Al | ]

been fromhas obt ai ned of paper paraneter the?val ues

2. 24074
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ClearAl [& 6, v, T, P]
Integrate[ fEXp[X, & 6, v, t, p], {X, 0, 35},
Assunptions - p>08&&6>0&&v >08&&t > 0]

1 . 1+6+&
Toa0 @3- 6065217391304345" v .5~ 17936, 332969693193 (0. 7650037652698287 + v)
P

(1.5245387297876563" - 0. 7800235405908453" v + vz)
(0. 8515177511153613" +0. 6361812144316815" v + vz)

1+6+€&
(0. 6394622562309058" +1.3197668309315294" v + vz) Gamra[— —, 357 'C] +
P

v /P [—15403. 85302134544° (l. 100852683662018" - 0. 44564354752820917" v + v2)

(0. 6154910832459223" + 0. 7995523082010735" v + v2)
1+26+€&

(o. 4828922098512196° + 1. 3097440422204452" v + v2) Ganma [- —
Jo)

357° 'C] +v /P (12813. 331627158957 (0. 6046288589850255" + v)

(O. 7568223154096397" - 0. 13298485970653137" v + v2)
1+36+€&

(0. 4297893731454994" +0. 9147333364659304" v + v?) Gamma[- ————,
P

35 ¢] +v o/° [-5921. 370854423469° (0. 4879759526718002" +

0. 15003695444105558" v + v2) (O. 2907090846887768" +

1+46+€&

0. 959064914154484" v + v?) Gamm[- , 35 1:] +

o

v té/P [1641. 8508698220592 (0. 4425515090249114° +v)

(0. 28901591702904156" +0. 38927489242174335" v + v2) Garrrra[

1+56+€&
-—, 357" 'E] +v té/P [(-42. © - 151.47391304347826" v -

P
1+66+¢&

273. 14698015122866" v?) Ganma- , 357 t] +

o

1+76+€&

vy 8P ((7.‘ +25. 24565217391304" v) Gamm[-—,
o

35'9,—.] -1.° Vt‘s“’Gam[_hsp#’ 35_94]]]]]]]

Printed by Mathematica for Students



o1 | APPENDIX

C[§_! 6_1 V_, t_, p_]=
1 . 1464g
= ———— @3 0005217391304345 v 5T 17936. 332969693193
5040 p
(0. 7650037652698287" +v) (1.5245387297876563" - 0. 7800235405908453 v + v*)
(0.8515177511153613" +0. 6361812144316815" v + v?)

c[&, 6, v, T, p]

1+6+€&

(0. 6394622562309058" + 1. 3197668309315294" v + v?) Gama [ . 357 t] +

P

v /P [—15403. 85302134544° (l. 100852683662018" - 0. 44564354752820917" v + v2)

(O. 6154910832459223" +0. 7995523082010735" v + v2)
1+26+€&

(0. 4828922098512196" + 1. 3097440422204452" v + v?) Gama [ -
P

357 'C] +v /P (12813. 331627158957 (0. 6046288589850255" + v)

(O. 7568223154096397" - 0. 13298485970653137" v + v2)
1+36+€&

(0. 4297893731454904" +0. 9147333364659304" v + v?) Gamma |-
P

357 'E] +v /P [-5921. 370854423469° (O. 4879759526718002° +

0. 15003695444105558" v + v2) (O. 2907090846887768" +

1+46+¢&

0. 959064914154484" v + v2) Gamma |- , 357 ]+

P

v té/P [1641. 8508698220592 (0. 4425515090249114" +v)

(0. 28901591702904156" + 0. 38927489242174335" v + v2) Garma[

1+56+€&
- 35|+ v e [(-42.‘ - 151. 47391304347826" v -
P

1+66+¢&

273.14698015122866" v?) Gamm[- , 35 c] +

o

. . 1+76+€&
v té/P ((7. +25.24565217391304" v) Garrma[——,

P
35"’1:] -1.- Vté"’Garma[—w, 35"’:‘.]]]]]]]]
Jo)
fExp3[x_, &, 6, v, ©_, p_]:=fExp3[x, § & v, T, p] =

fEXp[X, & 6, v, t, p]l]/C[& 6, v, T, Pp]
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ClearAl [& 6, v, T, P]
LogExpan[§ , 6 , v, t_, p_]:=LogExpan[g, 6, v, t, p] =

Log[ﬁfExpS[repair[[i 11, &, 6, v, T, p]]

LogExpanl[g , &6, v, ©_, p_]:=

| f [LogExpan[g, 5, v, T, p] eReal s &&fEXp3[.2, & 6, v, t, p] € Real s &&
fExp3[24.5, € &, v, T, p] € Real s &&fEXp3[. 2, € &, v, t, p] >08&&
f Exp3[24.5, & &, v, t, p] >0, LogExpan[§, &, v, t, pl, —1010]

vt = NMaxi m ze[{Eval uat e[LogExpanl[&, &, v, T, pl],
-7<&<3, .1<6<3, .00l<v<3, .1<t<10, .1<p< 3},
{€, &, v, t, p}, Maxlterati ons » 1000]

E=vt[[2, 1, 2]]
§=vt[[2, 2, 2]]
v=Vvt[[2, 3, 2]]

Tt=Vt[[2, 4, 2]]
p=Vvt[[2, 5, 2]]
p = Pl ot [Eval uate[f Exp3[Xx, & &, v, t, pl], {X, 0, 35},
Pl ot Styl e - R@Col or [1, 0, 0], Pl ot Range » Al | ]
Xi t=repair[[i]]
cdf Expan[y_1] : =
cdf Expan[y] = NIntegrate[ fExp3[Xx, & &, v, t, p], {X, 0, y}I;
zi :=Chop[cdf Expan[x;]]

AO=—n——Z((2| -1) Log[zi (1-2Zns1-i)]1)

12n+i( 2I_1)

i =1
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Parameters Estimates of the GEM (2.1) for the Flood Data
(Table 2.1) by Determining the Normalizing Constant
(Section 2.7.4)

flood = Sort [{. 654, .613, .402, .379, .269,
. 740, .416, .338, .315, .449, .297, .423, .379,
. 3235, .418, .412, .494, .392, .484, .265}];
n=_Length[fl ood];
Xi =flood[[i]]

fFl ood3[x_?NunmberQ & ?NunberQ & ?NunberQ

v_?NunberQ t_ ?NunberQ p_ ?NunberQ] : =
fFlood3[x, & &, v, t, p] = x&*° e VX’

e **” / (Eval uate[Nintegrate[y®*® eV e ™’ {y, O, 10000}]])
Of [Nlntegrate::inunr]

LogFl ood2[&_?Nunber Q &_?Nunber Q
v_?Nunber Q t_?NunberQ p_?NumberQ] : =

n
LogFl 00d2[€&, &, v, T, p] =Log[HfFI 00d3[flood[[i 1], & 6, v, T, p]]
i=1
LogFlood3[g_, 6, v, =, p_] :=
LogFl 00d3[€&, &, v, t, p] = |f[LogFlood2[g, &6, v, t, p] € Real s &
fFI ood3[. 265, &, 6, v, T, p] >0 &%
fFl ood3[. 654, & &, v, T, p] >0, LogFlood2[§, 6, v, t, p], -10%]

cdf Fl ood[y_1:=cdf Flood[y] =

Nl ntegrate[fFlood3[x, & &, v, t, o], {X, 0, y}1;
zi :=cdf Flood[x;]
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ClearAl [& 6, v, T, P]
vt =Timng[
NMVaxi m ze [ {Eval uat e [LogFl 00d3[&, &, v, T, pl], -10< €< 3,
. 1<6<3, .1<v<3, .1<t<l .1<p<3} {& 6, v, t, p},
Maxl t erati ons -» 1000, Met hod -» " Si nul at edAnneal i ng" 1]

Printed by Mathematica for Students



APPENDIX |95

Proposed Maximization Methodology (Section 3.5)

Searching for the maximum on a grid fo the Flood data: An iterative
methodology based on previously obtained sequences of maxima

fBessel Flood[x , §€ , 6 , v, t ] :=

f Bessel Fl ood[Xx, & &, v, t] =x*¥ e VX’ e ™%’ s
L+6+€ 1+6+
v(‘5+‘5+1)/‘5/ (2 (v t) 25 Bessel K[T'>c 24Vve ”
LgBessel Flood[g_, 6 , v_, t_]:=LgBessel Flood[§, &, v, t] =

Log[ﬁfBessel Fl ood[datal[[i]], & 6, v, 7:]]
i=1
LglBessel Flood[g , 6 , v, T ]:=
LglBessel Fl ood[&, 6, v, t] =
I f [LgBessel Fl ood[§, &, v, t] € Reals &
f Bessel Fl ood[. 265, &, &, v, t] >08&&%
fBessel Fl ood[. 654, &, &, v, t] >0,
LgBessel Fl ood[€, 6, v, ], -10%]

data = Sort [{. 654, .613, .402, .379, .269,
. 740, .416, .338, .315, .449, .297, .423, .379,
. 3235, .418, .412, .494, .392, .484, .265}];
n = Lengt h[data];
Xi r=data[[i]]
cdf1[y_]:=
cdf 1[y] = Nintegrate[ fBessel Flood[x, & 6, v, ], {X, 0, y}1I;
zZy = cdf 1[X; ]
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Hs = H st 1[data, 5]

0.3 0.4 0.5 0.6 0.7 0.8

The loglikelihood corresponding to the best combination in our paper :
Evaluate[ L gBessel Flood[-9.95, 2.24, 0.09, 0.34]]
16.274046245042985

At first, we cast awide net to determine neighborhoods where maximacould occur :

ClearAl [& 6, T, V]

vt 2 =
Tabl e[Eval uat e[LglBessel Fl ood[€&, &6, v, t]1], {& -15, 0, .5},
{6, .01, 6.01, .5}, {v, .01, 6.01, .5}, {z, .01, 6.01, .5}1;

vtc =Table[{&, &6, v, T}, {& -15, 0, .5}, {6, .01, 6.01, .5},
{v, .01, 6.01, .5}, {z, .01, 6.01, .5}];

vt max = Max [vt 2]

16. 2807

ps = Position[vt2, Max[vt2]]
({12, 5, 4, 2}}

ps[[1, 3]]
4
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vm=vtc[[ps[[1, 111, ps[[1, 211, ps[I[1, 311, pslI[l, 4111]
(-9.5, 2.01, 1.51, 0.51}

{£,0,v,1}

Eval uat e[LglBessel Fl ood[vm[[1]], vm[[2]], vm[[3]], vM[[4]1]11]
16. 2807

m Now consider the [root 4 of 31*13*13*13] largest values of vt2 and the
corresponding coordinates. Intervals for the next iteration can be determined
from the set of points corresponding to these coordinates.

D mensi ons [vt 2]
{31, 13, 13, 13}

Lengt h[Di mensi ons [vt 2]]
rt = Fl oor [Lengthfumsif’"swtz” n Di mensions [Vt 2] [[j 1] ]
j=1

16

tb=Table[-Sort [Flatten[-vt2]1[[j 11, {j, 1, rt}]

{16. 2807, 16. 2705, 16.2697, 16. 2648,
16. 2479, 16. 247, 16. 2415, 16. 239, 16. 2344, 16. 234,
16. 2332, 16. 2331, 16.2124, 16. 2096, 16. 2063}

psv = Fl atten[Tabl e[Position[vt2, tb[[j 111, {., 1, rt}], 1]

({12, 5, 4, 2}, {18, 9, 11, 1}, (11, 5, 2, 2},
(18, 9, 12, 1}, {12, 5, 5, 23, (18, 9, 10, 1}, {11, 5, 3, 2},
(12, 10, 4, 1}, {12, 5, 3, 2}, (18, 9, 13, 1}, {12, 10, 5, 1},
(13, 5, 6, 2}, (7, 4, 1, 4}, {7, 4, 2, 4}, (8, 4, 3, 4})

psv[[4, 31]

12
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Table[vtc[[psv[[j, 111, psv[I[j, 211,
psVL[j., 311, psv[[j., 41111, {j, 1, rt}]

({-9.5, 2.01, 1.51, 0.51},

(-6.5, 4.01, 5.01, 0.01}, {-10., 2.01, 0.51, 0.51},
(-6.5, 4.01, 5.51, 0.01}, {-9.5, 2.01, 2.01, 0.51},
(-6.5, 4.01, 4.51, 0.01}, {-10., 2.01, 1.01, 0.51},
(9.5, 4.51, 1.51, 0.01}, {-9.5, 2.01, 1.01, 0.51},
(-6.5, 4.01, 6.01, 0.01}, {-9.5, 4.51, 2.01, 0.01},
{-9., 2.01, 2.51, 0.51}, {-12., 1.51, 0.01, 1.51},
{-12., 1.51, 0.51, 1.51}, {-11.5, 1.51, 1.01, 1.51}}

{£,0,v,7}

It isseenfromthese pointsthat thefollow ngranges coul dbeinvestigated

ClearAl [& 6, T, V]
vt 2 = Tabl e[Eval uat e[LglBessel Fl ood[&, &, v, t]],
(& -12.5, -6, .25}, {6, 1.3, 4.3, .25},
{v, .01, 7.01, .25}, {z, .01, 2.01, .25}];
vtc =Table[{& &6, v, T}, {& -12.5, -6, .25}, {6, 1.3,
4.3, .25}, {v, .01, 7.01, .25}, {z, .01, 2.01, .25}];
vt max = Max [vt 2]
16. 4928

ps = Position[vt2, Max[vt2]]
({18, 13, 13, 1}

ps[[1, 3]]
13

vm=vtc[[ps[[1, 111, ps[[1, 211, ps[I[1, 311, pslI[l, 4111]
(-8.25, 4.3, 3.01, 0.01}

{£,0,v,7}
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Eval uat e[LglBessel Fl ood[vm[[1]], vm[[2]], vm[[3]], vM[[4]1]1]
16. 4928

m Now consider the [root 4 of the total number of point] largest values of
vt2 and the corresponding coordinates. Intervals for the next iteration
can be determined from the set of points corresponding to these
coordinates.

D mensi ons [vt 2]
(27, 13, 29, 9}

Lengt h[Di mensi ons [vt 2]]
re = Floor[wwmmﬁmymﬂ“ﬂl [I Di nensions[th][[j]]}
j=1

17

tb=Table[-Sort [Flatten[-vt2]1[[j 11, {j, 1, rt}]

{16. 4928, 16.4911, 16. 487, 16. 4809, 16. 4752, 16. 4746,
16. 4736, 16.4701, 16. 4689, 16.4673, 16. 4644, 16. 464,
16. 4613, 16.4612, 16. 4561, 16. 4509, 16. 4485}

psv = Flatten[Tabl e[Position[vt2, tb[[j 111, {., 1, rt}], 1]
({18, 13, 13, 13}, {18, 13, 12, 13,

(18, 13, 14, 1), {18, 13, 11, 1}, {17, 13, 10, 13,

(18, 13, 15, 13, {17, 13, 11, 13}, {19, 13, 15, 13,

{19, 13, 16, 13, {17, 13, 9, 1}, {19, 13, 14, 13,

(17, 13, 12, 13, {19, 13, 17, 1}, {18, 13, 10, 1},

(18, 13, 16, 13}, {19, 13, 13, 13}, {17, 13, 8, 1}}

psv[[4, 311]
11
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Table[vtc[[psv[[j, 111, psv[I[j, 211,
psVL[j., 311, psv[[j., 41111, {j, 1, rt}]

{{-8.25, 4.3, 3.01, 0.01},
(-8.25, 4.3, 2.76, 0.01), {-8.25, 4.3, 3.26, 0.01},
(-8.25, 4.3, 2.51, 0.01}, {-8.5, 4.3, 2.26, 0.01},
(-8.25, 4.3, 3.51, 0.01}, {-8.5, 4.3, 2.51, 0.01},
(-8., 4.3, 3.51, 0.01}, {-8., 4.3, 3.76, 0.01},
(-8.5, 4.3, 2.01, 0.01}, {-8., 4.3, 3.26, 0.01},
(-8.5, 4.3, 2.76, 0.01}, {-8., 4.3, 4.01, 0.01},
(-8.25, 4.3, 2.26, 0.01}, {-8.25, 4.3, 3.76, 0.01},
(-8., 4.3, 3.01, 0.01}, {-8.5, 4.3, 1.76, 0.01}}

It isseenfromthese pointsthat
t he fol | ow ng ranges coul d be i nvesti gat ed

ClearAl [& 6, T, V]
vt 2 = Tabl e[Eval uat e[LglBessel Fl ood[&, &, v, t]],
(& -8.7, -7.8, .1}, {6, 4.1, 4.4, .05},
{v, 1.7, 4.1, .2}, {zr, .005, 0.015, .003}7];
vtc =Table[{&, &6, v, T}, {& -8.7, -7.8, .1}, {6, 4.1,
4.4, .05}, {v, 1.7, 4.1, .2}, {z, .005, 0.015, .003}7;
vt max = Max [vt 2]
16. 4999

ps = Position[vt2, Max[vt2]]
({7, 7, 9, 2}3

ps[[1, 3]]
9

vm=vtc[[ps[[1, 1]]1, ps[[1, 2]1, ps[[1, 3]1, ps[[1l, 4]1]]
{-8.1, 4.4, 3.3, 0.008}

{£,0,v,7}
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Eval uat e[LglBessel Fl ood[vm[[1]], vm[[2]], vm[[3]], vM[[4]1]1]
16. 4999

m Now consider the [root 4 of the total number of point] largest values of
vt2 and the corresponding coordinates. Intervals for the next iteration
can be determined from the set of points corresponding to these
coordinates.

D mensi ons [vt 2]
{10, 7, 13, 4;

Lengt h[Di mensi ons [vt 2]]
rt = Fl oor [Lengfhfumsionswﬂ n Di mensions [vt2][[j 1] ]
j=1

~

tb=Table[-Sort [Flatten[-vt2]1[[j 11, {j, 1, rt}]
{16. 4999, 16.4998, 16.4993, 16.4979, 16.4975, 16.496, 16. 4939}

psv = Flatten[Tabl e[Position[vt2, tb[[j 111, {., 1, rt}], 1]
({7, 7, 9, 2y, (8, 7, 10, 23y, (7, 7, 8, 2},

(8, 7, 9, 2y, (8, 7, 11, 2%, {7, 7, 10, 2}, {7, 7, 7, 2}}
psv[[4, 3]]

9

Tabl e[vtc[[psvI[j, 111, psvILj, 211,
psVILj, 311, psvLLi, 41111, {j. 1, rt}]
({-8.1, 4.4, 3.3, 0.008},
3.5, 0.008}, {-8.1, 4.4, 3.1, 0.008},
3.3, 0.008}, (-8., 4.4, 3.7, 0.008},

, 4.4,
, 4.4, :
1, 4.4, 3.5, 0.008}, {-8.1, 4.4, 2.9, 0.008}}

-8.
-8.
-8.

onten W et Wl et}
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It isseenfromthese pointsthat
t he fol | owi ngranges coul d bei nvesti gat ed

ClearAl [& 6, T, V]
vt 2 = Tabl e[Eval uat e[LglBessel Fl ood[&, &, v, t]],
(g, -8.2, -7.9, .05}, {6, 4.3, 4.6, .05},
{v, 3, 4, .1}, {r, .006, 0.010, .002}7;
vic =Table[{¢&, 6, v, t}, {& -8.2, -7.9, .05},
{6, 4.3, 4.6, .05}, {v, 3, 4, .1}, {z, .006, 0.010, .002}71;
vt max = Max [vt 2]

16. 5131
ps = Position[vt2, Max[vt2]]
{{1, 7, 6, 1}}

ps[[1, 3]]
6

vm=vtc[[ps[[1, 111, ps[[1, 211, ps[[1, 311, ps[I1l, 4]]]]
{-8.2, 4.6, 3.5, 0.006}

{£,0,v,7}

Eval uat e[LglBessel Fl ood[vm[[1]], vm[[2]], vm[[3]], vm[[4]1]1]
16. 5131

m Now consider the [root 4 of the total number of point] largest values of
vt2 and the corresponding coordinates. Intervals for the next iteration
can be determined from the set of points corresponding to these
coordinates.

D nensi ons [vt 2]
(7, 7, 11, 3}
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Lengt h[Di nensi ons [vt 2]]
rt = Fl oor [Length[m‘ensi°“swt211 n D mensions [Vt 2] [[j 1] ]
j=1

6

tb=Table[-Sort [Flatten[-vt2]1[[j 11, {j, 1, rt}]
{16.5131, 16.513, 16.5121, 16.5119, 16.5117, 16.5113}

psv = Flatten[Tabl e[Position[vt2, tb[[j 111, {., 1, rt}], 1]

({1, 7, 6, 13}, {1, 7, 5, 1}, {1, 7, 7, 1},
(1, 7, 4, 1y, {2, 7, 7, 1}, {2, 7, 6, 1}}

psv[[4, 3]]

4
Tabl e[vtc[[psv[[j, 111, psv[[j, 211,

psv[[j, 311, psvI[j, 41111, {J', 1, rt}]
({-8.2, 4.6, 3.5, 0.006}, {-8.2, 4.6, 3.4, 0.006},
{-8.2, 4.6, 3.6, 0.006}, {-8.2, 4.6, 3.3, 0.006},
(-8.15, 4.6, 3.6, 0.006}, {-8. 15, 4.6, 3.5, 0 006} }

It isseenfromthese pointsthat
t hefol | ow ngranges coul d beinvestigated

ClearAl [& 6, T, V]

vt 2 = Tabl e[Eval uat e[LglBessel Fl ood[&, &, v, t]],
(€ -8.3, -8.1, .02}, {6, 4.5, 4.7, .02},
{v, 3.2, 3.8, .04}, {r, .003, 0.007, .001}7;

vic =Table[{&, 6, v, T}, {& -8.3, -8.1, .02}, {6, 4.5,
4.7, .02}, {v, 3.2, 3.8, .04}, {zr, .003, 0.007, .0013}71;
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vt max = Max [vt 2]
16. 5166

The loglikelihood corresponding to the best combination in our paper :
Evaluate] L gBessel Flood[-9.95, 2.24, 0.09, 0.34]]
16.274046245042985" which islower than 16.5166.

ps = Position[vt2, Max[vt2]]

{{8, 11, 13, 3}}

ps[[1, 3]1]
13

vm=vtc[[ps[[1, 1]1, ps[[1, 2]1, ps[[1, 3]1, ps[[1l, 4]1]]
{-8.16, 4.7, 3.68, 0.005}

{£&.6,v,7}
Eval uat e[LglBessel Fl ood[vm[[1]], vm[[2]], vm[[3]], vM[[4]1]1]
16. 5166

£§=-8.16"; 6=4.7; v=3.68; t=0.005;

AO=—n——Z((2| -1) Log[zi (1-2Zns1-i)])

12n+i( I_l)

i =1

0. 28611
0. 0492518

m Now consider the [root 4 of the total number of point] largest values of
vt2 and the corresponding coordinates. Intervals for the next iteration
can be determined from the set of points corresponding to these
coordinates.

D mensi ons [vt 2]
{11, 11, 16, 5}
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Lengt h[Di nensi ons [vt 2]]
Di mensions[vt2][[j 1] ]

Table[-Sort [Flatten[-vt2]11[[j 11, {j, 1, rt}]

{16. 5166, 16.5166, 16. 5165, 16. 5165,
16. 5165, 16.5164, 16. 5164, 16. 5163, 16.5163}

It isseen from tb that conver gence has more or less been achieved.

psv = Fl atten[Tabl e[Position[vt2, tb[[j 111, {., 1, rt}], 1]

{{8, 11, 13, 3},
{8, 11, 14, 33,
{r, 11, 10, 33},

psv[[4, 31]
14

{7,
{8,
{8,

11, 12, 3}, (7, 11, 11, 3},
11, 12, 3}, {7, 11, 13, 3},
11, 15, 3}, {6, 11, 10, 3})

Table[vtc[[psv[[j, 111, psv[Ij, 211,
psv[[j, 311, psv[I[j, 41111, {i, 1, rt}]

16,
. 18,
. 16,
. 18,
. 16,

R

N N e N e Nt
|
0 00 0 0 00

3. 68,
3. 64,
3.72,
3. 68,
3. 76,

0. 0051,

0.005}, {-8.18, 4.7, 3.6, 0.005},

0.005}, {-8.16, 4.7, 3.64, 0.005},
0.005}, {-8.18, 4.7, 3.56, 0.005},
0.005}, {-8.2, 4.7, 3.56, 0.005}}
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pl = Pl ot [Eval uate[
f Bessel Flood[x, vm[[1]], vm[[2]], vM[[3]], vm[[4]1]111,
{x, 0, 1.3}, PlotRange » Al | ]

General:unfl : Underflow occurred in computation. >

0.2 0.4 0.6 0.8 1.0 12

n

how[pl, Hs]

oy

L L L L L L L L
0.2 0.4 0.6 0.8 10 12
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cdf 1[y_1]:
cdf 1[y] = NI nt egr at e [Eval uat e [f Bessel Fl ood [x, vm[[1]],
vm[[2]], vm[[3]], vm[[411]1], {X, O, y}I;
pl0 = Pl ot [cdf 1[y], {y, .01, 1}7;
t =Table[{X;, (1 /n)-1/(2n)}, {i, 1, Length[data]}];
| p1 = Li st Pl ot [t];
Show[pl0, | pl]

Nintegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near {x} = {0.00667378}.
NIntegrate obtained 0." and 0." for the integral and error estimates. >

10+
08|
06
04 f

02

Evaluate] L gBessel Flood[-9.95, 2.24, 0.09, 0.34]]
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pl = Pl ot [Eval uat e [f Bessel Fl ood[x, -9.95, 2.24, 0.09, 0.34]],
{x, 0, 1.3}, PlotRange » Al | ]

General:unfl : Underflow occurred in computation. >

. - .
0.2 0.4 0.6 0.8 1.0 12

Show[pl, Hs]

T

0.2 0.4 0.6 0.8 1.0 12
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cdf 2[y_]:=cdf2[y] = Nlntegrate[Eval uate][

f Bessel Fl ood[x, -9.95, 2.24, 0.09, 0.341], {x, 0, y}1I;

pl0 = Pl ot [cdf 2[y], {y, .01, 1}7];
t =Table[{x;, (i /n)-1/(2n)}, {i, 1, Length[data]}];
| p1 = Li st Pl ot [t];
Show([pl0, | pl]
Nintegrate:ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near {x} = {0.00667378}.
NIntegrate obtained 0." and 0." for the integral and error estimates. >

10
08
06
04 f

02
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Density Approximation (4.23) for a Linear Combination of Five Chi-square Ran-
dom Variables (Section 4.4)

k =5;
m=21/10; m=2/10; m;=4/10; nmy=2/10; my =1/10;

ri=4; rp=2,r3=2; rqg=4; rs=2;
Of [Pattern::"nodef"]

2

s52 = Expand[| Y x| |/ (5.~ 2 camm[ (1 /2) +1]/Gamal (1, /2) )

ssl:Expand[ Zn] X; ] /o {X_ "= »2" Ganma[(r; /2) +i]/Ganma[(r; /2)]};

ss2 - (ss1)?;
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B=(ss2- (ssl1)?) /ssl
31
65
31
c =1/ (g); pl =1000000; ni = 1;

rl=4;, r2=2;,r3=2; r4=4;, r5=2;
m=c(1/10); n2=c (2/10); nB=c (4/10); md=c (2/10); nb=c (1/10);
cdistl

Chi SquareDi stribution[rl];

cdi st2 = Chi SquareDi stributionf[r27;
cdi st 3 = Chi SquareDi stribution[r3];
cdi st4 = Chi SquareDi stribution[r4y;
cdi st5 = Chi SquareDi stribution[r57;

ranl = Tabl e[Random[cdi st 1], {pl}, {nl}];
ran2 = Tabl e[Random[cdi st 2], {pl}, {nl}];
ran3 = Tabl e[Random[cdi st 3], {pl}, {nl}];

rand = Tabl e [Random[cdi st 4], {pl}, {nl}];
ran5 = Tabl e [Random[cdi st 5], {pl}, {nl}];

datal =Sort [Flatten[ml xranl + M2 xran2 + nBxran3 + Mt xran4 + nb xranb5]];
t1l=Prepend[Append[Table[.05i, {i, 1, 19}], .99], .01]
t2=Table[datal[[plt1[[i]]1]], {i, 21}]

Prod[x_, v_]:=Prod[x, v] =ﬁ(x +])
j=0
f40[r_]:=f40[r] =
N[Sum[ ((Prod[(r1/2), vl]) (Prod[(r2/2), v2]) (Prod[(r3/2), v3])
(Prod[(r4/2), v4]) (Prod[(r5/2), v-vl1 -v2 -v3 -v4])
(Ylvl) (szz) (13\/3) (74\/4) (ﬁv-vl-VZ-v3-v4))/
((2 m]_)rl/z (2 rr2)r2/2 (2 rrB)r3/2 (2 m4)r4/2 (2 rT5)r5/2 Gam[p +v]
(VI1v21v31vhd (v-vl -v2 -v3 -v4) !)) rP+v-ler
{v, 0, 40}, {v1, O, v}, {v2, 0, v-v1}, {¥v3, 0, v-vl -v2},
{v4, 0O, v—vl—v2—v3}], 50]
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CDFf40[y_] : =Integrate[f40[r], {r, 0, y}]

k=5 p=(rl1+r2+r3+r4+r5)/2;
(2m) -1 ) (2n2) -1

ST om YT T om
- (2n8) -1 e (2m) -1 5 - (2nB) -1
2n8 2m 2nb

apr CDF30 = Tabl e[CDFf 30[t2[[i]1], {i, 1, 21}]
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RGG Modd (2.18) for a Linear Combination of Five Chi-
square Random Variables (Section 4.4)

k

h
urh_1:= Expand[(.er} X

2
j=1
{X_'- =2 Gamma[(rj /2) +i]/Gamma[(r; /2)]}
31
= o
c=1/8;
m=c (1/10); m=c (2/10);
m=c (4/10); m=c (2/10); my =c (1/10);
rv=4;, ro=2,1r3=2, rg=4; rs=2;
k = 5;
ul = p[l]
2 = ul2]
pu3 = u[3]
n = Length[datal];
Xi :=datal[[i]]
fTypl[x , &, 6, v.]:=

B

v Garrrra[‘sf]

fTypl[x, & &, v] = x §+6-1 e—vx"’/ )

V_t /6 Ganmma [ t +§+5 ]

]

M[t _]:=

Gamma [ £°
cdf1[y_]:=

cdf1[y] =Nintegrate[ fTypl[x, & &, v], {X, 0, y}1I;
zi :=cdf1[x;]
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vt = NM ni mi ze|
{(ul -M[1])? + (2 - M[2])% + (U3 - M[3])?, -B3<E<10, .1<6<3,
.1<v<3, 6+§>0}, (€, &6, v}, I\/hxlterations—»lOOO]
E=vt[[2, 1, 2]]
5=vt[[2, 2, 21]
v=Vvt[[2, 3, 2]]

1 & )
AO =-n-= 3" ((2i -1) Log[Zi (L-Znuasi)])
ni=1

1 n 2i -1)2
= +Z(Z' " T2n )
datal =t 2;
Pl ot [f Typl([x, & &, v], {X, 0, 10}, Pl ot Range -» Al | ]
pl0 = Pl ot [cdf 1[y], {y, O, 10}1;
t =Table[{X;, (i /n)-1/(2n)}, {i, 1, Length[datal]}];
| p1 = Li st Pl ot [t];
CDFK5 = sort [{0.01007843017578125", 0.04976654052734375", 0. 0994873046875",
0.149505615234375", 0. 19956588745117188", 0. 2494354248046875",
. 2994384765625", 0.3494911193847656", 0.3991127014160156",

0

0. 4492835998535156°, 0.499237060546875", 0.5493927001953125",
0. 5993003845214844°, 0. 6497077941894531", 0. 6993370056152344",
0
0

. 7493476867675781", 0.7993354797363281", 0.84942626953125",

. 8998489379882812", 0. 9498786926269531", 0.9899940490722656" }1;
Yi_ COFKS[[i 1]
t3=Table[{X;, vyi}, {i, 1, Length[datal]}];
| p3 = ListPlot [t3, PlotStyle - RGColor [0, 1, 0]];
Show[pl0, I pl, | p3]

Printed by Mathematica for Students



APPENDIX 115

Modeling Canadian Quinquennial Mortality Rates (Section
5.2)

Needs [" Nureri cal Cal cul us™ "]

pop = {2171546, 2262352, 2236286, 2227271, 2357234,
2704985, 2676629, 2368253, 2085833, 1584973,
1229157, 1046909, 880880, 640944, 346151, 178569};

deat h = {985, 1318, 1254, 1412, 2121, 3663, 5830, 8163, 10848,
13365, 16295, 22263, 30964, 37626, 34530, 34901};

age = {15, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90};

nort : = N[ (deat h /pop) »1000]

Lengt h[deat h]; Length[pop]; Lengt h[age];

deathp = Tabl e[{age[[i 1], nort [[i 11}, {i, 16}];
pol ate = I nter pol ati on[deat hp, I nterpol ati onOrder -» 17;
c:=Integrate[pol ate[x], {x, 15, 90}]
(1/c) Integrate[pol ate[x], {x, 15, 90}1;
p = Pl ot [pol ate[x], {x, 15, 90}];
pol at eDS3 [age];
pol ate6 = | nt er pol ati on[deat hp,
I nterpol ati onOrder -» 3, Method -» "Spline"]
pol ateDS3[y_1] : = pol ateDS3[y] = ND[pol ate6[x], X, Y]
pol at eDS3[50. 5]
pol at eDS3[2. 5]
pl = Pl ot [pol ateDS3[y], {y, 15, 95}, Pl ot Range » Al | ]
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fly_1:=f[y] =polateDS3[95 -vVy]

NI ntegrate[f [y], {y, 0, 90}]

cons = Nintegrate[f [y], {y, 0, 90}]

Nl ntegrate[(1/cons) f [y], {y, 0, 90}]

Plot [f[yl, {y, 0, 90}]

pl=Plot[(1/cons)f[y], {y, 0, 90}, PlotRange » Al | ]

f1[y_1:=f1[y] = (1/cons) f [y]

mml = Nintegrate[y f1[y], {y, 0, 90}]
m2 = Nintegrate[y?f1[y], {y, 0, 90}]
mB = Nintegrate[y>f1[y], {y, 0, 90}]

fGem[x_?NunberQ & ?NunberQ v_?IntegerQ d_?IntegerQ
v_?NunberQ t_ ?NunberQ w_?IntegerQ r_?IntegerQ]: =
f Gem[x ? Nunber Q &?NunberQ v?IntegerQ d?lntegerQ

v?Nunmber Q ©?NunmberQ w?lntegerQ r ?IntegerQ] =
( ( ( (v)d (E+(v/d) +1) /v (2 7) ((rv)/2)+((dw/2)-1 (d w) -((E+(v/d)+1)/(v/d))+0.5

(rv)%®)/(dr)) /MeijerG[{{}, {}},
{(Join[Table[(k+d (§+ (v/d) +1) /Vv) / (dw),

{(k, 0, dw-1}], Tablerk/ (r v), {k, 0, rv-13}11, {}},
(.c)rv (V)Wd (r V)-rv (d w) —dw]) x €+ (v/d) e-vx("/d) e-tX‘(W/’)

fGCenR[x_]:=fGnmR[x] =fGm[95-X, & Vv, d, v, t, W, r]
cdf [y_]1:=cdf [y] =N ntegrate[fGnR[x], {X, 0, y}]
Xj_:=age[[i]]

zi =cdf [X;]

n = Lengt h[age];
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M[h_]1:=M[h] =
(((v)=CdMM(dwy M7O/DY) MeijerG[{{}, {}}, {Join[Tablel[
(K+d (E+(v/d) +h+1)/v)/ (dw), {k, 0, dw-1}],
Table[k/ (r v), {k, O, rv-13}11, {}},
(T MY (rv)TY dw) )/ (MeijerGl{{}, {}},
{Join[Table[(k +d (£+ (v/d) +1) /v) / (dw),
{k, 0, dw-1}1, Table[k/ (r v), {k, O, rv-1}11,
{3}, (&)Y Y (rv)"Y (dwIM]);

ClearAll [& v, d, v, T, W, I]
v=3,d=4;, w=2;r1r =3;
vt = NM ni ni ze|
{Eval uate[ (mml - M[1])® + (M2 - M[2])% + (mB - M[3])?],
-5<&<10, .1<v<3, .001<t<3},
(€, v, t}, I\/Bxlterations—>1000]
E=Vvt[[2, 1, 2]]
v=Vvt[[2, 2, 2]]
t=Vt[[2, 3, 2]]
NI ntegrate|
(fGem[x, & v, d, v, T, w, r] - (1/cons) f[x])? {x, 15, 90}]
ClearAl [A0, W]

Ao__n__Z((2| -1) Log[zi (1-2Zns-i)])

" 12n i( 2I_1)

est = Tabl e[{cons cdf [age[[i1]1}, {i, 16}];
Table[{est [[i]], nOort [[i]1}, {i, 16}];
diff =nort -est;

Tot al [diff?]

Tot al [diff]
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p2 = Plot [fGCem[x, & Vv, d, v, t, w, r], {Xx, 0, 90},
Pl ot Range - All, Pl ot Styl e - RGCol or [0, 1, 0]1;
Show[pl, p2]
p3 = Pl ot [Eval uat e [f GenR[x]],
{x, 15, 90}, PlotStyle -» RGCol or [0, 1, 0]];
p4 =Plot [(1/cons) polateDS3[y], {y, 15, 95}, Pl ot Range » Al l ];
Show([p3, p4]
p5 = Li st Pl ot [deat hp];
p6 = Li st Pl ot [Tabl e[{y, conscdf [y]}, {y, 15, 95, 5}],
Pl ot Styl e - R@Col or [1, 0, 0], Pl ot Range » Al | ]
Show[
p5,
p61]
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Modeling the Bivariate Flood Data Fitted Using the EIG
Model (Sections3.1 & 6.2.1)

flood = {{292, 12057}, {208, 10853}, {289, 10299}, {146, 10818},

{183,
(311,
{306,
{200,
(245,
{206,
{230,
(343,
(232,
{292,
(371,
(334,
(283,
(233,
{255,

7748}, {279, 9763}, {260, 11127}, {279, 10659}, {137, 8327},
13593}, {309, 12882}, {261, 9957}, {162, 5236}, {202, 9581},
12740}, {405, 11174}, {183, 4780}, {219, 14890}, {210, 6334},
9177}, {289, 7133}, {239, 6865}, {294, 8918}, {371, 8704},
6907}, {189, 4189}, {229, 8637}, {240, 8409}, {331, 13602},
8788}, {157, 5002}, {184, 5167}, {275, 10128}, {286, 12035},
10828}, {233, 8923}, {351, 11401}, {156, 6620}, {168, 3826},
8192}, (214, 6414}, {303, 8900}, {300, 9406}, {143, 7235},
8177}, {182, 7684}, {121, 3306}, {186, 8026}, {173, 4892}
8692}, {416, 11272}, {246, 8640}, {248, 6989}, {297, 9352}
12825}, {442, 13608}, {260, 8949}, {236, 12577},

114373}, {310, 9266}, {383, 14559}, {151, 5057}, {197, 9645},
72413, {390, 13543}, {405, 15003}, {176, 6460}, {181, 7502},
5650}, {187, 7350}, {216, 9506}, {196, 6728}, {424, 13315},
8041}, {257, 10174}, {232, 14769}, {286, 8711}};

nl =Lengt h[fl ood]

uly :=flood[[i, 1]1;
V\ﬂ.i_1=f|00d[[i, 211;

Ul = Tabl e[ul;, {i, 1, nl}];
Ubar 1 = Mean[U1]

WL =Table[wl;, {i, 1, nl1}];
Whar 1 = Mean[WL] 1

nl

chl=zzuui-um”1ﬂ/(n1-n

i=1

nl
Cl,, = Z (WL - War1)2/(nl-1)

i=1
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nl
Cli, =Z(“1‘ - Upbarl) (Wl - War1l) / (nl-1)
i=1
V1= {{Cl1y, Clyp}, {Clip, Cl22}}//N
rvi=MatrixPower [V1, 1/2]//N
rvi.rvi
irV1l=1nverse[rVli]
Det [rV1];
Det [irV1];
floodc = Table[flood[[i]] - {Ubarl, Warl}, {i, 1, nl}] // N,
fl oodn =fl oodc.irVi;
floodnl =Tabl e[floodn[[i, 1]], {i, 1, nl}];
fl oodn2 =Tabl e[fl oodn[[i, 2]], {i, 1, nl}];
floodnp = Tabl e[{floodn[[i, 1]] + Abs[M n[fl oodnl]] +
(Max [fl oodnl] - M n[fl oodnl]) /2, floodn[[i, 2]] +
Abs [M n[fl oodn2]] + (Max [fl oodn2] - M n[fl oodn2]) 72}, {i, 1, nl}];
fl oodnpl = Tabl e[fl oodnp[[i, 111, {i, 1, nl}];
fl oodnp2 = Tabl e[fl oodnp[[i, 211, {i, 1, nl}];
h1ll = Hi st ogram[f| oodnpl, 10, "ProbabilityDensity"];
h12 = Hi st ogram[f| oodnp2, 10, "ProbabilityDensity"];
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x1li :=x1; =floodnp[[i, 111;
fl1Bessel [x1_, €_, &1_, vi_, tl_]:=

f11Bessel [x1, €1, &1, vl1, tl] = x18+8L @1 x1¥ G-l x1™ 51
Lo 1461+
vl <fl+51+1>/51/ (2 (vl tl) z@ Bessel K[é—lﬂ, 2 V1 1 ])
LgllBessel [&1_, &1_, v1_, ©l_]:=

nl
LgllBessel [&l, &1, v1, t1] =Log[nfllBesseI [x1i, €1, &1, v1, tl]]
i=1
Ll gliBessel [€l_, &1_, vi_, t1_]:=
| f [LgllBesseI [E1, &1, vl, 1] e Real s &&f 11Bessel [2, &, 81, vl, tl] €
Real s && f 11Bessel [7.5, &, &1, vl, 1] € Real s &&
f11Bessel [2, &1, 61, vl, 1] >0 &&f11Bessel [7.5, &, 61, vl1, 1] >0,
LgllBessel [£1, &1, v, t1], -10%]

h h
v1 & (vl tl) 7 Bessel K[lh‘s# 24Vl ol ]

Bessel K[1+511+§1, 24vl tl ]

)

M[h_] =

nl

m1l = Z (x1; /nl);
i=1
nl

m2= > (xLi?/nl);

ml3=Z(x1i3/n1);

i=1

nl

m4 = > (x1;*/n1);

i=1
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vt = NMaxi m ze[{LI gl1Bessel [&l, &1, v1, 1], -3 < &l <5,
2<8l <5, .001<vl<.1, .01<tl <1}, {&, 61, v1, tl}]
& =vt[[2, 1, 2]]
81 =vt [[2, 2, 2]]
vl =vt [[2, 3, 2]]
tl =vt [[2, 4, 2]]
cdf 11Bessel [y_] : = cdf 11Bessel [y] =
NI ntegrate[fllBessel [x1, &, &1, vl1, 1], {x1, O, y}I;
zi :=Chop[cdf11Bessel [x1;]]

1 nl
A0=_n1_H§((2i -1) Log[zi (1-2Zp1s1-i)])

1 nl
W) =
1

20 - 12
+ Zy -
12 n1 Z(' 2n1)
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vyl =yl =floodnp[[i, 2]1;

f 12Bessel [yl_, £ ., 8 ., v2_, .-_2_] . =f12Bessel [yl, &, 6, v2, ©2] =
y1§2+52 e 2 y1% e 2 y1-% 52

1+682 + &2

52 Zm])

Lgl2Bessel [§2_, 82, v2_, 1:2_] . =Lgl2Bessel [&, 82, v2, 2] =

1+82+82
v2 (§2+52+1)/52/ (2 (v2 'C2) 22 Bessel K[

nl
Log[ﬂleBesseI [yl &, 82, v2, tz]]
i=1
LI g12Bessel [&2_, &2_, v2_, ©2_]:=
| f [LngBesseI [§2, 62, v2, t2] € Real s && f 12Bessel [2, &, 82, v2, t2] €
Real s && f 12Bessel [7, £, &2, v2, t2] € Real s &&
f12Bessel [2, &, &2, v2, 2] > 0 &&f 12Bessel [7, £, 62, v2, ©2] >0,
Lgl2Bessel [€2, &2, v2, 2], -10%]

h h
V2 % (v2 t2) 7% Bessel K[lha# 22 @2 ]

Bessel K[%, 2Vv2 2 ]

Me[h_] =

nl

m5 = Z (yl, /nl);
i=1
nl

meé = > (y1,2/n1);

i=1

nl

m7 = > (y1;®/n1);

i=1

nl

ml8=Z(y1i3/n1);

i=1
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vt 2 = NVaxi m ze[{LlI gl2Bessel [&, 82, v2, 2], -1< & <9,
1<82<5, .0001<v2<.3, .01<t2<3}, {&, 8, v2, 12}]
g =vt2[[2, 1, 2]]
82 =vt2[[2, 2, 2]]
v2 =vt2[[2, 3, 2]]
2 =vt2[[2, 4, 2]]
cdf 12Bessel [y_] : = cdf 12Bessel [y] =
NI ntegrate[ fl1l2Bessel [yl, &, &2, v2, 2], {yl, O, y}1I;
zi :=Chop[cdf12Bessel [y1,]]

1 nl
A0=_n1_H§((2i -1) Log[zi (1-2Zp1s1-i)])

1 ni 2i -1)2
W = +Z(Zi— )
12 nl — 2nl

irvi1l=irV1g[[1, 111;
irvi12 =irV1J[[1, 2]71;
irvi22 =irV1i[[2, 2]];
irv211=irV2J[I[1, 11];
irv212 =irV2I[[1, 211;
irv222=irV2[[2, 2]];
hifu_, w_]:=
hl[u, wl =Det [irV1]ff1[irV1i1ll (u-Ubarl) +irVvil2 (w-Warl) +
Abs [M n[fl oodnl]] + (Max [fl oodnl] - M n[fl oodnl]) /2,
irvVil2 (u-Ubarl) +irVv1i22 (w-Wharl) + Abs[M n[fl oodn2]] +
(Max [fl codn2] - M n[floodn2]) /2, a, al, B, B1]
h2[u_, w_]:=h2[u, w] =Det [irVv2]ff2[irVv21l (u-Ubar2) +
irvV212 (w-Wiar2) + Abs[M n[faithful 2n1]] +
(Max [faithful 2n1] - M n[faithful 2n1]) /2,
irV212 (u -Ubar2) +irv222 (w-War?2) + Abs[M n[faithful 2n2]] +
(Max [fait hful 2n2] - M n[faithful 2n2]1) /2, a2, a3, B2, B3]
h{u_, w_]:=h[u, w] = (98/272) h1[u, W] + (174 /272) h2[u, W]
Pl ot 3D[h[u, w], {u, 1.2, 5.5}, {w, 40, 100}, Pl ot Range -» Al | ]
Hi stogranBD[faithful, 7, "ProbabilityDensity"]
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