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ABSTRACT

The well-known Behrens-Fisher problem is concerned with
statistical inference about the difference between the means of
two independently distributed normal populations. This problem
nas been studied by many people using different methods of
inference. The present thesis considers the Behrens-Fisher
problems in the light of the structural method of inference for

the following different cases:

Case (i): +two independent normal populations with no
assumptions on the standard deviations;
Case (ii): two independent normal populations under the

condition that the ratio of standard deviations is known;

Case (iii): bivariate normal population with no assumption
on the covariance matrix;

Case (iv): bivariate normal population under the condition
that both the correlation coefficient and the ratio of the
standard deviations are known;

case (v): a generalization to k(>3) independent normal
populations with known ratios of standard deviations;

Case (vi): a multivariate generalization to two independent
multivariate normal populations (having the same number of

components) with no assumptions on the covariance matrices; and

iii




iv

Case (vii): a related Behrens-Fisher problem of obtaining
the structural distribution for the difference of two location

parameters of two independently distributed negative exponential

populations.

In addition, the present thesis also deals with the

distributions of

(i) the maximum likelihood estimators of the correlation
coefficients when samples arise from bivariate normal distributions
having (a) equal variances; and (b) equal means and equal variances;
and

(ii) the maximum likelihood estimators of the correlation
matrices when samples arise from multivariate normal distributions
with zero means when (a) variances are equal; and (b) a fixed
number of variances have a same unknown value while the remaining

ones are equal to a different unknown value.
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CHAPTER 1
INTRODUCTION

1.1, SUMMARY: In this chapter, a brief description of the
Bayesian method of inference, the Fiducial method of inference,
and the Structural method of inference is given. Since the
present thesis is concerned with the Structural method of
inference, this method is discussed in greater details. A
comparison of these three methods of inference, and a brief
introduction to the well-known Behrens-Fisher problem are also
given. Finally the problems dealt with in this thesis are
stated briefly in the last section of this chapter.

1.2. BAYESIAN METHOD OF INFERENCE: Let x N be

l’ x2’

a set of observations from a continuous random variable X having
a distribution depending on an unknown parameter 8. In the
literature several different methods have been employed to make
inference sbout the unknown parameter 8. They are the usual
standard method of inference -- which includes point estimation,
confidence interval and testing of hypothesis, the Bayesian
method of inference, the Fiducial method of inference, and the
Structural method of inference. The last three methods of in-
ference provide distribution for the unknown parameter €&, and

this distribution is used as the basis of inference about the

unknown parameter ©.




The Bayesian method of inference, using Bayes' Theoren,
was developed by Jeffreys (1948). It assumes an a priori
distribution of the unknown parameter, and views statistical
inference as a method of combining the a priori distribution
with the sample information to arrive at an a posterior:
distribution for the unknown parameter. Therefore the problem
of statistical inference, using Bayesian method, is effectively
by stating the a posteriori distribution and so the choice of
an a priori distribution for the unknown parameter becomes the
main object of the Bayesian method of inference.

Suppose now X is a random variable whose probability density
function (pdf in short) f(x|6) depends on an unknown parameter ©.
If x = (xl, Xgs ooy xn) is a set of observationsfrom X, and
p(0) is an a priori density for ©, then the a posteriori
distribution g(e|¥) of 0 is proportional to

n
p(e)r(elx) =p(e) f(xi|9)
i=1
where f£(©]x) is the likelihood function for 9. The constant of
proportionality can be easily obtained by integrating out © over

the parameter space.

1.3. FIDUCIAL METHOD OF INFERENCE: The Fiducial method of

inference was introduced by Fisher in 1930. The maln object
of the method is to derive the Fiducial distribution of the

unknown parameter without assuming any a priori distribution




for the parameter. But the application of Fiducial method of
inference is restricted to variables whose distributions must
belong to Koopman-Darmoris class of distributions. The Fiducial
distribution for the unknown parameter is usually obtained by
means of a pivotal quantity. A pivotal quantity is a function
of a sufficient statistic and the parameter that has a fixed
distribution independent of the true value of the parameter.
The three-step procedure of arriving at a Fiducial distribution
is summarized as follows:
(i) choose a pivotal quantity with a fixed distribution

assocliated with it;

(ii) substitute the observed value of the sufficient
statistic into the pivotal quantity; and

(iii) +transfer this distribution of the pivotal quantity
to that of the parameter.

As an example, suppose X = (xl, X cees xn) is a set of

0
observations from normal distribution N(p, 1). Then t = X-u,
X the sample mean, is a pivotal quantity which is distributed
according to normal distribution N(0, 1/n). The Fiducial
distribution for the parameter p is thus distributed according
to normal distribution N(x, 1/n).

The Fiducial distribution for the parameter is the basis

of inference about the parameter in the Fiducial method of

inference.




1.4, STRUCTURAL METHOD OF INFERENCE: The Structural method of

inference was introduced by Fraser in a series of papers (1961la,
b, 1964a,b, 1966, 1967a,b) and in a book (1968). The basis of
inference in this method is the error variable, introduced to
describe the relationship between the response variable and the
unknown parameter. The point of view taken is, that a response
variable x, obtained from a process operating under stable
conditions, is derived from an unknown transformation 6, operating
on realiéed but unknown value of an error variable e. The error
variable e, describing the unidentified sources of variation

of the process -- the internal error of the system -- is assumed
to have a known distribution on the space )X, The transformation
® belongs to a unitrary group of transformations on‘l; (A group
G of transformations on X is called unitrary if g% = 8yX implies

g, = & for any grggeG, and xeY¥ .) The response variable x and

the realized error e are related by the following equation

(1.4.1) x = fe.

The above description can be summarized by the structural

model
x = Qe
(1.4.2)
f(e)de .
The structural model has two parts: (i) an error variable having

a known distribution on the space_%; and (ii) the structural
equation (1.4.1) describing the relationship of a realized value

e from the error variable, the known response x, and the unknown



quantity 6 in the unitrary group G of transformations on X .
The following definitions and assumption are essential

for the analysis of the structural model (1.k4.2).

Definition: The orbit Gx of a response value x is the set of

all the pre-images of x under all the transformations of G:

Gx

{g-lx:geG}

i

{gx:geG} .

The orbit of x gives the information that the values of e

which could have given rise to the response X.

Definition: A transformation [x] from the space 2% to the group

is called a transformation variable if

[gx] = glx]

for all geG and xe ) .

The [x]'s can be considered as a new coordinate of the points
x on the orbit Gx. Furthermore, a transformation variable [x]

defines a reference point

D(x) = [x]7x
on the orbit Gx. Note that
D(x) = [x] "x
= [x)7 g tex
= (glx])"tex
= [gx] "ex
= D(gx).




Thus reference point D(x) on each of the orbit Gx is uniquely
determined by the transformation variable [x], and so the set
of all reference points indexes the class of all orbits.

The relation
x = [x]D(x)

shows that every point x' on the orbit Gx can be obtained

from the reference point by a transformation in G; and it also
indicates that a transformation variable [x] can alternately

be defined by first choosing a reference point D(x) on the orbit,
and then letting [x] be the unique transformation in G that

transforms the point D(x) to x.

Assumption: Y% is an open subset in Euclidean space Rn;
G is an open subset in Euclidean space RL, L < ny and the

transformations
E = gh, X = ghx

are continuously differentiable with respect to g, h and x.
The assumption implies that G is a locally compact topological

. . L
group, endowed with the usual topology inherited from R™.

Invariant Differentials: The use of invariant differentials in

analysing the structural model is very helpful. The existence
of invariant measures is guaranteed by the above assumption. A
measure p(+) on the group G is said (Halmos (1950)) to be a left

invariant measure (left Haar measure) if

p(A) = u(gh)




for all elements g'in G and all Borel sets A contained in G; and

where gA is defined as follows:
gh = {gb:geG} .

The uniqueness of left invariant measure, unique in the sense
that any two left invariant measures differ by a constant, was
established in measure theory. For a left invariant measure
p(+), @ unique right invariant measure (right Haar measure)

v(*) can be defined:

-1
v(a) = p(a ™)
where
ATt = {g-l:geA}
for any Borel set A in G. For a given transformation g, let ‘

ug(*) be a new measure defined by

u_(A) = u(Ag)
g
for every Borel set A in G and where Ag is the Borel set
{6g:0eA} .

This measure, constructed from the left invariant measure u(-)
and the transformation g, can be easily shown to satisfy the
property of being a left invariant measure. Therefore by the
uniqueness property we know that the measures ug(-) and p(e«)
differ only by a constant, which of course depends on g as

follows:




>
—
15}
~—
i

ug(A)/u(A)

p(Ag)/u(A).

This positive real-valued function A(+) defined on G is called
the modular function of the group G. The following properties
of the modular function and the its relationship between in-

variant measures can be easily established:

A(i) = 1, A(gh) = a(g)a(n), alg

vigh) = A(grlv(A),for all Borel set A in G,

where 1 is the identity element of the group G. The relationship
between the left and the right invariant measures can also be

expressed by means of differentials:

du(+) = a()av(+), and av(+) = a(+) " tau(+)

Let m(+) be an invariant measure defined on the space Jo such

that
m(gB) = m(B)

for all Borel sets B in X and g in the group G. The terminology
"invariant differentials" is used for the invariant measures
constructed from the volume elements dx, dg and the Jacobian

of the transformations in G. A detail discussion on the
construction of invariant differentials has been given by James

(1954) and Fraser (1968).




Suppose now the error variable e has a density f with

respect to the invariant measure m(+) on the space X:
f(e)dm(e)

The conditional distribution of [e] given the orbit Gx (=Ge),
labelled by its reference point D(x), can be derived from

invariant properties as:
(1.4.3) K(D(x))f([elD(x))anle]

Note that there exists an one-to-one correspondence between

points on the orbit Gx and elements in the group G of transformations.
The structural distribution for 6 given the orbit Gx, or simply

the response x, can now be obtained by transferring the density

(1.4.3) for [e] on Gx to the corresponding element on G: ‘

(1.4.4) K(D(x))e(6 ™ x)a(8™ [x1)aule),

since

au (67 [x])
A([x])au(e™™)
a([x]1)av(e)

A" [x1)au(e)

dule]

If the density f of the error variable e is given, with respect
to the Lebesgue measure, as f(e)de, then the expression (L.4.4)

becomes

(1.4.5) K(D(x))£(8 ™ x)ap (67 x)a (0™ [x])au (o)




10.

where

7, (x) =|——a[§i}f'

x'=D(x)

is used & compensating factor to produce the invariant differential
dm(+) on %.

The uniqueness of structural distribution on the group
space for a given structural model has been pointed out by
Fraser; but a detailed proof of this property is not given any-
where. A proof of the uniqueness property will be given in

Chapter 2.

1.5. A COMPARISON OF THE THREE METHODS OF INFERENCE: It is
well-known that for a given a periori distribution p(6) for the
parameter 6, the Bayesian method of inference leads to a unique

a posteriori distribution g(6|x) which is used as the basis of

statistical inference about 6. Therefore the difficulty of the

gt

Bayesian method of inference lies in the choice of a particular

a priori distribution to represent the prior knowledge about 6.
Different a priori distributions could lead to different a posteriort
distributions. The Fiducial method of inference could also lead

to a multiplicity of Fiducial distributions based on the same set

of data depending on various choices of the pivotal quantity.

Mauldon (1955) has provided an example where infinitely many
different pivotal quantities could be chosen to give infinitely

many different Fiducial distributions. Examples in which the

Fiducial distribution is not unique is also given by Tukey (195T).
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The relationship between the Fiduclial and the Bayesian
methods of inference was obtained by Grundy (1956) and Lindley
(1958). Grundy provides a class of one-parameter distributions,
for which the sample sum is a sufficient statistic for the
parameter in semple of any size. He proves that the resulting
Fiducial distribution for the parameter does not coincide with
the a posteriori distribution, derived by the Bayesian method,
for any given a priori distribution. Lindley shows that a
Fiducial distribution is equivalent to a posteriori distribution
if, and only if the random variable X with parameter 6 can be
transformed to Y and p respectively so that p is the location
parameter of Y. In this case the Fiducial distribution is the
same as the Bayesian a posteriori distribution obtained by using
uniform a priori distribution for u.

The following criteria has been proposed by Lindley (1958)
and Sprott (1960) for the investigation of the consistency of

Fiducial distributions:

Criterion I (Lindley): A Bayesian analysis for a first
sample, using thevFiducial distribution obtained from a second
sample as a priori distribution, should yield a result coincide
with the Fiducial distribution obtained directly from the combined

sample;

Criterion II (Sprott): A Bayesian analysis for a sample,
using the Fiducial distribution obtained from another sample as
a priori distribution, should yield a result independent of the

order of the combination; and




12.

Criterian III (Sprott): Consider two independent distributions
both involving the same parameter. A Bayesian analysis for a
sample from one distribution, using the Fiducial distribution
obtained from a sample from the other distribution as a priori
distribution, should yield a result independent of the order of
combination.

An example is provided by Lindley showing the Criterion I,
and hence Criterion II or III, is not fulfilled.

Lindley and Sprott considered random variable X whose
distribution belongs to Koopman-Darmois class of distributions.
They showed that the Fiducial distribution is consistent, under
the above three criteria, if and only if, the random variable X
can be transformed to a random variable which has either a normal
distribution with location parameter or a gamma distribution
with scale parameter.

It will be shown in Chapter 2 that structural distributions

of these parameters evidently satisfy all the three criteria
mentioned above.

Like the Fiducial method of inference, the Structural method
of inference has its limitation too. TFor some problems, it 1is
not possible to find a proper structural model, so that they
cannot be solved by this method. Generalization of the structural
method of inference has been studied by Fraser (1962, 1966, 1970).
Applications of the structural distributions have appeared in
papers by Haq (1968), Fraser and Haq (1969), Maxwell (1969) and

Whitney (1970).
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Confidence sets for the parameter based on Fiducial method,
Bayesian method and Structural method are in general different
from the confidence intervals of Neyman (1937). This has been ‘
meﬁtioned by Kendall and Stuart (1961).
We would like to conclude this section with a remark by
Lehmann (1959) -- "Statistical inference is concerned with methods
of using this observational material to obtain information
concerning the distribution of X or the parameter 6 with which it
is labelled. ... The need for statistical analysis stems from
the fact that the distribution of X, and hence some aspect of the

situation underlying the mathematical model, is not known".

1.6. BEHRENS-FISHER PROBLEM: Let x., = (X,,, X.p» «¢v» X,
vl il i2 ing
be samples of size ni(i 2) drawn from independent normal populations

)9 i=1,2,

Xi with respective means u; and standard deviations oi(> 0). The i

problem of making statistical inference about the difference

gz
ki

between the means was first posed by W. Behrens in 1929. In the
literature this problem is well-known as the Behrens-Fisher
problem.

Fisher (1935) proposed the so-called "Behrens-Fisher
Distribution" as a solution to the problem of estimating and testing
the difference between the means of two independent normal
populations with different standard deviations. A Behrens-Fisher
distribution is a distribution of a random variable which is a
linear combination of two independently distributed random variables

both having Student's t-distributions with not necessarily equal




1k,

numbers of degrees of freedom. His argument was essentially
based on the Fiducial method of inference. For the case in
which the standard deviations of the populations are equal,
the Fiducial distribution for the difference of the means has
been shown to be a modified student's t-distribution.

Jeffreys (1948) used the Bayesian method of inference to
arrive at the same results. A review on the Behrens-Fisher
problem and its Bayesian solution was given by Patil (196L4).

Brown (1967) uses a method which he calls as "secondarily

Bayes' method" to obtain a solution to the Behrens-Fisher

problem. He assumes aq priori distributions for nusiance

parameters and obtain estimates from the a posteriori distributions
of the desired statistics which are induced by the a priort
distributions.

The problem of testing the hypothesis of equality of two
means of two independent normal random variables has received
a great deal of attention. Wald (1955) proposed four criteria
for.de£ermination of non-randomized critical regions, or tests,
and showed that for equal sample size, the critical regions

must satisfy

Gl BN S
(52+52)l/2 1" 72
1 2
t 2 & 2
where x, = jzlxij/n, s = jzl(xij—xi) , and ¢() is a function

to be determined. For large sample sizes he had proven that the

S—
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constant function ¢(s§/s§) = ¢ yields the asymptotically most
powerful unbiased region. Test of this form has also been
examined by Fisher (1939) and Welch (1949). Extension of Wald's
result to the case of unequal sample sizes is considered by
Romanovskaja (1965). McCullough, Gurland and Rossenberg (1960),
and Gurland and McCullough (1962) have employed a preliminary
test of equality of variance before proceeding to test of
equality of means. Analytic theory of tests for the Behrens-Fisher
problem have been examined by Linnik (1963a,b, 1965, 1966),
Linnik and Salaevskii (1963), Linnik, Romanovskii and Sudakov
(1964), and many others. The multivariate analogue to Sceffe's
(1943) solution for the Behrens-Fisher problem is given by
Anderson (1957). Structurally, the Behrens-Fisher problem has
been studied by Fraser (196la,b).

The present thesis is mainly concerned with the solution of
the Behrens-Fisher problem by the Structural method under different

situations. These problems are stated in the next section.

1.7. STATEMENT OF PROBLEMS: The present thesis deals with the

following variations of the Behrens-Fisher problem.

(A) Behrens-Fisher Problem-Independent Populations: Let

, Xlnl) and X, = (X2l’ Xpps +os x2n2) be samples

from independent normal distributions Xl and X2 with respective

x1= (Xq70 Xpps oo

means U

and u2, and standard deviations 01 and 02. Corresponding

1
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to these samples we can assoclate the following structural

models (measurement models):

xij = My + oieij’ Jg=1, 2, «oay ni,
oy -1/2 2
le [(2m) exp{-e; /2 }deij]

for each i = 1, 2. This problem deals with the structural
distribution for the difference of the means, u = By = My S8Y,
based on the complete sets of observations&l and Xoo for the
following two cases:
(i) with no condition on the standard deviations; and
(ii) wunder the condition that the ratio o = 02/0l of the
standard deviations is known.

A related Behrens-Fisher problem for two independent

negative exponential distributions is also examined. Let the
distribution Xl and X2 be negative exponential distributions with
respective location parameters Hy and Moo and scale parameters
oy and Ope The structural distribution for the difference of
location parameters u = ul - “g’ based on Type II censored
observations, are considered for the following three cases:

(i) when both scale parameters o, and 0, are known;

(ii) when the ratio 02/0l of the scale parameters is known; and

(iii) when both scale parameters o, and o, are unknown.
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(B) A Generalization of the Behrens-Fisher Problem - Independent

Populations: This problem is a generalization to the problem (A).

For each i =1, 2, ..., k, let x. = (xil’ Xigs vees xini

) be &
sample of size ni(l 2) from normal distribution X, with mean
My and standard deviation o, The distributions xi's are assumed

to be mutually independent. Or equivalehtly we consider the

following structural models:

xij = Yy + 0 i3 J=1, 2, .o, n,
24
n- f,(e,,)de,
j=1 it7i ij
where
fi(t) = (2n)—l/2exp{- £2/2}
for each i = 1, 2, ..., k. The main object of this problem is

to obtain the joint structural distribution for the (k-1)

differences of two means:

U§=ul"u3a i=2, 3, ..., Kk,
under the condition that the (k-1) ratios

o§ = oi/cl, i= ?, 3, ceey kK,

of the corresponding standard deviations are known. The case

where k = 3 is discussed in greater details.

. SN “J
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(¢) Multivariate Behrens-Fisher Problem: Let fi)= (x(i) x(i)
A la > 2a °?

(i) _ .o

Cees xpa ), @ = 1, 2, o0, n;, i = 1, 2, be samples from two

independent p-variate normal distributions with means vector u.
~i

and covariance matrix zi' These samples can be considered

structurally as:

* Js Jo J.a
where
(1 . 1) (1 .. 1)
(i) (i) (i) (i)
Xll « s e Xln ell PP elnl
X. = |. . , E. = |. .
1 o . 1 . .
MUY 1 el
{ D pa, | W pny
and
(1 0 0o )
(i) (i)
r\"‘ -
R E z L ci]’l'“’
(i) (i)
Luip Cpl * 0 cpp

where |ci| > 0, is an element of the positive affine group of
transformations on RP. The problem is to derive the structural
distribution for the difference of the two mean vectors,

B= My T Koo based on the complete sets of observations
1)

£ w= 1,2, .oy mys 1T 1, 2.



19.

(D) Behrens-Fisher Problem - Dependent Populations: Let

(xll’ x2l)’ (x12’ x22), cees (xln’ x2n) be sample of size

n(> 2) from a bivariate normal distribution (Xl, X2) with mean

vector p' = (ul, u2) and covariance matrix
02
1 9195P
0.0 02
192°F 2 .

The associated structural model corresponding to the set of

observations is

([ 1 1 0 0 1
X3l = M2 %1 Y €130 , 3=1,2,...,n,
{ | *23 Ho o O 92| (%23
n n
- 1 2
(2n) Pexp{- = ] (el,+e;,)} T de, .de
2,L, %1902y
where the submatrix
Ul Y
o o,
with o, 0, > 0, has determinant >0 (i.e.070p-ay>0), This

problem is concerned with the structural distribution for the
difference of the means u = My - P based on the complete set
of observations, for the following two cases:

(i) with no assumption on the covariance matrix of

(xl, X2)5 and




- .‘-.1&6};{:5-{
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(ii) under the condition that both the correlation
coefficient p and the ratio 02/0l of the standard deviations
are known. ;
Note that for case (ii), we have ¢ = 0, and the pdf of
the error variables (ell’ e21)’ (e12’ e22), ceey (eln’ e2n) is
replaced by ﬁ
1 ([2r(1-02) /21 exp (- —2 (2 -2pe. e, +e2 1)de.  de,,}. |
=1 2(1_92) 1) 1723 "2j 1 2]

In addition, this thesis also deals with the distributions

of correlation coefficients and correlation matrices as indicated

below.

(E) Distributions of Some Correlation Coefficients: Let !

(xll, x21), (x12’ x22), cees (xln, x2n) be a sample of size n
from a bivariate normal distribution (Xl, X2) with means Hy

and Ho o and covariance matrix

where |p| < 1. The maximum likelihood estimator (MLE for short)

for p is

2] (g %, ) (g =3y ) /1L oy =5y V20 U =557

where

=]
>
(!
~1
]
e
C e
,_.l
1]
=
n
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If we know that the means of the two marginal distribution

are equal, i.e., = Mo then the MLE for p becomes

My

o* = 2J(xyy - ®)(xyy = B)/QMxpy - B 4 (xyy - )7

where 2nx = Z(xl'j + xgj)'

This problem is to derive the distributions for p and p*.

(F) Distributions of Some Correlation Matrices: Let

x .),i=1,2, ..., n, be a sample of

Xpgs woes pi

nioo 1i?

size n from a p-variate normal distribution X = (Xl’ X2, ey Xp)

with mean vector Q, and covariance matrix 2. If the variances

of all the marginal distributions Xi's are equal, then 2 = 02P
for some positive real number o. Note that P is the correlation

matrix of X. The MLE for P is the following random symmetric

matrix:

(1 *)

r12 1

P =
' 1

F1p “(p-1)p 7

where
2 .
iy " pZ(xikxjk)/[iZl(ink)], 1<i<yz<p,

and z stands for summation over k from 1 to n.
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Now, suppose that a, 1 < o < p, of the variances of the

marginal distributions Xi‘s are equal, say oi,

of them equal to another value 02(#°§)' By rearranging the order

and all the rest

of Xi's in X, we can, without loss of generality, assume that
) = DPD!

where D is a pxp diagonal matrix of the form

o p-a

. "N
D = diag (ol, cens 005 gy cnes 02), 0,50, > 0

and P is the correlation matrix of the random variable X. The

MLE for P is the following random symmetric matrix

(1 %
r12 1
I‘la e e r(OL—l)OL 1
p¥ =
r .o r 1
1(a+1) a(o+l)
r .o r T ‘e r( ) 1
L 1p ep (0+1)p p-1)p

where
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( o
asij/(izlsii), 1<i<j<a
T {Q(P_a)}l/zsiJ/Hizlsii)(i=§+1sii)}l/2’liii°‘<3ip
L (p_a)sij/(i=§+1sii)’ @ <i<J<p

where

n
S,, = Z X, X
i] k=1 ik™ jk

The problem is to derive the distributions for P and P¥,

3
£
4y
&
¢
§




CHAPTER 2
SOME RESULTS IN STRUCTURAL DISTRIBUTION

2.1. INTRODUCTIQN: In this chapter, some elementary results in
structural distributions are given. These results include the
following:
(i) Uniqueness of the structural distribution;
(ii) Consistency of the structural distribution in the light
of criteria proposed by Lindley (1958) and Sprott (1960);
(iii) Structural distributions for independent structural
models;
(iv) Structural distributions over subgroup spaces of
general composite measurement models;
(v) Structural distributions based on Type II censored
responses; and
(vi) Structural distributions for some transformed

structural models.

2.2, ON THE UNIQUENESS OF STRUCTURAL DISTRIBUTION: In this

section, we give a proof of the uniqueness property for structural
distribution over the group space for a general structural model.
In other words, we prove that the structural distribution, based
on the complete set of responses, does not depend on the choice

of a transformation variable.

2h
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Consider a general structural model

x = fe
n n
n
f(%)d% = 1 f(ei)dei
i=1
where x = (xl, Xpy vees xn), e = (el, €ps rvs en) and 6g = (6e
Beps v oy een). Then the structural distribution for 6, based

on x, is given by (see (1.4.5) of Chapter 1)

glo:x)ds = K(D(x)) (™ x)a (a7 g)alo™ [x))an(e).

on

This pdf for 6 can be rewritten as follows:

(2.2.1) g(e:%)de = K(%)f(e:%)du(e)
where
Flo:x) = rlo gl (e ix)ale™)

K(x) = K(D(é))JN([X]:D(%))A([g\g]),
and
90
JN(G:x) =‘§¥£|

Note that K(%) serves as the normalizing constant factor for

g(e:%)du(e) to a probability density so that we have
-1 -
k(x)"L = J F(0:x)an(0)
Y] n
G
It is clear that the factor ?(e:¥)du(e) does not depend on the

choice of a transformation variable. This implies that the

normalizing constant factor depends only on the responses X.

1’

e s i
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Therefore it follows that structural distribution for 6, based
on the responses x, is unique.

Furthermore, from (2.2.1) we conclude the following:

"When a structural model is given, the structural distribution
for 6, based on the responses X, can be obtained directly without
introducing any transformation variable. We need only to calculate

the left invariant differential du(6), the modular function
-1

1

A(6) and the Jjacobian JN(B :&).
The following example is given here to illustrate the use-

fulness of the above conclusion. Also the structural distribution

obtained will be used for future study in obtaining structural

distributions for the differences of two means in Chapter 3.

Exagmple: Consider the measurement model:

1
*—l
»
N
-
-
=

X, = + ge,, 1
i H i?

(2n)'n/2 exp{- E e?/Q} E dei
= i=

1
. n

where (u,0) belongs to the positive affine group G on R°. The

distribution for n and o, based on X = (xl, Xps +vs xn), has

been obtained by Fraser (1961b). This is given here in a

slightly different form:

1]

n
K(%)exp{-% ) (xi—u)/g}c‘(n+l)dudo
i=1

g(u,0:x)dpdo

K(%)exp{—n[(i—u)2+52]/(202)}o_(n+l)dpdo

saste |

-
W
o
B
4
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(xi-i) . The normalizing constant
1

- n 0
where nx = ) x,, ns” =
. i .
i=1 1
factor K(&) is given by

e~ s

K(%)-l - nl/z(n/2)_n/er(n—l)/g)s'(n'l)/2

2.3. CONSISTENCY OF THE STRUCTURAL DISTRIBUTION: The main obJject

of this section is to prove the following proposition:

"Phe structural distribution is consistent in the light of
Criteria I to III of Chapter 1 proposed by Lindley and Sprott".

It is clear that Criterion III is weaker than Criterion II
and Criterion II is weaker than Criterion I. Therefore it is
sufficient to prove that the structural distribution is consistent
in the light of Criterion III only. Before proceeding to the
proof, let us first recall Criterion III.

CriterionIII deals with two independent distributions both
involving the same parameter. The Fiducial distribution is
obtained from a sample of one distribution. Then using this
Fiducial distribution as a priori distribution for a Bayesian

analysis for a sample from the other distribution should yield a

result independent of the order of combination.
Now we proceed to give the proof. Let us consider the

following two general structural models
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i =1, 2. Then the structural distribution for 6, based on a

first set of responses, say X, = (xll’ Xigs wees xlnl)’ is
n
1 -1 -1 -1, de
gl(e ﬁl)de = K(¥l)jzl fl(e xlj)JNl(e :{l)A(e )EZTET .

The likelihood function for 6, based on the other set of responses

Xo = (X5 Xpps oees x2n2)’ 18
n
2
-1 -1
£y (8 Txyy )Ty (0T )
i=1 2

Hence a Bayesian analysis for the responses X0 using the
structural distribution gl(e:%l)do as a priori distribution,

yield the a posteriori distribution

n
2
—— —1 L] -l-
(2.3.1) g(ﬁ:%l, §2)de = K(%l, %2)iglf2(e m2l) JNée .¥2)
)
-1 . -1, -1, 4o
jElfl(e ¥lj) JNl(e .ml)A(e )EZTET .

The proof will be complete if we can prove (2.3.1) is the
structural distribution for 6, based on the combined sample

X = (él’ %2), derived from the following combined model:

where




IﬁaJS@d
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and

X e = e for 3 = 1, 2, veey D o !

* 23> vy T %2y

' =
nl+j

The structural distribution for 6, based on the combined responses

%' = (x!, xé, ey xﬁ), derived from the above combined structural ﬁ
model is é%
+
1 P1702 1
(2.3.2) g' (6 ¥Wde = K(%') I fl(e x3) £.(8 "x!')-
=1 j=n,+1 J
1
-1, -1, _dé

where N = n, + n2. Note that

-1 . = -1 . .
(87 ig') = gy (877, )y (67 :x,) s
1 2
nl -1 nl -1
i fl(e x') = 1 fl(e le)’
j=1 J j=1
and
nl+n2 i n2 N
it £ (o "x') = 1 £.(68 "x,.)
j=n,+1 ° 3o B a1
1
Hence (2.3.2) becomes
n
"(9:x"d6 = K(x') H2f (6~ 1x..)+J (671:ix,)
g 19:% =By 0t 21! 7y X0
i=1 2
n
-1 -1 -1, d6
mor (6 "x .)'Jd, (6 ":x ya(e )
j=1 . 1 Nl 1 JL(G)

which is identical to (2.3.1). Thus the proof is complete.
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2.4. A RESULT IN STRUCTURAL DISTRIBUTIONS FOR TWO OR MORE

INDEPENDENT STRUCTURAL MODELS: First of all, we define

the independence of two or more structural models.

Definition: Two or more structural models are said to be
mutually independent if the corresponding error variables are
mutually independent. ;

The main result of this section is:

"For two or more mutually independent structural models,
with not necessarily cqual numbers of responses, the joint
structural pdf over the direct product of the group spaces is
the product of the structural pdf over the corresponding group
space."

It is sufficient to prove the above result for the case
having only two independert structural models. Let us consider

the following two independent structural models:

Xi,j:eieij, J = 1,2, «ov, ni’ ei?‘Gi >
n.
(2.4.1) i
£, (glag, = I fi(eij)deij
J=1
i =1, 2. These independent structural models can be rewritten

as a single model as follows:

where
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X X 0o .. 0 e e € 0 .o O
X = 11 lnl JE = 11 lnl
\ O O xel LI ) X2n 0 . 0 621 L] e2n
2 2
and :
el 0
6 =
0 62

is an element of the direct product G = Gle2 of the two

unitrary groups of transformations Gl and G2. The unitrary

property of G follows directly from the unitrary property of

Gl and G2. The structural distribution for ¢, based on X, is

) _ -1 -1, -1, dg
(2.4.2) g(el,ez.x)delde2 = K(x)£(o "x)Iy(e :X)a (6 )EZTET ,
where N = nl + n2 and L = Ll + L2. We note that

( 1.4y = -1, -1,

Jgle 7:X) = Jy (6, :xy )y (6,7:%,)

1 2
-1y _ -1 -1

(2.4.3) WA(G )--Al(el )A2(62 )

(3. (8) = 3 (8,)3, (8,)

L L, 1,2

where x, = (Xy15 X355 vveo x1n1)’ Xp = (xpps Xpps oo x2n2),

and the subscripts i, i = 1, 2, of Ai(‘), I (+) refer to the

i
corresponding functions the models (2.4.1). The identities
(2.4.3) follow directly from the fact that elements of G operate

component-wisely on X, and also the product of any two trans-

formation of G operate component-wisely as well. Now
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a '
1 2
-1 -1 -1
£l "x) = nm £ (e "x..)m £ (6.7 x,,)
l L]
3ol 1150 e 23 |
Therefore (2.4.2) can be rewritten as
n .
( X) ( 1 -1 -1 -1 del L
H d d = M . "";
gl8,,0; 8,40, = K(X) lefl(el X)5) JNl(el %1808y )EZ_TEIT : 4
1 2
n i
2 : as i
-1 -1 -1 2
mf(e."x..)*J, (6, :x,)8,(6,7)
p)

j=1 2 T23’ N, T2 TA2’T2iv2 JL2(62) :
= g (6,:%,)30) g, (0,:x,)06, é

where g.(e.:x.)de., i =1, 2, are the structural pdf for the
itYiTRL T
corresponding structural models (2.4.1). Thus we complete the

proof.

2.5, STRUCTURAL DISTRIBUTIONS OVER CERTAIN SUBGROUP SPACES OF

g Bt o e

A GENERAL COMPOSITE MEASUREMENT MODEL: Consider a general

composite measurement model

X = 6E
(2.5.1)
n
f(E)4E = f(ell,.. s€ €570 "’e2n> iI=Ildelide21
where
1 1 1 1
X = |x . X ’ E = e e
11 1n 11 21
X01 %on €01 €on

and f belongs to the group Gl of transformations on R2n
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1 0 0
Gl = 46 = My 01 0 R IR Hys Mo < o3 01,02 >0 . | .
Mo %

The structural model (2.5.1) can also be written in the alternative

form: the general transformation 6 being expressed differently as ?

1 0 0
e' = Ul Ol 0 sy =® < uls UQ < =, ols n > 0.
Hp O noy

We call this "new" model as structural model (2.5.1'), and denote
by G' the set of all 8'. This "new" model is the same as the
original model (2.5.1) with relabelling of the transformation 6 of
the group Gl' Hence the structural distribution for ul, u2, 01

and n, based on X, derived from

(a) the structural model (2.5.1'); and

(b) the structural distribution for u;, Uy, Oy and 0,

by applying the following substitutions

By = Hge 1= 1, 2
(2.5.2) g, = 04
n = 02/0l

are identical.

The main object of this section is to prove the following:
"The structural distributions for 6 over some subgroup spaces of

Gl obtained from
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(a) the subgroup model directly; and

(b) the structural distribution for 6 derived from the
full-group model (2.5.1) by imposing the appropriate condition;
are identical."

The structural distribution for Hys HBys Oq and Ops based

on X, derived from model (2.5.1) is

2
317 X p7H ¥o17Ho Xon"Ho
= K(X)f g s o ’ G ’ g ’ ey g
1 1 2 2
2
-(n+1),
(0102) .H dy, do,
i=1

Applying the substitution (2.5.2), we obtain the structural

distribution for ul, Uy 01 and nN:

k(%) X117H T S Xon Mo ]
= I ) » s vy
91 9y noy no,
. —(2n+1) _-(n+1)
o] n du au,do, dn

since the jacobian of the substitution (2.5.2) is o;- By

conditioning n = 1 to the structural distrinution (2.5.4), we
obtain

g(ul,u2,01=X,01=02)du1du2d01

*1127%1 *1n7M *ai7M )
= K'(X)f g 9 o ey o ) o 9 t sy o
1 1 1 1
o~ (2n*tl) g qu qo
1 14M5894

-ﬁxn@J
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For the subgroup model of (2.5.1), where 6 belongs to the subgroup

G, = {eeGlzo2 = ol}

we have

- 42 _ 3

= ¢° and JL(O) = 0]

Hence the structural distribution for ul, u2 and 01, based on X

and derived from this subgroup model, coincides with the structural

distribution given above. This proves the above proposition for

the subgroup G, of G..

2 1
Let
Gy = {eerzol = 1},
G = {eeG3:ul = uz};
I = . = =
G} {eeGl.pl Wy 0}
- ., = .
Gl = {eeee.ol 02},
and
L . = = N
Gy = {eeGl.ul Wps O 02}

Tf the arrow "+" is interpreted as "is a subgroup of", then
we can easily verify the following relationship between subgroups

defined above given by the diagram below:

<
vf




S
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The proposition on structural distributions over subgroups

is valid if the full group space and the subgroup space are any

two groups appearing in the above diagram. These proofs are

similar to the one given above and so are omitted. Structural

inference, based on a given structural model, when outside

information is available has been considered by Fraser (1968)-

(See Sections 6 and 7 of Chapter two). :
The above proposition is not valid in general for any sub-

group of group of transformations as can be seen from the

following counter example.

Example: Consider a general location-progression model

({1 | 1 0 0 1 eee 1
X9 AN X1 = Hq 04 0 €1 PN €0
* X5q «o Xop Mo k 0, €51 . €sn
n
| f(%)da = f(ell, s €108 €pps sees e2n)i]=Ildellde21

where the transformation 8§ belongs to the location~progression

group
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For this structursl model, we have

-1, _ -n -1, _ 2 _ 23

JN(e :x) (0102) ,A(877) = o, and JL(e) = 0,0
Hence the structural distribution for ul, uz, Ol’ 02 and k,
based on the complete set of responses x, is given by
g(ul,u2,01,02,k:§)duldu2dold02dk :
§
_ -1 -1, ya (et ;
= k(x)£(67 ) a (67 ig)a(67 )au(e)
_ X117H T B G R B WP 0 Xpp =KXy thH, =04 Uy
= k(g) e[, — -t :
1 2 172 172
o )'n02 dulduzdoldogdk
172 2 0203
172

By conditioning k = 0 to the last pdf we obtain
(2.5.5) 8(U1,u2,01,02=§)duldu2d01d02

X..-U X, ~H. Xyq-M Xo,~H -
_ 11 "1 ln 1 721 "2 *on" 2] -(n+2) _-(n+l)
= k(x)f(——EI——,..., o) =0, g a; 7, du,du,do,d0,.

On the other hand, if 6 = G' = {6eG:k = 0} a subgroup of G, the
location-progression model becomes the composite measurement
model (2.5.1). For this model, the structural distribution for
His Ups Og and 0,, based on g, is given Dby (2.5.3), which

is clearly not the same as (2.5.5).
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2.6. STRUCTURAL DISTRIBUTIONS BASED ON TYPE II CENSORED RESPONSES:

In many practical situations it happens that only censored
samples can be obtained for one reason or another. Analysis
based on censored samples has received a great deal of attention

in the literature. Contributed articles in this area up.to 1961 A

can be found in & book edited by Sarhan and Greeberg (1962).

Censoring is classified into two types: namely Type I and Type II.

g

Type I censored samples are referred to samples such that no

observations above or below a fixed value can be obtained. Type

II censored samples refer to samples such that a proportion of

the original full samples are cenosred. In this section we

combine the theory of Structure inference and the basicec distribution
theory of order statistic to derive structural distributions based
on Type II censored responses. To do this, the following

definition is necessary.

Definition: A structural model

x. = 0e., 1 =1, 2, «c0, 0, feG,

(2.6.1)

is called an order-preserving structural model if
x < x' implies 6x < ox'

for any x, x'e)o and any 0¢eG.
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For simple measurement models, 6x = 6 + x. Therefore
simple measurement models are order-preserving since it is
always true that x < x' implies 6 + x < 6 + x'. Some other
examples of order-preserving structural models are multiplicative
measurement models and measurement models.

The object of this section is

(i) to prove the following proposition:

PR TPV

"For any order-preserving structural model, the structural
distribution based on ordered responses is the same as the
structural distribution based on unordered responses".

(ii) to derive structural distribution based on Type II
censored responses; and

(iii) to provide some examples whichare needed for future
study in Chapter 3.

Let us first take up (ii). Let the responses xi's be
arranged according to magnitude as x(l) =< x(2) < ... < x(n).

The unknown realized values of ei's can be arranged in the same

manner. A general Type II censored responses 1is

(2.6.2) x = (x cee X ,X R yeos X R )
5= )R ) (k) (2,) (k) *(2,)
where k. and %., i =1, 2, ..., T, are integers such that
i i
< .
ljkl<£l<k2<z2<...<kr<2r_n
The ordered responses %(~) corresponds to the case r = 1, kl =1

and 21 = n. The structural distribution for 6, based on Type II

responses x, is derived from the following structural model
"
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induced from the structural model (2.6.1):
r%=e%
(2.6.3) rol
Jf(e)ae = CF(e K17l (F(e )-F(e Piep it
; TR Tl R
{ ( pte n { T
l1 -7 o 1 I fle
1wt e 1 { stegiee)
where t
r-1 -1
¢ = n!{(k -1) [121(k R TR DR RIC LT DR
and

The structural distribution for 6, based on X%, derived from

the induced structural model (2.6.3) is

_ -1 -1, 46
(2.6.4) g(0:x)de = K(x)£(6 x) 3y (0 ix)a(e )JL 7
r
where N¥ = Z (Qi - ki + 1). The normalizing constant factor
i=1
K(ﬁ) may be obtained by integration
-1 _ = =1 -1, -1, 46
ey = [ Hehpau sy

Now we proceed to the proof of the proposition (i). We
find that the structural distribution for 6, based on the
ordered responses %(°), is given by(2.6.14) with r = 1, ky =1

and 21 = n. So the desired pdf for 6 is

AuﬁMw‘
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(2.6.5) glo:g(+))as = K(x(+)F(6 ™ x(+))a (67 g (+))ale™ N5y

L
n -1 -1 -1, ds
= K(x(-))'izlf(e m(l)) JN(e x(+))a(e )EZTFT

The structural distribution for 6, based on the unordered

responses %' = (xl, Xps +ne xn)’ is ;
i

i

n -1 1 1, de6 i

2.6.6 0:x')a6 = K(x' T MERIPY 6T i
( ) g(o:x')ae = K(x )izlf(e x; ) (e g )a(e )JL 5T :

Now since

it follows that (2.6.5) is identical with (2.6.6). Hence the

proof of the proposition is complete.

We conclude this section by giving two examples.

Example 2.6.7: Simple measurement model

X, = u+ e;» © >0, 1=1,2, ..., 1

n n n
f(el, i, e ) I de, = exp{ - '2 ei}'.n de,
= i=1 i=

The structural distribution for u, based on censored responses

x given by (2.6.2), is easily obtained from (2.6.4):




{

i e

4o,

Lo

T

kl-l
gluig)aua(lmexp{-(x, y=u)d) 1 < (expl-(x , y-u)})"7rs
1

"1 Texpi-( )}- expi-( ppp i
T lexp{-(x -u)}- exp{-(x -u)}
i=1 () (541

L. L
r i X
I [exp{- ) (x(j)-u)}]du b
=] 'j=ki

kl-l

o(l - exp{- (x(kl)-u)}) cexp{apl}dp,u < x(kl) ,

P
1’
:
!

where
Cr-l r
= - + - - -
a = (n zr) izl(ki+l b 1) + iz (8, - k, + 1)

= - + R
n kl 1

The normalizing constant factor K(x) is

X k-1
K(%)-l = (kl) (1-exp u-exp{—x(k )}) 1 'exp{(n—kl+1)u}du

J om0 l

1 K. -1 n-k,
(t exp x(kl)) "exp Xy )du

eXP{(n—kl+l)x(kl)}-B(kl, n -k + 1).

The substitution t = exp{n - X (y )} is used in the preceeding
1

simplification. Thus we have
kl—l
(1-exp(p-x ) cexp{(n-k_ +1)pl}-du
(kl) 1
9 ]J < X(k

(2.6.8) g(u:%)d“=exp{(n—kl-l)x(kl)},B(klsn‘kl+l) 1)’

as the structural distribution for u based on X.
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Remark: It is of interest to note that (2.6.8) does not. involve

r, % and ki’ 2., 1 =2, 3, ..., r. Therefore we conclude:

1’ i
(i) "The structural distributions for p based on the

following two different Type II censored responses

),- * ,X(zl),-oo ,X(kr) 90 00 ’x(lr)),lf'kl<2’l<..<kr<2‘rin’

and

4 ] 1 1
,),...,x(k,),...,x(zé)),likl<zl<..<ks<ﬂsin,

are identical if, and only if k, = ki."

(ii) The structural distribution u, based on the complete set

of responses (ordered or unordered), is

g(u:%)du =n exp {n(y - x(l))}du, W< X

Example 2.6.9: Measurement model

X, = + ge, i =1, 2, «ees N
i Hu i ) 5 ’

n E n
fle., voo, e ) I de, = exp{ - e.}' M de., e, > 0.
1 - 1 521 4= i i

In this example we wish to derive the structural distribution

for p and o based on the following Type II doubly censored responses.

£ = () X)) 0 X(a)

where k and ¢ are integers such that 1 < k < & <n. It follows

from (2.6.4) that the structural distribution for u and ¢ based




bk,

on x 1is
ny

- k-1 - -
S(U,O:%)dudca(l—exp{- fi%l—i}) (exp _{ii%l_i})n g
exp{—
i

X -uy k-1
a(l-exp{4-i%l-—}) exp{—[A(ﬁ) - (n-k+l)u]/0}0-(2_k+2)dudo

Il o~122
o]
‘_I
=
——
1
IS
1
3
+
l._l
o
|
H
o
s =4
jo 7]
Q

for == < y < x(k), g > 0; and where

Ag) = (mmt)xgyy * L ()

It~

k

The normalizing constant factor K(§) is given by

g

o k) - k-1
K(§)-l=j J (l-exp{-x(k) u}) exp{-[A(¥)-(n-k+l)]/0}0-(2_k+2)dudo.

To carry out the above integration, we make the following

substitution:

t = yu/o

z = 1l/o

which has jacobian 2-3. The integration reduces to

X, 2%

o (k) - -
K(§)=J J (l-exp{—x(k)z+t})k leXP{—A(§)z+(n-k+l)t}z2 £*1ataz
0’ =®
X

© (k)z _

=J exp{—A(¥)z}zz—k—lf (l-exp{-x(k)z+t})k lexp{(n—k+l)t}dtdz
o - 00



el A -

L5,

1
z-k-lJ (1_y)k-1( )n-k

=Joexp{-A(¥)z}z v exp{x(k)z} exp{x(k)z}dydz

0

@ 1
J exp{-[A(X)—(n-k+l)x(k)]z}zz-k'ldz-J (1-y) "y Fay |
o o] :

_ I(2-k)B(k, n-k+1)
[A(X)-(n—k+l)x(k)ﬂl-k

i
¢

2
since A(¥) - (n-k+l)x(k) = (n-l)x(2)+lzk X(3) - (n-k+l)x(k)
L
= (n—!l,)(x(l)-x(k)) + izk (x(i)-x(k))

>0

The preceeding simplification involves a substitution
y = exp{ “X(y2 Y t}.

Hence we have

(2.6.10) g(u,o:x)dpdo

[A(;é)-(n-k+1):c(k)]’z_l

(1 - exp{-(x(k)-u)/d)-
r(e-k)g(k, n-k+1)

-(9-k+2)

exp {-[A(%) - (n-k+1)ul/olo dpdo

for -o < p < x(k), g > 0.

2.7, STRUCTURAL DISTRIBUTIONS FOR TRANSFORMED STRUCTURAL MODELS:

A general multiplicative measurement model
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xl = oei, e1 >0, i=1,2, ..., 1
(2.7.1) n
f(el, €ps +ers en).n de
i=1

with 0 > 0, is transformed into the following simple measurement

model
x:{:u*‘e:{, i=1,2, ¢eey,n , =2 < § <@,
(2.7.2) 0
1 1 1 T
f(exp e!, ... exp en).H exp ejde;
i=1
by the transformation t = &n t. Note that x!=¢nx., e!=fne., for
i i i i
i=1,2,...,n, and p=&no. Similarly a general simple measurement model
yi=u+ei,i=l, 2, o e sy n, - ® < <™,
(2.7.3) n
f(el, ey en).n de,
i=1

is transformed into the following multiplicative measurement

model

- !
= oe.,
v 1

(2.7.4)

n
f£(2n ei, vee, n eé) H e! “de!

by the transformation t -~ exp{t}. DNote that yi = exp ¥, ei = exp ey,
i=1,2, +.., n,and o = €Xp U.
In this section we wish to prove the following propositions.
(i) "For the structural model (2.7.1), the structural

distribution for u(= n o), based on X = (xl, Xps =vs xn), or

equivently x' = (xi, xé, ce s xé), derived from
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(a) the structural distribution for o, based on X,
by applying the transformation ¢ = exp u; and

(b) the transformed structural model (2.7.2) directly;
are identical."

(ii) "For the structural model (2.7.3), the structural
distribution for o( = exp u), based on y = (yl, Yoo o0ea yn),
or equivently X' = (yi, yé, N yﬁ), derived from

(a) the structural distribution for u, based on Y
by applying the transformation w = &n o; and
(b) the transformed structural model (2.7.%4)
directly; are identical."
First, let us prove proposition (i). The structural

distribution for o, based on X and derived from the structural

model (2.7.1), is

)o—(n+1)do

g(o:%)dc = K(&)f(xl/o, cees xn/o
Therefore, the structural for u, derived by using (a), is
(2.7.5) g(u:%)du = K(%)f(xl exp{-u}t, ++-> xnexp{—u})exp{-nu}dp.

On the other hand, the structural distribution for u, based

on x' and derived from the structural model (2.7.2), is

n
g(u:%')dp = K(%')f(exp{xi—uh...,exp{xé-u})-iﬁlexp{xi-u}du

K'(x')f(exp Xi-exp{-u},---,exp X£'exp{—u})exp{-nu}du.

Since x., = exp{x!}, it follows that the last expression is the
i i

same as (2.7.5). Hence we complete the proof for proposition (i).

B




L8.

Remark: Proposition (i) can be extended in the following two
directions. First, if a Type II censored response is used
instead of the complete set of responses, then the transformation
t + gn t will produce a corresponding Type II censored transformed
response for the transformed structural model. The proposition
(i) is still valid if censored response is used. Also, if we
have a general compositive multiplicative measurement model whose
error variables take only positive values, then the transformation
t > gn t transforms the model into a transformed composite
simple measurement model. The structural distribution for u's
derived by (a) and (b) are again identical. Proofs for these
two extensions are simple generalizations of the proof given
above and so they are omitted.

Next, we proceed to prove proposition (ii). The structural
distribution for u, based on Ny and derived from the structural

model (2.7.3), is
glurylap = K(y)fly -u, «vs yn-u)du-
n n,

Therefore the structural distribution for o, based on X and

derived by using (a) is
( - on )iq_
(2.7.6) g(o:x)dc = K(X)f Y =8 0, eees ¥y o) -

On the other hand, the structural distribution for o, based

on X' and derived directly from the structural model (2.7.4), is

)—l°0_(n+l)dc

n

l(yi/o

glo:ydo

y K(X')f(ln yi/o, ce., &1 yé/c).

P
nas

= K'(X')f(zn y{ - 20 O, «+.5 &N yg - %n oo do .

s

ERE 2

&
g4
i
:
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e |

Since v, = n yi, i=1,2, ..., n, it follows that the last
expression is identical with (2.7.6). The proof of proposition

(ii) is thus completed. '

Remark: Similar extension of the proposition (ii) to the case
when censored responses, and the case for a general composite
simple measurement model can be easily proved.

We conclude this chapter by an example.

Example: Simple measurement model

e
=

=

[exp(ei - exp{ei})dei]

i=1

The purpose of this example is to obtain the structural distribution
for o(=exp p) based on a singly Type Il response X = (x(l),...,x(k)),

1 <k <n, at the right. Instead of looking at the above model,

we consider the transformed mutliplicative model:

x; = cei, i=1, 2, e, N
n . n n
1 . ' 1 = - ! 1
m [exp(an ei - exp{n ei}) dei/ei] exp{ R ei}-n de}
i=1 i=1 i=1
where x! = exp {xi}, ei = exp {ei}, and ¢ = exp {p}. The
i

structural distribution for o, based on X (or equivently

y' = (yi, ces yi), is obtained by using (2.6.4) as follows:
(o:y')do = K(y') [1 - Flyy )]n—k_ ; £y} /0)'0_(k+l)do
grosyiee = Y (k) o)
& -(k+1)
= K(y")exp{-(n-k)y(,y/otexp{ - L ¥igy/olo do



50.

- K(x')exp{—A(x')/o}o'(k*l)ao
k
where A(X') = (n-k)ka) + izlyzi). The normalizing constant
factor K(%Y) is
K(y') = r exp {-A(y')/c}o-(k+l)do
v ‘o
= r exp {-A(Y')t}tk+l Q%
Jo v t
= r(x)/AGE
Hence we have
k \ Kk
{(n—k)yzk)*‘izly(i)} ' k ‘ .
g(°:3{')d° = ) exp{—[(n-k)y(k)+izly(i)]/0}

-1
o (&+l)do.
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CHAPTER 3
BEHRENS-FISHER PROBLEMS !

3.1. INTRODUCTION: The present chapter employs the structural

method of inference to investigate Behrens-Fisher problems
under several different assumptions. Sets of observations
are viewed as responses of the associated structural models

(See Section 1.7 of Chapter 1).

3.2. BEHRENS-FISHER PROBLEM I -- INDEPENDENT POPULATIONS WITH

NO ASSUMPTION ON STANDARD DEVIATIONS: Consider the following

two independent measurement models

le = L] + 01 i3° j=1, 2, s nia
n n,
2 (e.) (2n) 21/ { 21 / } 1 a
f.(e.)d = (2 i’ Texpy=- ) e 2%° e
ini’wv j=1 i) j=1 i
for each i = 1, 2. We wish to derive the structural distribution

for the difference of two means, p = U; = Hy» say, pased on the
complete sets of responses X. = (xil, Xigs »vo Xy
The structural distribution for Hys Wos 9y and Ty based on X,

and x is (See Section 2.4 of Chapter 2)

29
2 n.
i - 2,1 -(ng+1) -(np+l)
o exp{— I —% [(ui-xi)+si]}ol o, dp,du,do doy,
i=1 20i

51
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52.
n, n,
here n,%, = ] 22 ] (x, - 72
where n,x, = X,,, N.8, = X,, = X, i=1, 2. S5ince
i%i j=1 i) iTi 521 ij i’ 2 ?
no assumption is made on the standard deviations 94 and 05 it

follows that the structural distribution for Hy and P based '

on x., and X

X X5 can be obtained by integrating out o, and o

1 2
over the range (0, »). Note that

n.
- Lrtay {0, - 7P ¢ D))
n.
- Liay /2y (G2 /2 e, - R e

Therefore the structural distribution for My and oo based

on X i
X4 and X5 is

. - \2,.2|-ny/2,
(3.2.2) g(ul,u2-§1,§2)duldu2a {l + (ug x,) /sl}

- \2,.2\-n5/2
{l+(u2—x2) /s2} du, du,

This implies that the structural distribution for n, based

is

on %, and x50

] -1n /2

- (2,2 1 - 2 -n,/2
. - . . T 2 .
g(u.%)duaf w{l + (ul xl) /Sl} {l+(ul 1 x2) /52} dul du .
From (3.2.2) we note that, if we introduced new variables

_ 1/2 - .
ty = (ni—l) (ui xi)/si, i=1, 2,
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then tl and t2 are variables having Student's t-distributions

with (nl-l) and (n2-1) degrees of freedom respectively. Now

define

r2 = si/(nl-l) + sg/(nz—l)

and

tan 0 = [s,/(n,-1)1/21/1%/(n -1) /2],

1

Then we have (See Figure 3.1)

1/2]/r

r cos 6 r-[sl/(nl-l)

)1/2

sl/(nl-l

and similarly r sin 8 = s2/(n2—l)l/2

s /(n,-1)
6
sl/(nl—l)l/2

FIGURE 3.1.

Hence the structural distribution for u, based on Xq and

%2, can be represented in the form

R

(xl-x2) + r(tl cos 6 - t, sin 8)

where the distribution for the variable

7z = tl cos 6 - t2 sin ©
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is usually known as Behrens-Fisher distribution. Tables for

percentage points and cumulative probabilities for Behrens-

Fisher distributions have been published by Fisher and Yates !
(1957) and Weir (1966). Welch (1947) gave an approximation

to Behrens-Fisher distribution based on a single Student's

t-distribution with f degrees of freedom where f is given by

I ~1N0

2
Z s?/ni)2-2(

2
1 i oL /lay a0 DT s/ o)D)

1
Patil (1965) gives a similar approximation to Behrens-Fisher
distribution z based on a single Student's t-distribution.

She chooses a constant h and number f so that hz have the same

second and fourth culmulants as that of the student's t-distribution
with f degrees of freedom. She also proves that this t-approximation
for z is sufficiently accurate for most purposes unless degrees

of freedom of t's in z are very small.

3.3. BEHRENS-FISHER PROBLEM IT -- INDEPENDENT POPULATIONS UNDER

THE CONDITION THAT THE RATIO OF STANDARD DEVIATIONS IS

KNOWN: The structural model (3.2.1) is again used in this
section. Here we imposed the condition that the ratio 02/0l of
the standard deviations is known, say equals ¢ > 0. The structural
distribution for u = U, = Hy» based on X, and x50 is derived here
under the above condition. Some properties of a multivariate

t-distribution are guoted from Cornish (1954) paper for the present

and future investigation.
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The structural distribution for u 6, and o based

Hoo 9y 27

l’
on X, and X0 is

(3.3.1) g(ul,u2a01,02=§1,¥2)duldu2dold02

2 n.
i = \2, 2 -(n+1) -{no+1
& exP{'.leo. [Cuymxy) +si]}°1( ! )02( 2 )duldU2d°1d02
i= i

-
”
¥
ke
4

Applying the substitution

rui = Uy i=1,2
191 7 91
o = 02/0l

having Jjacobian oy to (3.3.1), we obtain the structural
distribution for Hys Hps O3 and ¢ based on X, and X5
gy sup 050K Xp)duyduploydo

(nl+n2+l)0—(n2+l)

n n
-2 2 2 - 2.) -
uexP{_ - [(uy=x ) *s7]- =53 [(“2'x2)+52]}°1
2 2¢.0
205 1

‘dpldpzdoldO

Therefore by conditioning o = 02/01 = ¢ in the last probability

density and then integrate out o, Ve obtain the structural dis-
tribution for p, and yu, based on X, and X,:

® A( C)/ 2 —(n +n2+l)d .
g(ul’”2:¥l’%2’c)duldu2a expy ~Aly slp Xy 5 Xps 0/ /0710 01
(o]

sdugdu,



where
n n

e PO ARY: 2 .
A(ulQU29,}€l’%2)c) - 2 [(Ul xl)

1 2c

Note that

® 2} -(nq+n,+1)
- 17+2 .
aJoexp{ A(ul,u2,¥l,%2,c)/cl}ol dol duldu2

)]-(n1+n2)/2

a[A(ul’UZ’;\El”}\SQ”C duldu2

du,du,

o3
2 -
{S +n (ul—x

. )2/02}(n1+n2)/2

2 -
1), iy

and

we find that

2 2 2
+ —_— -
so ]+ 5 [(u2 x2) +s_] > 0 .

2

56.
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glug sy XXy c)du du,

] duldu2
-1 (n.+n,)/2
¥* * * * * )1 -
{l+(tl,t2)R (tl,tz) /(nl+n2 2)} 172

3 has a bivariate t-distribution

characterized by the matrix ge~t (see Cornish (1954)).

Hence the variables ti and t

The following results of multivariate t-distributions are

12 bos e tn)

be 8 multivariate t-distribution of order n and characterized

quoted from Cornish (1954) paper. Let t' = (t

by the matrix R—l. Then the pdf of E is given Dby

i sl Ll

(nv)2/2r (v/2)

Cornish has proven the following:
(i) The limiting for the distribution R, as v » o, is a
multivariate normal distribution with mean vector Q and covariance

matrix R.

(ii) Suppose x = Hf are any p(< n) linearly independent linear
functions of the ti's. Then X has a multivariate t-distribution
)7t

of order p characterized by the matrix (HRH' In particular,

the marginal distribution of %, = (tl, ths s tr), r <n, is

a multivariate t-distribution of order r characterized by the

matrix R;l , where Rl is the leading rxr submatrix in R.

(iii) The pdf of the conditional distribution of tl, given

| R
EQ - (tr+1’ Tt n
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+1 1/2
(Z==) R, |
2 1 -1 (v+n-r)/2
+ a'(R, - R'R. "R )a'/v}
+n-
(rv)7/2p (LR voe 3 e
-1 -1 ' -1 -(v+n)/2
+ t + 1 <R!
e (£,+R] Rop) 'Ry (,+R3R, "g) + (R,-RIR "Rj)a
dt !
v vl
where Rl’ R2 and R3 are submatrices of R-l given by
I B I
R =
1
R3 R2
Now we return to the derivation of the structural
distribution for u based on X1 and X5 Define two new variables
tl and t2 as follovs
| - * ¥)1

where

1 -1

H =
0 1

Then the variables tl and t2 has a bivariate t-distribution

. -1 . .
characterized by the matrix R where R is given by

R = HR*H'
1 -1 l/nl 0 1 0
= 2
-1 1
0 1 0 c n2
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Therefore the marginal distribution for tl has a student's

t-distribution with (nl+n2-2) degrees of freedom and characterized

)"l !

by (l/nl + c2/n2 . That is the pdf of t, is given by

dtl

g(t. :x ,%,,cldt a
1vlve {l+ti/[(nl+n2—2)(1/nl+02/n2)]}(nl+n2—l)/2

_ 1/2
But tl = (nl+n2 2) [

distribution for u, based on ﬁl and ¥2, is

p-(il-i2)]/s, so that the structural

(3.3.2)  gluix, x,,c)d du
BANiX1sXp oG/ CHE {l+(u-§lf§2)2/[52(1/n1+°2/n2)]}(nl+n2—l)/2
o ) d.l.l
{1+ nyn, (u-%, +%,)° }(nl +n, - 1)/2
¢ s2(nl+n2/02)

The constant of proportionality K(nl, N, ¢) for (3.3.2) is

n.+n. -1 n.+n,-2
1 72 1/2 1 72 2 2 2 -1
K(n ,ny,c) = r[———zr——}{w r(-——z———}c s%(n 0, /c”)/(nyny)

Now if we define
1/2 - - 2 2 2 1/2
t(n,ny,e) = (o +ny=2) 1245 +%,) /1% (nymy )/ (nyn,) ]

then it follows from (3.3.2) that t(nl’ P c) has a student's

t-distribution with (nl + 0, -2) degrees of freedom. Consequently,
the structural distribution for U, based on X, and X5 can be

rewritten in the form
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2 2(n1+n2/c2)

o c”s 1/2
p o= (x.-x,) - { - } t(n,,n,.,c) .
1 "2 n1n2(n1+n2 2) 172

The following three special cases for the structural distribution
for p, based on X1 and X are given here for later comparison.
(i) When n, =mn, =0, the structural distribution for u,

based on X and 52, can be rewritten in the form

1

o c2(si+52/c2)(l+l/c2) 1/2
po= (% -xg) - { 5 (no1) } t(n,n,c)

and whose pdf is given by

dy
X(n.n,¢) (n-%, +%,)2 }(Qn—l)/2
1+
2 2
c2(1+1/c2)(s +52/c )
172
(ii) When n, = n, = n and ¢ = 1, the structural distribution

1 2

for u, based on X and X5 can be rewritten in the form

2
o s1+S, 1/2
wo= (x-x,) - {T;:ij} t(n,n,1)

and whose pdf is given by

dy

K(n,n,l) _ )/2
1 - - 2 2,((2n=-1
=(u- +
{l+ AL xl+x2)/(sl,s2)}
(iii) When c = 1, the structural distribution for u, based

on x. and x can be rewritten in the form
n

a1l 2°

(n_+n,.)(n s+n 2) 1/2

S
- - 1 2 11 2 2 1
T (xl—x2)- { .o (n1+n2_2) } t(nla n29 )

172
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and whose pdf is given by

) du :

K(n 5
{1+ nyn, (=X +x,) }(nlfnz‘l)/g
( )

9n2 31

2
+
n,+n )(nls 1,8

The available t-tables can be used for constructing
structural interval for u. Furthermore, we note that the
particular case (iii) with ¢ = 1, gives the result the same
as that obtained by the Fiducial method. This result was also

obtained by Pitman (1939).

3.4, BEHRENS-FISHER PROBLEM ITII -- DEPENDENT POPULATIONS WITH

NO ASSUMPTION ON THE COVARIANCE MATRIX: The last two

sections are concerned with the structural distributions for
the differences of two means based on the complete sets of
observations taken from independent normal distributions. In
this section and the next we consider the case in which the two

distributions are correlated. This section deals with the

case with no assumption on the covariance matrix. That is we

wish to obtain the structural distribution for u, based on

x. = (x ), from the following

X, x. ) and X, = (le, I

“11° "2 Tln

structural model
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({1 1 0 0 1
xlj = ul 01 Y elj » J =1, 2, . s Iy
X035 Ho & Oa) 1%
3
- % 2 2 n
(2m) exp{- - (e, + e )} M de. ,de ,
j=1 1) 2 j=1 152
\
where ol, 02 > 0 and the matrix

has determinant > 0. TFraser (1968) (For details see page 241)
has shown that the structural distribution for Hy and Ho o based

on x. and X is

Al 2°

g(ul,u2=§l,¥2)duldueu{l+n(g(§)-g) (ﬁ)-l(g(g)—u)]_n/zduldug

- ' = (3 .x
where y' = (ul,pz), %(%) (xl,x2) and
- - I |
5(x) 11751 7% P11 *1n7%1
X)) = -
LA VIR V) - - _" -
X917%2 Xon~¥o) ¥p17%p Xon"*2
5
) nS1 n812
nsS nS2
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tet t3 = (n-2)/2(u-5), 18 = (0-2)/2(u,-R,), ana
-1 -1
R* © = nS(x)
52 -S
INCSY b 12f __ 2.2 2
52 ’ 172 12
12 1

Then the variables ti and t¥* has a bivariate t-distribution

2
characterized by the matrix R*-l. If tl and t2 are variables
defined by
1 -1
(t >t )' = (t*; t*)a
1’72 0 1 1 2

then the variables tl and t2 has a bivariate t-distribution

characterized by the matrix R—l where R is given by

1 -1 1 0
R = R*
0 1 -11
2 2 2
51-281,%5; S127%2
2 2
L S107%2 51

Therefore the marginal distribution for tl has a Student's

t-distribution with (n-2) degrees of freedom and is characterized

2 2,-1
by (31—2512+52) .
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l/2 - -
But tl = tf't; = (n-2) / (u-xl+x2), so that the structural

distribution for uy, based on X and X5 1s

gluix.,x,)du o du
N1°A2 (u-21+x2)‘ (n-1)/2
1+ }
2 2
S. =28 - 8

1 12 2

The constant of proportionality is

e N

Furthermore, we note that the variable

has a Student's t-distribution with (n-2) degrees of freedom.
Hence the structural distribution for u, based on X and X5 can

be rewritten in the form

b= (7,5, - (62 —as, ¢ 820/ (-2 e

This structural distribution for u, based on X and %55 is slightly

different from the usual paired t-test distribution

t = (a-1)Y2(5, -5y (2-2s s D)

which has a Student's t-distribu#ion with (n-1) degrees of freedom.
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3.5. BEHRENS-FISHER PROBLEM IV -- DEPENDENT POPULATIONS WITH THE

CONDITION THAT BOTH THE CORRELATION COEFFICIENT AND THE

RATIO OF STANDARD DEVIATIONS ARE KNOWN: In this section we '
wish to derive the structural distribution for the difference |
of two means pu = Hy = My based on samples X from a bivariate
normal distribution in which

(i) the correlation coefficient p; and

(ii) the ratio o = 02/01 of the standard deviations, are
known. More precisely, the derivation for the desired structural

distribution is based on the following structural model

vhere -« < His Wy < o , and 01505 > 0. The structural

distribution for Hys Hos gy and 0, based on X = (%13¥2)9

Ky = (X0 Kygs oo Xyp)s 38

: d
g(ul,u2,01,02.§)duldu2dcl o,

X, .~ X, .=l Xn.—H Xop.=U, 2 dpy.dy,do,do

[ (L M2 (Bl (2l 2y, (A 1 ]} 1742793792
9) g 9 0'2

1 1 1 2

Q
(0]
bl
o]
——
i
®
no

6 o \ntl
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2 2, ,-1 . e
where a° = {2(1-p°)} ~. Making use of the substitution
u1=ui9 i=1,2 \
o, = 0y \
o = 02/0l
and then conditioning on o = ¢, we obtain the structural

distribution for Hys Up and oy based on X and given o = c:

du,du,.do
2 2 2 17H0"%y
g(ul,u20=§,0)duldu2dcla eXp{—a A (ﬁ’“l’ue’c)/°1} —_—

2n+1
91
where
2 3 2 2, 2
A% (x5 sups0) jZl[(xlj-ul) -2p(xlj—u)(xzj-u2)/c + (ng'“e) /c]

T L I RIS A Al

Therefore the structural distribution for Hy and By based on X

is

® 2 2 o) doqduydu,
g

g(ul,u2:§,C)duldu2a[o
1

duldu2

2 2 n
{aa (é,ul,UQ,C)}

du
a{§2+<ul-il)2-zp<ul—il)<u2-£2>/c+<p2-22>2/c2}n

dpldu2

0L{L(ti,t;_*)R*'l(q,*cg)'/(2n-2)}

(2n-2+2)/2
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2 ) 2,2 . _ 1/2
where s~ = s 2p512/c + se/c ,» ¥ = (en=-2)

tg = (2n-2)l 2(uz-;cg)/s, and r¥~L i the matrix

(ul-il)/s,

1 -ple

-p/c 1/c?

Therefore the variables tf and tg have a bivariate t-distribution

characterized by the matrix R*-l. Note that

-1
1 -plc
R* =

-pl/ec l/c2
2 2
1/(1-p°) pe/(1-p%)
N 2 2

pC/(l-pQ) c“/(1-p7) ).
Let tl = ti - t;, and t2 = tg. =Then tl and t2 has a bivariate

-1 -1 .
t-distribution characterized by R where R is

1 -1 1 0
R = R¥
0 1 -1 1
(1-2pc+c2)/(1'92) (oc-cg)/(l-pz)
" {(pe=c?)/(1-07) ¢2/(1-p2)

Therefore the marginal distribution for tl has 2 Student's

t-distribution with (2n-2) degrees of freedom characterized by

[(l—pz)/(l-29c+c2)]. Since t, = ti-tg = (2n—2)1/2(u—§1+§2)/s,

it follows that the structural distribution for wu, pased on é,is
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du
glu:ix,cldp o —
” {1+(u-xl+x2)2(l-p2)/s2c2(1-2p/c+1/c2)}(2n-l)/2

The constant of proportionality K(p,n,c) is

2
K(p,n,C) = r(g.%:_];){,"l/Qr(Qn;2)[ 2 2 l-p 2 ]1/2}-1 .
s“¢“(1-2p/c+1/c%)

Furthermore, we note that the variable

$lpynse) = (20-2)22(4-5 437,) (10202  (sc (1-2p/041/e%) /%

has & Student's t-distribution with (2n-2) degrees of freedom.

Therefore the structural distribution for u, based on X, can

be rewritten in the form

2)1/2
173 } t(p,n,c).

o= (x,-x

) - { sc(l-2p/ct+l/c
1 72

2
[(2n-2)(1=p")]
The following two particular cases are of lnterest:

(i) When p = 0, we have

2
-2 _ {Eiililig_l (s2+s2/c2)}1/2t(0,n,c);

(2n-2) 172

and

(ii) When p = 0 and ¢ = 1, we have
1/2
} /

W= X =X, - {(s§+sg)/(n-l) +(0,n,1)
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which agree with the results of the particular cases (i) and

(ii) of Section 3.3 respectively.

3.6. A GENERALIZATION OF BEHRENS-FISHER PROBLEM FOR INDEPENDENT

POPULATIONS WITH KNOWN RATIOS OF STANDARD DEVIATIONS: In

this section we consider a generalization of the Behrens-Fisher
problem considered in Section 3.3. Let k be a fixed integer
greater than two. Suppose we have the following k independent

measurement models:

xij = pg * Gieij’ J =1, 2, .5 Dy
1y By
(2n)'ni/2exp{- 2 eij/z} it dei'
i=1 j=1 *J
for each i = 1,2,...,k. Based on the above structural models,

our purpose is to derive the structural distribution for (k-1)

differences of two means u? = Uyl i=2,3, ..., k, under

the condition that the (k-1) ratios o¥ = 0;/0,, 1 = 2,350k,

of the corresponding standard deviations are known. The case

for k = 3, is considered with greater details.
The structural distribution for ul, ey uk, Ol,..., Ok’
= = 2 k, is
based on 2 = (xil’ s Xip ), i 1,2, kK,

S(Ula-- . QUK9013""01{:?61’. * "Rk

k. n. - 2 2 k —(n-+l)
———1 .
s AU A LR

i=1 20i
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Applying the substitutions

My =W, 1S 1, 2, » k .
01=01
oz =.°i/°1’ i=2,3, ..., k

(k-1)

having jacobian ¢ , we obtain the structural distribution

1

for Mo i=1,2, ..., k, o, and of, i=2, 3, ..., k,

based on x eeey X as
f\,l’ b ’\Jk’

k k
% % . . %
g(“l"'"uk’°1’°2""’°k'%l""’%k).z dp; "do, .E doi

1 1 i=2
k n.: k -(n_+l) k
1 - 2 -1 1 . .
anP{- ) — 5 [hﬁ'xi)2+si]}0§ 1 (olcf) au, dol.H do;
i=1 2(°1°§) i=1 i=2

where g# = 1. By conditioning on 0? =c,,1=2,3, ..., k,¢7 = L,

1

we obtain the structural distribution for ui, i=1,2,...,k,

and 0y based on P SEERREE Xyo @s
k
g(ul,---,uk,olzﬁl,---,§k,g)dol igldu1

k n k
i -2 2, -(m+1), .
o eXP{' I — W-x) +si]}ol a0, E dy

1= i=1
i=1 2olci
k
= ceey C and N = n.. By eliminating o
where ¢ = (cp, 35 +ers O i§1 i 1
from the last expression, Wwe obtain
k
: d
g(ul""’“k'%l"°"%k’%)igl My
o k
= J g(“l""’“k’ol’ﬁl"“’%k’%)d°1 iEldui
o)



T1.
k
M dy,
i=1 *t
o
k n, 5 N/2
l -
I RET]
: i
i21l c,
i
k
L duy
o i=1
£ 2, 2 2.\"/?
NG )}
i=1 1
k
I du,
=1 *
o Ny (N-k+%)/2
{1+t*'R*' t*/(N-k)}
3 2, 2 %1 = * t*), t¥ = (N—k)l/e( -3 )/32
where s = iZlnisi/ci, t = (tl, cees BX), BT S Xy .
i=1, 2, ., k and R*'l is & kXk diagonal matrix
gr*~l = qiag(n_, n /c2 L., n /e ).
- g l’ 2 23 ] k k
Therefore the variables t?, i=1, 2, ..., k has a
multivariate t-distribution of order k and characterized by

the matrix R*_l. Define
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(1 -1 o 0)
1 0 -1 0
(tl,te, ceat )= . (t;,tg, Lat¥)! |
1 0 0 0 -1
0 0 0..0 1
\ J
= A(t;,t;,. ,t;)', say.
Then the variables tl, t2, ceay tk has a multivariate

t-distribution of order k and characterized by the matrix

R'l, where

R = AR¥*A!
( 2 # )
l/nl+02/n2
2
+
l/nl l/nl c3/n3
1/ 1/n,+c2/n
ny e 1o/
2
1/n ce 1/n co/n
kl 1 kk)
R *
: l
2/n
1/n 1/n c, /By
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It follows that the marginal distribution for tl,tz,...,tk_l
is a multivariate t-distribution of order (k-1) and

characterized by the matrix Rll. But

t*—t*

ct
1]

i 1 i+l
- 1/2, - % - . _
= (N""k) (ui+l—xl+xi+l),ui+l—ul-ui+l’ l‘l,2,.--,(k-l)’
so that the structural distribution for u;, cees u;, based
on X1, cees X is given by
k
g(u;a ey uk Ev > ,Jéks,%) I dui
i=2
i=p *
o (N-k+k-1)/2

{l+t'R‘lt/(N-k)}
N 1~

o . Th stant of proportionalit
1> boo s By ) e con prop y

is
e e
(k-1)/2 k-1
{n(N—k)} P(E§5)s
-1 -1/2
TR

Dunnett and Sobel (1954) have also considered multivariate

generalization of t-distribution. In that paper, they obtained

expressions for probability integral for the bivariate case:

k (h
P, (h,k3p) =J [ gn(tl,tzzp)dtldtQ

- 00



Th.

where
o 6520t b, 4t -(n+2)/2
g (tystyip) = ———= 1+ -
n 27 (1-p“) n(l-p°)
The expressions are:
/(1= 2)
P (h,k3p) = =— arc tan =B~
n 2w -0
1
K bn 1(§-3) 11
+ ‘[,]_4' (h— k)I (""s "—)
h/(n-n-) le F(J) (l+k2/n)‘l-‘01/2“ SEgn P X(n,hgk) 2 J 2 ]
1
h %o r(§-3) 11
+ z [l+sgn(k—ph)I (_s.j"_)]s

for even n; and

P (h,k;
n( s 59)

n

Loare tan{/n[-(mk)(hk+pn)-(hk-n)/(hz-ephk+k2+n[1.02]) ]}
°r (hk‘n)(hk+pn)-n(h+k)/(h2-2phk+k2+n[l-p2])

1

r(j) 1 [1+sgn(h-pk)Ix(n’h,k)(E’j)]

1 r(j+=) (1+k2/n)j

r{i) 1
=1 r(j+%) (14h2/n)d

[1+sgn(k-ph)T, (o .n) (3:9)]5

for odd n, where

+1 , if x > 0,
sgn(x)=
-1, otherwise;
2
h-pk
x(m,h,k)= (h-pk) s

(h-pk)2+(l—p2)(m+k2)

j-2 hi(i!)2

2 N VS
I (%,j—%) = % arc tan /(i%;)+F/{X(l_X)}iZO (2is1)]

(1-x)",

g
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and

J=1 . .

Ix(%,d) = /x ] -{31—)—!5 (1-x)*
i=o L7 (it)

They also provided numerical values for Pn(h,k;p) with h=k=t.

These values are tablulated in two tables for

t

0.00(0.25)2.50(0.50)10.0 and n=1(1)30(3)45(15)120,
150, 300, 600,% , for p = 0.50 and -0.50.

We note from the symmetry of gn(tl, t2;p) that Pn(h,k;p) =
Pn(k,h;p) for any h and k. We have computed numerical
values for Pn(h,k;o) for selected values of h,k=0.00(0.25)3.50,
n=1(1)30, and p = -0.75(0.25)0.75. Only those numerical
values for h = k = t are tabulated in tables given at the
end of this section. All computations were carried out by
the IBM T04LO computer with all inputs and outputs to eight
decimal places. They are rounded to five decimal places in
the tables given below. In comparing some of these numerical
values with those tabluated in Tables 1 and 2 of Dunnett and
Sobel (195L4), we find that our results agree with theirs except
for s few cases which differ mostly by one Or two units in
the fifth decimal places. On the differences is as close as

one unit in the second decimal place. For example
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N P t P (t,t50)

1 -0.50 1.75 0.69338093  0.69336 ,'

1 -0.50 2.00 0.72582472  0.71332 |
14 -0.50 0.75 0.55031971  0.55033

2 0.50 0.75 0.60699224  0.60697

6 0.50 3.00 0.97892956  0.9789h

where the values in the last column are taken from Dunnett
and Sobel's paper, while the fourth column are our computed
values given with eight decimal places before rounding.

The relationship between h, P, p and n, where P is the
quantities given in the bodies of the following tables,

are given by

h ¢h 2 -(n+2)/2
P = I J {Qﬁ(l-pe)}—l'll+ z ‘quvgve } : dudv.
- - 00 )

n(l—p
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Probability Integral of Bivariate t-distribution with p=-0.75

n/h 0.25 Q.SO 0.75 1.00 1.25 1.50 1.75

1 0.21598 0.33209 0.43569 0.51995 0.58657 0.63918 0.68113
2 22598 35838 48231 58585 66797 73167 78081
3 22992 36896 50170 61387 70285 77113 82270
L 23202 37465 51232 62936 72217 79287 8hs5k9
5 23331 37819 51902 63918 73443 80660 8597k
6
7
8

23419 38062 52363 64597 74290 8160k 86946
23482 38237 52699 65093  Th908 82292 87650
23530 38371 52956 65472 75380 82815 88183
9 23568 38476 53158 65771 75752 83226 88600
10 23598 38560 53321 66012 76053 83558 88935

11 23623 38629 53455 66212  T6300 83831 89210
12 23643 38688 53568 66379 76508 84060 89440
13 23661 38737 53664 66521 76685 84254 89634
1k 23676 38779  537Th7 6664k 76837 8Lh21 89802
15 23689 38816 53819 66750 76970 84567 89947

16 23701 38849 53882 6684k 77086 8L69%  900TL
17 23711 38877 53938 66927  T7189 84807 90186
18 23720 38903 53988 67001 77280 8h907 90286
19 23728 38926 54033 67068 77363 84997 90375
20 23735 38946 54073 67127  TT43T 85078 90456

21 237h2 38965 54109 67182 77504 85152 90529
22 23748 38982  541k3 67231 77565 85218 90595
23 23753 38997 54173 67276 77621 85280 90655
2k 23758 39011 5k201 67318 77672 85336 90711
25 03763 39025 Ske27 67356  T7720 85387 90762

26 23767 39037 54251 67391 77763 85435 90809
27 23771 39048 54273  6Thal 7780k 85479 90852
28 53775 39058 54293 6Th55 77842 85520 90893
29 23778 39068 54312 67483 T787T 85558 90931
30 23781 39077 54330 67510 77910 8559k 90966
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Probability Integral of Bivariate t-distribution with p=-0.75

2.00

0.71503
81885
8614k
88419
89821

90765
91hk2
91951
92346
92662

92920
93135
93316
93471
93606

93723
93826
93918
94000
9LoTh

9hkiko
94200
9Lk256
94306
94352

94395
94k35
9LkLT71
94506
94538

2.25

0.74283
84852
89061
91256
92581

93460
94082
9hsLlh
94900
95182

95411
95600
95759
95895
96011

96113
96202
96280
96351
96L41L

96470
96522
96568
96611
96650

96686
96720
96751
96779
96806

2.50

0.76594
87191
91270
93337
94556

95349
95902
96306
9661L
96855

970L9
97209
97341
97453
97549

97633
97705
97769
97826
97877

97922
97963
98001
98035
98066

98094
98121
98145
98167
98188

2.75

0.78541
89056
92957
9Lk8T2
95972

96672
97150
97hok
97752
97952

98111
98240
98346
98436
98511

98577
98633
98683
98727
98765

98800
98831
98860
98885
98909

98930
98950
98968
98984
99000

3.00

0.80200
90560
9hkosT
96013
96992

97600
98006
98293
9850k
98666

98792
98893
98976
99045
99103

99152
99195
99231
99264
99292

99318
99341
99361
99379
99396

99411
99425
99438
99450
99L61

3.25 3.50
0.81628 0.82869
91786 92796
95270 96067
96867 9751k
97732 98273
98254 98718
98594 99001
98830 99192
99000 99328
99128  99kaT
99226 99503
9930k 99562
99367 99609
99419 99646
99L62 99678
99498 9970k
99529 99726
99555 99 Tlh
99579 99760
99599  997Th
99617 99887
99633 99798
99647 99807
99660 99816
99671 99823
99682 99830
99691 99837
99700 998L42
99708 99848
99715 99852
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Probability Integral of Bivariate t-distribution with p=-0.50

0.50

0.36554
38889
39817
40313
40620

40829
40980
41095
41185
41257

41316
41366
41408
hakhlh
L1476

41503
41528
L1549
41569
41586

41602
L1617
41630
hi6hk2
41653

41663
41673
L1682
41690
41698

0.75

0.46120
50259
51957
52878
53455

53851
54139
54359
54531
54670

S5h78L
54880
54962
55032
55093

55147
55194
55236
5527L
55308

55339
55367
55393
55417
55438

55458
55477
5549k
55510
55526

1.00

0.54022
59968
62478
63863
6L4ThO

65345
65788
66126
66393
66608

66786
66936
67063
67172
67268

67352
67h26
67492
67551
67605

67653
67698
67738
bTTTS
67810

67841
67871
67898
67923
6T9LT

1.25

0.60327
67778
7097
72750
73881

Th663
75237
75675
76021
76302

76533
76727
76893
77036
77160

77269
77366
77452
77529
77599

77663
77720
77773
77822
77866

77908
T79L6
77982
78015
780Lk6

1.50 1.75
0.65333 0.69338 -
73892 78635
77566 82580
79605 8hThT
80900 86111
8179L 87046
82hk9 87727
82948 88245
83342 88651
83661 88978
83923 89247
8h1hh 8oL72
84331 89663
84hg3 89827
84633 89970
84757 90095
84866 90205
84963 9030k
85051 90392
85129 90471
85201 90543
85266 90608
85325 90668
85380 90723
85430  90TTh
85477 90820
85520 90863
85560 90903
85597 909kl
85632 90976




80.

Probability Integral of Bivariate t-distribution with p=-0.50

2.25

0.752k47
85202
89222
91341
92631

93k92
94103
94559
9Lk911
95191

95418
95605
95763
95898
9601k

96115
9620k
96282
96352
96415

96472
96523
96569
96612
96651

96687
96720
96751
96780
96807

2.50

0.7TL465
87479
91391
93396
94588

95368
9591k
9631k
96619
96859

97052
97211
97343
97455
97550

97633
97706
97770
97826
97877

97923
97964
98001
98035
98066

98094
98121
98145
98168
98189

2.75

0.7933k
89296
93050
9Lko1l
95993

96684
97157
97499
97755
9795k

98112
982541
983h4T
98436
98512

98577
98633
98683
98727
98765

98800
98831
98860
98885
98909

98930
98950
98968
98985
99000

3.00

0.80928
90763
94330
96043
97007

97607
98010
98295
98506
98667

98793
9889k
98976
99045
99103

99152
99195
99232
99264
99292

99318
99381
99361
99379
99396

99411
99425
99438
99450
99461

3.25

0.82301
91960
95328
96890
97Th2

98259
98597
98831
99001
99128

99227
99305
99367
99419
99kL62

99498
99529
99555
99579
99599

99617
99633
99647
99660
99671

99682
99691
99700
99708
99715

3.50

0.83k495
92947
9611k

97531
98280

98721
99002
99193
99328
99428

99503
99562
99609
99647
99678

9970k
99726
997hh
99760
997Th

99787
99798
99807
99816
99823

99830
99837
99842
99848
99852
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Probability Integral of Bivariate t-distribution with p=-0.25

0.25

0.29975
30907
31276
31472
3159k

31676
31735
31780
31815
3184k

31867
31886
31903
31917
31929

31940
319k9
31958
31965
31972

31978
31984
31989
3199h
31998

32002
32006
32009
32012
32015

0.50

0.39758
41957
42829
43293
43581

43776
43918
L4025
L4109
Lh176

hh2o31
Lho78
hh317
LL351
44380

Lhho6
hhk28
Lhhho
Ny
44483

14498
bk511
14523
k4535
hL545

44555
4456k
Lh572
44579
L4587

0.75

0.48688
52517
54074
54915
55440

55799
56060
56258
56413
56539

56642
56728
56802
56865
56920

56968
57010
57048
57082
57113

57141
57166
57189
57210
57230

57248
5726k
57280
57294
57308

1.00

0.56118
61617
63920
65184
65982

66531
66933
67239
67480
67675

67835
67970
68085
68184
68270

68345
68412
68471
68525
68573

68617
68657
68693
68726
68757

68786
68812
68837
68859
68881

1.25

0.62081
6900k
71958
73596
Th638

75358
75886
76290
76608
76866

77079
77258
77410
TT541
77656

77756
77845
77925
77996
78060

78119
78172
78220
78265
78306

78344
78379
78412
78443
78471

1.50 1.75
0.66833 0.70645
74825 79363
78250 83067
80152 85107
81361 86396
82198 87282
82810 87929
83279 88L21
83648 88808
83947 89120
8419k 89378
84k01 89593
8U5TT 89776
84730 899 3L
84862 90071
84978 90191
85081 90297
85173 90392
85255  90LTT
85330 90553
85397 90622
85459 90685
85515  90TL3
85566 90796
85614  908k45
85658 90890
85699 90931
85737 90970
85772 91006
85805 91040




82.

Probability Integral of Bivariate t-distribution with p=-0.25

n/h 2.00 2.25 2.50 2.75 3.00 3.25 3.50

1 0.73739 0.76283 0.78402 0.80190 0.81715 0.83030 0.84173
2 82900 856Th 87869 89624 910k2 92200 93155
3 86720 89488 91594 93207  9kk55  95L28 96196
I 88791 91510 93516 95001 96107 96938 97568
5 90082 92748  9L666 96046  9TOM3  9TT68 98298
6
T
8

90961 93577 95422 96718 97630 9827k 98731
91596 94169 95952 97180 98025 98606 99008
92076 9Lk612 96343 97515 98305 98837 99197
9 92451  9L9sk  966Lk2 97768 98513 99005 99330
10 92752 95226 96878 97964 98672 99131 99429

11 92998 95448 97067 98120 98796 99229 9950k
12 9320k 95632 97223  982h7T 98897 99306 99563
13 93378 95787 97353 98352 98979 99368 99609
1k 93528 95919  9ThEL  984k0  990LT 99h20  996LT
15 93657 96033 97558 98515 9910k 99h62 99678

16 93770 96132 97640 98580 99153 99498 9970k
17 93870 96219 97712 98636 99196 99529 99726
18 93959 96296 9TTT5 98685 99232 99556 99Tkl
19 9L039 96365 97832 98729 99265 99579 99761
20 ol110 96k27 07882  98T6T 99293 99599 99775

21 9k175 96483 97927 98802 99318 99617 99787
22 ok23k 96534 97967 98833 99341 99633 99798
23 94287 96580 9800k 98861 99361 99647 99807
2l 94336 96622 98038 98886 99380 99660 99816
25 ok382 96660 98069 98910 99397 99671 99823

26 oyk23 96696 98097 98931  99k12 99682 99830
27 olkg2 96729 9812k 98951  99k26 99091 99837
28 ohlg8 96759 981k8 98969 99439 99700 99842
29 ol531 96788 98170 98985  99ks0 99708 99848
B olegr o681k 98191 99001 9961 99715 99852




83.

Probability Integral of t-distribution with p=0.00
n/h 0.25 0.50 0.75 1.00 1.25 1.50 1.75

1 0.33735 0.42963 0.51344 0.58333 0.63959 0.68454 0.72065
2 34659 45081 54960 63490 T0LL4Y% 75949 80255
3 35025 L5920  56k2k 65635 73196 79148 83727
L 35219 L6367 57212 66808 ThT716 80920 85638
5 35340 4664L 57703 67546 75680 82046 86846
6
T
8

35421 46832 58039 68054 76 346 82824 87678
35480 46968 58282 68L2l 76833 8339l 8828L
35525 k7071 58467 68706 77206 83830 887hT
9 35560 ¥7152 58612 68927  TT499 g8hk173 89110
10 35588 Lh7217 58729 69106 TT737 8LhL51 8oLkok

11 35611 LW7270 58825 69254 77933 84681 89646
12 35630 47314 58905 69378 78098  8L8TL 89849
13 35647 47352 58973 69483 78238 85038 90021
1k 35661 47385 59032 69574 78359 85179 90170
15 35673 47413 59083 69653 78464 85302 90299

16 35683  L47h37 59128 69722 78556 85411  90kl2
17 35693 47459 59167 69783 78638 85507 90513
18 35701  LTWT9 59203 69838 78711 85592 90602
19 35709 Lh7ho6 59234 69887  T8TTT 85669 90682
20 35715 47512 59263 69931 78836 85738 90754

2l 35722 47526 59288 69971 78889 85801 90820
22 35727 47539 59312 70007 78938 85858 90879
23 35732  h7551 59333 70040 78983 85910 9093k
2k 35737 47561 59353 70071 7902k 85958 9098k
25 35741 47571 59371 70099 79062 86002 91030

26 35745 47581 59388 70125 79096 86043 91072
27 35749 47589 59403 70149 79129 86081 91112
28 35752 47597 59418 70172 79159 86116 91148
29 35755 y7604 59431 70193 79187  861k9 91182
30 35758 L7611 59LLYL 70212 79213 86180 9121bL




Probability Integral of t-distribution With 0=0.00

2.00

0.75000
83621
87213
89163
90381

91211
91812
92267
92623
92909

931bhk
93339
93505
93648
93772

93880
93975
94060
94136
94205

9L266
94323
9437k
ohkko1
9hL6s

94505
9Lksho
94576
94608
94638

2.25

0.77h16
86266
89863
91775
929k49

93738
9Lk302
9hT2k
95052
95313

95526
95703
95852
95979
96089

96185

96269 -

9634k
96410
96470

96524
96573
96618
96658
96696

96730
96762
96792
96819
96845

2.50

0.79430
88362
91884
93708
9LB80OL

95526
96035
96411
96699
96926

97109
97260
97387
9749l
97586

97665
97735
97797
97852
97901

97945
97984
98021
98054
9808k

98112
98137
98161
98183
98203

2.75

0.81129
90041
93436
95143
96142

96787
97233
97556
97800
97991

98143
98266
98369
98455
98528

98592
98647
98695
98738
98776

98809
98840
98868
98893
98916

98937
98956
9897k
98990
99005

3.00

0.82580
91398
9k6 37
96214
97111

97676
98058
98330
98532
98687

98809
98907
98987
9905k
99111

99159
99201
99237
99269
99297

99322
993kl
9936k
99382
99399

99h1k
99428
99kLo
99k52
99463

3.25 3.50
0.83831 0.84918
92507  93L423
95576 96317
97020 97631
97817 98335
98306 98753
98628 99023
98853 99207
99017 99338
99140 99L43h
99236 99508
99312 99566
99373 99612
99423 99649
99466 99680
99501 99705
99532 99727
99558 99745
99581 99761
99601 99775
99618 99787
99634 99798
99648 99808
99661 99816
99672  9982L
99683 99831
99692 99837
99701 99843
99709 99848
99716 99853

8h.




85.

Probability Integral of Bivariate t-distribution With p=0.25
n/h 0.25 0.50 0.75 1.00 1.25 1.50 1.75

1 0.37549 0.46308 0.54187 0.607k5 0.66027 0.70251 0.736L49
2 38468 418369 57639 65617 72127 77288 81335
3 38832 49187 5903k 67635  TL699 80276 84578
L 39026 49623 59783 6873k 76115 81925 86360
5 39146 49892 60250  69k2k 7011l 82971 87L8L
6
7
8

39227 50076 60569 69898  TT7629 83693 88258
39286 50208 60800 70243 78081 84221 88822
39330 50309 60975 70506 T78L25 gLhe2lh 89251
9 39365 50387 61112 70712 78697 gholh2 89590
10 39393 50450 61223  T08T9 78916 85199 89862

11 39416 50502 6131k 71016 79098 85411 90087
12 39435 50545 61390 71131 79250 85590 90276
13 39451 50582  61L455 71229 79379  857h1  90L436
1k 39465 5061k 61510 71313  T9490 85872 9057k
15 39477 50641 61559 71386  T958T 85986 9069k

16 39488 50665 61601  T1h51 79673 86086 90799
17 39497 50686 61639 71507  T9TL8  B61Th 90893
18 39505 50705 61672 71558 79815 86253 90976
19 39513 50722 61702 71604 79876 86324 91050
20 39520 50738 61729 T16k4k 79930 86388  9111T

2l 39526 50751 61753 71682 79979 86446 91178
22 39531 50764 61775  T1715 80024  86L98 91233
23 39536 50775 61796  TLTL6 80066 86547 91284
2L 39541 50786 61814 TLTT5 80103 86591 91331
25 39545 50796 61831 71801 80138 86632 91373

26 39549 50805 61847 71825 80170 86669 91413
27 39553 50813 61862 71847 80200 8670k  91k450
28 39556 50821 61875  T1868 80228 86737  91h8k
29 39559 50828 61888 71888 8025k 86767 91515
30 39562 50834 61900 71906 80278 86796  915L5




86.

Probability Integral of Bivariate t-distribution With p=0.25
n/h 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.76412 0.78687 0.80585 0.82187 0.83555 0.84735 0.85761
84503 86997 88976 90561 91845 92895 93762
87863 90366 92279 93749 94890 95782 96486
89685 92156 93990 95355 96375 971khh 97728
90822 93256 95020 96297 97223 97899 98395

91597 93996 95700 96906 97758 98363 9879k
92159 04525 96180 97328 98121 98670 99052
9258L  9L923 96535 97635 98380 98885 99228
92917 95231 96807 97867 98573 990k2 9935L
10 93184 95477 97022 98048 98721 99161 99LhT

11 9340k 95677 97196 98193 98838 99253 99518
12 93587 9584hk  973h0 98311 98932 99326 9957k
13 93742 95984  97h60 98409 99010 99385 99618
1k 93876 9610k 97562  98k492 9907  99k3k 99655
15 93992 96208 97649 98562 99129  99hT5 99685

16 9k093 96299 97725 98623 99175 99509 99710
17 94183 96379 97792 98676 99215 99539 99731
18 9k262 9649 97851 98722 99250 99565 99749
19 9k33h 96512 97903 98763 99281 99587 9976k
20 94398 96569 97950 98800 99308 99606 99778

21 9hk56 96620 97992 98832 99333 99624 99790
22 94509 96667 98030 98862 99354 99639 99800
23 94557 96709 98065 98888 9937k 99653 99810
2L 9k601 96748 98096 98913 99391 99665 99818
25 oh6k2 96783 98125 98935 99408 99676 99826

26 94679 96816 98152 98955  99ke2 99686 99832
27 9471k 96846 98176 9897k 99436 99696 99838
28 oh7h6  9687L 98199 98991 99LL8 9970k  998LbL
29 oLb77T 96900 98220 99007 99459 99712 99849
30 94805 96925 982L0 99021 99470 99719 9985k

O o100\ W =w i




87.

Probability Integral of Bivariate t-distribution With p=0.50
n/h 0.25 0.50 0.75 1.00 1.25 1.50 1.75

1 0.41678 0.50000 0.57384 0.63497 0.68411 0.72338 0.75495
2 42592 52017 60699 6811L Thiks 78925 82671
3 42955 52818 62036 70018 76550 81702 85680
L 43148 53245 62755 71052 77869 83231 87326
5 43267 53510 63202 71701 78702 84196 88362
6
7
8

43348 53689 63507 72146 79275 84862 8907k
43h07 53819 63728  T2k70 79693 85348 89592
L3451 53917 63895 72716 80012 85719 89987
9 43486 53994 6ho27 72909 80263 86011 90297
10 413513 54056 64133 73065 80466 86247  905h47

11 43536 54107 64220 73194 80633  86Lhk2 90753
12 43555 54150 64292 73301 80773 96605 90926
13 43572 54186 6435L 73393 80893 867kl 91073
1l 43585 sho17  64hoT  T3kT2 80995 86864 91199
15 43598 shok3 64453  T35L40 81085 86968 91309

16 43608 54267  64LoL 73600 81163 87060 91406
17 43617 54288 64530 73653 81233 871kl 91491
18 L3626 54306 64561 73701 81295 87213 91567
19 43633 54323 64590 73743 81350 87278 91635
20 43640 54338 64616 73781  81k01 87336 91696

21 43646 54351 64639 73816  B81k46 87389 91752
22 43652 54364 64660 T3BLT 81487 87L38 91802
23 43657 54375 64680 73876 81525 87482 91849
2k 43661 54385  6L69T 73903 81560 87522 91891
25 43665 54395 6471l 73927 81592 87560 91930

26 43669  Shhkolk 64729 73950 81621 87594 91967
27 43673  Skhi2 6473 73971 g16k9 87626 92000
28 L3676 shh19 64756 73990 8167k 87656 92031
29 43680 5hLo6 64768 74008 81698 87683 92060
30 43683 54433  6LTT9 74025 81720 87709 92087




88.

Probability Integral of Bivariate t-distribution With p=0.50
n/h 2.00 2.25 2.50 2.75 3.00 3.25 3.50

1 0.78063 0.80178 0.819L43 0.83432 0.8470L4 0.85801 0.86755
2 85607 87919 89754 91225 92417 93392  9L19T7
3 88720 91038 92812 94178 95238 96067 96723
4 90ko2 92692 9439k 95662 96612 97329  9T8Th
5 91449 93706  953kk 96533 97397 98028  98L93
6
T
8

92163 94387 95972 97096 97893 98459 9886k
92679  9L875 96415  9Th8T 98230  987k5 9910k
93070 95241  967h3  9TTTL  98k70  989L5 99268
9 93375 95525 96995 97986 98650 99092 99386
10 93621 95751 97194 98155 98788 99202 99473

11 93823 95936 97355 98289 98897 99289 99540
12 93991 96089 9T48T 98399 98985 99357 99593
13 9Lh13k 96219 97598 98490 99057 99413 99635
1k 94256 96330 97693 98567 99117 99459 99669
15 o362  96L2s  97TTH 98633 99168 99L9T 99697

16 9LL455 96509 97845 98689 99212 99530 99721
17 94538 96582 97906 98739 99250 99558 99741
18 94611 96648 97961 98782 99282 99582 99758
19 9L6T6 96706 98009 98820 99311 99603 99773
20 94735 96758 98053 9885k 99337 99621 99786

21 94788 96805 98092 98885 99360 99637 99797
22 94837 96848 98127 98912 99380 99652 99807
23 94881 96887 98159 98937 99399 99665 99816
2k ghgop 96923 98189 98960 99Lk15 99677 9982k
25 9k959 96956 98216 98981 99430 99687 99831

26 94993 96986  982L0 99000 99LLlk 99697 99837
27 95025 9701k 98263  9901T  99L5T 99706 99843
28 95055 970k0 98284 99033 99k69 9971k 99849
29 95083 9706k 9830k 99048 o9k79 99721 99853
30 95108 97087 98322 99062 99489 99728 99858




89.

Probability Integral of Bivariate t-distrihution With p= 0.75
n/h 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.46654 0.54517 0.61356 0.66957 0.7143k 0.75000 0.77863
L7565 5649k 64537 71313 76781 81093 8LL6S
Lh7927 57280 65820 7310k 79010 83643 87207
48119 57699 66509 74075 80228 85038 88699
48238 57959 66938 TL683 80995 85916 8963L

48319 58135 67230 75100 81521 86520 9027k
48377 58262 67hh2 75402 81905 86961 90Tko
48421 58359 67603 75632 82197 87296 9109k
L8456 58L43L 67729 75813 82427 87560 91371
10 L8L8L 58495 67830 75959 82613 87773 91595

11 48506 58545 67913 76079 82766 87948 91779
12 48525 58587 67983 76179 82894 88096 91933
13 L8542 58622 680L2 76265 83003 88221  9206L
1k 48555 58653 68093 76338 83097 88329 92177
15 L8567 58679 68137 6402 83179  88k22 92275

16 48578 58702 68176 76458 83250 88505 92361
17 48587 58723 68210 76507 833l 88577 92437
18 48596  58TL1 68240 76551 83370 88642 9250k
19 48603 58757 68268 76591 83421 88700 92565
20 48610 58772 68292 76627 83467 88753 92619

21 48616 8785 68315 76659 83508 88800 92669
22 L8621 28797 68335 76688 83546 888LL 9271k
23 48626 58808 68353 76715 83580 88883 92755
2k L8631 58818 68370 76740 83612 88920 92793
25 48635 58828 68386 76763 83641 88953 9282

26 486 8836 68401  T7678L 83668 88984 92860
27 h86i% 2883h 6841y 76803 83693 89013 92889
28 48646 58852  68h26 76821 83716  890L0 929i7
29 L8649 58859 68438 76838 83738 8906L 92963
30 48652 58865  68LL9 76854 83758 89088 92967

O -1 U Ew




90.

Probability Integral of Bivariate t-distribution With p= 0.75

n/h

O O30\ V1 FE W

]
o

e el
o O

PPN D
VMW OO o0

w DN
O \O co—1 O

2.00

0.80188
87102
89926
91443
92384

93022
9348k
93832
9Lkiok
94323

94502
94651
94778
oLB88T
94981

95063
95136
95201
95259
95311

95358
95401
95k4k0
95476
95509

95539
95568
95594
95618
95641

2.25

0.82101
89176
91998
9348L
9Lk392

95000
95435
95760
96012
96213

96377
96513
96627
96725
96810

96884
96949
97007
97058
9710k

97146
97184
97218
97250
97279

97306
97330
97353
9737l
9739k

2.50

0.83696
90822
93582
95001
95850

96409
96803
97095
97318
9TLok

97637
9TT54
97853
97936
98008

98070
98125
98173
98216
98255

98289
98320
98349
98375
98399

98420
98LL1
98459
98LTT
98493

2.75

0.85043
92141
94802
96131
96908

97409
97756
98009
98200
98349

98L68
98566
986L6
98715
98773

98823
98867
98905
98939
98969

98996
99021
99043
99063
99081

99098
9911k
99128
991hk1
99153

3.00

0.86192
93209
95748
96978
97677

98119
98418
98632
98791
98913

99010
99088
99152
99206
99251

99290
99323
99353
99378
99401

99L21
99439
99456
99471
9948k

99496
99508
99518
99528
99537

3.25 3.50
0.87183 0.880k45
94082 94804
96488 9707k
97616 98102
98240 9865k
98623 9898k
9887T 99197
99055 99343
99185 99448
99284 99526
99360 99586
99Lk21 99632
99471 99670
99512 99700
995L6 99726
99575 99ThT
99600 99765
99621 99780
99640 99793
99656 99805
99671 99815
99684 99824
99696 99832
99706 99839
99716 99845
9972k 99851
99732 99857
99739 99861
99746 99866
99752 99870




91.

3,7. MULTIVARIATE BEHRENS-FISHER PROBLEM: This section

deals with a multivariate generalization to the Behrens-
Fisher Problem considered in Section 3.2. Let (Xii),xéi),
, 1 =1, 2, be two independent p-variate normal
distributions with mean vectors Ky and Koo and covariance
matrices zl and 22 respectively. This problem is concerned
with the derivation of the structural distribution for the
difference of two means vectors, p = Hy = Hoo based on the

complete sets of observations. More precisely, we consider

the following two independent multivariate models

X. = 06.E
1 1 1
/2 i ) P =
“R3P 1 T(1),2 (i)
£f(E )AE, = (2m) * exp{-gf )y ( K )yn 1 dejk
i 3=1 k=1 J j=1 k=1
where
[ 1 . 1 ) (1 1)
(i) (i) (i) | e(i)
Xll v e s Xlni ell lni
Xl = . . Ej_ =
x(i) L(1) e(i) e}i:?)
. pl pn;J \ p1 i
and
(1 0 o ) 1 0 )
(1) (i)
Miq 3 cee C1p
0, = : = |—T
1 .
(1) (i) s c.
[Mip| ‘P2 " D e i
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with |ci| > 0, is an element of the positive affine group on
Rp for each i = 1, 2. The structural distribution for ' and

Hos based on X, and X,, is (See Fraser (1968) page 2kl1)

g(Hl’%z‘Xl’Xz)dedH2=K1K2{l+n1(%1(x1)'Hl)'Sl(xl)-l(%l(xl)'El)} 1

' -1
{10, (mp (Xy) =i ) 18, (X)), (X5 )=y Ay duy
where
n-
- - (3 i
,\‘l(Xi)' = (X:(Ll),.. ,Xl()l)), Xél) = 2 xi;)/nl, o =1, 2, s Ps
k=1
(i) =(i) (i) =(i)y (i) =(di) (i) =(i)y"
5; (%) 1 %1 x1ni'x1 3 T*1 x1nl'x1
(i) =(i) (1) =(i)]] (i) =(i) (i) =(i)
*p1 TUp *pn,"p  p1 o *pn, p -
_ (i)
= (nlsjk )’
and
p/2
A ‘n;
K, = —d-P 2 , AL = (22 (5/2).
i A IS (X )|l/2 f
n,'7i'"i
i
The structural distribution for u, based on Xl and X2, is
g(R:Xl,Xz)dR = f ce J g(gl,gzle,xz)dul°du

where o of the integrand is replaced by By = K- Further, we

note that for each i = 1, 2, the structural distribution for

Ks o based on Xi’ is distributed according to a relocated and

rescaled multivariate t-distribution. Therefore from the

result obtained in Section (3.1) and the fact that the marginal

S e e e N R T
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distribution of multivariate t-distribution is again a

multivariate t-distribution, we obtain

1 rltl cosf, - rlt2 Sinel )
po=om (X)-my (%) 4
r t( )cose -r t(e)sine .
| P J
where
(1) _ 1/2 -(1),,.(i)
ORI CHE DR (S Mz
2= N2 w0 B2 1,
and

sane_ = 15020/ (a,-0) Y2101 1 ay -0 M)

: (1) . .
i=1,2, &=1, 2, «ve, P Each of the ta 's ig a Student's
t-distribution with hi-l) degrees of freedom. It is of
interest to notice that for p = 1, the result obtained here

agrees with that derived in Section 3.2.

3.8, A RELATED BEHRENS-FISHER PROBLEM: This problem deals

with the structural distribution for the difference of two
location parameters from negative exponential distributions.

Let Xl and X2 be two independent negative exponential

distributions:

f£x;) = (1/0;) exp {=(xgmuy Moy X5 > Wy




9k,

where Hy and Oi are respectively the location and scale
parameters of X,, i = 1, 2. Let ¢, = (xil’ Xins <o xini)’
n, > 2, be a sample of size n, drawn from the distribution
X,, i =1, 2. Our object is to obtain the structural

distribution for the difference of two location parameters, f

W= Uy - Uys S8Y, under the following three different situations:

(i) when both scale parameters 9y and o, are known;
(ii) when the ratio 02/01 of scale parameters is known, and
(iii) when both scale parameters 94 and o, are unknown.

These three cases will be taken up in order.

(i) When both scale pargmeters Gl and 02 are known: In this

case, we can assume, without loss of generality, that oy = 0, = 1.
The structural distribution for u is based on the following

independent structural models

1ikl<2 <...<kr<£ripl,

¥1 7 (xl(kl)”"’xl(ﬁl)""’xl(kr)"..xl(gr)), '

and

= R ), l<kl<gl<...<k!<tl<n,,
Yo = (rp(ar) e o¥a(yy) (e )R T 1 s*ts<fe

be respectively multiply Type II censored responses for Xi’

i =1, 2. From the independence of the above two structural

nodels and the result of Example (2.6.7), we conclude that the
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structural distribution for My and Moo based on Xy and X0 is

k -'l '
: - ) 1 K!-1,

- - 1
eXP{(nl kl+l)ul+(n2 k1+l)u2}duldu2,

for -o < My < xl(k ) and -« < By < x2(k,), and where
1 1

exp{-(n,-k, +1)x =(n,=k'+1)x, ., 4y}
K = 171 1(ky) 72 1 2(k})

. 1 !

The following diagram gives the region for which points (“1’“2)

having
Ho
X
7/
7 /‘///
M1 (k)
positive densities. The substitutionm w = w3 = ¥y gives the

structural distribution for u; and p based on X, and 2o¢
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k,-1 '
kl 1

. "(1-expl-x, ) v y*tu,-u})

g(ul’u:§1,%2)duldu=K(l—exp{-xl(k )+ul}) ‘

1

- - ' -
exp{(nl kl+l)ul+(n2 kl+l)(ul H)}au,dp

for ~» < ul < X - < y < @, The desired structural

l(kl)’
distribution is then obtained by integrating out ul. For

U>H =X we have

Mo ® 1(x)) T a(xy)’

Jxl(kl)

g(u:§1,§2)du = g(ul,u=¥l,§2)dul d

-0

Making use of the substitution

+ U}

t = exp{-xl(k 1

1)
the last integral reduces to

: = -(n -k!'+1)u}:
g(u.ﬁl,%z)du Kexp{le(kl) (n2 1 Ju
ki-1 §-1

fl(l-t)kl_l(l-t exp{x -X =R £ dt-du
o l(kl) 2(kl)

—(n2—ki+l)u}’

K exp{le(k )
1
k!-1
1 k-1 1 k!l-1 N+i-1
J (1-t) © [} (-1)*( ' Jexp{ilxy (i )-xz(ki)— )1t atau
0 i=o
k!-1
VT l(ki Jex {i(x -X -u)}
= K exp{le(kl)—(nz-ki+l)u}izo (-1) : P l(kl) 2(ki)

'B(kl,N+i)
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where N = nl+n2-(kl+ki)+2. The preceeding simplification

involves the expanding of the term (1-t exp{xl(k

= t "u})
V)2l

according to the Binomial Theorem, and then the integration

is carried out term-by-term. Similarly for U S_uo, we have

_ U+x2(k|) . Y. 4
glu:x,,x,)du = 17g(uy sHigysgo)dpy "du.

=00

Applying the substitution
t = exp{-xz(ki)+ul—u}

and carrying out the integration in the same manner as before,

we obtain

1
g(u:%l,%z)du:Kexp{Nxz(ki)+(nl—kl+l)U} Z (-l)l( % )-

.exp{i(xz(ki)-xl(kl)+p}B(kl,N+i).

Combining together we have the structural distribution

for y based on %l and %2:

g(u:gl,gz)du
K. -1
. L kit : :
fKexp{Nxe(ki)+(nl-kl+l)u}izo (-1)*( 5 )exp{l(xz(ki)—xl(kl)+uﬂ
‘B(kl’N+i) for W 2 Moo
= 4 k‘—l 1
= 1 i k-1 .
1 - . { ( -X 1 -U)}‘
Kexp{le(kl) +(n2—kl+l)u}izo (-1)7( 7y expld xl(kl) 2(x!)
|l for 1 2 U
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In particular, when kl = ki = 1, we obtain the structural

distribution for y based on the complete sets of responses

(ordered or unordered):

n-n

172

- + <

u 0, explng (x, 1 y=% (), W 2wy
g(u:%l,wz)du=

n.n

12 exp{n,(x -x -u)}, w>wu

n,+n, 2 71 (1) "2(1) ? =Y o ?

where uy = X -X
0 1(1) "2(1)

(ii) When the ratio 02121 of scale parameters is known: In
this case, the desired structural distribution is derived from

the following independent structural models:

Xy T Wy P 030540 G5y 7 0, 3 =1, 2, «res By
(3.8.1) oy n

exp{- e.. .} I de,

’ 321 1370 9
s = - 2 < k <
i=1,2. Let r}\c,]_ = (xl(l)’ xl(2)""’xl(k))’ Y AR
= .. 2 < % <n be Type II

%o = (p(a)s %a(a)r e oy B2 ST

singlely censored responses at the right. We wish to derive

the structural distribution for u = ul—p2, based on X1 and

{2, under the condition that 02/0l = ¢ for some positive

known real number c. From the results of Example (2.6.9),

we have the structural distribution for “1’“2’01 and 02

based on %l and %2:
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3(“1’“2’01’02’%1’%2)d“1d“2d°1d°2

X -u kK x.,.y-U X -u % Xp(1)~H |
—(n -k) 1(k) " 1) 771y _gy2(R) "2 i) "2}, !
¢ exP{ 1 9 iZl 9 (mgt) 92 izl 92 } |

-(k+1) -(2+1)
o, 7, do, do

2

du_4d

> 0 and o, > 0.

for -= < ul < xl(l)’ -0 < u2 < x2(l)’ Gl 5

Then by applying the substitution

() =¥y

o=
01 % 9y

o 0,/0y >

and then conditioning on 0 = c, W€ obtain the structural

distribution for ul,u,ol, based on X, and %2:

- (k+2+1)

_pl+u)/c]/0}'01 duldcldUa

-[(nQ_Q)(XQ(Q)-U1+H)/C_121(X2(1>

-~ < U < » and 0y > 0. Putting

k
n. x¥ = (nl—k)xl(k) + Z Xl(i),

and
2

;
£
i
#
i
&
S
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then
k -
(nl-k)(xl(k)—ul) + iZl(xl(i)-u) = nl(X§—ul),
and
9‘ -
(nz-l)(xz(z)-ul+u) + iZl(xz(i)—ulﬂx) = nz(x;—ul+u).

Thus we have

g(ul,u,0=%l,%2,C)duldcldu anP{-A(gl,§2,ul,u,C)/0}

0-(k+2+1)

. dolduldu,

=n (% ¥
where A(&l,%z,ul,u,c)-nl(xi,ul)+n2(x2 ul+u)/c. Hence by

integrating out Ol over the range (0,=), we obtain

[m {-A( )/0}0(k+£+l)do ‘dp_dy
g(ul,u:ﬁl,gz,C)duldu o oexp -A(x, 2Xpo My MO N Ly

o A(§1,§2,ul,u,C)}—(k+£)

Finally, by eliminating M,, W€ obtain the desired structural

distribution:

Ju+x2(l){A(§l,§2,ul,u,c)}’(k+£)dul'du5 ML Hg

- 00

g(u:§1,§2,C)du o (x42)

X

= - X Now
where uo Xl(l)
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X
*1(1) -(k+%)
A A
= xl(l) dul '
- {n,(x*-p_)+n,(x¥-u +u)/c}k+£ |
1V TR T2 e
(n,+n /c)"l
1 2 [ ey = -(k+2,—l)
= - + % + .
&+ 1-1) Lnl(xl xl(l)) ny (X%-%3 (1) u)/el ;
and similarly
P+x
2(1){ —(k+,Q,)
A(x, 2%, 50, oHsc) du
J-Oo '%l”\JQ, 1°0°
-1
(n_+n_/c)
_impty R -y (k+2-1)
= {n [X*-(u+x )14n,_ [x%-(p+x J+ul/c} .
(k + 2-1) 1771 2(1) 2°72 2(1)
Therefore the structural distribution for u, based on X and
%Q,is
( Kdu .
{n, (% SEPRTA T
¥ol-x +n(x3-X c
glpig,sx,,c)dn = ny (xf-H-%p(1) 27%2(1)
{0y (R¥exy ) )mpX5=%y (1)7¥

wvhere the normalizing constant factor K is given by

-1_(Yo dy
K "= - rry
J—w {nl(ii-u—xz(l))+n2(x§-x2(l))/c}

+ Jw du - e
iR {nl(if-xl(l))+n2(x;—xl(l)+u)/c}

b

S

;

i

&

3
‘J..“. B
e
£
i
&
&
¥
¥

A
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) -1 - _ -(k+2-2)
-[(k+2-2)nl] {nl(xl-xl(l)+x2(l)-xe(l))+n2(x§-x2(l))/c}
L - (k+2-2) |
+c[(k+2—2)n2]' {nl(xi—xl(19+n2(i;-xl(l)+xl(l)-x2(l))/c}
njc+n, _ -(k+8-2)
= [ . % -
(k+l-2)nln2 {nl(xl xl(l)) * n2(x2 x2(l))/C}

The particular case k=nl, = n2 and ¢ = 1 of the above

result agrees with the result obtained by Pitman (1939).

(iii) When both scale parameters ol and 02 are unknown: The
structural model (3.8.1) is used here again. Here, our
object is to find the structural distribution for u based

on the complete sets of responses. Let ¥i=(xil’xi2""’xin.)’

and xi(l) = min éi' The structural distribution for ui, Oi

based on x. are
vl

-(ni+l)

. = - X - . duy.do,
g(ui,oi-%i)duidoi Kiexp{ ni(xi ui)/ol}oi u oy,

for By < xi(l)’ o5 > 0, where Ki=ni(ni'l)[ni(xi-xi(1)

i =1, 2. Note that

@ - _(ni+l)
J exp{-n; (x;-u;)/0;3103 do,
o]

© _ ni-l
I exp{—ni(xi—ui)t}t dt
o

1
—~
o]
M
i
—
—
H
-
s




103.

Therefore the structural distribution for ul,ug, based on

%1 and %, is
n n
el (3 1= 24"
Syt 0%, ) My Ak, =KL (X -u) ) (xp-u,) T} “aw du,

g(ul

for -» < “1 < xl(l)’ -0 < p2 < x2(1)’ and

_ . -ny_-n
K = Kl K,ny tng 2I‘(nl)I‘(ne)

n,-1 _ n -1

(nl-l)(n2-l)(§l-xl(l))

Hence, by letting u = ul—uz, ul = ul, we obtain the desired

structural distribution for M based on £l and %2:

[ utx n np. -1
2(l)g(z 1= 2 . <
KJ { ) T I L

g(Hig,,%0)4d

KJxl(l){(' nl(§2_ul+u)n2}_ldul'du, W2 M,
| /-

vhere uo = xl(l) - x2(l)

A
.
I
b
S
n.
i
%
:
A
@
l% :
:
&
3




CHAPTER 4
DISTRIBUTIONS OF SOME SAMPLE CORRELATION
COEFFICIENTS AND SAMPLE CORRELATION MATRICES

4.1. INTRODUCTION: In this chapter, we are mainly concerned

with the distribution of

(i) two sample correlation coefficients; and

(ii) +two sample correlation matrices.
The method employed here is the so-called method of "likelihood
modulation". To do this, a conditional structural model
is introduced in each case in order to provide a marginal like-
lihood function for the parameter concerned. Therefore, in
the following section, we give an introduction to conditional

structural model and marginal likelihood.

4.2, AN INTRODUCTION TO CONDITIONAL STRUCTURAL MODEL AND

MARGINAL LIKELIHOOD: A conditional structural model

x = 0e

fe:))de
is a model that is partly structural and partly classical.

The error variable e has a distribution depends on an additional

104
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quantity A which is unknown. If the additional quantity
A is known, then the conditional structural model becomes
an ordinary structural model. In this section, we obtain
the marginal likelihood function for A based on the orbit.
Let [%] be a transformation variable for the conditional
structural model. The conditional distribution for [e], given

the orbit D(e) = D(x) = D, is

J. (e)

N(m
JL(@)

(4.2.1) KA(D)f([e]D:A) af

e

N

which is usually depending on the unknown quantity A (for
details see Fraser (1968)). Thus the marginal pdf for the
orbit D can be obtained by dividing the full pdf f(g:k)d% by

the conditional pdf (k.2.1):

Therefore the marginal pdf based on the differentials at the

point x rather than at g on the orbit D is

N JL(§) ax
KA(D) JN(%) dI%I

Hence the marginal 1ikelihood function for A based on D 1s

L(p:1) = R (D)/X, (D)

where RT(D) is the mappin

g that carries any orbit D to the set (0,®).

W
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4.3. DISTRIBUTION OF A SAMPLE CORRELATION COEFFICIENT I: Let

(xll’ le)s (xl2s x22)’

cees (xln’ x2n) be a sample of size

n drawn from a bivariate normal distribution (Xl, X2) with

mean ul and u2 and covariance matrix

2
0y P99
2
po,0,  Op .
The pdf for (xl, xz) is
f(xl,xz)
2
1 { 1 (xl-ul) 2pxl-ul.x2-u2L(x2-qQ
= expq- t 5
2,1/2 2 2 (o] o]
2ﬂ0102(l-p ) / 2(1-p) 01 1 2 o,

It is well-known that the MLE ¢ for p is

p = Slz(ﬁ)/[sl(ﬁ)s (x)]
where nSlz(%) = X(le-xl)(xzj-x2)
2 _ 3 2 - 1.2
nSi(%) = E(Xij xi) s s
n
and nX, = 2x. ,i=1, 2, and where ) = ) The general
i lvj j:l

distribution for p has been derived b

of geometrical approach.
Fraser (1968) by t
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