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ABSTRACT 

The effect of intrauterine hypoxia on arterial development was evaluated with use of large 

and small animal models. Analyses included expression and deposition of extracellular 

matrix (ECM) proteins, differentiation and proliferation of vascular smooth muscle cells 

(VSMCs), intima formation and wall thickening. A comprehensive investigation of 

possible molecular, mechanical and hormonal mediators of altered arterial development 

was afforded by a sheep model with both acute and chronic hypoxemia studies, whereas a 

guinea pig model allowed for long-term study. Our findings show that chronically 

hypoxic fetal sheep and intrauterine growth restricted (IUGR) guinea pigs exhibit a 

reduction in elastic fibre content of the aorta. In adulthood, the deficiency in aortic elastic 

fibre content in growth restricted guinea pig offspring was amplified compared to the 

subtle changes observed in late fetal life. In severely hypoxic fetal sheep, more marked 

reduction in elastin content occurred with increases in wall thickness and VSMC content. 

Increased collagen paralleled elevated mRNA levels of procollagen I and transforming 

growth factor beta (TGF-β1).  Matrix metalloproteinase-2 (MMP-2) mRNA levels were 

inversely correlated with fetal arterial oxygen saturation and expression of its activator, 

membrane-type MMP (MTI-MMP), was elevated in severely hypoxic sheep. Marked 

neointima formation was also apparent in severely hypoxic fetuses concomitant with 

increased mRNA levels of E-selectin, indicating endothelial inflammation.  These 

structural and molecular changes of the aorta in chronically hypoxic ovine fetuses 

occurred without changes in pressure or circulating cortisol levels. Further, while the 

hypoxic sheep showed no change in VSMC maturation, aortae of IUGR guinea pig 

fetuses and offspring had increased content of myosin heavy chain B (MHC-B), a marker 
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of undifferentiated VSMCs.  Aortae of growth impaired guinea pig offspring exhibited a 

left shift in the length-tension curve as measured ex vivo. Thus altered aortic development 

in association with chronic hypoxia or IUGR leads to persistent structural abnormalities 

and reduced compliance in later life. In contrast, acute hypoxic study in fetal sheep 

demonstrated increased elastin content of the carotid artery in association with 

intermittent hemodynamic changes and elevated cortisol and thus highlight that beneficial 

adaptations are possible under certain intrauterine insults.  
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CHAPTER 1 

 

THESIS TOPIC REVIEW 
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1.1 GENERAL INTRODUCTION 

 

The group of pathological conditions affecting the heart and blood vessels known as 

cardiovascular disease (CVD) is the most likely cause of death in Canada and a burgeoning 

health problem worldwide. Traditionally, etiology and disease prevention have focused on 

genetics and environmental influences imposed during adult life such as smoking, diet and 

activity. However, it is now recognized that CVD can be traced to a vulnerability established in 

utero, independent of the classical risk factors. Early evidence of an impact of the fetal 

environment on later cardiovascular health emerged from the observation that low birth weight 

was predictive of hypertension, coronary artery disease, stroke, and other forms of CVD in 

adulthood (Barker, 2001). Numerous subsequent studies substantiated the association between 

impaired fetal growth and the development of adult-onset CVD in a variety of populations 

around the world including both developing and developed countries. Although developmental 

origins of CVD are irrefutable, little is known about the physiological mechanisms involved.  

Structural abnormalities of the vasculature and heart, disturbed hemodynamics and 

progressive mechanical malfunction, are the known precursors of CVD in adults.  Often 

overlooked, is the fact that susceptibility to such pathological changes is largely determined 

before birth. For instance, extracellular matrix composition, cellular phenotype and thus 

functional capacity of the cardiovascular system, are largely established during fetal and early 

neonatal life. Once this brief developmental window comes to a close, the heart and vessels no 

longer enjoy the plasticity they were afforded previously. Hence, an interference in remodelling 

of the cardiovascular system in utero will likely have long-term functional consequences and 

thereby initiate and accelerate progression towards CVD in individuals growth restricted in the 

womb.  

 

 

1.2 FETAL GROWTH 

 

Human development is orchestrated by a spatial and temporal regulation of proliferation, 

differentiation, organization and accretion of the cells and tissues. During the embryonic period 

 



3 

 

cells are arranged into the major organ systems, after which functional maturation along with an 

increase in mass of tissues, occur throughout the remaining fetal period. This time course of 

development occurs in parallel with changing hormonal levels in the fetal circulation which 

regulate uptake and metabolism of the maternally-supplied substrates utilized for growth.  

Substrate requirements are low during organogenesis and then rise exponentially at the end of the 

first trimester concurrent with rapid hyperplasia and hypertrophy.  The rate of human fetal 

growth increases from 5g/day between 14 and 15 weeks of gestation to 10g/day at 20 weeks of 

gestation and then peaks at 32-35 weeks with a rate of 30-35g/day (Harding and Bocking, 2001). 

There is a plateau in growth towards term at approximately 41-42 weeks. Thus, the course of 

intrauterine growth follows a non-linear, sigmoid pattern. Normative growth curves have been 

constructed from sequential Estimates of Fetal Weight (EFW), calculated from a number of 

sonographic measurements such as head circumference, abdominal circumference and femur 

length. Together with gestational dating, these references are used for clinical assessment of fetal 

growth during pregnancy and at birth. This surveillance of fetal growth provides important 

information regarding the well-being of the fetus and the state of its supporting environment. 

A body mass that is appropriate for gestational age (AGA) according to a normative 

growth curve suggests a healthy fetus or neonate and an optimal intrauterine milieu. Infants born 

large for gestational age (LGA) are those whose birth weights lie above the 90th percentile for a 

given gestational age. At the other extreme, small for gestational age (SGA) is most commonly 

defined as a fetal weight or birth weight below the 10th percentile at a given point in pregnancy 

and considered a proxy for suboptimal intrauterine growth (Harding and Bocking, 2001). 

Additional cut off values used for inference of poor fetal development include a birth weight 

under 2500g, as put forward by the World Health Organization (WHO) (UNICEF/WHO, 2004) 

and an EFW or birth weight that falls two standard deviations below the mean for gestational age 

(Harding and Bocking, 2001). A shortcoming in the use of normative growth curves for clinical 

evaluation and epidemiological study stems from the wide variation in individual fetal growth 

trajectories, that limits the value of weight as an indicator of growth impairment. A low birth 

weight infant may be constitutionally small having attained its growth potential in utero. On the 

other hand, a newborn of normal weight may have failed to reach its genetically pre-determined 

size. Genuine intrauterine growth restriction (IUGR) is defined as a deviation in the intrauterine 
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growth trajectory due to an intrinsic or environmental insult that results in small size at birth 

(Ergaz et al., 2005). When the developmental disturbance occurs in the early part of gestation in 

concert with rapid cell division and organ formation, there is a proportional diminution of body 

weight, length and head size that is termed symmetrical growth restriction (Cox et al., 2009). In 

contrast, asymmetrical IUGR characterized by disproportionate body morphology, arises when 

the insult coincides with rapid fetal growth in the second half of gestation and leads to relative 

sparing of critical organs such as the brain and heart at the expense of the liver, skeletal muscle 

and other non-critical organs (Cox et al., 2009). Measurement of relative body dimensions such 

as the ratio of mid-arm-to-head circumference and abdominal-to-head circumference facilitate 

accurate diagnosis of the more frequently occurring asymmetric pattern of IUGR (William, 

2006).  Identification of pathologic growth attenuation is less uncertain at post-mortem since the 

brain:liver ratio can be measured, which is the most reliable indicator of IUGR (William, 2006). 

For the obstetrician, recent technological advances allow for 3 dimensional ultrasound to 

calculate fetal brain:liver ratios, although the utility of this new method is yet undecided 

(William, 2006). Reliable diagnosis of IUGR in the perinatal period is an important goal given 

the short and long-term risks associated with this condition. Since demarcation of SGA and 

IUGR is frequently unclear in the clinical setting, the two terms are often used interchangeably in 

the context of human studies.  

Currently, low birth weight is a high priority public health concern declared by 

international bodies such as the United Nations, since its mitigation would improve prenatal, 

neonatal and postnatal outcomes. According to the WHO, 15 percent of newborns worldwide are 

born with a birth weight under 2500g (UNICEF/WHO, 2004). Abnormal intrauterine growth is a 

considerable problem in underdeveloped nations where the rate of low birth rate is 6 times higher 

than that of developed countries, with rates above 30 percent in areas such as South Asia (de 

Onis et al., 1998). Among developed countries the incidence of low birth weight ranges from 3.9 

percent to 11.3 percent, Canada ranking 9th with a rate of 6 percent and the United States 

ranking 25th with a rate of 8 percent (Raphael, 2010). In-hospital data compiled by the Canadian 

Institutes of Health Research (CIHR) and data including all births reported by Statistics Canada 

show that the incidence of SGA babies in Canada has increased from 1979 to 2005 (Raphael, 

2010). In agreement, the March of Dimes proclaims that over the past 10 years the number of 
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SGA babies born in the United States has increased by 10 percent (Martin, 2007). Thus, 

suboptimal fetal growth is a long-standing health issue that over the past two decades has been 

exacerbated on a global scale with deepening poverty and in developed countries has failed to 

improve despite advances in perinatal care.  

Fetuses that exhibit signs of IUGR are at increased risk for perinatal death, complications 

after birth and morbidity in the first year of life. Hence, such pregnancies are classified as high 

risk with obstetric management directed towards surveillance for optimal timing of delivery in 

consideration of fetal risk. The immediate concern posed by the IUGR pregnancy is perinatal 

demise. Infants classified as SGA have a death rate 20 fold higher than those born of normal 

weight and 43 percent of stillbirths have a body weight below the 10th percentile (Gardosi, 

2005). The most frequent cause of perinatal death in cases of IUGR is asphyxia and congenital 

anomalies (McIntire et al., 1999).  With perinatal asphyxia the newborn can suffer from 

complications that include multi-organ dysfunction (Wang et al., 2009), neonatal encaphalopathy 

(Bukowski et al., 2001), and metabolic acidemia (McIntire et al., 1999). Other dangers present 

after birth of an IUGR baby are meconium aspiration with persistent pulmonary hypertension 

and consequent respiratory complications (Fleischer et al., 1992; McIntire et al., 1999) as well as 

hypoglycemia and hypothermia (Doctor et al., 2001). In infants that survive poor intrauterine 

conditions and the subsequent hazards imposed by extrauterine surroundings, cerebral palsy 

(Jarvis et al., 2003) and developmental delay (Torrance et al., 2010) are reported more 

frequently. Overall the numerous adverse outcomes associated with impaired fetal growth, such 

as those discussed above, present in wide variance given the heterogeneous nature of IUGR. 

The diverse etiologies of abnormal fetal growth emanate from the complexity in growth 

regulation. Factors affecting growth in utero can be divided into fetal, maternal and placental 

influences as shown in Table 1.1. The fundamental determinant of fetal size is established at 

fertilization in the newly constituted genetic profile of the conceptus that comprises an array of 

inherited genes, some of which set the intrauterine growth trajectory. Genetic influence accounts 

for 40 percent of the variation in birth weight (Magnus et al., 1984), with contributions from 

both the maternal and paternal genome. When inherited or acquired abnormalities in the genetic 

makeup arise, diminution in fetal growth frequently results, with 5-20 percent of SGA infants  
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showing genetic disorders (Brodsky and Christou, 2004). However, whilst the genome sets the 

ultimate limits on fetal growth, size at birth is predominantly a function of the environment.   

Disturbances in the intrauterine milieu that affect growth early in gestation include 

chronic congenital infection and exposure to environmental toxins. Infections documented to 

have consistent negative effects on birth weight when transmitted to the developing fetus, 

include rubella, syphilis, toxoplasmosis and cytomegalovirus (Khan and Kazzi, 2000). In terms 

of environmental toxins, effects on fetal growth have been reported with maternal intake of 

prescription and recreational drugs (Fulroth et al., 1989), alcohol and tobacco (Krol et al., 2009). 

Early exposure to infection and toxins together with fetal genetic disorders are considered to be 

the causes of symmetric IUGR, due to their effects on cellular proliferation (Cox et al., 2009). 

Yet, true symmetrical IUGR is rare, and the vast majority of live and stillborn IUGR births show 

an asymmetric pattern of growth. The latter pattern typically arises in the second half of gestation 

when the fetus is deprived of the substrates that fuel its rapid growth and maturation.  

 With advancement of pregnancy, the increasing reliance of the fetus on maternal 

provision of sustenance makes submissive the genetically predetermined growth trajectory to any 

challenges in this environment. The critical substrates utilized by the fetus for its growth and 

development are oxygen, glucose, amino acids and fatty acids. Thus, healthy intrauterine 

conditions depend on adequate concentrations of these substrates in the maternal circulation and 

their delivery across the maternal-fetal interface, which in turn, is a function of uterine and 

umbilical hemodynamics and placental transport mechanisms. Whereas fetal compromise in poor 

nations primarily arises from malnutrition, in affluent societies, IUGR is predominantly placental 

in nature. The placenta forms an active interface between the maternal and fetal circulations that 

mediates exchange of oxygen and nutrients.  Therefore, when the normal process of placental 

development is prevented, the result is placental insufficiency and failure of the fetus to attain its 

growth potential.  

 

1.2.1 Placental Influence on Fetal Growth 

Human placentation begins within the first week of implantation as the trophoectoderm 

of the blastocyst differentiates into syncytiotrophoblast cells which proliferate and invade the 

uterine endometrium (Kingdom et al., 2000). Primary placental villi form as outward projections 
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of this primitive syncytia, while retaining an inner layer of proliferating cytotrophoblast cells 

from which multiple cell lineages emerge as facilitators of placental maturation (Kingdom et al., 

2000). In the first trimester placenta, two types of chorionic villi are apparent: anchoring villi and 

floating villi. Anchoring villi adhere to the uterine wall and produce migratory daughter cells of 

the cytotrophoblast stem cells that continue invasion of the decidua and myometrium, thereby 

drawing maternal blood into the intervillous space (Chakraborty et al., 2002). Extending into the 

intervillous space are the floating villi within which mesenchyme derived from the embryoblast 

coalesce to form fetal blood vessels by the process of vasculogenesis (Demir et al., 1989). 

Thereafter, progressive branching of the villi along with angiogenesis establishes the fetal-

umbilical circulation. Fetal blood flows from the paired umbilical arteries to the arteries and 

arterioles of the centrally located stem villi, which then lead to the capillaries of the tertiary and 

terminal villi. The terminal villi form bulging protusions that make contact with maternal blood 

and comprise 50 percent of the placental surface area after their rapid expansion in the third 

trimester (Kaufmann and Kingdom, 2000).  For this reason, the heavily coiled capillaries within 

the terminal villi are the most important in materno-fetal exchange. Elaboration of the stem and 

terminal villi together with increased capillarization over the second half of gestation create a 

low impedance vascular bed that receives 30 - 45 percent of combined fetal cardiac output 

(CCO) (Kiserud and Acharya, 2004). Fetal-placental vascular resistance is reflected in the end 

diastolic flow velocity (EDFV) in the umbilical artery (UA) as measured by Doppler ultrasound, 

which becomes detectable with establishment of the fetal-umbilical circulation at the end of the 

first trimester and progressively increases thereafter. 

  Perfusion of the intervillous space by maternal blood is maximized by modification of the 

uterus-embedded spiral arteries located downstream from the ovarian and uterine arteries.  A 

subset of extravillous trophoblast cells that emerge from stem cells of the anchoring villi, 

infiltrate the wall and lumen of the spiral arteries and subsequently degrade and replace the 

endothelial, elastic and smooth muscle layers (Lyall, 2006). In so doing, these formerly muscular 

arteries are transformed into dilated, non-contractile conduits.   Consequently, maternal cardiac 

output, which is augmented early in pregnancy by placenta-derived hormones, is directed, 

unimpeded, towards the low resistance utero-placental vascular bed.  
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While placental blood flow is the primary determinant of oxygen and carbon dioxide 

exchange, nutrients such as glucose, fatty acids and amino acids require facilitated or active 

transport by membrane proteins.  The terminally differentiated syncytiotrophoblast layer that 

borders the villi is actively involved in transplacental transport of these substrates through the 

various transporters, receptors and enzymes present on both its maternal-facing plasma 

membrane and basal membrane. Thus, optimal placental performance is not only dependent on 

vascular hemodynamics but on the structural integrity of the placental villi.  Attainment of full 

placental development and function is temporally regulated by a multitude of growth factors 

(Canigga et al., 1999), their binding proteins (Hamilton et al., 1998), ECM components 

(Vettraino et al., 1996) and cell adhesion molecules (Burrows et al., 1994). When this intricate 

process fails, abnormalities in placental hemodynamics and transport properties threaten efficient 

delivery of critical substrates and hence the dependent fetus. 

Impaired materno-fetal exchange accounts for 60 percent of IUGR fetuses without 

genetic abnormalities in Western society (Ghidini, 1996). The term placental insufficiency is 

used to describe placental malfunction and consequent reduction in substrate delivery that fails to 

meet increasing demands of the fetus and thereby results in asymmetric IUGR. This condition is 

consequent to aberrant placental formation. Such a disturbance in placental development and 

function can arise secondary to maternal vascular disorders such as thrombophilia and 

hypertension (Redline, 2006), congenital infection (Popek, 1992) and fetal chromosomal 

abnormalities (Mittal et al., 1998), thus explaining the rare occurrence of pure symmetrical 

IUGR. Alternatively, primary defects in placental development occur in the absence of genetic 

disorders and maternal disease, leading to either altered maternal or fetal vascular supply. In 

sum, placental insufficiency is an idiopathic or secondary condition and the most common 

underlying factor in asymmetric IUGR in developed countries of the world. 

 

1.2.2 Altered Maternal Vascular Supply 

Hemodynamics of the utero-placental circulation are clinically evaluated by Doppler 

velocimetry and described by the pulsatility index (PI), resistance index (RI) and systolic-

diastolic (SD) ratio, in addition to the presence or absence of an early diastolic notch in the 

uterine artery. A PI two standard deviations above the mean and the absence of an early diastolic 
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notch reflect increased resistance of the uterine artery and indicate risk for IUGR and need for 

fetal surveillance (Harrington et al., 1996). This clinical presentation is associated with a 

placental injury characterized by underlying defective trophoblast invasion and inadequate spiral 

artery remodeling (Aviram et al., 2010).  Since the metabolically active placenta consumes a 

significant fraction of oxygen delivered by the uterine artery, it is the first to respond to a 

reduction in maternal blood supply with an acceleration in maturation and increase in 

capillarization (Burton et al., 1995). Accordingly, it has been suggested that placental hypoxia is 

an antecedent to IUGR in cases of abnormal Doppler waveforms of the uterine artery (Kingdom 

et al., 2000). Progression from absence of an early diastolic notch to a negative notch is 

associated with a higher risk of mortality and poor outcome, however, this is rare and the 

majority of abnormalities in the maternal compartment are associated with moderate IUGR 

(Marsal, 2009). 

 

1.2.3 Altered Fetal Vascular Supply 

Severe IUGR arises when elaboration of the fetal villous tree is abnormal and inadequate. 

This placental phenotype is characterized by reduced villous branching, avascular villi, thickened 

exchange barrier and excessive syncytial knotting suggestive of increased apoptosis (Macara et 

al., 1995; Krebs et al., 1996). The result is increased resistance to blood flow in the fetal 

compartment, compromised integrity of the syncytiotrophoblast and hindered exchange of vital 

oxygen and nutrients. This severe type of IUGR owing to increased impedance of fetal-umbilical 

blood flow is diagnosed by an elevated PI, RI or SD and absent or reversed end diastolic flow 

velocity (EDFV) in the umbilical artery (UA) (Marsal, 2009). Fetal outcome relates to the extent 

of change in the UA. Compared to AGA fetuses, risk of perinatal mortality is 4 fold higher when 

an absent EDFV in the UA is observed and 10 fold higher when EDFV is reversed (Karsdorp et 

al., 1994). Recent evidence suggests that maternal serum markers of placental damage and 

dysfunction may be useful in defining this subset of severe placental insufficiency. The 

pregnancy-associated plasma protein A (PAPP-A) is synthesized by differentiating 

cytotrophoblasts in association with placental growth. In the absence of fetal genetic 

abnormalities, low levels of this protein in maternal plasma are predictive of severe IUGR and 

the commonly co-existing antenatal condition of preeclampsia (Costa et al., 2008).  A study 
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conducted by the Kingdom group showed reduced plasma levels of PAPP-A in the first trimester 

together with a small placental size and elevated maternal concentrations of α-fetoprotein (AFP) 

in the second trimester, to have a positive predictive value of  100 percent and a false-positive 

rate of 0 percent for severe IUGR (Proctor et al., 2009). Elevated levels of AFP in the maternal 

circulation reflects compromised placental permeability due to breaks in the syncytium where 

apoptosis is most striking and fibrinoid deposits are found (Scifres and Nelson, 2009).   

The form of placental failure characterized by injury to the fetal compartment and severe 

IUGR, occurs less frequently than those affecting the maternal compartment. This was shown by 

a study of 26 cases of IUGR excluding those associated with genetic or structural anomalies, 

twins and pre-existing maternal conditions, wherein 66 percent were associated with maternal 

underperfusion, 17 percent with injury to the fetal compartment and 17 percent to villitis of 

unknown etiology (Aviram et al., 2010). Similar distributions have been reported by other 

groups (Mayhew et al., 2007). The distinction between altered maternal vascular supply and fetal 

vascular supply as causes of IUGR is highlighted in Table 1.2. Collectively, placental 

insufficiency is the most prominent cause of IUGR in developed nations.  

 

 

1.3 PLACENTAL INSUFFICIENCY AND CHRONIC FETAL HYPOXEMIA 

 

Placental insufficiency hinders the delivery of all maternally-supplied substrates, yet 

oxygen deprivation has the most profound effect on fetal condition. In addition to Doppler 

velocimetry, a battery of tests is available for diagnosis and monitoring of fetal condition when 

IUGR is evident or for pregnancies at risk for IUGR, such as those complicated with pre-existing 

maternal vascular disease, multiple gestation and preeclampsia. Antenatal surveillance with use 

of such tools has supported the presence of fetal hypoxemia in pregnancies with small EFW and 

abnormal Doppler parameters. Altered fetal heart rate patterns observed by cardiotocography 

during non-stress tests (NST) are suggestive of fetal hypoxemia (Liang et al., 2002), occur 

frequently in IUGR pregnancies (Behrens et al., 1996) and are predictive of intrapartum fetal 

distress (Begum and Buckshee, 1998).  Direct measurement of fetal blood oxygenation and other 

biochemical parameters are now possible with the use of cordocentesis, whereby fetal blood is  
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sampled in utero by ultrasound-guided insertion of a thin needle into the umbilial vein.  

Cordocentesis has revealed variable degrees of hypoxemia, hypercapnia, hyperlactatemia, 

hypoglycemia and acidemia in human IUGR fetuses. In 27 cases of severe IUGR without genetic 

abnormalities, as determined by ultrasonic measurement of fetal weight and dimensions, 65 

percent were acidemic and hypoxemic; 60 percent were hypercapnic, 35 percent were 

hypoglycemic and 40 percent showed increased lactic acid concentration (Bon et al., 2007). 

Likewise, another study reported that of the 11 fetuses exhibiting abnormal FHR and absent 

EDFV in the UA, 64 percent were hypoxic and acidotic while 17 percent of the 21 fetuses with 

normal FHR and abnormal Doppler waveforms were acidotic and none of the 21 fetuses with 

normal FHR and EDFV were hypoxic (Pardi et al., 1993). Similar results were revealed and the 

predictive value of NST and Doppler evaluation demonstrated in a larger population of 2,873 

pregnancies not complicated with infection, maternal disease or fetal genetic disorders (Liang et 

al., 2002). A large study conducted at St. Joseph’s Health Care in London, Ontario, examined 

27,043 singleton pregnancies and found a linear relationship between fetal oxygen saturation and 

birth weight across the entire range of birth weights (Lackman et al., 2001). Taken together, the 

abovementioned reports highlight the frequency of fetal hypoxia consequent to placental 

insufficiency and support oxygen as a primary determinant of fetal growth. 

Remarkably, the fetus holds the ability to adapt and survive under hostile conditions such 

as oxygen deprivation. When utero-placental or umbilico-placental blood flow is reduced leading 

to insufficient oxygen delivery, the fetus is capable of maintaining oxygen consumption by 

increasing oxygen extraction. The placenta is involved in this response via increases in 

capillarization if the problem lies in the maternal compartment, whereas increased oxygen 

extraction occurs only across the umbilico-placental vascular bed and by the individual organs in 

cases of injury to the fetal villous and vasculature tree. These acute respiratory adjustments are 

effective in maintaining rate of oxidative metabolism over a wide range of placental flow 

abnormalities. However, when an acute reduction in oxygen delivery exceeds 50 percent, tissue 

supply becomes inadequate and fetal oxygen uptake is reduced (Rurak et al., 1990; Wilkening 

and Meschia, 1983). At this point, energy yield from cellular respiration cannot sustain normal 

growth and thus fetal strategy switches to one of survival that involves a departure from its 

prescribed developmental course. With more gradual and chronic hypoxia, slowing of growth  
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will occur before the reduction in oxygen delivery reaches 50 percent, so that oxygen uptake will 

be maintained and, in this case, the degree of growth restriction is related in a graded fashion 

with the severity of hypoxia (Richardson and Bocking, 1998). An induction of erythropoiesis 

with reduced oxygen delivery is a delayed response that enhances blood oxygen carrying 

capacity and correlates with the degree of hypoxia (Ostlund et al., 2000). 

 In the attempt to survive increasingly perilous conditions, the fetus employs a sequence 

of compensatory mechanisms that become accessible at specific gestational ages. The mature 

fetal cardiovascular system is effective in responding to hypoxia through redistribution of fetal 

cardiac output with preference to the brain, heart and adrenal glands at the cost of the other 

visceral organs, the carcass including skeletal muscle and the pulmonary bed (Iskovitz et al., 

1987). In conjunction with systemic redistribution, the hemodynamic strategy involves 

maximizing the shunting and preferential streaming of blood that marks the fetal circulation. 

Increased shunting through the ductus venosus (DV) which connects the umbilical vein to the 

inferior vena cava (IVC), allows more of this highly saturated blood returning from the placenta 

to bypass the liver and accelerate toward the right atrium (Kiserud et al., 2000). Upon flowing 

through the foramen ovale located in the intra-atrium septum, this well-oxygenated stream of 

blood flows directly into the left atrium and then from the ascending aorta it is drawn into the 

dilated cerebral and myodcardial vascular beds. The deoxygenated streams returning from the 

upper and lower body are directed toward the tricuspid valve of the right atrium and pass through 

the ductus arteriosus (DA) to merge with the placenta-bound blood flowing through the 

descending aorta. Thus, hemodynamic adaptation to hypoxia also involves a shift of blood from 

the right to left ventricle by means of increased streaming through vascular shunts (Reed et al., 

1987; Severi et al., 2000). 

Increased afterload due to peripheral vasoconstriction of the fetal vessels and increased 

placental resistance consequent to the underlying placental defect, predominately affect the right 

ventricle. This is because the right ventricle ejects 65 percent of combined cardiac output (CCO), 

40 percent of which flows directly into the descending aorta from the pulmonary trunk via the 

DA (Kiserud and Acharya, 2004). In contrast to the augmented afterload imposed on the right 

ventricle during chronic hypoxia, vasodilation of the coronary and cerebral circulations mitigates 

the afterload effect on the left ventricular ejection (Baschat et al., 2000).  
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Hemodynamic responses to placental injury and resultant hypoxia serve to protect those 

organs critical for survival, yet manifest as disproportionate body growth. Since the degree of 

circulatory adjustment varies with the severity of hypoxemia, its Doppler evaluation in 

conjunction with EDFV of the UA provides the practitioner with further information regarding 

the fetus suspected of IUGR. An increase in peak systolic velocity of the cerebral circulation 

together with a decrease in flow through the descending aorta, reveal preferential blood flow and 

suggest fetal hypoxemia (Arduini et al., 1992). These changes occur early in the response to 

hypoxia (Ferrazzi et al., 2002) and their magnitude reflects the severity of insult (Oros et al., 

2011). With escalating fetal hypoxemia over hours or days, cardiac output redistribution reaches 

a maximum and eventually the depleted myocardium fails to cope with the high input 

impedance. At this point, ventricular output falls, velocity across the atrioventricular valves 

declines and bradycardia develops (Hecher et al., 1995).  Augmented end diastolic ventricular 

pressure and resultant reversal of flow from the right atrium to the IVC during atrial contraction, 

are reflected in an increase in central venous pressure and pulsatility in the IVC and DV (Rizzo 

et al., 1995). The presence of such hemodynamic abnormalities suggest imminent intrauterine 

death and warrant premature delivery. Thus, circulatory adjustment permits acute and chronic 

adaptation to intrauterine hypoxia, correlates in magnitude to the degree of hypoxia and fails in 

the non-surviving fetus.  

In addition to hemodynamic changes, the effort to overcome prolonged hypoxia in utero 

involves reducing oxygen expenditure through modifications in fetal metabolism. Studies have 

shown a 10 percent reduction in oxygen consumption within several hours of hypoxia (Milley, 

1987) and a 20 percent reduction with prolongation of hypoxia over several days (Owens et al., 

1987). To this end, energy consuming anabolic processes such as DNA and protein synthesis are 

curtailed while uptake of glucose and amino acids is reduced accordingly.  The result is a 

slowing of overall fetal growth. This metabolic response leading to growth inhibition is mediated 

by a shift in the endocrine status of the fetus, as hormones responsible for global nutrient uptake 

and metabolic rate balance cellular respiration with the reduced substrate availability.  For 

instance, the hypoxic IUGR fetus shows a reduction in circulating levels of insulin and insulin-

like growth factor 1 (IGF-1), which promote cellular proliferation and uptake of glucose and 

amino acids.  Further, with prolongation of oxygen deprivation the fetus resorts to decreases in 
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breathing and body movements in order to minimize energy expenditure and metabolic rate. 

When reduced fetal activity and muscle tone are observed with ultrasound, the obstetrician 

suspects severe fetal compromise.  

 

1.3.1 Animal Models of Placental Insufficiency 

Several techniques in a variety of species are currently used to induce chronic intrauterine 

hypoxia for the study of IUGR. The pregnant sheep is a long-standing model that has broadened 

our understanding of fetal and placental responses to oxygen deprivation as well as intrauterine 

growth and development in general (Bendeck et al., 1991; Gagnon et al., 1996). The utility in the 

sheep as a model of pregnancy is owing to its credibility in extrapolation to the human situation 

and its capacity to tolerate chronic placement of catheters in both fetal and maternal vessels, thus 

allowing for repeated blood sampling under steady-state conditions. With respect to the former, 

the sheep bears resemblance to the human in the number of fetuses and size at birth. As well, the 

structure of the villous tree is similar between the sheep and human (Leiser et al., 1997), 

although differences exist with respect to localization of the placental organ and extent of uterine 

invasion. The human placenta forms a single structure that destroys the basement membrane and 

the maternal endothelial layer so that maternal blood is in direct contact with the floating villi 

(Meekins et al., 1994). In contrast, fetal villi of the ovine fetus are contained in numerous 

placental elements termed cotyledons which contact the un-invaded maternal endothelium at 

specialized regions called caruncles (Stegeman, 1974). Despite these differences, the efficiencies 

of the placental transfer are similar between the sheep and human (Battaglia and Meschia, 1986). 

Also comparable between the two species, are physiology under normal and pathological 

conditions (Ikeda et al., 2001) and the developmental time course of the major organ systems 

(Bendeck et al., 1991; Berry et al., 1972). For this reason, much of what we know in regards to 

fetal growth and development derives from sheep experiments. One example is the extensive 

characterization of cardiovascular development in the ovine fetus that parallels that of the human 

in temporal aspects of blood pressure elevation and maturational events such as cellular 

differentiation (Adler and Costabel, 1980; Burrell et al., 2003). Furthermore, advancement in our 

knowledge with respect to placental oxygen uptake and nutrient transport and their relation to 
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fetal growth was largely facilitated by maternal and fetal blood sampling in the chronically 

catheterized pregnant sheep.  

The methods employed for induction of chronic hypoxemia in fetal sheep include 

preconceptual carunclectomy (Trahair et al., 1997), maternal hyperthermia (Regnault et al., 

2003), uterine artery (Clapp et al., 1980) and umbilical-placental embolization (Murotsuki et al., 

1996). Of these models, maternal hyperthermia and umbilical-placental embolization simulate 

asymmetric IUGR.  In the latter model, chronic fetal hypoxemia is produced by injection of non-

radioactive microspheres into the umbilical circulation via the maternal abdominal aorta of the 

chronically instrumented ewe.  The infused microspheres accumulate in the fetal villi and 

maternal epithelium at the maternal-fetal interface, thereby disrupting contact between the two 

compartments (Cheung et al., 2004). This breach in the placental exchange surface compromises 

placental blood flow and thereby leads to chronic fetal hypoxemia, abnormal EDFV of the UA 

and asymmetric IUGR (Gagnon et al., 1994). Thus, umbilical-placental embolization closely 

approximates human placental insufficiency characterized by reduced fetal supply. Further, 

catheterization of the fetal vessels allows for monitoring of fetal hypoxemia, the level of which is 

controlled through the number of microspheres injected.  

Several groups worldwide have adopted the umbilical-placental embolization model. As 

in human IUGR pregnancies, the extent of fetal compromise inflicted by umbilical-placental 

embolization is reflected in the degree of circulatory changes. An increase in UA resistance 

occurs with a 30 percent reduction in fetal arterial oxygen content over 10 or 21 days of 

embolization (Murotsuki et al., 1997). Abnormal EDFVs are accompanied by increases in 

cerebral and carotid blood flow by 130 and 40 percent, respectively, in progressively acidotic 

fetuses subjected to severe embolization for 6 hours (Gagnon et al., 1997). Moreover, FHR 

variability, which is a clinical indication for cardiac deterioration and impending fetal death, is 

only altered in the ovine fetus with metabolic and respiratory acidosis (Gagnon et al., 1996).  

Not only does the embolized ovine fetus parallel the severe IUGR human fetus in terms 

of circulatory adaptations, but the endocrine changes driving these fetal responses and the 

general intrauterine milieu are comparable. Catecholamines which play a role in the 

hemodynamic response to intrauterine hypoxemia are elevated in the amniotic fluid (Divers et 

al., 1981) and umbilical vein (Okamura et al., 1990) of underdeveloped human fetuses and in the 
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circulation of chronically hypoxic ovine fetuses (Gagnon et al., 1994). Whereas norephinephrine 

increases progressively during prolonged hypoxemia, the increase in cortisol, another regulator 

of fetal vasoactivity and metabolism, is transient (Gagnon et al., 1994). In agreement, 

cordocentesis has revealed elevated levels of cortisol in umbilical venous blood of IUGR 

compared to AGA pregnancies (Cortelazzi et al., 2003). While, endocrine factors known to 

inhibit growth are elevated in the sheep and human fetus subjected to placental insufficiency, 

growth-promoting hormones are reduced. Most important among the latter are insulin and 

insulin-like-growth factor-1 (IGF-1), which are both decreased in the plasma of embolized sheep 

fetuses (Thorn et al., 2009)  and in the umbilical circulation of human IUGR fetuses 

(Economides et al., 1991). Amino acids and glucose are major stimulators of the anabolic actions 

of the insulin-IGF-1 axis. Fittingly, a reduced supply of essential amino acids (Bloomfield et al., 

2002) along with hypoglycemia (Joyce et al., 2001) are characteristic of umbilical-placental 

embolization in sheep and failed development of the human villous tree.   

Placental insufficiency is a compound insult that incites an array of fetal and placental 

responses. Although no animal model truly mimicks normal or disordered human pregnancy, 

umbilical-placental embolization of the pregnant sheep captures many aspects of the intrauterine 

challenges faced by the severe IUGR fetus and is a valuable tool for the study of fetal 

development. Unfortunately, like other large animal models, the expense and logistic difficulties 

using sheep are significant deterrents and therefore its use in prenatal study is currently in 

decline.  Alternatively, many research groups take advantage of rodent models which offer 

convenience in terms of low cost, large litter sizes, shorter gestations and life spans. Although 

there exists fundamental differences in the timing and nature of organ development in most 

rodents compared to humans, such models are useful in long-term study of offspring after in 

utero insults. 

Unlike other rodents, and similar to the human and sheep, the guinea pig develops 

predominately in the prenatal period and is relatively mature at birth. Another analogy lies in 

placental structure.  The placenta of both the guinea pig and human belong to the haemochorial-

discoid type, which is defined by its formation as a singular organ and its invasive destruction of 

the maternal epithelium by which direct contact between the fetal trophoblast and maternal blood 

is achieved (Mess, 2007). The guinea pig placenta  allows for counter-current exchange and 
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maximal exchange efficiency so that there is little room for improvement in response to a 

reduction in maternal blood flow (Harding and Bocking, 2001).  

An established method for IUGR that is suitable for guinea pigs is uterine artery ligation 

(UAL). The ligation model was originally developed in the rat, and has more recently been 

applied to the guinea pig which offers more in terms of comparative physiology. Whereas the 

umbilical-placental embolization model resembles human IUGR with abnormal EDFVs of the 

UA, the UAL technique is similar to moderate IUGR caused by poor placental perfusion because 

it leads to reduction in maternal placental blood flow. The degree of placental blood flow 

restriction is proportional to the associated decreases in fetal and placenta weight (Jansson et al., 

1986). In fact, the relationship between placental blood flow and fetal weight holds true for 

spontaneous IUGR within a litter of an un-operated uterus (Myers et al., 1982). The high fetal 

mass of the guinea pig renders it highly reliant on maternal supply late in gestation and thus 

susceptible to UAL. Growth restricted fetal guinea pigs exhibit brain sparing as reflected by 

relative maintenance of brain and adrenal weights together with reductions in weight of the liver 

and spleen (Lafeber et al., 1984). Evidence shows that asymmetric IUGR in the UAL guinea pig 

is associated with intrauterine hypoxia (Demter et al., 1991), hypoglycaemia and reduced 

availability of essential amino acids (Jansson and Persson, 1990). It is important to note, 

however, that compared to the embolization model the insult imposed by UAL is of longer 

duration as the procedure is typically performed at mid-gestation. 

 

 

1.4 UMBILICAL CORD OCCLUSION AND ACUTE FETAL HYPOXIA 

 

Intrauterine hypoxemia and consequent impairment in fetal growth can arise from 

reductions in umbilical blood flow. Enclosed in the umbilical cord are the two umbilical arteries 

which carry deoxygenated blood from the fetal circulation to the placenta and the umbilical vein 

which returns oxygenated blood from the placenta to the fetal tissues. Within the cord, the 

umbilical vessels are embedded in a loose proteoglycan-rich matrix called Wharton's jelly. 

Cushioning by Wharton's jelly along with coiling of the cord protect the umbilical vessels from 

forces of torsion and compression such as occur during fetal movement or uterine contraction. 
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Thus, complications of the umbilical cord including hypercoiling, hypocoiling (Predanic., 2005), 

true knots (Clerici et al., 2007) and loops of the umbilical cord (Clapp et al., 2003), render the 

fetus susceptible to fetal blood flow reductions, hypoxic stress, asphyxia and IUGR.  Such 

abnormalities can result in chronic or intermittent disruption of the umbilical circulation and are 

associated with an increased risk of low birth weight, non-reassuring FHR patterns, delivery 

complications and adverse neonatal outcomes (Baergen., 2007; Osak et al., 1997). In fact, 

compromise of the umbilical circulation is implicated in 20 percent of still births (Baergen, 

2007).  

A nuchal cord, whereby the umbilical cord encircles the fetal neck, is commonly detected 

in human pregnancy during prenatal care or at delivery. The incidence of cord entanglement in 

normal pregnancies has been reported as 7 percent in the first trimester (Plasencia et al., 2010), 8 

percent (Lal et al., 2008) and 12 percent (Clapp et al., 2003) in the second trimester, and at the 

time of delivery the occurrence has been reported as high as 37 (Clapp et al., 2003) and 27 

percent (Lal et al., 2008). These studies also highlight that the presence of a nuchal cord may be 

sporadic, resolving and then later reappearing (Lal et al., 2008). The majority of nuchal cords are 

benign, however when symptomatic, variable-type FHR decelerations suggestive of fetal 

hypoxemia arise and vary in magnitude according to the severity and duration of umbilical cord 

compression (Agrawal et al., 2003; Clapp et al., 2003). Recurrent fetal hypoxemia due to 

intermittent cord occlusion and the associated adverse outcomes including low Apgar scores, 

operative delivery, spastic cerebral palsy and perinatal demise, are more likely when the nuchal 

cord persists or concurs with multiple loops, high tension or crossing of the cord (Clapp et al., 

1999). Fetuses entangled in the umbilical cord are particularly at risk for distress during labour 

and delivery. In fact, nuchal cord is the most common cause of non-reassuring FHR tracings at 

the time of delivery, which coincide with reductions in pH and base excess in the umbilical vein 

(Agrawal et al., 2003). In all, nuchal cords are a very frequent obstetric concern that may lead to 

repeated compressions of the umbilical cord and associated recurrent episodes of acute fetal 

hypoxemia of various degrees.  
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1.4.1 Animal Model of Umbilical Cord Occlusion 

Experimental study of umbilical cord compression in the ovine fetus has been undertaken 

by several groups. The model involves surgical preparation of the pregnant sheep later in 

gestation, wherein an inflatable occluder cuff is tied around the umbilical cord of the exteriorized 

fetus (Green et al., 1999; Wassink et al., 2007). Partial or complete umbilical cord occlusion 

(UCO) of varied duration is produced by infusion of saline into the inflatable cuff at the time of 

experimental study. This technique has allowed a thorough characterization of fetal responses to 

acute hypoxia. Upon umbilical cord compression, the abrupt reduction in fetal oxygenation 

immediately activates the chemoreflex primarily through transduction by the carotid bodies 

(Giussani et al., 1993).  Efferent signals are conducted along the muscarinic pathway to induce 

transient bradycardia while peripheral vasoconstriction results from sympathetic stimulation of 

α- adrenergic receptors (Giussani et al., 1993). This is followed by a progressive increase in fetal 

mean arterial blood pressure (MAP) due to both increased sympathetic output and umbilical 

resistance,  in concert with a redistribution of cardiac output in favour of the brain, adrenals and 

heart (Wassink et al., 2007; Yan et al., 2009). With prolongation of umbilical cord occlusion 

over one minute, release of catecholamines and other vasoactive agents into the fetal circulation 

return FHR to baseline and sustain the blood flow redistribution (Wassink et al., 2007). When 

hypoxia is unremitting, fetal cardiovascular defences are overwhelmed, at which time further 

FHR reduction and hypotension will develop alongside cardiac failure (Hernandez-Andrade et 

al., 2005; Yan et al., 2009). Deterioration in ovine fetuses subjected to UCO of long duration (5-

10 min) concurs with bradycardia, analogous to that seen in clinical cord compression.  

Another aspect of perinatal physiology elucidated by the umbilical cord occlusion 

technique is the nature and maturation of cardiovascular regulatory mechanisms and defence 

responses of the fetus. Sympathetic nervous activity (Fletcher et al., 2003) and chemoreflex 

function (Kiserud et al., 2001) are present very early in gestation. However, relative to term 

fetuses the response to hypoxia is blunted in immature fetuses between 60 and 70 percent of 

gestation, with a progressive increase in magnitude thereafter (Fletcher et al., 2006).  Although 

early in gestation the fetus is able to survive prolonged hypoxia, it is particularly vulnerable to 

progressive hypotension and hypoperfusion of the tissues given the incapacity of peripheral 

vasoconstriction and redistribution of cardiac output (Bennet et al., 1999). Furthermore, sheep 
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studies have revealed  modified fetal responses when severe intermittent hypoxia is prolonged 

(Green et al., 1999; Unno et al., 1997) and when acute hypoxia is superimposed on pre-existing 

hypoxia (Imamura et al., 2004) or occurs after an epidsode of severe hypoxia (Thakor and 

Giussani, 2009).  Interestingly, the increase in plasma cortisol in response to acute hypoxia is 

enhanced after moderate long-term hypoxia (Imamura et al., 2004), yet attenuated after repeated 

severe hypoxia over  several hours (Unno et al., 1997). Thus, fetal defenses are remarkably 

effective in adapting to multiple or superimposed intrauterine insults and increasingly so with 

advancement of gestation, yet when the threshold of tolerance is reached failure in these systems 

quickly results in fetal demise. 

 

 

 1.5 FETAL PROGRAMMING 

   

Fetal outcome under various intrauterine insults is a product of their associated perturbations in 

the intrauterine milieu that supports ongoing development. The conceptus is responsive to such 

changes allowing continuance of organ formation, maturation and growth despite deficient 

sustenance of even an extreme degree. This plastic nature of development has long been 

recognized in the observation that neonatal outcome relates to maternal state and for this reason 

promotion and maintenance of maternal health has traditionally been a primary goal in obstetric 

management. Yet, more recently it has been discovered that the influence of the intrauterine 

environment extends well beyond the immediate postnatal period. Indeed, fetal experience is 

now recognized as an important determinant of long-term health and risk for adult-onset 

degenerative diseases. This phenomenon was first brought to light by seminal epidemiological 

data collected in the 1980s by David Barker and colleagues that showed low birth weight to be 

predictive of death from ischemic heart disease in adult life (Barker and Osmond, 1986). Soon 

after, a number of other chronic conditions were linked to birth measures indicative of impaired 

intrauterine growth; relationships that have now been substantiated by numerous studies in 

various populations around the world. The mounting list of degenerative diseases with prenatal 

origins includes coronary artery disease, Type-2 diabetes, kidney failure, osteoporosis, polycystic 

ovarian syndrome and cancer (Gluckman et al., 2008; Ozanne and Constancia 2007). Many of 
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these diseases are strongly interrelated, and human studies have further demonstrated the 

presence of common precursors in those determined to be growth impaired in utero.  For 

instance, central obesity (Harding 2001), hypertension (Barker et al., 1990) and insulin resistance 

(Jaquet et al., 2000), which together constitute the metabolic syndrome, tend to manifest in 

children and adults born small.  

This abnormal physiology is not merely a manifestation of the severely growth restricted, 

rather phenotypic changes quantifiable in postnatal life can occur with modest intrauterine insults 

that impact minimally upon fetal size. In fact, the incidence of the interrelated metabolic and 

cardiovascular disorders mentioned above, are inversely correlated with birth weight along the 

entire continuum of birth weight (Barker, 2001). Hence, one may deduce that small changes in 

oxygen and nutrient supply to the fetus in the absence of overt maternal disease or deficiency, 

conveys a relative disadvantage to the offspring. Evidence of this is provided by a recent study 

showing maternal thinness and an unbalanced diet during pregnancy to have a subtle effect on 

size of the newborn, yet later in life the offspring show a propensity toward high blood pressure, 

insulin resistance and altered stress responses (Wabitsch, 2000).  On the other hand, maternal 

obesity and excessive weight gain during pregnancy increase the risk for macrosomic babies that 

tend to become obese and develop cardiovascular disease and type-2 diabetes later in life (Desai 

et al., 2010). Thus, at least for the metabolic syndrome, the correlation between disease and birth 

weight appears to be U-shaped, such that the highest risk occurs in the smallest and largest 

babies. Taken together, the above highlight that long-term outcome of the fetus warrants 

consideration not only in cases of maternal disease and antenatal disorders, but also with respect 

to nutritional inadequacies related to common Western dietary habits.  

 

1.5.1 Mechanisms of Programming 

The current impetus within the newly emerged area of fetal programming is in the 

understanding of underlying mechanisms. In this respect, epidemiological analyses are lacking in 

the insight they yield. First, population studies rely on birth measures as crude proxies of 

intrauterine growth and thus are imprecise in their identification of infants who have experienced 

genuine growth restriction. As well, postnatal risk factors and variability in the timing, nature 

and duration of the intrauterine insult causing growth restriction are confounding variables 

 



24 

 

inherent in the study of human IUGR. Thus, for elucidation of the underlying mechanisms 

responsible for developmentally-related disease risk, animal models emulating specific prenatal 

insults have been applied. Various species subjected to a range of prenatal challenges including 

maternal anemia, malnutrition, glucocorticoid administration, stress and placental insufficiency 

as described previously, have reproduced the human phenotypes, thus confirming that 

suboptimal intrauterine conditions lead to pathological conditions.  Further, investigation with 

animal models has established the broad tenets of fetal programming (Figure 1.1) which 

currently guide ongoing research in the field. 

The accepted concept of fetal programming holds that adult-onset disease is the 

culmination of persistent changes in the structure, metabolism, gene expression and homeostatic 

regulation of organ systems that occur in utero. These programmed changes result directly from 

the intrauterine insult or secondary to the associated fetal response and relate to the modality, 

duration and timing of the stimulus. Organs and tissues are particularly vulnerable during times 

of rapid proliferation or differentiation and lose much of their plasticity once these 

developmental windows come to a close. In the human, critical periods of the various organs 

range from preconception to neonatal life. For instance, nephrogenesis in the kidney begins in 

the 5th week of pregnancy and accelerates until 35 weeks, after which the number of nephrons is 

set for life (Schreuder et al., 2007). The kidney is among the organs sacrificed in the fetal 

attempt to survive substrate deficiency and altered kidney development leading to a permanent 

reduction in nephron number and kidney mass is an established contributor to programmed 

hypertension and renal failure in both IUGR humans and rodents (Schreuder et al., 2007; 

Wlodek et al., 2008).  

In addition to enduring structural changes, programmed organ dysfunction can result 

from persistent changes in gene expression patterns thought to arise from epigenetic 

modifications (Ozanne and Constancia, 2007). Since the epigenome is heritable, this mechanism 

may account for transmission of in utero- derived abnormalities across generations (Ozanne and 

Constancia, 2007).  Evidence of epigenetic modification has been demonstrated in rat offspring 

growth restricted by maternal protein restriction displaying changes in DNA methylation of 

genes involved in the regulation of muscle metabolism, such as peroxisome proliferator-activated 

receptor PPAR-α (Lillycrop et al., 2005). Moreover, deviation in function at the organ and  
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Figure 1.1: Mechanisms of Programming  

When the conceptus is subjected to an intrauterine insult, the plasticity of its growth and 

development allows it to compensate through changes in gene expression, cellular proliferation 

and differentiation and maturation of regulatory systems.  The resulting phenotype is determined 

by the specific nature of the insult, as well as its timing and duration. After birth many organs 

such as the heart and blood vessels have limited ability to recover any deficiencies in organ 

structure established during intrauterine development and thus programmed phenotypic 

abnormalities may result in organ dysfunction that later leads to disease progression. The rate at 

which disease progression occurs depends on an interaction between the abnormal phenotype 

and the postnatal environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 



27 

 

cellular levels, as exemplified above, propagate irregularities at the systemic level. For instance, 

in the growth restricted animal and human, wasted muscle mass and altered distribution of fibre 

types together with dysregulation of molecular pathways involved in muscle metabolism, 

promote a state of insulin resistance that is enduring and progressive (Jaquet et al., 2000). 

Therefore, a specific intrauterine challenge likely induces multiple mechanisms of programming 

thereby producing a synergistic effect on pathogenesis and this explains the interrelated spectrum 

of disorders that have been linked to low birth weight. 

 Once the surviving fetus exits the deprived intrauterine environment, it must cope in 

extrauterine life with all of the sacrifices it made to arrive. Shortly after birth the organ systems 

no longer enjoy the plasticity that was afforded to them in utero, and thus any debility in their 

structure, morphology, cell number or gene expression may be largely fixed going forward in 

postnatal life. This premature disadvantage leads to progressive dysfunction that is accelerated 

with the burden of aging and superimposition of postnatal lifestyle factors. Further, the newborn 

which has adapted to a state of starvation in utero, may be met with an incongruent environment 

of relative overabundance. Trained to conserve energy, the IUGR baby exploits this opportunity 

of nutrient overabundance albeit with negative long-term consequences. Those growth restricted 

in utero exhibiting rapid catch-up growth during infancy are at higher risk for obesity, 

cardiovascular disease and insulin resistance, compared to their steadily growing counterparts 

(Barker, 2005).  Thus, the interaction of the programmed phenotype with the postnatal 

environment is a significant factor in the quality, severity and pace of pathogenesis. In this light, 

compared to nutritionally deprived fetuses born into an impoverished society, fetal programming 

of fetuses subjected to placental insufficiency and born into a well-nourished postnatal 

environment may be more detrimental.  

 

1.5.2 Programming of Cardiovascular Disease 

Cardiovascular disease (CVD) which outweighs all other common degenerative 

conditions in terms of the burden it imposes, is the most commonly examined in the 

epidemiological study of programming. This wide-spread disease encompasses a group of 

interrelated and progressive conditions affecting the heart and blood vessels, including 

hypertension, atherosclerosis and coronary artery disease. In Canada, CVD accounts for 34 and 
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32 percent of female and male deaths, respectively, and is associated with morbidity costs of 18 

billion dollars per year (Statistics Canada, 2003). Despite advancement in pharmacological 

treatments over the past 4 decades and an overall reduction in smoking, CVD remains, by far, the 

number one killer in North America (Bitton and Gaziano, 2010). On an international scale, the 

gravity of CVD is mounting with increasing prevalence in developing nations (Gersh  et al., 

2010),  rising rates of obesity and type 2 diabetes and the recent emergence of childhood 

hypertension in affluent regions (Feber and Ahmed, 2010).  

 The original studies which revealed prenatal origins of CVD were conducted by Barker 

and Osmond, who related death rates from ischemic heart disease to birth weights of men which 

were recorded between 1911 and 1930 in Hertfordshire, England. They discovered men who 

weighed 5.5 pounds or less at birth to have the highest risk of deathfrom heart disease (Barker 

and Osmond, 1986; Barker et al., 1989). In subsequent studies, Barker and colleagues revealed 

blood pressure in adult life to be inversely related to birth weight, length and head circumference 

at birth, in both men and women of the UK (Barker et al., 1992; Barker et al., 1990). The relation 

to other forms of CVD followed: in 1996 they reported mortality from stroke and coronary heart 

disease in 13,249 men from the UK to be strongly associated with small head circumference, 

thinness, shortness and weight at birth (Martyn et al., 1996). A couple of years later, the same 

group found the degree of atherosclerotic narrowing in the carotid arteries to be greatest in 

people with low birth weight, independent of gestational age at birth (Martyn et al., 1998).  

 Since the time of these first discoveries, numerous cohort and longitudinal studies in 

populations worldwide have confirmed the existence of a relationship between birth weight as a 

proxy for fetal growth in utero and cardiovascular health in adults, adolescents and children. For 

example, in a large cohort of US men aged 40-75, Curhan et al. (1996b), reported birth weight to 

be inversely correlated to the incidence of hypertension. Later, this group replicated the findings 

in female subjects (Curhan et al., 1996a). Similar studies in Scotland, Sweden and the 

Netherlands have demonstrated a trend of increasing adult blood pressure with lower birth 

weights, in both men and women (Law et al., 1993; Leon et al., 1996; Macintyre et al., 1991). 

The majority of studies with adolescent subjects have found birth weight to be negatively 

correlated with blood pressure in this age group, despite the confounding influence of puberty. 

For instance, work by Taittonen et al. (1996) revealed low birth weight to be predictive of high 
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systolic blood pressure in a group of young adults from Finnland. In another study, systolic 

blood pressure increased in relation to decreasing birth weight, in a large population of Swedish 

men aged 17-21 years born in 1973 (Nilsson et al., 1997). Likewise, a study carried out in 

Jamaica revealed similar results in a group of children 6-16 years of age, born after 28 weeks 

gestation (Forrester et al., 1996).  The same inverse relationship between blood pressure and 

birth weight has been demonstrated in a group of UK children aged 5-7, born between 1983 and 

1985 (Whincup et al., 1989). Thus, it appears that the effect of prenatal environmental triggers 

on cardiovascular health becomes quantifiable in childhood, a time when the influences of 

ageing and lifestyle are minimal. These early epidemiological studies have identified the 

phenomenon of intrauterine programming and firmly established developmental links to CVD.  

The next step is elucidating the means by which developmental disturbances translate to long-

term disease vulnerability. Clues to the answer of the mechanistic questions that remain 

unresolved lie in the disease process and its developmental correlates.  

 

 

1.6 CARDIOVASCULAR DISEASE PROGRESSION IN ADULT LIFE 

 

The general process of CVD progression is depicted in Figure 1.2. When CVD is not 

congenital, its evolution occurs over decades and is set in motion by an injury to the arterial wall 

in the form of mechanical overload (Li et al., 1998), oxidative stress (Chrissobolis et al., 2011), 

inflammation (Barbato et al., 2005) or a combination of these stimuli. This initial trigger may be 

brought on by any of the postnatal cardiovascular risk factors such as smoking, diet and obesity 

or more insidiously by the normal process of ageing (Kannel et al., 1997). Consequent 

modification in the responsiveness and mechanical behaviour of the vascular wall leads to a 

vicious cycle of arterial dysfunction and increasing blood pressure that may fester for years 

before the onset of symptomatic CVD (Campuzano et al., 2006; McCall et al., 2010). 

Eventually, cardiac dysfunction ensues once compensatory mechanisms fail to manage the 

increasing load placed on the heart by this progressive disturbance in the hemodynamic  

 

 

 



30 

 

 

 

 

 

 

Figure 1.2 Progression of Cardiovascular Disease 

The gradual progression of cardiovascular disease occurs over decades and is instigated by an 

initial insult to the vascular wall. The compensatory response of the vascular wall leads to 

arterial dysfunction and thereby a disturbance in hemodynamics. The resultant mechanical stress 

placed on the vascular wall leads to further arterial damage and dysfunction and so a vicious 

cycle continues. Altered hemodynamic forces also place excessive strain on the heart, inducing 

compensatory remodeling of the left ventricle (LV) that eventually becomes maladaptive. 

Eventually, the over-stressed and under-perfused heart may be unable to cope.  
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environment (Graham and Trafford, 2007).  Congestive heart failure, myocardial infarction and 

stroke are the ultimate and fatal outcomes of this pathological course. In sum, the gradual 

disruption in hemodynamic forces that parallels arterial and cardiac decline is instigated by a 

vascular reaction to adverse stimuli. In this light CVD is primarily a disorder of the arterial wall. 

Upon exposure to an injurious stimulus, the endothelium becomes activated and initiates 

the homeostatic response of the artery. A host of inflammatory genes are induced, including 

cytokines, cell adhesion molecules (CAMs) and regulatory enzymes that collaborate in the 

mediation of structural and functional changes of the arterial wall  (Anggrahini et al., 2009; 

Barron et al., 1997; Rectenwald et al., 2000). Pivotal among these proteins are the matrix 

metalloproteinases (MMPs), particularly the gelatinases MMP-2 and MMP-9, which drive 

compensatory remodeling (Yasmin et al., 2005). MMPs cleave ECM components so as to 

restructure the arterial media and when chronically stimulated, promote an ongoing cycle of 

degradation and synthesis.  The primary substrates of MMP-2 and 9 are the basement membrane 

proteins, collagen Type IV, fibronectin and laminin (Knauper and Murphy, 1998). Through 

degradation of these proteins, the gelatinases disrupt the subendothelium thereby altering 

endothelial permeability (Rosenburg et al., 1998). Under normal conditions vascular smooth 

muscle cells (VSMCs) are in a quiescent contractile state. However, upon activation which 

requires degradation of the basement membrane by MMP-2, contractile VSMCs revert to a 

proliferative, migratory and synthetic state (Bendeck and Tempo, 1994; Mochizuki et al., 2001; 

VanSaun and Matrisian, 2006). The phenotypically modulated VSMCs migrate to the intima and 

secrete collagen and proteoglycans under the stimulation of pro-inflammatory cytokines, such as 

transforming growth factor (TGF-β) (Wolf et al., 1994). The result is altered composition and 

hypertrophy of the media, in addition to thickening of the pre-existing fibrocellular intima that is 

the precursor to atherosclerotic lesions in specific arterial segments (Stary et al., 1992). The 

proteoglycans within the thickened intima bind circulating lipoproteins, establishing Type I 

arterial lesions (Nakashima et al., 2008). These retained lipoproteins undergo oxidation, forming 

cytotoxic aggregates that recruit monocytes, which in turn, bind to the CAMs expressed on the 

activated endothelium (Nakashima et al., 2008; Glass and Witztum, 2001).  The CAMs together 

with chemokines allow transmigration of the monoctyes and modifed lipoproteins into the 

subendothelial space through the denuded basement membrane (Barron et al., 1997). This is 

 



33 

 

followed by differentiation of the monocytes into macrophages which internalize the oxidized 

lipoproteins, forming high oxygen consuming foam cells (Glass and Witztum, 2001). Such 

cholesterol-rich foam cells characterize complex lesions that protrude from the arterial wall 

causing narrowing of the lumen and symptoms of ischemia (Nakashima et al., 2008). The arterial 

response to an adverse trigger is portrayed in Figure 1.3.  

 Site-dependent modifications in arterial structure and function arising from the cascade of 

molecular events described above, have synergistic effects on homeostasis of the system as a 

whole. Injury and dysfunction of the endothelium characterized by reduced nitric oxide (NO) and 

impaired vasodilatory responses are fundamental in the early process of atherosclerosis and 

hypertension (Campuzano et al., 2006). In patients destined to develop coronary artery disease 

(CAD), flow-mediated vasodilation may be abolished or even reversed to a constrictor response 

in damaged arteries such as the coronary arteries, while vasodilatory capacity is preserved in 

small atherosclerotic-resistant arteries (Campuzano et al., 2006). Since the endothelium mediates 

the contractile state of underlying smooth muscle through tonic and responsive release of 

endothelial-derived relaxing factors, its dysfunction increases vascular tone and blood pressure 

and impedes organ perfusion. Whereas mean arterial blood pressure (MAP) or in other words the 

steady component of blood pressure, is increased by endothelial dysfunction of the peripheral 

circulation, the pulsatile component of intravascular pressure is amplified through increased 

stiffness of central arteries (London et al., 1999). The disturbance in hemodynamics consequent 

to endothelial dysfunction, atherosclerosis and central stiffening, further promotes arterial 

damage and so a cycle of progressive arterial dysfunction and increasing blood pressure 

continues.  

The left ventricle responds to a mounting afterload by remodeling of its extracellular and 

cellular components. This reactive process in the heart is also mediated by the MMPs and 

profibrotic cytokines (Khan and Sheppard, 2006; Spinale, 2007). Activation of MMP-2 and 

MMP-9 results in increased turnover of matrix proteins, which form a network that maintains 

orientation of adjacent cardiomyocytes and alignment of the myofibrils within them (Graham et 

al., 2008). As the cycle of degradation and synthesis of fibrillar proteins continues, the former 

intricately structured matrix becomes disordered. In addition, persistent expression of profibrotic 

cytokines, particularly TGF-β, causes excessive accumulation of interstitual collagen (Khan and  
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Figure 1.3 Arterial Response to Injurious Stimuli 

In response to an adverse stimulus, the endothelium induces an inflammatory response. This 

involves expression of the matrix metalloproteinases (MMPs) which degrade extracellular matrix 

(ECM) proteins within the media. MMP-2 degrades basement membrane proteins including 

collagen IV and thereby disrupts the internal elastic lamina (IEL) and facilitates phenotypic 

switch of contractile vascular smooth muscle cells (VSMCs) to synthetic VSMCs which migrate 

to the intima and proliferate. The expression and activity of MMP-2 is induced by the pro-

inflammatory cytokine, transforming growth factor (TGF-β). This cytokine stimulates ECM 

synthesis and contributes to enlargement of the media and intima. The cell adhesion molecules 

(CAMs) are expressed on the endothelial surface and allow circulating monocytes and 

lipoproteins to adhere to and migrate across the denuded endothelium. 
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Sheppard, 2006). Given that collagen is the primary determinant of ventricular stiffness, fibrosis 

of the heart leads to reduced ventricular filling during diastole (Graham and Trafford, 2007). 

Adding to the problem are the cellular changes involved in reactive remodeling of the heart such 

as cardiomyocyte hypertrophy, phenotypic modulation and apoptosis, which together alter 

contractile properties of the ventricular wall (Chien et al., 1991). These cellular and extracellular 

adaptations of the chronically overloaded heart are induced in the attempt to normalize wall 

stress, but become maladaptive over time leading to systolic and diastolic dysfunction. 

Thus, with advanced CVD, not only is the heart at an increasing mechanical disadvantage 

in dealing with the excessive hemodynamic load, but atherosclerotic lesions in the coronary 

circulation impede the delivery of oxygen and nutrients that are in high demand. Cardiac 

ischemia and associated injury due to coronary blockage further promote interstitial fibrosis and 

myocyte apoptosis through a reparative process (Sun, 2009). Thus, if left unchecked, arterial 

dysfunction, hemodynamic disturbance and associated cardiac responses, culminate in 

congestive heart failure and myocardial infarction.  

 

1.6.1 The Role of Central Arterial Stiffening in the Progression of CVD 

Augmented pulsatile load due to central arterial stiffening is a hallmark of advancing 

CVD that plays a major role in cardiac stress and is both a consequence and contributor to 

arterial damage. This pulsatile component of hemodyanmics is a product of the pressure wave 

propagated by intermittent left ventricular ejection. At any point along the arterial tree, the 

amplitude and profile of this waveform is determined by the summation of the forward wave 

traveling from the heart and a reflected wave returning from the periphery (Mitchell et al. 2004; 

O’Rourke et al., 2002). Synchronization of forward and reflected waves is largely a function of 

the viscoelastic properties of conduit arteries, particularly the thoracic aorta (Cohn, 2001; 

London and Guerin, 1999). Upon receiving left ventricular ejection, the aorta and other large 

arteries distend to store a proportion of the blood mass, while the remaining flows forward at a 

finite speed (Cohn, 2001). This transmission velocity determines time of arrival of the pulse 

wave at the distal vasculature, where high resistance causes reflection of the wave back towards 

the heart (London and Guerin, 1999; Safar et al., 2003). Thus, when the central arteries are 

highly distensible as in the young and healthy, over half of cardiac output is buffered, pulse wave 
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velocity (PWV) is low, and the reflected wave returns after the aortic valves have closed 

(London and Guerin, 1999).  In this case diastolic flow is enhanced, as the reflected wave merges 

with the reservoir that is propagated forward by elastic recoil of conduit arteries.  In sum, 

compliant arteries dampen pressure oscillations generated by cardiac contraction and ensure 

adequate coronary perfusion and continuous flow into the microcirculation during diastole. By 

contrast, stiff large arteries such as those in the hypertensive and pre-hypertensive state, propel a 

greater proportion of ventricular output, at a faster rate toward the periphery (Mitchell et al., 

2000). An early return of the reflected wave further augments central systolic pressure and 

produces a large and rapid drop in pressure during diastole (Mitchell et al., 2004). This high 

systolic load that places excessive strain on the heart, together with diminished coronary 

perfusion exacerbate pre-existing atherosclerosis and promotes cardiac ischemia and failure. 

Disturbance in pulsatile dynamics as described is an important antecedent to CVD and arises 

from abnormalities in the viscoelastic behaviour of the arterial wall. The relation between 

viscoelastic properties of the aortic wall and pulsatile load is depicted in Figure 1.4.  

 

1.6.2 Compliance and the Extracellular Matrix  

Abnormalities in the viscoelastic properties of central arteries present in those destined to 

develop CVD are preceded by structural changes within the vascular wall. The viscoelastic 

properties of the arterial wall are primarily determined by the relative proportions and 

orientations of ECM constituents which bear most of the intravascular load during passive 

distension.  Most important are the proteins, elastin and collagen. Elastic macromolecules endow 

the vessel with the ability to expand and recoil in response to changes in distending pressure, 

while collagen limits elasticity of the arterial wall with opposing tensile strength (Fonck et al., 

2007; Shadwick et al., 1999). The parallel arrangement of these extracellular fibers underlies the 

non-linear relationship between arterial compliance and blood pressure (Shadwick et al., 1999).  

At low distending pressures, the collagenous units are minimally recruited, while the elastic 

component predominately accommodates the volume load. With intensifying pressure, the 

change in dimension of an artery is increasingly dependent on inextensible collagen elements as 

the elastic fibers approach maximal tension and thus distensibility decreases (Roach and Burton,  
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Figure 1.4  Viscoelastic Properties of Central Arteries and Pulsatile Load  

A, a highly compliant aorta. Upon receiving left ventricular ejection, elastic fibres (blue) within 

the media extend, allowing an increase in lumen diameter. A highly compliant aorta slows the 

velocity with which the ejected blood mass flows forward as the forward wave. This velocity is 

measured as pulse wave velocity (PWV).  The average PWV for a healthy, individual under the 

age of 30 is 6.2 m/s (The reference values for arterial stiffness collaboration, 2010). B, During 

diastole elastic recoil of the elastic fibres reduces the lumen diameter and the reflected wave 

returns. C, The return of the reflected wave is visible on a pressure waveform as an inflection 

point. In a young, healthy individual the inflection point occurs after peak systolic pressure. 

Thus, highly compliant vessels mitigate the amplitude of the pressure wave. D, A stiff aorta. The 

forward wave is propagated at a higher speed when the aorta is stiff. The average PWV for a 

hypertensive patient over the age of 70 is 14 m/s (The reference values for arterial stiffness 

collaboration, 2010). In this case, the reflected wave returns during systole. E, in diastole there is 

a dramatic drop in blood pressure. F, The inflection point is visible before peak systolic pressure. 

Thus peak systolic pressure is augmented and the amplitude of the pressure waveform is greater. 

The pressure waveforms were adapted from Murgo et al., (1980). 
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1957; Shadwick et al., 1999).  Whereas PWV and other non-invasive indices are used to measure 

pulsatile load and central arterial compliance in vivo, generation of the length-tension 

relationship ex vivo allows for direct measurement of passive wall mechanics in arterial rings 

(Kingwell et al., 1997).  In arteries such as the aorta that function in buffering of left ventricular 

ejection, high elastin content translates to high compliance because these deformable proteins 

shoulder most of the load throughout the physiological pressure range. Reduced elastin content 

and excessive collagen accumulation owing to reactive vascular remodeling or to the repeated 

cyclic stress that occurs over time (Et-Taouil et al., 2003), predominantly occur in the large 

elastic arteries. Consequent central arterial stiffening and its associated disturbance in the 

pulsatile hemodynamic load are strong and independent predictors of hypertension and CVD 

(Abhayaratna et al., 2008). Thus, alteration in ECM composition of central arteries is a structural 

correlate to the hemodynamic abnormalities that precede overt CVD.  

 Possibly germane to programming of CVD, is the fact that vascular ECM proteins are 

deposited during a brief developmental window, after which the relative proportions of these 

components within the vascular wall are largely fixed. Thus, it is plausible that the propensity 

toward CVD in adults who were growth restricted in the womb arises from interference in the 

deposition of these proteins in utero and thereaby acceleration in the progression of central 

arterial stiffening and CVD in postnatal life. 

 

 

1.7 REMODELING OF THE EXTRACELLULAR MATRIX DURING  

      DEVELOPMENT 

 

Organization of the arterial system during development is accomplished in a precise time 

and site-specific pattern by a complex interaction between hormones, growth factors, cytokines 

and hemodynamic forces (Bendeck et al., 1994; Hutana et al., 2007; Swee et al., 1995). These 

modulators delineate anatomically-defined differential gene expression that gives rise to the 

longitudinal variation in composition and geometry that characterizes the mature vascular tree. 

At the proximal end of the vascular tree, elastic fibres are present in abundance within the 

extracellular matrix (ECM) and the ratio of elastic fibres-to-collagenous fibres decreases toward 
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the periphery which is populated by small muscular arteries. Elastic fibres are arranged in thick, 

fenestrated concentric layers (Rosenbloom et al., 1993). Construction of a functional elastic fiber 

begins with the synthesis and deposition of the precursor molecule, tropoelastin, into the 

extracellular space by embryonic-type vascular smooth muscle cells (VSMCs) possessing 

synthetic properties. Once in the matrix, the rod-like structures are aligned within a microfibrillar 

scaffold and covalently cross-linked to form the highly insoluble elastin protein (Debelle and 

Tamburro, 1999). The regulation of the single elastin gene is primarily exerted at the 

transcriptional level (Perrin et al., 1997; Swee et al., 1995).  Insulin-like growth factor-1 (IGF-1) 

and interleukin – 1β are known enhancers of tropoelastin mRNA expression, whereas tumor 

necrosis factor -α (TNF-α) and transforming necrotic factor -α (TNF-α) downregulate gene 

transcription (Rich et al., 1992; Swee et al., 1995).  Cortisol is a prominent example of a 

hormonal regulator acting upstream, which promotes elastin accumulation as well as collagen 

deposition (Rich et al., 1992; Bendeck et al., 1991). In addition to these hormones and growth 

factors, in vitro studies have shown tropoelastin mRNA expression and soluble elastin protein 

levels to be downregulated under conditions of hypoxia in cultured VSMCs (Durmowicz et al., 

1991), whereas procollagen gene expression is upregulated in hypoxic VSMCs and 

myofibroblasts (van Vlimmeren et al., 2010).  Further, reactive oxygen species prevent proper 

elastic fibre assembly in vitro through reduced cross-linked and interference in protein binding 

(Akhtar et al., 2010). 

Collagenous fibers have high tensile strength and thus provide structural integrity to the 

tissues. Their presence in the arterial wall increases progressively toward the periphery where 

they play a part in the reflection properties of small arteries. In the heart, collagen proteins are 

the predominant components of the fibrillar network that supports individual cardiomyocytes and 

aligns the myofibrils within the myocyte (Graham and Trafford, 2008). In this way, collagen 

fibres contribute to systolic contraction through coordination of sarcomere shortening and are the 

primary determinants of compliance during diastole (Khan and Sheppard, 2006). Thus, proper 

functioning and health of the heart are largely dependent on the content and organization of 

collagen fibrils.  

Whereas elastin derives from a single gene, several types of collagen proteins exist. The 

predominant collagens of the heart and vasculature are collagens Type I and III: the tensile 
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strength of the more abundant collagen Type I is substantially greater than that of collagen III 

(Qui et al., 2007). Once secreted into the extracellular matrix by synthetic VSMCs, the 

procollagen precursor is assembled into a triple helix and subsequently stabilized by 

posttranslational processing into a fibrillar unit (Van Der Rest et al., 1991). TGF-β1 and IGF-1 

are known to stimulate collagen gene transcription, whereas interferon-γ, basic fibroblast growth 

factor (bFGF) and nitric oxide have been found to inhibit collagen synthesis (Ford et al., 1999; 

Kypreos and Sonenshein, 1998; Lawrence et al., 1994; Reiser et al., 1996). 

Given that noncellular proteins are synthesized and secreted into the extracellular space 

by synthetic VSMCs, the deposition rate of collagen and elastin depend on the content of this 

cellular phenotype within the media (Durmowicz et al., 1996).  VSMCs exhibiting high rates of 

proliferation and the ability to produce ECM molecules predominate in early gestation and 

gradually switch to the mature contractile cells whose principal function is regulation of 

vasomotor tone, blood pressure and blood flow distributions (Chern et al., 1995; Hutana et al., 

2007).   In the ovine fetus and human, this phenotypic transition largely occurs in the last third of 

pregnancy (Hutana et al., 2007; Owens et al., 2004). Therefore, ECM protein accumulation rises 

sharply with VSMC proliferation rates early in gestation, is curbed by cellular phenotypic 

maturation in late gestation and varies across vascular beds in relation to the synthetic to 

contractile phenotype ratio.  

Modifications in the composition and geometry of the fetal vascular tree over the course 

of gestation also parallel hemodynamic changes, in order to redefine arterial mechanics in 

harmony with the new loading conditions. A general thickening of the arterial wall follows the 

developmental rise in MAP, increasing blood flow rates stimulate diameter enlargement and 

angiogenesis of the microvasculature respond to the growing perfusion demands of peripheral 

tissues (Bendeck et al., 1991; Cho et al., 1992). In late gestation, cyclic stretch induced by 

pulsatile flow becomes a potent stimulus of elastogenesis, whereas collagen synthesis appears 

unrelated to blood flow at this time. (Bendeck et al., 1994; Wells et al., 1999).  Thus, elastin 

accumulates at a high rate in the aorta and other proximal arteries where its deformability is 

required for accommodation of pulsatile ventricular ejection.   

During ovine and human pregnancies, collagen synthesis reaches a maximum early in 

gestation with a subsequent plateau, whereas elastin accumulates at a slower but steady rate from 
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early to late gestation (Bendeck et al., 1994; Berry et al., 1972).  In late gestation, elastin 

synthesis begins to accelerate, reaching a peak in the immediate postnatal period. This 

accelerated elastin deposition is a key event in the critical phase of arterial remodeling that is 

initiated by a near-term rise in cortisol and  subsequently follows the maturational changes in the 

hemodynamic environment. After birth, a brief and dramatic period of continued geometric 

remodeling and deposition of ECM components adapt the vasculature to the profound pressure 

and flow changes generated by the loss of the placenta, closing of fetal shunts and redistribution 

of cardiac output that accompany parturition and birth (Bendeck et al., 1994; Leung et al., 1977).  

Upon conclusion of this developmental remodeling, arterial structure and mechanics are suited to 

promote cardiovascular homeostasis in extrauterine life. Thereafter, rates of ECM protein 

synthesis decline rapidly. In fact, the half life of highly resilient mature elastin is 40 years 

(Shapiro et al. 1991) and its post-development biosynthesis is negligible under normal conditions 

(Mariencheck et al. 1995).   

 

 

1.8 SCOPE OF THESIS 

 

An interference in the maturation and remodeling of the heart and blood vessels in utero 

may have long-term consequences for cardiovascular health. Hypoxia due to placental 

insufficiency or a nuchal cord manifests in the second half of gestation, concurrent with a critical 

period of arterial development (Bendeck et al., 1994). The fetal response to hypoxia involves 

many of the known regulators of arterial remodeling, including hemodynamic conditions 

(Bendeck et al., 1994), the hormonal milieu (Bendeck et al., 1991) and local expression of 

growth factors (Ford et al., 1999; Kypreos and Sonenshein, 1998; Lawrence et al., 1994; Reiser 

et al., 1996). The two important developmental events that occur during this critical period are 

the phenotypic switch of VSMCs (Hutana et al., 2007) and the rapid deposition of ECM proteins 

(Bendeck et al., 1994). The former establishes the contractile properties of the vascular cells that 

are important for the peripheral vasculature. The latter sets the ECM composition that determines 

the buffering capacity of the proximal circulation. The buffering capacity or compliance, of 

central vessels is strongly and independently linked to the development of CVD in adulthood 
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(Abhayaratna et al., 2008). However, reduced arterial compliance due to altered ECM deposition 

during adverse fetal development with hypoxia and growth restriction is largely unexplored as a 

mechanism for programming of CVD.  

The overall goal of the thesis is to determine whether  disturbances in arterial 

development occurs in response to fetal hypoxemia and whether such changes translate to long-

term compromise in arterial function. Chapters 2-4 address the following hypotheses: 

1. Placental insufficiency with chronic hypoxemia in the late gestation ovine fetus leads to 

structural abnormalities of the aorta in terms of ECM and VSMC content. Such changes 

are related to altered expression of MMP-2 and TGF-β1 and a delay in the differentiation 

of VSMCs. These changes are directly related to the extent of fetal oxygen deprivation. 

The aortic response is also reflected in the umbilical artery and differs from that of the 

superior mesenteric artery. 

2. Placental insufficiency with fetal growth restriction in the ligated pregnant guinea pig 

results in structural abnormalities of the aorta that persist into adulthood and manifest as a 

reduction in compliance. Altered aortic structure is associated with a delay in the 

maturation of VSMCs. 

3. Intermittent umbilical cord occlusion with acute but limited hypoxemia in the late 

gestation ovine fetus leads to an increased elastin content of the carotid artery and a 

reduced elastin content of the superior mesenteric artery, in association with  

hemodynamic and cortisol responses.  
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2.1 INTRODUCTION  

 

Cardiovascular disease (CVD) imposes a substantial burden on Western society, with an 

annual death toll of 1 million Americans constituting 34.3% of deaths and morbidity costs of 

$503.2 billion per year (AHA, 2010). Currently, aetiology and disease prevention centre on 

genetics and environmental or lifestyle conditions in postnatal life. However, it is now 

recognized that in addition to and independent of these traditional risk factors, CVD can be 

traced to a vulnerability established in utero. This influence of the fetal environment on later 

health has been substantiated over the past decade by consistent observation that low birth 

weight and other indicators of impaired fetal growth are predictive of various degenerative adult 

diseases including CVD (Barker et al. 1989; Krochik et al. 2010). Although developmental 

origins of CVD are now widely acknowledged, the underlying mechanisms have not been 

elucidated.  

In the developed world placental insufficiency accounts for 60% of infants who are 

identified as being intrauterine growth restricted (IUGR) (Ghidini, 1996).  This antenatal 

condition arises when abnormal formation of the placental exchange surface leads to progressive 

disturbance of oxygen and nutrient exchange between mother and fetus (Krebs et al. 1996;  

Regnault et al. 2007). The resultant fetal hypoxemia manifests in the second half of gestation, 

concurrent with a critical period of arterial development. During this time, deposition of 

extracellular matrix (ECM) proteins accelerates in a time and site-dependent manner, and the 

vascular smooth muscle cells (VSMCs) that synthesize non-cellular proteins undergo 

differentiation (Berry et al. 1972; Bendeck & Langille, 1991; Wells et al. 1999). Given that 

oxygen tension (van Vlimmeren et al. 2010) and factors involved in the fetal response to 

hypoxemia (Durmowicz et al. 1994; Yee et al. 1996) are known mediators of ECM remodeling 
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and VSMC differentiation, enduring arterial defects established in utero may underlie 

susceptibility to CVD in offspring growth restricted by placental insufficiency.  

One important outcome of development is the establishment of a relative abundance in 

elastin proteins in the aorta and its major branches that endows these vessels with a high degree 

of elasticity. The viscoelastic properties of large arteries govern pulse pressure dynamics and are 

thus major determinants of cardiac workload. In fact, central arterial stiffening due to altered 

composition of the ECM is a strong and independent predictor of CVD, as it promotes 

hypertension and cardiac hypertrophy (Abhayaratna et al. 2008). We therefore propose that 

interference in fetal arterial development as a result of chronic hypoxemia leads to structural 

abnormalities characteristic of arterial stiffening.  To test our hypothesis, we used an established 

ovine model of placental insufficiency (Gagnon et al. 1994) whereby maternal-fetal blood gas 

exchange is restricted by embolization of the placental circulation and induced fetal hypoxemia 

is monitored and controlled. Accordingly, we have examined the effect of varying degrees of 

hypoxemia on aortic composition of elastic and collagenous fibres, VSMC content and 

phenotype. Known regulators of pathological arterial remodeling in adults, including 

transforming growth factor beta (TGF-β) and matrix metalloproteinase-2 (MMP-2) were also 

examined as possible mechanistic links. We demonstrate that upregulation of these molecular 

mediators in response to chronic hypoxia accompanies altered transcription and accumulation of 

extracellular and intracellular proteins leading to aberrant arterial morphology. 

 

 

2.2 METHODS 

 

2.2.1 Surgical Procedures 

Embolization of the placenta in pregnant sheep is an established model of placental 

insufficiency.  Surgical preparation and experimental manipulations were performed as 

previously described (Gagnon et al. 1994). All surgical and experimental procedures were 

approved by the Canadian Council on Animal Care Regulations and The University of Western 

Ontario Animal Ethics board.  
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 Pregnant Western ewes between 112 and 114 days of gestation (term = 147 days) were 

chronically instrumented using sterile technique under general anesthesia (1g thiopental sodium 

in solution, intravenously (IV) for induction, Abbott Laboratories Ltd., Montreal, QC; followed 

by 1% to 1.5% isoflurane in O2 for maintenance). Prior to surgery, an analgesic was given 

intramuscularly to the ewe (0.2 g ketoprofen, Merial Canada Inc., Baie B'urse, QC).  A midline 

incision was made in the lower abdominal wall and the uterus was palpated to determine the fetal 

number and position. The lower body of the fetus was exteriorized through an incision in the 

uterine wall, and polyvinyl catheters (Scientific Commodities, Lake Havasu city, AZ) were 

placed in the right and left fetal femoral arteries, the fetal hind limb vein, and the right maternal 

femoral vein.  Once the fetus was returned to the uterus, a catheter was placed in the amniotic 

cavity by attachment to the fetal hind skin. Antibiotics were administered intra-operatively to the 

mother (IV) (0.2 g trimethoprim and 1.2 g sulfadorine, Schering Canada Inc., Pointe-Claire, QC), 

fetus (IV) and amniotic cavity (1 million IU penicillin G sodium, Pharmaceutical Partners of 

Canada, Richmond Hill, ON). The uterus and abdominal wall incisions were sutured in layers 

and catheters were exteriorized through the maternal flank and secured to the back of the ewe in 

a plastic pouch.   

During the postoperative period (3-4 days) the antibiotic regime was continued daily 

[mother (IV) 0.2 g trimethoprim; fetus (IV) and amniotic cavity 1 million IU penicillin G 

sodium]. Arterial blood was sampled daily for evaluation of maternal and fetal condition and 

catheters were flushed with heparinized saline to maintain patency.  Animals were housed in 

individual metabolic cages with food and water available ad libitum. The housing facility was 

temperature (16°C) and humidity (50%) controlled, with a 12:12 hour light-dark cycle.  

 

2.2.2 Experimental Design 

Nineteen sheep were studied. Experiments were initiated 3 or 4 days after surgery at a 

gestational age of 116-118 days. Placental embolization was performed in experimental animals 

by bolus injections of latex microspheres (15 µm or 30 µm; Interactive Medical Technology 

Laboratories, Los Angeles, CA) into the fetal abdominal aorta distal to the renal artery via a fetal 

femoral arterial catheter. Injections were initiated at 1000 hrs on day 1, following a 2-hour 

baseline period, and repeated at 10-minute intervals until a stable reduction of arterial oxygen 
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saturation at the desired level of fetal hypoxia was maintained for at least an hour. The target 

level of arterial oxygen saturation was 40-50% for the moderately hypoxic group and 30-40% for 

the severely hypoxic group. On subsequent days embolization was performed after the 2 hour 

baseline period if fetal arterial oxygenation rose above targeted values. Control fetuses were 

injected with saline only.  

 

 

2.2.3 In Vivo Physiological Parameters 

On selected days (experimental day 1,5,8,12 and 15) the embolized and Control groups 

were subjected to a blood sampling and cardiovascular monitoring regime. Fetal arterial and 

maternal venous blood samples taken at 0900hrs (baseline), 1300hrs and 1600hrs were analyzed 

for blood gases, lactate, glucose and pH using a blood gas analyzer (ABL-725, Radiometer, 

Copenhagen, Denmark) and corrected for fetal temperature (T = 39.2°C). Plasma aliquots from 

samples taken at 0900 hrs were stored at – 80 °C for later cortisol analysis. Fetal arterial blood 

pressure (MAP), adjusted for amniotic fluid pressure, was continuously monitored between 0800 

and 1600 hrs with pressure transducers (Cobe, Arvada, CO) and recorded on a data acquisition 

system (Powerlab model ML 795, ADI Instruments, Colorado Springs, CO). Fetal heart rate 

(FHR) was derived from the arterial blood pressure waveform.  During baseline periods, starting 

at 0900 hrs, 20 min averages of fetal mean arterial blood pressure (MAP) and heart rate (FHR) 

were calculated for each fetus, using Powerlab software (Powerlab, ADI Instruments, Colorado 

Springs, CO). Average fetal arterial oxygen saturation values for each fetus were calculated 

using blood gas measurements taken at 0900 hrs, 1300 hrs and 1600 hrs on each experimental 

day, excluding baseline of day 1. 

 

2.2.4 Post-Mortem and Tissue Preparation  

On day 15, after the final blood sample at 1600 hrs, ewes and fetuses were sacrificed with 

an overdose of barbiturate (30 mg pentobarbital sodium, Fatal-Plus; Vortech Pharmaceuticals, 

Dearborn, MI). The fetus was weighed, sexed and dissected to obtain brain and liver weight. The 

descending aorta proximal to the diaphragm was perfused with saline and then fixed with 4% 

paraformaldehyde at physiological pressure (120 mmHg). The thoracic aorta immediately distal 
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to the aortic arch and the superior mesenteric artery (SMA), were excised, cleared of fat and 

connective tissue, fast frozen in liquid nitrogen and stored at - 80°C for later analyses. Fixed 

aortae were embedded in paraffin and cut in 5 µm cross-sections that were baked onto positively 

charged glass plates by heating in a 50 ºC oven for 2 days. 

 

 

 

2.2.5 Plasma Cortisol Concentration  

Baseline plasma samples were analyzed for cortisol concentration using an enzyme-

linked immunosorbent (ELISA) assay according to the manufacturer’s instructions (ALPCO 

Diagnostics, Salem, NH). The absorbance of sample triplicates was measured on a microtiter 

plate reader at 450 nm and the mean optical density calculated from a 4-parameter standard 

curve. The intra-assay and inter-assay coefficient of variation for the cortisol ELISA was 5.6% 

and 7.1%, respectively.  

 

2.2.6 RNA Extraction and Quantitative qPCR in the Aorta and SMA 

Total RNA was extracted from frozen thoracic aortae and SMA using the Trizol method 

(Invitrogen Life Technologies Co., Burlington, ON). RNA integrity of each sample was assessed 

using 1.2 % agarose electrophoresis with ethidium bromide staining. Complementary DNA was 

synthesized from 2 µg of purified RNA using oligo(dT) primers and the SuperScript III First-

Strand Synthesis System for RT-PCR (Invitrogen Life Technologies Co., Burlington, ON). 

Standard curves for each primer set (Appendix) were generated in order to determine optimal 

concentrations of input cDNA and PCR efficiency. PCR efficiencies for each primer set were 

90% -100%. cDNA products were used as templates for quantitative real-time polymerase chain 

reaction (qRT-PCR) for measurement of gene expression levels using the SYBR green system 

(Bio-Rad Laboratories Mississauga, ON) on a Bio-Rad CFX384 real time PCR detector. 

Amplification was performed in triplicate at 95˚C for 3 min, followed by 39 cycles at 95˚C for 

15s, 59˚C for 15s and 72˚C for 15s. Melting curve analyses after each run and the presence of a 

single band of appropriate size in 1.8% agarose gel confirmed amplification of a single product. 
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Fold change values calculated relative to the average mRNA for a given gene were normalized to 

the reference gene (S15).  

 

2.2.7 Collagen and Elastin Staining in the Aorta 

  After deparaffinization in xylene, slides were rehydrated by passage through a decreasing 

ethanol series. Collagen content was measured in cross-sections stained with 1% Sirius red 

F3BA (Sigma-Aldrich Canada Ltd., Oakville ON) in a saturated aqueous solution of picric acid, 

for 1 hour. Additional aortic sections were stained 30 minutes in 0.2 % Orcein (Sigma-Aldrich 

Canada Ltd., Oakville ON) for identification of elastic fibres. Stained cross-sections were 

captured on a microscope (Leica DM RB) at 10x magnification. Duplicates of 3 cross-sections 

per animal and 4-5 areas per cross-section were used for analyses. Wall thickness was measured 

as the distance between the internal and external elastic laminae. For collagen quantification the 

tunica media was selected, whereas elastin content measurement included both the tunica media 

and the internal elastic lamina. The area positive for protein (elastin or collagen) was identified 

by color thresholding using image analysis software (Image Pro 6.0, MediaCybernetics, 

Bethesda, MD) and expressed relative to the sum of area non-stained. Total protein content 

(elastin or collagen) was calculated by multiplying the average wall thickness for each vessel by 

the percent area stained, as previously reported (Kobs et al. 2005). Orcein slides were captured at 

40x magnification for measurement of intima thickness. If an intima was present its thickness 

was measured perpendicular to the medial border. A thickness score of 0 was given if no intima 

was present. The perpendicular distance between the internal elastic lamina and the first elastic 

layer within the media was measured.   

 

2.2.8 Immunofluorescent Staining for α Actin, MHC-B and PCNA in the Aorta 

Deparaffinized cross-sections of the aorta were incubated at room temperature for 10 min 

in Background Sniper (Biocare Medical LLC, Brampton, ON) for blockage of nonspecific 

binding, followed by incubation with primary antibodies diluted in  Universal Antibody Diluting 

Solution (Dako Canada Inc., Burlington ON) in a humidified chamber at 4ºC overnight: 1:4000 

dilutions of monoclonal mouse α-actin antibody (Boehringer Ingelheim Ltd., Mannheim 

Germany) along with 1:3000 dilutions of polyclonal rabbit nonmuscle myosin heavy chain II-B 
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(MHC-B) (Covance Inc., Emeryville, CA). After washing in phosphate-buffered saline, slides 

were incubated in 1:400 dilutions of Molecular Probes secondary antibodies Alexa Fluor® 568 

and 405 (Invitrogen Life Technologies Co., Burlington, ON) at room temp for 30 min in a black 

covered humidity chamber. After washing, slides were counterstained for 15 min using Sytox 

Green (Invitrogen Life Technologies Co., Burlington ON). Additional slides were incubated in 

1:400 dilutions of rabbit polyclonal anti-proliferating cell nuclear antigen (PCNA) (Santa Cruz 

Biotechnology INC., CA) and counterstained with Hoechst 3342 (Invitrogen Life Technologies 

Co., Burlington,ON) for 10 min. Replacement of the primary antibody with PBS or IgG were 

used as negative controls. Fluorescence VectaShield mounting medium (Vector Laboratories 

Burlington, ON) was used for mounting. Slides were stained in duplicate and simultaneously to 

minimize variation in staining intensity. All antibodies were tested for specificity by Western 

Blot. Sections were imaged on a microscope (Zeiss) and captured at 20x magnification using a 

camera and software for image capture and analysis (Axiovision 4.0, Carl Zeiss Microimaging 

LLC, Thornwood, NY). The area positive for staining was identified by color thresholding using 

image analysis software (Image Pro 6.0, MediaCybernetics, Bethesda, MD). The sum of area 

stained and the number of stained objects were expressed as a percentage of an area of constant 

dimension within the media.  

 

2.2.9 Statistical Procedures 

All statistical procedures were performed using GraphPad Prism 5.0 (GraphPad Software, 

San Diego, CA). Between group differences were assessed using one-way ANOVA with 

Bonferroni post hoc tests, or Kruskal-Wallis with Dunns post hoc test when data were 

determined to be non-parametric. Within group comparisons of baseline values of blood pressure 

and heart rate, across the 15 experimental days, were made by one-way ANOVA for repeated 

measures. Two way ANOVA was performed when missing values did not allow for repeated 

measures analysis. Relationships between arterial measurements and average fetal arterial 

oxygen saturation values over the course of the embolization period were expressed as 

Spearman's correlation coefficient and included animals from all 3 study groups. Significance 

was set at p < .05 and all data are presented as mean ± SEM.  
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2.3 RESULTS 

 

2.3.1 Fetal Growth Restriction and Physiological Parameters 

Our goal was to produce a level of chronic hypoxia typical of clinical IUGR and likely to 

result in fetal survival. In order to determine the dose-response effect, graded severity of hypoxia 

between Moderate and Severe groups was produced by embolization. Excluded from the study 

were fetuses from 2 ewes that developed mastitis during the experiment and 1 fetus that was  

severely hypoxic during and following surgery. Included in data analyses were 5 animals in each 

of the Moderate and Severe groups and 6 animals in the Control group. The ratio of female to 

male fetuses in Control, Moderate, and Severe groups was 2:3, 3:2, 3:3 respectively. Average 

blood gas values, pH, haemoglobin, glucose and lactate concentrations over the course of the 

embolization period are presented in Table 2.1. Hypoxia of each degree was not accompanied by 

cumulative metabolic acidosis or lactic acid accumulation. Fetuses subjected to Severe hypoxia 

displayed asymmetric fetal growth restriction, as reflected by reduced fetal body weight (p < .05) 

and increased brain-to-liver ratio (p < .05), relative to Control. Average fetal weight was 3.6 ± 

0.3 kg for the Control group, 3.3 ± 0.4 kg for the Moderate group and 2.7 ± 0.2 kg for the Severe 

group.  The brain-to-liver ratio was 0.38 ± 0.06, 0.47 ± 0.04 and 0.59 ± 0.06 for the Control, 

Moderate and Severe groups, respectively. 

Baseline values of MAP and FHR were not different between groups or within groups 

over the 15 day study period (included in analysis are days 1, 5, 8, 12, 15). Baseline MAP on day 

1 was 40 ± 4 mmHg for the Control group; 40 ± 2 mmHg for the Moderate group and 40 ± 2 

mmHg for the Severe group. Baseline FHR on day 1 was 171 ± 14 bpm for the Control group; 

179 ± 3 bpm for the moderate group; and 171 ± 12 bpm for the Severe group. Plasma cortisol 

concentration was not different between groups at baseline on day 1 of the study and was also 

unchanged within groups across the 15 day embolization period (included in analysis are days 1, 

5, 8, 12, 15). Cortisol concentration on baseline of day 1 was 3.2 ± 0.4 µg/dL for the Control 

group; 5.1 ± 3.0 µg/dL for the Moderate group; and 3.8 ± 0.4 µg/dL for the Severe group. On 

day 15 of the study, circulating cortisol concentration was 4.5 ± 0.8 µg/dL for the Control group; 

4.8 ± 2.5 µg/dL for the Moderate group; and 2.3 ± 0.1 µg/dL for the Severe group.  
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2.3.2 Aberrant ECM Remodeling Leads to Compositional Changes in the Aorta 

Collagen I and III are the predominant fibrillar collagens present in blood vessels. In all 3 

study groups, mRNA levels of procollagen Iα were higher than those of procollagen III. Real-

time PCR revealed procollagen Iα mRNA levels of the thoracic aorta to be elevated in severely 

hypoxic animals compared to control (p < .05) and a similar trend observed with respect to 

Collagen III (Figure 2.1).  Procollagen Iα and III mRNA levels were inversely related with  

average fetal arterial oxygen saturation, Spearman's coefficient was R = - 0.69 (p < .05) and R =  
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Figure 2.1. Procollagen Iα and III mRNA levels and total collagen content of the aorta are 

increased in severely hypoxic fetuses 

A, Real-time PCR showed procollagen Iα mRNA levels to be increased in the thoracic aorta of 

severely hypoxic group versus control. B, A comparable pattern was found with respect to 

Procollagen III, although changes were not significant. Collagen content of the media was 

measured in cross-sections of the descending aorta stained with a Sirius-red dye: shown are 

cross-sections from a Control (C) and Severe (D) animal. E, A 5x increase in total collagen 

content compared to Control was measured in the Severe group. Comparisons between groups 

were made using Kruskal-Wallis statistic with Dunns post hoc test. Data are presented as ± SEM. 

* p < .05 hypoxic groups vs. Control 

† p < .05 Moderate vs. Severe group 
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- 0.72 (p < .05), respectively. mRNA levels of tropoelastin were not different between groups, 

levels relative to control were 1.00 ± 0.5 for the Control group; 1.38 ± 1.37 for the Moderate 

group; and 2.17 ± 1.21 for the Severe group. Reflecting patterns of procollagen mRNA 

expression, total collagen content within the media of the thoracic aorta measured using the 

Sirius-red dye, was also increased in the severely hypoxic animals compared to normoxic 

animals (P < .01). However, the relative collagen content in the aortic media did not differ 

among groups: 3.57 ± 0.50 for the control group; 2.79 ± 2.24 for the Moderate group and 2.66 ± 

0.57 for the Severe group. Compared to the Control group, relative elastic fiber content was 

reduced by 12% in the Moderate group and by 39% (p <.05) in the Severe group (Figure 2.2). 

Spearman's correlation analysis showed a positive relationship between relative elastic fiber 

content with fetal average arterial oxygen saturation (R = 0.55, p < .05). Total elastic fiber 

content was constant across groups: 99.09 ± 5.43 for the Control group, 142.13 ± 9.98 for the 

Moderate group and 120.10 ± 8.65 for the Severe group.  

 

2.3.3 Regulators of ECM Protein Synthesis and Degradation  

TGF-β1 mRNA levels as measured by real-time PCR were increased in the Severe 

hypoxic group versus Control (p < .05), but similar between Moderate and Control groups 

(Figure 2.3). TGF-β1 mRNA levels in the aorta exhibited an inverse relationship with fetal 

arterial oxygen saturation (R = -0.7, p < .05) (Figure 2.3). mRNA levels of MMP-2 were also 

inversely correlated with fetal arterial oxygen saturation (R = -0.6, p < .05) and showed a similar 

pattern of change among groups, although significance was not reached (Figure 2.4). MTI-MMP  

mRNA levels were increased in the severely hypoxic animals compared to Control (p < .05) and 
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again showed an inverse relationship with arterial oxygen saturation (R = -0.66, p < .01) (Figure 

2.4).  

 

2.3.4 Aortic VSMC Content and Wall Thickness 

Differentiated VSMC content in the aortic media as, reflected by the fluorescent staining 

of the α-actin protein, was increased in a graded fashion in response to Moderate and Severe 

hypoxia (Figure 2.5). Compared to Control, total α actin content was 45 % higher in the 

Moderate group and 65% (p < .05) higher in the Severe group; and the percentage of α actin  

 

 

 

 

 

 

 

 

Figure 2.2. Relative elastic fiber content within the aortic media is reduced in hypoxic 

fetuses Relative elastic fiber content in the media measured in cross-sections of the thoracic 

aorta in Control (A), Moderate (B) and Severe (C) groups, is shown.  This decrease in relative 

elastic fiber content was graded across Moderate and Severe group, with a 12% and 39% 

decrease respectively. Kruskal-Wallis with Dunns post hoc test were used for multiple 

comparisons.  

* p < .05 hypoxic groups vs. Control 
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Figure 2.3. Severe hypoxia increases expression of TGF-β1 in the thoracic aorta 

A, mRNA levels of TGF-β1 measured by real-time PCR were increased in severely hypoxic 

fetuses. Kruskal-Wallis with Dunns post hoc test were used for multiple comparisons. B, 

Spearman's correlation revealed an inverse relationship TGF-β1 mRNA levels and fetal arterial 

oxygen saturation was determined using Spearman's correlation (R = - 0.70, p < .05). 

** p < .01 hypoxic groups vs. Control 
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Figure 2.4. mRNA levels of MMP-2 and  co-activator MTI-MMP are increased in the 

thoracic aorta of severely hypoxic fetuses  

A, matrix metalloproteinase-2 (MMP-2) mRNA levels in the thoracic aorta measured by real-

time PCR are increased in severely hypoxic fetuses compared to Control (p = 0.059). B, An 

inverse correlation between MMP-2 mRNA levels in the thoracic aorta and fetal arterial oxygen 

saturation was found (R = - 0.60, p < .05). C, Severely hypoxic fetuses exhibited increased 

mRNA levels of membrane-type matrix metalloproteinase (MTI-MMP) which is required to 

activate MMP-2. D, MTI-MMP exhibited an inverse relationship with fetal arterial oxygen 

saturation (R = -0.66, p < .01). Kruskal-Wallis test with Dunns post hoc were used for multiple 

comparisons and Spearman’s was used for correlational analyses. Data are shown as ± SEM. 

* p < .05 Hypoxic groups vs. Control 
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Figure 2.5. Hypertrophy of the aortic media in response to chronic intrauterine hypoxia is 

due in part to an increase in VSMC content 

A, Relative to Control, the % area stained for α-actin was increased by 13% in the Moderate 

group and by 30% in the Severe group. B, The total α-actin content showed a similar pattern, 

with statistical significance between Control and Severe groups. Total α actin content was 

increased by 45% and 65% in Moderate and Severe groups respectively, compared to Control. C, 

No significant difference between groups was found with respect to the % area stained for 

Proliferating Cell Nuclear Antigen (PCNA), a marker for cell proliferation. D, Media thickness 

was increased by 23% and 33% by Moderate and Severe hypoxia respectively. Group differences 

were assessed with the Kruskal-Wallis statistic and Dunns post hoc test. Data are shown as ± 

SEM. 

*   p < .05 hypoxic groups vs. Control 
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within the media was increased relative to Control, by 13% in the Moderate group and 30% in 

the Severe group. The % α-actin within the media was inversely correlated with fetal arterial 

oxygen saturation (R = -0.61, p < .05). The presence of MHC-B, a marker of undifferentiated 

synthetic-type VSMCs in the media, was not altered by hypoxia. As well, no differences between 

groups were found for the percentage of cells in the media or staining of proliferating cell 

nuclear antigen (PCNA), a marker of cell proliferation. Aortic media thickness was increased by 

23% in the Moderate and 33% (p < .01) in the Severe group, relative to Control animals (Figure 

2.5). Wall thickness directly related with average fetal arterial oxygen saturation (Spearman's 

coefficient R = - 0.67, p < .05). 

 

2.3.5 Intima Hyperplasia in Hypoxic Fetuses Associated with Endothelial Activation 

The presence of a fibrous neointima was predominantly found in severely hypoxic fetuses 

and the thickness of the intima was markedly increased in this group compared to Control and 

Moderate animals, suggesting intima hyperplasia to occur in response to Severe fetal hypoxia 

(Figure 2.6). The Severe group exhibited a 14-fold increase in intima thickness and an 11-fold 

increase in the intima:media thickness, compared to Control (p < .05). The thickness of the area 

between the internal elastic lamina and the first elastic fiber within the media was also markedly 

increased in the Severe group relative to Control (p < 0.05) (Figure 2.6). E-selectin was increased 

in severely hypoxic fetuses (p < .05) and mRNA levels of E-selectin showed an inverse 

relationship with average fetal arterial oxygen saturation (Spearman's coefficient R = - 0.67, p < 

.05). (Figure 2.7) 

 

2.3.6 Fetal Hypoxia has a Differential Effect on the Superior Mesenteric Artery (SMA) 

No differences in mRNA levels of procollagen I α and III were observed in the SMA. 

mRNA levels of procollagen Iα relative to Control were 1.00 ± 0.46 for the Control group; 0.65 

± 0.22 for the Moderate group and 1.57 ± 0.73 for the Severe group. mRNA levels of 

procollagen III relative to Control were 1.00 ± 0.33 for the Control group; 0.93 ± 0.47 for the 

Moderate group; and 0.85 ± 0.27 for the Severe group. TGF-β1, MMP-2 and E-selectin mRNA 

levels also showed no changes among groups.  
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Figure 2.6: Intima hyperplasia of the aorta in severely hypoxic fetuses 

A, The presence of an intima was largely lacking in descending aortae from Control and 

moderately hypoxic fetuses. B, An intimal layer was observed in Severely hypoxic fetuses; its 

size variable and often strikingly thick. C, Relative to Control, a 14 fold increase in the thickness 

of the intima on the luminal (L) side of the internal elastic lamina and a 2 fold increase in the 

thickness of the medial intima (the distance between the internal elastic lamina and the first 

elastic fiber within the media, as indicated by the arrow in B) was measured in Severe aortae. D, 

The ratio of intima-to-media thickness was also notably increased in Severe animals compared to 

Control and Moderate. The Kruskal-Wallis with Dunns post hoc were used to assess group 

differences. Data are presented as ± SEM. 

* p < .05 Hypoxic groups vs. Control 

† p < .05 Moderate vs. Severe groups 
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Figure 2.7. Intima hyperplasia of the aorta in response to Severe hypoxia was accompanied 

by increased mRNA levels of E-selectin 

A, E-selectin is a cell-adhesion molecule that increases in response to endothelial activation. 

mRNA levels of E-selectin as measured by real-time PCR were increased in thoracic aortae of 

severely hypoxic fetuses.  

* p < .05 hypoxic groups vs. Control 
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2.4 DISCUSSION 

 

This study is the first to investigate aortic development in the late gestation ovine fetus 

under varying degrees of oxygen deprivation in utero. Two degrees of fetal hypoxemia without 

metabolic acidosis were produced by umbilical-placental embolization, an established model of 

placental insufficiency. This antenatal disorder is the predominant cause of IUGR in Western 

society (Ghidini, 1996) and occurs when abnormal placental villous and arterial structure lead to 

inadequate transplacental transport of oxygen and nutrients that fails to meet increasing demands 

of the growing fetus (Regnault et al. 2007; Todros et al. 1999). The resultant fetal hypoxemia is 

the major stimulus driving fetal adaptations including slowing of growth and altered organ 

development (Lackman, 2001; Giussani, 2007). This model has previously been shown to 

produce abnormal umbilical artery Doppler waveforms (Gagnon, 1994) which reflect increased 

umbilical-placental vascular resistance and are used clinically to diagnose placental insufficiency 

and assess its severity.  Embolization leading to severe hypoxia in the current study  increased 

the ratio of brain-to-liver weight, an indication of the asymmetric pattern of growth restriction 

that occurs in human placental insufficiency (Dashe, 2000) whereby brain growth is preserved 

relative to non-critical organs.  

 

2.4.1 Mechanical Consequences of Altered Aortic ECM Composition 

The structural phenotype of the aorta produced by Severe hypoxia was characterized by 

reduced relative elastin content, together with media thickening due to both increased collagen 

accumulation and VSMC hypertrophy. Relative proportions and orientation of the arterial wall 

components are principal determinants of the viscoelastic behaviour of the aortic wall and thus 

pivotal in systemic hemodynamics. Viscosity is largely influenced by the VSMCs (Wells, 1998) 

whereas elasticity is a function of the ECM proteins, elastin and collagen (Roach & Burton, 

1957). Deformable elastic fibres bear circumferential tension at low distending pressures 

affording generous responses in dimension. Stiffening of the arterial wall with rising pressure is 

ascribed to engagement of the inextensible collagen fibres as elastic fibres become taut. Given 

that this transfer of intravascular load from elastin to collagen occurs over the physiological 

pressure range, the relative reduction in elastic fibre content evident in fetuses subjected to 
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hypoxia in the present study may result in collagen recruitment at lower distending pressure. The 

stiffening effect of an increased collagen-to-elastin ratio is palpable in the pathological deficits in 

elastogenesis characterized by multiple genetic diseases (Salaymeh & Banerjee, 2001; Nemes et 

al. 2008), and has been demonstrated experimentally by ex-vivo protein digestion (Fonck et al. 

2007; Roach & Burton, 1957).  

 

2.4.2 Developmental Timing of Hypoxic Insult 

The composition and architecture of arterial wall components requisite for proper 

functioning of the mature vascular tree evolve from precise time and site dependent gene 

expression and cellular differentiation during  fetal and neonatal life. Since the time course and 

regulation of cardiovascular development in the sheep are analogous to that in the human (Berry 

et al. 1972;  Wells et al. 1998), our findings hold significance in the context of clinical fetal 

growth restriction. In both species, VSMCs exhibiting high rates of proliferation and the ability 

to synthesize ECM molecules predominate in early gestation and gradually switch to mature 

contractile cells over the last third of pregnancy (Hutana et al. 2007). The current study failed to 

find an effect of intrauterine hypoxia on media cellularity or on VSMC proliferation and 

maturation, possibly because the majority of phenotypic modulation of the synthetic type cell 

had occurred by this later stage in gestation. This suggests that the relative increase in α actin, 

which is the most abundant protein in differentiated contractile cells (Fatigati & Murphy, 1984), 

was associated with VSMC hypertrophy. In this case, increased α actin and collagen synthesis 

may be due to an upregulation in the activity of the residual population of synthetic-type VSMCs 

rather than to proliferation of these cells. It is possible that VSMC proliferation leading to an 

increase in total cell content concomitant with media hypertrophy occurred earlier in the insult, 

and was not detected by PCNA staining at day 15 of hypoxia. In both human and sheep, collagen 

synthesis by VSMCs peaks early in gestation and plateaus near term, whereas elastin synthesis 

starts to accelerate in late gestation and reaches a maximum shortly after birth (Bendeck & 

Langille, 1991; Berry et al. 1972). Our fetal sheep were hypoxic between 116 and 132 days of 

gestation, coinciding with this period of rapid elastin accumulation, wherein a considerable 

increase in the elastin-to-collagen ratio takes place. There is a brief continuation of arterial 

remodeling after birth during which occurs rapid deposition of ECM macromolecules, and their 
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cross-linking as the final step in fibre formation (Bendeck et al. 1991; Wells et al. 1999). 

Thereafter, rates of ECM protein turnover decline substantially. In fact, the half life of highly 

resilient mature elastin is 40 years (Shapiro et al. 1991) and its post-development biosynthesis is 

negligible under normal conditions (Mariencheck et al. 1995).  Thus if the reduction in relative 

elastic fibre content measured in the present study  is due to upregulated protein degradation, the 

functional consequences may be permanent.  

 

2.4.3 Mediators of Hypoxic-Induced Changes within the Aortic Media 

Formation of the vasculature over the course of gestation is orchestrated by the varying 

impact of endocrine, autocrine, paracrine and mechanical stimuli. Cortisol is a potent regulator of 

elastin (Yee et al. 1996) and collagen synthesis, (Leitman et al. 1984) that mediates an 

acceleration in ECM accumulation from 120 days of gestation to term in the ovine fetus 

(Bendeck et al. 1991). The current study failed to find an effect of chronic hypoxia on baseline 

circulating cortisol levels over the 15-day embolization period. An increase in cortisol is a 

known response to acute hypoxia (Green et al. 2000, Thompson et al., 2011), however, during 

chronic hypoxia this response has been previously shown to be transient (Gagnon et al. 1994) or 

absent (Kerr et al. 1992). Hemodynamic conditions within the growing vascular tree parallel 

modifications in composition and geometry of the arterial wall and become highly influential in 

the rapid deposition of elastin that occurs in the late gestation and early postnatal periods 

(Bendeck et al. 1994). Embolization in the present study did not result in fetal hypertension in 

either Moderate or Severe groups, as reported by previous studies (Louey et al. 2007). Yet, 

human fetuses growth restricted by placental insufficiency have been shown to exhibit abnormal 

hemodynamics characterized by reduced blood flow velocity in the descending aorta and 

increased blood flow velocity in the carotid artery, as a result of increased placental vascular 

resistance and redistribution of cardiac output (Mori et al. 1993). Since blood flow stimulates the 

site-dependent upregulation of elastin accumulation during the critical perinatal induction period 

of elastogenesis (Bendeck et al. 1994), diminished blood flow through the aorta must be 

considered a potential cause of the hypoxia-related reduction in relative elastic fibre content 

found in the present study. Since tropoelastin mRNA levels were not affected by chronic 
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hypoxia, post-transcriptional or post-translational mechanisms involved in the construction of a 

functional elastin fibre may be altered. 

Progressive organization of the ECM scaffold that permits enduring changes in vessel 

structure and size during fetal development, is mediated by a family of proteolytic enzymes, 

matrix metalloproteinases (MMPs). The elastinolytic and collagenolytic gelatinase, MMP-2, has 

been identified as a key regulator of postnatal pathological remodeling of the heart and blood 

vessels leading to fibrosis and cardiovascular dysfunction (Polyakova et al. 2004). The activities 

of MMP-2 include degradation of elastin, fibronectin, and non-fibrillar collagen particularly the 

basement membrane collagen IV. Activation of MMP-2 is accomplished by proteolysis by the 

stromelysin, membrane-type MMP (MTI-MMP) which is inserted into the cell membrane as a 

fully activated endopeptide (Knauper & Murphy, 1998). Previously, the activity of MMP-2 has 

been correlated with the expression of MTI-MMP (Zahradka et al. 2004). Our data show 

elevated MTI-MMP mRNA levels in severely hypoxic fetuses and a similar trend with respect to 

MMP-2, as well as a significant correlation between MMP-2 mRNA levels and fetal arterial 

oxygen saturation, suggesting that MMP-2 played a role in the aberrant aortic remodeling 

observed in these animals. Our data parallels a study by He et al. 2007, that reports increases in 

mRNA levels of MMP-2 and MTI-MMP along with increases in pro-MMP-2 protein levels and 

activity in response to chronic hypoxia in adult rats. Also pertinent to our findings, increased 

circulating concentrations of MMP-2 and MMP-9 as well as reduced relative plasma levels of the 

tissue inhibitiors of MMPs (TIMPs),  have been reported in growth restricted infants  (Sesso & 

Franco, 2010). 

In addition to the regulatory effects of hypoxia and oxidative stress on the transcription 

and activity of MMP-2, induction occurs in response to growth factors such as TGF-β. TGF-β1 

regulates multiple cellular activities and has been implicated in control of growth and 

differentiation of various organs during development, including blood vessels (Saltis & Bobik A, 

1995; Yee et al. 1996). In the adult, TGF-β1 is recognized as an important mediator of 

compensatory structural remodeling of the myocardium and arteries in response to mechanical 

overload, (Li et al. 1998) hypoxia (Chen et al. 2006) and oxidative stress (Zhao et al. 2008). We 

report increased mRNA levels of TGF-β1 in severely hypoxic fetuses. Relevant to our 

morphological and PCR data, the effects of TGF-β1  include direct stimulation of collagen I and 
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III transcription (Ross & Tranquillo, 2003), upregulation of α actin expression (Owens et al. 

1988), and induction of MMP-2 transcription and activity (Ross & Tranquillo, 2003).   

 

2.4.4 Mediators of Hypoxic-Induced Aortic Intima Hyperplasia 

Both MMP-2 and TGF-β1 are known to be involved in the formation of a fibrous intima 

that is the initiating event in the atherogenic process (Stary et al. 1992), and was observed in our 

severely hypoxic fetuses. Elastin derived peptides released upon proteolytic activity of MMP-2 

directly contribute to switching of VSMCs into the migratory, proliferative and secretory 

phenotype (Mochizuki et al. 2001). Degradation of the subendothelial basement membrane by 

MMP-2 compromises endothelial barrier function (Rosenberg et al. 1998) and allows VSMC  

migration to the intima (Bendeck & Zempo et al. 1994)  where they proliferate and secrete ECM 

proteins under stimulation by growth factors including TGF-β, thereby leading to intima 

thickening. The role of TGF-β1 in neointima formation has been demonstrated by reduction in the 

size of intimal lesions after balloon injury with inhibition of TGF-β1 (Wolf et al. 1994) . 

Activated endothelial cells which produce growth-promoting TGF-β1, promote expression of cell 

adhesion molecules (CAMs) that facilitate the interaction of platelets and leukocytes with the 

vascular endothelium. E-selectin, which we reported to be increased in severely hypoxic aortae, 

is among the CAMs expressed during the initial phase of intima thickening in response to 

vascular injury (Barron et al. 1997). Changes in mRNA levels of procollagen, TGF-β1, MMP-2 

and MTI-MMP were absent from the superior mesenteric artery, implying a differential response 

to hypoxia depending on the type and location of the arterial segment. The SMA is an 

atherosclerotic-resistant artery, not prone to intima hyperplasia as is the aorta, and hence it's 

cellular response to hypoxia or injury may not include endothelial activation by MMP-2. 

 

 

2.5 CONCLUSIONS      

Fetuses subjected to hypoxia exhibited structural abnormalities resembling those present 

in adults destined to develop CVD, that were at least in part, attributable to oxygen-regulated 

growth factors and enzymes. It should be noted, that the duration of embolization equilibrates to 

10% of ovine gestation yet hypoxia is endured throughout the second half of gestation during 
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placental insufficiency, thus arterial responses measured in the present study may be mild or the 

phenotypic outcome may differ in comparison to the clinical situation. A defect in the original 

architecture of the aortic wall in growth restricted infants may alter its biological responses and 

mechanical behaviour, thereby accelerating the progression to hypertension and CVD in 

postnatal life.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

2.6 REFERENCES 

Abhayaratna, W.P., Srikusalanukul, W. and Budge, M.M. (2008). Aortic stiffness for the 
detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse 
pressure.  J Hypertens 26, 758-764. 
 
American Heart Association (2010). Heart disease and stroke statistics 2010 update: a report 
from the  American Heart Association. Circulation 121, e46-e215. 
 
Barker, D.J.P., Osmond, C., Winder, P.D., Simmonds, S.J. and Margetts, B. (1989). Weight in 
infancy and death from ischaemic heart disease. Lancet  2, 577-580.  
 
Barron, M.K., Lake, S., Buda, A.J. and Tenaglia, A.N. (1997). Intima hyperplasia after balloon 
injury is attenuated by blocking selectins. Circulation 96, 3587-3592. 
 
Bendeck, M.P., Keeley, F.W. and Langille, B.L. (1994). Perinatal accumulation of arterial wall 
constituents: relation to hemodynamic changes at birth. Am J Physiol Heart Circ Physiol 
267(36), H2268-H2279.  
 
Bendeck, M.P. and Langille, B.L. (1991). Rapid accumulation of elastin and collagen in the 
aortas of sheep in the immediate perinatal period. Circ Res  69, 1165-2269. 
 
Bendeck, M.P., Zempo, N., Clowes, A.W., Galardy, R.E. and Reidy, M.A. (1994). Smooth 
muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ 
Res 75, 539-545. 
 
Berry, C.L., Looker, T. and Germain, J. (1972). Nucleic acid and scleroprotein content of the 
developing human aorta. J Pathol 108 (4), 265-274.  
 
Chen, Y.F., Feng, J.A., Li, P., Xing, D., Zhang, Y., Serra, R., Ambalavanan, N., Majid-Hassan, 
E. and Oparil, S. (2006). Dominant negative mutation of the TGF-beta receptor blocks hypoxia-
induced pulmonary vascular remodeling. J Appl Physiol 100(2), 594-571. 
 
Dashe, J.S., McIntire, D.D., Lucas, M.J., Leveno, K.J. (2000). Effects of symmetric and 
asymmetric fetal growth on pregnancy outcomes. Obstet Gynecol  96(3), 321-327. 
 
Durmowicz, A.G., Parks, W.C., Hyde, D.M., Mecham, R.P. and Stenmark, K.R. (1994). 
Persistence, re-expression, and induction of pulmonary arterial fibronectin, tropoelastin and type 
I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am J Pathol  145, 
1411-1420. 
 
Drummond, G.B. (2009). Reporting ethical matters in the Journal of Physiology: standards and 
advice. J Physiol 587, 713-719. 
 

 



95 

 

Fatigati, V. and Murphy, R.A. (1984). Actin and tropomyosin variants in smooth muscles, 
dependence on tissue type. J Biol Chem 259, 14383-14388.  
 
Fonck, E., Prod'hom, G., Roy, S., Augsburger, L., Rufenacht, D.A. and Stergiopuylos, N. (2007). 
Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based 
biomechanical mode. Am J Physiol Heart Circ Physiol 292, H2754-H2763. 
 
Gagnon, R., Challis, J., Johnston, L. and Fraher, L. (1994). Fetal endocrine responses to chronic 
placental embolization in the late-gestation ovine fetus. Am J Obstet Gynecol 170, 929-38.  
 
Ghidini, A. (1996). Idiopathic fetal growth restriction: a pathophysiologic approach. Obstet 
Gynecol Surv 51(6), 376-82. 
 
Giussani, D.A., Salinas, C.E., Villena, M. and Blanco, C.E. (2007). The role of oxygen in 
prenatal growth: studies in the chick embryo. J Physiol  585(pt 3), 911-917. 
 
Green, L.R., Kawagoe, Y., Fraser, M., Challis, J.R.G. and Richardson, B.S. (2000).  Activation 
of the hypothalamic-pituitary-adrenal axis with repetitive umbilical cord occlusion in the preterm 
ovine fetus.  J Soc Gynecol Investig 7, 224-232.  
 
He, J.Z., Quan, A., Xu, Y., Teoh, H., Wang, G., Fish, J.E., Steer, B.M., Itohara, S., Marsden, 
P.A., Davidge, S.T. and Ward, M.E. (2007). Induction of matrix metalloproteinase-2 enhances 
systemic arterial contraction after hypoxia. Am J Physiol Heart Circ Physiol 292, H684-H693. 
 
Hutanu, C., Cox, B.E., DeSpain, K., Liu, X.T. and Rosenfeld, C.R. (2007). Vascular 
development in early ovine gestation:carotid. Am J Physiol Regul Integr Comp Physiol 293(11), 
R323-333. 
 
Kerr, D.R., Castro, M.I., Valego, N.K., Rawashdeh, N.M. and Rose, J.C. (1992). Corticotropin 
and cortisol responses to corticotropin-releasing factor in the chronically hypoxemic ovine fetus. 
Am J Obstet Gynecol 167(6), 1686-1690.  
 
Knauper, V. and Murphy, G. (1998). Membrane-type matrix metalloproteinase and cell surface-
associated activation cascades for matrix metalloproteinases. Matrix Metalloproteinases 199-218. 
 
Kobs, R.W., Muvarak, N.E., Eickhoff,  J.C. and Chesler, N.C. (2005). Linked mechanical and 
biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced 
hypertension. Am J Physiol Heart Circ Physiol 288, H1209-H1217. 
 
Krebs, C., Macara, L.M., Leiser, R., Bowman, A.W., Greer, I.A. and Kingdom, J.C. (1996). 
Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is 
associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175, 
1534-1542. 
 

 



96 

 

Krochik, A.G., Chaler, E.A., Maceiras, M., Aspres, N. and Mazza, C.S. (2010). Presence of early 
risk markers of metabolic syndrome in prepubertal children with a history of intrauterine growth 
restriction. Arch Argent Pediatr  108(1), 10-16.  
 
Lackman, F., Capewell, V., Gagnon, R. and Richardson, B. S. (2001). Fetal umbilical cord 
oxygen values and birth to placental weight ratio in relation to size at birth. Am J Obstet gynecol  
185, 674-82. 
 
Leitman, D.C., Benson, S.C. and Johnson, L.K. (1984). Glucocorticoids stimulate collagen and 
noncollagen protein synthesis in cultured vascular smooth muscle cells. J Cell Biol 98(2), 541-
549. 
 
Li, Q., Muragaki, Y., Hatamural, I., Ueno, H. and Ooshima, A. (1998). Stretch-induced collagen 
synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of 
angiotensin II and transforming growth factor-beta. J Vasc Res 35(2), 93-103. 
 
Louey, S., Jonker, S.S., Giraud, G.D. and Thornburg, K.L. (2007). Placental insufficiency 
decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J Physiol 
580 (Pt 2), 639-648. 
 
Mariencheck, M.C., Davis, E.C., Zhang, H., Ramirez, F., Rosenbloom, J., Gibson, M.A., Parks, 
W.C. and Mecham, R.P. (1995). Fibrillin-1 and fibrillin-2 show temporal and tissue-specific 
regulation of expression in developing elastic tissues. Connective Tissue Res 31, 87-97. 
 
Mochizuki, S., Brassart, B. and Hinek, A. (2001). Signaling pathways transduced through the 
elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 277, 44854-
44863. 
 
Mori, A., Iwashita, M. and Takeda, Y. (1993). Haemodynamic changes in the IUGR fetus with 
chronic hypoxia evaluated by fetal heart-rate monitoring and Doppler measurement of blood 
flow velocity. Med Biol Eng Comput 31 Suppl, S49-S58. 
 
Nemes, A., Timmermans, R.G., Wilson, J.H., Soliman, O.I., Krenning, B.J., ten cate, F.J. and 
Geleijnse, M.L. (2008). The mild form of mucopolysaccharidosis type 1 (Scheie syndrome) is 
associated with increased ascending aortic stiffness. Heart vessels 23(2), 108-111. 
 
Owens, G.K., Geisterfer, A.A., Yang, Y.W. and Komoriya, A. (1988). Transforming growth 
factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth 
muscle cells.  J Cell Biol 107, 771-780. 
 
Polyakova, V., Hein, S., Kostin, S., Ziegelhoeffer, T. and Schaper, J. (2004). Matrix 
metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during 
heart failure progression. J Am Coll Cardiol 44, 1609-1618.  
 

 



97 

 

Regnault, T.R.H., de Vrijer, B., Galan, H.L., Wilkening, R.B., Battaglia, F.C. and Meschia, G. 
(2007). Development and mechanisms of fetal hypoxia in severe fetal growth restriction. 
Placenta 28(7), 714-727. 
 
Roach, M.R. and Burton, A.C. (1957). The reason for the shape of the distensibility curves of 
arteries. Can J Biochem Physiol 35, 681-690. 
 
Rosenberg, G.A., Estrada, E.Y .and Dencoff, J.E. (1998). Matrix metalloproteinases and TIMPs 
are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29, 2189-
2195.  
 
Ross, J.J. and Tranquillo, R.T. (2003). ECM gene expression correlates with in vitro tissue 
growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix 
Biology 22, 477-490. 
 
Salaymeh, K.J. and Banerjee, A. (2001). Evaluation of arterial stiffness in children with William 
syndrome does it play a role in evolving hypertension. Am Heart J 142 (3), 549 - 555. 
 
Saltis, J. and Bobik, A. (1995). Developmental regulation of transforming growth factor-beta 1 
responses and vascular smooth muscle growth in spontaneously hypertensive rats. J Hypertens 
13(12 Pt 1), 1441-1448. 
 
Sesso, R. and Franco, M.C.P. (2010). Abnormalities in metalloproteinase pathways and IGF-I 
axis: a link between birth weight, hypertension, and vascular damage in childhood. Am J 
Hypertens 23, 6-11. 
 
Shapiro, S.D., Endicott, S.K., Province, M.A., Pierce, J.A. and Campbell, E.J. (1991). Marked 
longevity of human lung parenchimal elastic fibres deduced from prevalence of D-aspartate and 
nuclear-weapons-related radiocarbon.  J Clin Invest 87, 1828-1834. 
 
Stary, H.C., Blankenhorn, D.H., Chandler, A.B., Glagov, S., Insull, W. Jr and Richardson, M. 
(1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A 
report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American 
Heart Association. Circulation 85, 391-403. 
 
Thompson, J.A., Folliot, S.A., Richardson, B.S., Gagnon, R. and Regnault, T.R.H. (2011). The 
effect of intermittent umbilical cord occlusion on elastin composition in the ovine fetus. Reprod 
Sci 18(10), 990-997. 
 
Todros, T., Sciarrone, A., Piccolo, E., Guiot, C., Kaufmann, P. and Kingdom, J. (1999). 
Umbilical doppler waveforms and placental villous angiogenesis in pregnancies complicated by 
fetal growth restriction. Obstet Gynecol 93, 499-503. 
 

 



98 

 

van Vlimmeren, M.A.A., Driessen-Mol, A., van den Broek, M., Bouten, C.V.C. and Baaijens, 
F.P.T. (2010). Controlling matrix formation and cross-linking by hypoxia in cardiovascular 
tissue engineering. J Appl Physiol 109, 1483-1491.  
 
Wells, S.M., Langille, B.L. and Adamson, S.L. (1998). In vivo and in vitro mechanical 
properties of the sheep thoracic aorta in the perinatal period and adulthood. Am J Physiol Heart 
Circ Physiol 43, H1749-H1760.  
 
Wells, S.M., Langille, B.L., Lee, J.M. and Adamson, S.L. (1999). Determinants of mechanical 
properties in the developing ovine thoracic aorta. Am J Physiol Heart Circ Physiol  277 (46), 
H1385 - H1391. 
 
Wolf, Y.G., Rasmussen, L.M. and Ruoslahti, E. (1994). Antibodies against transforming growth 
factor-beta I suppress intimal hyperplasia in a rat model.  J Clin Invest 93, 1172-1178. 
 
Yee ,W., Wang, J., Liu, J., Tseu, I., Kuliszewski, M. and Post, M. (1996). Glucocorticoid-
induced tropoelastin expression is mediated via transforming growth factor-β3. Am J Physiol 
Lung Cell Mol Physiol  270 (14), L992-L1001. 
 
Zahradka, P., Harding, G., Litchie, B., Thomas, S., Werner, J.P., Wilson, D.P. and Yurkova, N. 
(2004). Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 
3-kinase-dependent-expression of MTI-MMP. Am J Physiol Heart Circ Physiol 287, H2861-
H2870. 
 
Zhao, W., Zhao, T., Chen, Y., Ahokas, R.A. and Sun, Y. (2008). Oxidative stress mediates 
cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell 
Biochem 317, 43-50. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



99 

 

 

 

 

CHAPTER 3 

Central Stiffening in Adulthood Linked to Aberrant Aortic Remodeling Under Suboptimal 

Intrauterine Conditions 
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3.1 INTRODUCTION 

 

  Seminal epidemiological studies over the past two decades have established a link 

between the fetal experience and long term health. Suboptimal conditions in the womb 

commonly arise from an interference in substrate delivery and availability that prevents the fetus 

from sustaining its growth trajectory. Such is the case of placental insufficiency, whereby 

abnormalities in the placental exchange surface impede maternal-fetal blood flow and frequently 

lead to chronic fetal hypoxemia (Krebs et al., 1996; Mayhew et al., 2004). This antenatal 

condition accounts for 60% of neonates who are identified as intrauterine growth restricted 

(IUGR) in the developed world (Ghidini, 1996). Morphometric indices of growth impairment are 

predictive of a number of chronic diseases in adulthood, among them Cardiovascular disease 

(CVD) (Barker et al., 1989; Curhan et al., 1996; Krochik et al., 2010).  Despite widespread 

knowledge of this pre-birth risk factor, the developmental disturbance that renders the low birth 

weight fetus vulnerable to later CVD is currently ill-defined. 

 In pregnancies complicated by placental insufficiency, fetal compromise apparent as 

slowed and disproportionate growth manifests in the second half of gestation, when rapid growth 

and maturation of organs are heavily dependent on transported substrates. This coincides with an 

important phase of arterial remodeling, during which occurs time and site-dependent deposition 

of extracellular matrix (ECM) proteins and transition of vascular smooth muscle cells (VSMC) 

from synthetic to contractile-type cells. These processes establish the mechanical and functional 

properties required for hemodynamic homeostasis in extra-uterine life (Berry et al., 1972; Wells 

et al., 1999). Interesting, the accumulation of elastin which predominates in large arteries, is 

limited to a brief window that spans late gestation and the early neonatal period (Bendeck et al., 

1994; Berry et al ., 1972). The resultant high elastin content of the proximal circulation imparts 

these vessels with a high degree of compliance that is critical for long-term cardiovascular 

health, as it dampens and synchronizes the pressure waves generated by cardiac ejection. In fact, 

central arterial stiffening due to altered composition of the ECM is a strong and independent 

predictor of CVD (Abhayaratna et al., 2008; Blacher and Safar, 2005). Given that elastin content 

is fixed upon conclusion of developmental remodeling (Mariencheck et al., 1995; Shapiro et al., 

1991) and that fetal hypoxemia alters known regulators of ECM deposition (Durmowicz et al., 
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1994; van Vlimmeren et al., 2010), permanent central arterial stiffening may arise from aberrant 

arterial formation in utero, in fetuses growing under placental insufficiency. 

 Perturbed arterial development and subsequent wall stiffening as a mechanism for 

intrauterine programming of cardiovascular sequellae, was explored in the present study. Growth 

of the fetal guinea pig was impaired by means of an established model of placental insufficiency, 

whereby placental blood flow is reduced throughout the second half of gestation by uterine artery 

ligation (UAL) (Jansson et al., 1986; Jones and Parer, 1983).  The effects of growth restriction 

on aortic development in the near term fetus was assessed by measurement of wall dimensions, 

ECM protein composition, VSMC content and phenotype. Adult growth restricted offspring 

were studied in order to determine the permanence of  any structural abnormalities of the aorta 

established in utero and its elastic properties via measurement of the length-tension relationship 

ex vivo.  

 

3.2 METHODS 

3.2.1 Surgical Procedures and Experimental Design 

 All surgical and experimental protocols were approved by The University of Western 

Ontario Animal Use Subcommittee. Chronic placental insufficiency was induced in time-mated 

guinea pigs by UAL. This technique is commonly used to impair intrauterine growth in rodents 

(Alexander, 2003; Briscoe et al., 2004), as it depletes uterine capacity leading to discordant fetal 

growth within litters and variable fetal growth restriction (Detmer and Carter, 1992; Jansson et 

al., 1986).  Pregnant guinea pigs at 28-30 days of gestation (term ~ 67 days) were induced in an 

anesthetic chamber (4-5% Isoflurane with 2L/min O2; followed by 2.5-3% Isoflurane with 

1L/min O2 for maintenance). The volume of the anesthetic chamber was 3 L. Immediately after 

induction, a subcutaneous injection of Robinul (Glycopyrrolate, 0.01 mg/kg, Sandoz Can Inc., 

Montreal QC) was administered. A midline incision was made below the umbilicus in order to 

retrieve the mesometrium associated with one horn of the uterus and subsequently UAL was 

performed at the base of the arterial arcade. In order to maximize fetal survival, the uterine horn 

with the smallest number of embryos was ligated. The ligature remained in place for the duration 

of the experiment and fetuses from the un-operated horn served as control. A subcutaneous 
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injection of Temgesic (Buprenorphine, 0.025mg/kg, Schering-Plough Co., Kenilworth NJ) was 

administered immediately following surgery.  

At 63-66 days UAL pregnant guinea pigs were sedated with an intramuscular injection of 

Versed (Midazolam, 5mg/kg, Sandoz Canada Inc., Boucherville QC) and after 10 minutes an 

intramuscular injection of Vetalar (Ketamine, 50mg/kg, Bioniche Animal Health Canada Inc., 

Belleville ON) together with Rompun (Zylazine, 3mg/kg, Bayer Inc., Toronto ON) were 

administered for anaesthesia. Subsequently, Robinul was injected subcutaneously (0.025mg/kg) 

and Xylocaine 2% (Lidocaine, AstraZeneca Can Inc., Mississauga ON) was injected along the 

incision line previously made during surgery. An adjacent incision was then made below the 

umbilicus, the fetuses removed and treated with Vetalar as above. After caesarean section, the 

mother was sacrificed with Euthanyl Forte (Pentobarbital Sodium, Bimeda-MTZ Animal Health 

Inc., Cambridge ON) by intracardiac injection. The placement of the ligature was confirmed at 

autopsy. Body weight and the brain:liver ratio of each fetus were measured. 

An additional 3 ligated pregnant guinea pigs were allowed to deliver spontaneously at 

term, at which time the pups were weighed and then returned to their mothers. At 20 days, 

guinea pig offspring were weaned, separated by sex,  placed on standard chow and housed in 

group cages in a temperature (18°C) and humidity (30%) controlled environment, with a 12:12 

hour light-dark cycle. From the time of birth, guinea pig offspring were weighed weekly. At 13-

15 months of age which corresponds to mid-adulthood (Kind et al., 2003), offspring were 

sacrificed by intracardiac injection of Euthanyl Forte (Pentobarbital Sodium, Bimeda-MTZ 

Animal Health Inc., Cambridge ON). 

 

3.2.2 Fetal and Adult Groupings 

In order to preserve the integrity of fetal tissue by rapid organ collection during caesarean 

section, only the most medial and lateral fetus were studied with horns of more than 3 fetuses. 

Groupings of late gestation fetuses were based on morphometric indices of fetal growth. Fetuses 

were defined as appropriate for gestational age (AGA) if their body weights were within the 25th 

and 75th percentile of all fetuses, small for gestational age (SGA) if their body weights were 

below the 25th percentile and brain:liver ratios were below the group median, and intrauterine 

growth restricted (IUGR) if their body weights were below the 25th percentile and brain:liver 
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ratios were above the group median. The group median included all fetuses of each litter. The 

range of fetal weights used in the present study for classification into appropriate for AGA, SGA 

and IUGR, are comparable to those used by other studies (Briscoe et al., 2004;  Lafeber et al., 

1984). The group median of the brain:liver ratio including all fetuses was 0.85, a ratio above this 

value has been previously defined as IUGR in guinea pigs (Carter, 1993).  For groupings of 

offspring, the smallest pups in the ligated uterine horn were considered growth impaired and the 

remaining pups were considered AGA. 

 

3.2.3 Staining for Collagen and Elastin  

Aortae of fetal guinea pigs were perfusion fixed in situ with 4% paraformaldehyde at 

physiological pressure via the left ventricle and subsequently a segment of approximately 1.5 cm 

was excised immediately distal to the aortic arch for histological analyses. Aortae of adult 

offspring collected from the same anatomical location were placed in 4% paraformaldehyde for 

fixation. Fixed aortae from fetal and adult guinea pigs were cut into cross-sections, embedded in 

paraffin and cut in 5 µm cross-sections that were baked onto positively charged glass plates by 

heating in a 50 ºC oven for 2 days. After deparaffinization, aortic cross-sections were rehydrated 

by passage through a decreasing ethanol series. Collagen content was measured in cross-sections 

stained with 1% Sirius Red F3BA (Sigma-Aldrich Canada Ltd., Oakville ON) in a saturated 

aqueous solution of picric acid, for 1 hour. Additional aortic sections were stained 30 minutes in 

0.2 % Orcein (Sigma-Aldrich Canada Ltd., Oakville ON) for identification of elastic fibres. 

Stained cross-sections were captured on a microscope (Leica DM RB) at 423x magnification. 

Duplicates of 2-3 cross-sections per animal and 5-6 areas per cross-section were used for 

analysis. Animal identity corresponding to each slide was blinded to the operator for analyses. 

Wall thickness was measured as the distance between the internal and external elastic laminae. 

For collagen quantification the tunica media was selected, whereas elastin content measurement 

included both the tunica media and the internal elastic lamina. The area positive for protein 

(elastin or collagen) was identified by color thresholding using image analysis software (Image 

Pro 6.0, MediaCybernetics, Bethesda, MD) and expressed relative to the sum of area non-

stained. Total protein content (elastin or collagen) was calculated by multiplying the average 

wall thickness for each vessel by the percent area stained, as performed by previous studies 

 



104 

 

(Kobs et al., 2005). In orcein stained cross-sections the individual elastic laminae from internal 

to external elastic lamina were counted. 

 

3.2.4 Immunofluorescent Staining for α-actin and MHC-B  

Additional deparaffinized and rehydrated aortic cross-sections were incubated at room 

temperature for 10 min in Background Sniper (Biocare Medical LLC, Brampton, ON) for 

blockage of nonspecific binding, followed by incubation with primary antibodies diluted in  

Universal Antibody Diluting Solution (Dako Canada Inc., Burlington ON) in a humidified 

chamber at 4ºC overnight: 1:4000 dilutions of monoclonal mouse immunoglobulin G α-actin 

antibody (Boehringer Ingelheim Ltd., Mannheim Germany) along with 1:2000 dilutions of 

polyclonal rabbit nonmuscle myosin heavy chain II-B (MHC-B) (Covance Inc., Emeryville, 

CA). After washing in phosphate-buffered saline, slides were incubated in 1:400 dilutions of 

Molecular Probes secondary antibodies Alexa Fluor® 568 and 405 (Invitrogen Life 

Technologies Co., Burlington, ON) at room temp for 30 min in a black covered humidity 

chamber. After washing, slides were counterstained for 15 min using Sytox Green (Invitrogen 

Life Technologies Co., Burlington ON). Replacement of the primary antibody with PBS or IgG 

was used as a negative control. Fluorescence VectaShield mounting medium (Vector 

Laboratories Burlington, ON) was used for mounting. Slides were stained in duplicate and 

simultaneously to minimize variation in staining intensity and all analyses were performed 

blinded to the operator. All antibodies were tested for specificity by Western Blot. Sections were 

imaged on a microscope (Zeiss) and captured at 40x objective using a camera and software for 

image capture and analysis (Axiovision 4.0, Carl Zeiss Microimaging LLC, Thornwood, NY). 

For each cross-section, 10-12 fields were analyzed. The area positive for staining was identified 

by color thresholding using image analysis software (Image Pro 6.0, MediaCybernetics, 

Bethesda, MD). The sum of area stained for α-actin and MHC-B and the number of cells stained 

with Sytox Green were expressed as a percentage of an area of constant dimension within the 

media.  
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3.2.5 Length-Tension Relationship in Adult Aortae 

Immediately after sacrifice, an aortic segment excised just distal to the segment used for 

histology was immediately placed in ice-cold Krebs solution (118 mM NaCl; 25 mM NaHCO3; 

11.1 mM D-glucose; 4.71 mM KCl; 2.56 mM CaCl2 · 2H2O; 1.13 mM NaH2PO4 · 2H2O; 1.12 

mM MgCl2 · 6H2O; 0.114 mM Ascorbic acid; 0.0297 mM disodium EDTA) for in vitro 

measurement of compliance, as previously described for rats (Kingwell et al., 1997). Three 

aortic rings from each animal were mounted isometrically onto 2  parallel stainless steel wires, 

one connected to a micrometer for fine distance adjustments and the other connected to a force 

transducer (FT03; Grass Instruments) attached to a digital display (P11T; Grass Instruments). An 

initial pre-stretch of each vessel was performed by stretching the rings from the zero tension 

position to a maximal stretch of 3mm in 500 µm increments, at 2 min intervals. Following the 

pre-conditioning, the aortic rings were allowed to equilibrate at zero tension for 15 min. A 

length-tension curve was then generated by increasing the distance by 500 µm at 2 min intervals 

from the zero tension position until the vessel snapped or no further response was observed. The 

length-tension relationship was then fitted by a linear equation, the slope of which relates 

directly to stiffness.  

 

3.2.6 Statistical Procedures 

All statistical procedures were performed using GraphPad Prism 5.0 (GraphPad Software, 

San Diego, CA). Between group differences were assessed using one-way ANOVA with 

Bonferroni post hoc tests, or unpaired t-test. Differences between length-tension curves were 

assessed using a two-way ANOVA. All data are presented as mean ± SEM and significance was 

set at p < .05. 

 

 

3.3 RESULTS 

 

3.3.1 UAL Leads to Fetal Growth Impairment and Postnatal Catch-Up Growth 

 Twenty six late gestation fetuses were studied (AGA: n = 12; SGA: n = 8; IUGR: n = 6). 

Body weights and brain:liver ratios of fetuses are shown in Figure 3.1. All fetuses but one in the 
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IUGR group were derived from the ligated horn. Twelve guinea pig offspring born from 3 

surgically prepared pregnant sows were studied. The birth weights of guinea pig offspring are 

shown in Figure 3.2. The smallest pups had birth weights approximately 20 % less than the AGA 

pups and comparable to the late gestation SGA fetuses and were thus defined as SGA (n = 5). 

The remaining pups of the litter were AGA (n = 7). During the postnatal period, SGA offspring 

exhibited catch-up growth that occurred by ~ 140 days (Figure 3.2). In later adulthood, at the 

time of sacrifice (14 months), the body weights of AGA offspring were not significantly 

different from that of SGA offspring (1.0 ± 0.1 vs. 1.0 ± 0.1 kg).  

 

 3.3.2 Abnormal Aortic Structure Established In Utero is Magnified in Adulthood. 

The relative area positive for elastic fibre staining and the number of elastic lamellae 

adjusted for media thickness in aortae of late gestation fetuses and adult offspring are shown in 

Figure 3.3. In late gestation, relative elastic fibre staining in the aorta was reduced by 10 % and 

14 % in SGA and IUGR fetuses, respectively, compared to AGA fetuses (p = 0.14). The total 

number of elastic laminae in late gestation fetuses was 14.6 ± 0.8 for the AGA group; 13.4 ± 0.4 

for the SGA group and 13.2 ± 0.5 for the IUGR group. The total number of elastic laminae 

relative to media thickness was similar between fetal groups. Media thickness was 69.0 ± 0.1 µm 

in AGA fetuses; 58.5 ± 3.7 µm in SGA fetuses and 53.9 ± 3.3µm in IUGR fetuses. In adulthood, 

relative elastic fibre staining of the aorta in SGA offspring was 51 % lower than that of AGA 

offspring (p < .01). Relative to AGA, SGA adults had a smaller total number of elastic lamellae 

(14.5 ± 0.9 in AGA vs. 12.4 ± 0.7 in SGA). The ratio of elastic laminae-to-media thickness was 

25 % lower in SGA compared to AGA adult offspring (p < .01), whereas media thickness and 

the ratio of media thickness-to-body weight were similar between groups. Permanence in the 

total number of elastic lamellae between late gestation and adulthood was demonstrated in that 

the total number of elastic lamellae was similar in normally grown fetuses and adults: 14.6 ± 0.8 

in AGA late gestation fetuses and 14.5 ± 0.9 in AGA adult offspring. In both SGA and IUGR 

late gestation fetuses, the relative area positive for collagen staining was increased by 100 % 

relative to that of AGA fetuses (AGA: 0.69 ± 0.14; SGA: 1.46 ± 0.40; IUGR: 1.38 ± 0.29, p = 

.06). Compared to AGA, total collagen content was increased by 29% and 18% in SGA and 

IUGR fetuses respectively (AGA: 18.10 ± 2.49; SGA: 23.42 ± 4.65; IUGR: 21.28 ± 2.49).  
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Figure 3.1 Body Weight and Brain:Liver Ratio of Late Gestation Fetuses 

Late gestation fetuses were grouped according to body weight percentiles and the 

brain:liver ratio which is an accurate indicator of asymmetric intrauterine growth 

restriction (IUGR).  Average body weight of small-for-gestational-age (SGA) fetuses (n = 

8) was 25 % lower than that for appropriate-for-gestational-age (AGA) fetuses (n = 12) 

(A).  IUGR fetuses (n = 6) had body weights 40 % lower than AGA fetuses and 20 % 

lower than SGA fetuses (A).  The brain:liver ratio was similar between AGA and SGA 

fetuses, and 38 % lower in AGA vs. IUGR fetuses.  

* p < .05 AGA vs. SGA and IUGR 

† P < .05 SGA vs. IUGR 
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Figure 3.2 Birth Weight and Catch-up Growth in Offspring 

Guinea pig offspring were grouped at the time of birth into an appropriate-for-

gestational-age (AGA) (n = 7) and a small-for-gestational-age (SGA) (n = 5) group, on 

the basis of birth weight.  Compared to AGA adults, average birth weight of SGA adults 

was 18 % lower (A).  In postnatal life SGA offspring exhibited catch up growth that 

occurred by ~ 140 days (B). 
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Figure 3.3 Elastic Fibre Content in Fetuses and Offspring 

A trend towards a stepwise reduction in the relative area stained positive for elastic fibres 

within the aortic media, was observed across appropriate-for-gestational-age (AGA), 

small-for-gestational-age (SGA) and intrauterine growth restricted (IUGR) late gestation 

fetuses (A). The number of individual circumferential elastic laminae within the aortic 

media remained normalized to wall thickness in SGA and IUGR late gestation fetuses 

(B). In adulthood, the relative area stained positive for elastic fibres was markedly lower 

in SGA compared to AGA offspring (C). As well, the ratio of the number of elastic 

laminae-to-media thickness was  reduced in SGA relative to AGA offspring (D).  

** p < .01 AGA vs. SGA   
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In adulthood,  no differences were observed for relative collagen content, whereas total collagen 

content was increased by 41% in SGA relative to AGA offspring (p = 0.1).  

There were no differences in the percent area stained for α-actin in the aortaes of late 

gestation fetuses (AGA: 46.3 ± 4.2; SGA: 46.2 ± 6.9; IUGR: 48.9 ± 4.1). The percent area 

stained for MHC-B was increased 6-fold in the SGA group compared to AGA fetuses, but no 

significant differences were found between AGA and IUGR fetuses (Figure 3.4). The percent 

area stained for α-actin in cross-sections of aortae from adult offspring, are shown in Figure 3.5.  

In aortae of adult SGA offspring, the % area stained for α-actin was 33% higher and the total α-

actin content was 56% higher compared to the AGA group (p < .05). The number of cells per 

area within the media was 2.0 ± 0.0 for the AGA adults and 1.6 ± 0.0 for the SGA group. Figure 

3.4 shows a 3 fold increase in the % area stained for MHC-B was observed in SGA relative to 

AGA offspring (p < .05).  

 

3.3.4 Reduced Aortic Compliance in SGA Offspring 

The length-tension curve was shifted to the left in SGA adult offspring compared to control adult 

offspring (Figure 3.6).  

 

3.5 DISCUSSION 

This study is the first to demonstrate experimentally, a link between aberrant arterial 

development in the fetal guinea pig under substrate deprivation and central arterial stiffening in 

adulthood. We showed adult guinea pigs born of low birth weight to develop increased aortic 

stiffness that is a consequence of altered media composition likely originating in utero. The 

marked reduction in relative elastic fibre content observed in SGA adult offspring was present to 

a lesser degree in SGA and IUGR near term fetuses. This apparent postnatal magnification of the 

subtle offset in balance between the elastic and stiff wall components was due to media 

hypertrophy without concomitant deposition of elastin proteins. The high expression of α-actin in 

adult SGA offspring suggests that VSMC proliferation or hypertrophy occurred within the aortic 

media.  Low birth weight offspring also displayed increased collagen content along with an 

abundance of embryonic-type VSMCs that are capable of synthesizing ECM proteins. The  
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Figure 3.4 MHC-B in SGA Fetuses and Offspring 

 The % area stained for MHC-B, a marker for synthetic-type VSMCs, was increased 6-

fold in the small-for-gestational-age (SGA) group relative to appropriate-for-gestational-

age (AGA) fetuses (A). Aortae from adult SGA offspring also exhibited an increase in 

the % area stained for MHC-B (B). Shown are fluorescent staining of MHC-B proteins 

(red) and nuclei (green) within the aortic media of AGA (C) and SGA (D) adult 

offspring. 

* p < .05 AGA vs. SGA 

*** p < .001 AGA vs. SGA 
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Figure 3.5 α-actin in SGA offspring 

The % area stained for the α-actin protein within the aortic media was increased in small-

for-gestational-age (SGA) compared to appropriate-for-gestational-age (AGA) adult 

offspring. 

* p < .05 AGA vs. SGA 
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Figure 3.6 Length-Tension Curve in SGA Offspring 

The length-tension curve was shifted to the left in aortae from SGA compared to AGA 

adult offspring. 

* p < .05 AGA vs. SGA 

*** p < .001 AGA vs. SGA 
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striking increase in staining for the marker of these synthetic VSMCs was also present in SGA 

fetuses, suggesting that a delayed VSMC maturation in utero leads to permanent phenotypic 

characteristics in the offspring. Our measurement of reduced aortic compliance in low birth 

weight offspring by ex-vivo generation of length tension curves, substantiates the positive 

correlations between birth weight and arterial compliance previously reported in human children, 

adolescents and adults (Bradley et al., 2010; Cheunget al., 2004; Mzayek et al., 2009;  te Velde 

et al., 2004).   Further, our data suggest that aortic dysfunction in low birth weight offspring is 

linked to structural and cellular defects programmed by intrauterine deficiency that persist and 

are magnified postnatally. Thus, we provide evidence for a mechanism underlying the high risk 

of hypertension and CVD repeatedly reported in low birth weight human adults (Law et al., 

1993; Martyn et al., 1998; Nilsson et al., 1997; Osmond et al., 1993).  

 

3.5.1 Enduring Changes in ECM Composition Established In Utero 

Elastin precursors are synthesized during a brief developmental window, predominantly 

in proximal arteries, and once deposited as insoluble proteins will endure the lifetime of an 

individual (Mariencheck et al., 1995; Shapiro et al., 1991). These proteins comprise 90% of 

elastic fibres which bear circumferential tension at low distending pressures, affording properties 

of distension and recoil of the vascular wall (Roach and Burton, 1957). Given that transfer of 

intravascular load from elastin to collagen occurs over the physiological pressure range, the 

relative reduction in elastic fibre content evident in low birth weight offspring results in collagen 

recruitment at lower distending pressure and wall stiffening.  The reduced elastic fibre content in 

adult life may be remnant of changes originating in utero. We observed a subtle decrease in the 

total number of elastic laminae and relative content of elastin fibres in late gestation fetuses that 

were graded in relation to severity of growth impairment, the latter associated with a reduced 

thickness of the elastic laminae as the number of elastic laminae remained normalized to wall 

thickness. A disturbance in elastin deposition is permanent since these proteins are not 

appreciably synthesized in postnatal life once developmental remodeling is complete 

(Mariencheck et al., 2005). The stability of elastic components was demonstrated in the present 

study, as the total number of elastic laminae was comparable between AGA fetuses and AGA 

adults. A fixed ECM ratio established before birth that is slightly deficient in elastic components, 
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together with accumulation of other wall constituents during normal postnatal arterial growth, 

likely account for abnormal ECM composition and associated aortic stiffening in later life. The 

present study did not allow for examination of an adult IUGR group, yet a greater degree of 

structural changes translating to a further stiffening of the aorta is likely in such offspring. 

Nevertheless, evident stiffening in the moderately growth impaired adult offspring, speaks to the 

potency of placental intrauterine insults as a trigger for progression of cardiovascular pathology.  

 

3.5.2 Functional Consequence of Programmed Aortic Structure 

Dynamic elasticity of the aorta and its major branches provided by passive mechanical 

properties of ECM proteins, dampen pressure oscillations generated by ventricular ejection 

thereby minimizing energetic demands placed on the heart (Abhayaratna et al., 2008). A 

compromise in this buffering function of the proximal circulation leads to progressive 

hemodynamic disturbance and cardiac malfunction. In fact, noninvasive indices of aortic 

stiffness are independent and powerful predictors of hypertension and CVD (Abhayaratna et al., 

2008). Therefore, the present study provides evidence that aortic stiffening underlies 

vulnerability to CVD in individuals who failed to reach their intrauterine growth trajectories. 

Aortic stiffening in SGA guinea pig offspring concurred with a phenotype resembling 

hypertensive remodeling and present in human adults destined to develop CVD,  that is VSMC 

phenotype modulation and hypertophy, increased collagen accumulation and reduced elastin 

content due to protein degradation and fibre fragmentation (Et-Taouil et al., 2003) Our data 

suggest that premature initiation and acceleration of this adverse remodeling and associated wall 

stiffening arise from aberrant arterial development under placental insufficiency-induced 

substrate deprivation. 

 

3.5.3 Enduring Changes in VSMC Phenotype Established In Utero 

Cellular phenotype was identified in the current study by the presence of MHC-B, a 

commonly used marker for embryonic VSMCs that are highly proliferative and migratory and 

capable of synthesizing large amounts of ECM proteins. Over the second half of gestation, these 

synthetic-type cells undergo a phenotypic switch to mature cells that express a host of proteins 

required for their contractile function, such as α-actin (Hutanu et al., 2007). Differentiation is 

 



122 

 

reversible, as phenotypic modulation of contractile VSMCs to their synthetic precursors in 

response to injury and local environmental cues contributes importantly to pathological 

remodeling in postnatal life (Chen et al., 2010; Raines and Ross, 1993). Our data reveal a 

marked increase in relative MHC-B content in SGA fetuses and adult offspring that was absent 

from IUGR fetuses. It is possible that interference in phenotypic switching in utero resulting in 

permanent changes in gene expression underlies the high MHC-B content associated with 

moderate growth restriction observed in both fetal and adult life.  Enduring changes in gene 

expression patterns arising from transitory alterations in the intrauterine milieu are thought to be 

central in fetal programming of chronic disease (Ozanne and Constancia, 2007). A proposed 

mechanism for persistence of adaptations in cellular identity over time in an individual and 

across generations is a change in the epigenotype. Evidence suggests VSMC phenotype to be 

regulated at the level of chromatin and thus susceptible to epigenetic modifications (McDonald 

et al., 2006; Qiu and Li, 2006). With respect to the discrepancy in cellular response in 

moderately versus severely growth restricted fetuses observed in the present study, we have 

previously shown changes in gene expression and protein deposition in the aorta to be dependent 

on the severity of intrauterine hypoxia, and this dose-response relationship varied with the 

outcome measured (Thompson et al., 2011a). Thus, intracellular signals regulating VSMC 

differentiation may be differentially affected by the level of hypoxia or oxidative stress reached 

in the IUGR fetuses and this may account for the maintenance of VSMC maturation despite 

slowed overall growth in this group. Currently, comparisons between symmetrically and 

asymmetrically growth restricted fetuses in terms of developmental outcomes have not been 

investigated. 

 

3.6 CONCLUSIONS 

Placental insufficiency in the pregnant guinea pig results in a reduction in relative elastic 

fibre content of the fetal aorta that is related to the severity of growth restriction; a finding that 

agrees with recent studies in the hypoxic sheep fetus (Thompson et al., 2011b).  The current 

study is novel in that it examines both the immediate and long-term effects of fetal growth 

impairment on aortic structure and function. In so doing, the subtle reduction in elastic fibre 

 



123 

 

content exhibited by the growth restricted fetus was shown to be amplified later in adulthood and 

this was associated with a decreased compliance of the aorta. Aortae of growth impaired 

offspring also deviated from those of normal birth weight offspring with respect to the content of 

collagen and VSMCs as well as VSMC phenotype. Our data suggest that altered VSMC 

phenotype in the SGA offspring may derive directly from an interference in VSMC maturation in 

utero.  

This study provides evidence that fetal growth impairment is associated with changes in 

media composition and cellular properties of the aorta that persist postnatally and lead to reduced 

compliance in adulthood. Thus, we have identified a developmental disturbance that may be key 

in the programming of cardiovascular pathology that is known to occur in low birth weight 

human offspring. Clinical inferences drawn from this model with respect to phenotypic outcomes 

are validated in that the timing of developmental processes are likely similar between the guinea 

pig and human, since both are precocious developers. Identification of phenotypes consequent to 

particular prenatal insults is the first step in testing prenatal and postnatal therapeutic targets for 

the SGA and IUGR infant. The potential of early and aggressive intervention in offspring of 

complicated pregnancy has not been realized, since this population has essentially been omitted 

in current CVD risk estimation, treatment and preventative strategies. Hence, further 

investigation with use of animal models in the characterization of cardiovascular profiles, is 

required to address these individuals who are born susceptible.  
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4.1 INTRODUCTION 

A nuchal cord occurs when the umbilical cord becomes wrapped around the fetal neck 

and is detected in 25 percent of human pregnancies at the time of birth (Collins et al., 1995; 

Tantbirojn et al., 2009). In late gestation, episodes of acute fetal hypoxemia apparent by 

abnormal heart rate patterns have been linked to the presence of a nuchal cord and are thought to 

arise from intermittent umbilical cord compression and consequent reductions in umbilical blood 

flow (Tantbirojn et al., 2009).  These recurrent intrauterine insults have the potential to alter fetal 

development in relation to the frequency and severity of insult. The cardiovascular system may 

be particularly susceptible to programming effects since the circulatory response to acute 

hypoxemia involves mediators of its development, yet vascular changes in response to umbilical 

cord occlusion remain unexplored. 

 Essential to growth and development of the arterial system is a temporal and spatial 

adaptation of the vasculature to maturational changes in the physical forces it sustains (Bendeck 

et al., 1994; Bendeck et al., 1991). This process involves geometric and compositional 

remodeling of the arterial wall, achieved by synthesis and deposition of structural proteins into 

the extracellular matrix by vascular smooth muscle cells (Bendeck et al., 1994; Wells et al., 

1999).  The elastin protein is a primary constituent of the matrix which endows the vascular wall 

with the ability to expand and recoil and is therefore a major determinant of its viscoelastic 

property (Kelleher et al., 2004; Shadwick, 1999).  Unlike other arterial wall constituents, elastin 

is not appreciably synthesized in postnatal life once developmental remodeling is complete 

(Davis, 1993; Keeley and Alatawi, 1991; Mariencheck et al., 1995).  

 In mammals the majority of elastin deposition occurs in late gestation wherein 

hemodynamic forces become highly influential, and it is during this time when symptomatic 

nuchal cord is likely to manifest (Bendeck et al., 1994). The fetal circulatory response to 

umbilical cord occlusion involves a transient rise in arterial blood pressure accompanied by a 

redistribution of cardiac output in favor of vital organs such as the brain (Green et al., 1991; 

Green et al., 2001; Kaneko et al., 2003).  Since elastin deposition is stimulated by blood flow in 

late gestation, the hemodynamic response to intermittent hypoxia may give rise to an increase in 

elastin content in the carotid artery which is the major supplier of blood to the brain (keeley and 

Alatawi, 1991; Driss et al., 1997). Other possible mediators of perturbations in vascular 
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development are hormones and growth factors involved in the response to acute hypoxia, 

including angiotensin II, TGF-β, and cortisol which is a potent stimulus for matrix protein 

deposition in late gestation (Bendeck and Langille, 1991; Sundgren et al., 2003; Zhang et al., 

2003).  

 The present study used the chronically catheterized ovine fetus to determine elastin 

content of the carotid artery and superior mesenteric artery in relation to severity of intermittent 

umbilical cord occlusion as well as characterize the corresponding fetal response in terms of 

arterial blood pressure and circulating cortisol concentration. While the duration and severity of 

UCO varies widely in the human situation, we studied varying degrees of acute hypoxia likely to 

result in fetal survival and previously shown to produce changes in brain development 

(Falkowski et al., 2002; Rocha et al., 2004).  With regard to arterial development, we chose to 

focus on the extracellular matrix protein elastin given that once deposited during the brief 

window of early development, highly resilient mature elastin proteins do not undergo turnover 

and thus will endure the lifetime of an individual (Davis, 1993; Mariencheck et al., 1995). 

Furthermore, the abundance of elastin in large conduit arteries imparts characteristics of 

distensibility and elastic recoil that promote cardiovascular homeostasis by dampening the 

pressure oscillations produced by cardiac ejection (Shadwick, 1999). Thus an alteration in 

deposition of elastin during development may have long-term consequences for cardiovascular 

health. 

 

 

 4.2  METHODS 

 All surgical and experimental procedures followed the guide to the care and use of 

experimental animals approved by the Canadian Council on Animal Care Regulations and The 

University of Western Ontario Animal Ethics board. UCO is an established model of acute 

hypoxia in the ovine fetus (Green et al., 2001; Gardner and Giussani, 2003; Wassink et al., 

2007).  Surgical preparation and experimental manipulations were performed as previously 

described (Green et al., 2001).  
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4.2.1 Surgical Procedures  

 Pregnant mixed Western ewes between 113 and 117 days of gestation (term = 147 days) 

were chronically instrumented using sterile technique under general anesthesia (1g thiopental 

sodium in solution, intravenously (IV) for induction; Abbott Laboratories Ltd, Montreal, Canada; 

followed by 1% to 1.5% halothane in O2 for maintenance).  Prior to surgery, an analgesic was 

given intramuscularly to the ewe (0.2 g ketoprofen, Merial Canada Inc, Quebec, Canada).  A 

midline incision was made in the lower abdominal wall, and the uterus was palpated to determine 

the fetal number and position. The upper body of the fetus and the proximal portion of the 

umbilical cord were exteriorized through an incision in the uterine wall. Polyvinyl catheters 

(Scientific Commodities, Lake Havasu city, AZ) were placed in the right and left fetal 

brachiocephalic arteries (0.72 : 1.22 mm) for measurement of blood pressure and sampling, the 

right fetal brachiocephalic vein ( 0.72 : 1.22 mm) for administration of antibiotics and 

transfusion of maternal blood, and the right maternal femoral vein (1.68 : 2.39 mm) for 

administration of antibiotics, sampling and euthanasia.  In experimental animals an inflatable 

silicone occluder cuff (OCHD16; In Vivo Metric, Healdsburg, CA, USA), was positioned around 

the umbilical cord and secured to the abdominal skin, and the volume required for complete 

inflation was determined (4 – 6 cc). Once the fetus was returned to the uterus, a catheter was 

placed in the amniotic fluid cavity for measurement of amniotic pressure. Antibiotics were 

administered intra-operatively to the mother, (0.2 g trimethoprim and 1.2 g sulfadorine (IV), 

Schering Canada Inc, Pointe-Claire, Quebec, Canada) fetus (IV) and amniotic cavity (1 million 

IU penicillin G sodium, Pharmaceutical Partners of Canada, Richmond Hill, Ontario, Canada). 

The uterus and abdominal wall incisions were sutured in layers and catheters exteriorized 

through the maternal flank and secured to the back of the ewe in a plastic pouch.   

 Ewes were allowed a 3-4 day postoperative period prior to experimentation, during which 

the antibiotic regime was administered.  Arterial blood was sampled for evaluation of maternal 

and fetal condition and catheters were flushed with heparinized saline to maintain patency.   

 

4.2.2 Experimental Design 

Umbilical cord occlusion was achieved by completely inflating the cuff with sterile saline 

using the predetermined volume. Over a five-hour period, the mild group received a single one-

 



132 

 

minute occlusion every hour (n = 6), the moderate group a single two-minute occlusion every 

hour (n = 4), the severe group a single three-minute occlusion every hour (n = 6) and the control 

group received no occlusion (n = 7). For each experimental day, the five-hour occlusion series 

was preceded by a two-hour baseline and followed by a two-hour recovery period. On days one 

and four, fetal blood samples were taken during baseline and recovery for measurement of 

cortisol, blood gases, lactate and pH. Additionally, fetal blood gases, lactate and pH were 

measured five minutes before the occlusion, at the end of the occlusion, and five minutes after 

the occlusion, for the first and last occlusion of each day. 

 

4.2.3  In Vivo Physiological Parameters 

 Blood was analyzed for blood gases, oxygen saturation, lactate and pH using a blood gas 

analyzer (ABL-725, Radiometer, Copenhagen, Denmark) and corrected for fetal temperature (T 

= 39.5°C). Plasma aliquots from samples drawn at baseline, post-UCO (first and last UCO) and 

recovery were stored at – 80 °C for later cortisol analysis. Fetal arterial blood pressure, adjusted 

for amniotic fluid pressure, was continuously monitored with pressure transducers (Cobe, 

Arvada, CO) and recorded on a data acquisition system (Powerlab model ML 795, ADI 

Instruments, Colorado Springs, CO). Fetal heart rate (FHR) was derived from the arterial blood 

pressure waveform. The control group was subjected to the same blood sampling and 

cardiovascular monitoring regime as the experimental group. 

 On the fourth day of study ewes and fetuses were sacrificed with an overdose of 

barbiturate after the 2-hr recovery period (30mg pentobarbital sodium, Fatal-Plus; Vortech 

Pharmaceuticals, Dearborn, MI); the fetus was delivered immediately by cesarean section and 

weighed. Approximately two cm of the carotid artery was taken above the aortic arch and the 

superior mesenteric was excised between its origin and the first pancreatic branch. Vessels were 

stripped of connective tissue, fast frozen in liquid nitrogen and stored at -80° C for later analysis.  

 

4.2.4 Biochemical Measurement of Elastin Composition 

 Thawed samples were diced, and weighed.  Extraction and quantification of elastin was 

performed as previously described (Burkhardt et al., 2008; Cheng et al., 2008; Foronjy et al., 

2008).  After tissues were weighed they were treated with 0.25M oxalic acid and then placed into 
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a boiling water bath for 60 minutes for extraction of insoluble elastin. After centrifugation (3000 

xg for 10 minutes), the liquid was retained and the extraction procedure repeated for the 

remaining residue. It was confirmed that two heat extractions resulted in complete solubilization 

of elastin.  Elastin was recovered from the liquid extract and precipitated using fastin dye 

reagent: 5,10,15,20-tetraphenyl-21,23-pophrine sulfonate, and quantified according to the 

manufacturer’s instructions for the Fastin elastin assay (Biocolor, Belfast, Ireland). Absorbance 

of standards (0, 12.5, 25, 50 and 70 µg/µL) and samples were read on a microplate reader 

(Multiskan Ascent, Thermo labsystems, Fischer Scientific, Ottawa, Canada) using a 509 nm blue 

green filter.  The amount of elastin present was determined from the standard curve and 

expressed as µg per mg tissue. The intra-assay and inter-assay coefficient of variation for the 

Fastin elastin assay was 5.9% and 9.9% respectively. 

 

4.2.5 Plasma Cortisol Concentration 

 Cortisol plasma concentration was measured using an enzyme-linked immunosorbent 

(ELISA) assay (ALPCO Diagnostics, Salem, NH); the intra-assay and inter-assay coefficient of 

variation for the cortisol ELISA was 5.6% and 7.1%, respectively. 

 

4.2.6 Data Analyses and Statistical Procedures 

 Analyses of the raw blood pressure signal and heart rate data were performed using 

powerlab software (Powerlab, ADI Instruments, Colorado Springs, CO).  During the baseline 

and recovery periods on days one and four, 20 min averages of fetal mean arterial blood pressure 

(MAP), systolic pressure (SysP), pulse pressure (PP) and heart rate (FHR) were calculated for 

each fetus. Within group comparisons of baseline and recovery values across the four 

experimental days were made by a one-way ANOVA for repeated measures. For each UCO on 

days one and four, 30 second averages of MAP and PP data and 10 second averages of FHR data 

were calculated over two minutes prior to the onset of occlusion and over the course of the 

response, for determination of the maximum change (∆) in MAP and  the duration of the rise in 

MAP. Also, 10-minute averages of MAP, PP and SysP, from the onset of UCO were measured 

and used to calculate the mean pre to post-UCO change in these variables.  Differences between 

groups in elastin content of the carotid and superior mesenteric arteries were assessed using a 
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one-way ANOVA. Cortisol concentrations were analyzed using repeated measures, and group 

means were calculated. A post hoc Bonferroni test was performed with findings of significant 

difference. Significance was set at p < .05 and results are presented as mean ± SEM. 

 

4.3 RESULTS 

Gestational age and birth weight were similar across groups. Experimental groups 

comprised 7 control, 6 mild, 4 moderate and 6 severe animals. There were no significant 

differences in fetal oxygenation and MAP at baseline on day 1 between the four groups [(control 

PaO2: 23.6 ± 0.9 mmHg; MAP: 37.6 ± 4.5 mmHg), (mild PaO2: 23.3 ± 0.9 mmHg; MAP: 39.7 ± 

3.7 mmHg), (moderate PaO2: 22.1 ± 0.4 mmHg; MAP: 42.5 ± 2.5 mmHg), (severe PaO2: 22.0 ± 

1.2 mmHg; MAP: 40.0 ± 3.4 mmHg)].  There was no change in baseline MAP over the four day 

experiment. As well, baseline cortisol levels were similar among groups on day 1 and within 

groups across the study [(day 1: control: 2.4 ± 0.3 µg/dL; mild: 3.4 ± 0.1 µg/dL; moderate: 3.1 ± 

0.9 µg/dL; severe: 2.5 ± 0.6 µg/dL), (day 4: control: 5.4 ± 2.6 µg/dL; mild: 6.8 ± 4.0 µg/dL; 

moderate: 7.0 ± 3.3 µg/dL; severe: 3.2 ± 0.6 µg/dL).  

Fetal arterial oxygen pressure (PaO2), oxygen saturation (O2 sat), and carbon dioxide 

pressure (PaCO2) changed in a graded fashion across mild, moderate and severe groups (Table 

4.1). Fetal arterial oxygenation and pH returned to pre-occlusion levels by 5 min post-occlusion 

in all experimental groups. An immediate deceleration in fetal heart rate accompanied umbilical 

cord occlusion of each degree, with a return to baseline within three minutes (Figure 4.1). Mild, 

moderate and severe occlusion produced a transient rise in MAP, Sys P and PP. The max ∆ in 

MAP, and the mean ∆ in MAP associated with cord occlusion in each group are shown in Table 

4.2.  The mean level of MAP over the 10 minute period following the onset of UCO, as well as 

the duration of the rise in MAP post-UCO are also shown in Table 4.2.  The mean ∆ in SysP 

stimulated by UCO increased in magnitude across groups (mild: 12.3 ± 1.0 mmHg; moderate: 

17.6 ± 1.1 mmHg; severe: 20.0 ± 1.5 mmHg, p < .01). Although PP increased in response to 

UCO, the mean ∆ in PP did not differ between groups (mild: 5.2 ± 0.3 mmHg; moderate 4.9 ± 

0.7 mmHg; severe: 6.2 ± 0.8 mmHg).  
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Figure 4.1: Typical Cardiovascular Response to UCO  The typical response to 

umbilical cord occlusion (UCO) of each degree was characterized by a transient fall in 

fetal heart rate and rise in fetal mean arterial blood pressure. Shown is the blood pressure 

and heart rate response to severe UCO. The 3-min UCO was initiated at time 0 min (as 

indicated by the horizontal line). Blood pressure was measured from the brachiocephalic 

artery and heart rate was derived from the arterial blood pressure waveform. 
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A  trend towards increasing elastin content of the carotid artery with increasing severity 

of fetal hypoxemia was apparent, the difference was only significant for the severe group (p < 

.05) (Table 4.2, Figure 4.2). In contrast, elastin content of the superior mesenteric artery did not 

differ between the three UCO groups and the control group (Figure 4.2).  

There was no consistent cortisol response to mild UCO on day one or day four. However, 

repeated measures analysis revealed post-UCO plasma cortisol concentration to be consistently 

elevated in all fetuses made moderately or severely hypoxic on days one and four (p < 0.05).  

The  percent change in cortisol concentration associated with UCO on day one for the moderate 

group was 69.4 ± 8.9% and for the severe group 95.2 ± 17.6 %; and day four for the moderate 

group was 76.8 ± 38.6 % and for the severe group 112.1 ± 32.7%.   

 

 

4.4 DISCUSSION  

 The present study is the first to examine the effect of acute intermittent hypoxia on fetal 

arterial remodeling. Three degrees of acute, reversible hypoxemia without cumulative acidosis 

due to varied duration of UCO were produced repeatedly over 4 days in the late gestation ovine 

fetus. Fetuses exposed to intermittent hypoxia exhibited increased elastin content of the carotid 

artery in relation to the control group, with the most pronounced change observed in the severe 

UCO group. In contrast, no change in elastin content of the superior mesenteric artery was found. 

A transient rise in fetal blood pressure accompanied hypoxemia of each degree, and was 

increased in magnitude across mild, moderate and severe groups. We surmise that this 

circulatory adjustment to UCO accounts for the differential response in protein accumulation 

between the carotid and the superior mesenteric artery.  

Compliance of central conduit arteries which is largely a function of the abundant elastin 

protein is an important and independent determinant of cardiovascular health because it 

determines pulsatile load of the system (Shadwick, 1999). Since under normal conditions there is 

no appreciable synthesis of elastin after development, the content of elastin is largely determined 

in fetal life. Degradation and fragmentation of elastin over age in postnatal life due to repeated 

bouts of cyclic stretch have been implicated in the progression of hypertension and 

cardiovascular disease (Greenwald, 2007; Silvia et al., 2006). 
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Figure 4.2: Elastin Content of Carotid vs. Superior Mesenteric Artery Elastin 

composition in the carotid vs. superior mesenteric artery (SMA). The control group (n = 

7) recieved no umbilical cord occlusions (UCO); the mild hypoxic groups (n = 6) 

received one min UCO/hr; the moderate hypoxic group (n = 4) two min UCO/hr and the 

severe hypoxic group (n = 6) received 3 min UCO/hr. Elastin composition was higher in 

the severe group compared to control (p < .05). Values are expressed as µg/mg tissue and 

± SEM. 

* Hypoxic groups vs. control p < .05 

†† SMA vs. carotid artery p < .01 
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Therefore, the increase in elastin concentration of the fetal carotid artery in response to acute 

intermittent hypoxia may protect against the development of cardiovascular disease in postnatal 

life; thus the present study provides evidence for potentially beneficial programming in response 

to an acute prenatal insult. 

 

4.4.1 Acute Hypoxia, Hemodynamic Stimuli and Deposition of Elastin 

Alterations in vascular development produced by repeated UCO may be mediated by the 

changes in hemodynamic conditions and circulating hormones that occur in response to acute 

hypoxia or by direct effects of oxygen tension. Fetuses exposed to intermittent hypoxia in this 

study exhibited increased elastin content of the carotid artery in relation to control, with the most 

pronounced change in the severe group. We propose that the increase in elastin content of the 

carotid artery resulted primarily from hypoxic-induced changes in hemodynamic regulators of 

protein deposition. A transient rise in fetal blood pressure accompanied hypoxemia of each 

degree, and was increased in magnitude across mild, moderate and severe groups. It is known 

that redistribution of cardiac output with preference to the brain accompanies elevated blood 

pressure during acute hypoxia (Green et al., 1999; Kaneko et al., 2003).  Although blood flow 

was not measured in the present study, an increase in blood flow constituting both pressure and 

resistance elements and proportional to the observed increase in blood pressure is expected to 

occur in the carotid artery. Animals were examined in late gestation which corresponds to a time 

when elastin synthesis accelerates and becomes highly related to blood flow, in both human and 

sheep (Bendeck et al., 1994). The regulatory role of blood flow in elastin deposition during 

development has been demonstrated in fetal sheep by correlational analysis in various vessels 

and by experimental manipulations in neonatal rabbits whereby increases in local blood flow 

stimulate increases in arterial elastin content and decreases in elastin accumulation result from 

reductions in blood flow, with no effect on collagen (Langille et al., 1989; Leung et al., 1977). 

Only severe hypoxemia produced an average level of fetal MAP over the 10 minute period 

following the onset of UCO that was significantly greater than control values; and this level 

approaches that previously reported in newborn lambs at the time of peak elastin synthesis 

(Bendeck et al., 1994).  Therefore, a developmentally determined threshold level of blood flow 

stimulating an up-regulation in elastin synthesis may have been achieved during severe UCO, 
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resulting in the marked response of elastin accumulation in the carotid artery observed in this 

group. 

Interestingly, elastin content of the superior mesenteric artery was found to be unchanged 

by UCO. Blood flow through the carotid artery versus the superior mesenteric artery would 

differ dramatically during UCO due to local changes in vascular resistance that function in 

redistributing cardiac output with preference to the brain, whereas blood pressure would be 

similar between these two vessels. Previous studies have reported blood flow to the digestive 

tract to be maintained during complete occlusion similar in degree to that used in the present 

study and to only decrease in more severe hypoxemia with developing acidosis (Itskotvitz et al., 

1987; Peeters et al., 1989).    It is important to note that the relation between hemodynamic forces 

and elastin accumulation has been studied primarily in large arteries, thus it is possible that a 

different regulatory function of mechanical stimuli pertains to remodeling of small muscular 

arteries such as the superior mesenteric artery.  

 

4.4.2 Other Possible Mediators of Augmented Elastin Deposition 

In addition to locally mediated arterial remodeling, changes in circulating hormones 

induced by acute hypoxemia may contribute to the high elastin content observed with severe 

UCO. In agreement with previous work, we found circulating cortisol to rise in response to UCO 

(Green et al., 2000; Roelfsema et al., 2005; Unno et al., 1997). Cortisol stimulates both elastin 

and collagen synthesis and is thought to mediate the precipitous rise in protein accumulation that 

occurs in late gestation (Bendeck et al., 1994). However, plasma cortisol elevations which would 

presumably have a systemic effect, do not explain the differential response of the carotid versus 

the superior mesenteric artery to acute hypoxia. Alternatively, muscular arteries may respond 

differently to cortisol. Nevertheless, there was no cortisol response to mild UCO, whereas elastin 

content was increased in mild, moderate and severe compared to control. 

 Changes in oxygen tension are known to cause modifications in arterial structure and 

function. The oxygen-regulated response to hypoxia in vessels undergoing growth and 

development has been studied extensively in neonates exposed to chronic hypobaric hypoxia. 

The accelerated elastin accumulation which contributes substantially to morphometric changes in 

this model is attributed primarily to hypoxic-stimulated changes in mechanical load rather than 
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to changes in oxygen tension (Durmowicz et al., 1991; Stenmark  et al., 2006; Stenmark et al., 

1994).  In fact, elastin production is blunted in cultured smooth muscle cells exposed to hypoxia 

(Rabinovitch et al., 1983). Additional effects of hypoxia including changes in matrix protein 

turnover and vasoconstriction have been shown to occur only with prolongation of hypoxia 

therefore transient reductions in oxygenation produced by UCO in the present study were likely 

inconsequential in comparison to hemodynamic influences (Ambalavanan et al., 2007; Zaidi et 

al., 2002).  

 Quantitative analysis of elastin composition was undertaken as opposed to measurement 

of mRNA expression since absolute and relative content of elastin determines arterial stiffness.  

However the increase in elastin relative to tissue weight suggests that either elastin alone is 

increased or the other wall components have decreased. It is probable that the former has 

occurred since collagen deposition and smooth muscle cell proliferation are known to increase in 

response to hypoxia, cortisol and mechanical load (Bendeck et al., 1991; Kelleher et al., 2004). 

Structural constituents of the arterial wall control passive mechanical properties: elastin is the 

primary determinant of elastic modulus at low distending pressure, while extensibility at high 

pressure is a function of collagen (Shadwick, 1999).  Absolute and relative increases in elastin 

quantity enhance arterial distensibility at physiological pressures over which mechanical load is 

transferred from elastin to collagen. The organization and cross-linking of ECM proteins which 

may have been altered by acute hypoxia, also play a role in arterial mechanics (Cheng et al., 

2008).  

 

 

4.5 CONCLUSIONS 

 

In summary, acute, reversible fetal hypoxemia due to intermittent UCO appears to 

accelerate developmental deposition of elastin in the carotid artery in relation to the severity of 

insult, whereas matrix elastin content of the superior mesenteric artery is not affected. Although 

there are several possible mediators of this synthetic response, the current data suggest 

hemodynamic stimuli to play the primary role. As this study is the first to reveal perturbations in 

fetal arterial remodeling in response to intermittent hypoxemia, it implores a number of potential 
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routes for future inquiries including the effect on additional structural factors such as collagen 

content and cross-linking, resultant modifications in vascular morphology and long-term 

consequences for postnatal arterial function.  
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5.1 SUMMARY 

 

Exploration of potential mechanisms involved in the developmental origins of CVD was 

the overall goal of this thesis.  The main hypothesis tested was that a perturbation in arterial 

development during intrauterine life leads to permanent structural abnormalities and thereby 

arterial dysfunction in postnatal life. As the fundamental developmental disturbance, attention 

was directed towards the deposition of ECM proteins, elastin and collagen. The rationale being 

that the absolute and relative content of elastin and collagen within the aorta and other proximal 

arteries are the primary determinants of arterial compliance (Fonck et al., 2007; Shadwick, 

1999). In turn, reduced arterial compliance, or in other words wall stiffening, of the central 

vasculature is an important hallmark of CVD (Abhayaratna et al., 2008). Further, ECM 

composition of the arterial wall is to a large extent fixed upon conclusion of developmental 

remodeling, given that under normal conditions the elastin protein is not appreciably synthesized 

postnatally after approximately one month of age in the sheep and human (Bendeck et al., 1994; 

Mariencheck et al., 1995). Thus, a deficiency in elastin content established in utero will likely 

have long-term cardiovascular consequences.  Such a deficiency may be amplified in postnatal 

life when stimuli such as augmented mechanical load or injury lead to hypertrophic remodeling. 

This adverse remodeling which precedes hypertension and CVD involves phenotypic switching 

of VSMCs to their embryonic precursors that proliferate and deposit collagen and other proteins 

into the ECM (Owens et al., 2004). Since VSMC differentiation from embryonic VSMCs to 

mature contractile cells occurs over the second half of gestation (Owens et al., 2004), this 

developmental milestone was also examined in the context of intrauterine compromise. The key 

finding of the thesis is that aberrant aortic remodeling during the second half of gestation 

characterized by altered deposition of the ECM constituents, in the growth restricted fetus, leads 

to persistent structural abnormalities and increased wall stiffness in adulthood. Prior to these 

studies, interference in ECM protein deposition and consequent central arterial stiffening as a 

link between suboptimal intrauterine conditions and later CVD remained largely unexamined.  

Our studies present a novel perspective on programming of CVD as they show 

mechanical disadvantage and structural abnormalities of the proximal circulation linked to 

alteration in the expression and activity of key regulatory molecules involved in arterial 
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remodeling during fetal development. To date, investigation of programming with respect to 

cardiovascular pathology has primarily focused on kidney and heart development in addition to 

small artery function. Evidence suggests that substrate deficiency in utero results in delayed 

maturation and reduced proliferation of cardiomyocytes (Louey et al., 2007) and thereby 

conveys a potentially permanent disadvantage to the heart. Yet, this fails to explain the increased 

blood pressure consistently demonstrated in the growth restricted rodent (Alexander, 2003; 

Ceravolo et al., 2007) and human (Barker et al., 1990; Curhan et al., 1996), that presents as early 

as childhood (Arends et al., 2005). A potential mechanism of this programmed hypertension that 

has been extensively studied is altered kidney development and consequent disturbance in blood 

pressure regulation (Thompson and Regnault, 2011). Human studies report reduced kidney size 

and volume (Konje et al., 1997; Spencer et al., 2001) and decreased nephron number (Hinchliffe 

et al., 1992) in adults born small. In support of this, diminished glomeruli number has been 

found in postnatal rats exposed to placental insufficiency in utero (Moritz et al., 2009; Wlodek et 

al., 2008) In addition to kidney structure, vascular responsiveness as a correlate to hypertension 

in growth restricted offspring has been explored by several groups. Although several studies 

have reported endothelial dysfunction in human adults who were born of low birth weight 

(Brodszki et al., 2005; Goodfellow et al., 1998), rodent studies have yielded inconsistent results 

that are variable between the arterial segment under study (Mazzuca et al., 2010 Morton et al., 

2010; Payne et al., 2003).  Our preliminary studies revealed no change in responses of the small 

mesenteric artery in growth restricted adult guinea pig to a number of vasoconstrictive and 

vasodilatory agents. However, we did find premature intima thickening of the aorta in concert 

with elevated levels of E-selectin, a marker of endothelial damage, in growth restricted ovine 

fetuses. The atherosclerotic process is closely tied to endothelial damage and hence, it is possible 

that later development of endothelial dysfunction in growth restricted offspring derives directly 

from this in utero intimal response.  Taken together, human studies and some animals studies 

show that endothelial dysfunction is associated with IUGR, yet it is still unclear as to whether 

this derives directly from abnormalities in vascular properties and/or gene expression established 

before birth or is a secondary effect arising in postnatal life. Our data however, provide evidence 

that the increased risk for hypertension and CVD in growth restricted offspring can be traced to a 

direct effect on aortic development that results in a premature initiation of arterial stiffening and 
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intima thickening. These findings provide important insight into the developmental origins of 

CVD. 

 

5.1.2 Hypoxia as a Programming Agent 

As a cause of intrauterine growth restriction, we simulated the human condition of 

placental insufficiency using both a large and small animal model. These models bear clinical 

relevance since both species are prenatal developers as is the human and  placental insufficiency 

is the major cause of IUGR in developed countries (Kingdom et al., 2000). Compared to the 

commonly used nutritional models, placental insufficiency is studied less in the context of fetal 

programming. The insult imposed by placental insufficiency is a reduction in nutrient supply of 

which oxygen deprivation is a primary cause of blunted fetal growth and perturbed organ 

development (Giussani et al., 2007; Lackman et al., 2001). The duration of fetal hypoxia in the 

ovine model equates to 10 percent of gestation and was applied in late pregnancy, whereas 

hypoxia was endured over the second half of gestation in the ligated guinea pig. Another 

difference between the two models lies in the nature of fetal hypoxia. The ovine model resembles 

human IUGR arising from a failure in elaboration of the fetal villous tree and associated with 

abnormal UA EDFV (Macara et al., 1995; Krebs et al., 1996  ), while the guinea pig model 

approximates human IUGR due to inadequate spiral remodeling  and associated with reduced 

uterine blood flow (Aviram et al., 2010). One advantage of the sheep model was the ability to 

measure fetal arterial oxygen content in vivo and thus correlate the various measured outcomes to 

the level of oxygenation. This study confirmed that oxygen deprivation is the key insult of 

placental insufficiency and is instrumental in programming of cardiovascular dysfunction. The 

two models of chronic hypoxia produced a similar aortic phenotype with respect to ECM 

composition, however, there were differences in terms of wall growth likely due to the 

differential durations of the insult. This speaks to the relation between phenotypic outcome and 

timing of the insult. A third model of acute, intermittent hypoxia in the ovine fetus was studied, 

allowing for comparison of the vascular response to acute versus chronic hypoxia. A novel 

dimension of all three models was the assessment of the dose-response effect. Three degrees of 

acute hypoxia were produced in the acute study, two degrees of chronic hypoxia in the 

embolization study and a SGA and IUGR group were delineated in the guinea pig model. Taken 
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together, the data suggest that the vascular response and resulting phenotype is indeed dependent 

on the level of hypoxia and in turn, this relationship dependent on the outcome measured. 

 

5.1.3 Severity of Insult 

There is wide variation in the degree of human fetal growth impairment. Hence, it is 

important to note that relative to the spectrum of clinical placental insufficiency, our ovine model 

represents a mild insult given that it was applied over 10 percent of gestation, whereas human 

fetuses endure chronic hypoxia throughout the second half of gestation. As well, neither 

moderate nor severe hypoxic ovine fetuses developed metabolic acidosis or hypercapnia. Results 

of the ovine study suggest that elastin accumulation is particularly sensitive to arterial 

oxygenation, whereas collagen mRNA expression and accumulation is increased only with 

arterial oxygen saturation values below 40 percent. Interestingly, similar to the aorta, the 

umbilical artery of chronically hypoxic ovine fetuses showed a marked reduction in the size of 

the internal elastic lamina that was graded across moderate and severe groups (Figure 5.1). 

Elastin deficiency in growth impaired fetal guinea pigs was more subtle not reaching statistical 

significance, yet later in adult life this deficiency was amplified in concert with increased 

collagen and VSMC content. The SGA offspring studied had birth weights ~ 20 percent lower 

than the AGA offspring, a difference similar to those produced by nutritional models in rodents 

(Delahye et al., 2010). The fact that such a slight developmental disturbance in mildly growth 

restricted offspring is apparent functionally in adulthood is intriguing and suggests intrauterine 

compromise or birth weight to be a strong predictor of CVD. In agreement, human 

epidemiological studies report blood pressure to be inversely related to human birth weight, 

along the normal range of birth weights (Barker, 2005).  

 

5.1.4 Reduced Aortic Compliance Linked to Programming of CVD 

The main hypothesis that perturbed aortic remodeling in the substrate deprived fetus 

leads to persistent structural abnormalities and reduced compliance in postnatal life was 

confirmed by the two models of placental insufficiency. These studies were the first to 

demonstrate that altered ECM composition of the aorta occurs in the chronically hypoxic fetus, 

that this deficiency is indeed persistent and that the later consequence is reduced aortic  
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Figure 5.1 Thickness of Elastic Lamina in Hypoxic fetal sheep 

The concentric layers of internal elastic laminae of an umbilical artery from a control ovine fetus 

(A) and severely hypoxic fetus (B) are shown. The thickness of the internal elastic laminae was 

reduced in moderate and severe fetuses, compared to control.  

*  p < .05 hypoxic animals vs. control 

**  p < .01 hypoxic animals vs. control 
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compliance. The buffering capacity of the arterial system is a function of central arterial 

compliance and a compromise in this capacity leads to progressive hemodynamic disturbance 

and cardiac malfunction (Mitchell et al., 2000). In fact, noninvasive indices of aortic stiffness are 

independent and powerful predictors of hypertension and CVD (Abhayaratna et al. 2008). 

Further, aortic stiffening in adults is associated with increased wall thickness, excessive collagen 

accumulation, elastin degradation and fragmentation, VSMC proliferation and phenotypic 

switching (Et-Taouil et al. 2003), all of which bear resemblance to the phenotypes observed in 

our growth impaired animals. Therefore, our data suggest that the high risk for development of 

hypertension and CVD in those growth restricted in utero is tied to an interference in aortic ECM 

remodeling that manifests as blunted viscoelastic capacity. 

Although central arterial compliance has been largely unexplored with animal models of 

IUGR, several studies have non-invasively measured this CVD correlate in IUGR human 

offspring. The majority of human studies reveal an association betwen birth weight and arterial 

compliance. For instance, Martyn et al. (1995) examined arterial compliance in a group of 

middle-aged adults born between 1939 and 1940 in the UK. In this group, pulse wave velocity 

(PWV) as a measure of arterial stiffness in the central and peripheral arteries was higher in those 

whose measurements of weight, length and abdominal circumference were low at birth. The 

inverse relationship between birth measurements and PWV in this study was stronger in the 

central segment compared with that of the peripheral segment (Martin et al., 1995). A relation 

between central PWV and birth weight was also reported by Oren and colleagues, in a cohort of 

young adults living in the Netherlands born between 1970 and 1973 (Oren et al., 2003) (see 

Figure 1.4). On the other hand, two studies have failed to find a significant correlation between 

birth weight and indices of arterial compliance in young adults. The first measured PWV of 

peripheral arterial segments in men and women aged 25 years; and the other calculated the 

carotid artery distensibility coefficient and central PWV in a group of normotensive subjects 

aged 19-24 (Broyd et al, 2005; Montgomery et al., 2000).  

An affect of fetal growth on arterial compliance has also been reported in children. 

Peripheral conduit artery stiffness in 8 year olds measured by PWV was found to be higher in 

those born preterm and SGA compared to those who were preterm and AGA (Cheung et al., 

2004). Likewise, work in Spain found augmentation index, a surrogate measure of central arterial  
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stiffness, to be highest in the lowest birth weight category of children 7-18 years in age (Lurbe et 

al., 2003). Conversely, stiffness index of the aorta in a group of 9 year old children was found to 

be similar between those whose birth weights were AGA and those whose birth weights were 3 

standard deviations below the age related mean (Ley et al., 1997).  

 A shortcoming of the aforementioned studies in yielding inconsistent results regarding 

the effect of fetal growth restriction on later arterial function may lie in the use of birth weight as 

a proxy for intrauterine growth rate and the etiological variation in IUGR. This limitation was 

eradicated in two prospective studies by Mori et al., which performed non-invasive 

measurements of arterial distensibility in SGA newborns identified as having placental 

insufficiency in utero by abnormal UA EDFV and AGA infants with normal flow waveforms. 

Results of the first study revealed stiffness index of the aorta and carotid artery to be greatest in 

the lowest birth weight subgroup of the infants who suffered from placental insufficiency, and 

were significantly different from that of the AGA infants (Mori and Yoshiyuki, 2006). The 

second study found large artery stiffness to be increased in infants identified as having placental 

insufficiency during pregnancy, with the largest changes in the most severely compromised 

fetuses (Mori et al., 2006). Our data expound these human findings in that they confirm the 

developmental origins of arterial stiffening and demonstrate that this dysfunction is a direct 

result of hypoxic intrauterine insults rather than a secondary effect of postnatal catch-up growth 

or abnormalities in other organ systems. 

 

5.1.5 Chronic Hypoxia and VSMC Maturation 

An interesting contrast in the effect of substrate deficiency on VSMC maturation between 

degrees of intrauterine compromise was demonstrated in sheep and guinea pigs subjected to 

conditions of placental insufficiency. Chronically hypoxic fetal sheep displayed no change in 

staining for a marker of synthetic-type VSMCs (MHC-B) and we suspected that this was due to 

the late timing of the insult as VSMC differentiation is largely complete by term (Owens et al., 

2004) (see Chapter 2 Discussion 2.4.2). However, fetal guinea pigs subjected to chronic hypoxia 

throughout the second half of gestation with high brain:liver ratios suggestive of adaptation to 

oxygen deprivation, also did not show changes in VSMC maturation. Conversely, both SGA 

guinea pig fetuses and offspring exhibited a marked increase in MHC-B content, suggesting that 
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delayed VSMC maturation in utero translates to long-term changes in cellular identity (see 

Chapter 3 Discussion 3.5.3). A proposed mechanism for persistence of adaptations in cellular 

identity over time in an individual and across generations is a change in the epigenotype. 

Evidence suggests VSMC phenotype to be regulated at the level of chromatin and thus 

susceptible to epigenetic modifications (McDonald et al., 2006; Qiu and Li, 2006). With respect 

to the contradictory results between SGA and IUGR guinea pig fetuses,  intracellular signals 

regulating VSMC differentiation may be differentially affected by the level of hypoxia (Owens 

et al., 2004) or oxidative stress reached in the IUGR fetuses and this may account for 

maintenance of VSMC maturation despite slowed overall growth in this group. A similar result 

was recently revealed in our laboratory with respect to several maturational indicators of brain 

development, such that compared to the AGA group, SGA guinea pig fetuses showed delayed 

brain maturation that was not apparent in the IUGR fetuses (Piorkowski et al., unpublished data).  

 

5.1.6 Chronic Hypoxia and Intima Thickening 

As revealed by the embolization model, the aortic defect associated with placental 

insufficiency was characterized by intima formation and thickening along with changes of the 

media. This phenotype was observed in only the severely hypoxic animals. Akin to the aortae of 

our normoxic ovine fetuses, the intima of normal human fetuses and infants is exclusively an 

endothelial layer which is closely adherent to the internal elastic lamina (Sasaguri et al. 1994). In 

atherosclerotic-prone arteries, such as the descending aorta, a subendothelial fibrous layer lined 

on the medial side by a narrow zone of proliferating VSMCs develops over the first two decades 

of life (Sasaguri et al, 1994). Over the 3rd and 4th decade of life, retention of lipoproteins by the 

ECM of the pre-existing intimal layer instigates the development of atherosclerotic lesions (Stary 

et al. 1992). Thus, our observation of premature formation of an intimal zone on the medial and 

luminal side of the internal elastic lamina in aortae of fetuses subjected to severe hypoxia implies 

that IUGR by intrauterine hypoxia increases the risk for atherosclerosis in adulthood. In support 

of this, increased aortic intima-media thickness has been found in human IUGR fetuses and 

children (Cosmi et al., 2009). The sheep fetus most closely approximates the human in terms of 

timing of developmental processes and physiology under normal and pathological conditions 

(Ikeda et al., 2001). 
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Endothelial damage results from the atherosclerotic process as well as increased 

intravascular load due to central arterial stiffening. Indeed, atherosclerosis, endothelial 

dysfunction and central arterial stiffening are strongly interrelated (Campuzano et al., 2006; 

McCall et al., 2010). Thus, intima formation and altered ECM composition initiated in utero may 

lead to endothelial dysfunction in conjunction with atherosclerosis and arterial stiffening. In fact, 

aortae exhibiting intima thickening also showed increased mRNA levels of E-selectin. E-selectin 

is involved in the inflammatory response, facilitates the atherogenic process and is used as an 

indicator of endothelial damage (Barron et al., 1997).  

Human studies demonstrate blunted flow-mediated dilation in children (Martin et al., 

2000), adolescents (Goodfellow et al., 1998) and adults (Leeson et al., 2001) who were born of 

small birth weight. Using the guinea pig study, we investigated the endothelial-dependent 

responses of the superior mesenteric artery to methalcholine using pressure myography and 

found no differences in these responses between AGA and SGA offspring. Further, a vessel-bath 

apparatus was used to assess responses of the guinea pig aorta. Interestingly, while the superior 

mesenteric artery appeared very sensitive to methacholine, the aorta failed to respond to this 

agonist, perhaps due to species differences in responsiveness or abundance of proximal aortic 

receptors. There appeared to be a blunted vasodilatory response of the guinea pig aorta to the 

endothelial-independent agonist, sodium nitropusside, however these preliminary results remain 

inconclusive (Figure 5.2). Extention of these preliminary studies is required to decipher the 

utility of the guinea pig for investigation of vessel function.  

The association between IUGR and endothelial function has typically been investigated 

in rats. Morton and colleagues showed an inhibition of vasodilation of the superior mesenteric 

artery in response to methacholine using a wire myograph system, in young and aged rats which 

were growth restricted in a hypoxic chamber (Morton et al., 2010). On the other hand, another 

study reported uterine artery ligation of the pregnant rat to result in endothelial dysfunction of 

the uterine artery but no changes in the mesenteric, renal or femoral arteries in female offspring 

(Mazzuca et al., 2010). Thus, results of these rodent studies are inconsistent.  
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Figure 5.2. Preliminary Results: Response of Adult Aortae to SNP 

Aortae of adult guinea pig offspring were immediately placed in ice-cold Krebs at post-mortem 

and placed in a vessel-bath apparatus for measurement of responsiveness. The response of SGA 

aortae (n = 4) to sodium nitropusside (SNP), a endothelium-independent vasodilatory agonist, 

appeared blunted compared to AGA aortae (n = 4). 
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5.1.7 Mediators of Hypoxic-induced Perturbations in Arterial Development 

Another advantage of the sheep model was that it allowed comprehensive investigation 

into possible molecular, hormonal and mechanical links to the observed changes in arterial 

phenotype. The acute hypoxia model showed transient increases in circulating cortisol 

concentration in response to acute hypoxia that did not differ in degree in relation to the severity 

of insult. No lasting change in plasma coritsol levels were produced in chronic hypoxic ovine 

fetuses, as previously reported (Gagnon et al. 1994; Kerr et al. 1992). Acute hypoxia was 

associated with immediate and transient elevations in blood pressure that were increased in a 

graded fashion across mild, moderate and severe groups and this hemodynamic response is 

assumed to be the primary stimulus for increased carotid elastin content in fetuses of the latter 

group. In agreement with other studies (Louey et al., 2007), chronic hypoxia generated no 

change in baseline blood pressure across the 15 days of study. Still, it is possible that perturbed 

aortic remodeling in the chronically hypoxic fetus is related to altered blood flow due to 

redistribution of cardiac output.  

Chronic hypoxia was associated with increased expression of molecular regulators that 

have been implicated in the vascular response to adverse stimuli as well as in developmental 

remodeling.  The mRNA levels of the pro-fibrotic growth factor, TGF-β1, showed a similar 

pattern to that of collagen I as well as the total collagen content, that is, an increase in severely 

hypoxic fetuses with similar levels between normoxic and moderately hypoxic groups. TGF-β1  

is a known inducer of  the MMP-2 (Ross & Tranquillo, 2003) and both have been implicated as 

key players in the adverse arterial and cardiac remodeling that contributes importantly to the 

progression of CVD (Chen et al. 2006; Mochizuki et al. 2001; Zhao et al. 2008 ). As well, 

MMP-2 and TGF-β1 are both involved in intima thickening, the former through facilitation of 

VSMC migration (Bendeck & Zempo et al. 1994) and degradation of the internal elastic lamina 

and the basement membrane of the endothelium (Rosenberg et al. 1998). The migrated VSMCs 

deposit ECM proteins into the intima under the stimulation of TGF-β1 and other inflammatory 

cytokines (Bendeck & Zempo et al. 1994). Along with an increase in mRNA levels of TGF-β1, 

aortae of severely hypoxic ovine fetuses exhibited increases in mRNA levels of MMP-2 and its 

protease activator, MTI-MMP. The activity of MMP-2 has been previously correlated with the 

mRNA expression of MTI-MMP, independent of protein levels of MMP-2 (Zahradka et al. 
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2004). As well, inverse correlations between fetal arterial oxygen saturation and mRNA levels of 

procollagen I and III, TGF-β1, MMP-2 and MTI-MMP were observed in severely hypoxic ovine 

fetuses. These correlational analyses provide an alternative method of assessing the effect of 

hypoxia on various outcomes, given the limitation of sample size common to large animal 

models. 

 In accord with the aortic response, our preliminary data show increases in TGF-β1, 

MMP-2, MTI-MMP and procollagen III mRNA levels in the right ventricle of severely hypoxic 

fetus, with no differences found in the left ventricle (Figures 5.3 & 5.4). The differential 

response of the right versus left ventricle may be owing to the redistribution of arterial and 

cardiac blood flow that accompanies hypoxia. It is known that there is a right-left shift in blood 

flow through the myocardium during chronic hypoxia and an increase in afterload imposed on 

the right ventricle due to peripheral vasoconstriction, whereas cerebral vasodilation relatively 

reduces impedance of the left ventricle (Baschat et al., 2000). The total and relative weights of 

the heart were not different between hypoxic and control fetuses. This may be attributable to the 

hypoxic-induced reduction in proliferation of cardiomyocytes in both the left and right ventricle 

previously reported (Louey et al., 2007). The postulation that the differential effect of hypoxia 

on the left versus the right ventricle is due to hemodynamic factors, is supported by our 

preliminary data which show moderate and severe acute hypoxia to be associated with increases 

in MMP-2 in only the right ventricle (Figure 5.5). The primary stimulus in this model is the 

transient, yet, dramatic hemodynamic response which involves a redistribution of cardiac output. 

This acute model also shows an increase in the weight of the right ventricle relative to total heart 

weight (Figure 5.6). Mechanical load is an inducer of collagen deposition and cardiomyocyte 

proliferation, thus perhaps acute fetal hypoxia differs from chronic hypoxia in that the former 

induces and the latter inhibits cardiomyocyte proliferation.  

 

5.1.8 Site-Specific Responses to Hypoxia 

The acute and chronic hypoxic ovine studies highlight that various insults stimulate 

differential responses among anatomically distinct vascular beds. In chronically hypoxic fetuses, 

mRNA levels of procollagen I and III, TGF-β1, MMP-2 and MTI-MMP in the superior 

mesenteric artery were not different from normoxic fetuses. The fact that the superior mesenteric  
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Figure 5.3 Effect of Chronic Hypoxia on Collagen I and III mRNA levels in the Left and 

Right Ventricle 

Collagen III mRNA levels in the right ventricle of severely hypoxic ovine fetuses, as measured 

by Real-time PCR, were increased relative to control fetuses, while levels between control and 

moderate fetuses were not different (A). No difference in mRNA levels of collagen I mRNA 

were found between the groups, although a trend toward an increase in hypoxic animals was 

observed (B). 

* p < .05 
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Figure 5.4 Effect of Chronic Hypoxia on TGF-β1, MMP-2 and MTI-MMP mRNA levels in 

Right Ventricle  

In the right ventricle of severely hypoxic animals the mRNA levels of TGF-β1, matrix 

metalloproteinase (MMP-2) and its activator, membrane-type MMP (MTI-MMP), are increased 

compared to control. 

* p < .05 
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Appendix 5.5 Effect of Acute Hyoxia on mRNA levels of MMP-2 in the Right Ventricle  

In the right ventricle, mRNA levels of matrix metalloproteinase (MMP-2) are elevated in ovine 

fetal sheep subjected to moderate and severe umbilical cord occlusion (UCO), compared to 

control animals. 

* p < .05 
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artery is an atherosclerotic-resistant artery, not prone to intima hyperplasia as is the aorta (Stary 

et al., 1992), suggests that cellular responses including the process of endothelial activation by 

MMP-2 are not induced under conditions of hypoxia, injury or oxidative stress. Perhaps, cellular 

proliferation or hypertrophy occurred in the superior mesenteric artery in response to hypoxia, 

since it is a muscular artery. Furthermore, differential responses depending on the type and 

location of the arterial segment was also shown in the acute UCO study, wherein elastin 

deposition was induced in the carotid artery with no changes observed in the superior mesenteric 

artery.  

 

 

5.2 CONCLUSIONS 

 

We provide evidence that the propensity for hypertension and CVD in IUGR offspring 

may be directly linked to disturbances in aortic development characterized by altered ECM 

composition and intima thickening, at least in the case of placental insufficiency. These changes 

occur in concert with induction of TGF-β, MMP-2 and E-selectin, molecular mediators of the 

inflammatory vascular response and adverse remodeling. Further, the guinea pig study provides 

evidence that this aberrant aortic development has long-term structural and functional 

consequences in terms of aortic compliance. Thus, we reveal aortic stiffening to be an important 

link between CVD in adulthood and hypoxic intrauterine insults. We demonstrate that the 

cellular response of the superior mesenteric artery to chronic intrauterine hypoxia differs from 

that of the aorta, while the cellular response of the right ventricle mirrors that of the aorta. As 

well, our studies not only demonstrate differential responses to varying degrees of hypoxia, but 

also show differential responses to acute versus chronic hypoxia. Whereas the sheep and guinea 

pig chronic hypoxic models provide evidence for a mechanistic link to developmental origins of 

CVD, the acute hypoxic study suggests that an intrauterine insult can result in programming of a 

beneficial phenotype rather than a vulnerable phenotype.  
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5.3 FUTURE DIRECTIONS 

 

It is now widely acknowledged that the intrauterine environment plays a significant role 

in long-term cardiovascular health. This field of study has put forward a novel aspect of CVD 

which warrants a redefinition of the long established paradigm that presumes etiology to stem 

from a combination of genetics and postnatal lifestyle factors. Indeed, the associations between 

birth weight and chronic adult disease are independent of these traditional risk factors. Yet, 

clinical risk profiling and guidelines for preventative strategies currently do not take into account 

environmental triggers imposed before birth. In fact, individuals born from compromised 

pregnancies are not identified as high risk targets in the American Heart Association's impact 

goals for 2020 (Lloyd-Jones, 2010). Pre-birth factors may account for the portion of CVD left 

unexplained by those large scale analyses such as the Framington Heart Study (Bitton and 

Gaziano, 2010), which have characterized risk distribution within populations. Hence, early and 

aggressive preventative measures in those born susceptible may alleviate the burden of CVD. We 

show that changes in elastic fibres of the umbilical artery are reflective of changes in the aorta, 

both related to the degree of hypoxia. Thus, the umbilical artery which can be harvested at birth 

in human pregnancies may be useful as a marker of vascular programming and thereby identify 

fetuses that may benefit from early preventative measures. Further investigation into potential 

markers of perturbed cardiovascular development that can be used clinically, such as circulating 

levels of TIMPs and MMPs in umbilical blood, is warranted.   

Before we can begin to integrate fetal experience into current preventative policy and 

clinical practice, a deeper understanding of the phenotypic outcomes and underlying molecular 

mechanisms is paramount. Our data provide important insight into the vascular phenotype of 

hypoxic IUGR fetuses, the molecular mediators involved in this outcome and the long-term 

functional consequences. Further investigation is required to identify upstream regulators of the 

vascular and cardiac response to hypoxia during fetal life. Possible upstream regulators are 

hormones such as angiotensin II, reactive oxygen species due to oxidative stress, or direct effects 

of oxygen tension may play a role. Once a complete picture of the cellular response is uncovered, 

potential prenatal inventions such as maternal administration of antioxidants can be tested. 

Another finding of the thesis that implores further investigation is the premature intima 
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thickening in aortae of hypoxic ovine fetuses. It would be interesting to determine whether this 

process is indeed associated with endothelial damage and leads to acceleration of the 

atherosclerotic process in postnatal life.  
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Appendix 3. Ethics protocol (Chapters 2 & 4) 

The University of Western Ontario 
Animal Use Subcommittee / University Council on Animal Care 
Health Sciences Centre, _ London, Ontario _ CANADA – N6A 5C1 
PH: 519-661-2111 ext. 86770 _ FL 519-661-2028 _ www.uwo.ca / animal 
10.01.08 
*This is the 3rd Renewal of this protocol 
*A Full Protocol submission will be required in 2009 
Dear Dr. Richardson 
Your Animal Use Protocol form entitled: 
Fetal Brain Development: The Impact of Acute and Chronic Hypoxia 
has had its yearly renewal approved by the Animal Use Subcommittee. 
This approval is valid from 10.01.08 to 09.30.09 
The protocol number for this project remains as 2005-061 
1. This number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this number. 
3. If no number appears please contact this office when grant approval is received. 
If the application for funding is not successful and you wish to proceed with the project, request that an internal 
scientific peer review be performed by the Animal Use Subcommittee office. 

c.�. Purchases of animals other than through this system must be cleared through the ACVS office. Health 
certificates will be required. 
REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar 
with the contents of this document. 

c.c. B Matushewski, W Lagerwerf 
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Appendix 4. Ethics protocol (Chapter 3) 

The University of Western Ontario 
Animal Use Subcommittee / University Council on Animal Care 
Health Sciences Centre, _ London, Ontario _ CANADA – N6A 5C1 
PH: 519-661-2111 ext. 86770 _ FL 519-661-2028 _ www.uwo.ca / animal 
06.03.2010 
*This is the Original Approval for this protocol* 
*A Full Protocol submission will be required in 
06.30.2014* 
Dear Dr. Regnault: 
Your Animal Use Protocol form entitled: 
In Utero Origins of Adult Insulin Resistance 
Funding Agency CIHR - Grant #R3826A09 
has been approved by the University Council on Animal Care. This approval is valid from 06.03.2010 to 
06.30.2011. The protocol number for this project is 2010-229. 
1. This number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this number. 
3. If no number appears please contact this office when grant approval is received. 
If the application for funding is not successful and you wish to proceed with the project, request that an internal 
scientific peer review be performed by the Animal Use Subcommittee office. 
4. Purchases of animals other than through this system must be cleared through the ACVS office. Health 
certificates will be required. 
ANIMALS APPROVED FOR 4 Years 
Species Strain Other Detail 
Pain 
Level 
Animal # Total 
for 4 Years 
Guinea Pig Hartley Pregnant ~25 Days on Arrival C 556 
REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar 
with the contents of this document. 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components 
(biosafety, radiation safety, general laboratory safety) comply with institutional safety standards 
and 
have received all necessary approvals. Please consult directly with your institutional safety 
officers. 

c.c. Approved - T. Regnault, W. Lagerwerf 
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