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Abstract

Computer graphics and computer vision were traditionally two distinct research fields

focusing on opposite topics. Lately, they have been increasingly borrowing ideas and

tools from each other. In this thesis, we investigate two problems in computer vision

and graphics that rely on the same tool, namely energy optimization with graph cuts.

In the area of computer graphics, we address the problem of generating artificial

classic mosaics, still and animated. The main purpose of artificial mosaics is to help

a user to create digital art. First we reformulate our previous static mosaic work in

a more principled global optimization framework. Then, relying on our still mosaic

algorithm, we develop a method for producing animated mosaics directly from real

video sequences, which is the first such method, we believe. Our mosaic animation

style is uniquely expressive. Our method estimates the motion of the pixels in the

video, renders the frames with mosaic effect based on both the colour and motion

information from the input video. This algorithm relies extensively on our novel

motion segmentation approach, which is a computer vision problem.

To improve the quality of our animated mosaics, we need to improve the motion

segmentation algorithm. Since motion and stereo problems have a similar setup, we

start with the problem of finding visual correspondence for stereo, which has the

advantage of having datasets with ground truth, useful for evaluation. Most previous

methods for stereo correspondence do not provide any measure of reliability in their

estimates. We aim to find the regions for which correspondence can be determined

reliably. Our main idea is to find corresponding regions that have a sufficiently strong

texture cue on the boundary, since texture is a reliable cue for matching. Unlike the

previous work, we allow the disparity range within each such region to vary smoothly,

instead of being constant. This produces blob-like semi-dense visual features for which

we have a high confidence in their estimated ranges of disparities.

Keywords: Computer Vision, Computer Graphics, Animated Mosaics, Classic Mo-
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Chapter 1

Introduction

1.1 Energy Optimization in Computer Vision and

Graphics

Computer vision is the science and technology that enables the machines to see. Its

goal is to extract information from an image to “understand” a scene. Its applications

range from simple tasks such as counting the number of bottles on a production line

to the research in artificial intelligence and robotics with the goal to comprehend

the world around them. On the contrary, computer graphics manipulates the visual

content of the images to create digital synthesis of the real world. The main tasks

of computer graphics include representation of three-dimensional objects (geometry),

simulation of object deformation through time (animation), and generating realistic

or stylized images from models (rendering).

Traditionally, computer vision and graphics were two distinct fields since they focus

on different topics of interest. However, recently, with the emerging of new techniques

such as 3D television, telecommunication and virtual reality, vision and graphics are

increasingly borrowing ideas and techniques from each other. These new techniques
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address the issues such as visually displaying the results in high quality, modeling user

interaction with the environment naturally and intuitively. Since computer graphics

devotes a lot on real-world synthesis, such as photo-realistic rendering [20, 72, 2] and

object modeling [45, 88, 102], one successful approach is to use real images and 3D

scans, which are usually viewed as computer vision methods. Computer vision also

uses many techniques from computer graphics. For example, 3D modeling is widely

used in recognition systems for analysis and synthesis [9, 70]. In order to deal with

all these new challenges, we need to investigate the vision and graphics problems in

a new way which integrates these two fields.

Most problems in computer vision and graphics are very challenging. Due to the

ambiguities in visual interpretation, uncertainty and large dimensionality of the da-

ta, there are usually many possible solutions unless additional constraints from prior

knowledge are imposed. Consider the image segmentation problem proposed in Fig-

ure 1.1. The task is to segment the light object (swan), from the darker background

(water). Thus we want to segment the lighter pixels as the swan and the darker

pixels as the background. Figure 1.1(b) to Figure 1.1(d) illustrate three different

possible solutions to this segmentation problem. It is easy for a human to conclude

that Figure 1.1(b) is the best solution among these three choices. However, an au-

tomatic computer vision system would need precise instructions on how to measure

the “goodness” of a solution. Thus some mechanism is required to evaluate all the

options and select the best one. The optimization approaches provide an expressive

way to solve this problem.

There are usually two major steps in the optimization framework. The first step is to

formulate an objective function. The objective function maps any solution to a real

number, this number being a measure of how good the solution is. A good objective

function should incorporate the constraints that an acceptable solution must satisfy.

The objective function should assign high goodness score to solutions that match the

constraints well. In this thesis, we refer to the objective functions as energy functions.
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An energy function assigns a low energy to a good solutions and high energy to a

bad solutions. Figure 1.2 schematically illustrates an example of possible objective

functions for the image segmentation problem proposed in Figure 1.1. The smaller is

the value of the energy function, the better is the solution, as seen in Figure 1.2(b).

A global minimum of the energy function, by definition, gives the optimal solution to

the problem. In computer vision, the objective/energy functions usually have huge

dimensions which makes them unfeasible to plot.

There are two commonly used constraints in designing an energy function, the data

(a) The task is to segment the swan from
the water

(b) Good Segmentation: the object is
shown in red and the background with
green.

(c) Deviation from observed images: ob-
serve the region inside the black circle. A
great number of pixels are segmented as the
swan. Comparing with (a), these pixels in
fact have more similar colour to the water
than to the swan. Segmenting these pixels
as the object violates the data constraint.

(d) Deviation from prior knowledge: the
swan and background shapes are not coher-
ent, with many tiny “holes”. This violates
our prior knowledge that these object and
background shapes tend to be contiguous
in space.

Figure 1.1: Example of image segmentation problem and its constraints.
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(a) Objective Function (b) Energy Function

Figure 1.2: An example of objective function and energy function for the image segmenta-

tion problem in Figure 1.1: Figure (a) is a possible objective function. Notice the solution in

Figure 1.1(b), namely b, is assigned higher goodness score than c and d in Figure 1.1(c) and

Figure 1.1(d). In this work, we usually refer the objective function as an energy function.

Energy functions assign low energy to good solutions, as shown in Figure (b).

constraint and prior constraint. The data constraint comes from the observed data. It

requires a desired solution to be close to the observed data. For example, in Figure 1.1,

it is easy to come up with the constraint that the pixels that belong to the object

should have lighter colours and the background pixels should have darker colours.

Otherwise they are violating the data constraint provided by the colour information

of the image. The prior constraint is from our prior knowledge about a physically

plausible solution to the problem. Most physical world objects are coherent in space,

that is for most pixels in the object, all nearby pixels also belong to that object. In

this case, our prior knowledge tells us that both the background and the object should

be spatially coherent. We can encode more prior constraints in the energy functions,

such as a preference to a particular shape, say a round shape prior, which encourages

the object to have a round shape.

The second step of the optimization approach is to minimize the energy function.

This is also a very challenging problem. Since computer vision and graphics usually

deals with images and videos, the problem size is huge. It is impossible to find the

optimal solution by simple enumeration. Moreover, the energy functions are usually

not convex, which makes it hard to find their minima by using standard minimization

method such as gradient descent. Many authors address this issue by making a
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compromise in the design of the energy function, that is a more difficult to deal with

but more appropriate energy function is replaced by a less appropriate, but easier to

optimize energy. However, even with compromises, optimization is still hard.

Although it is difficult to formulate appropriate energy functions as well as to opti-

mize them, there are many advantages to the optimization based approach. First, it

provides a common framework which abstracts useful constraints from details of each

particular problem. Once an energy function is formulated, the standard optimiza-

tion approaches can be applied to solve it. Secondly, it enables us to apply our prior

knowledge to solve the problem by encoding it in the energy function. Thus we can

expect the desired solution to have some nice global properties, such as the overall

smoothness in the image segmentation example in Figure 1.1. Finally, the value of

the energy function provides an effective way to evaluate the solution and can be used

as a guide in the optimization algorithm.

Great effort has been made towards developing effective energy optimization algo-

rithms. Among all these approaches, graph cut algorithm [12, 13, 53] has been proven

to be an effective tool for computer vision and graphics applications. As a global op-

timization method, the graph cut algorithm can find the exact minimum of certain

energy functions (the everywhere smooth prior [44], defined in Section 2.1). For a

wider range of energy functions (e.g. piecewise smooth prior, defined in Section 2.1)

which are NP-hard to optimize, it can find a local minimum within known factor from

the optimal [12]. Although the class of energy functions that can be optimized by the

graph cut approach is restricted, it is useful enough to be applied to a wide range of

vision and graphics problems.

In this thesis, we address two graphics and vision applications: rendering artificial

classic mosaics and finding semi-dense cues for visual correspondence. We formulate

both the animated mosaic problem and visual correspondence problem in the energy

optimization framework. Graph cut algorithm is used as the energy optimization tool

in our work to solve these two problems. We illustrate how we formulate the energy
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functions in these two applications, together with how we adapt our energy functions

so that they can be optimized by graph cuts.

1.2 Artificial Classic Mosaics

1.2.1 Still and Animated Mosaics

Computer graphics is not only about simulating realistic images, a large area of

graphics is devoted to creating artful effects to enhance the images taken from the

real world. For example, people often use tools such as Photoshop to create different

effects on the real world pictures so that the result images may be more appealing to

the user. There are also tools helping the users to create art works, such as artificial

oil paints, line drawings and mosaics etc. With all these tools based on computer

vision and graphics techniques, more ordinary people will be given the freedom of

creating their own art work. The users would be even more interested if one can

create animations of their own, with computer aided tools.

Non-photorealistic rendering (NPR) is an area of comptuer graphics which deals with

rendering real world photographs in an artistic style. NPR rendering creates stylized

images by arranging drawing primitives, for instance painting strokes, line segments or

tiny dots, in an artful way. The purpose of NPR is to assist humans in creating digital

art and to render images in such a way that the important information that they

contain in emphasized. Recently, there has been a great interest in non-photorealistic

rendering, such as artificial line drawing [24, 25], digital painting [68, 54, 39], stippled

drawing [82, 21, 71], and classic mosaics [36, 23, 63, 64].

Mosaic is one of the most durable and ancient art forms. As early as ancient Roman

times, people use this durable art forms to decorate walls, ceilings and furniture etc.

It is usually composed of thousands of primitives, such as colourful stones, ceramic

tiles and glass fragments, arranged along the important edges of the desired scene. If
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Figure 1.3: Classic mosaic example: Christ surrounded by angels and saints, from basilica

of Sant’Apollinare Nuovo in Ravenna, Italy. Notice inside the red rectangle, the artist broke

the square tiles into irregular shapes to adapt to the image.

the drawing primitives of a mosaic image, namely the “tiles”, have square or rectangle

shape, then this mosaic belongs to the category of classic mosaic. Figure 1.3 shows an

example of classic mosaics. Simulating static mosaics from digital images is one area

of non-photo-realistic rendering and it has been widely investigated, see [36, 23, 5, 64].

As already mentioned above, one goal of NPR rendering is to create images with a

more profound impact on the viewer. It is even more true for an NPR animation, since

it has one more dimension(time) of expressiveness. Although there are great number

of works on static NPR rendering, such as [24, 25, 39, 36, 64], relatively little work

has been done towards generating NPR animations automatically or iteratively [85,

18, 50]. In this thesis, we propose a method which renders animations with classic
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mosaic effects from real video.

Little work has been reported on generating mosaic animations automatically, es-

pecially for animated mosaics from real video. The animations generated by our

approach are composed of hundreds of colourful square tiles, which are arranged to

present the shape and colour of the objects inside the given video, moving in a timely

coherent manner. Each frame of the resulting animation is a classic mosaic image

composed of a great number of square tiles, which are located along the important

edges inside the given scene. Between the consecutive frames, the tiles are moved

according to the motion of their center pixels. Therefore, the whole animation will

have a consistent motion effect.

Figure 1.4 shows a synthetic example of our desired mosaic animation. The input

video shows a boy playing soccer. The resulting frames of the mosaic animation

are shown in Figure 1.4(b). The square tiles are moved from one frame to the next

according to the motion information detected at their center pixels, which generates

a temporally coherent motion effect.

Our method estimates the motion of the pixels inside the video, renders the frames

with mosaic effect based on both the colour and motion information from the input

video. We aim at a tool that requires minimal help from the user to finish the task

of generating animated mosaics. We hope with the help of our animation tool, more

people will be able to create their own mosaic animation without professional training.

1.2.2 Constraints on Static and Animated Mosaics

Most of the work on rendering static mosaics is inspired by observing the artists. To

obtain a visually appealing mosaic, there are some basic rules that almost all methods

follow. First, the edges of the mosaic tiles should be parallel to the important edges

of the underlying image, as shown in Figure 1.5(c). Which edges are essential can be

decided in various ways. Some of the previous works require the users to input a set
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(a) Input Frames

(b) Mosaic Frames

Figure 1.4: One example with animated mosaics: the input video shows a boy playing

soccer, shown in Figure (a). The resulting frames of the mosaic animation are in Figure

(b). The square tiles are moved from one frame to the next according to the motion

information detected at their center pixels, which generates a temporally coherent motion

effect.

of curves to indicate the objects they want to emphasize in the images, such as the

work of Hausner [36] and of Elber and Wolberg [23]. The others, for instance, the

work of Di Blasi et al. [10] and Battiato et al.[6], adopt edge detection algorithms to

generate a set of principal curves and use them as the guide lines for tile orientation.

Besides these two approaches, some of the static mosaic approaches encode the edge

information as a soft cue when computing the tile orientations, such as Liu et al. [64]

and Battiato et al. [5].

In addition, to reduce the gap space inside the mosaic image, tiles must be packed
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(a) input image (b) bad mosaic (c) good mosaic

Figure 1.5: A synthetic example of a good and a bad mosaic: Figure (a) shows the synthetic

input image. Figure (b) shows a bad tiling example. The tiles inside Figure (b) are not

aligned with the edge of the circle and the neighbouring tiles have tile orientations not

emphasizing the circular shape of the central object. This results in a visually unappealing

mosaic with large gap space and blurred colours. Figure (c) shows a good tiling example,

where tiles are aligned with the shape of the circle and packed tightly.

as tightly as possible, see Figure 1.5(c). It is NP-hard to find the optimal solution

to the tile packing problem, since it can be considered as a bin packing problem.

Many previous works on rendering classic mosaics are based on heuristics, such as

Hausner [36], Elber and Wolberg [23], and Battiato et al. [5]. However, it is still

possible to find an approximate good solution, after transforming the tile packing

problem into a labeling problem.

While it is possible to create simple animations with mosaic effects manually, it is very

challenging to create animated classic mosaics automatically from real video. There

are two main difficulties in rendering animated mosaics from video. First, each frame

of the animated mosaics should itself be an appealing static mosaic. Thus animated

mosaics have to obey all the constraints for a static mosaic: the tile orientation

should be parallel to the principal edges in the input image, and the tiles should

be packed tightly to minimize the gap space inside the mosaic. Second and more

important, to create the animation effect, the motion of the tiles must be spatially

and temporally consistent. For example, two neighbouring tiles on the right arm of

the boy in Figure 1.4(b) should move with similar velocity through all the frames.

Otherwise they will move away from each other and generate unpleasant “splitting”
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artifacts in the boy’s right arm. The only exemption for motion consistency is at

object boundaries, where neighbouring tiles belong to different objects therefore can

have different motions. Moreover, to maintain the classic mosaic style, the tile shape,

usually square or rectangle, is not allowed to deform, scale or blend, unlike what is

allowed in NPR animations rendered in other styles (i.e. oil painting style).

1.2.3 Motivation and Contribution

We improve our previous work on classic static mosaics [63] by addressing this problem

in a more principled global energy minimization framework. Our main contribution

to the area of non-photorealistic rendering is our animated mosaic method. Most

previous works on generating non-photorealistic animations, such as the work of Klein

et al. [50], require the users to provide the motion information for the rendering

primitives. This is a very tedious work even for very short video clips. Moreover,

rendering primitives are usually deformed during the animation process, for instance,

in the work of Litwinowicz [60]. Our goal is to generate animated classic mosaics

without the user providing full motion information. The constraints on classic mosaic

also require that the mosaic tiles are not deformed in any case. Therefore, the previous

methods on rendering NPR animations can not be applied to our animation problem.

Unlike the work of Smith et al. [85], we render animated mosaics from real video

sequences. As already mentioned, one of the main challenges is to make sure there

is a temporal coherence in the animation. One way to achieve temporal coherency

is to displace groups of tiles in a consistent manner. For this purpose we develop

a new motion segmentation algorithm with occlusion reasoning. Our algorithm re-

quires minimal help from the user. We pack the tiles into the discovered coherent

motion layers, using colour information in all the frames in a global manner. Our

tile packing algorithm is based on the one for still mosaic proposed by Liu et al. [64],

with several modifications to address video input. We also restate the problem of
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rendering static mosaics as a global energy optimization frame work in Chapter 3.

Occlusions are handled gracefully. We produce colourful, temporally coherent and

uniquely appealing mosaic animations. We believe that our method is the first one

to animate classic mosaics directly from video.

1.3 Semi-dense Visual Correspondence

1.3.1 Visual Correspondence

In order to create a faithful mosaic animation, the motion of the pixels inside the given

video must be estimated accurately. Rendering each frame individually without the

motion information leads to unpleasant “flickering” effects which are disturbing to the

viewer. Motion estimation is usually performed by finding the visual correspondence

between consecutive frames. In the visual correspondence problem, we are given two

images of the same real world scene. A pixel in one image is said to correspond to a

pixel in the other image, if these two pixels are projections along the lines of sight of

the same physical scene element, see Figure 1.6. The problem is to find pairs of such

corresponding pixels.

In stereo, the real world is captured by synchronized cameras from distinct view

points. The straight line connects the optical centers of these two cameras is called

the baseline. Usually it is assumed that this baseline is parallel to the image planes for

both cameras after rectification. Corresponding points are found between these two

images, see Figure 1.6(a). The difference in the locations of corresponding pixels seen

in the left and right images, often referred as “disparity”, is used to determine the

depth1 of these pixels. The disparities for stereo problem are only in the horizontal

dimension, which means the corresponding pixels are in the same scanline. This

1Here “depth” means the distance between the world point corresponding to the pixel and the
image plane of the camera.
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concept of visual correspondence can be easily adapted to motion. In motion, images

are taken from the same view points at consecutive time and correspondence serves

as the evidence of motion.

Figure 1.6 shows a synthetic example and a real example of visual correspondence

for stereo. Figure 1.6(a) shows a synthetic example of stereo. The images are taken

by two synchronized cameras, and are rectified so that the cameras share the same

baseline parallel to their image planes. Figure 1.6(b) shows the right image of a

stereo image pair. Figure 1.6(c) shows the true disparities of the image given in

Figure 1.6(b). And Figure 1.6(d), taken from [103], shows the depth of the pixels in

Figure 1.6(b). For each pixel in Figure 1.6(c), the brighter is the intensity, the larger

is the disparity, hence the closer is to the camera, as shown in Figure 1.6(d). The

problem of finding visual correspondence is still not a well solved problem after many

years of investigation. This, together with our need to find more accurate motion

for the tiles for mosaic animation, inspires us to extend our research into the field

of finding visual correspondence. Most methods intended for stereo correspondence

are easily extended to motion correspondence, however stereo correspondence has

a simpler setup. Thus although our intent is to develop visual correspondence for

motion sequences, we begin by investigating correspondence for stereo.

1.3.2 Visual Correspondence: Main Challenges

Finding the visual correspondence is a very challenging problem. To get the correct

visual correspondence, a lot of problems have to be overcome. For instance, image

noise will bring errors in when measuring the difference between corresponding pixel

pair. Other problems can be caused by sampling artifacts, exposure change, motion

blur, etc. Among all these problems, lack of texture and occlusions are two of the

hardest problems to solve when computing the visual correspondence. First, in tex-

tureless areas or areas with repeating texture, it is difficult to calculate the correct
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(a) Stereo setup (b) “Cones”

(c) Disparity map for “Cones” (d) Depth for “Cones”

Figure 1.6: Examples of stereo: Figure (a) Stereo setup. The images are taken by two

synchronized cameras, and are rectified so that the cameras share the same baseline parallel

to their image planes. The two pixels marked by the black squares are corresponding pixels,

since they are both the projections of the tree tip. By finding the correspondence between

the pixels in the left and right images, we can then compute the displacement of the pixels

from right to left image, which is also referred as “disparity”. In stereo, the disparities are

only in horizontal direction. Once the disparity is known, the depth of the corresponding

scene point can be found by triangulation. Figure (b) shows the right image of a stereo

image pair. Figure (c) shows the ground truth for the disparities of the image given in

Figure (b). And Figure (d) shows the depth of the pixels in Figure (b). For each pixel in

Figure (c), the brighter is the intensity, the larger is the disparity, hence the closer is to the

camera, as shown in Figure (d).
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matching error for correspondence due to ambiguity. Second, in occluded areas, where

part of an object can be seen in one image but missing in other images, it is hard to

obtain correct correspondences since information is lost.

Figure 1.7 illustrates an example for stereo image pair with textureless and occluded

regions. Figure 1.7(a) shows the input stereo image pair. Pixel p and pixel q are two

pixels in the left image, located on the same scanline. Here we use yellow and red

dots to show their locations. Pixel p′ is the pixel that corresponds to p in the right

image, shown with a yellow dot. Pixel q does not have a corresponding pixel in the

right image since the wall part where it is located on is occluded by the ball in the

right image. The blue dots are the neighbouring pixels of pixel p′. In Figure 1.7(b),

we enlarge pixels p, p′ and the neighbours of p′ to show their intensity. As shown in

the Figure 1.7(a), pixel p and p′ locate in a region with little texture. The neighbours

of p′ also have very similar intensity with pixel p, which makes it hard to decide the

true disparity of p. Pixel q is actually occluded by the bowling ball in the right image.

Therefore its disparity can not be determined without further assumptions about the

scene.

A lot of research has been devoted to solve these problems. The existing approaches

can be mainly divided into two categories. On one hand, correspondence can be found

by using sparse feature points. These methods obtain promising results in regions

with texture cues, but their results can be too sparse to be used in some applications

such as image-based rendering. Dense correspondence approaches estimate disparity

at every pixel but can have gross errors in some parts of textureless areas. Worse still,

most dense approaches do not produce confidence maps for their estimates, that is

they do not say which parts of the disparity maps they are more confident in. That

is the motivation for the proposed method. Our main objective is to find semi-dense

visual correspondence in the areas of an image where disparities can be found more

reliably.
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(a)

(b)

Figure 1.7: An example for occlusion and textureless regions: Figure (a) shows the input

stereo image pair. Pixel p and pixel q are two pixels in the left image, located on the same

scanline. Here we use yellow and red dots to show their positions. Pixel p′ corresponds

to p in the right image, but pixel q does not have correspondence in the right image, it is

occluded by the ball. The blue dots are the neighbouring pixels of pixel p′. In Figure (b),

we enlarge pixel p, p′ and the neighbours of p′ to show their intensity. As shown in the

Figure (a), pixel p and p′ locate in a region with little texture. The neighbours of p′ also

have very similar intensity with pixel p, which makes it hard to determine the true disparity

of p.

1.3.3 Semi-dense Visual Correspondence

The difficulties in finding visual correspondence are caused by many reasons, includ-

ing image noise, image sampling artifacts, textureless regions and occlusions. It is

well known that a reliable visual correspondence cue can be found more easily in

the textured regions. This is because the intensity changes provide more information

about the reliability on the matching quality of the corresponding pixel pairs. This

principle also applies to the boundaries of the textureless region. Usually, we can es-
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tablish visual correspondence of the pixels on the boundary of the textureless regions

much more reliably than in the interior of the textureless regions. If we can propagate

the information provided by the boundaries to the interior of the textureless region,

we will have more confidence in detecting visual correspondence. Therefore, in our

research, we intend to detect blob-like cues for visual correspondence. These cues

are composed of blobs of pixels which have a texture cue on the boundary that is

easily matched, and are likely to have smoothly varying disparities inside the blob,

as shown in Figure 1.8. Figure 1.8(a) illustrates the right image of an artificial stereo

image pair. Notice there is barely any texture on the parallelogram or in the back-

ground. Figure 1.8(b) shows the ground truths for the disparity of the input image.

The brighter is the pixel in Figure 1.8(b), the larger is the disparity at that pixel.

Figure 1.8(c) shows the semi-dense visual correspondence detected by our approach.

The pixels in the parallelogram belong to the same semi-dense visual feature. Unlike

that of [90] and [91], whose blob-like visual cues only have one disparity for each, our

blob-like visual cues have a smoothly varying range of disparities. The edges of this

semi-dense visual feature provide more confident information about the disparities

of the region they surround. Since there is no visual cues detected on the boundary

of the background or in its interior, our approach can not detect any dense visual

features in the background.

1.3.4 Motivation and Contribution

Our work of finding semi-dense visual cue was inspired by the work of Veksler [91,

90]. For stereo and motion detection, the main difficulty is the ambiguity brought

by texturelessness or repeating texture. No matter using local methods or global

methods2, it is hard to decide the correct disparity for the pixels inside the textureless

2Informally, in local methods, one pixel may look at the nearby pixels in a small neighbourhood
to determine its own visual correspondence, and use this information only to make the decision. On
the contrary, global methods take into account of all the pixels simultaneously.
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(a) Right image of the input
stereo pair

(b) Ground truth (c) Blob-like visual cues

Figure 1.8: A synthetic example of our blob-like visual cues: Figure (a) illustrates the right

image of an artificial stereo pair. Notice there is little texture on both the parallelogram and

the background. Figure (b) shows the ground truth for the disparity of the input image.

The brighter is the pixel in Figure (b), the larger is the disparity at that pixel. Figure (c)

shows the blob-like visual cues that our approach aims at. The pixels in the parallelogram

belong to the same blob-like visual feature, where the disparities are in a smoothly varying

range. The edges of this blob-like visual feature provide cues about the disparities of the

region they surround. However, for the background, since we can not detect any visual cues

on its boundary, there are no visual cues detected in the background. This is indicated by

the black pixels.

region, since more then one possible disparities will give little or even zero matching

error, see Figure 1.7.

However, reliable cues can be found at the border of the textureless regions. This can

be done by comparing the matching error with the strength of the intensity edges.

If the matching error is less than the edge strength at a particular pixel by some

threshold, as mentioned in [91], then this feature can be used as a trustable cue for

the stereo and motion detection. The threshold of selecting the visual correspondence

cues is picked by hand in the work of [91] and [90]. In our work, we developed a

learning framework that select useful features to decide the locations of these visual

cues automatically, which avoids the problem of selecting fixed threshold. More useful

features other than the difference between matching error and edge strength can

be easily included in our learning frame work. We construct a feature pool of 148

different features related to stereo and motion, such as matching cost (absolute and
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shifted difference between corresponding pixel pairs), the boundary condition feature

(difference between matching cost and edge strength). Useful features for deciding

visual correspondence are selected in a learning framework. This step results in a

classifier that can detect sparse cues for stereo in the textured regions.

To get denser results, Veksler [91] uses graph cut algorithm to propagate the cues

of boundary condition to the textureless regions. This is done for each disparity

separately. We extend this approach to semi-dense cues for multiple disparities. We

propose a grouping method which clusters the sparse cues detected in the previous

step into several groups, based on their geometric location and associated disparities.

The resulting feature groups contain sparse cues for consecutive disparities. And the

sparse visual cues in the same group are also geometrically close to each other. We

also use graph cut algorithm to propagate the information brought by the visual cues

in the feature groups into textureless regions. This step is done for each feature group

individually. And the results are semi-dense feature blobs for groups of consecutive

disparities.

The final step is ambiguity resolving. One pixel inside the input image pair can

belong to more than one semi-dense feature blobs generated in the previous step. To

find the exact boundaries of these semi-dense cues, we apply α-expansion algorithm

to resolve the ambiguities between the semi-dense feature blobs. This step produces

nice boundaries between regions of the images with different groups of disparities.

Textureless regions are also covered by our approach, which produces more evidence

to the disparities of these regions.

1.4 Thesis Organization

In Chapter 2 we describe the energy optimization framework, followed by the in-

troduction to the graph cuts algorithm, from the aspects of different constraints of

vision problem. In Chapter 3, we restate the problem of rendering classic mosaics in a
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global energy optimization framework. We first formulate the energy formulation on

the static mosaic problem. Then we provide the approach of optimizing the energy

function. In Chapter 4, we will go through the details about rendering animated mo-

saics from real video. We show how we perform motion segmentation with occlusion

handling, together with how we modify our static mosaic rendering methods for the

animation problem. In Chapter 5, we will describe how we extract semi-dense visual

cues from stereo image pair. We propose a method which extracts useful features in

the textured regions of the input image for finding visual correspondence, followed by

our clustering approach to grouping all the sparse features detected in the previous

step. We apply graph cut algorithm to propagate our features into textureless regions

and to resolve ambiguities. In Chapter 6, we conclude our work.
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Chapter 2

Energy Optimization with Graph

Cuts

In this chapter, we will describe the framework of energy optimization method based

on graph cuts, which in the last several yeas has become a widely utilized optimization

approach in computer vision and graphics. In Section 2.1 we will first present some

labeling problems in Computer Vision and Graphics, and the energy formulation for

solving them, followed by the common constrains for these problems. Next, we will go

through some energy optimization approaches which are widely used, such as dynamic

programming, simulated annealing and gradient descent.

In Section 2.2, we will give the overview of Graph Cut algorithm at first. Then,

from the aspect of different constraints on the labeling problems to solve, we will

go through variations of energy optimization methods based on graph cuts. In the

last section, Section 2.3, we briefly describe some applications in vision and graphics

which use Graph Cuts as a powerful optimization tool.
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2.1 Energy Optimization in Vision and Graphics

In this section, we will show how certain vision and graphics problems can be stated as

labeling problems, and how energy functions can be formulated to evaluate the quality

of the labeling. We will also describe the common constraints for these labeling

problems, such as everywhere smooth constraint, piecewise smooth constraint and

piecewise constant constraint. We will illustrate how these constraints can be encoded

in the energy functions associated with the labeling problems. Moreover, we will

introduce some commonly used algorithms in optimizing these energy functions.

2.1.1 Labeling Problem and a Common Form of Energy Func-

tions

Many problems in vision and graphics can be naturally represented as labeling prob-

lems. For example, if one wishes to segment an object of interest from its back-

ground, then each pixel can be labeled as either background or foreground, denoted

correspondingly by labels 0 and 1. This type of a problem with two labels is called a

binary labeling problem.

Many other problems can be viewed as multi-labeling problems, for instance, the

image restoration problem shown in Figure 2.1. Figure 2.1(a) illustrates the original

image with a light background and two objects with constant intensity. Figure 2.1(b)

is the corrupted image with Gaussian Noise (µ = 0 and δ = 0.05). A label set

L = {0, 1, 2, . . . , 255} represents all possible gray scale intensity levels. To restore

the original image, a label fp ∈ L will be assigned to each pixel p in the image. Let

f = {fp|p ∈ P} denote the collection of all pixel label assignments. If f is close

enough to the original image, then the noise is reduced and original image is restored.

Thus the goal of a labeling problem is to assign to each pixel p ∈ P a label fp ∈ L,
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(a) Original Image (b) Noisy Image

Figure 2.1: An Example of Image restoration: Figure (a) is the original image, where

both the objects and the background are of constant intensity. Figure (b) shows the image

corrupted with Gaussian noise (µ = 0 and δ = 0.05). L = {0, 1, 2, . . . , 255} is the label set.

The restoration task is to assign a label l ∈ L to pixels in the image so that the noise is

removed.

where L is a finite label set. A commonly used constraint is that the labels should

vary smoothly almost everywhere. Labels are allowed to change drastically in a few

places, and this is very important in order to preserve sharp discontinuities that may

present.

Energy functions are formulated to evaluate the solutions to these labeling problem-

s, under the constraint of smoothness over the image which comes from our prior

knowledge as well as other constraints. We will discuss some common types of the

smoothness constraints later. An additional constraint comes from the observed data.

Let f be a labeling that assigns each pixel p ∈ P a label fp ∈ L. Usually the following

energy function is formulated to evaluate the quality of f :

E(f) = Esmooth(f) + Edata(f) (2.1)

Here, Esmooth, which is often called the smoothness term, measures the extent to
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which f is not smooth. Edata, usually called the data term, measures how pixels in

P like the labels that f assigns them.

Edata is often formulated as

Edata(f) =
∑

p∈P

Dp(fp)

where Dp is the penalty for assigning pixel p the label fp. For example, for binary seg-

mentation, suppose we expect the object to have intensity of 40 and the background

to have intensity of 200. Then we can set Dp(1) = (Ip − 40)2 and Dp(0) = (Ip − 200)2,

where Ip is the intensity of pixel p, 1 is the object label, and 0 is the background

label.

A typical choice of Esmooth is

Esmooth =
∑

{pq}∈N

Vpq(fp, fq) (2.2)

Usually, N consists of pairs of immediately adjacent pixels, that is the interactions

are given by the standard 4-connected grid. Longer-range interactions can be also

included in N . The choice of Vpq is critical. In most cases, it should make f vary

smoothly in most places while preserving the discontinuities at object boundaries.

How to set up Vpq depends on our prior knowledge about the smoothness of the

desired labeling. There are several widely applied constraints on Vpq. Here we list

three major types.

The everywhere smooth prior has a small penalty for labeling that is smooth

everywhere. To encode the everywhere smooth prior in the energy function, Vpq

should assign higher penalties for greater difference between labels fp and fq. For

example, Vpq(fp, fq) = |fp − fq|, see Figure 2.2(a), is a everywhere smooth prior,

because for large |fp − fq|, assigning labels fp and fq to neighboring pixels costs too

much. If for all neighboring pixels p and q the label difference |fp − fq| is small, then
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(a) Vpq = |fp − fq| (b) Restored Image

Figure 2.2: Everywhere Smooth Prior: Figure (a) shows an example of the everywhere

smooth prior, the absolute distance Vpq = |fp − fq|. Figure (b) is the restored image for

Figure 2.1(b). It is generated with Vpq = |fp − fq|. Notice the image is over-smoothed at

the boundaries of the circle and the rectangle. We histogram corrected the image in Figure

(b) to illustrate the over-smoothing effect.

this labeling will not be penalized too much. Therefore, the optimal labeling is not

likely to have drastic changes between any pair of neighbouring pixels. The problem

with the everywhere smooth prior is that for most labeling problems in vision and

graphics, there should be some tolerance for sharp label changes on the boundaries

of the objects, so that they can restore the data around the discontinuities correctly.

Otherwise, these discontinuities are over-smoothed, see Figure 2.2.

Piecewise Constant Prior: Some computer vision and graphics problems require

different labels for neighouring pixels at object boundaries, but within the object,

the pixels should have same labels. Consider the example of the image restoration

problem illustrated in Figure 2.1. Both the objects and the background have constant

intensities. We need to preserve the discontinuities at the boundaries of these objects,

that means we should allow sharp changes at the edges of the regions of background

and the objects. However, within each object and the background, the labels should

be constant. For instance, inside the the round object, the optimal labeling should
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(a) Vpq = wpq × T (fp 6= fq) (b) Restored Image

Figure 2.3: Piecewise Constant Prior: Figure (a) is the Potts smoothness term, Vpq =

wpq × T (fp 6= fq). Figure (b) shows the image restoration result for Figure 2.1(b) produced

with Potts smoothness term. It is the best solution for this particular example, comparing

with Figure 2.2(b) and Figure 2.4(b).

assign label 127 to every pixel, which is the true intensity of the circle. The piecewise

constant prior assigns a low cost to such labeling.

A good choice for piecewise constant prior is the so called Potts Model, which is

Vpq(fp, fq) = wpq · T (fp 6= fq), see Figure 2.3(a). Here T (fp 6= fq) is 1 if fp 6= fq

and 0 otherwise. Potts smoothness term is most appropriate for non-ordered labels

or when the number of labels is small. Figure 2.3 shows the image restoration result

generated with piecewise constant prior. For this particular example, since both

the background and the objects are of constant intensity, piecewise constant prior

is a more appropriate choice compared to the everywhere smooth prior.. Therefore,

comparing with the results generated with everywhere smooth prior, see Figure 2.2(b)

and piecewise smooth prior, see Figure 2.4(b), piecewise constant prior produces much

better solution to the image restoration problem.

Piecewise Smooth Prior: There are also computer vision and graphics problems

that require different labels for neighouring pixels at object boundaries, and within
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(a) Vpq(fp, fq) = min(K, |fp − fq|) (b) Restored Image

Figure 2.4: Piecewise Smooth Prior: Figure (a) shows the truncated linear smoothness

term, Vpq(fp, fq) = min(K, |fp − fq|). Figure (b) shows the image restoration result for

Figure 2.1(b) produced with truncated linear smoothness term. The result in Figure (b) is

better than that of Figure 2.2(b), however, for this example, the image restoration result

generated with Potts smooth term, see Figure 2.3(b) is the best among them.

each object or region, the labels should vary smoothly. For instance, for stereo, at the

boundaries of the objects, one should alow the disparity labels to change drastically.

But within each object, the disparity of the pixels should be able to vary smoothly to

form a smooth surface, and also restore the data. To make a discontinuity preserving

Vpq, one typically “truncates” the function by setting Vpq(fp, fq) = min(K, |fp − fq|),
where K is the truncation constant, see Figure 2.4(a). In this way, the penalty for

a discontinuity is never larger than K, and sharp discontinuities can be created, see

Figure 2.4.

Many discontinuity preserving energy functions have been proposed in [33, 57, 89]. In

addition to specifying smoothness assumptions, the choice for Esmooth also dictates the

choice of optimization algorithm and as the result the quality of optimization that can

be achieved. For example, if Vpq(fp, fq) = |fp − fq|, then the energy in Equation 2.1

can be optimized exactly [44]. In general, any convex choice for Vpq will lead to an

energy that can be optimized exactly with graph cuts [44]. However, the truncated
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linear and the Potts Vpq lead to an energy which is NP-hard to optimize [53], but

there are approximation algorithms with different quality guarantees, see [12]. We

will describe some of these algorithms in Section 2.2.

To solve these labeling problems related to the vision and graphics applications, en-

ergy functions presented in Equation 2.1 must be optimized. Unfortunately, many of

these energy functions are not convex and they have many local minima. Worse still,

the labeling f usually has dimension |P| to the power of |L|, which is thousands as P
is the set of pixels in an image. The computational cost of getting global minima of

these energies represented in Equation 2.1 is enormous. It forces researchers to find

efficient but approximate optimization algorithms.

2.1.2 Optimization algorithms

Over the years, researchers have been working on finding good energy optimization

algorithms. In this section, we will briefly describe some commonly used optimization

methods.

Gradient descent is an algorithm which can find a local a minimum of a function.

The idea behind gradient descent is taking steps in the direction of negative gradient

of the function. This makes the function decrease fastest and then reach a local

minimum. There are two problems with gradient descent. Firstly, the convergence

of this approach is not guaranteed. The choice of step width is the critical issue

of gradient descent algorithm. When the steps are too large, the function may not

converge. If the step width is too small, it will take too many steps to reach a

local minima, which results in an enormous computational cost. Worse still, there is

no general guidance to find a good step width and make sure the gradient descent

algorithm converges in an acceptable time. The biggest drawback of gradient descent

is that it can only reach a local minimum of the energy function. The global minimum,

which is usually more important, may be far away from this local minimum obtained
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with gradient descent. Due to these shortcomings of gradient descent, researchers

have developed other energy optimization algorithms.

Simulated annealing was first proposed by Kirkparick et al. in [73]. The name and

inspiration of simulated annealing come from annealing in metallurgy. The physical

annealing is a process which uses heating and controlled cooling process to find the

low energy states of a material. The heating process prevents the atoms from being

stuck in a low energy state which is not the optimal state. The slow cooling process

enables the atoms to wander through many energy states which have low energy, and

find a better solution.

The simulated annealing algorithm is an analogue to the physical annealing process.

It is the only general-purpose method to find, or in most cases, to approximate the

best solution to the energy optimization problems. It starts from a random initial

labeling. At each iteration of simulated annealing, the labeling at one particular

pixel is changed locally and randomly. The annealing schedule is controlled by the

temperature parameter, T , which is set to be a high value and gradually decreased

during the annealing process. If the energy is decreased with the local change, then the

new labeling is accepted. In case of energy increasing, the probability of accepting

the new labeling is then determined partially by the temperature parameter. The

higher the temperature, the larger is the probability of accepting the change. The

probability of accepting a new labeling with higher energy than the current labeling

prevents the algorithm from being stuck at a local minimum. When the temperature

is high, the simulate annealing algorithm performs more like a random walk. As the

temperature decreases during the annealing process, the algorithm tends to look for

a local minimum. There is a certain order to visit the pixels.

The temperature parameter is decreased according to a cooling schedule. If the cool-

ing schedule is optimal, simulated annealing will obtain a global minimum. However,

it is prohibitively expensive to perform simulated annealing under the optimal sched-

ule. Therefore, the sub-optimal schedules are often used in practice to reduce the
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running time. In this case, only a local minimum of the energy function can be found

with simulated annealing.

Dynamic programming can be applied to energy optimization when the energy

function has a very restricted form. It solves a complex problem by breaking it down

into simpler subproblems. The solution of a given optimization problem must be able

to be obtained by the combination of optimal solutions of the subproblems. And

any recursive algorithm solving the original problem should solve the subproblems by

breaking them down into simpler problems, rather than generating new subproblems

of same complexity. Therefore, dynamic programming requires that the problem to

be solved must have one-dimensional structure rather then loopy structures. This

includes some important cases, such as snakes [48]. The two dimensional energy

functions that arise in low level vision can not, in general, be solved efficiently via

dynamic programming except some special cases [28].

Graph cuts can be applied to find the global minimum for certain two-dimensional

energy functions and find good approximate solutions of certain other energy func-

tions. In the following section, we will describe how graph cut algorithm is used to

optimize different energies.

2.2 Graph Cuts

The graph cut algorithm has been widely used in Computer Vision and Graphics

for the purpose of energy optimization. It has been proved to be successful in many

situations. In this section, we will describe the graph cuts algorithm and how it

is used to optimize different energies, together with some examples in vision and

graphics which use graph cut as a powerful optimization tool.
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2.2.1 Overview of graph cuts

Let G = 〈V,E〉 be a weighted graph. Here V is a set of vertices and E is the set of

edges which connect vertices in V . Every edge e ∈ E is assigned a non-negative weight

we. There are two special vertices in V , they are called terminals and identified as

source s and sink t. A cut C is a subset of edges C ⊆ E such that when we remove

C from G, V is partitioned into two disjoint sets S and T such that s ∈ S and t ∈ T ,

where T = V − S.

The cost of a cut C is defined as:

|C| =
∑

e∈C

we

The cut with minimum cost is called the minimum cost cut. There are two main

approaches to solving Min-Cut/Max-flow problem for the two-terminal graphs. In

Cormen et al. [15], an “augmenting path” strategy is described to compute the min-

imum cut of a graph. An alternative approach named “push-relabel” is presented

in Goldberg and Tarjan [31] to solve the minimum cut problem. Theoretically, the

computational cost of minimum cut algorithms is a low order polynomial. Boykov

and Kolmogorov present a comparative study of standard minimum cut algorithms

in [13]. They also provide a new minimum cut algorithm in [13] and in practice their

algorithm is significantly faster than other standard algorithms for graphs arising from

computer vision problems. For our implementation, we use the algorithm in [13], and

its implementation is provided by the authors.

2.2.2 Energy optimization with graph cuts

Energies which can be optimized through graph cuts usually have the following form:

E(f) =
∑

p∈P

Dp(fp) +
∑

{pq}∈N

Vpq(fp, fq) (2.3)
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where N consists of pairs of immediately adjacent pixels. These interactions are given

by either the standard 4-connected grid or longer-range interactions.

For binary labeling f , that is fp ∈ {0, 1}, to optimize its energy E(f), a graph

G = 〈V,E〉 whose minimum cut represents the optimal E(f) can be constructed in

case when E(f) is regular [53]. Let each non-terminal node p ∈ V represent a pixel

in P. Therefore,
V = P ∪ {s, t}

where s is the source terminal and t is the sink terminal. Each non-terminal node p

is connected to source s and sink t, by terminal links (t-link) esp and ept. Each pair

of interacting pixels (pq) are connected by node links (n-link) epq. Thus

E = {epq : {pq} ∈ N} ∪ {esp, ept : p ∈ P}

Suppose that Vpq(fp, fq) is given by the Potts Model, that is Vpq = wpq · T (fp 6= fq).

In this case, the graph construction is particularly simple. Recall that a graph cut

partitions all the nodes into two disjoint sets, S and T , such that the source s ∈ S
and the sink t ∈ T . If p is in S, it is associated with label 0, otherwise it is associated

with label 1. Thus a graph cut will give a labeling which will assign a label to each

pixel. To let the cost of the minimum cut correspond to the minimum energy, the

weight assigned to each edge is:

edge weight for

esp Dp(1) p ∈ P
ept Dp(0) p ∈ P
epq wpq {pq} ∈ N

Figure 2.5 shows how to construct a graph for binary labeling problems in case of

Potts Vpq(fp, fq). After building such graph, the energy E(f) can be optimized by

computing the min cut of this graph. Graph cuts can be used to optimize energy
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Figure 2.5: Graph cut demonstration on a 3 × 3 graph. The label set is {0, 1}. Source

terminal s stands for label 0 and sink t stands for label 1. Each pixel in this graph is

connected to terminals by t-links. The thickness of the t-links represents how pixels like

the corresponding label. For example, pixel p is linked to s by a thick edge esp and a thin

edge ept connect p to t. Therefore p is more likely to be assigned label 0. Vertices pq form

an interacting pair. The weight of the n-link between p and q is large when pq are likely to

have the same label. A cut C segments the vertices into two disjoint subsets, represented

by different colors of the vertices. The label of each pixel can be obtained by finding the

subset which contains the pixel. This constructions was first given by Greig et al. [32]

functions which are more general than Potts binary energies. Kolmogorov and Z-

abih [53] describe the conditions on binary energy functions that can be optimized

exactly with a graph cut. A function of two variables E(x1, x2) is regular on the

variable value set {0, 1} if it satisfies:

E(0, 1) + E(1, 0) ≥ E(0, 0) + E(1, 1) (2.4)

The energy defined in Equation 2.3 has |P| variables, and it can be viewed as a sum

of several two-variable (Vpq(fp, fq)) and single-variable (Dp(fp)) functions. If all of

these functions are regular, then E(f) is regular, see [53]. To check the regularity of

the energy functions, we only have to examine the interaction penalty Vpq. According
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to [53], all the one variable functions are regular. Therefore, if Vpq(fp, fq) satisfies

Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(1, 0) + Vpq(0, 1)

then E(f) is regular, and it can be optimized by graph cuts.

Multi-labeling is more general in vision and graphic problems. However, only a few

energy functions can be optimized exactly with graph cuts for multi-labeling prob-

lems. Ishikawa [44] proves that when Vpq(fp, fq) is convex, for example Vpq(fp, fq) =

|fp − fq|, the energy defined in Equation 2.3 can be optimized exactly with graph cuts.

Boykov et al. [12] show that the Potts model (Vpq(fp, fq) = wpq · T (fp 6= fq)) and the

truncated model (Vpq(fp, fq) = min(K, |fp − fq|)), as defined in Section 2.1, are NP-

hard to be optimized. Because convex energy functions, such as Vpq(fp, fq) = |fp − fq|,
are not discontinuity preserving, the Potts model and truncated enenrgy functions

are often used to obtain a better labeling. There are two methods, the expansion

move and the swap move algorithms, for approximating the energy which is NP-hard

to optimize exactly, such as Potts model and truncated energy function. Both expan-

sion and swap algorithms find a strong local minimum of the energy function. In the

following paragraphs, we will go through the swap and expansion algorithms based

on graph cuts and analyze their optimality properties from the aspects of different

constraints.

The expansion move can be used to optimize energy functions where Vpq is a

metric [12]. Vpq is metric if it satisfies all the metric constraints, which are defined by

the followings:

Vpq(α, α) = 0 (2.5)

Vpq(α, β) = Vpq(β, α) ≥ 0 (2.6)
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(a) (b) (c) (d)

Figure 2.6: From left to right: (a) original labeling, (b) labeling within one standard move

(the changed pixel is highlighted by a black circle), (c) labeling within one green-yellow

swap, (d) labeling within one green expansion

Vpq(α, β) ≤ Vpq(α, γ) + Vpq(γ, β) (2.7)

Example of interaction terms which are metric include the Potts Model V (α, β) =

K · T (α 6= β) and the truncated absolute distance V (α, β) = min(K, |α − β|), as
defined in the previous section.

For each labeling f defined on pixel set P, we can define a set of moves Mf that are

allowed to be taken from f . For any move f ′ ∈ Mf , f
′ is another labeling on the

pixel set P which can be obtained by changing the labels of a subset pixels P ⊆ P.
Let H(f, f ′) = |{p|p ∈ P, fp 6= f ′

p}|. That is H(f, f ′) counts the number of pixels for

which f is different from f ′. A standard move f ′ ∈ Mf is a move where H(f, f ′) ≤ 1.

Thus at most only one pixels changes its label from f , see Figure 2.6(b).

Given a labeling f and a label α, an α-expansion move only allows pixels whose

current label in f is not α to change to α in the new labeling f ′. That is a move f ′

is called an α-expansion if fp = f ′
p whenever f ′

p 6= α. For the α-expansion algorithm,

Mf is defined as the collection of α-expansions for all labels α ∈ L. Figure 2.6(d)

shows an example of α-expansion.

In the expansion algorithm, optimization starts with an initial labeling f . For each

iteration, a label α is chosen from the label set L. Then the α-expansion move which

decreases the energy E(f) most will be saved and taken as the input labeling for the
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next iteration. To find the optimal α-expansion move, a certain graph G = 〈V,E〉 is
constructed and the minimum cut of this graph G is computed.

The graph construction for G is as follows. The vertex set V consists of three parts.

First, there are two terminals α and α included in V , where α represents the current

labels in f and α means the new label to be expanded. Second, every pixel in P also

presents in V . At last, for each pair of neighboring pixels {p, q} ∈ N where fp 6= fq,

an auxiliary node a{p,q} is created. Notice the auxiliary nodes only present between

pixel pairs with different labels in the old labeling f . Thus the set of vertices is

V = {α, α} ∪ P ∪ {a{p,q}|{p, q} ∈ N , fp 6= fq}

The edge set E also consists of t-links and n-links. For neighbouring pixels whose

labels are the same in f , that is {p, q} ∈ N and fp = fq, there are n-links epq

connects them. For pixel pairs where {p, q} ∈ N and fp 6= fq, there are three edges

εp,q = {ep,a, ea,q, tαa} created. Here a = apq is the corresponding auxiliary node between

p and q. The edges ep,a and ea,q connect pixels p and q to apq and t-link tαa connects

the auxiliary node apq to the terminal α. For each pixel p ∈ P, there are two t-links

tαp and tαp connect it to the terminals α and α respectively. Thus the edge set is:

E = {tαp , tαp |p ∈ P} ∪ {εp,q|{p, q} ∈ N , fp 6= fq} ∪ {e{p,q}|{p, q} ∈ N , fp = fq}

Figure 2.7 shows an illustration of constructing graph for α-expansion.

The weights assigned to the edges are:
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Figure 2.7: An example of graph for α-expansion. The pixels set is P = {p, q, s}. Pixel p

and q have different labels in the current labeling, indicated by the different colors on the

nodes. An auxiliary node apq is introduced between p and q.

edge weight for

tαp ∞ p ∈ P, fp = α

tαp Dp(fp) p ∈ P, fp 6= α

tαp Dp(α) p ∈ P
ep,a V (fp, α) {p, q} ∈ N , fp 6= fq

ea,q V (fq, α)

tαa V (fp, fq)

ep,q V (fp, fq), {p, q} ∈ N , fp = fq

A minimum cut on graph G = 〈E, V 〉 will find the optimal α-expansion move. A

pixel p ∈ P is assigned label α if the optimal cut separates it from the terminal node

α. If the optimal cut on graph G = 〈E, V 〉 separates pixel p from node α, then its old

label will be preserved. To make the energy of the optimal cut represent the energy

of the resulting labeling correctly, it is required that the weight of edge eqα is less

than the sum of weight of edges eαp and tαα. That is:

V (fp, α) + V (fp, fq) ≥ V (fq, α)

Therefore, α-expansion can only be applied on energy functions which are metric, see
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Figure 2.8: An example of α-β swap. Pα = {r, . . . , p} is the set of pixels whose current

label is α, indicated by red circles. Pβ = {m, l, q} is the set of pixels whose current label

is β, coloured with blue. All the pixels are connected to the two terminal nodes associated

with label α and β. Let Pαβ = Pα
⋃Pβ. For any pixel p ∈ Pαβ, the weights of the t-

links between p and the terminals α and β are: tαp = Dp(α) +
∑

q∈Np,q /∈Pαβ
V (α, fq) and

t
β
p = Dp(β) +

∑

q∈Np,q /∈Pαβ
V (β, fq). The neighbouring pixels are connected with n-links.

The weight of the n-link epq between any pair of pixels p and q is Vpq(α, β).

Equation 2.5, 2.6, 2.7. The algorithm cycles in random order in the label set L until

convergence.

Swap Move is another approximation algorithm for multi-labeling. Given a labeling

f and a pair of labels α and β, a move f ′ is called a α − β swap if fp = f ′
p whenever

fp 6= α and fp 6= β. This move only allows the differences between f and f ′ where

some pixels that were labeled α in f are now labeled β in f ′, and some pixels that

were labeled β in f are now labeled α in f ′. Figure 2.6(c) shows an example of α − β

swap. In each iteration of the swap move algorithm, a pair of labels α and β are

selected randomly from label set L, and the optimal α − β swap is found. This step

is performed by finding the minimum cut on a certain graph G = 〈V,E〉.

Let vertices set V contains the source terminal s and the sink terminal t. The source

s is associated with label α and sink t is associated with label β. Let Pαβ be the set of

all pixels for which either fp = α or fp = β. Pixels in Pαβ are set to be non-terminal

nodes in V . Each nonterminal node is then connected to the source with a t-link
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weighted

Dp(α) +
∑

q∈Np,q /∈Pαβ

V (α, fq)

Each nonterminal node is also connected to the sink with a t-link weighted

Dp(β) +
∑

q∈Np,q /∈Pαβ

V (β, fq)

Each pair of neighboring nodes {p, q} in Pαβ are connected by a n-link weighted

Vpq(α, β). The minimum cut C = (S, T ) on graph G corresponds to the optimal

α − β swap. If p ∈ S, f ′
p is set to be α, otherwise f ′

p = β. For pixels which are not in

Pαβ , f
′
p = fp. Figure 2.8 illustrates the structure of the graph for α − β swap. The

swap move algorithm cycles randomly inside the label set L until convergence.

A restriction for swap move algorithm is that the energy function must be semi-

metric [12]. An energy function is semi-metric if it satisfies Equation 2.6 and 2.5.

The truncated quadratic V (α, β) = min(K, |α − β|2) is an example of semi-metric

energy functions. It encourages the labeling to have several regions in which pixels

in the same region have similar labels.

The optimality of α-expansion has been proved by Boykov et al. [12]. Although

it is NP-hard to optimize the energy function whose interaction term is not convex,

Potts Model Vpq(fp, fq) = wpq × T (fp 6= fq) for example, a local minimum when

expansion moves are allowed is within a know factor of the global minimum. This

factor, which can be as small as 2, depends on V . Let

c =
maxα6=β∈L V (α, β)

minα6=β∈L V (α, β)

be the ratio of the greatest non zero value of V to the least non zero value of V , where

L is the set of all labels. Since V (α, β) 6= 0 for α 6= β due to the metric properties

defined in Equation 2.5 and 2.6, this ratio c is well defined. Let f̂ be a local minimum
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when the expansion moves are allowed and f ∗ be the global optimal solution. Then

we have E(f̂) ≤ 2cE(f ∗).

A local minimum given by swap move can be arbitrarily far from the global min-

imum. However, since it only requires the energy functions to be semi-metric (see

Equation 2.5 and 2.6), the swap move can be applied to a wider range of energy

functions than that of expansion move.

2.3 Applications of graph cuts optimization

In this section, we describe a specific application of graph cut optimization which is

most related to this thesis, motion magnification. We describe the problem, how it

is represented as labeling problem and formulate energy functions to solve it. In the

last part, we will briefly introduce some other applications which are based on graph

cut algorithm.

2.3.1 Motion Magnification

Motion magnification is a virtual microscope which amplifies subtle motions in a video

sequence. It visualize the deformation of the regions whose motions are invisible for

human eyes. Figure 2.9 illustrates an example of motion magnification. Comparing

with the frame from the input video sequence, the deformation of the bookshelf is

amplified so that it can be visible for human.

The main difficulty of motion magnification is motion layer segmentation. To amplify

the motions of the subtle regions, the first step is to detect these regions as well as

their motion vector. However, motion segmentation is not a well solved problem yet.

Liu et al. [61] proposed a motion magnification approach based on graph cuts.

Their basic idea is first detecting sparse feature points which translate from one

frame to the next. The second step is to estimate the dense motion vector for all the
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(a) Input Frame (b) Motion Magnification on Bookshelf

Figure 2.9: An example of motion magnification. Figure (a) is from the input video

sequence where the bookshelf is pressed. The deformation of the bookshelf is inevitable to

human vision. Figure (b) is produce by the motion magnification approach proposed by Liu

et al. [61]. Compared with Figure (a), it clearly reveals the deformation of the bookshelf.

pixels and segment the pixels into several motion layers. This step is formulated as

a multi-labeling problem and solved with graph cuts. Finally, the motion of the user

selected layers is magnified. The “hole” revealed by the amplified motions are filled

in by texture synthesis. Figure 2.10 shows the main procedure for the work of Liu et

al. [61].

The first step of Liu et al. [61] is detecting and tracking the robust feature points

inside the video sequence. It starts with detecting corners with Harris corner detector.

Then the trajectories of these corner features are computed by mapping each feature

point from the reference frame to each other frames, based on the minimum sum

of squared differences (SSD) over a small path. They develop a learning approach

based on Expectation Maximization (EM) algorithm to compute the weight map

that characterizes how pixels should be weighted in the SSD similarity measures.

This allows them to track the features more robustly through occluded regions.

The next step is to cluster all the trajectories into several clusters, which forms the

basis of motion layer segmentation. The entire motion trajectory of each feature

point, rather than motions between two nearby frames, is used in the clustering step.
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(a) The input frame
(b) Tracked and clustered fea-
tures

(c) The motion layers

(d) Holes generated by amplify-
ing the motions

(e) After texture synthesis
(f) After user modification to
the segmentation map in Figure
(c)

Figure 2.10: The process of Liu et al. [61]. These images are from Liu et al. [61].

This is because the goal of the motion clustering is to group together motions with a

common cause, even though the motions may be in different directions. Normalized

correlation between the trajectories are used to measure the similarity between them.

Trajectory clustering is done with spectral clustering. The number of clusters is

provided by the user. Figure 2.10(b) shows the result for computing and clustering

the trajectories.

In the third step, every pixel of the image is assigned to one of the motion clusters

detected in the second step. This is done in a multi-labeling framework. The label

set L is the set of all motion layers. The data term consists two parts, motion

likelihood and colour likelihood. The motion likelihood measures the variance of

the colour of the pixels along the motion trajectory. If the motion label fits the

pixel well, then the colour of the pixel should be stable when moving along with

the motion trajectory associated with the label. Colour likelihood uses a Gaussian

mixture model to compute the likelihood for each pixel belongs to the same motion
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layer. The intuition behind the colour likelihood model is that pixels which move

with the similar motion usually belong to the same object. Therefore, they have

similar colour information. The smoothness term is the Potts model, where the

weight of the smoothness term is calculated based on the edge strength between the

neighbouring pixels. The stronger the edge is between the neighbouring pixel pair,

the less the smoothness term is. Graph cut algorithm [12] is used to optimize the

energy function. Figure 2.10(c) shows the result of motion segmentation.

The fourth step is to amplify the small motion in the motion layer selected by the

user, and then displace the pixels inside that layer according to the magnified motion.

Since motion magnification will reveal occluded regions, as shown in Figure 2.10(d),

texture synthesis is used to fill in the gap space generated by motion magnification.

Figure 2.10(e) shows the image in-painting result. At last, user interaction is applied

to correct the small errors made in motion segmentation, see Figure 2.10(f).

2.3.2 Other applications of graph cuts optimization

Besides motion magnification, graph cuts has also been applied as energy optimization

tools in many other vision and graphic problems. Stereo [12, 52, 49] is one of the most

important problems in computer vision. The task of stereo algorithm is to construct

a 3D structure of a scene, given two or more photos from different views of the same

scene. To solve this problem, the typically used approach is to find the correspondence

between views and thereby find the disparity of each point in the scene. By viewing

the disparities as labels, stereo problems are formulated as labeling problems and the

optimal labeling can be computed by graph cuts. The 3D reconstruction problem can

be done by viewing the problem as a multi labeling problem and graph cut is used to

obtain the optimal labeling.

For motion segmentation [46, 100, 98], the task is to cluster pixels in clouds that

undergo similar motions. This problem can be naturally represented by a labeling
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problem and graph cut can be used as the optimization tool.

Other vision problems, such as image restoration, texture synthesis, and image stitch-

ing can also be solved by graph cuts, see [12, 55, 1].
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Chapter 3

Global Formulation of Static

Mosaics

In this chapter, we formulated the problem of classic mosaic generation in a global

optimization framework, and designed an energy function encoding the properties

that lead to perceptually pleasing mosaics. Our global optimization framework offers

a more principled approach than previous work, which is mostly based on heuristics.

Comparing with the preliminary version of our static mosaic rendering method in

[63], we formulate our energy function in a new way so that all the constraints for a

good classic mosaic (edge alignment, edge avoidance, tight tile packing) are encoded

in one energy function. The restating of the mosaic rendering process makes it easier

to comprehend the problem, since the relationship between all the mosaic constraints

is revealed as a whole energy function. We also sped up our algorithm by 3 to 4 times,

by improving the method in which we implement the tile packing algorithm in [63].

Most material in this chapter was published in [64].
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3.1 Introduction

Classic mosaic is an ancient art form. It is composed of a large number of small tiles

with regular shapes, such as rectangles. For thousands of years, durable mosaics were

used for decoration purpose.

Studying the work of mosaic artists, two main properties of a visually appealing

mosaic emerge. First, mosaic tiles should be placed at orientations that emphasize

perceptually important curves in an image. This is usually done by placing the

tile sides parallel to the important curves. Recall the synthetic example presented

in Section 1.2.2, the circle in Figure 1.5(a) is strongly emphasized in Figure 1.5(c)

by placing the tile sides parallel to the circle boundary. If the tiles are placed at

random orientations, the circle is emphasized much less, see Figure 1.5(b). Parallel

tile placement is by far the most popular way to emphasize the boundaries, although

other techniques for boundary emphasis are also possible.

Deciding which curves are perceptually important and are to be highlighted is fre-

quently done with user interaction [36, 23]. While a human is the ultimate expert,

it may be desirable to produce classic mosaics automatically. Since perceptually im-

portant curves tend to coincide with strong color edges in an image, some methods

take advantage of the information provided by the gradient magnitude to automate

the mosaic generation process. Explicit methods [10, 6] label the boundaries returned

by an edge detection or an image segmentation algorithm as perceptually important.

Such approach is simple but brittle, since edge detection and image segmentation fre-

quently produce unappealing boundaries. Implicit methods [63, 5] use the gradient

magnitude only as a soft cue for a possible boundary to emphasize. Whether a pixel

with a high gradient magnitude gets emphasized or not depends on other factors,

such as preferred tile orientations at other pixels, etc.

The second important mosaic principle is to maximize the number of tiles, while avoid-

ing tile overlap as much as possible. This, combined with the first principle, means
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that tile orientations should align with important boundaries and vary smoothly in

the image, since smoothly varying orientations allow a tighter packing of tiles. In

Figure 1.5(c), tile orientations vary much more smoothly compared to that of Fig-

ure 1.5(b). Therefore the mosaic in Figure 1.5(c) has less gap space and is visually

more appealing than that in Figure 1.5(b).

The following sections of this chapter is organized as follows. Section 3.2 discusses

previous work, section 3.3 is a brief overview of our algorithm. Section 3.4 describes

our energy function for mosaic generation, and section 3.5 gives a detailed descrip-

tion of our optimization strategy. Section 3.6 presents our experimental results and

comparison with previous work. Section 3.7 is a summary.

3.2 Related Work

In this section, we will briefly introduce several significant methods on generating

static mosaics. They are divided into two categories: orientation guideline methods

and energy optimization methods. For the orientation guideline based methods [36,

23], the tile orientations are computed according to the orientation guidelines which

are either provided by the user or detected using edge detection methods. Tile packing

is usually done using heuristics. Another approach is to formulate the classic mosaic as

a labeling problem and solve it by energy optimization methods [63, 5]. The energy

optimization based approaches provide a new way to encode the edge information

as a soft cue for computing tile orientations. Therefore, they eliminate both the

user interaction of drawing the tile orientation guidelines and edge detection. The

constraint of tight tile packing can also be encoded in the energy function, hence it can

be approximately optimized and produce better results than the heuristic approaches.
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3.2.1 Orientation Guideline Methods

The first successful work on simulating classic mosaics was introduced by Hausner [36].

The main process of Hausner’s work can be divided into two stages: computing the

tile orientation field and packing the tiles. Each of these two stage addresses one of

the main constraints for classic mosaics (the edge alignment constraint and tight tile

packing constraint), as we mentioned in section 1.2.2.

In the beginning, the user is required to input a set of curves, which are usually

the edges of the objects inside the input image. A vector field of tile orientations is

then computed based on the curves drawn by the user. When a square tile is placed

at pixel (x, y), its side should be parallel to the orientation vector located at (x, y).

To generate such an orientation vector field, Hausner first computes the distance

transform of the input curves, which is also known as distance field. Let E(x, y) be

the input curve map, that is E(x, y) = 0 if (x, y) is located right on the curves marked

by the user and E(x, y) = 1 otherwise. If D(x, y) is the distance transform of E(x, y),

then for any pixel (x, y), D(x, y) is the distance from (x, y) to its nearest curve point

in E(x, y). The gradient field of the distance map D(x, y) for the input curve map

E(x, y) is then computed and used as the tile orientation field. Figure 3.1(b) shows

the result of computed tile orientations.

The orientation field computed in this way will ensure that, at the points close to the

object edges, the tile orientation vectors will be perpendicular to the nearest edge.

Aligning the tiles with these guiding vectors will make the resulting mosaic highlight

the shape of the objects inside the input image.

After computing the tile orientation, the next step is to pack the tiles as dense as

possible and avoid putting the tiles over the strong intensity edges, which will blur

the final mosaic. In Hausner’s work, tile packing is done by using Centroidal Voronoi

Diagram (CVD). Let N be the number of sites which are randomly distributed on

the 2D space. These sites become the centers of the tiles.
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A Voronoi Diagram (VD) segments the 2D space into N non-overlapping regions so

that each region contains exactly one site. In addition, points within the same region

are closer to the site which is contained in that region than to any other site. If

the sites are the centroid (mass center) of their associated region, then this Voronoi

Diagram decided by these sites is also a Centroid Voronoi diagram. In order to pack

the tiles to form a classic mosaic, Centroidal Voronoi Diagram, other than regular

Voronoi Diagram, is used since the regions it segments cover the 2D space more

equally.

For each region generated by the CVD, a tile will be placed centered at the site it

contains. The tile orientation is then decided by the orientation vector computed in

the first step. Euclidean distance based CVD segments the image plane into hexagonal

grids, which will result in a large gap space between square tiles. To adapt the CVD

algorithm to the square tile shape, Centroidal Voronoi Diagram based on Manhattan

distance is used to minimize the gap space between the neighboring tiles. When

measuring the Manhattan distance from each site, the axes are rotated to be parallel

to the orientation vector at the tile site, see Figure 3.1(c).

In the second stage of tile packing, an iterative algorithm is developed in Hausner’s

work based on Centroidal Voronoi Diagrams. At first, N tile sites, which can be also

viewed as N tile centers, are distributed randomly inside the 2D image space. The

number of tiles, N , is also provided by the user. In each iteration, to compute the

Centroidal Voronoi Diagram, a regular Voronoi Diagram is first computed and then

the sites are moved to the centroid of their associated region. To incorporate the tile

orientation field computed in the first step, when computing the Manhattan distance

from the sites, the axes are rotated to be parallel to the tile orientation vector at

the sites. The problem with rotating the axes is that the iterative algorithm for

computing CVD may not converge in some cases.

The advantage of using Centroidal Voronoi Diagram is that it is fairly easy to encode

edge avoidance constraint for a good mosaic. When rendering the tiles, the tile colour
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(a) Input image (b) Tile orientation field

(c) CVD aligned to the orientation
field

(d) The mosaic image

Figure 3.1: Hausner’s method. Figure (a) shows the input image. Figure (b) illustrates

the tile orientation field. Figure (c) shows the Centroidal Voronoi Diagram computed with

Manhattan distance and aligned with the tile orientation field in Figure (b). Notice the

CVD cells are pushed away from the curves marked by the user, which are shown in white

lines. Figure (d) is the final result after putting the tiles centered at each cell of CVD.

is usually taken as the average colour of all the pixels of the original picture covered

by the tile. This helps to preserve the color scheme between the original image and

the mosaic rendering. If a tile is located at a point where the intensity variance is too

sharp, taking the average colour of the covered pixels will create a blurring effect. By

encoding edge avoidance into the algorithm, Hausner’s work can reduce the blurring

effect caused by putting the tiles over the intensity edges. This is done by adding

a pushing force on the curves of the input curves, so it will push the tile sites to
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move away from the edges. After the image space is segmented into N regions by

CVD, one tile is placed centered at each region, and the tile orientation should be

parallel to the tile orientation vector at the site associated with the region, as shown

in Figure 3.1(d).

Hausner’s work produces good results in rendering classic mosaics, see Figures 3.4(d),

3.5(d) and 3.6(d). However, it requires extensive user interaction to draw object

boundaries. Also, the number of tiles, N , is provided by the user, therefore, the final

mosaic may have large gap space between the tiles if N is too small, or there may be

a great number of tiles overlapping each other if N is too large.

An alternative approach for generating classic mosaics was developed by Elber and

Wolberg’s [23]. The main idea of this method is also packing the tiles along the guiding

curves drawn by the user. At the beginning, a set of closed curves are marked by the

user. Similar to Hausner’s work, this set of curves is usually also the outline of the

objects one wants to highlight in the input image. These curves are referred to as

feature curves. A set of curves which are parallel to the feature curves are computed,

and used as the tile orientation guidelines. The distance between nearby curves is the

same as the size of the tiles in the final mosaic. This is basically the set of level lines

to the user-drawn curve. Tiles are then packed along these guiding curves, with their

sides parallel to the nearest curves, under the constraint that tiles do no overlap.

The main drawback of Elber and Wolberg’s work is that their method creates artifacts

at the pixels which are far away from the feature curves input by the user. The input

feature curves usually highlight the shape of the important objects in the image.

Therefore, the details in the background are often ignored. After laying the tiles

along with the guiding curves which are parallel to the input feature curves, the

tiles located in the background are also aligned to the object feature curve. This

creates a strange halo effect in the background, with tile orientations emphasizing

distant foreground objects instead of background details, see Figure 3.2. Elber and

Wolberg’s work also creates discontinuities of the tile orientation at the skeleton of



52

Figure 3.2: Elber and Wolberg’s [23] result: notice inside the red ovals, the tiles in the

background are following the shape of the dinosaur, which creates either unnecessary dis-

continuities or strange halo effect that ignores the background details.

the input curves, which results in breaking tiles when packing.

3.2.2 Methods Based on Energy Optimization

A method which is most close to our work is Battiato et al. [5]. In this paper, the

authors present a classic mosaic rendering method which is also based on energy

optimization framework, like our work. They also compute the tile orientation field

in the beginning. In the first step, Battiato et al. [5] adopt the algorithm from Xu

et al. [101] to compute the Gradient Vector Flow (GVF) of the input image. The

Gradient Vector Flow is a vector field of v = [v, u] which minimize the following

energy function:

E =

∫ ∫

µ(u2
x + u2

y + v2x + v2y) + |∇f |2 × |v − ∇ f |2dxdy (3.1)
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Here |∇f | is the gradient magnitude of the input image and µ is the regularization

parameter. By looking at Equation (3.2.2), it is easy to see that at the homogeneous

regions of the input image, where |∇f | is very small, the first term of this equation

dominates the integrand. Therefore, to minimize this energy, the resulting vector field

should vary smoothly so that the sum of the partial derivatives of the vector field is

small. When |∇f | is large, then the second term of Equation (3.2.2) is the dominant

part. Then setting v = ∇f will minimize the energy. Thus the resulting gradient

vector flow will have smooth variance where the image is homogeneous, and equal to

the gradient vector where |∇f | is large. Aligning tiles with the GVF will ensure that

the tiles follow the shape of the objects in the input image.

Heuristics are used to pack the tiles in Battiato et al. [5]. To pack the tiles, Battiato et

al. start with points whose gradient vector magnitude is greater than a threshold T .

First, tiles are placed at points with large gradient vector magnitude in a descending

order. Tile overlap is prohibited in this step. For regions with small gradient vector

magnitude, tiles are simply placed one by one from left to right. Tile overlap is also

prohibited in this stage. The intuition behind this process is that, by starting with

points of large gradient vector magnitude, areas close to the important edges are

processed first.

The work of Battiato et al. [5] produces nice mosaic, see Figure 3.4(c), 3.5(c)

and 3.5(c). However, their energy optimization algorithm is local and not as power-

ful as the global methods. Furthermore, the heuristic tile packing procedure creates

uneven gap space over the mosaic image, which is an unpleasant artifact.
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3.3 Overview of Our Method

Our goal is to develop a classic mosaic algorithm based on global optimization. Hav-

ing a global objective function has a number of advantages. We can model the desired

mosaic properties, such as tile orientations parallel to the important edges in the im-

age, directly by including the appropriate terms into the energy function. Successful

optimization of this energy guarantees that the resulting mosaic satisfies those prop-

erties that we think are desirable. If the results are unsatisfactory, we can rethink

and redesign those terms in the energy functions that are likely to be the cause of

a failure. By modifying the energy function, new mosaic effects can be introduced.

We can also use the value of the energy as a metric for measuring and comparing the

quality of the mosaics.

The energy function that we design incorporates the properties illustrated in Fig-

ure 1.5, such as tile alignment to significant edges, etc. We also avoid both user

interaction and explicit edge detection that are currently required by most mosaic

algorithms. Furthermore, unlike many existing approaches, we completely prohibit

overlap between tiles.

Our objective function is too hard to optimize in all the variables simultaneously, and

therefore we optimize different sets of variables sequentially. First we optimize for

tile orientation variables. The constraints are similar to those in previous work: we

require that tile orientations vary smoothly and align with the strong intensity edges.

This step is performed with the α-expansion algorithm [12] which is based on graph

cuts. Graph cuts proved to be a powerful optimization tool [87]. The biggest benefit

of using global optimization is that our approach preserves the smoothness of tile

orientations as a global property. We do not have discontinuities in tile orientations

like those in [36, 23] because we optimize tile orientations directly and globally. None

of the existing approaches enforce the smoothness of tile orientations in a global

optimization framework. Furthermore, we eliminate user interaction because explicit
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edge information is not needed.

In the second step, we optimize over tile visibility variables of our energy function. In-

tuitively, this step can be seen as stitching together multiple candidate mosaic layers.

First we generate multiple mosaic layers obeying the pre-computed tile orientations.

A candidate mosaic layer is heuristically generated and therefore is not a good mosaic

overall. The gap space between tiles is not optimized and many tiles may be placed

over sharp intensity edges, which creates blur, like in Figure 1.5(b). However, some

parts of a candidate layer are good, i.e. the tiles are packed tightly and avoid overlap-

ping the sharp intensity edges. By optimizing over visibility variables of the energy

function, we select the good parts from all the candidate layers. This step can be seen

intuitively as stitching together candidate mosaic layers. Optimizing over visibility

variables is also done in the energy optimization framework with graph cuts [12].

3.4 Energy Formulation for Static Mosaics

In this section, we give a detailed motivation and description of the energy function

that we use for mosaic generation. We start by explaining the label set. Any tile

can be identified by its center and orientation. Therefore we use two labels per pixel.

Let I be the colour image from which we wish to generate the mosaic, and let P be

the collection of all pixels inside I. For each pixel p ∈ P we wish to assign a label

which is an ordered pair: (vp, ϕp). Here vp ∈ {0, 1} is the binary “visibility” variable.

If vp = 1, then we place a tile centered at pixel p in the mosaic. If vp = 0 then the

mosaic does not have any tiles centered at p. We assume that all tiles are square with

the side of size tSize.

The second part of the label, ϕp, specifies the orientation of the tile centered at pixel

p, if there is such a tile in the mosaic. If vp = 1 then ϕp has a meaning (i.e. tile ori-

entation), if vp = 0, the value of ϕp is not used. Our discrete optimization framework

requires that the set of orientations is finite. Here we discretize the orientations into
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n angles, at equal intervals. Since the square tiles have several angles of symmetry,

we need angles only in the range of [0, π
2
). The set of all possible orientations is:

Φ = { π
2n
× (i − 1)| i = 1, 2, . . . , n}.

We set n to 32 for all the experiments.

Occasionally we need to refer to the set of all pixels covered by a tile centered at pixel

p and with orientation ϕp. We will denote this set as T (p, ϕp). The color of the tile

is an average of colors over the pixels in I that this tile covers.

Let ϕ = {ϕp|p ∈ P} and v = {vp|p ∈ P}. A mosaic then is an ordered pair of

variables (v, ϕ) s.t. v ∈ {0, 1}n and ϕ ∈ Φn, where n is the size of P.

We are now ready to formulate the energy function for a mosaic (v, ϕ). Our energy

function encodes the following principles for generating a visually pleasing mosaic:

tiles should align with strong edges in the image I, nearby tiles should have similar

orientations, tiles should avoid crossing strong edges in image I, and, finally, the gap

space in the mosaic should be minimal. Our energy function is as follows:

E(v, ϕ) =
∑

p∈P(1 − vp) +
∑

p∈P vp ·Dp(ϕp)+

+
∑

{p,q}∈N Vpq(vp, vq, ϕp, ϕq).
(3.2)

The first sum in Equation (3.2) ensures that the gap space is minimized. The more

tiles are placed in the mosaic, the less gap space there is. In addition, this terms

ensures that the optimal solution is not the trivial one: vp = 0 for all pixels p. The

second sum in Equation (3.2) is the data term, which measures how well the tiles

that we place in the mosaic align to the edges and avoid crossing the edges. The last

sum is the smoothness term that encourages nearby tiles to have similar orientations

and also prohibits tile overlap. We now discuss the data and the smoothness terms

in greater detail.
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3.4.1 Data Term

For each pixel p, the data term is vp ·Dp(ϕp). The term Dp(ϕp) measures the quality

of a tile with center at pixel p and with orientation ϕp. Multiplying by vp ensures

that we consider only the quality of the tiles that are actually present in the mosaic.

The Dp has the following form:

Dp(ϕp) = Dalign
p (ϕp) +Davoid

p (ϕp), (3.3)

where Dalign
p (ϕp) encodes edge alignment, encouraging tile sides to be parallel to the

intensity edges of the underlying image I, and Davoid
p (ϕp) encodes edge avoidance,

pushing the tiles away from intensity edges to prevent blurring.

We first explain the edge alignment term Dalign
p . Assuming that a pixel p is a tile

center, and knowing the tile size, it is fairly easy to estimate how well a particular

orientation aligns a tile to any intensity edge in the neighborhood. Since the tiles

have four sides, we check for the evidence of a strong edge for each one of them,

and then choose the side with the strongest evidence. To check for an edge presence,

we use the color difference between boxes around a tile side. We split a tile in half

horizontally into regions R1 and R3, and then, separately, we split a tile vertically into

regions R2 and R4, as illustrated with colored solid rectangles in Figure 3.3. Regions

B1, B2, B3, B4, illustrated in Figure 3.3, are located outside the tile, and adjacent to

R1, R2, R3, R4, respectively. To measure the evidence for an edge on the right hand

side of the tile, we take the difference in color between regions R1 and B1. The other

sides are handled similarly. Thus Dalign
p is:

Dalign
p (ϕp) = we · max

i=1...4
‖
∑

p∈Ri

I(p) −
∑

p∈Bi

I(p)‖, (3.4)

where I(p) stands for the color vector at pixel p. The weight we is negative. Thus

when there is a high response on the color difference between the pixels inside the
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(a) (b)

Figure 3.3: Shows R and B regions used in of Dalign
p (ϕp).

tile and that outside the tile, the term Dalign
p (ϕp) is negative, making tile orientations

with a higher contrast to incur less cost.

The edge avoidance term Davoid
p (ϕp) is defined as:

Davoid
p (ϕp) = wv ·

∑

q∈T (p,ϕp)

‖g(q)‖, (3.5)

where ‖g(p)‖ is the magnitude of the gradient at pixel p, and T (p, ϕp) is the set

of pixels covered by the tile with center at p and orientation ϕp. We approximate

gradient by the standard Sobel operator. This term measures the intensity variance

inside the tile, therefore we call it the variance term. If the label ϕp makes the

tile overlap a strong intensity edge, then the variance term will penalize the overlap

between the edge and the tile. This term is particularly important for pixels close to

the edges of an object. The weight of wv is set to be positive, since we want high

gradient to be penalized.

Notice that the Dp(ϕp) term involves summation over a potentially large group of

pixels if tile size is large. To compute Dp(ϕp) efficiently, we use the summed-area
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table technique [17]. Summed-area tables allows computing Dp(ϕp) in constant time,

independent of the tile size tSize.

3.4.2 Smoothness Term

The last term in Equation (3.2) is the smoothness term. First we define the neigh-

borhood system as: N =
{

{p, q}|dist(p, q) ≤
√
2 · tSize

}

, where dist(p, q) is the

Euclidian distance between the coordinates of pixels p and q. This neighborhood sys-

tem is large enough to contain all pairs of pixels s.t. if tiles centered at these pixels

are placed in the mosaic, then these tiles are adjacent or overlapping.

We define the interaction term Vpq(ϕp, ϕq, vp, vq) as:

Vpq(ϕp, ϕq, vp, vq) =

=











































0 if vp = 0 or vq = 0

ws · |ϕp − ϕq|(π
2
) if vp = vq = 1 and

T (p, ϕp) ∩ T (q, ϕq) = ∅
∞ if vp = vq = 1 and

T (p, ϕp) ∩ T (q, ϕq) 6= ∅

,

(3.6)

where

|ϕp − ϕq|(π
2
) =







|ϕp − ϕq| if |ϕp − ϕq| ≤ π
4

π
2
− | ϕp − ϕq| otherwise

. (3.7)

The smoothness term serves two purposes. First, any finite energy labeling has no

overlapping tiles. Second, it encourages orientations of adjacent tiles to have similar

orientations. Notice that we only consider the orientations of neighboring tiles that

are actually placed in the mosaic. The modulo arithmetic in Equation (3.7) reflects

the fact that rotation by angle ϕp gives the same result as rotation by angle ϕp +
π
2
,

due to the symmetry of a square. Thus the penalty for two neighboring pixels to
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have different orientation labels is an absolute difference of their labels, modulo π
2

arithmetic.

A mosaic (v′, ϕ′) that has a low value of energy in Equation (3.2) is expected to be

visually pleasing. Any other desired mosaic properties can also be included. However,

successful optimization depends on the particular form of the energy function. There

may be properties that one wishes to include that make the energy very hard to

optimize. For example, we may wish to include terms that make the gap space

evenly distributed throughout the mosaic. However, such terms would require higher

order interactions, which are much harder to optimize. We found that the energy in

Equation (3.2) offers a nice balance between containing the most important terms for

a pleasing mosaic, and being reasonable to optimize.

3.5 Energy Optimization for Static Mosaics

In this section we describe our optimization approach. The energy in Equation (3.2) is

too difficult to optimize in all variables simultaneously. We devise a stepwise approach

for approximation. First, we ignore the tile visibility labels vp, and optimize tile

orientation variables ϕp, section 3.5.1. Keeping tile orientation variables ϕp fixed, we

then optimize for the visibility variables vp, section 3.5.2.

3.5.1 Optimizing in Orientation Variables

We now explain how to optimize the orientation variables ϕ while ignoring the visi-

bility variables v. Intuitively, optimizing only the orientation ϕ generates a smooth

tile orientation field, which is usually the first step in most mosaic algorithms [36, 6].

However, unlike most previous algorithms (with a notable exception of [5]), our ori-

entation field is generated in a principled manner using a well-understood objective

function. Our advantage over [5], who also use optimization to get the orientation
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field, is that our objective function is optimized globally with graph cuts, not locally

as in [5]. Global optimization of non-convex functions produces better results, as

shown in [87]. Our energy function is non-convex, and, in fact, NP-hard to optimize,

as shown below.

Ignoring the visibility labels vp’s, our energy in Equation (3.2) becomes a function of

orientation labels:

Eo(ϕ) =
∑

p∈P

Dp(ϕp) +
∑

{p,q}∈N

Vpq(ϕp, ϕq), (3.8)

where Vpq(ϕp, ϕq) = ws · |ϕp − ϕq|mod(π
2
).

Another way of looking at decoupling of variables ϕ and v is as follows. In the

energy in Equation (3.8), Dp terms are optimized for all pixels p, and Vpq terms

are optimized for all neighboring pixel pairs {p, q}. Therefore if ϕ∗ optimizes the

energy in Equation (3.8), all Dp(ϕ
∗
p) and Vpq(ϕ

∗
p, ϕ

∗
q) terms are expected to be small.

In the complete energy in Equation (3.2), only the Dp and Vpq terms for pixels p, q

with nonzero vp, vq matter. Assigning vp’s while keeping ϕp’s fixed to the previously

optimized values of ϕ∗
p’s corresponds to picking out a subset of previously optimized

Dp(ϕ
∗
p) and Vpq(ϕ

∗
p, ϕ

∗
q) terms. Since all Dp(ϕ

∗
p) and Vpq(ϕ

∗
p, ϕ

∗
q) terms were small,

their subset is also expected to be small.

To minimize the energy in Equation 3.8, we use the α-expansion algorithm [12].

According to [11], to optimize our energy with α-expansion algorithm, for all α, β, γ ∈
L, the smoothness term Vpq should satisfy:

Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β, α) (3.9)

We now prove that the energy in Equation (3.8) satisfies Inequality (2.7).

Proof: To simplify notation, V denotes Vpq. Recall that orientations are in the

range of [0, π
2
), where π

2
is identified with 0. By definition in Equation (3.7), for any
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orientation labels α, β,

Vpq(α, β) = min
{

|α − β|, π
2
− | α − β|

}

≤ π

4
.

Therefore

V (α, γ) + V (β, α) = min(|α − γ|, π
2
− | α − γ|)

+min(|β − α|, π
2
− | β − α|)

There are four possible cases:

Case 1:

V (α, γ) + V (β, α) = |α − γ|+ |β − α| ≥ |γ − β| ≥ V (γ, β).

Case 2:

V (α, γ) + V (β, α) = (
π

2
− | α − γ|) + |β − α|.

Because |β − α| − | α − γ| ≥ −| γ − β|, we have that

V (α, γ) + V (β, α) ≥ π

2
− | γ − β| ≥ V (β, γ).

Case 3:

V (α, γ) + V (β, α) = |α − γ|+ (
π

2
− | β − α|),

the proof is identical to Case 2.

Case 4:

V (α, γ) + V (β, α) = (
π

2
− | α − γ|) + (

π

2
− | β − α|).

Since α, β, γ ∈ [0, π
2
), and |α − γ| ≥ π

4
and |β − α| ≥ π

4
, we have that either α

is larger than both γ and β or α is smaller than both γ and β. In the first case,

V (α, γ) + V (β, α) = π − 2α + γ + β ≥ γ + β ≥ |γ − β| ≥ V (γ, β). In the second

case, V (α, γ) + V (β, α) = π + 2α − γ − β ≥ π +max{γ, β} − max{γ, β} − γ − β ≥



63

|γ − β| ≥ V (γ, β). 2

It is interesting to note that the energy in Equation (3.8) is NP-hard to optimize.

Suppose Φ = {0, π
6
, π
3
}. Let α, β ∈ Φ. Then there are three cases for Vpq(ϕp, ϕq):

V (0, π
6
) = V (π

6
, π
3
) = V (0, π

3
) = π

6
. Thus this Vpq is the so called Potts model, which

was shown to be NP-hard to optimize in [12].

3.5.2 Optimizing in Visibility Variables

Let ϕ∗ be the tile orientation field computed in section 3.5.1. We now must opti-

mize Equation (3.2) over the visibility variable v with ϕ fixed to ϕ∗. Unfortunately,

optimizing v, even if ϕ is kept fixed, is an NP-hard bin packing problem. Our ap-

proach approximates this problem in a two-step manner. First for i = 1, ..., m we

generate in a heuristic manner a number of labelings vi s.t. E(vi, ϕ∗) < ∞ for all i.

Therefore each (vi, ϕ∗) corresponds to a mosaic with no overlapping tiles. Since vi is

generated heuristically, (vi, ϕ∗) may not be a good mosaic overall, but might contain

a few regions that are good candidates for the final mosaic. We call each (vi, ϕ∗) a

candidate mosaic layer. Orientations of the mosaic corresponding to each candidate

mosaic layer are given by ϕ∗. The final step is to stitch all (vi, ϕ∗) into a final mosaic

(v∗, ϕ∗) in such a way that the energy in Equation (3.2) is minimized.

3.5.2.1 Generating Candidate Mosaic Layers:

Intuitively, building each layer candidate mosaic layer (vi, ϕ∗) given a tile orientation

field corresponds to using heuristics for tile placement, as done in most other mosaic

generation algorithms [36, 5], etc. However, instead of generating just one final mo-

saic, we generate m layers, that are stitched together to form a better final mosaic

according to our global energy function in Equation (3.2).
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We build each vi heuristically. Our goal is for a candidate mosaic layer (vi, ϕ∗) to

have no tile overlap and at the same time contain as many tiles as possible (i.e. for

as many pixels as possible, variables vip should be set to 1). We start with vip = 0

for all pixels p. Next we select a starting pixel s at random. The starting pixel gets

assigned vis = 1. Then we put all the other pixels in P on an ordered list O of pixels

to be processed. Pixels in list O are ordered by their distance to the starting pixel s,

with pixels closer to s placed closer to the beginning of O. Let q be the next pixel to

be processed. We set viq = 1 if placing tile centered at q with orientation ϕ∗
q does not

cause tile overlap among the tiles previously placed, i.e. if T (p, ϕ∗
p) ∩ T (q, ϕ∗

q) = ∅
for all pixels p with vip already set to 1. The process of “growing” vi stops when the

list O is empty. By placing pixels on the list in order of their distance to the start

pixel, we are trying to ensure that the next tile placed in vi is as close as possible to

the already placed tiles, thus making the gap space in vi minimal.

To build a candidate mosaic layer efficiently, when assigning viq = 1 for some pix-

el q, we remove all the pixels in T (q, ϕ∗
q) from the list O. We also check for tile

overlap efficiently. Whether two tiles overlap or not depends only on their relative

orientations and the relative distance between the tile centers. We compute a small

two-dimensional lookup table, which, based on the relative orientation and center

differences, tells us whether two tiles overlap or not. Thus the overlap checking can

be done in constant time.

We build enough candidate mosaic layers to ensure that for all pixels p, there is an i

s.t. vip = 1. This gives each pixel p a chance to have a tile centered at p appear in the

final stitching. The candidate mosaic layers built in this heuristic manner are far from

an optimal mosaic. While we try to pack the tiles tightly in each candidate layer, any

layer will have regions where the packing is not as tight as possible. In addition, since

the quality of tiles (i.e the data term Dp) is not checked when building the layers,

many tiles will be placed on the high intensity edges which causes blurring of the

mosaic. Therefore, we need the third step of stitching all layers (vi, ϕ∗) together to
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find a better solution.

3.5.2.2 Stitching Candidate Mosaic Layers

After generating a set of candidate mosaic layers (vi, ϕ∗), i = 1, ..., m, the last step is

to stitch them together to form the final mosaic (v∗, ϕ∗) s.t. the energy E(v∗, ϕ∗) is

minimized.

The stitching is performed in a pairwise manner. Let (vi, ϕ), (vj, ϕ) be two mosaics

with equal orientations field. Then their stitching is another mosaic (v′, ϕ) s.t. for all

p ∈ P, v′p ∈ {vip, vjp, 0}. This implies that the stitching of two mosaics cannot have

any tiles that were not present in either the first or the second mosaic, thus the name

“stitching”.

Our stitching algorithm is iterative. We always have the current mosaic (vc, ϕ∗),

and stitch it with one of the candidate mosaic layers (vi, ϕ), chosen at random. The

stitching is performed in such a way as to minimize the energy of the resulting mosaic.

We update the current mosaic to the result of the stitching, and repeat. To initialize,

vc is set to a randomly chosen vi. The process stops when there is no layer s.t.

stitching this layer improves the current mosaic (vc, ϕ), or when the maximum number

of iterations is reached.

We now explain how to find the optimal stitching of the current mosaic (vc, ϕ) and

the candidate mosaic layer (vi, ϕ). Let Pc = {p ∈ P|vc = 1}, Pi = {p ∈ P|vi = 1},
and let S = Pi∪Pc. Notice that only pixels p ∈ S can have their visibility variable vp

change as a result of a stitching. Therefore optimization is performed only over the

variables vp s.t. p ∈ S. With the variables ϕ fixed to ϕ∗ and optimization performed

only over pixels in S, the energy in Equation (3.2) reduces to the energy below:

Ev(v) =
∑

p∈S(1 − vp) +
∑

p∈S vp ·Dp(ϕ
∗
p)+

∑

{p,q}∈N
{p,q}⊂S

Vpq(vp, vq, ϕ
∗
p, ϕ

∗
q).

(3.10)
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The energy that we can actually optimize exactly is:

Ẽv(v) =
∑

p∈S(1 − vp) +
∑

p∈S vp ·Dp(ϕ
∗
p)+

∑

{p,q}∈N
p∈Pc,q∈Pi

Vpq(vp, vq, ϕ
∗
p, ϕ

∗
q).

(3.11)

The difference between the energies Ev in Equation (3.10) and Ẽv in Equation (3.11)

is that only the pairwise terms between pixels p ∈ Pc and q ∈ Pi are present in

Equation (3.11). Pairwise terms between pixels inside Pi and inside Pc are missing

in Ẽv . We omit this terms to make optimization tractable. However, the absence

of these terms is not as important as may seem at first. First of all, since there is

no tile overlap in either vc or vi, Vpq(vp, vq, ϕ
∗
p, ϕ

∗
q) is finite when p, q ∈ Pc and when

p, q ∈ Pi. Furthermore, tile orientations ϕp were optimized in the first step of our

algorithm. Therefore we may assume that Vpq(vp, vq, ϕ
∗
p, ϕ

∗
q) have low values for most

neighboring pixel pairs. Therefore, it is relatively safe to exclude the pairwise terms

Vpq when either p, q ∈ Pc or p, q ∈ Pi. However, ignoring Vpq when p ∈ Pc and

q ∈ Pi is not safe, since for such p, q the term Vpq(vp, vq, ϕ
∗
p, ϕ

∗
q) could be infinite due

to overlap of tiles centered at p and q. We do include such “unsafe” terms in the

energy Ẽv. Therefore, the energy Ẽv is a good approximation to the energy Ev.

Another explanation for Ẽv is that it finds a stitching of the current mosaic (vc, ϕ∗)

and a candidate layer (vi, ϕ∗) in such a way that the gap space is optimized and

the “good” tiles (tiles with small Dp) are selected . Orientations at the seam of

the stitching are accounted for, but orientations outside of the stitching seam are

disregarded, since those are already assumed to be satisfactory because an optimized

ϕ∗ is used.

We now explain how to optimize the energy in Equation (3.11). We use the idea of

roof duality from [34]. Let us introduce a new variable tp for each pixel p, with the

following dependence on the visibility variables vp. If p ∈ Pc, then tp = vp. If p ∈ Pi,

then tp = 1 − vp. In words, for the pixels in Pc, the meaning of variable tp is the same
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as the meaning of variable vp, and the meaning of variable tp is reversed for p ∈ Pi.

Let t = {tp|p ∈ P}. We can rewrite the energy in Equation (3.11) in terms of the new

variables:

Ev(t) =
∑

p∈S

D′
p(tp) +

∑

{p,q}∈Nci

V ′
pq(tp, tq), (3.12)

where Nci = {{p, q}|{p, q} ∈ N and p ∈ Pc, q ∈ Pi}, and D′
p(tp), V

′
pq(tp, tq) are de-

fined below:

D′
p(tp) =







1 + tp(Dp(ϕ
∗
p) − 1) if p ∈ Pc

tp + (1 − tp)Dp(ϕ
∗
p) if p ∈ Pi

(3.13)

and

V ′
pq(tp, tq) =































0 if tp = 0, tq = 0

0 if tp = 0, tq = 1

Vpq(ϕ
∗
p, ϕ

∗
q, 1, 1) if tp = 1, tq = 0

0 if tp = 1, tq = 1

. (3.14)

As shown in [53], a binary energy can be optimized exactly with a graph cut if it is

submodular, that is if the pairwise terms satisfy: Vsr(0, 1) + Vsr(1, 0) ≥ Vsr(0, 0) +

Vsr(1, 1). Clearly the energy in Equation (3.12) is submodular, since V ′
pq(1, 0) is

either a positive constant or infinite, and all other V ′
pq are 0. Therefore the energy in

Equation (3.11) can be optimized exactly with a graph cut. For implementation, we

use the max-flow/min-cut algorithm in [13].

The last detail of the stitching algorithm is as follows. Let (ṽ, ϕ∗) be the mosaic

that is the result of stitching the current mosaic (vc, ϕ∗) with a candidate mosaic

layer (vi, ϕ∗), i.e. ṽ optimizes the energy in Equation 3.11. Since the energy in

Equation 3.11 is only an approximation to the energy in Equation 3.10, we check if

Ev(ṽ) < Ev(vc), that is if the stitching using approximate energy is better according

to the exact energy. If yes, then we update vc to ṽ. If not, we discard the results of

stitching.

Note that [58] use an optimization procedure similar to ours for computing the optical
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flow from video. They compute many flow fields and “fuse” or stitch them together.

3.6 Experimental Results

We now present our experimental results. We perform comparison to Hausner [36]

(using code available on the author’s web site), and we also compare to Battiato

et.al. [5](using the results provided by the authors). For all the experiments, the

parameters were fixed to the following values: we = − 50, wv = 20, and ws = 20.

Figure 3.4(a), 3.5(a) and 3.6(a) show the images used for mosaic generation. Fig-

ures 3.4, 3.5, and 3.6 show the mosaics obtained with our method, Battiato et.al.,

and Hausner. Compared to Battiato et.al., our mosaic is more spatially coherent.

Figure 3.4(c) and 3.6(c) have many tiles that “pop out”, that is their color is inco-

herent compared to the nearby tiles. This happens because Battiato et.al. contains

heuristic steps that do not discourage tiles to cross strong intensity edges. When a

tile crosses a strong intensity edge, its color is blended and it stands out from the

surrounding tiles, as illustrated in Figure 1.5(b). We perform global optimization and

discourage strong edge crossing as a part of the energy function. In addition, com-

pared to that of Battiato et.al., the tiles in our mosaics are better aligned to object

edges, and therefore they outline the object shapes more accurately. For example, in

Figure 3.4(b), all the stars are clearly delineated, where as in Figure 3.4(c) only the

larger stars have reasonable outlines and the other stars are blended with the back-

ground. The tiger face that we produce (Figure 3.6(b)) is more readily recognized as

a tiger compared to that of Battiato et.al. (Figure 3.6(c)). This is, again, due to our

mosaics delineating objects more clearly and have less tiles that are incoherent with

the surrounding tiles.

The method of Battiato et.al. can be viewed as a simplified version of our algorithm.

They also generate tile orientation field (similar to what we do in Section 3.5.1, but us-

ing local optimization). Then they generate the final mosaic heuristically. Thus their
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(a) Starry Night (b) Our Result

(c) Battiato et.al. [5] (d) Hausner [36]

Figure 3.4: Starry Night Results.

final mosaic is equivalent to our single mosaic layer, and the steps in Section 3.5.2.1

and 3.5.2.2 are not performed. To understand the importance of stitching multiple

layers together, consider Figure 3.7. Figure 3.7(a) shows our starting layer. This

would be similar to the output of Battiato et.al. The mosaic in Figure 3.7(a) is

clearly inferior, many tiles overlap intensity edges and therefore their color is blurred.

The Chinese character can be barely recognized in this mosaic. Figure 3.7(b) shows

our result after stitching 64 layers together. The results are significantly improved

compared to the starting layer in Figure 3.7(a). The result of stitching 98 layers

(Figure 3.7(c)) still shows a mild improvement over Figure 3.7(b).

Compared to Hausner [36], our mosaics also have fewer tiles that “pop out”, due to our
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use of global optimization. Since Hausner needs user interaction, the extent to which

the objects are outlined depends solely on the user. For example, in Figure 3.4(d), the

user marked the boundaries around the tree, the largest star, and the border between

the sky and the ground regions. These are exactly the objects that are outlined very

well in the resulting mosaic. The boundaries of other objects are not emphasized. For

example, the medium size star on the right of the castle has tiles with orientations

following the tree boundary, not the star boundary. In addition, tile orientations of

Hausner’s mosaics is visibly more discontinuous compared to our mosaics.

Having a global energy function allows us to control the mosaic appearance by tuning

parameter values. For example, parameter wv in Equation (3.5) determines the im-

portance of the edge avoidance constraint. When wv is set to 0, tiles are free to cross

any edges and the mosaic is blurred, see Figure 3.8(b). When wv is very large, some

tiles which are close to the edges will be removed and a large gap space is created in

the final mosaic, see Figure 3.8(a). A good choice of wv is in the middle between the

two extremes in Figure 3.8.

On the images in Figure 3.4(a), 3.5(a) and 3.6(a), of sizes 867 by 691, 940 by 1233,

1200 by 827, the running times were, respectively, 8, 20, and 18 minutes. We sped up

our program by pre-computing a table storing the area of overlap for a pair of tiles.

This table was indexed by the relative positions and orientations between tiles. Using

this table reduced the time spent on building mosaic layers and stitching the layers

from tens of minutes to less then ten minutes. However, since more then 40% of the

running time was spent on generating the tile orientations, it remains our future work

to improve our time complexity.

3.7 Summary

We formulated the problem of classic mosaic generation in a global optimization

framework, and designed an energy function encoding the properties that lead to
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(a) Portray (b) Our Result

(c) Battiato et.al. [5] (d) Hausner [36]

Figure 3.5: Portray Results
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(a) Tiger (b) Our Result

(c) Battiato et.al. [5] (d) Hausner [36]

Figure 3.6: Tiger Results.

perceptually pleasing mosaics. Our global optimization framework offers a more prin-

cipled approach than previous work, which is mostly based on heuristics. The desired

mosaic properties can be directly modeled into an energy function, instead of devising

a sequence of heuristics steps that may possibly lead to the desired result.

If the results are unsatisfactory, it is clear that either the energy function itself or the

optimization procedure for the energy function is at fault. Therefore one should either

redesign the objective function or exploit a different optimization method. Another
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(a) Starting Layer (b) After 64 iterations (c) After 198 iterations

Figure 3.7: Progression of mosaic stitching described in Section 3.5.2.2 .

advantage is that the value of the energy function itself can be an effective measure

to assess the quality of a mosaic.

Note that the artificial mosaics produced by our algorithm are different in appearance

from the classic mosaics produced by artists. In these methods, the tiles are placed at

successive bands around the feature edges. This creates discontinuities at the skeleton

of the feature curves, as explained in the introduction. The tiles have smoothly

varying orientations.

While removing user interaction is an advantage for a naive user, an artist may want

more control on the edges to emphasize. If desired, it is easy to include user interaction

in our framework, by fixing orientations of some tiles to user specified values. Then

the algorithm can proceed as before, but optimizing only over the free variables.

In the future, we intend to extend our approach to rendering mosaics with tiles of

different size and shapes. Smaller tiles are needed in image regions which have fine

scale details, and larger tiles are sufficient in areas of the image which have coarse

features. Therefore we need to vary the tile size for different regions of the image.

It is relatively trivial to include tile size as an additional (third) variable in our

optimization framework, favoring the areas with higher spacial frequencies to have

smaller tile size. In addition, we generate time-coherent video mosaics, which is

introduced in Chapter 4.
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(a) Mosaic with large wv (b) Mosaic with small wv

Figure 3.8: Mosaics with different wv
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Chapter 4

Rendering Animated Mosaics with

Graph Cuts

In this chapter, we propose a method which renders animations with classic mosaic

effects from real world video. There has been a great interest in generating classic

mosaics in the recent years, see [36, 23, 10, 79, 18, 63, 64]. However, little work has

been reported on generating mosaic animations automatically, especially for animated

mosaics from real video. The animations generated by our approach are composed

of hundreds of colourful square tiles, which are arranged to present the shape and

colour of the objects in the video, moving in a timely coherent manner. Each frame

of the resulting animation is a classic mosaic image composed of a large number of

square tiles, which are aligned to the strong edges in the input scene. Between the

consecutive frames, the tiles are moved according to the motion of their center pixels.

Therefore, the whole animation has a consistent motion effect. Our method estimates

the motion of the pixels in the video, renders the frames with mosaic effect based on

both the colour and motion information from the input video. We aim at a tool that

requires minimal help from the user to finish the task of generating animated mosaics.

We hope with the help of our animation tool, more people will be able to create their
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own mosaic animation without professional training. Most material in this chapter

was published in [62].

This chapter is organized as follows. Section 4.1 is a brief introduction to animated

mosaics. In Section 4.2 we discuss the related work. In Section 4.3 we give an overview

and in Section 4.4 a detailed description of animated mosaic generation from video.

We present experimental results in Section 4.5, and we conclude with a discussion in

Section 4.6.

4.1 Introduction

An image stylized with a NPR technique can have a stronger effect on the user

than the original. This is perhaps even more true of NPR animation [68, 60, 38,

50, 37, 94, 56], since time adds a new dimension for expressiveness. A sequence of

mosaic images creates a uniquely appealing animation style. While it is possible

to create animated mosaics manually, with stop-motion animation, the process is

extremely labor intensive. However, there has been very little work on creating mosaic

animations automatically or interactively [85, 18].

In this chapter, we develop a system for creating animated mosaics directly from

video sequences. In addition to all the challenges of a static mosaic, see Chapter 3, as

in any other NPR animation, we have to ensure inter-frame coherency. Our approach

is inspired by [85], who were the first to realize the unique set of challenges for mosaic

animation. In many NPR animation methods, in order to facilitate temporal coher-

ence, the primitives are allowed to deform, scale, blend, etc. However, to stay faithful

to the classic mosaic style, the tile primitives cannot undergo any such transforma-

tions. Each individual frame must be a convincing mosaic, and at the same time the

whole sequence must exhibit a convincing motion.

One way to achieve temporal coherency is to displace groups of tiles in a manner
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consistent with the true motion in the scene. Therefore accurate motion segmenta-

tion is critical for creating appealing moving mosaics. However the state-of-the art in

motion segmentation is not accurate enough for our application. Therefore we need

to involve a user to help correct any inaccuracies in motion segmentation. We devel-

op a new algorithm for motion segmentation with occlusion reasoning that requires

only a minimal help from the user. The idea is to present the user with a subsam-

pled sequence of frames, and let the user point out, with a single click, the reliable

motion segments. The information from the reliable motion segments is propagated

through the neighboring frames to the rest of the sequence. To make the problem

more tractable, we make a simplifying assumption that the motion is piecewise-rigid.

This can create an interesting “puppet” like effect, that can be considered a part of

animation style, since our goal is not precise motion transfer. Motion segmentation

and user correction are addressed in a global optimization framework with graph

cuts [12].

After motion segmentation is of satisfactory quality, we pack the tiles into the dis-

covered coherent motion layers, using colour information in all the frames in a global

manner. Our tile packing algorithm is based on the still mosaic algorithm of [64],

with several modifications to address the unique challenges presented by video in-

put, including handling of occlusions. Our method relies extensively on optimization

with graph cuts [12], which are used for background subtraction, mosaic packing,

and motion segmentation. We produce colourful, temporally coherent and uniquely

appealing mosaic animations. We believe that our method is the first one to animate

classic mosaics directly from video.

4.2 Related Work

The goal of our work is to animate classic mosaics directly from video input, and thus

the main challenge is ensuring temporal consistency. Stylizing each frame individually



78

produces disturbing artifacts, such as tiles “poping out” and “disappearing”. Artifacts

may be more tolerable in the moving parts of the scene and could possibly be regarded

as a special effect. However flickering artifacts are especially pronounced in the static

regions of the frame, with the apparent motion due to differences in rendering of the

same underlying static scene. Therefore most NPR methods seeking to stylize a video

have to deal with temporal consistency.

There are two main approaches to ensuring temporal consistency for NPR rendering

of video sequences. The first group of methods is based on explicit computation of

motion, typically based on optical flow [59, 38, 37]. The idea is to let the rendering

primitive (brush strokes, etc.) follow the motion field so that the primitives appear

attached to the scene objects. Without correcting for motion, instead of perceiving

an object with consistent rendering move throughout the scene, the scene appears

to be repeatedly painted over. Our work falls into this first group, and therefore we

need to compute explicit motion information from video.

The second group of methods treats a video as a space-time 3D volume [50, 18,

94]. In the work of Klein et al. [50], a video sequence is viewed as a space-time

3D volume. Cutting this 3D volume into small “video solids” and stylizing it with

different rendering primitives can generate a different animation effect. The cutting

can be done in two different ways. First, the user can input several cutting lines for

each key frame of the input video. The cutting lines will be interpolated between key

frames to form swept surfaces over time, dividing the volume into video shards, or

the so called “video solids”. The second approach is to decompose the 3D space-time

video volume into small video solids by KD-tree. By cutting the 3D volume in these

two ways, the approach prosed by Klein et al. [50] provide the user with either an

automatic (by KD-tree decomposition) or an interactive tool (by using user input

cutting lines) to guide the motion of the rendering primitives, and avoid the problem

of motion estimation. 3D rendering primitives, such as paint strokes, voronoi cells

and video shards, are arranged to fill in the 3D video volume, following the motion
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trajectory created by cutting the video volume. The advantage of this approach is that

motion, a notoriously hard computer vision problem, does not need to be computed.

This approach, however, is not suitable for rendering classic mosaic animation, since

the rendering primitives will be scaled, blended or distorted. Therefore, it can not

satisfy the constraints for mosaic rendering.

There has been almost no work on classic mosaic animation. We are aware of only

two methods [85, 18]. In [18], a moving mosaic is created by packing 3D volumes with

temporally repeating animated shapes. This work is very interesting and produces

appealing animations, however, it is far from our goal of rendering a real video in a

classic mosaic style.

Our work was inspired by [85]. They make two important observations. The first

is that many devices for temporal coherence in NPR animation are based on letting

the primitive rendering units change (i.e. scale, blend, etc.) This is not appropriate

for classic mosaic animation. They argue that for classic mosaics specifically, one

should target coherent motion of group of primitives, i.e. tiles. However in their

work they assume that motion information is provided by the user. The input to

their algorithm is an animated scene represented as a collection of 2D “containers”.

The correspondences between containers in adjacent frames are known, as well as

the motion correspondence on the boundary of the container. The correspondence

between the vertices of these containers is also provided by the user.

There are two ways to move the tiles to achieve temporal coherency. The first ap-

proach is to move the tiles in groups according to the motion of the anchor point,

which is either one of the vertices of the container or the centroid of the container.

The user also has the freedom to choose any point in the container as the anchor for

motion. Moving the tiles with the anchor point will make tiles appear and disappear

only at the edge of the container. Therefore, such approach preserves the interior of

the mosaic very well.
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(a) Frame 15

(b) Frame 16

Figure 4.1: Two consecutive frames from the animation generated by Smith et al. [85].

The second choice is to move a group of tiles according to the closest edge. The

motion of the edge can be interpolated from the motion of its two vertices. This will

result in tile insertion and deletion only in the center of the container. Therefore, the

edges of the mosaic image are preserved.

The results of Simith et al. [85] are visually appealing, see Figure 4.1. However, our

goal is to generate mosaic animations from real video sequence. Moreover, we want to

avoid the user interaction of drawing the containers and their correspondence. Thus

we must estimate the “containers” and their correspondence. We extend the work

of [85] to real video sequences. We develop a new motion segmentation algorithm to

perform the correspondence step.
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For completeness, we should mention a related but distinct work on video mosaics [51],

who pack complete video segments to form a “video” mosaic (different from a classic

mosaic).

4.3 Overview of the Algorithm

An overview of our approach to generating classic mosaic animations from real video

sequences is illustrated in Figure 4.2. We start with a sequence of several frames,

see Figure 4.2(a). We assume that the scene was imaged in front of a stationary

background. The assumption of stationary background is easy to remove. However,

we are interested in background replacement, since many video sequences are taken

against dull backgrounds that do not produce appealing mosaics. Thus our first step

is background subtraction in each frame, see Figure 4.2(b).

To ensure temporal coherence, we need to determine groups of pixels that have a

common motion. This is the well studied problem of motion segmentation [95, 19, 97].

The goal of motion segmentation is to find groups of pixels in two or more frames

that move together and to estimate the motion field associated with each group. In

the terminology of motion segmentation, such a group of pixels is typically called a

layer. Unfortunately, the state of the art in motion segmentation rarely produces

results accurate enough for our application. Thus we need to involve the user in the

loop for corrections.

We develop a motion segmentation algorithm for the whole sequence in a global

optimization framework. Let L be a layer of pixels with common motion throughout

the whole sequence. If general motions are allowed, the “containers” corresponding

to L in two different frames may undergo drastic changes in scale, shear, etc. One

has to come up with non-trivial strategies for filling these corresponding “containers”

with tiles such that each container is a valid mosaic and the apparent motion between

the frames is acceptable. In [85], they explore two such strategies with different visual
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(a) original image sequence (b) background subtraction

(c) initial motion segmentation (d) user interaction

(e) corrected motion segmentation (f) still mosaic in key segments

(g) mosaic propagated from key segments (h) new stationary background

Figure 4.2: Summary of the approach.

effects. Unlike [85], we are already facing a formidable task of motion segmentation of

a real video, so instead we chose to make a restriction on admissible motion models.

We assume that the motion of a layer L between neighboring frames is well approxi-

mated by rotation and translation, that is a rigid motion. Notice that between each

individual pair of frames, the translation and rotation parameters of L can be differ-

ent. With this restriction, the “containers” corresponding to layer L in neighboring

frames have identical shape, except if there is an occlusion or out of frame motion.
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Therefore, we also need to include occlusion detection as a part of our motion segmen-

tation algorithm. Under restriction to a rigid layer motion, packing two “containers”

between corresponding frames is almost equivalent to moving tiles from one contain-

er to another, following the computed motion, except that parts of a container may

become occluded by another layer. Limiting the range of motions to translation and

rotation is the most restrictive assumption of our algorithm.

Automatic motion segmentation rarely produces error-free results. Figure 4.2(c) il-

lustrates initial motion segmentation. Notice that the motion segmentation of the

ball in the first and third frames is not accurate. Therefore we ask the user for cor-

rections, as illustrated in Figure 4.2(d). We sample a portion of frames and present

them to the user. Our user interaction is particularly simple. In case some part of a

moving object was not segmented correctly, we ask the user to find a nearby frame

where the same part was correctly segmented, and click on that well segmented part.

These correct segments indicated by the user are then propagated to the neighboring

frames and the rest of the sequence. For example, in Figure 4.2(d), the user notices

incorrect segmentation of the ball in the first and the third frames, and the correct

segmentation in the second frame. The user clicks on the correct ball segment in the

second frame and this correct segmentation is propagated to the next and previous

frames. In figure 4.2(d), the user clicks are shown with black arrows. Figure 4.2(e)

gives the results after user-assisted motion segmentation correction. During correction

propagation, we also handle occlusions between the motion layers.

Finally it is time to pack the tiles. The packing algorithm is as in Chapter 3, with

some adjustments to the data term to take advantage of the data available in the

whole sequence. First the tiles are placed into the “key” segments indicated by user

interaction, see Figure 4.2(f). This is done because these segments are more likely

to correspond to regions with higher image quality, since they have been recovered

correctly by the initial motion segmentation algorithm. Next the mosaics of the key

segments are propagated to the rest of the sequence, taking occlusions into consider-



84

ation. Then we place mosaic in any remaining segments that have not been tiled yet,

and render the tiles with the corresponding image colours, see Figure 4.2(g). Lastly

we place the recovered moving mosaics in front of a chosen stationary background,

where the stationary background is rendered as a classic mosaic using the algorithm

in [64], see Figure 4.2(h).

4.4 Detailed Description of the Algorithm

We now give a detailed description of our algorithm outlined in Section 4.3. We start

with a sequence of m frames, denoted by I1, I2, ..., Im.

4.4.1 Background Subtraction

Many video sequences are taken in front of visually uninteresting scenes, resulting

in unimpressive mosaic backgrounds. Our solution is to remove the background and

render the moving object in front of a more lively scene, rendered as a classic mosaic

using the method in [64]. Background subtraction is a well studied area in computer

vision [26]. For a high quality animation, it is important to perform accurate seg-

mentation of the foreground. Segmentation based on global optimization tends to

produce more accurate results, and therefore we formulate background subtraction

as a binary segmentation problem.

We could perform background segmentation for all the frames simultaneously. How-

ever, the backgrounds in our test sequences tend to be stationary and simple in

appearance. We found that there is almost no additional accuracy to be gained by

incorporating information between the frames. The additional memory requirement

for joint background segmentation in all sequences is massive, however, and therefore

we segment each frame separately.
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Our approach to background subtraction is similar to that of [86]. The task is for-

mulated as a binary labeling problem (Section 2.2), with one label corresponding to

the background and another to the foreground. The energy function is as in Equa-

tion (2.3). The data terms for the background label are modeled as a Gaussian with

the mean and covariance estimated from the background samples taken in the ab-

sence of the object. A single Gaussian is enough because the background is relatively

uniform in appearance. The data terms for the object are modeled by a uniform

distribution. The smoothness terms are the Potts model. The coefficients wpq are set

inversely proportional to the magnitude of image gradient.

4.4.2 Initial Motion Segmentation

Motion segmentation is the most important step of our algorithm. Temporal coheren-

cy of the final animation depends most of all on the accuracy of segmentation. Motion

segmentation is a widely studied problem in computer vision [97]. Methods based on

global optimization [98, 99, 81] produce more accurate results, especially around the

segmentation boundary. We develop our own motion segmentation algorithm, par-

ticularly suitable for our application. Out of the approaches mentioned above, it is

most closely related to that of [98].

In [98], motion segmentation is performed on pairs of frames at a time. At first,

a sparse set of feature points is matched across two frames by using the feature

tracking algorithm proposed in [83]. Then using a modified version of RANSAC [29],

several potential motion models are fitted to the matched points. The next step is to

perform dense assignment of image pixels to motion layers, this is done with graph

cut optimization [12]. The algorithm can be further iterated, refining motion models

from the dense motion layers and then reassigning pixels to motion layers again.

For our application, we need to find coherent motion layers for the whole sequence,

not just a pair of frames. One solution is to track feature points throughout the whole
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sequence, as in [99], but the drawback is that number of feature points that appear

in all frames is very limited. Feature detection is brittle, even a fairly reliable feature

will disappear for a few frames in a sequence.

Our solution is as follows. Initially we estimate only the pairwise (or local) motion

models between two adjacent frames. Afterwards we find correspondences (possibly

one to many) between the motion models in the adjacent frames. In this way, we

recover global motion models, that is models that describe motion from the first

frame to the second frame and eventually to the last frame. After we have estimated

these global motion models we use them to perform global motion segmentation, that

is segmentation for all the frames at the same time.

Let I1, I2, ..., Im be the m input frames. We match feature points between pairs of

frames Id and Id+1, for d = 1, ..m − 1. Next we fit k motion models using RANSAC

between each pair of adjacent frames. Since we only allow translation and rotation,

each motion model has three parameters, one for rotation and two for translation.

Let Md be the set of motion models estimated between frames Id and Id+1, for

d = 1, ...m − 1. The initial number of models contained in each Md is k, that is we

ask RANSAC to return the k best models. LetMi
d stand for the ith motion model in

Md, i.e. Mi
d is the ith estimated motion model between frame d and d+1. Figure 4.3

is an oversimplified illustration for m = 3 and k = 3.

We first perform dense motion segmentation between each adjacent pair of frames

independently, using the estimated motion modelsMd, much in the manner of [98].

To be more specific, given a pair of frames Id and Id+1, the label set L = {1, ..., k},
where each label j corresponds to the jth estimated motion model inMd. To dense-

ly assign labels to pixels in frame Id, we perform optimization of the energy as in

Equation (2.3) with the expansion algorithm of [12]. The data terms for pixel p and

label l ∈ L measure how likely is pixel p to have motionMl
d from frame d to d + 1.

This data term is based on the colour difference between pixel p in Id and the same

pixel shifted according to the motion model Ml
d in frame Id+1. We use the Potts
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smoothness term Vpq in Equation (2.3). Let S1, S2, ..., Sm−1 be the resulting segmen-

tations. Here Sd corresponds to segmentation in the frame number d, and Sd
p = l is

the motion label assigned to pixel p in frame d. That is if Sd
p = l, then pixel p has

motionMl
d between frames d and d + 1. Figure 4.3 illustrates a hypothetical result

of pairwise motion segmentation.

This initial pairwise motion segmentation gives us information about groups of pixels

with consistent motion between pairs of frames, but we need pixel groups with con-

sistent motion across the whole sequence. To find those, we need to perform global

optimization across the whole sequence. Therefore we need to find plausible global

motion labels that describe motion through the whole sequence. Let 1, 2, ...c be the

c hypothetical global motion labels. Each individual global motion label, say motion

label l, describes how pixels obeying this global motion l move from the first frame

to the second, from second frame to the third, and so on until the last frame. We

have pairwise motion models Md that describe how pixels move from frame d to

d + 1, but we do not know how these same pixels move from frame d + 1 to d + 2.

That is, given a motion model fromMd, we do not know the “corresponding” motion

model inMd+1. One possibility is to take the set of global labels as the product set

M1 ×M2...Mm−1. This would be very inefficient, however, and most labels in this

product set are not plausible.

Instead of taking the product set ofMd’s, we use the following heuristic but simple

procedure for determining, given a motion model for frame d, to which motion model

for the frame d+1 it could correspond to. Consider the motion segmentations results

S1, ...Sm−1, performed between pairs of frames individually. Let Rd
i = {p ∈ P|Sd

p =

i}. That is Rd
i is the set of pixels that are labeled with motion i, or, equivalently,

have motion Mi
d in frame d. Let us warp pixels in Rd

i to frame d + 1 using motion

model M i
d, and let W (Rd

i ) be the set of warped pixels. If at least 80% of pixels in

W (Rd
i ) are assigned to the same motion model, say model M j

d+1, and if the size of

W (Rd
i ) is equal to at least 80% of all pixels in Sd+1 that are assigned motion model
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Figure 4.3: Illustrates global label construction. Three frames that result from pairwise

motion segmentation are shown. Three models are extracted between each pair of frames,

i.e. k = 3. Different labels are illustrated by different colours. Notice that after pairwise

motion segmentation, we do not know that the “red” model in frame 1 should correspond

to the “green” model to in frame 2 and to the “yellow” model in frame 3. This should be

discovered automatically. In practice, motion correspondences are not as easy to resolve

as in this picture. Three global motion models extracted: purple (combines M1
1 and M2

2 )

brown (combines M2
1 and M3

2 ), and blue (combines M3
1 and M1

2 ).

M j
d+1, then we say that motion model M i

d corresponds to motion model M j
d+1. In

Figure 4.3 the corresponding motion models are indicated by the arrows with the

same colour. The illustration in this figure is oversimplified, for clarity. Occasionally

we need to combine two or three motion models in frame d to satisfy this condition,

i.e. we need to take several models in frame d so that pixels assigned to either of

these models make 80% of pixels assigned to the same motion in frame d + 1. This

happens because motion segmentation occurs at different level of precision in each

pair of frames. For example, between frames d and d + 1, an arm could be fitted

with two motions, but between the next pair of frames, d + 1 and d + 2 the whole

arm is fitted with one motion. In such cases, we add new motion models to sets Md

and Md+1, the model allowing for no arm splitting in Md (the added model is simply

a combination computed from the two motion models allowing the split), and the

motion model with arm split to Md+1 (the new model is based on warping the two

“split” models from the previous pair of frames).

The procedure described in the previous paragraph creates many global motion labels

by linking labels between pairs of frames into a single chain, see Figure 4.3. Notice
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that chains can start after the first frame and end before the last frame, allowing for

appearance of new layers and disappearance of old layers, which usually happens due

to occlusion or out of frame motion.

With global motion labels, we are ready to proceed to global layer segmentation.

However, if performed on the pixel level, the whole sequence does not fit into the

memory on 32-bit architecture. Therefore, we undersegment each frame into “su-

perpixels”1 using the segmentation algorithm of [27]. Optimization is performed by

assigning labels to superpixels, not pixels, resulting in huge memory savings. The

neighborhood system is now three-dimensional, with superpixels between the frames

also connected. The neighborhood system in the spatial dimension consists of super-

pixels that have common boundary. In time dimension it has superpixels that have

significant overlap in spatial coordinates. Specifically, we connect a superpixel p in

frame d to superpixel p′ in frame d+1, for d = 1, ..., m − 1 if the (x, y) coordinates of

superpixels p and p′ overlap by at least 70%. This is justified because we expect the

motions to be relatively slow, so most pixels between adjacent frames do not change

their global motion labels. Data terms are still based on colour similarity. For a

superpixel, the data term is computed as the average of data terms for all the pixels

that are contained in it.

4.4.3 User Interaction

The initial results of motion segmentation are not likely to be accurate for all frames.

The segmentation algorithm is sensitive to the choice of parameters in optimization,

to failures in feature detection and spurious motion model detection by RANSAC.

About half of the errors are caused by occlusions between motion layers. Therefore

we ask the user to provide guidance.

We sample about one fifth of the frames and show their motion segmentation to the

1A superpixel is simply a small image patch returned by a segmentation algorithm.
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Figure 4.4: User interaction and motion segmentation correction.

user. To correct segmentation, starting with the first frame that is not accurately

segmented, the user has to point out its correct segmentation in a nearby frame.

Consider Figure 4.4. The middle pictures shows segmentation results with gross errors

due to occlusion, highlighted with a rectangle. The hands are correctly segmented

in the frame on the left. The user selects the correctly segmented parts by clicking

on them. Notice that only a single click per layer is required, since segmentation

is assumed to be already accurate. This information is used for correcting motion

segmentation.

4.4.4 Correction of Motion Segmentation

Let F 1, F 2, ..., Fm−1 be the motion segmentation with global labels. Suppose the user

clicks on a group of pixels assigned a global label l in frame i. Let Gi
l be this group

of pixels, i.e. Gi
l is spatially contiguous, contains the pixel the user clicked on and

Gi
l = {p ∈ P|F i

p = l}. We fix the labels of pixels in Gi
l to strongly prefer label l

in the ith frame. That is we set the data penalties to be infinite for all labels other

than l for pixels in Gi
l in the ith frame. Furthermore, we warp pixels in Gi

l to the

(i+1)th frame according to the motion label l. Let W (Gi
l) be the set of warped pixels

in frame i+ 1. We set neighborhood links wpq (see Section 2.2) between pixels in Gi
l

and W (Gi
l) to a large number. Here p is a pixel in frame i and q is the pixel in frame

i+ 1 that p gets warped to by the global motion model l.

Here we implicitly assume that motion model l is actually a good fit for pixels in Gi
l,

since the user has no way to measure the fitness of the model metrically, he just pays
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attention to motion boundaries. However, in our experience, regions with accurate

boundary segmentations do get assigned a correct motion model because the correct

set of pixels was used to compute the motion model. Most errors in motion estimation

arise when a wrong set of pixels is fitted with a single model.

Now we are ready to describe occlusion handling. The coefficient wpq is also set in

proportion to the colour similarity between pixels p and q. The more similar are the

colours, the higher is wpq. Weighting wpq in direct proportion to colour similarity

helps us to handle occlusions automatically. Consider Figure 4.4 again. Let O be the

group of pixels in the area where the left hand occludes the right hand. Both the left

hand pixels and the right hand pixels in the first frame get connected by strong links

to pixels in O. However, the links from the left hand are stronger, since the left hand

pixels are actually visible in the second frame and their colour similarity, on average,

is stronger than that between the right hand and pixels in O. Therefore pixels in O

get assigned the correct label, as shown in the leftmost image in Figure 4.4.

After the data terms and the neighborhood weights wpq are updated, the motion

segmentation is recomputed again, propagating user corrections throughout the whole

sequence and resolving occlusions.

Notice that our occlusion reasoning is based on colour similarity (accumulated over

large groups of pixels, not decided for each pixel individually). This requires two

layers that come in occlusion to have sufficiently distinct colour or texture, given the

resolution of the video camera. If two occluding layers are not distinguished enough

through texture, our occlusion reasoning may fail. The mosaic appearance may still

be reasonable, however, due to the similarity of colours in the confused layers.

4.4.5 Mosaic Rendering

At this point, we have computed motion segmentation with user help and we are

ready to pack mosaic tiles. We start with the “key” segments pointed out by the
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user, since these segments are likely to correspond to image data of high quality.

For still mosaic, given a pixel p and orientation label ϕ, we need to decide on the

penalty of placing tile with center at p and orientation ϕ. This penalty is modeled

from the data around pixel p, see Chapter 3. For a video sequence, the penalty should

depend not just on the current frame, but on all the other frames in the sequence.

Let K be a “key” segment in frame Id that the user clicked on. If we place a tile

centered at p under orientation ϕ, this tile will be propagated by the global motion

model (the motion model that pixel p got assigned in frame Id) throughout the whole

sequence. Therefore, to model the data penalty, we propagate the tile throughout the

whole sequence (notice its orientation will change in different frames) and compute

the data penalty in each frame of the sequence, using the same procedure in each

frame as for the still mosaic. The final data term for pixel p to have a tile centered

at it with orientation ϕ in frame Id is the average of all the data terms from all the

sequence frames.

After packing the “key” segments and propagating them throughout the video se-

quence, we pack the “empty” regions. We start with the first frame, pack any un-

processed regions and propagate them throughout the whole sequence using the same

algorithm as for the “key” segments. If there are any unprocessed regions in the

second frame (for example, because a new global motion label appears, due to a new

object part coming into view), we repeat the same procedure as for the first frame.

This process is repeated from the first frame to the last until the whole sequence is

packed with tiles. The final step is to paint the tiles with the colours of the underlying

image and to insert the chosen mosaic background.
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Figure 4.5: Several frames from a Walking sequence and the corresponding classic mosaic.

4.5 Experimental Results

Our results are best viewed through video animations. 2. Figure 4.5 shows three

frames of a “Waking” sequence. This sequence contains significant occlusions between

the torso, upper limbs and lower limbs. In addition, parts of the leg appear and

disappear from the scene. Our system produces a nice time coherent animation, with

correctly handled occlusions. Due to our restricted motion assumption, the animated

figure has a distinctive “puppet”-like effect. This can be regarded as part of our

animation style. To create an animation that is closer to the true motion in the

scene, we need to implement more general motion models.

Figs. 4.6 and 4.7 show results on other video sequences. Observe how each individual

frame of animation is a pleasing classic mosaic. The “Waving arms” sequence is

relatively simple, with no significant occlusions. The motion of the torso is modeled

with two layers, creating an interesting visual effect. The “Occluding arms” sequence

has significant overlap between the two arms, which is handled gracefully. The torso

and the head parts have motion very close to stationary. We decided to fix the head

2see http://www.csd.uwo.ca/faculty/olga/VideoMosaic/results.html
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Figure 4.6: Results on “Waving arms” sequence.
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Figure 4.7: Results on an “Overlapping arms” sequence.
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and the body to be stationary which visually blends them into the background, to

create a somewhat sinister “arms sticking out of the wall” effect.

The processing time of the current implementation needs significant improvement.

The most time consuming step is motion segmentation. To speed this step up, faster

implementations of the max-flow algorithm is needed. For the sequences presented in

this section (frame size is 1920 by 1080), it took a few hours on a personal computer

to produce the final mosaic animation, including user interaction.

4.6 Summary

We presented an approach for rendering video sequences in a classic mosaic style. This

style is uniquely expressive, part of its appeal comes from the fact that mosaics is an

ancient art form. The algorithm relies extensively on our novel motion segmentation

algorithm. The state of the art in motion segmentation is such that user interaction

is still required to get convincing results. We produce temporally coherent visually

appealing animations.

Our biggest current limitation is that the motion layers can only be assigned rigid

motion. This can create an interesting “puppet” like effect, that can be considered

a part of animation style, since our goal is not precise motion transfer. If a more

faithful motion is desired, more general motion models need to be implemented.
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Chapter 5

Finding Semi-dense Visual

Correspondence

To improve the quality of our animated mosaics (see Chapter 4), we need to detect

the motion between the frames of a given video sequence more accurately. The main

limitation of our animated mosaic work is that our motion model is restricted to rigid

motion (rotation and translation). To simulate the deformation of the objects in the

input video, we need to extend our motion models to be more general. Motion estima-

tion is usually performed by establishing visual correspondence between consecutive

frames. In this chapter, we propose an approach to detecting the semi-dense visual

correspondence between an input stereo pair. Although our original goal was to find

a more robust way to detect motion in a video, stereo problems have a similar setting

with motion but are easier to start with. Therefore, in this thesis, we focus on visual

correspondence in stereo problems. Our main objective is to find semi-dense visual

correspondences for which we can estimate the range of disparities with a high con-

fidence. The visual cues that are reliable for establishing correspondence are usually

located at pixels with high texture. If there is a region in the image that is surrounded

by texture cues, its range of disparities can be estimated more reliably. Even if the
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region is textureless inside, we can propagate the visual cues from the texture cues

at the boundaries.

This chapter is organized as follows: Section 5.1 gives a brief introduction to the

problem of finding semi-dense visual correspondence for stereo. In section 5.2, we

summarize some related works in stereo problem. In section 5.3, we give an overview

of our method. Section 5.4 is the detailed description of our algorithm. In section 5.5,

we present our results on finding semi-dense visual correspondence, with quantitative

analysis on their accuracy. In section 5.6, we summarize our work.

5.1 Introduction

The input to the visual correspondence problem is usually a pair of images of the

same real world scene. A pixel in one image is said to correspond to a pixel in the

other image, if these two pixels are projections along the lines of sight of the same

physical scene element, see Figure 1.6 in Chapter 1. The problem is to find pairs of

such corresponding pixels. For stereo, these two images are taken by two synchronized

cameras, which are rectified so that the baseline of the cameras is parallel to their

image plane. Corresponding pixels are found between these two images, see Figure 1.6.

The difference in the locations of corresponding pixels in the left and right images,

often referred to as “disparity”, is used to determine the 3D depth of these pixels.

The disparities for the stereo problem are only in the horizontal dimension, which

means that the corresponding pixels are on the same scanline.

Determining the disparities in the stereo problem is very challenging. The basic step

is measuring the matching error of two corresponding pixels. There are different

matching errors used in stereo [41]. In the simplest case, the matching error is just

the absolute difference of the intensity difference of two pixels. Ideally, the matching

error between corresponding pixel pairs should be very small if the disparity is correct.

However, the accuracy of this measurement can be affected by many factors. For
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instance, image noise brings in a lot of errors when measuring the matching error.

Other problems can be caused by sampling artifacts, exposure changes, etc.

Among all of these difficulties, two of the hardest problems we need to overcome

are lack of texture (or repeated texture in some case) and occlusions. Recall the

stereo example given in Figure 1.7. The disparities of the occluded pixels are hard

to determine since their corresponding pixels in one of the images are hidden behind

some objects. This makes it impossible to measure the matching error. For textureless

regions, there are ambiguities when measuring the matching cost. Compared with

the matching error of the true disparity, the matching error between one pixel and

the neighbours of its corresponding pixel may also be very small. Therefore, it is hard

to determine which pixel is the real corresponding pixel.

There exists roughly two categories of approaches to resolving the ambiguities due

to the lack of texture. First, it is well known that reliable visual correspondence

can be obtained in the regions which are highly textured. Therefore, sparse feature

points can be detected in the textured regions. And their visual correspondence

can be determined confidently. However, these sparse features are not dense enough

to be useful for most applications such as our animated mosaic problem. Dense

correspondence approaches estimate disparity at every pixel but can have gross errors

in some parts of textureless areas. Worse still, most dense approaches do not produce

confidence maps for their estimates, that is they do not say which parts of the disparity

maps they are more confident in.

Our work was inspired by Veksler [91, 90]. In these papers, the author maintains that

reliable visual correspondence can be established in the textured regions by comparing

the matching error with the edge strength at the point of interest. At a particular

pixel p, if its matching error of some disparity d is lower than the edge strength at

the same point by some threshold t, then it can be considered as a reliable feature

that supports the disparity d for pixel p. Vise versa, for disparity d, if the matching

error is higher than the edge strength at a pixel, then this pixel can be viewed as a
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negative feature which strongly disagrees with disparity d. In [91, 90], the threshold

t for the difference between matching error and edge strength is picked up by hand.

In this work, we seek for a mechanism which extracts useful features for finding visual

correspondence automatically. Thus we avoid the problem of determining the hard

threshold. And we can also discover more features for stereo beyond the difference

between matching error and the edge strength. The result of this step is a classifier

that can detect sparse visual cues for stereo in the textured regions.

The second step of our semi-dense visual correspondence approach is to propagate

the sparse cues detected at the textured regions to the textureless regions. Instead

of propagating the visual cues separately for each disparity, we propose a grouping

method which clusters the sparse cues detected in the previous step into several

groups, based on their geometric locations and associated disparities. This results

in several feature groups containing sparse cues from consecutive disparities. And

the sparse visual cues in the same group are also geometrically close to each other.

We use the graph cut algorithm to propagate the information brought by the groups

of the visual cues into textureless regions. This step is done for each feature group

individually. And the results are blob-like semi-dense features which support groups

of consecutive disparities.

At last, we need to resolve the ambiguities. One pixel inside the input image pair can

belong to more than one semi-dense feature blobs generated in the previous step. To

find the exact boundaries of these semi-dense cues, we apply α-expansion algorithm

to resolve the ambiguities between the semi-dense feature blobs. This step produces

nice boundaries between regions of the images with different groups of disparities.

The disparity in the textureless regions are often recovered by our approach with a

high confidence.
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5.2 Related Work

There has been a long lasting interest in stereo and motion. A complete and thor-

ough survey in the literature of finding visual correspondence is impossible because

the large number of new publications coming out each year. Furthermore, most re-

searchers only report their own qualitative results, which makes it harder to do a

fair evaluation for these algorithms. However, there are good surveys on stereo and

motion algorithms. The study conducted by Barron et al. [4] provided a thorough

survey about commonly cited optical flow approaches. Scharstein et al. [76] published

an in-depth taxonomy and evaluation of two-frame stereo correspondence algorithms.

Brown et al. [14] gave a deep investigation into computational stereo methods from

the viewpoint of matching cost computation and optimization. Hirschmuller [40, 41]

and Scharstein [41] compared the performance of different matching cost functions.

Here, we give a brief summary on the visual correspondence algorithms from the point

of matching constraints.

Visual correspondence can be determined under many different constraints. For in-

stance, in optical flow based methods [42], the brightness of the same scene point in

the images taken from different view angles should be consistent. Other assumptions

are made on the smoothness of the disparity field. Local methods [3] [104] usually

emphasize the constraints on a small number of neighboring pixels surrounding the

pixel of interest. Global methods [12] [91] take into account a whole scan-line or the

entire image by optimizing certain energy functions. Compared with global methods,

local methods are in many cases more computationally efficient. Speed is essential

for real-time applications such as [47]. The shortcoming of this approach is that it

is more sensitive to image noise and ambiguous regions. Global methods are more

robust in dealing with local ambiguity, since global constraints allow propagation of

information from textured regions to regions with low texture. However, these meth-

ods often suffer from the expensive computational cost, and, furthermore, do not
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give a confidence rating in the produced disparity estimates. With the progress of

energy optimization algorithms, for instance, graph cuts [13] [12], the performance of

global methods have been greatly improved. In this section, we list several important

methods emphasizing either global or local constraints. At last, we will give a more

detailed description of [91] which is the most close work to our semi-dense visual

correspondence approach.

5.2.1 Local Methods

Local methods emphasize constraints that only rely on a small number of neighboring

pixels close to the point of interest. For a certain pixel, it is usually assumed that

its surrounding pixels in a small neighbourhood give supportive cues for visual corre-

spondence of the point of interest. Because of the dependence on only a small number

of pixels, local methods are often computationally efficient. There are many different

ways of applying the local constrains. Here we list three widely used representations

of local constraints: window matching, gradient-based method and feature matching.

Window Matching

In window matching methods, to estimate the disparity at a point in one image, a

small region around that point, namely, a template, is extracted from the reference

image. Small regions from the other image with different disparities are then extracted

and compared with the template. The region with least matching error, sometimes

referred as matching cost, is then selected and its associate disparity is assigned to

the point of interest.

Intuitively, the matching error between a template and its corresponding regions can

be represented by the intensity differences between them. The two most commonly

used matching cost functions are: the sum of squared intensity difference (SSD)[3] [35]

[67] [84] and the sum of absolute intensity difference (SAD) [47]. Noise and disparity

discontinuities inside the stereo image pairs cause high matching cost if SSD and
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SAD are used. Normalized cross-correlation [35] and binary matching cost [66] are

relatively insensitive to sudden changes of image intensity. Therefore, they are more

robust for dealing with noises but still fail if there are intensity discontinuities within

a matching window.

Since cameras are sensitive in radiometric gain or bias, this commonly results in gross

errors in the computation of the matching cost. Approaches using non-parametric

measures, such as rank and census transformation [104], work well for eliminating

this kind of error. The rank transform for a small region around a pixel is defined

as the number of pixels in that region for which the intensity is less than that of the

center pixel. A variation of the rank transform, the census transform, is also proposed

by Zabih and Woodfill [104] to increase the discriminatory power, since information

is lost during the rank transform. These measures are insensitive to differences in

camera sensitivity, therefore they are more robust in bad conditions. Brichfield and

Tomasi [8] propose shifted absolute difference, which reduces the inaccuracy cased by

sampling errors. All these methods can still fail if there are disparity discontinuities

inside the matching window. A comprehensive comparison among different matching

cost functions can be found in Hirschmuller [40].

Gradient Methods

A common assumption, valid under Lambertian surface reflectance model, is that

the same world point projected to different image planes, both in stereo and motion,

should have constant brightness. This is the foundation for gradient-based methods.

Most optical flow methods [42] formulate the brightness constraint into a set of dif-

ferential equations. For instance, in stereo, the disparity of a point from the reference

image to the other can be determined by solving the following equation:

(∇xE)v + Et = 0. (5.1)

Here ∇xE is the horizontal component of the image gradient, Et is the intensity
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differences between left and right stereo images, and v is the horizontal disparity

between left and right images. Within the local optimization framework [65], it can be

assumed that the disparity is smooth over a small region. Therefore, more constraint

can be added into Equation (5.1). Let p1, p2, . . . , pn be the n pixels surrounding

our point of interest. The disparity of this point can be estimated by the following

equation system:

v = (ATA)−1AT b, (5.2)

where
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Gradient methods, or optical flow, are quite efficient while well-known to be sensitive

to local ambiguities and discontinuities, since only local information is taken into

account.

Sparse Feature Matching

The regions around disparity discontinuities have pixels with very different depths,

and, therefore, different disparities. Hence window matching methods are not reliable

around discontinuities. Figure 5.1 illustrates an example of discontinuities in stereo.

Pixel p is located on the can in front of the background. There is a depth (disparity)

discontinuity between the can and the background. Therefore, the windows around

pixel p and its corresponding pixel p′ in the other image have a large matching cost for

the correct disparity. This is because a large portion of pixels inside the windows are

not in correspondence, making the matching cost high. That is all pixels in the left

window that are part of the background do not actually match the overlapping pixels

in the right window. Moreover, in textureless regions, window matching and optical
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(a) Left image (b) Right image

(c) Enlarged pixel p and its neighbours (d) Enlarged pixel p′ and its neighbours

Figure 5.1: The discontinuities in stereo: Figure (a) and (b) are the input stereo images.

The red squares show the 5 by 5 windows around a pixel p and its corresponding pixel p′

in the right image. These 5 by 5 windows are enlarged in Figure (c) and (d). It shows

that these two windows have a large matching cost since pixels above and to the right of

pixel p are at depth different from p. Therefore in the left and right windows, the pixels

above and to the right of p show two different not corresponding parts of the background,

contributing to a large matching cost between the windows. Here the matching cost is the

sum of absolute differences.

flow methods are also easily misguided, because there may be multiple windows of

very similar low cost.

Another approach to stereo correspondence is feature matching. Feature matching

methods only find disparities of reliable feature points, such as edges [7] [92], curves

[80], and textures [83] [90]. These methods produce reliable results where good fea-

tures are detected. However, results obtained by feature-based methods are usually

very sparse since there are no features in regions with uniform texture.
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5.2.2 Global Methods

Unlike local correspondence methods mentioned in Section 5.2.1, global correspon-

dence algorithm seek to eliminate ambiguities brought about by discontinuities, oc-

clusion and uniform texture by adding additional constraints that effect the whole

image, not only a local region. Like feature-based methods, good features for cor-

respondence can be found in regions which have abundant texture cues. With local

constraints, the influence of good features is limited to a small region, which usually

can be enlarged if larger neighborhoods are considered. This can be done by applying

smoothness constraint over a scan-line or the whole image. Here we list two of the

most widely used global approaches in finding visual correspondence.

Dynamic Programming

Dynamic programming is widely used in energy optimization framework in the field

of artificial intelligence and computer vision. It reduces the cost of an optimization

problem by dividing it into many small sub-problems, each of which can be easily

solved. The solution to the sub-problems is then composed to find the optimal solution

to the original question.

Stereo can be naturally formulated in a dynamic programming framework. Figure

3.1(a) is an illustration. The horizontal and vertical axis are the corresponding left

and right scan-lines of a stereo image pair. In this case, dynamic programming is

used to find the minimum cost path from bottom-left corner to top-right corner, as is

done by Ohta and Kanade [69] and Cox et al. [16]. Each node on the path, as shown

by the white squares in 5.2(a), indicates a matching pixel pair.

Another way of applying dynamic programming in stereo matching is shown in Figure

5.2(b). The axes are defined as the left scan-line and the disparities. The minimum

cost path from the first column to the last last column is found by dynamic pro-

gramming, as is done by Intille and Bobick [43]. The pixel-disparity pairs on the

minimum-cost path, as shown by the white squares in Figure 5.2(b) show the result
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(a) (b)

Figure 5.2: Stereo with dynamic programming. In (a), the axes are left and right scanlines.

The brightness of the squares shows the matching cost of corresponding pixel pairs. The

darker the square is, the greater the matching error is. A path with the minimum matching

cost is found from lower left corner, shown by white squares. In (b), the axes are the left

scanline and disparities. A path from the fist column to the last column with minimum

cost is shown by white squares.

of the algorithm.

As stated in the previous paragraph, dynamic programming can always find the exact

solution to a 2D optimization problem. However, the main problem with dynamic

programming methods is that they can only enforce intra-scanline constraints. The

inter-scanline constraints are ignored. Two-level dynamic programming is proposed

by Cox et al. [16] to solve this problem. Nevertheless it is NP-hard to optimize

a matching cost function with dynamic programming if the vertical constraints over

the entire image are taken into account.

Graph Cuts

To consider the inter-scanline dependence, one can formulate the stereo correspon-

dence problem in the energy optimization framework. The label set L = {l0, l1, l2, . . . , lm},
denotes the set of all possible disparities, where m is the maximum disparity. Let P
be the set of all image pixels, and for each p ∈ P we wish to assign some label fp ∈ L.
Thus the stereo problem is now a multi-labeling problem. Let f be the collection of

all pixel-label assignments. The following energy function is formulated to measure



108

the quality of f :

E(f) = Esmooth(f) + Edata(f), (5.3)

The definition of the data term Edata and smoothness term Esmooth is the same as

Equation 2.3 in section 2.2. That is:

Edata(f) =
∑

p∈P

Dp(fp), (5.4)

where Dp is the penalty for assigning pixel p the disparity fp. And the smoothness

term is:

Esmooth =
∑

{p,q}∈N

Vpq(fp, fq). (5.5)

where Vpq is the penalty for assigning fp and fq to neighbouring pixels p and q. Graph

cuts has proved to be very successful in stereo correspondence [12] [91].

Boykov et al. [12] proposed a stereo matching algorithm based on graph cuts. Their

method is quite straightforward. Suppose there is a pair of stereo images I and I ′.

Let P denotes the set of all the pixels in I. The forward matching cost of pixel p ∈ P
with disparity d is measured as:

Cfwd(p, d) = min
d− 1

2
≤x≤d+ 1

2

|Ip − I
′

p+x|,

The backward matching cost Crev is defined symmetrically:

Crev(p, d) = min
p− 1

2
≤x≤p+ 1

2

|Ix − I
′

p+d|,

The minimum of Cfwd, Crev and a constant is defined as the matching cost C(p, d)

for pixel p with disparity d:

C(p, d) = min(Cfwd(p, d), Crev(p, d), constant),
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The data term, Edata, as defined in Equation (5.4) is the summation of C(p, fp) where

fp is a disparity of pixel p. This particular definition of the data cost helps to alleviate

image sampling artifacts. It was first proposed by Birchfield and Tomasi [8].

For smoothness constraint, the Potts model is used. Two neighboring pixels are likely

to have the same disparity if they have similar intensities. An α-expansion algorithm

is applied to get an approximate solution to this energy optimization problem. The

results of this algorithm helped to move state-of the art in stereo correspondence

forward by showing that global methods can be efficient and produce results by far

superior to the window matching methods that were common at the time. However

this approach still does not produce confidence in its estimates and can fail for scenes

with very low texture.

5.2.3 Semi-dense Visual Correspondence

Our work was inspired by Veksler [91]. As noted in Section 5.2.1, most matching

cost functions based on intensity difference can fail in occluded and uniform-textured

regions. Moreover, in regions with disparity discontinuities, although they cause

ambiguities for local methods, there are useful cues for visual correspondence. The

intuition behind this is that in the regions with discontinuities, the matching error

should be weaker than the intensity edges. Veklser refers to these cues as “boundary

conditions” in [91].

The process of finding visual correspondence is formulated as a labeling problem

in [91]. At the first stage the labeling is performed for each disparity separately. For

a pixel p and disparity d, the labeling fp = 1 means assigning disparity d to pixel p

and fp = 0 means p is of other disparity. In the next step, an energy function in the

form of 5.3 is formulated to evaluate the labeling. The data terms Dp(fp) encodes

how pixel p likes disparity d. Since label 1 means pixel p likes the disparity d, Dp(1)

should corresponds to the penalty of assigning disparity d to pixel p. The smaller
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is Dp(1), the more likely label 1 is for pixel p. First the edge strength between p

and its neighbor in the left direction, pl, is measured. That is δl = |L(p) − L(pl)|,
where L is the left image of the input stereo pair. Similarly, the edge strength in the

right image is measured with δr = |R(p + d) − R(pl + d)|. The the edge strength is

δ = min(δl, δr). Then the matching error for p and pl is e(p) = |L(p) − R(p+ d)| and
e(pl) = |L(pl) − R(pl + d)|. The texture cue is t cue = 10 − h(δ − e(p)) − h(δ − e(pl)),

where

h(x) =



















10 if x < 10

10 − x2

2.5
if 0 ≤ x ≤ 5

0 if x > 5

The matching error itself is also considered in the data term. First, the matching error

is defined as m cue = g(e(p)) + g(e(pl)), where g(x) = 10 − x2/160. Finally, Dp(1) is

defined as Dp(1) = max{0,min{10, (10 − t cue) + (10 − m cue)}}. The negative cue

Dp(0) is the penalty for assigning label 0 to pixel p. In [91] it is defined as:

Dp(0) = max{0, 10 − min{e2(p), e2(pl)}
30

}

For pixel p with disparity d the positive cue Dp(1) measures the boundary condition

at the pixel, and the negative cue Dp(0) measures the truncated square difference

between p and its corresponding pixel under disparity d.

The distance transform of the boundary feature map is used to calculate the smooth-

ness term vpq. Let δ, e(p) and h(x) have the same definition as that of the Dp(1),

then

Bl(p) =







∞ if δ < e(p)

h(δ − e(p)) otherwise

Thus Bl(p) is small if there is likely a boundary condition feature going between p and

pl. The distance map of Bl(p) is then defined as Tl(p) = minq∈P{Bl(q) + dist(p, q)},
where dist is the standard Manhattan distance. Then the smoothness term vpq is
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defined as:

vpq =







1 +Bl(p) if Bl(p) 6=∞
1 + (Tl(p))

2 otherwise

This allows the boundary cues to pass their support for disparity d to neighbouring

pixels. The graph cut algorithm is used by [91] to optimize the cost function. Since the

resulting labeling is much denser then the boundary condition feature, it is referred

to as dense visual feature.

Any pixel p ∈ P can belong to more than one dense visual features. Therefore,

the last step of [91] is to resolve the ambiguities. It is done with heuristics. If a

pixel p is assigned label 1 for more than one disparity, then p will be assigned to

the disparity which has most pixels in the immediate surrounding of p. Figure 5.3

shows the results for [91]. Figure 5.3(a) is the left image of the input stereo pair.

Figure 5.3(b) shows the dense feature detected at disparity 10. That is mostly the

disparity of the sculpture. In Figure 5.3(c), there are the dense features detected

at disparity 14. Figure 5.3(d) is the final result after resolving the ambiguity. The

lighter is the pixel, the larger is the disparity.

The main drawback of [91] is that it only allows the pixels with exactly the same

disparity to be assigned to the same blob-like visual cue. If there is a large textureless

region that straddles several disparities, method in [91] will fail to segment it as a

dense feature. Figure 5.4 illustrates an example where the visual correspondences for

the large textureless surface with smoothly varying disparities can not be established.

Our approach to solve this problem is to group together cues that straddle several

disparities, provided they are smoothly varying disparities and are adjacent in the

image. The intuition is that an object that we might be able to segment as a dense

visual cue (like the ball in Figure 5.3), if it is not at single disparity, then it has a

range of smoothly varying disparities.

Another limitation of [91] is that the threshold for the boundary condition is set up

by hand. Moreover, the last step of resolving the ambiguities is done with a heuristic.
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(a) Input image (b) Dense feature for disparity 10

(c) Dense feature for disparity 14 (d) Semi-dense visual correspondence

Figure 5.3: The results of Veksler [91]: Figure (a) is the left input image. Figure (b)
shows the dense feature detected at disparity 10. Figure (c) is the dense feature for
disparity 14. Figure (d) is the disparity assignment after resolving the ambiguity.

Therefore, we propose a method which selects the useful features for detecting visual

correspondence automatically. Thus we can avoid the problem of picking the threshold

by hand. Furthermore, we resolve ambiguities between different dense features in a

more robust way.

5.3 Overview of Our Method

Our main objective is to find regions in the image for which disparities can be de-

termined more reliably. Like the previous work [90, 91], we require that such regions
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(a) The right image (b) Ground truth (c) Result by [91]

Figure 5.4: The drawback of [91]: Figure (a) is the right image of the input stereo pair.

The big bowling ball in the middle of this image has little texture on it and its disparities

vary smoothly. Figure (b) is the ground truth. Figure (c) is the result generated by the

approach of [91]. Pixels with black colour mean there is no disparity assigned to them.

This is because these pixels do not belong to any dense feature. We can see that no visual

correspondence is found inside the big bowling ball in the middle because [91] only finds

dense features that belong to a single disparity.

have texture cues on the boundary. In addition they may have texture cues in the

interior. Unlike the previous work [90, 91], we allow the disparity range within each

such feature blob to vary smoothly, instead of being constant. This produces blob-

like semi-dense visual features for which we have a high confidence in their estimated

ranges of disparities. To achieve our goal, we develop a three-stage approach for the

semi-dense visual correspondence problem.

We start with selecting useful features for visual correspondence at the textured

regions. We use the machine learning approach for this purpose [22]. We train a

classifier that selects a useful set of features from a large feature pool. This feature

pool consists of 148 different useful features which are commonly used for visual

correspondence detection, such as matching error, edge strength, difference between

the matching error and the edge strength (the so called “boundary condition”).

For the training stage, we selected several stereo image pairs with the ground truth

from [78, 77, 40] as our training set. The features included in our feature pool are

computed in the textured regions of the training image pairs. Ada-boost algorithm

is then used to select the informative features that perform well in determining the
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Figure 5.5: The main steps of our semi-dense visual correspondence method. Figure (a)

is the input image. Figure (b) shows the sparse visual cues detected by our classifier at

disparity 35 and 49. The red pixels are the positive cues which support disparity 35 and

49, and the green pixels are the negative cues which do not support disparity 35 or 49. The

black pixels neither like nor dislike disparities 35 or 49. Figure (c) and (d) are two of our

visual cue groups. Here the blue pixels in Figure (c) show the cluster of positive visual

cues which support the range of disparities from 34 to 38. The yellow pixels in Figure

(d) are the visual cues which support disparity range from 48 to 52. The green pixels are

the negative cues which do not support these disparity ranges. Figure(e) shows the binary

labeling results for the visual cue groups in Figure (c) and (d). Figure (f) is the final result

after ambiguity resolving.

disparities of the pixels in the training images. This results in a binary classifier

which determines if one pixel p agrees or disagrees with a disparity d in the textured

regions. With this classifier, we can then detect sparse visual cues in the textured

regions of the input image for each disparity separately. The visual cues detected by

our classifier either support or do not support the associated disparity. We refer to

the visual cues which support a certain disparity as positive cues. For the visual cues

that disagree with the associated disparity, we call them negative cues.

Figure 5.5(b) shows the results of our binary classifier at disparity 35 and 49 for the

input image in Figure 5.5(a). The red pixels in Figure 5.5(b) are the positive visual

cues which support disparity 35 or 49. The green pixels are the negative visual cues

which do not support these disparities.
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In the second step of our approach, we apply linkage clustering on the positive cues

detected in the previous step. Thus we cluster these sparse positive cues into denser

groups G = {g1, g2, . . . , gm}, where m is the number of groups and is a parameter set

by the user. In each group g ∈ G, the positive visual cues are spatially near each

other, and their associated disparities are adjacent. We group the positive cues across

different disparities in order to be able to handle dense visual features that strand

several disparities. As mentioned before, we do expect that a dense feature will have

a smoothly varying range of disparities. Figure 5.5(c) and 5.5 (d) illustrate two of

the visual cue groups for the image in Figure 5.5(a). The blue pixels form the visual

cue group which supports disparity range from 34 to 38. Pixels in this group form

the middle part of the mask. The yellow pixels vote for disparity range from 48 to

52. This is the disparity range for the two cones in the front row. The green pixels

do not support any disparity in these ranges.

Notice that the visual cues obtained for each disparity range are rather sparse. Our

next step is to obtain denser cues (or “features”). This step is performed as a binary

labeling problem, separately for each group of the positive cues. For group g, if a pixel

p is labeled 1, then it means this pixel has a disparity within the range associated

with group g. Label 0 means that p does not belong to group g. This binary labeling

process produces a set of blob-like visual cues for each group, while pixels in these

blob-like cues support the disparity range associated with the group. See Figure 5.5(e)

for the results of a binary labeling of the visual cue groups in Figure 5.5(c) and (d).

After the previous step, each pixel can belong to zero, one, or more of the visual

groups. Thus we need to resolve the ambiguities to find the exact boundaries between

the regions of different disparity groups. This is the next step of our method, and we

formulate it as a multi-labeling problem. The label set L = {l1, l2, . . . , lm} consists of
m labels. Each label li, i ∈ {1, 2, . . . , m} represents a group gi ∈ G. Thus assigning

a label li ∈ L to a pixel p ∈ P means that pixel should only belong to group gi ∈
G. By solving this multi-labeling problem with the graph cut approach [12], we
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find regularized boundaries between blobs of pixels which belong to different groups.

Figure 5.5(e) shows the final result of semi-dense visual correspondence for the image

in Figure 5.5(a). Pixels with the same colour belong to the same disparity group, and

the disparities in these regions vary smoothly.

The grouping stage (second stage) and labeling stage (third stage) can be iterated,

if we merge small blobs of our semi-dense visual correspondence with larger blobs

according to their locations and associated disparity group. This will result in bigger

groups of blob-like visual cues and produces smoother boundaries and surfaces. The

resulting groups are more reasonable if we start with a large number of groups and

decrease this number with each iteration. Performing multi-labeling based on these

new groups will generate more accurate results. Therefore, finally we iterate our

grouping stage and labeling stage until the results can not be improved anymore.

5.4 Detailed Description of Our Algorithm

In this section, we describe our semi-dense visual correspondence method in details.

We start with describing our classifier for selecting useful sparse matching features in

section 5.4.1. Next, in section 5.4.2, we introduce the clustering algorithm that groups

the sparse visual cues into denser clusters. In section 5.4.3, we apply binary labeling

on the visual cue groups to generate blob-like features for stereo. In section 5.4.4, we

formulate our semi-dense visual correspondence problem as a multi-labeling problem

and solve it with the graph cuts algorithm. In section 5.4.5, we illustrate how we

iterate the clustering stage and labeling stage to improve the results.

5.4.1 Detecting Sparse Features for Stereo

The first stage of our approach is to build a binary classifier which, given a pixel in

the textured region, determines whether this pixel supports a particular disparity or
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not. Therefore, to build such a classifier, we need to collect a set of features with

discriminant power for visual correspondence detection. For instance, if we want to

measure how disparity d fits a pixel p, then the absolute intensity difference between

pixel p in the right image and pixel p′ = p+ d in the left image is a good indication.

In our approach, our training images and most of our testing images are from the

Middlebury stereo data sets [76, 78, 77, 40], and the ground truth of these images is

based on the right images. Therefore, for our approach, we use the right image as the

reference image, and matching the left image to the right image. In [91], the author

claims that if the matching error is lower then the edge strength at pixel p by some

threshold t, then it is likely that the associated disparity fits pixel p. This implies

that in the textured regions, measuring the difference between the matching cost and

the edge strength is a good indication for visual correspondence. In this thesis, we

also refer to the difference between the matching cost and the edge strength as the

“boundary condition”. Other important features for detecting visual correspondence

include shifted matching cost [8], boundary conditions based on shifted matching cost

and edge strength, the difference between matching cost of neighbouring pixels, etc.

Our pool of features can be divided into two major categories, the basic features

and combined features. First, let us define the basic features. There are four types of

basic features in our feature set. Let Il and Ir be the left and right image of the input

stereo image pair. Let P denotes the set of all pixels in Ir. The absolute intensity

difference between corresponding pixels is then defined as:

Eabs(p, d) = |Ir(p) − Il(p+ d)|

Here p ∈ P is a pixel in the right image Ir and d is a possible disparity. Eabs measures

the intensity difference between pixel p and its corresponding pixel p + d in the left

image.

We also adopt shifted matching cost from the work of Brichfield and Tomasi [8]. It
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is defined as following:

d(p+ d, p, Il, Ir) = min
p− 1

2
≤x≤p+ 1

2

|Il(p+ d) − Îr(x)|

Here Îr is the linearly interpolated image of Ir and d is the disparity. Similarly we

can define:

d(q − d, q, Ir, Il) = min
q− 1

2
≤x≤q+ 1

2

|Îl(x) − Ir(q − d)|

where Îl is the linearly interpolated left image Il, and q = p+ d is the corresponding

pixel of pixel p in the left image. Then the matching cost between pixel p in the right

image and its corresponding pixel q = p+ d in the left image is defined as:

Eshifted(p, d) = min(d(p+ d, p, Il, Ir), d(q − d, q, Ir, Il))

The shifted matching cost measures the difference between the linearly interpolated

pixels. This reduces errors brought by the sampling artifacts and image noise.

Our basic features also include boundary conditions. To compute the boundary con-

ditions, we need to define the edge strength at pixel p. We first define:

er(p) = max(|Ir(p) − Ir(p − 1)|, |Ir(p) − Ir(p+ 1)|)

el(p) = max(|Il(p+ d) − Il(p + d − 1)|, |Il(p+ d) − Il(p+ d+ 1)|)

These are the intensity changes between pixel p and its neighbours on both left and

right sides in the input image pair. Then the edge strength at pixel p is:

e(p) = max(er(p), el(p))

There are two types of boundary conditions defined in our feature set: the difference

between edge strength and absolute intensity difference, and the difference between
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edge strength and the shifted matching cost:

Babs(p, d) = e(p) − Eabs

Bshifted(p, d) = e(p) − Eshifted

The boundary condition features measure how a disparity fits a pixel in a textured

region by comparing the matching error with the edge strength. It is more robust

than both absolute matching error and shifted matching error in the textured regions.

Thus our set of basic features is:

Basic(p, d) = {Eabs(p, d), Eshifted(p, d), Babs(p, d), Bshifted(p, d)}

Besides the basic features, we also develop a set of combined features. The com-

bined features are inspired by the window matching methods. For pixel p ∈ P,
its nearby pixels in a small neighbourhood may provide more useful information for

the visual correspondence than only the basic features extracted from the pixel it-

self. For example, for disparity d, if both pixel p and its neighbours have small

matching error and good boundary condition, then it is more likely that d is the

correct disparity for pixel p. To compute the combined features, for every pixel

p(x, y) ∈ P, we first compute the basic features (absolute intensity difference, shift-

ed matching cost and boundary conditions) for the pixels in a 3 × 3 neighbourhood

N = {q(i, j)|(x − 1) ≤ i ≤ (x+1), (y − 1) ≤ j ≤ (y+1)}. Then the combined features

are defined as the combinatory difference between the basic features of the pixels in

N :

Cabs(p, d) = {|Eabs(q, d) − Eabs(r, d)|, q, r ∈ N , q 6= r}

Cshifted(p, d) = {|Eshifted(q, d) − Eshifted(r, d)|, q, r ∈ N , q 6= r}

Cboundary 1(p, d) = {|Babs(q, d) − Babs(r, d)|, q, r ∈ N , q 6= r}
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Cboundary 2(p, d) = {|Bshifted(q, d) − Bshifted(r, d)|, q, r ∈ N , q 6= r}

Here Cabs measures the difference between the absolute matching error for pixels in

the 3 by 3 neighbourhood. Cshifted is the difference between the shifted matching

cost for pixels in the small window. Cboundary 1 is the set of combined feature for

boundary conditions based on absolute intensity difference. Cboundary 2 is the same

with Cboundary 1, and the only difference is that the boundary condition is now the

difference between the shifted matching error and the edge strength. By computing

the combined features, we can infer the information about the visual correspondence

from the neighbouring pixels of pixel p. Therefore, they provide more support for the

visual correspondence for pixel p than the basic features. Finally our feature set for

pixel p at disparity d is:

F (p, d) = Cabs(p, d)
⋃

Cshifted(p, d)
⋃

Cboundary 1(p, d)
⋃

Cboundary 1(p, d)
⋃

Basic(p, d)

(5.6)

Our training set consists of stereo pairs with different portion of textured regions.

We first measure the ratio of number of pixels whose edge strength is greater than 10

over the total number of pixels in a training image:

rtexture =
|{p|e(p) > 10, p ∈ P}|

|P|

Then we selected several stereo image pairs from the Middlebury stereo image data

set [76]. And their rtexture range from 1.33%, to 17.28% respectively. The training

examples are pixels in these image pairs whose edge strength is greater than 10.

Therefore, our training set covers examples from modestly textured images to highly

textured images. The training examples are split into positive and negative sample

sets. The features for the positive examples are computed with the ground truth

provided with Middlebury stereo set. For the negative examples, their disparities are

randomly picked and are different from the ground truth. Figure 5.6 shows three
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(a) (b) (c)

Figure 5.6: The training set for the sparse visual cues classifier: the ratio rtexture of the

textured pixels in Figure (a), (b), and (c) are 1.33%, 7.16% and 17.28% respectively. Our

training set covers examples from modestly textured images to highly textured images.

images in our training set.

Ada-boost [30, 75, 74] is used in our work as a classifier. Ada-boost, short for Adap-

tive Boosting, is a machine learning algorithm which can be used in conjunction with

other learning algorithms to improve their performance. The basic idea behind Ada-

boost is that the performance of a set of weak classifiers can be improved gradually

by combining them together sequentially. The subsequent classifiers are adapted to

favour those examples which are misclassified by the previous classifiers.

Ada-boost procedure can also be interpreted as a greedy feature selection process.

If weak learners used in Ada-boost are simply one-node decision trees which best

separate the positive and negative examples, then for each feature, the weak learner

algorithm determines the optimal threshold such that the number of misclassified

examples is minimum. In each iteration of the Ada-boost algorithm, the weak classi-

fier which has least classification error is selected and combined with the previously

selected classifiers. With the one-node decision trees based on single feature, the

Ada-boosting algorithm acts as a greedy feature selection algorithm.

To complete our learning approach, we now need to construct a set of simple classifiers

based on our feature set F defined in Equation (5.6). A weak classifier hj(x) consists



122

of a feature fj ∈ F , a threshold θj and a polarity pj .

hj(x) =







1 if pjfj(x) < pjθj

0 otherwise
(5.7)

Here x is any pixel in the input stereo image pair whose edge strength e(x) is greater

than 10. Since the features are only reliable in the textured regions, we ignore the

pixels with little intensity change.

Now we are ready to construct our learning framework based on Ada-boosting. The

weak classifiers defined in Equation (5.7) usually perform just slightly better than

random (with classification error slightly lower than 50%). Therefore, we employ

Ada-boost algorithm to combine these weak classifiers together to improve their per-

formance. Algorithm 1 shows the detailed procedure for our learning framework based

on Ada-boost. In this work, we use the implementation of Vezhnevets et al. [93]. By

using Ada-boost, we construct a binary classifier which detects the pixels that strong-

ly agree or disagree with a particular disparity d. Since we only use pixels whose edge

strength is greater than 10 in our training set, we only apply the final classifier to

testing examples whose edge strength are also greater than 10. The classification re-

sults for this classifier are sparse visual cues that are located in the textured regions,

see Figure 5.5(b).

5.4.2 Visual Cues Clustering

The classifier constructed in the previous step can detect positive and negative visual

cues for stereo in mildly textured regions. This step is performed separately for each

disparity. The classification results are sparse visual cues which either support or

reject the associated disparity, see Figure 5.5(b). For images with large textureless

surfaces, the visual cues detected by our classifier are too sparse. Furthermore, our
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Algorithm 1 The Ada-boost algorithm for learning the useful features for stereo
correspondence. Each weaker classifier hj(x) is a simple decision boundary based on
a single feature, defined in Equation (5.7). The final classifier is a weighted linear
combination of T simple classifiers.

• Given a set of training samples (x1, y1), (x2, y2), . . . , (xn, yn), where xi are the
pixels in the training images, and yi = 0, 1 for the positive and negative examples
respectively.
• Initialize weights w1,i =

1
n
where n is the number of training samples.

for t = 1, 2, . . . , T : do
1. Normalize the weights:

wt,i ← wt,i∑n
j=i wt,j

2. For each feature, j, train a classifier hj which best separates the positive and
negative samples. The error of hj is evaluated by ǫj =

∑

i wi|hj(xi) − yi|.
3. Choose the classifier ht with the lowest error ǫt.
4. Update the weights:

wt+1,i = wt,iβ
1−ei
t

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt =
ǫt

1−ǫt
.

end for

• The final strong classifier is:

h(x) =

{

1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

goal is to allow detection of a visual feature that may straddle several disparities, as

long as the disparity variation inside that feature is smooth. Therefore, in the second

step of our approach, we propose a clustering method that groups together the sparse

visual cues detected in the previous step. The resulting visual cue groups consist of

sparse visual cues which have smoothly varying disparities, and which are spatially

close to each other, see Figure 5.5(c) and (d).

To cluster the sparse visual cues into larger groups, we first need to define the distance

measure between two visual cues. Let the 4-tuple (x, y, d, l) denotes a visual cue

detected by our classifier. Here x and y are the horizontal and vertical coordinates

of the pixel, d is the associated disparity. Label l ∈ {0, 1} is a binary indicator. If

l = 1, then this visual cues is a positive cue which indicates that pixel (x, y) supports

disparity d. If l = 0, then this is a negative cue which means that pixel (x, y) does not
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support disparity d. Then the distance between two visual cues c1 = (x1, y1, d1, l1)

and c2 = (x2, y2, d2, l2) is:

D(c1, c2) =







√

(x1 − x2)2 + (y1 − y2)2 if |d1 − d2| ≤ t

∞ otherwise
(5.8)

Here t is the threshold for the disparity difference between c1 and c2. Since we want

our visual cue groups to have smoothly varying disparities, only neighbouring visual

cues with small disparity difference are allowed to be grouped together. In practice,

we set t = 1. D(c1, c2) measures the Euclidian distance between two visual cues,

provided that their associated disparities are close to each other. Neighbouring visual

cues with similar disparities will have small distance between each other, and are

more likely to be grouped together.

Let Cpositive = {c1, c2, . . . , cm|li = 1, i = 1, 2, . . . , m} be the set of all positive visual

cues. Our goal is to dived Cpositive into K subsets C1, C2, . . . , CK so that:

⋃

1≤j≤K

Cj = Cpositive,

and

Ci

⋂

Cj = ∅ for i, j ∈ {1, . . . , K} and i 6= j.

Moreover, the disparities of the visual cues in the same group should vary smoothly,

and the locations of these visual cues should be close to each other. Our grouping

method is only applied on positive cues. The negative cues will be clustered separately

after we have groups of positive cues.

Linkage Clustering is used as our clustering algorithm. Linkage clustering is an

agglomerative clustering method which builds a hierarchy of clusters that can be rep-

resented in a tree structure. It creates the cluster hierarchy from individual elements

by merging the clusters progressively. Figure 5.7 shows a simplified example of our
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(a) Visual cues (b) Linkage clustering process

Figure 5.7: The linkage clustering process: Figure (a) shows a synthetic example of six

positive visual cues. Figure (b) shows the linkage clustering process based on the samples

given in Figure (a).

linkage clustering algorithm.

In Figure 5.7(a), the ovals illustrates six positive visual cues a, b, c, d, e and f ,

detected by our classifier. Visual cue a, b and c support disparity 20. Visual cue d

and e agree with disparity 21. Visual cue f has disparity 18. Here b, c, d, e and f are

adjacent to each other, and a is some distance away from the other visual cues. Since

we do not want to cluster together visual cues whose disparities are quite different

from each other, visual cue f will have infinite distance from the other visual cues,

as defined in Equation (5.8).

Our linkage clustering algorithm is first initialized with each example in a singleton

cluster. Then in each iteration of the linkage cluster algorithm, two closest clusters

are found and merged together. This step is repeated until the total number of cluster

is equal to K, which is set by the user. For the example in Figure 5.7(a), visual cue b

and c are clustered together to form the first non-singleton cluster. Visual cue d and

e are then clustered together in the second iteration, since they have least distance

compared with other pairs of clusters. In the third iteration, cluster bc and cluster



126

de are merged together because they are adjacent to each other and have similar

disparities. In the fourth iteration, visual cue a is merged with cluster bcde. Then

visual cue f is clustered together with other visual cues in the last iteration, since f

has disparity 18 and the others have disparity 20 or 21. The clustering process of this

synthetic example is shown in Figure 5.7(b).

The most important step in linkage clustering algorithm is measuring the distance

between two clusters. Single-linkage algorithm uses the minimum distance between

examples from the two different clusters. Complete-linkages algorithm measures the

distance between two clusters by computing the maximum distance between examples

from these two clusters. There are also other methods using average distance or mean

distance.

In our visual cue clustering methods, we want the resulting groups to have smoothly

varying disparity, and the geometric locations of the visual cues in the same cluster

should be close to each other. Therefore, we use Ward’s method introduced in [96].

Ward’s method measures the distance between two clusters by computing the increase

in variance for the cluster being merged. The visual cue clusters generated with

Ward’s method have smoother disparities compared with the results of other methods

such as single and complete linkage.

Now we have clusters of positive cues C1, C2, . . . , CK whose disparities vary smoothly.

And the visual cues within the same cluster are located close to each other, see

Figure 5.5(c) and (d). In the next step, we need to cluster together the negative

visual cues.

For a cluster of positive cues, Ci, let Di = {di1, di2, . . . , dil} be the range of disparities
for all the visual cues in cluster Ci. Let Nij be the set of negative visual cues which

do not support disparity dij ∈ Di. That is, if a visual cue c = (x, y, d, l) and c ∈ Nij ,

then we have d = dij and l = 0 (Recall that for a visual cue c = (x, y, d, l), x, y are

the coordinates of the visual cue, d is its associated disparity, and l ∈ {0, 1} shows



127

if its a positive cue or negative cue). Let Ni be the cluster of negative visual cues

which disagrees with the disparity range Di. Then Ni is computed by the following

procedure. For every pixel (x, y) ∈ P, if c = (x, y, dij, 0) ∈ Nij for all dij ∈ Di, then

c = (x, y, dij, 0) ∈ Ni for all dij ∈ Di.

Informally, Ni is the intersection of Nij regardless of their disparities. Figure 5.5(c)

and (d) shows two examples of the visual cue groups. Notice the clusters of negative

visual cues, shown with green pixels, are much less dense than the negative cues for

a single disparity (shown with the green pixels in Figure 5.5(b)). That is because we

only alow visual cues which disagree with every disparity in Di to be added into the

negative cue cluster.

5.4.3 Blob-like Visual Cues

In the previous step, we clustered the sparse visual cues detected by our binary

classifier into lager groups. Within each group, the sparse visual cues have smoothly

varying disparities and are spatially close to each other. The purpose for the clustering

step is to enable our approach to deal with textureless regions which strand several

disparities. Our goal is to propagate the visual cues detected at the boundaries of

the textureless regions into the interior of these regions. Therefore, in this step, for

each group of sparse visual cues, we generate dense, blob-like visual features which

support the disparity range associated with this group, see Figure 5.5(e).

We formulate this problem as a binary labeling problem. Recall that in the previ-

ous step, we first cluster all the positive cues detected by our classifier into several

clusters C1, C2, . . . , CK , where K is the number of clusters and is set by the user.

The positive visual cues inside cluster Ci, 1 ≤ i ≤ K support the disparity range

Di = {di1, di2, . . . , dil}. We also cluster the negative cues together by computing

the intersection of Ni1, Ni2, . . . , Nil, which are the sets of negative cues that do not

support disparity di1, di2, . . . , dil respectively. The resulting negative cue cluster is
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denoted as Ni.

Our binary labeling framework for blob-like dense visual feature is formulated as

following. For a certain group of positive cues Ci, we need to assign a label fp ∈
{0, 1} to every pixel p ∈ P, where P is the set of all pixels in the right image.

If pixel p(x, y) ∈ P is labeled with 1, then p supports the disparity range Di =

{di1, di2, . . . , dil}. Otherwise, pixel p does not support any disparity in Di. Let f be

the collection of the labeling for all the pixels. An energy function is formulated to

evaluate f :

E(f) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

Vpq(fp, fq). (5.9)

Here the data term Dp(fp) is defined as following:

Dp(fp) = wm ·Dmatching
p (fp) + wf ·Dfeature

p (fp). (5.10)

The matching error term Dmatching
p (fp) is the matching cost for assigning label fp to

pixel p. And the feature term Dfeature
p (fp) encodes both the positive cues in group Ci

and the negative cues in group Ni.

Dmatching
p (1) is defined by:

Dmatching
p (1) = min{20, min

1≤j≤l
(Eabs(p, dij))},

where Eabs(p, dij) is the absolute intensity difference between pixel p in the right

image and pixel p + dij in the left image. It is defined in Section 5.4.1. Dmatching
p (1)

measures the minimum matching cost for assigning disparities in group Di to pixel

p. We take the minimum matching cost, because intuitively pixel p only has one

disparity d, and if d ∈ Di, then the matching cost for assigning d to pixel p should

be the smallest compared with that of the other disparities in Di. We also truncate

the data term so that we will not over-penalize for assigning label 1 to pixel p with

very high matching cost for all the disparities in Di. Dmatching
p (0) is computed with
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the following equation:

Dmatching
p (0) = max{0, 20 − max

1≤j≤l
(Eabs(p, dij))}.

Dmatching
p (0) is simply the reverse of Dmatching

p (1).

Dfeature
p (1) for pixel p(x, y) ∈ N is defined as the following:

Dfeature
p (1) =







10 if there is c = (x, y, d, 0) and c ∈ Ni

0 otherwise

Therefore, Dfeature
p (1) is the penalty for assigning label 1 to pixel p where there is a

negative cue at pixel p. Similarly, we define Dfeature
p (0) as:

Dfeature
p (0) =







10 if there is c = (x, y, d, 1) and c ∈ Ci

0 otherwise

Thus Dfeature
p (0) is the penalty for assigning label 0 to pixels with positive cues. By

encoding the sparse visual cues in Dfeature
p (fp), we have more confidence about the

disparity range of the resulting dense visual cues.

The smoothness term Vpq(fp, fq) is the Potts model defined in Section 2.1. That is

Vpq(fp, fq) = upq · T (fp 6= fq), here T (fp 6= fq) = 1 if fp 6= fq, and T (fp 6= fq) = 0

otherwise. Because disparity changes tend to coincide with intensity changes, we

define upq as:

upq =







2K if |Ip − Iq| ≤ 5

K otherwise
(5.11)

Here K is the Potts model parameter. The neighbourhood system N is the standard

4-connected neighbourhood.

Thus our energy function encodes the matching error (Dmatching
p ) and sparse visual

cues (Dfeature
p ) in the data term. And contextual information is taken into account
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by encoding the intensity changes upq in the smoothness term. The graph cut algo-

rithm [13] is used to optimize the energy function defined in Equation (5.9). Since

our labeling problem is only binary, the energy function is optimized exactly with the

graph cut algorithm. For each sparse positive cue group Ci, the resulting dense fea-

tures are blobs of pixels which support the disparity range Di associated with group

Ci, see Figure 5.5(e). By encoding the sparse visual cues in our energy function, we

have more confidence in the disparity ranges of our dense visual features. Most of the

pixels in the textureless regions are covered by our dense visual features, given there

are some sparse visual cues detected at the boundaries of these regions.

5.4.4 Semi-dense Visual Correspondence

The blob-like, dense features generated in the previous step consist of pixels whose

disparities are within the disparity range associated with that dense feature. We have

more confidence in the disparity range of these features since we encode the sparse

visual cues in our energy function. However, for a pixel p in the right image, it can be

assigned to zero, one or more dense features. Thus we need to resolve the ambiguities

so that each pixel can only belong to zero or one dense feature. We formulate this

problem as a multi-labeling problem.

Let Hi = {pi1, pi2, . . . , pini
} denote the set of pixels which belong to the dense feature

that supports the disparity range Di = {di1, di2, . . . , dil} of positive cue group Ci.

Figure 5.8(a) shows three synthetic examples of the dense visual feature. Let H =
⋃

1≤i≤K Hi be the set pixels in all the dense visual features. Our label set is L =

{1, 2, . . . , K}, where each label i, 1 ≤ i ≤ K represents the dense visual feature Hi.

Our goal is to assign a label l ∈ L to each pixel p(x, y) ∈ H in the right image, so

that p supports the associated disparity range of dense feature Hl, see Figure 5.8(b).

For pixels which are not in any dense feature, that is p 6∈ H , we do not assign any

label to them since there is no visual cue detected at these pixels.
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(a) Input image and
the dense features

(b) The labeling process and the re-
sult

Figure 5.8: A simple artificial example to illustrate the semi-dense correspondence algo-

rithm: The input image in Figure (a) consists of pixel a to i. There are 3 dense visual

features detected for this image. The blue feature has a disparity range from 1 to 3. The

green feature supports disparity range from 3 to 5. The red feature supports disparity

range from 2 to 3. Notice pixel g is not covered by any dense visual feature. In Figure

(b), a multi-labeling problem is constructed to resolve the ambiguities between the three

dense features shown in Figure (a). The label set consists of three labels {1, 2, 3}, which
correspond to the blue, green and red dense features. For each pixel covered by the dense

features, we want to assign one label in {1, 2, 3}. For instance, pixel b is included in both

the blue and the green dense features. Therefore, we need to assign a label in {1, 2} to pixel

b. Pixel g is not covered by any dense visual feature, therefore, it is not assigned any label.

The answer to the multi-labeling problem is a semi-dense visual correspondence, where each

pixel either supports a disparity range or is not covered, as shown in Figure (b).

We also formulate an energy function which is similar to Equation (5.9) to evaluate

the labeling f :

E(f) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

Vpq(fp, fq).

The data term Dp(fp) also measures if pixel p likes label fp:

Dp(fp) =







wm ·Dmatching
p (fp) + wf ·Dfeature

p (fp) if p ∈ Hfp

∞ otherwise
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Since only pixels in the dense feature Hfp are confident about the disparity range Dfp

associated with Hfp, we want to assign label fp only to the pixels in Hfp. Therefore,

the penalty of assigning label fp to pixel p 6∈ Hfp will be infinite. For pixels inside

Hfp, we first measure the matching cost of assigning label fp to pixel p. Let Dfp =

{dfp1, dfp2, . . . , dfpl} denote the range of disparity associated with dense feature Hfp.

Then the matching cost term Dmatching
p (fp) is:

Dmatching
p (fp) = min{20, min

1≤j≤l
(Eabs(p, dfpj))}.

This is the same as the matching cost term defined in the previous step. The feature

term Dmatching
p (fp) for pixel p(x, y) ∈ H is now defined as:

Dfeature
p (fp) =



















max{(0 − Dmatching
p (fp)), − 10} if there is c = (x, y, d, 1) and c ∈ Cfp

10 if there is c = (x, y, d, 0) and c ∈ Nfp

0 otherwise

Here Nfp is the set of negative sparse cues associated with dense feature Hfp, and

Cfp is the set of positive sparse visual cue for Hfp. If there is a positive visual cue

for Hfp located at pixel p(x, y), then we decrease the penalty of assigning fp to p. If

the visual cue at p(x, y) is a negative visual cue for Hfp, we increase the penalty of

assigning fp to p. If there is no sparse visual cue located at p, then the feature term

is zero.

The smoothness term Vpq is defined as the same with the smoothness term used in

the previous step. That is Vpq(fp, fq) = upq · T (fp 6= fq), where T (fp 6= fq) = 1 if

fp 6= fq, and T (fp 6= fq) = 0 otherwise. Here upq encodes the intensity change between

pixel p and q, as defined in Equation (5.11). This Potts model Vpq encourages the

final labeling f to be piecewise constant, as described in Section 2.1. Since we aim

at dense visual cues which support a range of disparities with confidence, the labels

for neighbouring pixels within the same dense visual cue should the same. And
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changes of the labels are only allowed at the boundaries of the dense visual cues, see

Figure 5.5(f). Thus our desired labeling is piecewise constant, which is encouraged by

our smoothness term. The neighbourhood system N is also the standard 4-connect

neighbourhood in this step.

Since our Vpq is not convex, as mentioned in Section 2.1, it is NP-hard to optimize

exactly. We use the α-expansion algorithm [12] to find an approximate solution to

our multi-labeling problem. The answer is within a known factor from the global

optimal. The result of this step is a semi-dense visual correspondence, where each

pixel is assigned either zero or one label. If pixel p is assigned label fp, then p supports

the disparity range associated with label fp with confidence. For pixels which are not

assigned any label, it is because they are located in the textureless regions, and there

are no visual cues detected either in the interior or on the boundaries of these regions.

The background regions in Figure 1.8 are good examples of such regions.

5.4.5 Iterative Refinement

In the previous steps, K, the number of the visual cue groups (or the number of

dense visual features) is a parameter set by the user. However, how to choose K

is a difficult problem. If K is too large, then the large surfaces which strand many

disparities will be broken into many pieces, see Figure 5.9(a). If K is too small,

then we will over-group surfaces which support different ranges of disparities, see

Figure 5.9(b). Therefore, in the last step of our approach, we propose an iterative

method to improve our results.

The clustering step and the labeling step of our approach can be naturally iterated.

The semi-dense visual correspondence generated in the previous step consists of a

set of pixel blobs. Pixels in the same blob support the same range of disparities.

Let Si = {pi1, pi2, . . . , pini
} be a blob of pixels which support the disparity range

Di = {di1, di2, . . . , dil}. Then our semi-dense visual correspondence can be denoted
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(a) K = 30 (b) K = 10

Figure 5.9: Semi-dense correspondence with different group number K: Figure (a) is the

result for K = 30. Notice the background is broken into several pieces. Figure (b) is the

result for K = 10. In Figure (b), some small cones are over-grouped with the larger cones.

as S = {S1, S2, . . . , Sm}, which is a set of m pixel blobs. Figure 5.10(a) shows a

simple artificial example of the refinement process.

The first step of the iteration algorithm is to cluster the blobs into K ′ clusters,

where K ′ should be less then the original cluster number K. Figure 5.10(b) shows

a simplified example, where the green blob and the red blob in Figure 5.10(a) are

grouped togther. As mentioned in the previous paragraph, it is hard to choose an

appropriate value of K. We solve this problem by letting the user pick a range of

values for K, and start with the largest allowed value for K. In each iteration, we

decrease the group number K, until we reach the smallest group number.

For clustering, we need to measure the distance between two pixel blobs. We define

the distance between blob Si and Sj as the following:

D(Si, Sj) = Dperimeter(Si, Sj) +Ddisparity(Si, Sj).
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(a) Initial result and the pixel blobs (b) Grouping blob 2 and 3

(c) Dense features and the new result

Figure 5.10: A synthetic example for the refinement process: Figure (a) shows the initial

result (before the refinement starts) and its pixel blobs. Here blob S1 supports disparity 1

to 3. Blob S2 supports disparity 3 to 5, and blob S3 supports disparity 2 and 3. In Figure

(b), blob S2 and S3 are grouped together. The new blob S′
2 support disparity 2 to 5. The

right part of Figure (c) shows the new dense features H ′
1 and H ′

2 generated based on the

new grouping S′. The middle part of (c) shows the labeling process of the refinement. The

left part of (c) is the result after refinement. The new result has two pixel blobs. The blue

pixels support disparity 1 to 3, and the green pixels supports disparity 2 to 5.

Here Dperimeter is defined as:

Dperimeter(Si, Sj) = 1 − max{Lij

Li
,
Lij

Lj
},

where Li is the perimeter of blob Si, Lj is the perimeter of blob Sj , and Lij is length

of the boundary between Si and Sj . If blob Si and Sj are adjacent to each other, and

they have long common boundary between them, then Dperimeter(Si, Sj) is small, and

Si and Sj are more likely to be clustered together.
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Ddisparity is defined as:

Ddisparity(Si, Sj) = 1 − max{|Di

⋂

Dj |
|Di|

,
|Di

⋂

Dj |
|Dj|

},

whereDi andDj are the disparity range supported by Si and Sj respectively. Ddisparity

measures the similarity of the disparity ranges supported by Si and Sj . If blob Di

and Dj have large intersection, then Ddisparity(Si, Sj) is small, and Si and Sj are more

likely to be clustered together. We also use linkage cluster algorithm with Ward’s

method to cluster the pixel blobs in S into K ′ clusters, where K ′ is smaller than the

original visual cue group number K.

Let S ′
j = Sj1 ∪ Sj2 ∪ . . . ∪ Sjr be a cluster of the pixel blobs in S. Then the disparity

range associated with S ′
j is D

′
j =

⋃

1≤i≤r Dji, where Dji is the disparity range associ-

ated with pixel blob Sji. Figure 5.10(b) shows an example of the new blob clusters.

In Figure 5.10(b), blob S2 = {b, c, f} and S3 = {h, i} are grouped together, and form

the new group S ′
2 == {b, c, f, h, i}. The disparity range D′

2 of S ′
2 is the union of

D2 = {3, 4, 5} and D3 = {2, 3}, that is D′
2 = {2, 3, 4, 5}.

The set of positive visual cues C ′
j associated with S ′

j consists of positive cues which

are located inside S ′
j, and whose disparity is in D′

j . That is C
′
j = {c(x, y, d, 1)|(x, y) ∈

S ′
j , d ∈ D′

j}. In the simple example in Figure 5.10(b), any positive visual cue located

on pixel b, c, f, h and i is in C ′
2, which is the set of the positive visual cue for S ′

2.

The set of negative visual cues N ′
j for S ′

j is defined as N ′
j =

⋂

1≤i≤r NDji
. N ′

j is the

intersection of negative cues whose disparity is in D′
j.

Then for each C ′
j and N ′

j , we apply the binary labeling algorithm developed in Sec-

tion 5.4.3. This results in blob like dense visual features H ′
1, H

′
2, . . . , H

′
K ′ which

support disparity ranges D′
1, D

′
2, . . . , D

′
K ′ respectively, see Figure 5.10(c) for exam-

ple. Now we have a set of dense visual features H ′
1, H

′
2, . . . , H

′
K ′, their disparity

ranges D′
1, D

′
2, . . . , D

′
K ′, and the clusters of sparse visual cues C ′

1, C
′
2, . . . , C

′
K ′ and

N ′
1, N

′
2, . . . , N

′
K ′. Then for pixels in H ′

1 ∪H ′
2 ∪ . . . ∪H ′

K ′, we apply the multi-labeling
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algorithm developed in Section 5.4.4 based on the new clusters. Figure 5.10(c) shows

the labeling process for the simplified example in Figure 5.10(a).

The energy of the semi-dense visual correspondence is not guaranteed to decrease as

K goes down. However, with our observation (see Figure 5.21), when the energy goes

down, it is highly possible that the error rate of the semi-dense correspondence also

goes down. Therefore, we keep tracking the solution with the best energy.

We start with a large number of clusters. Then we repeat the clustering and the

labeling step. And in each iteration, we decrease the cluster number by one. The

algorithm stops when the cluster number reaches a threshold, which is set by the

user. The semi-dense visual correspondence with the smallest energy is picked as the

final result. The pseudo code for our algorithm is in Algorithm 2:

5.5 Experimental Results

In this section, we present the experimental results for our semi-dense visual corre-

spondence approach. In Section 5.5.1, we describe the set of images used for testing.

In Section 5.5.2, we illustrate the sparse visual cues detected by our binary classifi-

er. In Section 5.5.3, we present the initial semi-dense visual correspondence results,

together with the discussion on their error rates. In Section 5.5.4, we show how the

initial results can be refined by the iterative approach. In Section 5.5.5, we give a

qualitative comparison of our results and the results of [91].

5.5.1 The Testing Set

As stated in Section 5.4.1, our training set for detecting sparse visual cues consists of

stereo pairs from modestly textured images to highly textured images. Therefore, our
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Algorithm 2 The iterative semi-dense visual correspondence algorithm. The final
group number K and the starting group number Ks are set by the user.

• Given a stereo image pair, apply the classifier h(x) to detect the sparse positive
cues C and negative cues N .
• Cluster C and N into Ks groups C1, C2, . . . , CKs

and N1, N2, . . . , NKs
.

• Perform binary labeling for each C1, C2, . . . , CKs
separately, which generates dense

visual features H1, H2, . . . , HKs
.

• Apply multi-labeling for pixels in H =
⋃

1≤i≤Ks
Hi. The result consists blobs

of pixels S = {S1, S2, . . . , Sm} which support for disparity ranges D1, D2, . . . , Dm

respectively.
• Set the best solution Sbest = S.
• Set the best energy Ebest = E(S), where E(S) is the energy of the current result
S.
for k = Ks − 1, Ks − 2, . . . , K do

1. Cluster pixel blob set S = {S1, S2, . . . , Sm} into k clusters S ′
1, S

′
2, . . . , S

′
k.

2. Cluster new sparse feature groups C ′
1, C

′
2, . . . , C

′
k and N ′

1, N
′
2, . . . , N

′
k according

to S ′
1, S

′
2, . . . , S

′
k.

3. Compute new dense visual features H ′
1, H

′
2, . . . , H

′
k by using binary labeling

according to C ′
1, C

′
2, . . . , C

′
k and N ′

1, N
′
2, . . . , N

′
k.

4. Apply multi-labeling on pixels in H ′
1∪H ′

2∪ . . .∪H ′
k, based on H ′

1, H
′
2, . . . , H

′
k,

which results in new pixel blob set S = {S1, S2, . . . , Sm′}.
if E(s) < Ebest then

Ebest = E(S).
Sbest = S.

end if

end for

• The final semi-dense visual correspondence is Sbest.

testing set also contains stereo images with different degree of texture, see Figure 5.11.

Here the “Tsukuba” stereo pair is highly textured, and it is widely used by many

stereo approaches [76, 12, 91, 90] for evaluation purpose. The “Cones” pair contains

some regions with little texture, which makes it harder to compute its disparity

than the “Tsukuba” pair. The “Pots” and “Bowling” pairs contain large textureless

surfaces, which are very difficult to establish their visual correspondence. All these

image pairs and their disparity maps are from the Middlebury stereo data sets [76,

78, 77, 40].
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(a) “Tsukuba” (b) “Tsukuba” disparity

(c) “Cones” (d) “Cones” disparity

(e) “Pots” (f) “Pots” disparity

(g) “Bowling” (h) “Bowling” disparity

Figure 5.11: The testing set: Figure (a), (c), (e), and (g) are the right images of the

testing stereo pair. We want our testing set to cover images from highly textured images

to modestly textured images. Figure (b), (d), (f), and (h) are the disparity maps of Figure

(a), (c), (e), and (g).
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(a) d = 10 (b) d = 12

(c) d = 16 (d) d = 21

Figure 5.12: The sparse visual cues for Tsukuba pair at disparity 10, 12, 16 and 21. The

green pixels do not support the associated disparity d, and the true disparities for these

pixels are not d either. They are classified correctly. The red pixels support the associated

disparity d, and their true disparities are also d. They are also classified correctly. The

purple pixels are classified as the positive visual cues which support disparity d, but their

true disparities are not d. The blue pixels should be classified as the positive visual cue

since their true disparities are d. But our binary classifier misclassifies them as the negative

visual cues.

5.5.2 Sparse Visual Cues

In Section 5.4.1, we developed a binary classifier which detects sparse visual cues

that either support or reject a certain disparity in the textured regions. Our whole

method is based on the accuracy of this binary classifier. Therefore, in this section, we

present the results of detecting the sparse visual cues, and we also give an quantitative

analysis about its accuracy.

Figure 5.12 shows the sparse visual cues detected at disparity 10, 12, 16, and 21 for
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(a) d = 21 (b) d = 26 (c) d = 33

Figure 5.13: The sparse visual cues for the Cones pair at disparity 21, 26, and 33.

the Tsukuba stereo pair. The green pixels do not support the associated disparity d,

and the true disparities for these pixels are not d either. These are the true negative

pixels which are classified correctly. The red pixels support the associated disparity

d, and their true disparities are also d. These are the true positive pixels. The purple

pixels are the false positive pixels which are misclassified. They are classified as the

positive visual cues which support disparity d, but their true disparities are not d. The

blue pixels are the false negative visual cues. They should be classified as the positive

visual cue since their true disparities are d. But our binary classifier misclassifies

them as the negative visual cues. Notice for disparity 21, our result shows larger area

of purple pixels, which are the false positive examples. But the true disparities for

these purple pixels are either 20 or 22. Therefore, assigning these pixels to disparity

21 is not far from the ground truth.

Figure 5.13 is the classification result at disparity 21, 26 and 33 for the Cones pair.

Figure 5.14 is the classification result at disparity 26 and 62 for the Bowling pair.

Figure 5.15 shows the sparse visual cues detected at disparity 55 and 56 for the Pots

pair. Notice that we only apply the binary classifier on pixels whose intensity change

e(p) is higher than a threshold t = 10. For images with large textureless regions, such

as the Pots pair and the Bowling pair, the visual cues can be too sparse to be used

in the next steps. Therefore, for images with little texture, we set the threshold for
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(a) d = 26 (b) d = 62

Figure 5.14: The sparse visual cues for the Bowling pair at disparity 26 and 62. Our

classifier is set to be biased towards the negative cues. Therefore, in Figure (b), we have

large false negative rates, shown with blue pixels.

(a) d = 55 (b) d = 56

Figure 5.15: The sparse visual cues for the Pots pair at disparity 55 and 56.

the intensity change to be t = 5 to get denser results.

Table 5.1 shows the error rate of the binary classifier. Here the total error rate Error

is defined as Error = |Pm|
|P |

, where Pm is the set of misclassified visual cues, and P

is the set of all sparse visual cues. The false positive rate Errorp is computed as

Errorp = |Pmp|
|Pn|

. Here Pmp is the set of pixels labeled as positive cues which are

actually negative cues, and Pn is the set of true negative cues.

The false negative rate Errorn is defined similarly as Ep. That is Errorn = |Pmn|
|Pp|

,
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Image Error Errorp Errorn
Tsukuba 14.84% 14.14% 10.82%
Cones 10.34% 9.84% 48.83%
Bowling 5.40% 4.65% 58.81%
Pots 4.97% 4.13% 48.50%

Table 5.1: The error rates of detecting sparse visual cues. We have large false negative

rates since we set our binary classifier to bias towards the negative visual cues.

where Pmn is the set of false negative cues, and Pp is the true positive cues. The

false negative error rate for our classifier is high, since we set our binary classifier

to be biased towards the negative cues. Having a high false negative error is not as

harmful for our algorithm as having a high false positive error. This is because we

can still segment out the pixels that should belong some disparity but were missed at

the step when we get dense visual cues. If the false positive rate is high, we have a

high chance of producing dense visual features that are actually wrong, for example,

do not match at the associated range of disparities. Therefore we bias our classifier

(by changing the learnt thresholds) towards a lower false positive error and still have

positive cue groups which are dense enough to be used in the next steps, see Figure

5.16.

5.5.3 The Initial Semi-dense Visual Correspondence

In this work, we aim at semi-dense visual correspondences for which we are more

confident in their associated ranges of disparities. Therefore, after detecting the

sparse visual cues, we need to group these visual cues into larger groups according to

their locations and disparities. Figure 5.16(a) and (b) show two visual cue groups for

the Tsukuba stereo pair. The green pixels belong to the negative cue cluster. Pixels

with colours other than green are the positive visual cues. Positive visual cues which

belong to the same objects are mostly clustered together. The false positive cues are

also grouped together, which makes them denser and harder to eliminate. However,
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(a) Sparse visual cue group at d = 8 to
11

(b) Sparse visual cue group at d = 19 to
22

(c) Dense visual features at d = 8 to 11 (d) Dense visual features at d = 19 to
22

Figure 5.16: The sparse visual cues groups and dense visual features for the Tsukuba pair.

Figure (a) and (b) are the visual cue groups for the Tsukuba pair at disparity ranges 8 to

11 and 19 to 22 respectively. These are exactly the disparity ranges for the background and

the sculpture. Figure (c) and (d) are the dense visual features generated with the binary

labeling algorithm in Section 5.4.3. The white pixels belong to the dense visual features

that support the associated disparity ranges.

our visual cue groups also include negative visual features, which strongly disagree

with these false positive visual cues. Therefore, these false positive cues will not affect

the final result too much, see Figure 5.16(c) and (d).

Figure 5.17(a) shows a visual cue group for the Bowling pair. Notice the positive

visual cues on the big bowling ball in the middle are grouped together. Hence they

are dense enough to be propagated into other part of the image in the next step,

which generates a dense visual feature, see Figure 5.17(b). The sparse positive visual

cues detected on the boundary and inside the big bowling ball are propagated into
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(a) Sparse visual cue group at d = 49 to
59

(b) Dense visual features at d = 49 to
59

Figure 5.17: The sparse visual cues group and dense visual feature for the Bowling pair.

Figure (a) is the visual cue group for the Bowling pair at disparity range 49 to 59. This

is the disparity range of the big bowling ball in the middle. Figure (b) is the dense visual

feature generated based on the visual cue group in Figure (a).

the other parts of the bowling ball. Thus the disparity range of the bowling ball is

recovered.

Figure 5.18 shows the initial semi-dense visual correspondence results for the testing

images in Figure 5.11. To evaluate the accuracy of our semi-dense visual correspon-

dence, we formulate the following equation:

Error(S) =
|{p|p ∈ PS, T (p) 6∈ DS(p)}|

|{p|p ∈ PS}|
,

where S is the semi-dense visual correspondence, PS is the set of pixels which are

covered by S, DS(p) is the disparity range assigned to pixel p by S, and T (p) is the

true disparity of pixel p. Then the error rate of S is the ratio of the misclassified pixel

number over the total number of pixels which are covered by the semi-dense visual

correspondence. We also measure the coverage of S by Coverage(S) = |PS |
|P| , where P

is the set of all pixels in the right image. Table 5.2 shows the error rates and coverage

of the initial semi-dense visual correspondence for the testing images in Figure 5.11.

Figure 5.19 shows the error rates of the initial results under different group number
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(a) Tsukuba, K = 12 (b) Cones, K = 15

(c) Bowling, K = 17 (d) Pots, K = 12

Figure 5.18: The initial semi-dense visual correspondence for the images in Figure 5.11.

Pixels with the same colour support the same range of disparities. Black pixels are not

assigned any disparity range, since there is no sparse visual cue detected in these regions or

on the boundaries of these regions.

K. Generally, for the Bowling pair, Pots pair and Cones pair, the smaller is K, the

lower is the error rate and the energy. However, for the Tsukuba pair, it is reversed:

the greater is K, the lower is the error rate, but the higher is the energy. Therefore,

we can not conclude on any relationship between the error rate, the energy and the

group number.



147

Image K Error(S) Coverage(S)
Tsukuba 12 2.56% 98.22%
Cones 15 4.06% 95.24%
Bowling 17 6.48% 100%
Pots 12 6.83% 97.65%

Table 5.2: The error rates and coverage of the initial semi-dense visual correspondence.

(a) Energy by K (b) Error by K

Figure 5.19: The error rate and energy of the initial semi-dense visual correspondence. The

horizontal axe is the group number K. The vertical axe in Figure (a) is the energy. The

vertical axe in Figure (b) is the error rate Error(s). Generally, for the Bowling pair, Pots

pair and Cones pair, the smaller is K, the lower is the error rate and the energy. However,

for the Tsukuba pair, it is reversed: the greater is K, the lower is the error rate, but the

higher is the energy.

5.5.4 Refined Semi-dense Visual Correspondence

In Section 5.4.5, we developed an iterative refinement method to improve our initial

semi-dense visual correspondence. It first groups the pixel blobs which support similar

disparity ranges and are located next to each other together into K ′ groups, where

K ′ is smaller than the original group number. The refinement process requires the

user to input a large initial group number and a small final group number. In each

iteration, pixel blobs of the current solution will be grouped to form new clusters. And

the group number is decreased by one. New visual correspondence is then computed

based on the new visual cue groups. The refinement process stops when the group
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(a) Tsukuba, K = 7 (b) Cones, K = 16

(c) Bowling, K = 15 (d) Pots, K = 16

Figure 5.20: The refined semi-dense visual correspondence for the images in Figure 5.11.

Pixels with the same colour support the same range of disparities. Black pixels are not

assigned any disparity range.

number reaches the final group number. The visual correspondence with the lowest

energy is selected as the final result. By using this refinement process, we avoid

problem of picking the group number K by hand.

Figure 5.20 shows the refined semi-dense visual correspondence for images in Fig-

ure 5.11. Compared with the initial results shown in Figure 5.18, the boundaries

of the pixel blobs in Figure 5.20 are much clearer, especially for images with large

textureless regions, such as the Bowling pair and the Pots pair. Table 5.3 shows the

error rates and the coverage of the refined results in Figure 5.20. The error rates are

lower than that of the initial results, shown in Table 5.2. The coverage of the refined
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Image K Error(S) Coverage(S)
Tsukuba 7 1.20% 98.45%
Cones 16 0.70% 90.24%
Bowling 15 1.26% 93.09%
Pots 16 5.82% 88.62%

Table 5.3: The error rates and coverage of the refined semi-dense visual correspondence.

results are lower than the initial result, since the refinement process eliminates lots of

the false positive visual cues. Then the sparse visual cues found on the boundaries or

in the interior of the textureless regions are much less than that of the initial results.

Figure 5.21 shows the relationship between the group number K, the energy E and

the error rates Error. For the refined results, we observed that when the energy

decreases, the error rate of the semi-dense visual correspondence also mostly decreas-

es. Intuitively, this is because in the refinement process, we only group together the

positive cues within the pixel blobs. The false positive cues which are usually located

out of the pixel blobs are eliminated by the process, which results in lower energy

and higher accuracy.

5.5.5 Qualitative Comparison

In this section, we give a qualitative comparison between our results and the results of

Veksler [91]. Our algorithm recovers the disparity ranges of large textureless regions

that strand several disparities, see Figure 5.20. Unlike the previous methods [90, 91],

which only allow each dense visual feature to have one disparity, our dense visual

features have disparity ranges that vary smoothly. Figure 5.22 shows the results for

Tsukuba, Cones, Bowling, and Pots pairs generated by the method in [91]. The error

rates for these results are 5.28%, 4.68%, 2.71% and 1.32% respectively. And their

coverage is 79%, 69%, 16% and 10%. When there are large textureless regions in the

image, their results can be very sparse, compared with our results in Figure 5.20.
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(a) Energy by K (b) Error by K

Figure 5.21: The error rate and the energy of the refined semi-dense visual correspondence

with different group number K. The horizontal axe is the group number K. The vertical

axe in (a) is the energy for the multi-labeling framework developed in Section 5.4.4. The

vertical axe in (b) is the error rate Error(S). When refining the results, as K decreases,

the energy and the error rates do not always decrease. However, from these examples, we

can see that when the energy is small, it is highly possible the error rate is small.

Figure 5.23 shows another example which is extremely textureless in both the back-

ground regions and the object regions, see Figure 5.23(a). The method in [91] de-

tects the disparities at the textured objects very well, however, the disparities of the

background and the table are missing in their result, as shown in Figure 5.23(c). Fig-

ure 5.23(b) shows our result. Our algorithm made gross error in the blue blobs, where

pixels that should be assigned the disparity range of the background are assigned the

disparities of the bleach bottle. However, we recovered the disparity ranges of the

background and parts of the table.

5.6 Summary

In this chapter, we developed a method that recovers the disparity ranges of the large

textureless regions for stereo images. Compared with the previous methods [90, 91],

which only allow a dense visual feature to have one disparity, our method handles the

textureless regions that strand many disparities with confidence.
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(a) Tsukuba, Coverage = 79% (b) Cones, Coverage = 69%

(c) Bowling, Coverage = 26% (d) Pots, Coverage = 10%

Figure 5.22: The results of Veksler [91]: Figure (a) to (d) show the results for Tsukuba,

Cones, Bowling, and Pots. Their coverage are 79%, 69%,26%, and 10% respectively. The

method in [91] works well in textured images, such as the Tsukuba pair and the Cones pair.

However, for images with large textured regions, such as the Pots and the Bowling pair, the

coverage of this method is low, compared with our results in Figure 5.20.

Our approach is based on a binary classifier which distinguishes the pixels that sup-

port or reject a particular disparity in the textured regions. By developing such a

classifier, we avoided the problem of picking a good threshold value for the boundary

condition feature as mentioned in Section 5.4.1. In the training stage of the binary

classifier, we also discovered many useful features for stereo other than the basic in-

tensity difference and boundary condition. Grouping together these sparse visual cues

detected by the binary classifier generates larger visual cue groups that have smoothly
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(a) Input image (b) Our result (c) Result of Veksler [91]

Figure 5.23: Comparison between our results and the results of Veksler [91]: Figure (a)

shows the input image which is highly textureless. Figure (b) shows our result. The

background is assigned the disparity range from 4 to 5. The big bleach bottle on the right

(the green blob) is assigned disparity range from 7 to 8. The wine bottle (pink blob) on the

left is assigned disparity range from 6 to 7. The bleach bottle in the middle (the blue blob)

is assigned disparity range from 5 to 6. Our algorithm made gross error in the blue blobs,

where pixels that should be assigned the disparity range of the background are assigned

the disparities of the bleach bottle. Figure (c) shows the result generated by the method

in Veksler [91]. The disparities of the two bleach bottles and the wine bottle are recovered.

However, the disparities of the table and the background are missing in Figure (c), as shown

in black colour.

varying disparities. This enables us to propagate these visual cues into textureless

regions that strand several disparities. The blob-like, dense visual features generated

in this step recover the disparity range of the textureless regions with confidence. A

multi-labeling framework is formulated to resolve the ambiguities between the dense

features. The result of this step is a semi-dense visual correspondence which assigns

either one or zero disparity range to every pixel in the image.

The problem with these initial results is that the false positive cues detected by the

binary classifier in the first step of our approach are also grouped together in the

grouping stage, and this makes the false positive visual cues denser and harder to

eliminate. Therefore, we came up with an iterative refinement approach to improve

the initial results. During the refinement, false positive cues are mostly eliminated

from the sparse visual cue group. This results in higher accuracy in the final semi-

dense visual correspondence.
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Moreover, our iterative refinement approach provides us a useful method to select the

value of the group number parameter. By eliminating the false positive visual cues,

we established the relationship between the energy of the multi-labeling problem and

the error rate of the resulting semi-dense visual correspondence. By observing the

results, we can see that the lower is the energy, the higher tends to be the error rate.

Then by tracking the result with lowest energy, we avoid the problem of selecting a

good group number. Instead of choosing one group number, we can provide a range of

values for the group number, and our approach selects the group number with lowest

energy.

The main limitation of our approach is that it may fail if the textureless region is

too large and strands too many disparities, where the disparities in the center of this

region are far way from the disparities on the boundary. That is because no visual

cues supporting the disparities in the center of this region can be detected, and the

visual cues on the boundary of this region support disparities which are quite far way

from that of the center. Therefore, even if a disparity range is assigned to the center

pixels of this huge textureless region, this disparity range may not contain the true

disparities of the center pixels.
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Chapter 6

Conclusion and Future Work

Traditionally, computer vision and graphics were two distinct fields which focus on

opposite topics. Computer vision infers information from images to “understand” a

scene, and computer graphics manipulates the content of the images to synthesize the

real world. With the growing demand on the new techniques such as 3D television and

virtual reality, computer graphics and vision now need to address new issues. These

issues include displaying the results in high quality and modeling user interaction

with the environment naturally. To address these new issues, graphics and vision

are increasingly borrowing ideas from each other. Therefore, we need to investigate

the computer vision and graphics problems in a new way which integrates these two

fields.

In this thesis, we started with a graphics problem: rendering static and animated

mosaics from real images and video. In Chapter 3, we first restated our approach for

rendering static mosaics from real images, which was the foundation of our animated

mosaic approach. We formulated the problem of classic mosaic generation in a global

optimization framework, and designed an energy function encoding the properties that

lead to visually pleasing mosaics. Our global optimization framework offered a more

principled approach than the previous work, which was mostly based on heuristics.
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The desired mosaic properties were directly modeled into an energy function, instead

of devising a sequence of heuristics steps that may possibly lead to the desired result.

Another advantage was that the value of the energy function itself could be an effective

measure to assess the quality of a mosaic. Compared with the preliminary version of

our static mosaic rendering method in [64], we formulated our energy function in a

new way so that all the constraints for a good classic mosaic (edge alignment, edge

avoidance, tight tile packing) were encoded in one energy function. The restating

of the mosaic rendering process made it easier to comprehend the problem, since

the relationship between all the mosaic constraints was revealed as a whole energy

function.

Next, we extended our approach to rendering animations with mosaic effects in Chap-

ter 4. The animations generated by our approach are composed of hundreds of colour-

ful square tiles, which are arranged to present the shape and colour of the objects in

the video, moving in a timely coherent manner. Each frame of the resulting anima-

tion is a classic mosaic image composed of a large number of square tiles, which are

aligned to the strong edges in the input scene. Between the consecutive frames, the

tiles are moved according to the motion of their center pixels. Therefore, the whole

animation has a consistent motion effect. Our method estimates the motion of the

pixels in the video, renders the frames with mosaic effect based on both the colour

and motion information from the input video. Our mosaic animation style is uniquely

expressive, part of its appeal steams from the fact that mosaics is an ancient art form.

The algorithm relies extensively on our novel motion segmentation algorithm. The

state of the art in motion segmentation is such that user interaction is still required

to get convincing results. We produced temporally coherent and visually appealing

animations.

The biggest limitation for our animated mosaic approach is that the motion models

are restricted to rigid motion. To improve the quality of our animated mosaics,

we need to detect the motion between the frames of a given video sequence more
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accurately. To simulate the deformation of the objects in the input video, we need to

extend our motion models to be more general. Although our original goal was to find

a more robust way to detect motion in a video, stereo problems have a similar setting

with motion but are easier to start with. Therefore, in Chapter 5, we proposed an

approach which found semi-dense visual correspondences for which we could estimate

the range of disparities with a high confidence.

The idea behind our approach is that the visual cues that are reliable for establishing

correspondence are usually located at pixels with high texture. If there is a region in

the image that is surrounded by texture cues, its range of disparities can be estimated

more reliably. Even if the region is textureless inside, we can propagate the visual

cues from the texture cues at the boundaries.

We started with selecting useful features that had discriminant power for stereo. This

resulted in a binary classifier which distinguishes the pixels that support or reject a

particular disparity in the textured regions. Then by grouping together these sparse

visual cues detected by the binary classifier, we generated larger groups of visual

cues that had smoothly varying disparities. We then propagated the visual cues in

these groups into textureless regions that strand several disparities, by formulating

this problem into a binary labeling framework. The blob-like, dense visual features

generated in this step recovered the disparity range of the textureless regions with

confidence. The ambiguities of between the dense features were then resolved by a

multi-labeling framework. The semi-dense visual correspondence generated in this

step assigned either one or zero disparity range to every pixel in the image.

Next, we came up with an iterative refinement approach to improve the initial results.

We aimed at eliminating the false positive visual cues during the refinement process,

which resulted in clearer boundaries between the pixel blobs in the final semi-dense

visual correspondence. The error rates of the refined results were also reduced com-

pared with the initial results. More importantly, by removing the false positive visual

cues, we also established a correlation between the energy of the multi-labeling prob-
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lem and the error rate of the resulting semi-dense visual correspondence. Thus we

avoided the problem of choosing a good value for the group number. Unlike the pre-

vious methods [90, 91], which only allow a dense visual feature to have one disparity,

our method recovered the disparity range of the textureless regions that strand many

disparities with confidence.

Our approach may fail if the textureless region is too large and strands too many

disparities, where the disparities for the pixels in the center of this region are far

way from the disparities of the boundary pixels. For such a huge textureless region,

no visual cues supporting the disparities of the center pixels can be detected inside

the region, and the visual cues on the boundary of this region support disparities

which are quite far way from that of the center. Therefore, even a disparity range is

assigned to the center pixels of this huge textureless region, this disparity range may

not contain the true disparities of the center pixels. This is the main limitation of

our approach.

In the future, we plan to extend our semi-dense visual correspondence approach to

motion estimation. In this case, we need to overcome the difficulties brought by

motion blur, in addition to all the difficulties of stereo. We also plan to apply our

visual correspondence approach to improve the quality of our mosaic animations.

Thus we can extend our motion model to more flexible models other than the rigid

motions. Occlusion reasoning is another issue we need to address in the future.
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