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Abstract

Fetal Growth Restriction (FGR) is caused by impaired maternal-fetal exchange of oxygen
and nutrients causing fetal hypoxia and starvation. A functional failure of the placenta is
the underlying cause, however the pathophysiology remains unknown. The fetus adapts
by limiting growth, reducing demand for metabolic substrates. Monitoring the fetal size
is the primary clinical method of FGR detection, though it does not distinguish a
constitutionally small fetus from a pathological. Proteomic profiling of fetal and
maternal plasma was therefore undertaken for discovery of biomarkers and
pathological mechanisms. As a model of hepatic secreted fetal plasma proteins, HepG2

cell secretion changes in hypoxia were also investigated.

Profiling mother’s plasma revealed altered expression of vascular regulatory proteins
VCAM-1 and haptoglobin. VCAM-1 positively correlated to placental size. Profiling of
HepG2 secreted proteins in hypoxia revealed increased angiogenic protein PAI-1, and
the growth inhibitor IGFBP-1. Fetal plasma PAI-1 levels were found to be oxygen
dependent, and the levels determinant of plasma’s in vitro angiogenic potency. For
IGFBP-1, increased phosphorylation was found at four discrete sites, leading to

increased affinity for IGF-I, and mitigation of IGF-I stimulated cell proliferation in vitro.

Increased VCAM-1 relative to placental size in FGR has potential as a marker of placental
health. Fetal plasma PAI-1 levels mediating angiogenesis is a newly discovered
mechanism in FGR. PAI-1’s hypoxia-dependent hepatic induction and consequent

angiogenic effect may have significance to placental maldevelopment. Discovery of
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increased IGFBP-1 phosphorylation in hypoxia, and its inhibition of IGF-l mediated

proliferation, may be an adaptive mechanism limiting fetal growth in FGR.
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CHAPTER 1

Introduction



1.1. FETAL GROWTH RESTRICTION

1.1.1. Definition and outcome

Fetal growth restriction (FGR) is defined by the estimated fetal weight during
gestation or birth weight being below the tenth percentile (1, 2). It is a condition that
affects 5-7% of all pregnancies in Canada and it is @ major contributor to both
perinatal morbidity and mortality (3). Fetal growth restriction has been associated
with significantly increased risk of perinatal death (3). Many FGR babies recover and
undergo “catch-up growth” in the post-natal period, but the effects of this have
health consequences in adulthood, with higher rates of disease in later life (4). They
have increased risk for neurological and metabolic problems, type Il diabetes, and
especially, cardiovascular diseases such as hypertension, coronary heart disease and
stroke (4, 5, 6). This process is termed the developmental origins of health and

disease (DOHaD).

FGR, or intrauterine growth restriction (IUGR) as it is used interchangeably, does not
have a single pathology; rather, it is a term used to describe a multitude of etiologies
that manifest as poor fetal growth. It is also distinct from small for gestational age
(SGA), which is a more inclusive term used to describe babies born small with birth
weights below the tenth percentile, but may include both healthy but constitutionally
small, as well as those who result from pathological pregnancies. Specifically, FGR
describes fetuses whose growth is limited by pathologies during pregnancy of either

intrinsic fetal (genetic or infective) or extrinsic problems in the gestational
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FIGURE 1.1. A progressive deterioration in fetal variables indicating declining
metabolic status and possible death. Using Doppler, a measure of blood flow,
abnormalities in blood flow. With increasing umbilical artery Doppler resistance,
vascular adaptations lead to brain sparing at the expense of other organs. With
more severe resistance, there is a decline in the biophysical profile (BPS), as these
vascular adaptations fail. Declining O, and pH become take hold. The Decline of the
biophysical variables are related to the acid-base status, and can ultimately result in
fetal death

UA, umbilical artery; UV, umbilical vein; EDV, end diastolic velocity; FH, fetal heart
rate; BPS, biophysical profile score.

Reproduced from Seminars in Perinatology 28(1). Baschat, A.A., and Hecher, K., Fetal
growth restriction due to placental disease. pgs 67-80. Copyright 2004, with
permission from Elsevier.



environment. Generally then, FGR babies are restricted to those whose growth do

not achieve their normal potential in utero due to pathological factors (1).

1.1.2. Etiology

The etiology of FGR is highly diverse. Broadly, it can be broken down into causes
intrinsic to the fetus or extrinsic, which are either maternal or placental. The latter
causes are more common, and perhaps, more amenable to intervention. Fetal factors
account for 10-20% of cases and are either genetic, such as chromosomal anomalies,
mutations of growth factor or receptor genes, or congenital infections, most
commonly viral (7). Maternal factors account for another 20-30% of cases, of which
hypertensive disorders such as preeclampsia is most common (7). Other maternal
factors include diabetes, poor nutrition, smoking, and drug and alcohol abuse (2, 8).
The remainder and most common etiology is of placental origin of which the most
common cause is uteroplacental or placental insufficiency. FGR caused by placental
factors is the etiology of which this thesis will focus. In a broad sense, the placenta is
unable to provide sufficient oxygen and nutrients to the fetus to achieve its growth
potential. This arises when the fetal-placental vasculature does not adequately
develop to facilitate maternal/fetal exchange. This failure of the placenta is therefore
termed placental insufficiency, and is the most common etiology in FGR (9, 10, 11).
The restricted exchange leads to conditions of acidosis and hypoxia, spurring fetal
adaptation to the environment (Figure 1.1). Vascular and cardiac adaptations to the

reduced blood flow result in brain sparing mechanisms, whereby blood is shunted



towards the brain at the expense of other organs, particularly the lungs and
gastrointestinal organs, including liver and kidney. The growth of the fetus is limited
to reduce the demand for metabolic substrates. If adaptive mechanisms become
inadequate, the low oxygen conditions can no longer be accommodated, resulting in

fetal death.

The fetal-placental vasculature is compromised in placental insufficiency, causing
poor maternal/fetal exchange. Morphological evidence shows the villous tree of the
chorionic villi in the fetal-placental vasculature to be poorly developed. Specifically
there is a reduction in the volume density, the length ratio, and the degree of
branching (12). Generally, this lower degree of branching results in longer villi,
increasing vascular resistance. This increase in resistance is detected clinically by
umbilical cord Doppler blood flow measurement. An increase in resistance leads to a
decrease or even reversal of blood flow, and it is diagnostic of placental insufficiency

(13).

As might be expected, it has long been theorized that abnormal angiogenic
regulation in the microvilli of these pregnancies causes the vascular malformation,
leading to placental insufficiency and FGR. The changing levels of VEGF, PIGF, and
FGF-2 are thought to be important in the normal development of the placental
vasculature. Abnormally low levels of VEGF have been observed, while levels of PIGF
have been seen to increase. Despite this, the precise molecular mechanisms by which

placental insufficiency arises are not well characterized (14).



1.1.3. Diagnosis and biomarkers

Current diagnosis of FGR relies on clinical assessment of the progression of biometric
criteria. A stalled progression of the symphisis-fundal height late in gestation, which
is observable from a routine exam, is often the first indication of FGR. A more precise
estimation of fetal size is obtained by ultrasound (US) - based fetal biometry. The
estimated size and weight is compared against standardized charts to estimate the
percentile fetal weight given its GA (15, 16). A fetus below or close to the 10"
percentile is suspected of FGR. To determine the presence of placental insufficiency,
umbilical artery Doppler (17) is used, and the waveforms are analyzed to determine
fetal blood flow to and from the placenta. Higher resistance of the placental
vasculature, measured by umbilical Doppler resistance index (Rl), indicates placental
insufficiency. At birth, the birthweight and GA are used to calculate the percentile,

below the 10™ being diagnosed as SGA.

Although the diagnostic methods can determine the presence of FGR, there are
limitations. Firstly, the fetal biometric measurements are entirely dependent on the
growth of the fetus being perturbed to an advanced degree before detection is
feasible. Presuming that an effective intervention is available, earlier diagnosis would
clearly be critical to the outcome of the pregnancy and wellbeing of the fetus.
Secondly, the criterion that the fetus (or newborn) is below the tenth percentile for
GA is inherently over-inclusive. The definition does not differentiate a constitutionally
small healthy baby from one with pathological growth restriction. Finally, the

observation of a perturbation in fetal growth is dependent on close monitoring of the



pregnancy, including timely ultrasound analysis, and particularly use of specialized

Doppler, which is not routinely monitored in late gestation.

For these reasons, there is a need for an easily administered blood test in the
mother, so that FGR and placental health can be routinely screened for as part of
normal pregnancy monitoring. If the basis of the test is rooted in the pathology, it will
alert the clinicians to etiological information, as well as potentially have prognostic
value. A biomarker present in the mother’s blood plasma is first needed to form the
basis of such a screening test. Based on the significance of specific factors in the
growth and development of the fetus, several peptides have been proposed as likely
candidates (18). Pre-albumin remains an option for non-specific detection of fetal
defects and pregnancy complications (19). Plasma leptin reflects a generalized
response to hypoxic stimuli (20), while free beta-hCG and PAPP-A levels in serum
have been associated with general fetal abnormality (21). Using invasive
amniocentesis, the elevated levels of alpha-fetoprotein in amniotic fluid was used for
detection of FGR by some physicians (22). Biomarkers that prove more reliable and
specific in their diagnostic value therefore remain to be identified. Proteomic

approaches offer new opportunities for potential biomarker discovery in FGR (23).

1.2. THE PLACENTAL VASCULATURE

1.2.1. Vascular formation of the chorionic villi
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FIGURE 1.2. The maternal and fetal placental vasculature. The intervillous space is
perfused with maternal blood supplied by the maternal spiral arteries. The
chorionic villi bathe in the maternal blood to exchange waste products and
nutrients. Exchange takes place across the syncitiotrophoblast layer which
comprises the maternal-fetal blood burier. A failure in the proper formation of the
chorionic villi is responsible for the increased placental resistance in placental
insufficiency.

This is a reproduction from the 20th U.S. edition of Gray's Anatomy of the Human
Body. Published 1918, public domain.



Maternal-fetal exchange of nutrients and waste products takes place across the
placenta. Spiral arteries supply maternal blood to the intervillous space (Figure 1.2.).
The fetal chorionic villi contained within compose the exchange surface across the
trophoblast layers. The structure of these villi is critical to maximize the surface area,
and thereby maximize exchange. Poor vascular formation of these villi is the cause of

placental insufficiency and FGR.

The vasculature is formed by both angiogenesis and vasculogenesis. Angiogenesis is
defined as the creation of blood vessels from existing vessels, while vasculogenesis is
the creation of blood vessels from progenitor cells. These two processes are distinct.
They are separate from vascular remodeling in that it is the structural change of
existing vessels, so that they adopt different dimensions, or phenotypes.
Vasculogenesis is important in the early phases of development (<6 weeks) (Figure
1.3 a). FGF-2 regulates the recruitment of haemangiogenic stem cells and other
vascular progenitors in this stage. These cells differentiate and form haemangiogenic
strands, which stretch out and eventually form tube-like structures of vascular

endothelial cells with lumens, starting in week 3 (24).

Later in gestation, vasculogenesis is largely supplanted by angiogenic processes (25)
(Figure 1.3 b — d). From the existing vessels then, the bulk of placental vascular
development takes place in either sprouting or non-sprouting form. The balance of
the two types of angiogenesis determines the character of the resulting placental villi
(Figure 1.4). Normal villi have a mixture of sprouting and non-sprouting angiogenesis

that leads to a mixture of branched and elongated villi. Branching angiogenesis takes



a: weeks5-6
vasculogenesis

b: weeks 7 -9 c: weeks9-25
prevalence of branching angiogenesis
in pre-existing and newly developing villi

e: weeks 25 - 40

d: weeks 20 - 32
pre-existing villi:
capillary regression,
media formation,

newly developing villi:
switch to non-branching
angiogenesis

abnormal development normal development: abnormal development

(IUGR with ARED): prevalence of (IUGR with PED):
excessive non-branching non-branching angiogenesis excessive branching
angiogenesis angiogenesis

FIGURE 1.3. Patterns of villous development in relation to gestational phases of fetal
vascular development. ARED; absent or reversed end diastolic flow; PED, preserved
end diastolic flow

Reproduced from Placenta 25(2-3), Kaufmann P, Mayhew TM, Charnock-Jones DS.,
Aspects of human fetoplacental vasculogenesis and angiogenesis. Il. Changes during
normal pregnancy, pages 114-26 Copyright 2004, with permission from Elsevier.
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FIGURE 1.4. Different types of angiogenesis and the accompanying features of villous
vascularization and development. ARED denotes absent or reversed end-diastolic
flow in umbilical arteries whilst PED denotes preserved or persistent end-diastolic

flow in the same arteries.

Reproduced from Placenta 25(2-3), Charnock-Jones, D.S., Kaufmann, P., Mayhew,
T.M. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular
regulation, Pages 103-13, copyright 2004, with permission from Elsevier.
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place between weeks 7-25 (Figure 1.3 b and c). Beyond 25 weeks, non-branching
angiogenesis is predominant, leading to the formation of capillary loops (24) (Figure

1.3 e).

Normally, a balance of sprouting and non-sprouting angiogenesis produces the ideal
placental vascular structure. In FGR without placental resistance, a more dominant
sprouting angiogenesis manifests as a highly branched placental villi. In FGR with
placental insufficiency however, an absence of sprouting angiogenesis in favor of
either proliferative or intercalative elongation leads to long, non-branched terminal
villi (Figure 1.3 e, Figure 1.4). These two characteristics of the villi lead to increased
flow resistance seen by umbilical artery Doppler - the greater the vessel length and
the smaller the vessel, the higher the resistance to flow in accordance with the
Poiseuille equation (24). In the most severe cases, umbilical artery diastolic flow can
stop or even reverse (referred to as ARED — absent or reversed end diastolic flow).
The failure of branching angiogenesis then, and the predominance of vessel

elongation, is thought to be causal of placental insufficiency.

1.2.2. Molecular regulation of placental angiogenesis

The fundamental steps in normal placental vessel branching angiogenesis were
defined in a review by Charnock-Jones and others (25) - initially, there is
vasodilatation and endothelial activation. This leads to increased degradation of the

extra-cellular matrix by matrix metalloproteinases (MMPs) and an increase in
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membrane permeability. The endothelial cells then proliferate and migrate, to form

tube structures, and subsequently recruit pericytes, forming a mature vessel.

The angiogenic process is therefore regulated at several steps. As mentioned earlier,
angiogenic cytokines VEGF, PIGF, and FGF-2 are very important in regulating the
endothelial cells towards vascular growth and proliferation. VEGF, PIGF, and FGF-2
have a similar potency in inducing angiogenesis when overexpressed in rabbit cornea
(26). VEGF has been shown to induce highly branched type angiogenesis, and is in
higher concentration in the earlier stages of pregnancy, while PIGF increases later in
gestation (24). The relative levels of VEGF and PIGF are theorized to determine the
branched versus linear phenotype to a degree, however there are other unknown
regulatory factors (24). Their placental expression may be oxygen dependent, as
VEGF increases drastically in hypoxia, while PIGF decreases (24, 27). The regulation of
the matrix surrounding the endothelial cells is thought to be an important regulatory
mechanism that drives angiogenesis. The expression of extracellular matrix
remodeling proteins such as MMPs and their inhibitors degrade the matrix so that
new vessels can migrate and form in their place. Additionally, levels of protease
inhibitors, like plasminogen activator inhibitors 1 and 2, have significant potential for
angiogenic regulation in the placenta (25). Circulating levels of PAI-1 for example
have shown to be potent regulators of angiogenesis in tumors and other tissues (28,
29, 30). PAI-1 deficient mice have also recently been shown to have altered placental

vasculature (31).
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1.3. ADAPTATION TO HYPOXIA
1.3.1. Effect on the fetus and liver

With placental insufficiency, the exchange of metabolic substrates and waste
products is compromised. Therefore blood flowing from the placenta to the fetus in
the umbilical vein post-exchange is abnormally low in oxygen, amino acids, fatty
acids, and glucose. It is high in carbon dioxide and other waste products, and is
consequently also more acidic. The fetus must therefore adapt to these
environmental conditions to survive.

To accommodate oxygenated blood fed from the umbilical vein instead of the lungs,
the fetal circulation has significant differences from that of the adult. These unique
circulatory characteristics also function to maximize the utility of deficient oxygen
and nutrients by diverting blood to where it is most needed, and therefore plays a
large role in fetal adaptation. In the fetus, blood leaving the placenta through the
umbilical vein travels to the liver, and the hepatic portal vein, from where it perfuses
the fetus (Figure 1.5). Preceding this, however, a vessel unique to the fetus, the
ductus venosus, bypasses the normal circulation and circulates the newly oxygenated
blood directly to the inferior vena cava (Figure 1.5). From the inferior vena cava, this
highly oxygenated blood travels to the heart, where through another shunt, the
ductus arteriosus, blood passes from the pulmonary vein to the aortic arch (bypassing
the lungs). The effect of these alterations is that the fetal brain is perfused directly
with the newly oxygenated blood from the placenta. In conditions of hypoxia, it has

been shown in animal models that the ductus venosus dilate leading to increased
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FIGURE 1.5. Anatomic scheme of the umbilical venous return indicating the direct
perfusion of the liver with newly exchanged umbilical vein blood. Dilation of the
ductus venosus leads to increased shunting of blood to the inferior vena cava. Blood
flow is therefore directed to the heart at the expense of the liver’s blood supply.

Reproduced from Bellotti, Am. J. Physiol. Heart. Circ. Physiol. (279) M., Pennati, G.,
De Gasperi, C., Battaglia, F.C., and Ferrazzi, E. Role of ductus venosus in distribution
of umbilical blood flow in human fetuses during second half of pregnancy. Pages
H1256—-H1263 copyright 2000. Permission not required for use in thesis.
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perfusion of the brain (32, 33). It is this “brain sparing” mechanism that leads to the
disproportionately large head circumference in FGR fetuses and newborns, and the
absence of which is associated with negative outcome, as growth restriction
surpasses the fetus’s capacity to adapt (Figure 1.1). These adaptations are of
consequence to the liver, as it receives reduced blood flow, it creates localized
conditions of even greater hypoxia and nutrient starvation (34).

Effectively, the brain is spared of starvation and hypoxia at the expense of the other
fetal tissues, especially the liver. Although many of the metabolic/digestive functions
of the liver are not critical during gestation, the liver likely remains sensitive to the
levels of metabolic substrates and alters its protein synthesis accordingly. The liver is
also particularly significant as the primary source of synthesis of plasma proteins, and
therefore changes in its protein synthesis and secretion have effects throughout the
body.

The effects of changes in liver secretion are apparent in adults, and provide clues to
proteins changes potentially observable in the fetus. It is widely known, for example,
that impaired secretion of blood clotting factors and other regulators in many liver
diseases, leads to clotting disorders and internal bleeding (35). As another example,
inflammatory cytokine messengers IL-1, IL-6, IL-8 and TNF-a in the blood signal
secretion changes of acute phase plasma proteins in the liver. These proteins support
diverse functions at the primary site of inflammation that classically include immune
regulation and coagulation (36). Recent findings have linked angiogenic function to

several acute phase proteins (37, 38) and their altered expression has been linked to
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disease (39, 40, 41). Furthermore, hypoxia on its own has been shown to be sufficient
to trigger acute phase-like secretion changes from hepatocytes (42). It therefore
seems very probable that altered liver secretion of plasma proteins in fetal hypoxia
will lead to functional changes in other tissues, including fetal-placental angiogenesis,
which is associated with FGR pathology.

One such liver-secreted protein is insulin-like growth factor binding protein-1 (IGFBP-
1). Its fetal liver synthesis is increased under hypoxic condition (43). By binding to
IGF-I with high affinity, IGFBP-1 sequesters IGF-I in the circulation, thereby limiting its
bioavailability for binding to IGF receptor 1 (IGFRI) (44). IGFBP-1 expression functions
in limiting fetal growth to within the limitations of the available metabolic substrates

(45).

1.3.2. Mechanisms of hypoxic regulation of liver secreted proteins

IGFBP-1 is upregulated in the hypoxic liver of the fetus. It is expected that other liver
secreted plasma proteins of functional consequence to the fetus, may be regulated
through similar oxygen sensitive cellular processes. Altered protein synthesis via
hypoxic regulation has been shown to take place via several ubiquitous regulatory
mechanisms. One such mechanism is upregulation through the stabilization of
mRNAs, which is seen in VEGF regulation (46). More classically described however, is

hypoxia signaling through the family of Hypoxia-Inducible Factors (HIF).

HIF-1a is a transcription co-factor that after migrating to the nucleus dimerizes with

HIF-B, in a transcription complex that recognizes hypoxic response elements (HRE)
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FIGURE 1.6. Hypoxic mediated signalling via mTOR. Inhibiting mTOR leads to
signalling via kinase complexes with raptor or rictor that have diverse effects on
transcription and translation. HIF-1a is upstream of mTOR signalling.
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within the promoter sequence of target genes. However, in normal conditions when
oxygen is abundant HIF-1a is degraded by the ubiquitin ligating von Hippel-Lindau
(pVHL) protein complex, which recognizes hydroxyl groups on HIF-1a. These hydroxyl
groups are in turn added by prolyl hydroxylase domain containing enzymes (PHDs).
As oxygen is consumed directly as a substrate for the PHD enzymes, the levels of
ambient O, are determinant of the HIF-1 hydroxylation and therefore O, dependent
expression (47). It has been shown that the IGFBP-1 is downstream of an HRE, and
that hypoxia leads to increased IGFBP-1 transcription, and protein secretion in

hepatocytes.

Another potent molecular regulator of protein synthesis that is responsive to hypoxia
is mammalian target of Rapamycin (mTOR) (48) (Figure 1.6). Hypoxia exerts inhibition
on mTOR signaling via tumor suppressor complex 1/2 signaling, in a REDD1
upregulation dependent mechanism (48, 49, 50). REDD1 is transcribed in hypoxia via
HRE dependent and independent regulation, either of which are sufficient to activate
mMTOR signaling (48, 51). mTOR is also well known to respond to nutritional and
hormonal signals (52). Amino acid deprivation, especially leucine starvation, also

causes changes in mTOR signaling (53).

MTOR functions through signaling pathways involving two major complexes: mTORC1
and mTORC2 that differ in their accessory proteins as well as their downstream
effectors. mTOR activation regulates important pathways involved in diverse
functions, among which are cellular growth and proliferation, cell survival, and

protein synthesis. Interestingly, one of the many effects of mTOR signaling is
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FIGURE 1.7. Fetal placental circulation showing origins of expected plasma protein
changes in placental insufficiency. Placental insufficiency caused by malformed fetal
chorionic villi will lead to secretion changes from the pathological fetal-placental
tissues that will manifest as plasma proteome changes. Hypoxia of the liver will
result in altered secretion of proteins that are circulated through the fetus and then
placenta, before proteome sampling in the umbilical vein. Changes in secretion of
the syncitiotrophoblsast or the maternal-placental tissues in adaptation to the fetal
placental failure, reduced placental size or hypoxia will alter their secretion into the
maternal plasma proteome.

Reproduced from Hole's Essentials of Human Anatomy & Physiology, 11t edition. D.
Shier, J. Butler, and R. Lewis. Figure 20.15. Copyright 2012, with permission from
McGraw-Hill.
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transcription of HIF-1a through the activation of mTOR complex 1 (mTORC1) (54).
This demonstrates that there is substantial positive feedback in the complex network

of hypoxic-induced protein expression signaling pathways (Figure 1.6).

1.4. SCOPE OF THESIS

Plasma, being in contact with all tissues, contains proteins representative of the
whole body. Maternal plasma contains protein markers of maternal-placental
changes in FGR at late gestation. Protein changes in the plasma particularly reflect
changes in secretion from tissues affected by disease. For these reasons, maternal
plasma is the ideal biological fluid to uncover biomarkers for diagnostic or prognostic
test development of placental health (55).

Likewise, fetal plasma, conveniently accessed from the umbilical vein at delivery,
contains fetal-placental proteins reflective of changes in FGR. The liver is the largest
secretor of plasma proteins. It is also sensitive to the levels of metabolic substrates
like hypoxia, and hepatocytes have been shown to drastically alter secretion in vitro
(42). Finally, considering that the liver’s blood supply is particularly compromised in
FGR, it is expected that there will be altered secretion of proteins with hypoxia. These
secretion changes will be reflected in the fetal plasma proteome (Figure 1.7).
Changing secretion from the liver has been shown to have functional effects on fetal
growth through IGFBP-1 regulation, and on the vasculature in adult liver disease (35).
It is therefore expected that liver secreted protein changes identified in the fetal

circulation may similarly be reflective of pathophysiological functional changes,
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affecting the fetal and placental tissues. It is expected that these protein changes
may be adaptive to metabolic substrate restriction (like changing IGFBP-1), and may
regulate or otherwise be implicated in pathological vascular changes in the placenta
in FGR. A discovery-based profiling approach will identify plasma protein changes in
FGR, allowing for the formulation of new theories of hepatic involvement in the
disease process.
The central hypothesis is that altered maternal and fetal plasma protein expression
will result from placental insufficiency and/or the resultant hypoxia. The goal of this
thesis is encapsulated with the overall objective of discovering and elucidating fetal
and maternal plasma proteomic expression changes in FGR. Maternal plasma for the
discovery of biomarkers, and fetal plasma for the discovery of hepatic, and other
proteins related to the disease pathology. Furthermore, the consequences of the
changing levels of fetal plasma proteins will be investigated using in vitro functional
experiments to determine their significance in FGR pathophysiology.
The objective of profiling in fetal growth restriction is therefore twofold:
1. In Maternal Plasma:
Identify candidate biomarkers of FGR. (Chapters 2 and 6)
2. In Fetal Plasma:
a. lIdentify expression changes of proteins implicated in the fetal
pathology of FGR by direct plasma profiling, and using a HepG2

model of hepatic secretion in hypoxia. (Chapters 3, 4, and 6)
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b. Establish the functional effect of the identified protein changes.

(Chapter 5 and 7)
In this discovery-based approach, proteomic techniques are employed to broadly
profile for changes of plasma directly, and additionally, the secretions of HepG2 cells
in hypoxia will be profiled for changing proteins as a model of hepatic plasma
proteins changing in the FGR fetus. The strategy of broad profiling allows the
detection of unexpected changes, potentially signifying newly identifiable

mechanisms involved in the disease.
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CHAPTER 2

2-DGE profiling of maternal plasma:
Haptoglobin a2 as a biomarker
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2.1. INTRODUCTION

Fetal growth restriction (FGR) is a pregnancy condition where estimated fetal weight
is below the 10th percentile expected for gestational age (GA) (1, 2). The condition
affects 3-5% of pregnancies, and is associated with high perinatal morbidity and
mortality (3). FGR infants may also have an increased risk of adverse neuro-
developmental outcomes and of cardiovascular and metabolic diseases later in life (4,
5). Currently, fetal size is routinely ascertained using imaging technology; however,
the differentiation of normal, constitutionally small fetuses from those with
pathologic FGR remains a clinical challenge. Identification of proteins that can be
used as biomarkers is an antecedent step in the development of non-invasive
diagnostic or prognostic tests for FGR. Discovery of a candidate biomarker protein or
a group of proteins that are associated with the pathophysiology of FGR, should lead
to the development of rapid detection and quantification methods, for example
immunoassays (6,7), for possible clinical screening. The measurement of biomarkers
combined with advanced ultrasonographic (US) biometry and fetal Doppler
technology in a temporal manner will provide the ability to more accurately and

precisely detect the presence of FGR.

Clinically significant FGR is caused by reduced fetal growth resulting from maternal
conditions such as under-nutrition, smoking, drugs, and pre-pregnancy or pregnancy
diseases including chronic hypertension or preeclampsia (8). Although the etiology
and pathophysiology of FGR may be varied (2), it is widely accepted that poor

placental development and or placental disease is the major common factor that is
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associated with abnormal fetal growth (8, 9). Once congenital infection and
chromosomal or congenital anomalies have been ruled out, FGR is mostly a result of
utero-placental insufficiency (10). Proteomic analysis of maternal plasma may also

provide us with better understanding of the pathophysiology underlying FGR.

Profiles of plasma proteins can illustrate changes owing to altered metabolism
and/or disease process. They may have a causal relationship and/or indicate disease
severity. Differential expression of proteins in blood plasma has been widely used to
study various diseases (11-13). The significance of several plasma peptides in
gestational diseases with respect to biomarker discovery, and the importance of

proteomics in identifying these candidate proteins have been well denoted (14).

Analysis of global plasma proteins is a challenge because of the complexity of the
plasma proteome. Plasma has a large concentration range that spans 10 orders of
magnitude from albumin, the most concentrated protein, to the least concentrated
cytokines. Also, many of the proteins in blood share chemical similarities in their pl
and structure compared to intracellular proteins. This is because of the need for
consistency and neutrality of the pH in the blood environment. The prevalence of
PTMs like deamidations and glycosylations, which are comparatively rare on
intracellular proteins, further complicates the proteome. To overcome these
difficulties, pre-fractionation and depletion is often employed to adequately quantify
detectable spots. Because these strategies often lead to high variability, this study is

focused on rapid screening of whole plasma using two-dimensional gel
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electrophoresis (2-DGE) as a proteomic approach to detect changes in plasma

proteome profiles associated with FGR.

2.2. MATERIALS AND METHODS

2.2.1. Materials

All chemicals for 2-DGE and LC-MS/MS analysis were of electrophoretic or analytical
grade. The total plasma protein concentrations were measured using BCA Protein
Assay Kit (Pierce Biotech Inc., Rockford, IL), following the microplate technique as
outlined by the manufacturer. Bovine albumin was used as the standard. Replicates
were analyzed in a Multiskan EX microplate reader (Thermo Electron Corp., Vantaa,

Finland).

2.2.2. Sample collection

With approval from the University of Western Ontario, Health Sciences Research
Ethics Board and written informed consent from participants, pregnant women were
recruited at St. Joseph’s Hospital, London, ON, Canada. Blood samples were collected
prior to delivery from mothers who consented to participate in the study. Table 2.1A
shows a summary of the characteristics of the patients studied, and the inclusion and
exclusion criteria for subject recruitment. Gestational age (GA) was determined by
certain last menstrual date of mothers or the first trimester US crown rump length.

Etiologies of fetal origin, like congenital infection and chromosomal or congenital
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anomalies were excluded. Information from the antenatal records including standard
tests for the evaluation of fetal health and risk factors as part of normal surveillance
was obtained. The diagnosis of FGR group was based on last trimester estimated fetal
weight as determined by fetal US biometry (15) and calculated using the Hadlock Il
formula. Birth weight percentiles were calculated based on their respective gender
and GA using a standardized growth chart (16, 17). Control group subjects consist of
normal pregnancies without medical or obstetric problems and with fetuses within
normal growth percentiles (>25th). Measurements less than the 10™" percentile for
GA at birth were confirmed to be growth restricted (Table 2.1B). Placental
insufficiency was determined by abnormal umbilical artery Doppler (18). 1-2 mL of
maternal venous blood from FGR and control subjects were collected in EDTA coated
tubes. Blood was centrifuged (2000g, 10 min at 4°C) and plasma samples were saved

in small aliquots at —70°C until analysis.

2.2.3. Gel electrophoresis

All protein separations on 1D and 2D gels were conducted using 1.5 mm 12% SDS
polyacrylamide gels, run for 20 min at 80 V followed by approx 1 h 15 min at 120 V.
Pre-stained Broad Range SDS molecular weight (Mr) marker (Bio-Rad Labs, Hercules,
CA) was used for estimation of Mr. All relevant reagents for 2-DGE were purchased
from Bio-Rad and used according to manufacturer’s instructions. First Dimension

Isoelectric Focusing for 2-DGE The isoelectric focusing (IEF) was performed using
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PROTEAN IEF cell with ReadyStrip immobilized pH gradient (IPG) strips, 7 cm, pH 3.0-

10.0 nonlinear (NL), unless otherwise specified.

2-D gel electrophoresis separation

For first dimension separation, maternal plasma (1.5 pL, ~90 pg protein) was made
up to 125 pL with rehydration buffer (8 M urea, 2% CHAPS, 50 mM dithiothreitol
[DTT], 0.2% Biolyte pH 3.0-10.0 ampholyte, 0.001% bromophenol blue). Prior to IEF,
IPG strips were rehydrated overnight using active or passive rehydration. Proteins
were separated using a programmed voltage gradient in steps; S1, 200 V, 100 Vh; S2,
500V, 250 Vh; S3, 1000 V, 500 Vh; S4, 8000 V, 8000 Vh; S5 500 V (holding step), with
rapid ramping and a maximum current of 50 pA/strip throughout. Electrofocused

strips were stored at —80°C until used.

For the second dimension, the 2-DGE focused strips were incubated for 20 min in 2.5
mL equilibration buffer (Tris, pH 8.8 [50 mM)], urea [6 M], SDS [2% w/v], and glycerol
[30% v/v] containing DTT [1% w/V]), followed by another 20 min incubation with 2.5
mL equilibration buffer containing iodoacetamide (2.5% w/v). The IPG strips were
placed on the second dimensional gel using 0.5% low melting gel agarose in 1X Tris
glycine SDS buffer with 0.003% bromophenol blue. Electrophoresis was performed on
SDS gels with a narrow (7%) stacking gel. Fixation was for 30 min (10% methanol and

7% acetic acid) followed by staining overnight with SYPRO Ruby gel stain (Bio-Rad).
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Destaining was done for a minimum of 1.5 h using 10% methanol and 7% acetic acid

solution.

2-DGE image analysis

The 2D gels were stained with SYPRO Ruby Red and the monochromatic 16-bit digital
images were acquired using the Fluorochem 8800 imaging system (Alpha Innotech
Corp. San Leandro, CA) employing ultraviolet light excitation with a SYPRO-500 filter
integrated with imaging software. Acquisition of all images was performed under
controlled conditions with consistent exposure times. Phoretix 2D Expression
Software Analysis Phoretix 2D Expression 2005 software (Nonlinear Dynamics Ltd.,
Newcastle Upon Tyne, UK) was used for image analysis of 2D gels using normalization
of the spots on replicate gels. Preliminary mapping of plasma protein spots on 2D
gels was performed based on the published plasma map (SWISS 2-DGE database
available at the ExPASy (Expert Protein Analysis System) website

(http://ca.expasy.org/ch2d).

2.2.4. LC-MS/MS spot identification

Specific spots containing proteins of interest were picked and manually excised for
in-gel digestion. In brief, excised gel spots were transferred to siliconized tubes, de-
stained, and washed. Proteins were reduced, alkylated, and then digested with

sequencing grade trypsin (Promega, Madison, WI) overnight at 37°C. After extraction
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of peptides from the gel, the samples were dried in a vacuum centrifuge and

dissolved in 0.2% formic acid ready for LC-MS/MS analysis.

LC-MS/MS

LC-MS/MS analysis was carried out on a Q-TOF Global Ultima mass spectrometer
(Waters Micromass® MS; Waters Corp., Milford, MA) coupled with a Waters CapLC.
The LC system consisted of a C18 analytical column (75 um x 15 cm, 5 um, LC
Packings, Amsterdam, Netherlands) and nano-ESI source. For the standard LC-MS/MS
procedure, a gradient (solvent A, 0.2% formic acid in water, B, 0.2% formic acid in
acetonitrile, 5% B to 90% B in 60 min) was used to elute the peptides. The data-
dependent acquisition function was used to both detect and sequentially perform
collision-induced dissociation (CID) on the multiply charged ions that satisfied the
selection criteria. The mass spectrometer was operated in positive-ion mode with MS
data acquisition range, 300 to 1900 and MS/MS data acquisition range, 50 to 1900.
The collision energy (CE) for MS/MS experiments was determined by the charge state
and/or by the m/z range of the precursor ion. The CE values were according to
standard chargestate recognition and CE files recommended by Micromass (Waters
Corp.). The MS to MS/MS switching was allowed for the four most abundant
precursors in the survey experiment with a 30-s time period set for MS/MS data
acquisition for each peptide. In some cases, a precise list of peptides was set so that
specific precursor ions were targeted to undergo tandem MS preferentially. For the

MS and MS/MS experiments, the time-of-flight (TOF) instrument was calibrated with
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an MS/MS spectrum of Glu-fibrinopeptide-b. Data were acquired using MassLynx 4.0

software (Waters Corp.).

Analysis of MS/MS Data

Data was further analyzed using MassLynx 4.0 software (Waters Corp.) and Mascot
(19) for database search on Swiss-Prot. The mass tolerance for precursor and
fragment ions was set to1.2 and 0.1 Da, respectively. Carbamidomethylated cysteine
residue was set as a variable modification. All identified peptides during Mascot or
Peaks (Bioinformatics Solutions Inc. Waterloo, Canada) searching were verified by

manual interpretation of the spectra.

2.2.5. Analysis of 1 and 2-D Haptoglobin immunoblots

The identity of Hp subtypes/subunits (al, a2, and B) and qualitative assessment of
their expression in select plasma samples was performed by 2D Western immunoblot
analysis. An equal volume of maternal plasma (~45 ug protein) from a severe case of
FGR and a GA matched control subject were compared using 7-cm IPG strips, pH 4.0—
7.0 for 2-DGE. Proteins separated on the gels were transferred onto a PVDF
membrane (0.45 um) (Hoffmann- La Roche Ltd., Basel, Switzerland) using a semi-dry
Transblot apparatus (Bio-Rad). The membrane was blocked with 5% non-fat dry milk
in TBS (50 mM Tris, pH 7.5, 150 mM NaCl) for 2 h at room temperature, followed by

incubation with the primary polyclonal rabbit anti-human Hp antibody that
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recognizes all Hp subtypes (Dako, Glostrup, Denmark) (1:5000 in TBS containing 1%
non-fat dry milk and 0.1% Tween-20) at 4°C for 3 h. Anti-rabbit IgG was used as a
secondary antibody in 1:8000 dilution (TBS containing 5% non-fat dry milk) at room
temperature for 1 h. The blot was rinsed in TBS containing 0.5% Tween-20, and
proteins were visualized using ECL Western Blotting Detection System (GE

Healthcare, Piscataway, NJ) according to manufacturer’s instructions.

One-dimensional Western immunoblot analysis of maternal plasma was performed
on five representative samples from FGR and three from the control group. The FGR
subjects were the most severe cases with <3rd percentile newborn birth weight for
GA, whereas controls were of appropriate for gestational age. The dilutions of the
polyclonal rabbit, antihuman Hp antibody (Dako) and the conditions for
immunoblotting were the same as described earlier for 2D immunoblots. The plasma
samples in equal volumes (~5 ug protein) were pre-treated with 2-mercaptoethanol
(final concentration 1%) and subjected to 1D-GE. The immunoblot consisted of 0.1 ug
standard purified Hp (GE Healthcare) as a reference/ positive control. Optical
densitometric analysis of bands corresponding to the three Hp subtypes (al, a2, and
B) in respective bands on the 1D immunoblot was performed using Phoretix 1D
software. The background subtraction, selection of lanes analyzed and the detection
of specific bands for software quantification were all done manually. The
qguantification of 1D immunoblots was performed by densitometry using Phoretix 1D

advanced v5.10 software (Nonlinear Dynamics Ltd.).
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2.2.6. Quantitative analysis of 2-DGE Hp spots

For quantification of intensities of the spots on 2D gels for the specified proteins,
Phoretix 2D expression software was used to analyze replicate gels under identical
conditions. The software includes automated spot detection, gel matching,
background correction, and data normalization. For analysis in this study however,
spots of interest were manually matched because of the complexity of the gel
images. The background intensity for individual spots was based on the intensity in a
radius that extended 45 pixels in all directions (mode of non-spot). The spot volume
was denoted by the sum pixel intensity within a spot minus the background.
Individual spot volumes were divided by the sum total of all spot volumes on a
particular gel and multiplied by a constant (100). “Normalization of spot volumes”
was carried out to correct for random error as well as inherent total protein

variation, and was used for statistical comparison.

2.2.7. Statistical analysis

Chi-square test was used to compare categorical variables between the FGR and
control groups, or the Fisher’'s exact test where appropriate. The independent
samples t-test was used to compare mean differences in continuous variables
between the two groups. The Pearson correlation coefficient assessed the
relationship between two continuous variables and scatter plots were produced to

test for linearity. Statistical significance was determined at p < 0.05. Because the
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sample sizes based on GA grouping described in Table 2.1A were low in the
respective groups, and the observations in each group did not follow a normal

distribution, we employed a nonparametric procedure using the Mann-Whitney test.

2.3. RESULTS

The clinical characteristics of the subjects in this study are described in Table 2.1A, B.
Pregnancies were categorized into two groups namely <28 wk or 228 wk gestation.
The controls were of appropriate for GA. Based on the uterine artery Doppler
velocimetry >50% of subjects were diagnosed with placental insufficiency, and the
majority were in the >28 wk GA group. The placental weights of FGR pregnancies
(336.7 + 40.9 g) were significantly lower than those of controls (489.2 + 137.1 g) (p =

0.006).

2.3.1. 2-DGE comparison between plasma of FGR and normal pregnancies

Initial evaluative studies showed that IEF with active rehydration provided a better
resolution of proteins as compared to passive rehydration (data not shown). In
addition, an improved resolution of proteins was attained on the 2D gels using IPG
strips, pH 3.0-10.0 NL compared to linear that is currently not depicted. All
subsequent 2-DGE analyses were thus performed using IPG strips pH 3.0-10.0 NL. A
representative comparison of protein spots on 2-DGE maps of maternal plasma from

GA matched FGR and control subjects is shown in Figure 2.1A (i) and (ii), respectively.
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TaBLE 2.1.A. Study group characteristics.

Subject Characteristics 2 FGR Control P
Total subjects (n) 28 22
Doppler Abnormal 15
Normal 7
None 6
Delivery Vaginal 14 (50%) 16 (73%)
Cesarean 14 (50%) .6 (27%)
Gender Male 13 (46%) 18 (82%)
Female 15 (54%) 4 (18%) 001

Maternal age 258 (+62) 259 (+4.6)

(18-37 y)
GA (wk) o 0
(2340 W) >28Wks  25(90%) 15 (68%)
<28Wks 3 (11%) 7 (32%)
Placental wt. (g) 337 (+41) 489 (+137)  0.006

TaBLE 2.1.B. Distribution of percentile of the newborns based on GA for FGR group

FGR Newborn percentile <28 wks GA (n) >28 wks GA (n)

<5th 3 7
5th _ qQth 4 9

2 Inclusion and exclusion criteria: Singleton pregnancies with growth restricted fetus
in North American population were included. The subjects with twins, premature
ruptured membranes, abrupted placenta, fetal, congenital or genetic abnormalities,
diabetes, thyroid disorder and chronic hypertensive disorders, chorioamnionitis,
preeclampsia ,smoking, drug use, and subjects with malnutrition were excluded.
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FIGURE 2.1. (A) Representation of comparison of 2D-GE maps using maternal plasma
from FGR (i) and control (ii) subjects with matched GA. For FGR gels (i) spots 1, 2,
and 3 (hp a2 variants) were absent as compared with the control (ii). Spot 4 (TTR)
was moderately increased in FGR subjects while spot 5 (RBP) showed no detectable
change in its expression. (B) A magnified, maximally contrasted three-dimensional
rendering of 2D images for spots 1-5. The three different patterns primarily
observed are represented. (i) 8/28 FGR, 7/22 controls, (ii) 4/28 FGR, 11/22 controls,
(iii) 16/28 FGR, 4/22 controls. (C) Comparison of matched spots with normalized
volumes detected on two 2D-GE maps of an identical maternal plasma sample
prepared on separate occasions. The R squared for the trend-line was 0.86.
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Although IPG strips, pH 3.0-10.0 NL provided better resolution of plasma proteins,
the 7-cm strips did not optimally separate all abundant plasma proteins, specifically,
in the higher Mr range. High abundant proteins, such as albumin and IgG, obscured
the identification and quantification of minor proteins in and around this zone. The
current protocol however, allowed successful discrimination of protein quantities
between control and FGR samples, specifically in the lower Mr region. Only well
separated and defined spots on the 2D gel images, quantifiable by software analysis,
were further characterized. From the gel images, a set of five major visible spots in
the lower Mr range, were prominent, labeled as 1-5 (Figure 2.1 [ii]). Comparison with
the plasma map (EXPASY) indicated spots 1-3 as Hp a2 chain variants, spot 4 as

transthyretin (TTR), and spot 5 as retinol binding protein (RBP).

The Hp a2 in plasma from FGR pregnancies showed three different patterns of
expression. In the first pattern, Hp spots 1, 2, and 3 were near to, or below, the
threshold of detection, as shown in Figure 2.1B (i), that was seen in 29% of FGR
pregnancies. This pattern in controls was detected in 33% of pregnancies. In the
second pattern, all three Hp spots (1, 2, and 3) were of relatively high intensity, as
shown in Figure 2.1B (ii), was most commonly observed in controls (52% of
pregnancies) and present in only in a small number (13%) of FGR pregnancies. In the
third pattern, only spot 1 was reduced in intensity, as shown in Figure 2.1B (iii), was
most prevalent (67%) in the FGR pregnancies, and was not commonly seen in the

controls (14% of pregnancies). Shown in Figure 2.1C is the correlation of the same
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FIGURE 2.2. LC-MS/MS spectra for the identification of the tryptic peptide sequences
of Hp a2 variants and TTR. MS/MS spectra of ion at m/z 656.31 (+2) (A) and 720.33
(2+) (B) from spot 1, 2, and 3 corresponding to Hp a2; and ion at m/z 683.88 (+2) (C)
from spot 5 corresponding to TTR.
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protein between two gels run under identical conditions. The R-squared for the linear

plot was 0.86 suggesting relatively low inter-gel variability.

2.3.2. Identification of proteins spots

The identities of spots 1, 2, and 3 as variants of Hp a2 chain, and spot 4 as TTR were
made by LC MS/MS followed by Mascot searches (Table 2.2). Although a low
coverage (3-11%) for Hp a2 variants and (28%) for TTR were obtained, the high
quality of MS/MS spectra (Figure 2.2) established the identity of these proteins in the
select spots. No significant hits for other proteins were found in the region of these
spots. Hp a2 variant proteins identified by MS were confirmed by 2D immunoblot
analysis (Figure 2.3A [i]). Plasma from FGR and control subject showed variable
intensities of protein species with Mr 16, 18, and 42 KDa, corresponding to a chains
(a1l and a2) and a B chain of Hp, respectively (Figure 2.3A [i, ii]). Both Hp al and a2
variants were reduced significantly in FGR (Figure 2.3A [i]) compared to controls
(Figure 2.3A [ii]). Immunoblotting corroborated the 2-DGE data with SYPRO Ruby
stained gels (Figure 2.1A [i, ii]). Additional spots (a, b, and c) were detected compared
to 2-DGE. As shown in Figure 2.3A (ii), spot (a) corresponded to the fourth variant of
Hp a2, whereas spots (b) and (c) corresponded to two extra variants of Hp al in the
control plasma. The additional spots (a), (b), and (c) seen in the controls were absent

in the FGR.
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FIGURE 2.3. Western blots of maternal plasma for Hp. (A) Equal amounts of maternal
plasma protein from a FGR (i) and a GA matched control (ii) were probed on a 2-D
blot. A(i) shows significantly reduced spots 1, 2, and 3 corresponding to hp a2
variants as compared to the control (ii). An additional spot, denoted as (a) was
detected in the control (ii) that represents the fourth variant of Hp a2 (plasma map,
EXPASY). Spots (b) and (c), corresponding to Hp al variants, were only detected in
the control (ii) sample. (B) Semiquantitative evaluation of Hp variants.
Representative maternal plasma samples from FGR (n = 5) and control (n = 3)
subjects were selected. Lanes 1-5 are FGR subjects with low birth weight newborns
(<5th percentile for GA); lanes 6—8 from the control subjects with normal birth
weight infants. Equal amount of total protein was loaded in lanes 1-8. Lane 9
consists of 0.1 pg pure Hp (Sigma), used as a positive control. Sample in lanes 4 and
in 8 were common between 1D and 2D (A) immunoblot analysis.
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2.3.3. Evaluation of Hp variants by immunoblotting

The specificity of the polyclonal antibody provided additional information on all Hp
subtypes. The analysis of plasma samples from FGR and control subjects (Figure 2.3B)
using anti-human Hp antibody showed variable intensities of three bands with Mr 16,
18, and 42, corresponding to Hp al, a2, and B subtypes, respectively (Figure 2.3B,
lanes 1-8). The Hp standard purified from pooled human plasma shown in lane 9
(Figure 2.3B) as a positive control, exhibited high intensity of 18 and 42 KDa bands
but a fainter band at 16 KDa. Of the five samples representing the maternal plasma
from FGR subjects in this study, three revealed Hp a2 to be absent in FGR (Figure
2.3B; lanes 2, 3, and 5). The band corresponding to Hp al however, was absent in
two out of five FGR samples (Figure 2.3B; lane 1 and 4), whereas the intensity of this
variant was relatively reduced in the remaining three samples (Figure 2.3B; lanes 2, 3,
and 5). Although the representative samples from controls (lanes 6—8) showed varied
signals, the intensities for both Hp a2 and Hp al bands were relatively higher than
the FGR group. Quantitation of mean Hp band intensity using optical densitometry
led to determine the reduction in Hp. A 25.6% reduction was observed for Hp B,
31.3% for Hp al and 93.0% for Hp a2 subtypes in FGR compared to the control. The
data demonstrated a moderate or inconclusive reduction of Hp B and Hp al

expression, nonetheless, a distinct reduction in Hp a2 in FGR.

2.3.4. Quantitative assessment of Hp a2 variants
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FIGURE 2.4. Quantitative distribution of significantly different Hp a2 variant 1
expression in maternal plasma from FGR (n=28) and control (n=22) subjects.
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Statistical evaluation of normalized spot volumes for spots 1-3, (Hp a2 variants 1 to
3), spot 4 (TTR), and spot 5 (RBP) on 2D gels as represented in Figure 2.1A (i, ii) in FGR
and control subjects is shown in Table 2.2. We used RBP as a quantitative control for
a better indication of validity of evaluation of spots on the gels. The mean spot
intensity for Hp variant 1 was significantly reduced in FGR compared to controls (p =
0.006), whereas TTR was higher in FGR compared to controls (p = 0.001). To further
analyze the distribution of Hp variant 1 between control and FGR, the distribution of
normalized volumes was plotted based on their z score, low (<0), medium (0-1 to 1)
and high (normal) (>1). Figure 2.4 illustrates the intensity of Hp a2 variant 1 to be
high or medium in the majority (59%) of controls, in comparison to only 28% of FGR
subjects. As shown in Figure 2.4, the distribution of Hp a2 variant 1 volumes for FGR
were negatively skewed, with 72% of Hp a2 variant 1 volumes being >1 SD below the

overall mean compared to 40% in control.

Furthermore, we investigated the relationship between uterine artery Doppler flow
velocimetry and the frequency of reduced Hp a2 variant 1 in FGR accompanied by
abnormal Doppler. Hp spot 1 expressed as normalized volumes were low to medium
(53.3% with low and 27% with medium) in 80% of FGR accompanied by abnormal

Doppler, as compared to only 20% of FGR with normal Doppler.

2.4. DISCUSSION
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Our results suggest that 2-DGE combined with LC-MS/MS is a feasible approach to
identify changes in relatively abundant low molecular weight proteins in un-
fractionated plasma. Although 2-DGE analysis of whole plasma is a challenging and
time consuming approach for comprehensive protein analysis, it allowed us to
discover semiquantitative changes in the proteome of FGR pregnancies. New
powerful image analysis software was crucial in the initial identification of changes in
the plasma proteome and led us to determine that a specific variant of Hp a2 chain

was reduced in the maternal plasma of FGR, but not of controls.

FGR is associated with increased mortality of the fetus and increased morbidity in the
neonatal period and childhood, as well as in adulthood (4). Ultrasound fetal biometry
is used for the estimation of fetal weight in fetuses (15-18, 20), and umbilical artery
Doppler (18) is used to distinguish FGR fetuses owing to utero-placental insufficiency.
Biophysical profile assessment is also used to determine fetal health and to provide
indications for delivery. However, these tests reflect the condition of the fetus at the
time of assessment and do not indicate the pathology or progression of the disease
process that underlay FGR. Additional tests are, therefore, necessary to determine

pathological FGR and its potential pathophysiology.

FGR is a multifactorial disease with diverse etiology and pathophysiology (2), and
therefore proteome changes may be etiologically dependent. Correspondingly, all
subjects in this study were confirmed cases of FGR and the majority of them were the
result of utero-placental insufficiency (21). To minimize heterogeneity and the effects

of confounding factors in this study, the exclusion criteria used in the current
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selection of subjects ensured requisite health and lifestyle factors that also include
malnutrition. Because delivery was delayed if intervention was not necessary (2),
most of the FGR pregnancies were >28 wk gestation. Poor placental growth has been
shown to limit concurrent development of the fetus (21) and, as expected, our data
shows the placental weight of FGR pregnancies to be significantly smaller than the
matching controls. These results concur with the significance of abnormal placental

development in FGR pregnancies (22).

Based on their relationship to growth and development of the fetus, several peptides
have been proposed as potential biomarkers (23). Prealbumin has been suggested to
be associated with fetal defects and pregnancy complications (24). Leptin may reflect
a generalized response to hypoxic stimuli (25), and free B-hCG and PAPP-A levels
have been associated with general fetal abnormality (26). Elevated a-fetoprotein
levels in the amniotic fluid through amniocentesis have been suggested to be of
potential use in the detection of FGR (27), however, its association with adverse
pregnancy outcome has not been confirmed (28). Novel biomarkers that may be
more reliable and specific in their diagnostic and prognostic value in FGR remain to

be identified.

Proteomic approaches offer new opportunities for potential biomarker discovery in
pregnancy disorders (14). When searching for diagnostic markers in plasma,
depleting most abundant protein(s) may be valuable, however, it could also lead to
variability and nonspecific protein loss (29). Although whole plasma analysis renders

the possibility of detecting the desired biomarkers challenging (30, 31), it nonetheless
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mitigates the complications associated with plasma pre-fractionation (32). Protein
expression profiling using direct MS may be superior for identifying a larger number
of total proteins (33), however, because of the lack of complete amino acid sequence
coverage for a protein using either MALDI-MS or LC-MS/MS, there has been limited
success in using MS based approach to identify the isoform and posttranslational
modification in plasma (34). 2D gels on the other hand, generate different spots that
correspond to a change in overall protein charge and/or molecular weight. In the
current study, this technique has allowed the identification of Hp a2 as a
differentially expressed protein in the plasma proteome, which was then confirmed
by immunoblotting. This study was feasible because of the high abundance and
adequately separate detectable spots for Hp which were discriminated by software
analysis. These spots have previously been recognized as structurally different
species of Hp a2 chain (11, 35, 36). Immunoblotting revealed additional Hp a2 and
Hp al variants in the control plasma, which has been reported previously (35).
Subsequent studies in a larger FGR population using an immunological assay with
higher sensitivity and specificity will be crucial in determining the clinical utility of Hp

a2.

Hp alpha is expressed via Hp al and a2 alleles. The absence of a2 in the plasma for
many patients may be due to a lack of the allele (Figure 2.2Ai). Althogh nevertheless
the majority of patients expressing the a2 allele had a significant reduction of variant
1 compared to other variants, which was not found in control (Figure 2.2B ii vs iii).

Similar modifiacations resulting in a decreased isoform variant may be present on the
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al. Structural characterization of the modifications of the less common Hp al variant
may determine if the changes are universal to other Hp types. Hp is a positive acute
phase protein (37) that is variably expressed in maternal plasma during the course of
pregnancy (38). Increased expression of serum Hp a2 has been detected in ovarian
cancer and is used as a biomarker for screening this disease (39, 40). The specific
reduction in Hp a2 variant, and possibly of Hp al protein chain, may not reflect a

generalized positive acute phase response in the FGR.

Our data is the first to demonstrate consistently, the absence and/or suppression of
only a specific variant of Hp a2 that migrates in the most acidic location of the three
variants as identified on 2D gels. The differences in isoelectric points (pl) of Hp a2
variants may be because of its posttranslational modification, such as deamidation of
asparagines (41, 42). Although the variability in intensity of Hp a2 variant 1 has been
linked with a carboxypeptidase that leads to different turnover rates of this variant in
blood (35), the pathophysiologic basis for the suppression of specific Hp variants in
FGR is still unknown. The rates of deamidation of human proteins have been
suggestive of a biologically relevant phenomenon that serves as molecular timer of
biological events (43). It is possible that differences that lead to the separation or
comigration of Hp a2 variants in FGR may be attributed to subtle structural
modifications of the protein that occurs during the disease process. The site and the
cause/effect for this modification in FGR are not known, however, it is likely that the

placenta plays an important role in this process. Changes in posttranslational
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processing and not in the synthesis or secretion of Hp have been shown in colon

cancer (44).

Hp is an important protein in reproduction (45) and has been shown to be involved in
the early signalling process during preimplantation (46). Hp is present in uterus and
its role in endometrium has been suggested to be in protecting the fetus from a
maternal allograft-like immune response (47). Hp is involved in HELLP syndrome,
which is linked with haemolysis (48-50). It is also suggested to be involved in
placental angiogenesis (51-53). Because placental insufficiency is the major common
factor in FGR, it is logical to suggest the role of Hp in placental vessel remodelling.
Given the contribution of Hp to placental development (47), it will be important to

determine if Hp is a marker of placental insufficiency.

Clinically relevant biomarkers may however be of either causal or associative in
nature (54). Based on our current findings, we have initiated a study to elucidate the
mechanistic basis for Hp suppression in the pathophysiology of FGR using human
hepatoma cells as hepatic synthetic machinery in vitro (55,56). Our on-going study
shows that Hp biosynthesis in hepatoma cells is altered in a similar manner by

hypoxia (unpublished data), a condition that is commonly associated with FGR.

In this study, we present evidence that expression of a specific variant of Hp a2, that
is a high abundance protein, is uniquely expressed in FGR patients. This is the first
report in our search toward discovery of biomarker(s) in FGR. However, for detection
of larger number of plasma proteins, specifically of low molecular weight and low

abundance, we propose to employ our recently established pre-fractionation
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strategy in a follow up study to further elucidate the FGR proteome. Furthermore,
identification of proteins in the plasma by 2-DGE followed by MS and the high
throughput 2D LC-MS has demonstrated that the majority of the identified protein
set was unique to each method (57) therefore, for a comprehensive coverage, as
suggested by Choi et al. it will be ideal to apply the two methods to achieve optimal

results for the analysis of the plasma proteome.

The maternal blood samples in this study were collected from pregnant women just
before delivery. The results from this study are consistent among the subjects, who in
our assessment represent the clinical population with the problem, and, therefore,
strongly show that we have been successful in identifying a potential biomarker in
maternal plasma indicative of a late manifestation of FGR. It is recognized that a
differential expression does not positively identify any protein as a biomarker of FGR,
fulfillment of other criteria such as a larger sample size, collection of maternal plasma
prior to birth at different gestational ages and multifactorial analyses, will be
essential before Hp a2 could be used in a clinical setting. The fact that the change in
Hp a2 correlates with the Doppler outcomes suggests it can be a potential diagnostic
and/or prognostic marker. If changes of Hp precede the clinical diagnosis of FGR and
placental insufficiency, inclusion of this protein in routine antenatal estimation of

fetal weight and/or umbilical artery Doppler examination could be useful clinically.
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CHAPTER 3

Quantitative 2-D gel electrophoresis-based expression proteomics of albumin
and IgG immunodepleted plasma

A version of this chapter has been published, and is reproduced here with permission.
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Quantitative 2-D gel electrophoresis-based expression proteomics of albumin and IgG
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3.1. INTRODUCTION
Differential profiles of plasma proteins can illustrate changes due to altered
metabolism or disease development. Consequently, these proteins are highly
relevant both in diagnosis and in therapeutics (1, 2). Our specific interest is in
analyzing maternal plasma by 2-D gel electrophoresis (2-DGE) to uncover potential
markers of fetal growth restriction (3). However, proteomic analysis of plasma is
challenging due to the plasma proteome’s large dynamic range and the presence of
highly abundant proteins, such as albumin and IgG (2). Their presence, and that of
other high abundance proteins, is a major ongoing technical impediment to detecting

less abundant proteins (4-12).

Immunoaffinity depletion of albumin and IgGs, or as many as 20 abundant proteins
from plasma, is a preferred method of removal due to the relative specificity of the
procedure over others (10, 13). Concomitant loss of non-target proteins through
protein-protein interactions has thus far proven inevitable (6, 14), even though the
addition of acetonitrile (ACN) appears to mitigate this loss (15). Improved post-
depletion resolution in subsequent 2-DGE or in mass spectrometry (MS)-based
analysis has been demonstrated (10, 16). In expression proteomics, however, these
challenges are further compounded by the need to obtain quantitative data with high
reproducibility. Although, the utility of the depletion process for improving spot
resolution analysis of 2-DGE has been demonstrated (4, 10, 12, 15, 17, 18), its
compatibility in quantitative 2-DGE expression proteomics has been largely

unaddressed.
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With albumin and IgG representing as much as 85% of plasma protein, any variability
in their depletion substantially affects the remaining protein loaded on the gels.
Densitometric quantitation of 2-DGE is ultimately no more reliable than the
consistency in sample loading. The most critical aspects are therefore to establish
and minimize the non-specific loss of proteins at the depletion step, as well as attain

high efficiency and reproducibility with the subsequent quantitative analyses.

Proceeding with conventional immunodepletion using a commercial kit, this study
evaluates the outcome of depletion and its reproducibility using 2-DGE followed by
computerized image analysis. It furthermore identifies some proteins removed

nonspecifically during depletion.

3.2. MATERIALS AND METHODS

3.2.1. Samples, reagents and equipment

A single blood sample was taken with informed consent and approval as described
previously (3). Electrophoretic equipment and reagents were from Bio-Rad
(Hercules, CA, USA) and all procedures were according to manufacturer’s instructions

unless otherwise specified. Protein measurements were made by Bradford assay.

3.2.2. Albumin and IgG depletion

Depletion of albumin and 1gG from whole plasma was performed using the

Qproteome Albumin/IgG Depletion Kit (Qiagen, Valencia, CA, USA). Buffer 2 (250
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mM Tris HCl, 4% (w/v) CHAPS and 200 mM urea, pH 7.5) was used with 5% ACN
added for maximal recovery (15). Additional washes (2 x 0.25 mL and 1 x 0.5 mL)
were essential for optimal recovery of the protein in the depleted fraction. The
albumin and IgG bound to the resin were eluted using 3 x 0.5 mL washes with 20 mM
glycine buffer (pH 1.5) in a total volume of 1.5 mL. An adjustment for pH (neutral)

was made with ~0.05 mL of 1.5 M Tris HCI buffer (pH 8.8) added to the final sample.

3.2.3. Immunoassays

1-D gels were transferred to PVDF membrane for Western blotting as described
previously (3). Blocking was with 0.5% gelatin for albumin or 2% Polyvinyl
Pyrrolidone (PVP) for IgG. Immunoblots were developed using primary goat (anti-
human albumin) and rabbit (anti-human 1gG) polyclonal antibodies (Bethyl
Laboratories, Montgomery, TX, USA) (1:15000), and HRP conjugated goat anti-rabbit
or mouse anti-goat IgG secondary antibodies (1:8000). Western lighting Enhanced
Chemiluminescence (ECL) Reagent plus (Perkin EImer) and Kodak XOMAT LS films

were used.

Albumin and 1gG quantification was performed employing respective ELISA kits for
human albumin and IgG according to manufacturer’s instructions (Bethyl Labs).
Samples in ninety-six well microplates were quantified using a MultiSkan Ascent

(Thermo Electron Corp. Waltham, MA, USA).
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3.2.4. 2-DGE

Nanosep Omega 3K MWCO Centricons (PALL) were used to desalt and concentrate
protein prior to 2-DGE. Samples (300 ug protein) were reconstituted in rehydration
buffer (0.45 mL), and rehydrated actively onto 24 cm ReadyStrip™ immobilized pH
gradient (IPG) strips (pH 3-10NL). Triplicate gels of a sample depleted three separate
times were analyzed for reproducibility. The gels were stained with SYPRO Ruby

protein stain.

2-DGE images were captured using a Fluorochem 8800 imaging system (Alpha
Innotech Corp. San Leandro, CA, USA), with consistent exposure time in the linear
range. Images were analyzed using Progenesis SameSpots software (Nonlinear
Dynamics, Durham, NC, USA). All gels were warped to a single whole plasma gel
template. The data analysis for densitometric aspects of the study was typical for
expression proteomics. Matching was automatic but verified manually: artifacts, or
spots that could not be confidently verified as true matches, were disregarded rather
than manually edited and misalignments were corrected by manual warping when

appropriate.

3.2.5. LC-ESI-MS/MS analysis

Excised spots were digested in-gel, using a Waters MassPREP aumtomated digestor
(Waters, Milford, MA, USA). Samples were analysed by LC-ESI-MS/MS using a 2000

QTrap coupled to a LC Packings Ultimate HPLC system equipped with a 100 Bm x 15
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Ficure 3.1. Western blots for albumin (A) and 1gG (B) are shown with whole
plasma (wp), depleted fraction (d), and bound fraction (b). To determine
relative quantities of albumin and IgG contents in fractionated samples,
proportionate volumes were loaded so that each lane has 0.01% of its
fraction’s total volume on immunoblot with albumin (A) and 0.03% for 1gG (B),
respectively. Arrows show heavy and light chains of IgG. (C) Residual
quantities of total protein (Bradford), albumin and IgG (ELISAs) of a sample
after depletion of plasma in presence of acetonitrile (n=6) are shown as
percent depletion. Error bars are SD.
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cm CapRod RP-HPLC column (Merck, Whitehouse Station, NJ, USA) operated at a flow
rate of 1 pl/min as previously described (19). A linear gradient from 5-50% B over 30
minutes (A: 5% ACN, 0.5% formic acid, B: 90% ACN, 0.5% formic acid). The LC was
interfaced to the mass spectrometer via a nanoflow source equipped with a 15 um
internal diameter spray tip (New Objective, Woburn, MA, USA). The resulting
tandem MS data was searched against NCBI protein sequence database. All
identified peptides during Mascot (Matrix Science, London, UK) or Peaks
(Bioinformatics Solutions Inc., Waterloo, ON, Canada) searching were verified by

manual interpretation of the data.

3.3. RESULTS

3.3.1. Level of immunoaffinity depletion

To visualize depletion prior to 2-DGE, 1-D immunoblot analysis of bound, depleted
and whole plasma fractions was performed for albumin and IgG, respectively (Figure
3.1 A and B). As expected, albumin was highly abundant in both whole plasma
(Figure 3.1A, lane wp), and the bound fraction (Figure 3.1A, lane b). Albumin was not
detected in the depleted plasma (Figure 3.1A, lane d). Intense bands corresponding
to IgG light and heavy chain proteins were prominent in both whole plasma (Figure
3.1B, lane, WP) and the bound fraction (Figure 3.1B, lane b). The corresponding light
and heavy chain bands were, however, greatly reduced in the depleted plasma

(Figure 3.1B, lane d), suggesting significant removal of I1gG overall. Figure 3.1C is an
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assessment of the level of albumin and IgG depletion by ELISA (n=6); 38+1.2% of total
protein was recovered, however 93+1.4% of albumin and 94+1.5% of IgG was

removed (Figure 3.1C).

3.3.2. Improvement in 2-DGE spot resolution

2-D gels of the whole, the depleted, and the bound fractions of plasma are shown in
Figure 3.2 A, B, and C, respectively. Spots from smears of albumin and IgG were
discounted (Table 3.1, parenthesis) as they do not represent true resolution of
proteins. There was a considerable increase in the number of spots resolved in all six
areas on the depleted gel (Figure 3.2B), and overall the number of spots nearly
doubled (n=675 to n=1325) (Table 3.1), thereby increasing the potential to identify
new proteins. The alkaline region (area c), had considerably higher gains than other
high Mr regions (a and b). The enhancement was accounted for partly by the
significant amounts of albumin and the majority of IgG that would otherwise be
present, and occlude other spots in this field. The greatest improvement in spot
resolution was in the lower Mr regions (d—e). This is largely attributed to the relative

enrichment of proteins after the removal of the high abundance proteins.

3.3.3. Relative protein enrichment

The relative enrichment is most apparent in three-dimensional images. Area b of

Figure 3.2 A, B, and C is shown in Figure 3.2 D, E, and F respectively, with the third
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dimension as density, which is proportional to the amount of protein for the spot.
The area in the depleted fraction (Figure 3.2E) clearly shows an increase in the low
level proteins compared to the same area in whole plasma (Figure 3.2D). As
calculated from the total protein and ELISA data (Figure 3.1C), an increase of 7.3-fold
in relative abundance of residual proteins was expected due to enrichment. When
matched spots, corresponding to proteins present on both gels, were compared for
density, it was established that the spot density on average increased 8+3-fold (Table
3.2, matched), which was consistent with the theoretical expectation. However, the
moderately high variance suggests that some proteins were preferentially retained.
These proteins were subsequently identified by LC-ESI-MS/MS along with others

(Figure 3.2B, numbered) (Table 3.2).

3.3.4. Non-targeted protein loss

Large smears of albumin and IgG were clearly present in the bound fraction (Figure
3.2 C and F, arrows) compared to whole plasma (Figure 3.2 A and D, arrows), and
especially the depleted fraction (Figure 3.2 B and E). However, other protein spots
were visible in the depleted fraction contrary to expectation (Figure 3.2C). By
comparing the gel to the Swiss-2-D PAGE human plasma protein map by matching
through our whole plasma gel (Figure 3.2A), we were able to set probable identities

for many of the visible protein spots in the depleted fraction (Figure 3.2C, numerals).
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FIGURE 3.3. Probability distribution for the coefficient of variation of the normalized
volume of matched spots from three replicate (depleted fraction) gels (Figure 3.2B).
The mean coefficient of variation is 10% (SD 6.1) for spots verified as matched. The
95th and 99t percentiles are marked. Of manually verified matching spots, 95% of
spots had a coefficient of variation <21% and 99% had a coefficient of variability
<30%.
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The major spots identified were typically high abundance proteins (Figure 3.2C), none
of which are known to directly bind albumin for transport. Of the proteins identified,
i, iv, v, vi, vii, viii, x, and xi, are among the ten most abundant proteins in plasma (20).
Only three proteins were not, although one of the three, hemoglobin (iv), may
circulate bound to haptoglobin (vii). Some proteins (i, xi, xii) were identified in both
the bound and the depleted fractions, indicating that their elution from the bound
fraction was incomplete. Hemoglobin (iv) appeared relatively enriched in the bound
compared to both depleted and whole fractions, indicating its preferential retention.
The data therefore suggests that although some proteins lost may couple with
albumin and in this manner may be distinctively retained through protein-protein

interactions (14), there was largely non-specific loss of proteins.

3.3.5. 2-DGE quantitative reproducibility

To analyze the quantitative spot reproducibility, three replicates of the depleted
fraction (Figure 3.2B) were produced and analyzed by 2-DGE. The distribution of the
variation between matching spots is plotted in Figure 3.3. The mean variability was
10+6%, while 95% of matching spots had a variability of less than 21% and the

probability of the variability exceeding 35% was <0.0001.

3.4. DISCUSSION
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Immunoaffinity depletion prior to 2-DGE has been shown to be a powerful
fractionation technique in the identification of new proteins (21). In this study, we
were able to demonstrate a much improved number of useful identifiable spots (n=
1325) resolved on a single 24 cm 2-D gel. As reported by others (4, 10, 12, 15, 17,
18), the achievement of high resolution on 2-DGE was attributable to a substantial
improvement in dynamic range post-depletion, but additionally to the combined use

of 24 cm 2-D gels over the more commonly used 18 cm gels.

This study demonstrates the quantitative feasibility of depletion in combination with
high resolution 2-DGE. Evaluation of depletion for the MARS LC column (Agilent,
Santa Clara, CA, USA) was reported to eliminate >99% for albumin and IgG, measured
using the same ELISA kits (6). In our study, we found considerably less complete
depletion, although neither protein was prominent on 2-D gels. A possible
explanation may be the use of less sensitive antibody in the Qproteome kit, or the
lower sensitivity or binding capacity of the spin column-based depletion compared to
the LC technique, which is inherently more efficient. Reproducibility as measured by
2-DGE spot variance (Figure 3.3) was nevertheless better than reported for 2-DGE

without fractionation, albeit with modest differences in methodology (22).

Multiple protein affinity columns may achieve even greater improvements in
resolution, for as many as 20 of the most concentrated proteins are depleted, which
accounts for >99% of plasma protein. The corollary of higher levels of depletion
however, is that much greater sample volumes are required to yield several hundred

micrograms of depleted protein required for large-format 2-DGE applications. A
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substantial amount of pooling of depleted fractions or a very high capacity LC affinity

column would be required.

The flexibility in spot alignment enabled comparison of the depleted and bound
fractions of whole plasma, and tentative spot assignment using 2-D maps rather than
spot excision and MS analysis. This facilitated the identification of proteins lost during
depletion and the estimation of the relative protein enrichment post-depletion at the

2-D gel level.

Using this method, we were able to confidently interpret the protein loss inherent to
depletion. Many proteins were lost that may not have been due to specific
interactions with albumin or the depletion antibodies. Variations in the number of
washes during the depletion process or the composition of the buffers have a strong
influence on the proportion of non-targeted proteins retained on the resin (15).
However, for maximal recovery, conditions were currently implemented as per
Huang et al. (15), as well as our own optimizations. Despite removal of proteins that
were identifiable, and undoubtedly others that were not, the depleted sample
exhibited dramatic improvement in the number of spots resolved (Table 3.1) and

reproducibility in spot density (Figure 3.3).

Albumin and IgG removal improves 2-DGE spot resolution. However, the application
of immunodepletion of plasma samples to quantitative densitometric 2-DGE analysis
further demonstrates its reproducibility. Proteins in the resulting 2-D gels were
identifiable by LC-ESI-MS/MS despite the low density of some specific spots (Figure

3.2B spots 1, 3 and 10). Together, these aspects of the study illustrate that
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guantitative 2-DGE of depleted plasma is an effective expedient to identifying plasma

proteome expression changes in clinical investigations.
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CHAPTER 4

Altered Liver Secretion of Vascular Regulatory Proteins in Hypoxic
Pregnancies Stimulate Angiogenesis in vitro

A version of this chapter has been published, and is reproduced here with permission.

Seferovic, M.D., Chen, C., Pinto, D., and Gupta, M.B. (2011). Altered Liver Secretion of

Vascular Regulatory Proteins in Hypoxic Pregnancies Stimulate Angiogenesis in vitro.
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4.1. INTRODUCTION

Fetal hypoxia arises in Fetal Growth Restriction (FGR), a common pregnancy
complication wherein the placenta fails to provide sufficient exchange of oxygen and
nutrients to meet the metabolic needs of the developing fetus. A reduction in the
villous tree of the placental vasculature leads to vascular resistance of the placenta,
and consequently reduced blood flow (1, 2, 3). Ultimately, the reduced
maternal/fetal exchange causes fetal nutrient starvation, acidosis, and critically,
hypoxia. FGR babies have an abnormally low birthweight for their gestational age
(<10™ percentile), and often suffer perinatal morbidities. FGR is a leading cause of

perinatal death (4).

Many common glycosylated plasma proteins, which originate primarily from liver
secretions, have been shown to promote or inhibit angiogenesis, specifically through
endothelial or smooth muscle migration regulation, or as proteins involved in
vascular cell wall regulation. These include clusterin (5), fibrinogen (6), haptoglobin
(7), high-density lipoprotein (8), high molecular weight kinogen (9), plasminogen
activator inhibitor-1 (PAI-1) (10), pregnancy associated plasma protein A (PAPP-A)
(11), transferrin (12), and vitronectin (13), among others. Haptoglobin, for example,
has been identified as an angiogenic factor, and its elevated levels in plasma have
been implicated in vascular disease (14). The expression of many of these liver
proteins during hypoxic pregnancies and their potential role in FGR is unknown. The
ability of the haemostatic system to regulate angiogenesis has been demonstrated

extensively in vessel repair and in tumor development, where a balance of factors
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FIGURE 4.1. Overview of experimental design. Liver cells are treated with 1% and
20% O,. Secretions are assessed for their ability to promote or inhibit angiogenesis
in an in vitro tube formation assay. Differences in cell secretion are identified by 2-
DGE followed by ESI-MS/MS. Changing proteins with angiogenic function are
shortlisted together with changing angiogenic proteins identified by directly profiling
fetal plasma from control and hypoxic pregnancies with 2-DGE. ELISAs then more
precisely assess the levels of the shortlisted proteins in fetal plasma. The levels of
the angiogenic proteins are then correlated to the fetal blood oxygen level measured
at birth.
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has been shown to be critical for vascular development. The levels of these proteins
is also highly dependent on liver function, as patients with compromised livers often

have poor haemostatic control due to the altered protein secretion.

In the fetal circulation, the liver is the first organ to receive newly oxygenated blood
from the placenta through the umbilical vein. In hypoxic pregnancies, increased
shunting of blood towards critical organs like the brain and heart spares them from
starvation, at the expense of the liver (15, 16). The liver is the central metabolic
organ and the primary secretor of plasma proteins, many with angiogenic function.
Therefore, the liver is uniquely positioned to regulate plasma proteins in order to
adapt to the metabolic environment under hypoxic conditions.  Analogous
mechanisms have been shown to regulate fetal growth. IGF-I induced growth in the
fetus has been shown to be reduced by the altered liver secretion of insulin-like
growth factor binding protein-1 (IGFBP-1) in an oxygen-dependant fashion (17, 18,

19, 20).

Hypoxia induces changes in the liver secretome and, consequently, in the plasma
proteome, that will likely cause angiogenic changes in the fetal and placental
vasculature. Accordingly, we set out to discover whether hepatic secretions in
hypoxic conditions could affect angiogenic potency and to identify those oxygen-
regulated, angiogenic proteins in plasma of FGR newborns. We then correlated the
levels of these proteins in the fetal blood plasma to the oxygen level of the fetal
blood supply (venous umbilical cord). Associating the protein changes with the

characteristic physiological measures of FGR will indicate the identified protein’s
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physiological significance in the disease. An experimental outline is described in

Figure 4.1.

4.2, METHODS

4.2.1. HepG2 cell culture and secretome

HepG2 cells procured from ATCC were grown in DMEM/F-12 culture media
(Invitrogen, San Diego, Ca, USA) with 10% FBS (Invitrogen) to ~70% confluence,
washed twice in FBS-free media, and subsequently cultured in FBS-free media. The
cells were allowed to acclimatize for three hours in before the media was changed
once more with FBS-free media, containing 50 mM HEPES buffer, and oxygen
treatments commenced. Cells were placed in sealed chambers and flushed with 1%
or 4% 0O, (5% CO,, and the balance N,) or placed in the incubator (20% 0O,). The cells
were placed on an orbital shaker at low speed to facilitate continued gas exchange
between the cell environment and the surrounding air. The procedure was
conducted as described previously (20). Conditioned media (CM) was collected after
24 hours, and dissolved oxygen was measured using an ABL 700 blood gas analyzer.
The samples were then desalted, concentrated, and buffer exchanged into 2-DGE
rehydration buffer (Bio-Rad, Hercules, CA, USA), using 3 KDa molecular weight cut off
filter (Pall, Port Washington, NY, USA). Urea (200 mM) was used for wash steps (5x),
and a final wash with rehydration buffer. The sample was then reconstituted in 450

uL rehydration buffer to perform 2-DGE.
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Flow cytometry for the detection of apoptosis and necrosis via annexin-V labeling
was performed on live cells using Annexin-V-FLUQS Staining Kit (Roche, Penzberg,
Germany) according to manufacturer’s instructions. Cells were detached and
separated using TripleXExpress (Invitrogen). The re-suspended cells were then
incubated for 15 min with labeling reagents, annexin-V-fluos and propidium iodide.
Flow cytometry was then performed using an Epics XL-MCL (Beckman Coulter, Brea,

CA, USA) according to manufacturer’s recommendation.

4.2.2. Human vascular endothelial cell (HUVEC) culture and angiogenic assays

Media from HepG2 cells cultured under various oxygen conditions was concentrated
and buffer exchanged into Endothelial Growth Media (Lonza, Basel, Switzerland)
(FBS-free) using a 30 KDa molecular weight cut-off filter (Pall, Port Washington, NY,
USA). The concentrated samples were then diluted with culture media to 200 pg/mL
of secreted protein (approximately equivalent to 1% of normal plasma). HUVECs
(Lonza) were plated on ECMatrix at a density of 3 x 10 cells per well (96 well plate)
together with 100 pL of the media containing the secreted proteins, and allowed to
grow for several hours according to the In Vitro Angiogenesis Assay Kit (Millipore,
MA, USA). Images were taken when the FBS-free negative control started exhibiting
tube formation. The tube length and cell area were quantified using Axiovision
software (v4.7.1, Carl Zeiss, Germany) from three fields per well, and branches were

counted manually as per the Angiogenesis Assay Kit.
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4.2.3. 2-D gel electrophoresis

Generally, 2-DGE was conducted using Bio-Rad reagents and equipment unless
otherwise stated. Samples of HepG2 secretory proteins (400 ug) or depleted plasma
(350 pg) were separated on 24 cm ReadyStrip™ immobilized pH gradient (IPG) strips
(pH 3-10, non-linear). 2-D gels were stained with SYPRO Ruby (Invitrogen). Imaging
was performed under UV excitation using a Fluorchem imager (Alpha Innotech Corp
San Leandro, Ca, USA). The images of the stained gels were captured using UV trans-
illuminator of Fluorchem 8800 imaging software (Alpha Innotech Corp San Leandro,
Ca, USA). The detailed procedure, including the software analysis and an assessment
of the quantitative reproducibility, has been described previously (21). All images
were analyzed with Progenesis SameSpots (non-Linear, New Castle upon Tyne, UK).
Paired t-test, with pairing based on gestational age matched paring of each FGR
sample to its corresponding control, was used to assess changes between control and
FGR groups for cord plasma. One-way ANOVA was used to compare spot means
from 1, 4, and 20% O, triplicate gels. Spot density changes with p<0.05 were

considered significant.

4.2.4. In-gel digestion and mass spectrometry

Excised spots were digested in-gel, using a Waters MassPREP automated digester

(Waters, Milford, MA, USA). Samples were analyzed by LC-ESI-MS/MS using a 4000
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QTrap coupled to an Agilent 1100 cap LC system equipped with a 100 um x 15 cm
monolithic HPLC column (Phenomenex, Torrance, CA, USA) operated at a flow rate of
1 pL/min as previously described (22). A linear gradient from 5-50% B over 30
minutes (A: 5% ACN, 0.5% formic acid, B: 90% ACN, 0.5% formic acid) was used. The
LC was interfaced to the mass spectrometer via a nanoflow source equipped with a
15 um internal diameter spray tip (New Objective, Woburn, MA, USA). The resulting
tandem MS data was searched against NCBI protein sequence database (03032009)
and IPI Human (3.59) databases. All identified peptides during Mascot (Matrix
Science, London, UK) or Peaks (Bioinformatics Solutions Inc., Waterloo, On, Canada)

searching were verified by manual interpretation of the data.

4.2.5. Plasma collection and sample preparation

Fetal plasma was collected from the venous umbilical cord at the time of delivery
from FGR (n=12) and gestational age matched control (n=12) pregnancies at St
Joseph’s Hospital, in London, Ontario, Canada. Pregnancies with fetal growth
restriction resulting from placental insufficiency were included. Subjects with fetal,
congenital or genetic abnormalities, in utero infection, diabetes, thyroid disorders,

drug abuse, chronic hypertensive disorders, or preeclampsia were excluded.

Samples were collected in EDTA coated tubes, centrifuged at 2000 g for 15 min at 4°C
and clear plasma samples saved in small aliquots at -80°C. Collection criteria and

procedures for collection took place as described in detail previously (23). The
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average birthweight was less than the 2" percentile (below the 10™" widely
considered the diagnostic threshold for FGR). Nearly all FGR subjects (10/12) and the
majority of control subjects (8/12) were delivered by caesarean section. All deliveries
were performed under epidural or spinal anesthetic, or were natural deliveries.
Healthy pregnancies were selected for controls based on matching gestational age to

the FGR pregnancies, all with birthweights above the 25t percentiles.

Plasma for 2-DGE was depleted of albumin and IgG with disposable spin columns
(QProteome, Qiagen, Venlo, The Netherlands) using our previously established
protocol (21). After depletion, 350 pg of protein from the flow-through fraction was
desalted, concentrated and buffer exchanged with 2-DGE rehydration buffer as

described for CM.

4.2.6. Protein measurements and statistical evaluations

All total protein quantifications were by Bradford method (Bio-Rad). ELISA kits were
commercially obtained to determine the concentration of specific proteins; clusterin
(BioVendor, Evropska, Czech Republic), fibrinogen (Innovative Research, Ml, USA),
transferrin (AssayPro, St. Charles, MO, USA), albumin and 1gG (Bethyl Labs, TX, USA).
Samples were assessed in duplicates using a Multiskan EX micro-plate reader
(Thermo Electron Corp. Waltham, MA, USA) following manufacturer’s instructions.
Plasminogen activator inhibitor-1 (PAI-1) and VEGF were measured as part of an

immunological-based fluorescent multiplex assay (Human CDV1, Millipore, Billerica,
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FIGURE 4.2. Culture conditions of HepG2 cells treated with hypoxia to mimic fetal
growth restricted conditions. (A) Dissolved oxygen levels were measured after 24 h
to compare oxygen treatments to physiological exposure of the fetus in vivo (Table
4.2). (B) Flow cytometry cell counts for triplicate experiments of annexin V and
propidium iodide stained cells to determine the levels of apoptosis and necrosis
taking place with hypoxic treatment. Significant change determined by ANOVA
(**p<0.001). Both 1 and 20% O, showed elevated necrosis compared to 4% O,
condition.
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MA, USA) using a Bio-Plex 200 system (Bio-Rad), which utilizes Luminex® xMAPTM
fluorescent bead-based technology (Luminex Corp., Austin, TX). Levels were
automatically calculated from standard curves using Bio-Plex Manager software
(v.4.1.1, Bio-Rad). All statistics (excluding 2-DGE densitometry) were done using
GraphPad Prism 5 (Graph Pad Software Inc, CA, USA). To compare means, t-tests,
paired t-tests, or one-way ANOVAs were used where appropriate. Pearson’s
Correlation compared proteins’ levels to blood oxygen levels, as well as other

quantitative clinical criteria in Table 4.2.

4.3. RESULTS

4.3.1. HepG2 secretions in low oxygen induce angiogenesis

To assess the influence of liver hepatocyte protein secretion changes in hypoxia on
potential angiogenic regulation via the fetal plasma, we used an established cell
model for hepatic protein expression (20). HepG2 cells were exposed to 20%, 4%, or
1% O, for 24 hours in FBS-free conditions. Measurements of dissolved oxygen in the
conditioned media (CM) from these samples showed that decreasing the ambient
oxygen levels to 1% lowered the tension to 40 Torr (Figure 4.2A), which approximates
normal in utero oxygen levels (Table 4.2). Tension readings for ambient levels of
oxygen at 20%, although typical in cell culture, were substantially increased above
physiological levels both for fetal and adult blood (24). Flow cytometry analyzing

markers of apoptosis and necrosis revealed overall a minimal amount of apoptosis
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(AnnexinV+/Pl-) after 24 hours across treatments (Figure 4.2B). Apoptosis at 1% O,
appeared elevated, however it was not significantly different. Necrosis

(AnnexinV+/Pl+) was significantly elevated in both 1% and 20% compared to 4% O,.

HUVECs were subsequently treated with the CM from HepG2 cells exposed to
hypoxia to assess the potential changes in angiogenic induction following low oxygen
treatment. After three hours of CM treatment, relative tube formation and degree of
tube branching (Figure 4.3) using 1% O, treatment were both significantly larger than
either 4% or 20% oxygen treatment. The 1% O, treatment CM also induced more
tube formation than VEGF alone. Measurements of VEGF levels were from 10 to 100-

fold less in the CM of 1% and 20% O, treatments than the VEGF positive control (10

ng/mL).

4.3.2. Identification of changing hepatic secreted angiogenic proteins

To identify candidate proteins changing due to the hypoxia, secretome profiling of
HepG2 cells in low oxygen conditions was undertaken. Using samples isolated from
three separate HepG2 cell cultures, equal amounts of protein (400 ug) were
separated on large 2-D gels in triplicate. Figures 4.4 A and B show a representative
gel image of the HepG2 secretome. When the spot density of triplicate gels from all
three treatment conditions (20% and 4%, relative to 1% O,) was assessed using 2-
DGE densitometric software, many protein spots were revealed as changing between

the three groups. In all, approximately 1200 spots were separated and detected by
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2-DGE software, from which, 196 were identified as either increasing or decreasing
significantly between the three groups, of these, 38 were identified using LC-MS/MS.
The significant matches to the NCBI database searches and the relative fold-change
and significance of the densitometric analysis are indicated in Table 4.1. The top
scoring hits for each excised spot from Table 4.1 are indicated for proteins
interpreted as significantly upregulated with decreasing oxygen (Figure 4.4A) and
those downregulated with decreasing oxygen (Figure 4.4B). Corresponding spots and
table entries are labeled by number in column 1 of Table 4.1. For a broader
characterization of the HepG2 secretome, additional spots were identified that were
not changing significantly. These are included as Supplemental Figure 4.1 and

Supplemental Table 4.1.

Several of the identified changing proteins were glycolysis proteins, such as enolase,
adolase, GAPDH, and triphosphate isomerase (Figure 4.4, Table 4.1). Spots of these
proteins were typically decreasing with 4% treatment from 20%, but increasing again
with 1% O, treatment. Most other protein spots, as shown in Table 4.1, either
decreased or increased across the three treatments, or for some, changed in only
one of the three treatment conditions (typically 1% or 20% 0O,). Of the increasing
proteins in hypoxia, peroxiredoxin—1, dismutase superoxide, and IGFBP-1 are known
to be oxygen-sensitive proteins. Plasminogen activator inhibitor-1 (PAI-1) has been
shown to be upregulated in placenta of FGR pregnancies (25) and is known to be
regulated by hypoxic-inducible factors. Here there are two PAI-1 isoforms identified

as increasing 2.4 and 3.6 fold from 20% to 1% O,. (Spots 12 and 13) (p=0.02 and 0.04).
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FIGURE 4.5. ELISA values for total clusterin, fibrinogen ,and transferrin in conditioned
media from triplicate experiments of HepG2 cells in different ambient oxygen
environments. Changes were assessed by ANOVA (*p<0.05, **p<0.01). Clusterin
isoforms were seen to decrease in the HepG2 conditioned media by 2-DGE while
transferrin isoforms were seen to increase in hypoxia (Figure 4.4 and Table 4.1),
Fibrinogen was unchanged in the conditioned media, but an isoform was changed in
the fetal plasma between control and FGR (Supplemental Figure 4.2 and
Supplemental Table 4.2).
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Several isoforms of transferrin were also seen to increase from 20 to 1% O,, by 1.3,
1.5, and 2.5-fold (Spots 1, 2, and 3) (p=0.03, 0.03, and 0.0003). One additional low
molecular weight spot identified as a transferrin isoform was decreased, however by
only 10% (Spot 31). Additionally, clusterin was shown to be decreased nearly 2-fold

in 1 and 4% compared to 20% (Spot 34) (p=0.005).

To verify that the overall levels of these proteins were changing in the CM, in a
manner that matched the spot changes seen by 2-DGE densitometry, ELISA
measurements were performed (Figure 4.5). Clusterin and transferrin, were shown
to decrease 1.7 fold (p<0.05) and increase 2.1 fold (p<0.01) with hypoxia (20% to 1%
0,), respectively. Although fibrinogen was identified as changing in plasma between
control and FGR subjects by 2-DGE (Supplemental Table 4.2, Spot 2), it did not
change significantly in the CM by ELISA (Figure 4.5), nor was it identified as changing
in the 2-DGE analysis of CM (Figure 4.4, Table 4.1). PAI-1 has previously been
characterized to increase in hypoxic HepG2 CM under the regulation of the hypoxic

inducible factor-1 (HIF-1) (26).

4.3.3. Patient selection and clinical characteristics

To assess the change in levels in vivo of angiogenic proteins identified in hepatic
secretion, plasma was collected at birth from the umbilical vein of hypoxic FGR
newborns. To minimize the potential confounding effects of changing protein levels

with fetal development, each FGR sample was paired to a control sample gestational
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TaBLE 4.2. Clinical characteristics of FGR pregnancies from which fetal blood samples

were collected.

Control FGR p
Subjects (n) Male 7 8
Female 5 4
Total 12 12
Birthweight (g) 2214 (764) 1335 (600) 0.0002
Gestational age (wks) 33.9(4.3) 33.3(4.2)
Birthweight percentile 47.1 (26) 1.9(2.7) 0.0001
Maternal age (y) 27.33(5.6) 29.0(6.4)
Placental weight (g) 519 (151) 352 (159) 0.03
Placental Resistance* 0.63 (0.10) 0.96 (0.24) 0.04
Blood gas
Arterial:  pO2 (Torr) 17.9(5.4) 12.7 (4.7) 0.02
pCO2 (Torr) 50.1(5.8) 55.8 (4.6)
pH 7.28 (0.03) 7.26 (0.04)
Venous: pO2 (Torr) 33.1(6.7) 21.7(6.6) 0.004
pCO2 (Torr) 35.55(7.3) 46.1(4.7) 0.002
pH 7.34(0.03) 7.32(0.04) 0.05
Gravida 1.9 (1.3) 1.5 (0.8)
Term 0.3 (0.7) 0.4 (0.7)
Preterm 0.0 0.2 (0.4)
Abortions 0.6 (1.0) 0.0
Living 0.3 (0.5) 0.5 (0.8)
APGAR (5 min) 8.9 (0.3) 8.3(1.4)

Paired t-test, based on gestational age matches, was used to determine differences
between groups. Standard deviation is shown in brackets. *Umbilical cord Doppler
ultrasound was performed on 10 FGR samples and only 4 controls. The resistance
index from the last Doppler ultrasound waveforms prior to delivery is indicated.
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FIGURE 4.6. Birthweight versus gestational age for FGR pregnancies from which fetal
plasma was collected at birth. The standardized percentile of birthweight for a
Canadian population is indicated. To control for the effects of gestational age,
samples from FGR pregnancies were paired with a matching gestational age control
pregnancy. Paired FGR (triangle) and control (square) pregnancies are indicated by a
shared number. Only severe FGR pregnancies were recruited. Controls are healthy
pregnancies that matched the gestational age of each FGR pregnancy within 4 days.
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age (GA) matched to within 4 days. The pairing of the GA matched samples is shown
in Figure 4.6. The clinical characteristics of the patients abstracted from patient
charts and diagnostic lab results including blood oxygen levels are shown in Table 4.2.
The GA at birth spans from pre-term to term (27 to 39 weeks). Differences between
GA-paired subject's characteristics were assessed by paired t-test. The selected
patients represent severe FGR pregnancies with the average percentile of
birthweight for GA of 1.9, which was drastically lower than control at 47.1
(p<0.0001), where >10% percentile is generally considered normal. The average
oxygen level of the fetal blood supply (venous umbilical cord pO, . placenta to fetus)
was 36% lower (p=0.004), and the returning blood for exchange (arterial umbilical
pO, - fetus to placenta) reduced by 29% (p=0.02) in FGR pregnancies compared to
control. The venous pH was decreased by 0.02 (p=0.05) and carbon dioxide level
elevated by an average of 30% (p=0.002) in the venous umbilical blood. These
findings are consistent with reduced exchange taking place across the FGR placenta.
Further indication of reduced placental vasculature is seen in the measure of
placental resistance to blood flow measured by umbilical cord Doppler ultrasound.
The prenatal measurement was performed on most FGR pregnancies (n=10), and
some control pregnancies (n=5). The resistance index (which increases due to
inadequate placental vasculature, and leads to reduced blood flow to the fetus) was
significantly elevated between the four paired FGR and GA matched controls (p=0.04,

paired t-test) as well as the overall group means (p=0.01, t-test).
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4.3.4. 2-DGE profiling for FGR plasma identified changing hepatic secreted

proteins

Venous umbilical cord plasma was also profiled by 2-DGE after depletion of albumin
and IgG in an effort to directly identify angiogenic plasma protein changes. Each of
the 12 FGR gels was paired to its corresponding GA matched control sample gel for
guantitative comparison and statistical evaluation by paired t-test. In all, about 700
spots were separated, from which 42 were identified as either increasing or
decreasing significantly by the software. Following visual verification, spot excision,
and trypsin digestion, ten of the spots were identified using LC-MS/MS. The
significant matches based on NCBI database searching and the relative fold-change
and significance of the densitometric analysis are indicated in Supplemental Table
4.2, a representative gel is shown in Supplemental Figure 4.2. An interpretation of
the most significant protein identifications and the increase or decrease taking place
is depicted in Supplemental Table 4.2. Two isoforms of clusterin were detected,
which were found to be significantly decreasing, as was seen in CM of hypoxic HepG2
cells (1.8 and 1.5 fold, Spots 4 and 5, p=0.04 and 0.03). An isoform of fibrinogen was
also found to decrease significantly (2.2 fold, Spot 2, p=0.02). Of the ten identified

proteins changing in fetal plasma, all were of hepatic origin.

4.3.5. Plasma levels of hepatic angiogenic proteins is dependent on blood

oxygen levels
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FIGURE 4.7. Immunological based measurement from control and FGR cord plasma
samples (Table 4.2 and Figure 4.6), analyzing levels of PAI-1, fibrinogen, clusterin,
and transferrin. Pearson’s correlation of protein levels with venous oxygen level was
measured at delivery.
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The proteins selected for further quantitative evaluation are proteins known to
function in angiogenesis. The levels of angiogenic proteins changing in hypoxic CM
of HepG2 cells, as well as fibrinogen, which was identified as changing by 2-DGE
profiling of the fetal plasma directly, were measured by immunoassay in venous
umbilical cord plasma. This was done to determine if their levels were changing with
in utero low oxygen conditions of FGR pregnancies. Proteins assessed were PAI-1 and
transferrin, which were identified as increasing in the CM of hypoxic treated HepG2
cells (Figure 4.4, Table 4.1). Fibrinogen, which was shown to decrease in 2-DGE of
fetal plasma (Supplemental Figure 4.2 and Supplemental Table 4.2), was also
selected. Finally clusterin, which was shown to decrease both in secretions of
hypoxic HepG2 cells, and in the fetal plasma, was assessed as well. Following
immunoassay, correlation of the proteins’ levels with many of the clinical
characteristics listed in Table 4.2 was then performed. These included placental size,
birthweight, gestational age, and arterial and venous oxygen levels. The venous,
rather than arterial oxygen level’s was of particular interest, as the venous cord is the
immediate blood supply of the fetal liver, and the blood immediately leaving the
placenta following gas exchange. Figure 4.7 shows the correlation of the levels of PAI-
1, fibrinogen, clusterin, and transferrin, with venous oxygen levels. Specifically for the
FGR group, PAI-1 and transferrin exhibited a significant negative correlation with
venous oxygen levels (r=-0.70, p=0.02 and r=-0.67, p=0.04), indicating their increase
with hypoxia. The correlations for these two however, appeared to be dependent on

one, and two data points respectively, whose plasma levels were elevated from the
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mean. The levels of fibrinogen and clusterin exhibited strong positive correlations
with the dissolved venous oxygen (r=0.70, p=0.02 and r=0.82, p=0.002), indicating

their decrease with hypoxia in FGR (Figure 4.7).

To check for any relationship of the angiogenic proteins with growth and
development, their levels were also correlated with placental size, birthweight, and
GA. Both clusterin and transferrin, correlated with GA (r=0.68, p=0.01 and r=-0.71,
p=0.01) and birthweight (r=0.65, p= 0.02 and r=-0.66, p=0.03). There was no relation
to any other factors for PAI-1 or fibrinogen. None of the proteins’ levels correlated
with umbilical artery oxygen level. To control for overall hepatic protein secretion
changes or overall plasma protein levels being decreased in FGR, albumin (hepatic
secreted) and 1gG (non-hepatic secreted) were assessed as controls. Both albumin
and IgG were strongly associated with GA (r=0.76, p=0.004 and r=0.69, p=0.01),
birthweight (r=0.80, p=0.002 and r=0.76, p=0.004), and placental weight (r=0.69,
p=0.01 and r=0.81, p=0.001), in FGR. Neither however, exhibited any correlation with

the oxygen levels of the FGR samples.

4.4. DISCUSSION

This study identifies liver secretions to be pro-angiogenic under hypoxic conditions.
The discovery of the changing levels of angiogenic proteins fibrinogen, clusterin,
transferrin, and especially, the potent vascular regulator PAI-1, in a manner

consistent with pro-angiogenesis, explains this finding. The same proteins were also
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identified as changing in an oxygen-dependant manner, and in the corresponding
directions, in the fetal blood plasma of hypoxic pregnancies. Together, this strongly
suggests that fetal liver secretions have a role in vascular regulation of the
fetal/placental vasculature in hypoxia. The findings are highly relevant to FGR
pregnancies where chronic hypoxia and blood deprivation to the liver arise from a
reduced placental vasculature, and the consequent fetal adaptations. The pro-
angiogenic liver protein expression in response to a hypoxic environment in late
gestation may be acting as an adaptive mechanism in an attempt to rescue the

inadequate vasculature, formed earlier in gestation.

4.4.1. Angiogenic protein changes in HepG2 secretions as a model for plasma

proteome changes

Given the complexity of direct profiling of plasma, and the involvement of hepatic
proteins, a cell-based model for hypoxia-induced hepatic expression was used.
Changes in the secretion of angiogenic regulators from the liver were profiled, in
complement to direct profiling of hypoxic FGR plasma. HepG2 secretome profiling
separated more spots relative to direct plasma profiling, which was challenging
despite depletion of albumin and IgG from the samples (Supplemental Figure 4.2).
HepG2 cells have been established as a viable model of hepatic secretion changes in
hypoxia (27, 28). HepG2 cells’ protein expression is sensitive to oxygen (29, 30), and
these cells have been used extensively for fetal IGFBP-1 expression studies in a model

of fetal hypoxia (18, 20).

106



The treatments of the HepG2 cells with various levels of oxygen in this study altered
the dissolved gas environment of the cells (Figure 4.2A). A concentration of 90 Torr is
normal in vivo radial artery oxygen content (24), while this drops to approximately 60
Torr in the uterine vein (31), corresponding to the 4% oxygen treatment. The 1%
treatment at 40 Torr therefore represents physiological hypoxia for most tissues, and
it is somewhat higher than the venous umbilical cord supply seen in normal
pregnancy (Table 4.2). A better indication of oxygen state or sensitivity is ascertained
from the HepG2 physiological response to the oxygen level. There appears to be an
increase in apoptosis, indicating a degree of cellular stress, in the 1% O, treatment
condition. The level of necrosis, which was significantly elevated in 1% and 20% O,,
indicates a HepG2 natural preference for 4% O, condition. 1% and 20% O, can
therefore be considered hypoxic and supraoxic, respectively, within the context of

this experiment (Figure 4.2B).

The degree of hypoxic sensitivity of HepG2 cells appears in the 2-DGE profiling as
well. Several glycolysis related proteins changed with hypoxic treatment (Table 4.4).
In many instances, the glycolysis proteins (GAPDH, enolase, adolase, triphosphate
isomerase) were at their lowest expression for the 4% condition and increased in
expression for both the 20% and 1% O, conditions. In the context of hypoxia, an
upregulation of these proteins is to be expected given the increasing reliance on
glycolysis in hypoxic conditions. In super-physiological conditions, an upregulation of
these enzymes is expected, as the demands for substrate from a more active citric

acid cycle increase with the abundance of oxygen. Although some of this change
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may be due to increased spilling of cellular contents into the media in necrosis, this
alone cannot account for the large changes observed in this study. Indeed, other
non-glycolysis cytosolic proteins, like nuclear ribonucleoprotein, cofilin, and peptidyl-
prolyl cis-trans isomerase, where identified, did not show any apparent change

(Supplemental Figure 4.1 and Supplemental Table 4.1).

4.4.2. Plasma protein changes reflect altered angiogenic function in hypoxic

pregnancies

PAI-1 is an important regulator of the extracellular matrix. It regulates fibrinolysis, an
important process in clotting, vessel remodeling and angiogenesis (reviewed) (10).
PAI-1 was also shown to be increased in placental villous samples at the maternal-
fetal interface in FGR pregnancies, and is suggested to be contributing to the
pathology of the disease (25). Mutations in its gene have been associated with
increased incidence of FGR (32). Its role in FGR has been speculated to be through
thrombophilia in the placenta, contributing to placental malfunction (25, 33). Our
finding that circulating PAI-1 is increased, and is correlated with the severity of
venous hypoxia in FGR (Figure 4.7), supports the evidence that PAI-1 is linked to the
disease. As PAI-1 regulates fibrinogen deposition, the increased levels of PAI-1 also
explain decreasing circulating levels of fibrinogen with hypoxia. Indeed, fibrinogen
levels showed a strong negative correlation to PAI-1 levels (r =-0.76, p=0.006) (graph
not shown). The negative relationship is consistent with PAI-1 mediated extracellular

matrix remodeling. Fibrinogen acts as an important scaffold for vascular endothelial
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cells, and itself plays a role in regulating endothelial migration and angiogenesis

through avp3 integrin (6).

Clusterin and transferrin, which are decreasing and increasing with hypoxia, are
known to inhibit and stimulate, respectively, vascular endothelial cell migration and
endothelial cell adhesion to the extracellular matrix (5, 12, 34). Clusterin has been
shown to bind, and be endocytosed, by the same vascular endothelial receptor as
PAI-1 (35), and is altered in the plasma of mothers with preeclampsia, another
pregnancy complication with 20% co-presentation in FGR (36). Transferrin, like PAI-1,
is downstream of hypoxia response elements, and is known to be regulated by
hypoxia inducible factor-1 (37). A decrease in clusterin with an increase in transferrin

is therefore consistent with vascular changes that are pro-angiogenic.

The finding of these protein changes is in addition to other findings of increased
localized expression of angiogenic cytokines in hypoxic conditions that also act on the
endothelium. Vascular endothelial growth factor (VEGF) and placental growth factor
(PIGF), which are sensitive to oxygen, have been suggested to play a role in FGR (3).
PIGF has been shown to correlate to vascular resistance in the FGR fetus (38),

although no change in the circulating levels of VEGF are observed (39).

4.4.3. Conclusions

Here we link the protein changes of important liver secreted angiogenic proteins

directly to the metabolic restriction of oxygen. Linking the pro-angiogenic changes in
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the plasma expression of PAI-1, clusterin, fibrinogen, and transferrin in late gestation
hypoxia implicates the fetal liver in vascular regulation. Hypoxia is critical to an
angiogenic response in wound healing. The protein changes in this study suggest
analogous vascular changes; PAI-1 mediated extracellular matrix remodeling and
fibrinogen deposition, and an increase in endothelial activity. The data therefore
strongly supports the interaction of the haemostatic and angiogenic mechanisms in
regulating the placental vasculature. However, it is not known that these changes act
to improve the placental vasculature for increased blood flow to the fetus.
Conversely, their expression may in fact be maladaptive, by contributing to
haemostatic dysregulation, which has already been identified in FGR placentas (25,
33). The late gestation remodeling of the vasculature could have significant
implications in the pathophysiology of FGR, and potentially in the fetal origins of

cardiovascular disease that develop in adult life.
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CHAPTER 5

Oxygen dependent increase in fetal-placental plasma PAI-1 stimulates
angiogenesis in placental insufficiency
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5.1. INTRODUCTION

A compromised vasculature leading to placental insufficiency is a leading cause of
Fetal Growth Restriction (FGR). The reduced volume and degree of branching of the
chorionic villous tree (1) leads to increased vascular resistance of the fetal-placental
circulation. The reduced circulation leads to reduced maternal/fetal exchange,
creating conditions of hypoxia and acidosis for the fetus. There is a significantly
elevated risk of perinatal death, or long-term complications for the infant. The
primary causes of the placental vascular deficiency, as well as the vascular regulatory
response to hypoxic changes in placental insufficiency, are therefore of considerable

research interest.

The changing expression of pro-angiogenic cytokines VEGF and FGF-2 are important
to normal development of the placental vasculature (2, 3). The role of placental
oxygen in angiogenic regulation is presumed to be acting via upregulation of VEGF
and its receptors, or through increased sensitivity of endothelial cells to FGF-2 (4, 5).
The fetal-placental VEGF expression levels have been variably reported as higher (6),
lower (7), or unchanged (8) in its expression in FGR pregnancies. An ovine model of
placental insufficiency revealed VEGF expression to be decreased (9). FGF-2
expression levels are reported to be higher in FGR pregnancies (6). Despite the
changing levels of these factors in placental insufficiency, the precise angiogenic
regulation mechanisms leading to the vascular pathology are unknown (2). The

relative increase or decrease of VEGF and other factors in FGR is compounded by the
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different etiologies: increased circulating levels of VEGF are shown to play a role in

the pathogenesis of FGR pregnancies with preeclampsia (10).

VEGF and FGF-2 signal endothelial cellular migration and secretion of matrix
metalloproteinases (MMPs). Remodeling of the ECM by proteins in circulation and
secreted from endothelial cells is critical to endothelial cell migration and therefore
integral to angiogenesis. VEGF also signals the production of plasminogen activator
inhibitor 1 (PAI-1) (11). PAI-1 levels are potent regulators of fibrinolysis and
extracellular matrix (ECM) remodeling. It has pro-angiogenic effects, which is a factor
in tumorigenesis (12). Using knockout mice, PAI-1 was demonstrated to regulate
retinal vascularization (13). Furthermore, it has recently been shown that PAI-1
deficient mice have reduced placental angiogenesis and an altered vascular
morphology (14). Its increased transcription in syncitiotrophoblast has been reported
in FGR (15). Our recent data has also shown that its plasma levels in the FGR fetus

increase with hypoxia (16).

In addition to VEGF-mediated expression, PAI-1 is strongly induced via hypoxic-
mediated mechanisms. PAI-1, like VEGF, is downstream of a hypoxic response
element, and is therefore upregulated via HIF-1 mediated induction (17). We
therefore hypothesized that changing PAI-1 levels in hypoxic pregnancies with
placental insufficiency may be contributing to the pathological vascular changes of
the placenta. Using the blood immediately effluent from the placenta collected from

the venous umbilical cord following delivery, we sought to determine if (i) PAI-1 is
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increasing or decreasing in the plasma, (ii) its relationship to oxygen, VEGF and FGF-2

levels, and (iii) determine the effect of its changing levels on angiogenic regulation.

5.2. MATERIALS AND METHODS

5.2.1. Subject recruitment and plasma collection

The study recruited pregnant women from St. Joseph’s Hospital, London, ON Canada
with written and informed consent and with approval from the Human Ethics Review
Board of The University of Western Ontario. Women suspected of severe fetal
growth restriction with placental insufficiency were included in the study (n=12).
Mothers with FGR pregnancies were otherwise healthy. Exclusion criteria included
preeclampsia, abrupted placenta, fetal congenital abnormalities, fetal or placental
infection, and maternal diabetes. Mothers with healthy pregnancies with gestational
ages (GA) that matched the FGR pregnancies within 4 days were recruited as controls
(n=12). Women with suspected FGR had estimated weights determined by fetal
biometric ultrasound measurements, with estimated fetal weight well below the
tenth percentile for GA (18). Umbilical Doppler was measured a maximum of three
days prior to delivery to determine the placental resistance in FGR pregnancies. GA
was determined by last menstrual date of mothers or the first trimester ultrasound

crown rump length.

Maternal blood was collected by venipuncture just prior to delivery. At delivery the

umbilical cord was clamped and fetal blood removed from the fetal umbilical cord
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vein by venipuncture in EDTA coated tubes. Some of the blood was analyzed at St
Joseph’s Hospital as part of normal neonatal care, and blood gas values were
abstracted from fetal charts. The remaining blood was centrifuged at 3500 x g for 15

min at 4°C, and the plasma supernatants saved for subsequent analysis at -80°C.

The final percentiles were calculated following birth by comparing birthweight for
given GA and gender to standardized growth charts (18). All FGR pregnancies were
confirmed to be <3 percentile and all control pregnancies used were >25
percentile for GA and gender. Pathological examination of the majority of the
placentas (9 of 12 control and 10 of 12 FGR) was undertaken at St Joseph’s Hospital.
Based on review of the pathological reports and other information in the patient
charts, some subjects were excluded. In 2 of the 12 FGR patients fetal congenital
anomalies were found, and an additional patient was excluded due to infection. One
maternal control sample was excluded due to the finding of funisitis
(infection/inflammation of the umbilical cord). All other placentas were negative for
signs of infection. Umbilical blood gas levels were also abstracted from the chart for

(8 of 9 FGR and 11 of 11 controls pregnancies).

5.2.2 HUVEC culture and angiogenic assays

Human umbilical vein endothelial cells (HUVECs) (Lonza, Basel, Switzerland) were
grown in Endothelial Growth Media (Lonza) supplemented with 10% FBS, using CELL+

growth surface coated flasks (Sarstedt, Numbrecht, Germany). For treatments,
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HUVECs were plated on ECMatrix (Millipore, MA, USA) at a density of 1 x 10* or 3 x
10* cells per well (96 well plate) with 50 pL of FBS-free media. The plasma collected
was added to Endothelial Base Media (Lonza, Basel, Switzerland) (FBS-free) for a final
concentration of 1% in 100 pL of media. The cells were then allowed to grow from 2
to 12 hours depending on the cell density, and as per the In Vitro Angiogenesis Assay
Kit protocol (Millipore, MA, USA). For antibody inhibitor treatments, antibodies were
added to the plasma in 30 uL of base media, and incubated at RT for 1 hour. Cells
were then added to the tubes, and incubated for a further 10 minutes prior to
plating. Three bright field images were taken using an inverted microscope. Leica
FireCam software was used to capture the images (v3.4, Leica Microsystems, Wetzlar,
Germany). The tube length and cell area were quantified using Axiovision software
(v4.7.1, Carl Zeiss, Germany), and branches were counted manually as per the

Angiogenesis Assay Kit.

5.2.3 Protein measurements and statistical evaluations

All total protein quantifications were by Bradford method (BioRad). FGF-2, VEGF, and
PAI-1 were measured by an immunological-based fluorescent multiplex assays
(Human CDV1, Millipore, Billerica, MA, USA) using a Bio-Plex 200 system (BioRad),
which utilizes Luminex® xMAPTM fluorescent bead-based technology (Luminex Corp.,
Austin, TX). Levels were automatically calculated from standard curves using Bio-Plex
Manager software (v.4.1.1, Bio-Rad). All statistics were done using GraphPad Prism 5

(Graph Pad Software Inc, CA, USA). To compare means, t-tests, Mann-Whitney, or
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TaBLe 5.1. Clinical characteristics of FGR and gestational age matched control
pregnancies from which cord blood samples were collected.

Control FGR
Subjects (n) Male 6 5
Female 5 4
Total: 11 9
Birthweight (g) 2170 (670) 1453* (624)
Gestational age (wk) 33.7(3.7) 34.0 (4.3)
Birthweight percentile 53 (19) 1.7*%%* (2.9)
Maternal age (y) 27 (5) 29 (7)
Placental weight (g) 533 (125) 385** (172)
Placental Resistance* 0.63 (0.09) 0.99* (0.24)
Maternal BP
Systolic 113 (11) 130 (16)
Diastolic 71 (8) 81 (15)
APGAR (5 min) 8.8 (0.4) 8.4 (1.1)

Comparison of means by t-test (*p<0.05, **p<0.01, ***p<0.001). Standard
deviation is indicated in brackets. *Placental resistance index from the last umbilical
cord Doppler ultrasound prior to delivery. Doppler was performed for 8 of 9 FGR
and 5 of 11 controls.
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FIGURE 5.1. Fetal umbilical cord plasma levels of PAI-1 and its oxygen and cytokine
regulators, in placental insufficiency compared to controls. (A) PAI-1 is increased in
fetal circulation in placental insufficiency. (B) Oxygen levels in both the venous and
arterial umbilical cord were decreased in placental insufficiency (i), while VEGF and
FGF-2 levels were unchanged (ii). (t-test, *p<0.05, **p<0.01, ***p<0.001).
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one-way ANOVAs were used where appropriate. Pearson’s Correlation compared
proteins’ levels to blood oxygen levels, as well as other quantitative criteria
abstracted from the clinical charts, and the degree of angiogenesis measured in the

angiogenic assay.

5.3. RESULTS

Effluent placental blood samples were collected at the time of delivery from the
umbilical cord vein. Mothers with FGR and placental insufficiency were selected for
the study, and represent the span of gestational age from 27 to 39 weeks. Healthy
controls were selected to match based on gestational age (GA) within 4 days of
delivery. The characteristics of the pregnancy and neonates for the groups are
summarized in Table 5.1. FGR babies were severely growth restricted, with
birthweight percentiles averaging less than the 2" percentile for GA. The placentae
also weighed ~150 g less on average, which was significantly smaller (p<0.01).
Placental resistance of the vasculature by umbilical Doppler was substantially
increased in FGR babies just prior to delivery. Although the maternal systolic blood
pressure (BP) was slightly elevated in FGR, the overall normal BP levels indicate the
absence of preeclampsia in both FGR and control groups. The degree of restricted
exchange across the placenta was also apparent in the levels of umbilical oxygen,
which were significantly reduced (both venous and arterial, p<0.001 and 0.05
respectively) in FGR (Figure 5.1Bi). Together these characteristics indicate fetal

growth restricted pregnancies with placental insufficiency.
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FIGURE 5.2. Circulating levels of PAI-1 in the fetus correlate to its molecular
regulators in vivo. (A) The circulating levels of PAI-1 increase in proportion to the
degree of hypoxia. There is a moderately negative correlation to the venous
umbilical cord oxygen level (r=-0.60 , p<0.01), and modest correlation to the arterial
umbilical cord oxygen levels (r=-0.48, p<0.05). (B) In contrast, angiogenic cytokines
VEGF and FGF-2 exhibit a poor relationship to levels of PAI-1. VEGF did not correlate
to increased PAI-1. Increased FGF-2 correlates to increased PAI-1 in controls only
(r=0.72, p<0.01). In FGR, PAI-1 expression is unrelated to levels of FGF-2 (circle).
(open: control, closed: FGR).
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We analyzed the placental effluent blood (umbilical cord plasma) for evidence of
increased PAI-1 in the FGR placentas. We also measured the levels of its regulators,
VEGF and FGF-2, using the same highly sensitive fluorescent multiplex immunoassay.
It was found that PAI-1 was significantly increased (>4-fold, p<0.05) in FGR compared
to control (Figure 5.1A). However there was no change in its angiogenic cytokine
regulators VEGF and FGF-2 (Figure 5.1Bii). The levels of PAI-1 however appeared to
be closely related to the amount of blood oxygen, especially venous oxygen (r=0.60),
as determined by their significant correlations (Figure 5.2A). The levels of PAI-1,
however, did not correlate to the levels of VEGF in the plasma (p<0.01 and 0.05
respectively) (Figure 5.2B). Although PAI-1 correlated strongly to the levels of FGF-2
in control pregnancies (r=0.72, p<0.01), the levels of FGF-2 in FGR pregnancies was

completely independent of the PAI-1 expression in plasma (Figure 5.2B circle).

The unchanged level of VEGF was surprising given VEGF’'s upregulation in hypoxia,
and the significantly lower levels of oxygen both entering and leaving the placenta
(Figure 5.1Bi) in our FGR samples with compromised vasculature. Nonetheless, given
that pro-angiogenic PAI-1 is increasing in plasma concentration (Figure 5.1A), we set
out to measure the effects of the effluent placental blood on angiogenesis, using an
in vitro angiogenic assay. HUVEC cells plated on ECMatrix were subjected to a 1%
concentration of the placental effluent blood plasma taken from the umbilical cords
of FGR and control pregnancies. Representative images from the assay are shown in
Figure 5.3A. The amount of angiogenic potency of the FGR plasma relative to control

was quantified using software with total length of tube formation and number of

124



2 M T — —p .
b Vo ”"%%: S N X
= T, o a e ST
Mg o, e i < Sgong &4
‘; . ) R
¥ oL e 7 &S R
ﬁ&‘q? 3 ,u Ces 51
3 oot & 2 0 = =
v Y @ b
Q. 0 % .}‘; ‘i{ a4 % VE). 55 4
& o o5 U o ;
8 < TS e & -é\,p s Z =i £ - & e
A = B X » SR o . - 2 . 3 o b edn
o o, DHen e F!.J i 7 EC t:,mpi o e ) 057 u\-”,ﬂc"F‘?G
i o o, W (- 2 ‘contro ¥ g i g
B &\ 4 %»;‘_" B T 1A G R (7 o
KKK
Fees 1 .
T
= XXX
2 20000 E ] | 60 6000 *
e
& o —
° I ] ] T
2 15000 % - s
£ = 40 g 4000 1
£, 10000 x s =
g S e — e
. s 20 % 2000
2 5000 |=I 7] 2
= 3
= -
£
3 0 . . T T r T 0 - : .
L > Q- 3
& & & & s & & & ye
I

FIGURE 5.3. Angiogenic tube formation assay of HUVECs in the presence of 1%
venous umbilical cord plasma from 12 FGR and 12 gestational age matched control
newborns. (A) Representative fields are shown from serum free control (SF) as well
as control, and FGR groups. (B) The total length of all tubes formed and the total
number of branches per field were used for quantitative comparison of the relative

angiogenic potency of the plasma induced changes (One-way ANOVA, *p<0.05,
**p<0.01, and ***p<0.001).
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FIGURE 5.4. Plasma levels of PAI-1 and its molecular regulators, oxygen, VEGF, and
FGF-2 correlate to the angiogenic potency of the plasma. (A) PAI-1 very strongly
correlated to both tube formation and the number of branches (r= 0.82 and 0.81,
P<0.001 and 0.0001 respectively). (B) (i) The angiogenic potency was related to the
blood’s oxygen levels at birth. Tube length and branching increased in hypoxia as
measured in the umbilical vein (r=-0.64 and -0.70, P<0.001 and 0.0001 respectively),
and also to some degree, the umbilical artery (r=-0.47, P<0.05). (B) (ii) VEGF and
FGF-2 regulated angiogenesis however in control only. Both tube length and
branching correlated to VEGF levels in control fetus’ (r=0.75 and 0.76, p<0.05 and
0.01 respectively). For FGF-2, a correlation only existed with tube length in control
pregnancies (r=0.73, p<0.05). The relationship between VEGF and FGF-2 levels and
PAI-1 expression was apparent in controls, but broke down in FGR. (open: Control,
closed: FGR).
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branches per field as metrics. The FGR plasma from pregnancies with placental
insufficiency induced 1.5-fold greater tube length (p<0.01) and 2-fold greater degree
of tube branching (p<0.001) compared to control (Figure 5.3B). The overall
proliferation of the cells appeared to be unchanged, as the tube area remained

unchanged (Figure 5.3B).

When correlated to the degree of angiogenic induction by the plasma, it was
revealed that PAI-1 is very strongly pro-angiogenic. PAI-1 correlated strongly to both
tube formation (r= 0.82, P<0.001), and the degree of branching (r= 0.81, P<0.0001)
(Figure 5.4A). Placental hypoxia, a determinant of PAI-1 expression (Figure 5.2A),
correlated to the increased angiogenesis. Venous umbilical blood oxygen correlated
with tube length and the degree of branching (r=-0.64 and -0.70, P<0.001 and 0.0001
respectively) (Figure 5.4Bi). Arterial umbilical blood oxygen also correlated mildly to

the degree of branching (r=-0.47, P<0.05) (Figure 5.4Bi).

It was surprising that no apparent relationship with angiogenesis was found with
overall levels of VEGF and FGF-2 given their strong angiogenic potency. When these
cytokines were analyzed separately for control and FGR groups however, it became
apparent that a significant relationship indeed exists in normal pregnancy. Levels of
VEGF and FGF-2 correlated very strongly with tube formation in controls (r=0.75 and
0.73, p<0.05), however this relationship was decoupled in FGR (Figure 5.4Bii, circles).
VEGF also correlated strongly to the degree of branching in control pregnancies

(r=0.76, p<0.01).

127



Plasma -

Plasma + 5

0.05 PAI-1ab |«

0.25 PAI-1 ab |

1.25 PAI-1 ab

1.25 GAPDH ab

FIGURE 5.5. Angiogenic tube formation assay of HUVECs in the presence of 1%
venous umbilical cord plasma. PAI-1 antibody was added in indicated amounts
(ug/mL) in triplicate wells, and compared to serum free and a GAPDH antibody
control. Representative fields (100x magnification) are shown from one of three
experiments. Quantification of replicate fields is indicated in Figure 5.6.
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FIGURE 5.6. PAI-1 inhibition decreases angiogenesis in utero. Angiogenic tube
formation assay of HUVECs in the presence of 1% venous umbilical cord plasma. PAI-
1 antibody was added in indicated amounts, as well as plasma-free, and GAPDH
antibody control. (A) Quantification of a single experiment after 9 hours incubation.
Representative fields are shown in Figure 5.5. Significant differences from the
Plasma + by one-way ANOVA are indicated. PAI-1 inhibited angiogenesis measured
both by total tube length and branching. (B) Experiments were repeated for six fetal
umbilical cord plasma samples, with and without 1 pg/mL of PAI-1 inhibiting
antibody. Inhibiting PAI-1 decreased total tube length and number of branches
significantly (one-way ANOVA). (*p<0.05, **p<0.01, ***p<0.001)
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To determine if the angiogenic changes observed were directly related to PAI-1
levels, umbilical blood plasma was subjected to various concentrations of a PAI-1
activity inhibiting antibody. Representative fields from the tube formation assay are
shown in Figure 5.5. Incubating umbilical cord with 0.25 pg/mL of antibody was
sufficient to inhibit tube formation, 1.25 pg/mL inhibited tube formation to levels
similar to cells grown in the absence of plasma. Quantifying the inhibition proved the
changes to be significant: 1.25 pug/ml of anti-PAI-1 inhibited the total tube length and
the branches per field ~2-fold (p<0.001 and 0.01 respectively) (Figure 5.6A). The
finding was reproducible across six umbilical plasma samples (Figure 5.6B). PAI-1
inhibition completely disrupted endothelial tube formation to levels similar to
plasma-free conditions, demonstrating the significance of extracellular circulating

PAI-1 levels to angiogenesis.

5.4. DISCUSSION

The finding that the effluent blood plasma from pregnancies with placental
insufficiency is pro-angiogenic is, at first glance, paradoxical, as placental insufficiency
is characterized by diminished chorionic villi. Stimulators of placental angiogenesis
FGF-2 and VEGF were associated with increased angiogenesis in controls, but were
not responsible for the increased angiogenesis observed with FGR plasma. Thus,
although our findings confirm that the role of VEGF in placental insufficiency is
diminished, the discovery that levels of circulating PAI-1 are significantly elevated in

FGR, and that the PAI-1 levels were strongly, positively associated with angiogenesis
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in FGR is novel. Inhibition of PAI-1 reveals the extent of the angiogenic regulatory
role circulating PAI-1 may be playing in the chorionic villi of placental insufficiency, as
well as in other diseases like tumor vascularization. The association of increased PAI-
1 expression with hypoxia demonstrates that its levels are directly regulated by
hypoxic conditions in placental insufficiency through HIF-1 mediated transcription.
Upregulation of PAI-1 in hypoxic conditions of FGR may be an adaptive mechanism to
mitigate the poorly branched placental vasculature in late gestational hypoxia.
Alternatively it may be maladaptive, whereby indiscriminate angiogenesis acts to the
detriment of placental exchange, contributing to poorly branched chorionic villi, and
exacerbating the pathology. It is unknown whether increased fetal PAI-1 in
development may have a negative long-term effect on cardiovascular health in

adulthood.

5.4.1 Sample selection

The samples selected are representative of very severe cases of FGR with placental
insufficiency. The severely reduced umbilical oxygen levels and high carbon dioxide
are indicative of the severely reduced exchange in the placenta. The venous umbilical
cord pO, approximates that of placental oxygen, correlating 0.80 to the placental
levels (19). Similarly, the low birthweight, percentile birthweight, placental weight,
and particularly the increased placental resistance as measured by umbilical Doppler
are hallmarks of FGR pregnancies with placental insufficiency. Increased vascular

resistance in the placenta has been attributed to poor vascularization of the chorionic
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villi (20). Particularly, an absence of branching and an abnormally long capillary tube

lead to increased resistance in the terminal villous tree (1).

5.4.2. Vascular Regulation via VEGF /FGF-2

Angiogenesis in the branching phase is largely attributable to VEGF and FGF-2 (21).
Although the levels of these cytokines did not change between control and FGR
pregnancies, the levels of VEGF and FGF-2 correlated with angiogenic potency in
controls (Figure 5.4Bii). PAI-1 expression is upregulated by VEGF and FGF-2 (11). The
levels of FGF-2, but not VEGF, correlated modestly with PAI-1 levels (Figure 5.2B)
(which in turn were strongly related to angiogenic potency (Figure 5.4A)) in controls
only. This indicates a modest relationship between the expression of angiogenic
cytokines, PAI-1 expression, and angiogenesis in normal pregnancy. Considering that
inhibition of PAI-1 led to decreased angiogenesis, the evidence suggests that plasma
PAI-1 levels are a potent central angiogenic mediator in normal cytokine mediated

angiogenesis in the placenta.

Because neither VEGF nor FGF-2 increase in FGR, nor correlate to angiogenesis, nor
PAI-1 expression in FGR, it is also apparent that changing levels of angiogenic
cytokines do not account for the increase in angiogenesis seen in FGR. Since VEGF is
regulated downstream of HIF-1, it is surprising that it does not increase in hypoxic
conditions of FGR. Likewise, levels of VEGF (or FGF-2) do not correlate to the level of

hypoxia in the blood (data not shown). Although this is surprising, it mirrors findings
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by others who have also observed similar phenomena in FGR (7, 8). Thus while VEGF
and FGF-2 are strong plasma mediators of angiogenesis in normal pregnancy,

alternative mechanisms regulate the increased angiogenesis in FGR.

5.4.3. Vascular regulation via PAI-1 in hypoxic conditions

Angiogenesis is negatively regulated by hypoxia. The oxygen saturation in our blood
samples (Figure 5.2C) directly correlated to tube length and the degree of branching
(Figure 5.4Bi). PAI-1, like VEGF, is also upregulated via HIF-1 in hypoxia (17). PAI-1
levels moderately negatively correlated with venous oxygen levels (Figure 5.2A). PAI-
1 levels in turn, were most strongly associated with angiogenesis (Figure 5.4A). The
inhibition of PAI-1 led to drastically decreased angiogenic potential, demonstrating
clearly the significance of circulating levels of PAI-1 to angiogenic regulation. Dosing
umbilical plasma with 1.25 pg/mL of inhibiting antibody was sufficient to largely
reverse plasma-induced angiogenesis in vitro. This is especially significant when
considering the range of PAI-1 in normal pregnancy, compared to FGR with placental
insufficiency. The range spans ~0-40 ng/ml in normal pregnancy, while in FGR it
reaches nearly double that (Figure 5.1A). The total inhibition of PAI-1 then is not
dissimilar to the PAI-1 levels in some control pregnancies (< 1ug/mL). Nor is the
difference between control and FGR levels miniscule; a 4-fold increase in circulating
PAI-1 levels in FGR could very plausibly have an effect on regulation of the chorionic

villi based on these findings.
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PAI-1 has been shown to be potently pro-angiogenic in doses approximating
physiological. PAI-1 is thought to be pro-angiogenic by blocking excessive plasmin
degradation of the ECM providing a stable platform for cell migration, proliferation,
and vessel maturation (22). It additionally has a vitronectin binding function that may
block the binding of endothelial integrins. PAI-1 is strongly associated with tumor
vascularization, where its increased levels have been associated with poor prognosis
(12, 23, 24). Mice lacking PAI-1 prevent invasion and vascularization of transplanted
malignant tumors (25). It is required for post-ischemic injury angiogenesis in the
retina in a murine model of angiogenesis (13). Recent studies have found that PAI-1
knockout mice have transiently reduced maternal and fetal-placental vasculature
(14). Although it is unknown to what extent PAI-1 levels may affect angiogenesis in
the chorionic villi of human pregnancies, it can be inferred from the preceding
studies and the findings presented here that it is very likely to have a strong

regulatory role.

5.4.4. Summary

Elevated PAI-1 is a negative prognostic indicator for cancer, and it has been
hypothesized that the levels of PAI-1 promote tumor vascularization. Here,
circulating PAI-1 levels were directly correlated to their angiogenic potency.
Specifically, PAI-1 was found to be elevated in effluent placental plasma of newborns
with fetal growth restriction caused by placental insufficiency. It was shown that PAI-

1 levels determined the angiogenic potency of the placental plasma. Finally, this
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increase in PAI-1 was demonstrated to be related to the hypoxic conditions of the
pregnancy. These data together show that circulating fetal PAI-1 levels are a central
mediator of angiogenesis, dually regulated by angiogenic cytokines VEGF and FGF-2
in normal pregnancy, and highly upregulated via hypoxia in placental insufficiency.
PAI-1 may be contributing to the vascular pathology of the placental chorionic villi
vasculature in FGR pregnancies with placental insufficiency. It remains to be
determined whether the upregulation may have a mitigating effect on placental
exchange or exacerbate the pathological blood flow resistance by contributing to

elongated, but poorly branched, chorionic villi observed in placental insufficiency.
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CHAPTER 6

Maternal and fetal vascular inflammation in placental insufficiency: VCAM-1
as a marker of placental health
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6.1. INTRODUCTION

Endothelial activation has important roles in angiogenesis and in vascular
reorganization. The cellular adhesion molecules (CAMs) E-selectin, VCAM-1 and
ICAM-1 are up-regulated by the endothelium, and are known to recruit leukocytes
following injury. More recently they have been shown to contribute to angiogenesis
by recruitment of endothelial progenitors in circulation (1, 2, 3). Soluble levels of
VCAM-1 and ICAM-1 have been demonstrated to up-regulate angiogenesis (4, 5).

Their involvement in tumor vascularization is an area of ongoing interest (6, 7).

In the placenta, CAMs are thought to be critical for normal vascular function. VCAM-
1, for example, is required for blood vessel formation (8). A murine model lacking
VCAM-1 results in embryonic lethality due to vascular malformations in the placenta
(9, 10). ICAM-1 up-regulation is critically important for angiogenesis following
ischemic injury (1, 2). CAMs E-selectin, VCAM-1 and ICAM-1 are expressed with
increasing levels of VEGF and FGF-2 via NF-kB (11, 12). They are also potently

upregulated by inflammatory cytokines.

The perturbation of normal vascular development in placental insufficiency leads to
malformation of the placental vasculature. Elongated, poorly branched chorionic villi
exhibit increased resistance, leading to absent or reversed blood flow and poor
perfusion of the fetal-placenta. In these conditions, there is strong evidence of
maternal or fetal placental-vascular inflammation (13). Inflammation leads to
endothelial activation, marked by expression of cellular adhesion molecules (CAMs).

Continuous activation causes endothelial dysfunction and aberrant angiogenesis,
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which contributes to the pathology of many diseases, such as rheumatoid arthritis
and inflammatory bowel disease (12, 14, 15). Aberrant inflammation leading to
endothelial dysfunction is hypothesized to be contributing to placental insufficiency,
and there has been much evidence to suggest maternal and fetal-placental

inflammation is occurring.

Bartha and others found elevated levels of TNF-a in mother’s serum of 14 FGR
women with placental insufficiency, but not without (16). Maternal polymorphisms in
anti-inflammatory or inflammatory cytokines has been associated with increased risk
of FGR (17, 18, 19). There is increased endothelial activation as well. It was found that
all three of VCAM-1, ICAM-1 and E-selectin were increased 1.5 to 3-fold in the
maternal plasma of pregnancies with FGR, however there was no change in the levels
of IL-6 and TNF-a. In FGR with preeclampsia, all of the three CAMs as well as IL-6 and

TNF-a were increased (20).

In the fetal placenta, the inflammation may be more pronounced. Holcberg and
others found a 10-fold increase in secretion of TNF-a in vascular perfusions of FGR
placenta compared to control pregnancies (21). A recent study found levels of IL-6
but not TNF-a to be elevated in the umbilical cords of SGA infants compared to AGA
(22). The expression of inflammatory cytokines IL-6, II-8, and the suppressors of
cytokine signaling (SOCS) 2 and 3 were found to be increased in the endothelium of

the fetal-placental microvasculature in placental insufficiency (23).

The increased inflammation may be brought about by conditions of hypoxia. Hypoxic

treatment of placental villous explants has been shown to induce expression of
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inflammatory cytokines (24). In the maternal intervillous space in placental
insufficiency, poor exchange leads to supraoxic conditions as the fetus fails to extract
oxygen from the maternal supply (25). Maternal inflammation then may be

associated with localized supraoxic conditions.

Markers of placental inflammation detectable in the placental blood that correlate to
hypoxia would be ideally suited as a marker of placental health. There has been
considerable interest in the discovery of biomarkers of FGR (7, 26, 27, 28, 29). The
discovery of a biomarker that may be used in a maternal blood based screening test
for the detection of FGR however remains to be elucidated. In this study, we
determined the suitability of vascular CAMs as markers of placental health. We first
established the degree of maternal and fetal vascular inflammation in severe FGR
pregnancies with placental insufficiency by measuring soluble CAMs. We then
determined the association of inflammatory cytokines IL-6 and TNF-a expression to
hypoxic conditions at delivery, and the degree to which these cytokines are

associated with altered CAM expression.

6.2. MATERIALS AND METHODS

6.2.1. Subject recruitment

Pregnant women admitted for care at St. Joseph’s Hospital, London, ON Canada were
recruited for this study. This study was approved by the Human Ethics Review Board

of The University of Western Ontario and conducted with written informed consent
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from participants. Pregnancies with placental insufficiency and suspected growth
restricted fetus were included. Antenatal identification of pregnant women in the
FGR group was based on last trimester-estimated weights of the fetuses as
determined by fetal biometric ultrasound measurements. Gestational age (GA) was
determined by certain last menstrual date of mothers or the first trimester
ultrasound crown rump length. Placental insufficiency was determined by abnormal
umbilical artery Doppler (30). Fetal growth was compared using the Canadian growth
chart for estimation of fetal weight less than the 10™ percentile (31). At birth, the
percentiles were calculated and confirmed based on their respective gender and GA
using standardized growth charts for birth weight (31). Mothers of FGR pregnancies
were otherwise healthy. Abruption placenta, fetal congenital abnormalities, fetal
infection, preeclampsia, drug use, and maternal diabetes were all exclusion criteria

for the study.

6.2.2. Plasma collection

Plasma was collected by venipuncture from the mother just prior to delivery, and
from the fetus via the venous umbilical cord immediately following delivery of the
placenta, after clamping the vessel. Healthy pregnancies were selected for controls
based on matching gestational age. Samples were collected in EDTA coated tubes,
centrifuged at 2000 x g for 15 min at 4°C and clear plasma samples saved in small

aliquots at -80°C.

142



Birthweight percentiles were calculated post-delivery. The average birthweight was
less than the 2" percentile for FGR patients, and all GA matching control
birthweights selected to be above the 25" percentile. All deliveries were performed
with either epidural or spinal anesthetic or were natural deliveries. Pathological
reports for the placentas were negative for signs of infection, major infarcts, or other
gross anomalies. Umbilical blood gas levels were also abstracted from the chart for

all but one patient (FGR group).

6.2.3. Protein measurements and statistical evaluations

All total protein quantifications were by Bradford method (BioRad). IL-1B, IL-6, TNF-a,
E-selectin, VCAM-1, and ICAM-1 were measured by an immunological-based
fluorescent multiplex assays (Human CVD and MPXHCYTO, Millipore, Billerica, MA,
USA) using a Bio-Plex 200 system (Bio-Rad), which utilizes Luminex® xMAPTM
fluorescent bead-based technology (Luminex Corp., Austin, TX). Levels were
automatically calculated from standard curves using Bio-Plex Manager software
(v.4.1.1, Bio-Rad). Statistics were performed using GraphPad Prism 5 (Graph Pad
Software Inc, CA, USA). To compare means, t-tests, paired t-tests, Mann-Whitney, or
one-way ANOVAs were used where appropriate. Pearson’s Correlation compared
proteins’ levels to each other, to the blood oxygen levels, placenta weight,

birthweight, and several other metrics abstracted from the clinical charts.
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TaBLE 6.1. Characteristics of FGR and gestational age-matched control pregnancies
from which maternal and venous umbilical cord blood samples were collected.

Fetal Maternal
Control FGR Control FGR
Subjects (n) M/F 6/5 6/3 6/6 5/4
Total: 11 9 12 9

Delivery  Vag./ces. 6/5 7/2 7/5 4/5

Birthweight (g) 2170 (670) 1453* (624) 2343 (854) 1738 (733)
Gestational age (wks) 33.7 (3.7) 34.0 (4.3) 345(4.7) 35.6(4.9)

Birthweight percentile 53 (19) 1.7*%**(2.9) 40.0 (25) 1.0***(1.5)
Placental weight (g) 532 (124) 385% (173) 514 (121) 385* (170)
Placental Resistance* 0.63 (0.09) 0.99**(0.24) 0.63 (0.10) 0.92* (0.28)

Blood gases
Arterial: pO2 (Torr) 19.6 (6.2) 13.2* (4.7) 17.4 (4.0) 14.6 (4.1)

pCo2 (Torr) 47.9(6.2) 55.1*(4.9) 51.1(6.3) 51.7(7.7)

pH 7.29 (0.04) 7.25(0.05) 7.28 (0.05) 7.26 (0.04)

Venous: pO2 (Torr) 34.7 (6.5) 22.6*** (4.5) 35.6(7.4) 25.1** (6.3)
pCO2 (Torr) 32.6(6.7) 45.0%** (3.9) 32.4(9.8) 42.0*(5.1)

pH 7.34(0.03) 7.32*(0.03) 7.34(0.02) 7.33(0.03)

Maternal BP  Systolic 113 (11)  133* (17) 117 (13) 124 (23)
Diastolic 71 (8) 81 (17) 72 (110) 85 (20)

APGAR (5 min) 8.8(0.4)  83(1.4) 8.7(0.8)  8.4(1.0)

Comparison of means by t-test (*p<0.05, **p<0.01, ***p<0.001). Standard
deviation is indicated in brackets. *Placental resistance index from the last umbilical
cord Doppler ultrasound prior to delivery, which was performed for all FGR, but only
7 controls.
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FIGURE 6.1. Fetal venous umbilical cord plasma levels of proteins in FGR (n=9)
samples compared to controls (n=11). (A) Endothelial activation markers (B)
Inflammatory cytokines. (t-test, *p<0.05, **p<0.01. Whiskers indicate range.)
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6.3. RESULTS

Maternal blood was collected by venipuncture at time of delivery from severe FGR
mothers with placental insufficiency. Following delivery, effluent placental blood was
taken from the umbilical vein. Healthy pregnancies were selected based on matching
GA within one week for each of the FGR samples collected. FGR pregnancies were
very severe with a significantly smaller percentile birthweight compared to controls,
which on average was much lower than the 3" percentile (Table 6.1). FGR
pregnancies also had significantly smaller placental weight. The placental resistance
index for FGR pregnancies was significantly higher for FGR patients when measured
in the week prior to delivery. All FGR patients were determined to have placental
insufficiency, and an absence of preeclampsia. The reduced venous oxygen and
increased carbon dioxide in venous umbilical cord is indicative of the poor

maternal/fetal exchange.

The levels of markers of vascular inflammation E-selectin, VCAM-1 and ICAM-1, along
with their inflammatory cytokine regulators 1I-18, II-6, and TNF-a were measured
using a highly sensitive Luminex multiplex fluorescent assay. The cellular adhesion
molecules E-Selectin and ICAM-1 increased ~2-fold in FGR compared to control
(p<0.05 and p<0.01 respectively) (Figure 6.1A). Their inflammatory cytokine
regulators were also increased (Figure 6.1B). IL-1B increased at least 3-fold, although
it is impossible to determine precisely as all controls were below the sensitivity limits
of the assay (p<<0.01) (Figure 6.1B). Cytokines II-6 and TNF-a, also increased

approximately 5-fold and 2-fold (p<0.001 and 0.05 respectively) (Figure 6.1B).
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FIGURE 6.2. Changing levels of inflammatory cytokines by delivery type. Labor (either
induced or spontaneous) compared to elective deliveries. (A) There was no
difference in IL-1B in the FGR group. (B) Controls had significantly reduced levels of
IL-6 regardless of labor mode. (C) Levels of TNF-a were unchanged. (one-way
ANOVA, Tukey's post test, *p<0.05, **p<0.01. Standard error indicated).
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FIGURE 6.3. Increased levels of circulating cytokines strongly relate to increased
endothelial activation. (A) TNF-a increased expression of E-Selectin, VCAM-1, and
ICAM-1 strongly (r=0.50, 0.75, and 0.73, p<0.05, 0.001, and 0.001 respectively). (B)
IL-6 increased the expression of E-Selectin and ICAM-1 as well (r=0.66 and 0.60,
respectively, p<0.01). (open: Control, closed: FGR).
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As the levels of IL-6 have been reported to increase in labor (32), the measurements
of cytokines were separated by delivery type. Delivery following labor (either induced
or natural, either vaginal delivery or subsequent caesarean section), and elective
caesarean section were evaluated separately (Figure 6.2). Although IL-6 appeared to
increase between the labor and elective groups for both controls and FGR, the
difference was not significant with the number of samples analyzed (elective
caesarean n=4, labor n=7). Regardless of either labor or elective birth however, the

FGR group was highly elevated compared to control for IL-6 (Figure 6.2).

The increased levels of cytokines appeared to be causing endothelial activation in the
fetal-placental vasculature. Increased IL-6 in the fetus correlated with both E-selectin
and ICAM-1 levels (r=0.57 and 0.55, p<0.01 and 0.05 respectively) (Figure 6.3B).
Similarly increased levels of TNF-a were also correlated (r=0.49 and 0.74, p<0.05 and
0.001 respectively) (Figure 6.3A). Despite the levels of VCAM-1 not being significantly
increased, the expression of VCAM-1 was highly dependent on the levels of
circulating TNF-a levels in the fetus (r=0.73, p<0.001), but not levels of IL-6 (Figure

6.3A).

Increased cytokine-mediated vascular inflammation is partially caused by conditions
of hypoxia. Both IL-6 and TNF-a levels increased as venous umbilical cord oxygen
levels decreased (r=-0.51, and -0.71, p<0.05, and 0.001 respectively) (Figure 6.4).
Similarly, levels of ICAM-1 were increased in hypoxia (Figure 6.4). The association of

increased ICAM-1 levels with hypoxia may be a result of intermediary inflammatory
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FIGURE 6.5. Maternal levels of cellular adhesion molecules (CAMs) correlate to
physiologic metrics of the pregnancy. (A) E-selectin is negatively correlated to
placental size (r=-0.50, p<0.05) (i). Its levels are increased in FGR relative to placental
size (ii). (B) (i) Levels of VCAMs correlate to birthweight (r=0.75, p<0.01), placental
weight (r=0.70, p<0.01) and gestational age (r=0.73, p<0.01) in normal (control)
pregnancies. (ii) Maternal levels of VCAM-1 are stable and proportional to the size
of either the fetus or the placenta in control pregnancies, but are upregulated in FGR
pregnancies relative to fetal/placenta size (Wilcoxon, *p<0.05, **p<0.01. Whiskers
indicate range) (open Control, closed FGR).
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cytokines upregulation in hypoxia. ICAM-1 was strongly induced by IL-6 and

particularly TNF-a level (Figure 6.3A).

To assess if the vascular inflammation was confined to the fetal-placental
vasculature, the maternal plasma was assessed as well. None of the CAMs or
inflammatory cytokines was increased (Supplemental Figure 6.1). Similarly, there was
no correlation of maternal expression of any of the CAMs or inflammatory cytokines

between mothers and the matching blood of their fetus (n=6 FGR and 6 control).

Nevertheless, there was a significant relationship between the expression of CAMs
and metrics of fetal-placental size at birth. For E-selectin, there was increased
circulating levels in the mother who had a smaller placentas (r=-0.50, p<0.05) (Figure
6.5Ai). This indicates a greater degree of endothelial activation in the placenta of FGR
mothers with placental insufficiency. E-selectin is therefore increased with placental
malfunction; smaller FGR placentas have disproportionately increased E-Selectin

expression (~1.5 fold, p<0.05) (Figure 6.5Aii).

For VCAM-1 there was an increase in its expression strongly proportional to both
placental weight (r=0.70, p<0.01), and also birthweight (r=0.75, p<0.01), as well as to
gestational age (r=0.73, p<0.01) (Figure 6.5Bi). Unlike for E-selectin, these
associations were observable very strongly in controls. FGR VCAM-1 levels were
decoupled from these metrics, and instead appeared aberrantly elevated. This is
suggestive that VCAM-1 expression increases as part of normal placental growth and
development. Assuming the changing VCAM-1 levels are related to placental

expression, increasing VCAM-1 with placental weight is logical as the vascular bed is
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FIGURE 6.6. Maternal levels of VCAM-1, as a candidate biomarker of placental
distress. (A) Close association of VCAM-1 with birthweight (Figure 6.5Bi) was used to
normalize the control and FGR data for expected levels given birthweight. VCAM-1
levels normalized by birthweight show significant elevation of VCAM-1 in placental
insufficiency. (B) (i) GA effects show that VCAM-1 is elevated in FGR, particularly
before the last month of pregnancy. (ii) Normalizing by birthweight accentuates the
GA differences between earlier GA FGR and later GA FGR. (Wilcoxon or ANOVA with
Tukeys post test, *p<0.05, **p<0.01, ***p<0.001. Whiskers indicate range.) (Open:
Control, Closed: FGR).
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increased. Likewise, birthweight is strongly correlated to placental size, and increased
VCAM-1 would also be expected as the placental vasculature continues to develop
later in gestation. In FGR then, VCAM-1 is 1.5 to 2-fold more highly expressed in the
maternal circulation relative to the size of the placenta (p<0.01) and also the fetus

(birthweight, p<0.05) (Figure 6.5Bii).

Elevated levels of VCAM-1 in the mother’s circulation relative to the fetal size may
therefore be predictive of placental development. Although placental size is difficult
to assess prior to delivery, fetal size is estimated routinely in pregnancy by
ultrasound. A high level of VCAM-1 for the estimated fetal weight may therefore be a
metric that distinguishes the control and placental insufficiency pregnancies more
distinctly. To assess this possibility, we normalized the levels of VCAM-1 by
birthweight, adjusting for the slope (0.1688 ng/mL VCAM-1 per g birthweight) of the
line of best fit for the birthweight vs VCAM-1 relationship (Figure 6.5Bi). The results
show clearly that in FGR there is a two fold increase in circulating maternal VCAM-1
relative to birthweight that is significant at delivery (p<0.01) (Figure 6.6A). To assess
the differences before the prenatal period, when they would be of predictive value,
the samples were separated into the perinatal period (>34 weeks) and pre-perinatal
period (<34 weeks). VCAM-1 expression without normalizing by birthweight showed
distinct, significant differences between control and FGR in the pre-perinatal period,
but not in the perinatal period (Figure 6.6Bi). Normalizing by birthweight
accentuated this difference from 2.5-fold (p<0.1) to 3.5-fold (p<0.001) (Figure 6.6Bii).

VCAM-1, when normalized for birthweight, was also higher in FGR in pre-perinatal
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period than it was in either control or FGR in the perinatal period (p<0.001) (Figure

6.6Bii).

The results suggest that VCAM-1 expression may peak relative to placental size in the
pre-perinatal period when placental vascular development is most active. Whereas in
normal pregnancy VCAM-1 expression may stay stable or increase from the pre-
perinatal to perinatal period, the results show that in placental insufficiency, VCAM-1
is highly elevated in the pre-perinatal period, and may in fact decrease in the

perinatal period.

6.4. DISCUSSION

The results show there is substantial vascular inflammation of the fetal vasculature in
placental insufficiency, and that this inflammation is closely correlated to a strong
upregulation of inflammatory cytokines. Here we directly associated the vessel
inflammation to hypoxic conditions of the placenta, measured in effluent placental
blood at delivery. Hypoxic-mediated up-regulation of inflammatory cytokines is at
least partially causal of vessel inflammation, as their expression negatively correlated
to oxygen tension. The data furthermore confirm that there is some maternal
vascular inflammation. The expression of CAMs relative to placental size indicates its
localization at the maternal fetal interface. Finally we identify maternal soluble levels
of VCAM-1 as a molecule with the potential for a predictive role in determining the

presence of placental failure.
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6.4.1. Fetal Inflammation

There is a large degree of vascular inflammation in the fetus, indicated by the highly
elevated levels of the cytokines IL-1B, II-6, and TNF-a, and CAMs E-selectin, and
ICAM-1 in the FGR fetus. The results shown here are similar to previous findings of
inflammation, however we were able to directly associate IL-6, TNF- a, and ICAM-1
expression with the degree of venous umbilical hypoxia. Venous umbilical cord pO,
approximates that of the placenta, correlating 0.80 to the placental levels (33).
Furthermore, there was a strong correlation of circulating 1I-6 and TNF-a to the CAMs
demonstrating that the upregulation of the CAMs is strongly related to cytokine-

mediated inflammation in placental insufficiency.

Continual endothelial activation via TNF-a and IL-6 causes endothelial dysfunction.
However, it has also been shown to induce endothelial sprouting (14). TNF-a has pro-
angiogenic effects in the presence of cofactors in vivo (34). It has also been shown
that TNF-a directly primes endothelial cells for an angiogenic response following
inflammation, initially suppressing VEGF signaling until the inflammation has cleared
(35). Recent findings have shown that TNF-a induces vascular remodeling in a murine
model of chronic inflammation (36). Under conditions of chronic inflammation,
normal angiogenesis may be suppressed and vessel remodeling induced in the
placental microvasculature. Although it is apparent that inflammation has some pro-

angiogenic effect, chronic inflammation, and the accompanying endothelial
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dysfunction, in placental insufficiency may be detrimental to normal vascular

development and maternal/fetal exchange.

6.4.2. Maternal Inflammation

Although vascular inflammation on the maternal side was not obvious from changing
levels of CAMs or inflammatory cytokines, there was an increase of VCAM-1 and E-
selectin expression relative to placental size. The inflammation therefore appears
minimal compared to the fetal inflammation. Like others (20, 37), and unlike what is
observed in the fetus, we found no relationship between the levels of cytokines and
the CAM expression in the mother. Bartha and others found an increase in TNF-a
levels in the maternal circulation (38). The disparity may be in the episodic nature of
cytokine production compared to sustained tissue inflammation, the relatively short
half-life in circulation compared to other proteins, and the proximity of the site of
sampling in the mother’s arm (antecubital venipuncture) from the site of
inflammation, the maternal-placental circulation. In the fetus by comparison, there is
greater inflammation apparent because the sampling is the effluent placental plasma
directly, and also that chronic hypoxia may be leading to more systemic and severe

inflammation.

In placental insufficiency, maternal blood in the intervillous space and blood
returning to the mother’s heart via the uterine veins is supraoxic as the fetal

chorionic villi have failed to extract sufficient oxygen and nutrients from the maternal
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supply (25). Oxidative stress causes inflammation and cytokine production via ROS-
mediated NF-kB activation. The syncytiotrophoblast expresses E-Selectin, VCAM-1,
and ICAM-1 (39), and therefore conditions of transient placental oxygen, or fetal
hypoxia, may be leading to their production. Other factors may also be implicated.
The release of syncytiotrophoblast membrane fragments has been suggested. It has
also been shown that primary trophoblast cells from complicated pregnancies can
induce endothelial activation in maternal post-placental vessels by secretion of

chymotrypsin-like proteases (40, 41).

6.4.3. VCAM-1 as a Biomarker
Plasma levels of both soluble E-selectin and VCAM-1 are pro-angiogenic in a sialyl
Lewis-X dependent mechanism (42). VCAM-1 is expressed only in very low amounts
from endothelial cells in mature quiescent vasculature, however is rapidly up-
regulated in inflammation or injury, or conversely in angiogenesis (8, 43). VCAM-1
deletion is embryonic lethal in mice due to its importance to vascular formation in
the placenta (9, 10). Importantly, it is expressed from proliferating endothelial cells,
and it is required for blood vessel formation (8). VCAM-1 expression correlates to
placental weight in controls but not FGR, and increases with GA, indicating that
VCAM-1 is functioning in normal placental vascular development. Taken together, it
strongly suggests that VCAM-1 increases are indicative of ongoing vascular expansion
associated with placental growth, and therefore VCAM-1 changes in circulation are

caused by events in the placental vasculature. Although increased VCAM-1 with
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placental size and GA may be normally related to angiogenesis, its increase in FGR
was in a manner unrelated to GA or placental weight. Its increase in expression in

FGR may be due to localized inflammation.

The discovery of VCAM-1 levels tracking the progression of placental vascular
development reveals a potential biomarker for monitoring placental health. As
VCAM-1 is expressed minimally in quiescent vasculature, its blood plasma levels may
reflect placental angiogenic or inflammatory changes very sensitively. Indeed, the
levels of VCAM-1 in normal pregnancies have minimal variability when birthweight
and placental weight are considered (Figure 6.5Bii). By testing maternal plasma
VCAM-1 levels at regular intervals throughout gestation, the detection of a decrease
in VCAM-1, particularly late in gestation, may indicate placental failure. Establishing
typical VCAM-1 levels by estimated fetal weight may increase the predictive power of
VCAM-1. A large prospective study to monitor VCAM-1 throughout gestation is
therefore suggested to establish its predictive potential. Furthermore, combining the
fetal weight estimates, done routinely by ultrasound, with VCAM-1 levels into
standardized expected VCAM-1 levels for the fetal size is the antecedent step in

determining its baseline expression utility.
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CHAPTER 7

Hypoxia and leucine deprivation induce human insulin-like growth factor
binding protein-1 hyperphosphorylation and increase its biological activity

A version of this chapter has been published, and is reproduced here with permission.
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7.1. INTRODUCTION

IGF binding protein (IGFBP)-1 is a major IGFBP in pregnancy that modulates the
cellular actions of IGFs (1). IGFBP-1 is synthesized predominantly by the maternal and
fetal liver and by the maternal decidua during pregnancy (2, 3). Recent in vivo data
show that fetal overexpression of IGFBP-1 inhibits fetal growth in mice (4, 5) and that
IGFBP-1 contributes to fetal growth restriction (FGR) by inhibiting IGF-mediated fetal

growth (6-9).

IGFBP-1 is a metabolically regulated protein and is suggested to have an important
role in glucose homeostasis (10). The expression of IGFBP-1 is dynamically influenced
by nutritional status, increasing during fasting, malnutrition, and diabetes while
decreasing upon insulin treatment (11-13). Inhibition of IGFBP-1 production by
insulin (14, 15) is one of the potential mechanisms in regulation of fetal growth (16-

18).

Recent studies also suggest that induction of the IGFBP-1 expression under hypoxia
and other catabolic conditions is an evolutionarily conserved mechanism. The
biological significance of IGFBP-1 induction is to reduce the availability of IGFs to their
receptors, and to divert the limited energy resources away from growth and

development toward those metabolic processes essential for survival (7, 9, 19, 20).

The biological effect of IGFBP-1 depends not only on the total protein levels, but also
on its proteolysis (21) and phosphorylation state (22, 23). It has been reported that

phosphorylation of IGFBP-1 at certain sites can increase its binding affinity for IGF-I
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and, thus, restricts IGF-I's bioavailability for binding its receptor (24). In addition,
phosphorylation makes IGFBP-1 more resistant to proteolysis (25), therefore,

accentuating its inhibitory effect on IGF-I.

Exposing HepG2 cells to hypoxia and leucine derivation treatment significantly
induced IGFBP-1 mRNA and protein expression (26-28), however, it is not clear
whether hypoxia and leucine deprivation treatments also affect the phosphorylation
states and biological activity of IGFBP-1. The objectives of this study were to examine
possible changes in IGFBP-1 phosphorylation status induced by hypoxia and leucine
deprivation, determine the major phosphorylation sites, and investigate the

biological and physiological relevance.

7.2. MATERIALS AND METHODS

7.2.1. Materials

All chemicals used were of electrophoresis or analytical grade. Human hepatocellular
carcinoma cell line HepG2 and human embryonic kidney (HEK) 293 cells were
purchased from American Type Culture Collection (Manassas, VA). Anti-human
IGFBP-1 monoclonal antibody (Mab 6303) was from Medix Biochemica (Kauniainen,
Finland), and antihuman IGFBP-1 polyclonal was a gift from Dr. R. Baxter of the
Kolling Institute of Medical Research (Sydney, Australia). Horseradish peroxidase
(HRP)-conjugated secondary antibodies were goat anti-rabbit or goat anti-mouse

(Bio-Rad Laboratories, Inc., Hercules, CA). ELISA kits for total, and serine
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phosphorylated IGFBP-1, were obtained from Diagnostic Systems Laboratories, Inc.
(Webster, TX). The total albumin ELISA kit was from Bethyl Laboratories, Inc.
(Montgomery, TX). The total protein was measured by Bradford assay (Bio-Rad

Laboratories).

Phosphopeptide enrichment was performed using titanium dioxide (TiO,)
(Titansphere TiO; GL Sciences Inc., Tokyo, Japan). The interaction of IGF-I and IGFBP-1
was analyzed using surface plasmon resonance (SPR) using Biacore X instrument
(Biacore, Inc., Piscataway, NJ) with sensor chips CM5. The amine coupling was
performed using N-hydroxysuccinimide, N-ethyl-N-(3-diethylaminopropyl)
carbodiimide, and ethanolamine hydrochloride. The sensor chips and all the
chemicals for Biacore were from GE Healthcare Bio-Sciences AB (Piscataway, NJ).
Recombinant human IGF-I (rIGF-1) was a gift from Dr. George Bright of Tercica Inc.

(Brisbane, CA).

7.2.2. HepG2 cell culture and treatment conditions

HepG2 cells were grown at 37°C under 95% air, 5% CO, in DMEM/F-12 with 10%
(vol./vol.) fetal bovine serum (FBS) (Life Technologies, Inc.; Invitrogen Corp.,
Carlsbad, CA). Cells grown to approximately 90% confluence were trypsin digested,
counted, re-plated on 100 x 20 mm plates (Falcon; BD Biosciences, Franklin Lakes, NJ)
at a density of 1.4 x 10* cells per mL, and incubated in DMEM/F-12 containing 10%

FBS for 24 h until approximately 70% confluence.
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Hypoxic treatments

Before hypoxic treatment, the cells were rinsed twice and incubated for 3 h in FBS-
free DMEM/F-12. The media were then replaced with new FBS-free DMEM/F-12 and
cells immediately placed in a modular incubator chamber (Billups-Rothenberg Inc.,
Del Mar, CA) that was flushed with 1% O,, and 5% CO, with the bulk N,. The cells in
the sealed hypoxic chamber were placed in the incubator (20% O,) with cells cultured
normally (controls). Oxygen content in the hypoxic chamber was monitored at 12-h
intervals with a Hudson 5590 Oxygen Monitor (Hudson, Ventronics Division,
Temecula, CA). The partial pressure measurements for pO, and pCO,, as well as pH
evaluations, were made using an ABL700 series blood gas analyzer (Radiometer,
Copenhagen, Denmark). After treatment, conditioned media (CM) were collected at
48 h (26, 27). Samples were centrifuged at 1200 rpm for 10 min and aliquots of the

supernatants stored at —20° C.

Leucine deprivation treatments

Media containing various concentrations of the essential amino acid leucine were
prepared from DMEM/F-12 lacking methionine, leucine, lysine, and glutamine, and
various salts (Sigma-Aldrich Corp., St. Louis, MO). Cell media were formulated by
adding the missing amino acids and salt components to make it consistent with

normal DMEM/F-12, except for leucine, which was added in 450 (equivalent to
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DMEM/F-12), 140, 70, and 0 uM concentrations. Once cells were approximately 70%
confluent, they were washed and incubated for 3 h with the specially formulated
FBS-free DMEM/F-12 (with 450 uM leucine). Cells were then rinsed with FBS-free
DMEM/F-12 (0 puM leucine) and finally incubated with FBS-free DMEM/F-12
containing various concentrations of leucine as described earlier. The CM were
collected after 16 h incubation (27), centrifuged at 1200 rpm for 10 min, and stored

at-20°C.

7.2.3. Western immunoblot and ligand blot analysis for IGFBP-1

All protein separations were conducted using 1.5 mm 12% sodium dodecyl sulfate
polyacrylamide gels using MagicMark XP (Invitrogen) MW marker. Crude amniotic
fluid from a healthy pregnancy was used as a positive control. For IGFBP-1
expression, equal volumes (10 or 15 ul) of direct CM samples were obtained from
cells grown in incubator air (20% 0;) and hypoxia (1% O,), and from cells cultured
with leucine (450 uM leucine) and leucine deprived (0 uM leucine) conditions in all
analysis unless specified otherwise. Immunoblot analysis was performed using wet
transfer (29), and membranes were blocked using 4% BSA. IGFBP-1 Mab 6303
(1:10,000 dilution) was used as the primary antibody and HRP-conjugated goat anti-
mouse 1gG (1:8,000 dilution) as the secondary antibody. Western Lighting Enhanced
Chemiluminescence (ECL) Reagent Plus (PerkinElmer, Boston, MA) and Kodak XOMAT

LS films (Eastman Kodak Co., Rochester, NY) were used for detection of proteins.
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To detect other IGFBPs, 5 pl CM sample from HepG2 cells was used for ligand blot
analysis using biotin-labeled rIGF-1 (10 ng/ml) (30). Crude amniotic fluid was used as a
positive control, and proteins were detected using HRP-conjugated streptavidin

(1:2000 dilution) and the ECL Reagent Plus kit.

For 2-D immunoblots, equal volumes (100 ul) of CM were desalted and concentrated
10-fold using 10-kDa MW cut-off (MWCO) Centricon tubes (PALL Life Sciences, Ann
Arbor, MI). Desalted samples were reconstituted with rehydration buffer {8 M urea,
2% (3-[(3-cholamidopropyl) dimethylammonio]- 1-propanesulfonate (CHAPS) (Bio-
Rad), 50 mM dithiothreitol, 0.2% Biolyte (Bio-Rad), (pH 3—10 ampholyte), and 0.001%
bromophenol blue} and transferred onto a polyvinylidene fluoride membrane by wet
transfer (31). Membranes were blocked in 4% non-fat dry milk and then incubated
overnight with IGFBP-1 polyclonal antibody (1:10,000 dilution). The goat anti-rabbit
HRP-conjugated antibody (1:8000 dilution) was used as a secondary antibody, and

proteins were visualized using the ECL Plus system.

The 16-bit digital images of the gels and immunoblots were acquired in the linear
range under white light using the FluoroChem 8800 imaging system (Alpha Innotech
Corp., San Leandro, CA). Three-dimensional (3-D) qualitative evaluation of IGFBP-1
isoforms on the blots was performed using PG220 software (Nonlinear Dynamics Ltd.,

Newcastle upon Tyne, UK).

The phosphorylation state of IGFBP-1 in CM was confirmed by pre-treatment of the
samples (100 ul) with calf intestinal alkaline phosphatase (AKP) (Sigma-Aldrich) (200

U) for 6 h at 37 C. The reaction was stopped by addition of rehydration buffer. The
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de-phosphorylated protein samples were further analyzed for IGFBP-1 isoforms using

2-D immunoblotting as described previously.

7.2.4. Immunoassays for total and phosphorylated IGFBP-1

The phosphorylated IGFBP-1 ELISA is based on first capturing total phosphorylated
and non-phosphorylated IGFBP-1 with an anti-IGFBP-1 monoclonal antibody (32); the
captured serine phosphorylated IGFBP-1 is then selectively detected by a specific
anti-phosphoserine antibody labeled with HRP (33). Total IGFBP-1 levels in CM were
normalized to total protein by the Bradford method. The total albumin levels in the
same set of CM samples were analyzed by ELISA as per the manufacturer’s

instructions.

7.2.5. MS analysis of IGFBP-1 phosphorylation

Sample preparation

For MS analysis of IGFBP-1 phosphorylation, samples were from control (20% 0,) and
hypoxia (1% O,) and from cells cultured with leucine treatments (450 and 0 uM leu)
conditions. Equal volumes of CM (400 pl) were desalted (10 KDa MWCO) at 4° C with
ammonium bicarbonate (ABC) buffer (pH 8.0). Samples were then separated on one-
dimensional gels. To identify the band corresponding to IGFBP-1 on the gel, the lane
with amniotic fluid (positive control) was excised for immunoblot analysis using Mab

6303. The remaining gel was fixed for 30 min (10% methanol and 7% acetic acid) and
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stained overnight with SYPRO Ruby (Invitrogen) stain. Gel images were captured
under UV excitation with a SYPRO-500 filter. Using the immunoblot as a guide, the
specific band on the gel corresponding to IGFBP-1 [28 KDa molecular mass (MW)]

from different treatments was manually excised under UV light.

For in-gel digestion, the gel slices were cut into small cubes (1 mm?), transferred to
siliconized Eppendorf tubes (Hamburg, Germany), and sequentially washed with 100
mM ABC buffer (pH 8.0), followed by acetonitrile (ACN). The samples were dried in a
vacuum centrifuge. For reduction and alkylation, the gel pieces were treated with 10
mM dithiothreitol, followed by 100 mM iodoacetamide. Subsequently, proteins were
digested with aspartate N-endoproteinase (Asp-N) (Sigma-Aldrich) (25 ng/ul),
followed by sequencing grade trypsin (12.5 ng/ul) (Promega Corp., Madison, WI) at
37° C overnight. The gel was extracted with 30 ul ABC, 50% ACN, and 5% formic acid

sequentially. The extracted peptides were dried and stored at —80° C.

Phosphopeptide enrichment

Phosphorylated IGFBP-1 peptides were enriched using TiO,. In brief, the pelleted
IGFBP-1 peptides after digestion were dissolved in 20 ul loading buffer [80% ACN and
1% trifluoroacetic acid (TFA)] and incubated with 1 pl TiO; slurry (5 um, 1 mg, in 50%
ACN) for 20 min at room temperature on a shaker. The solution and TiO, particles
were transferred to a pipette tip with a piece of filter paper inserted at its end to

serve as a frit. The tip was placed in a microcentrifuge tube and centrifuged for 5 min.
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The particles were washed using 20 pl loading buffer (50 mg/ml dihydroxybenzoic
acid and 0.2% TFA in 40% ACN) and centrifuged again. The phosphopeptides were
eluted using 20 pl elution buffer [5% ammonium hydroxide (pH 11.0)] and
centrifuged for 10 min. To the receiving tube, 5 ul 5% TFA was added before eluting
the bound phosphopeptides. The samples were dried in SpeedVac and reconstituted
in 0.1% formic acid in water or in 50 mM EDTA in water before liquid
chromatography-mass spectrometry (LC-MS) or liquid chromatography-tandem mass

spectrometry (LC-MS/MS) analysis.

LC-MS/MS and LC-MS phosphopeptide analysis

The enriched phosphopeptides were analyzed on a CapLC (Waters Corp., Milford,
MA) coupled with a Quadrupole Time-of-Flight mass spectrometer (Global Ultima;
Micromass, Manchester, UK) using a 5 um x 0.5 mm C18 precolumn and a 75 um x
150 mm analytical column (LC Packings, Amsterdam, The Netherlands) with a 300-
nl/min flow rate through the analytical column. LC-MS/MS analysis was performed
using a gradient elution and the data-dependent acquisition function (34). For
estimations of the phosphorylation changes upon treatments, LC-MS analysis were
performed on the same instrument setting. The selected ion chromatograms for
different phosphopeptide peaks were plotted, and the spectra were summed. The
intensities of the phosphopeptide peaks in the summed spectra were used for the
semiquantitative determination of the relative amounts of phosphopeptide in the

samples from control to treatment conditions.
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LC-MS/MS spectra were processed using the Maxnt 3 function in Masslynx software
(version 4.0; Waters). Mascot (Matrix Science, Boston, MA) and PEAKS software were
used to search Swiss-prot database for protein identification. Peptide mass/charge
(m/z) tolerance was set to 1.2 and the peptide fragment ion tolerance to 0.1 Da. Asp-
N and/or trypsin was designated as the protease, and up to one missed cleavage was
allowed. Carbamidomethylation on cysteine residue was included as a fixed
modification, whereas oxidation of methionine and phosphorylation of
serine/threonine/tyrosine and tyrosyl residues were selected as a variable
modification. Phosphopeptides identified were manually inspected to verify that the
majority of high abundance peaks were y or b sequence ions, or y — H,0/H3PO4 or b —
H,O/H3PO,; ions when appropriate. For all the phosphopeptides, their

phosphorylation sites were verified manually.

7.2.6. SPR for binding characteristics of IGFBP-1 with IGF-I

The comparative measurements of the binding rate constants characteristic of IGFBP-
1 and rIGF-I were performed using a Biacore X instrument. 70 pL of rIGF-1 (10 pg/ml)
diluted in 100 mM acetate buffer (pH 4.0) were immobilized to the Sensor Chip CM5
surface by amine coupling as per the manufacturer’s protocol. The rIGF-I
immobilization was performed on a "sample flow cell," that achieved approximately

4000-5000 resonance unit signals in three different experiments.
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All CM samples were buffer exchanged with HBS EP buffer (pH 7.4) [10 mM HEPES,
150 mM NaCl, 3.4 mM EDTA, and 0.005% surfactant P20 (pH 7.4)], concentrated 10-
fold, and serially diluted at analysis in the HBS EP buffer. The overabundance of
IGFBP-1 and negligible IGFBP-3 secreted by HepG2 cells (35) discounted interference
if any in Biacore analysis. IGF-I binding assay was additionally performed on de-
phosphorylated IGFBP-1, obtained by AKP treatment of hypoxia (1% pO;) and leucine
deprivation (0 uM leu) treated CM. The AKP reactions were performed as described
earlier, except here the reactions were terminated using EDTA (final concentration,

50 mM) followed by immediate buffer exchange with HBS EP buffer.

In a typical binding experiment, 70 ul CM with various concentrations of analyte (70—
700 nM) was injected for a 60-sec association phase in both reference and sample
cells. The interaction of IGFBP-1 with the immobilized IGF-I was monitored until
equilibrium was attained. The dissociation phase was initiated by passage of HBS EP
buffer for a period of 1-3 min. The biosensor surfaces were regenerated by a 60-sec

injection of 10—30 pl glycine buffer [50 mM (pH 2.0)] after each injection.

CM samples from three independent cell culture experiments for hypoxic and leucine
deprivation treatments were analyzed in triplicate in random order and tested on at
least three different sensor chips. A low immobilization level as well as a high flow
rate (50 pl/min) and analyte concentrations limited the mass transport phenomenon.
Furthermore, the resonance unit response was always reported as the difference
between signals occurring from the sample and the reference cell (with no ligand).

Therefore, bulk refractive index, background and nonspecific binding of the soluble
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ligands were always subtracted. Representative curves were generated for the
association and dissociation phases, and kinetic data were analyzed using the

BlAevaluation software version 3.0 (Biacore) as per 1:1 Langmuir binding model.

7.2.7. Biological assay of IGFBP-1 activity

The biological activity of IGFBP-1 in CM samples from HepG2 cells was studied using
MTS assay (CellTiter 96 AOueous Non-Radioactive Cell Proliferation Assay; Promega).
HEK293 cells were cultured in DMEM supplemented with 10% FBS, penicillin, and
streptomycin in a humidified-air atmosphere containing 5% CO,. CM were collected
from HepG2 cells grown in incubator air (20% 0O,) and hypoxia (1% O;). The total
IGFBP-1 concentrations in CM samples were estimated by ELISA as described
previously. To eliminate possible effects of other factors in the CM from HepG2 cells,
IGFBP-1 was depleted and used as a control. For this purpose, CM were incubated
with a polyclonal rabbit anti-human IGFBP-1 antibody overnight at 4° C (1:500
dilution); 50 ul protein A-Sepharose was then added and rocked for another 4 h at 4°
C. The CM were centrifuged, and the supernatants collected were used as controls.
This IGFBP-1 depleted CM sample was also added to the IGF-I (25 nM) group. Various
concentrations of IGFBP-1 (8.3, 25, or 75 nM) were added singly or with 25 nM IGF-I.

The assays were terminated after 48 h following the manufacturer’s instructions.

7.2.8. Statistical evaluation
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FIGURE 7.1. One-dimensional IGFBP-1 immunoblot. (A) Samples contain equal
volumes of FBS-free CM from HepG2 cells cultured in incubator air (control, 20% O,)
(lane 1) or under hypoxic (1% O,) (lane 2) conditions for 48 hr. Lane 3 is amniotic
fluid as a positive control. (B) CM from HepG2 cells treated with 450 uM leucine
(lane 1) and without (0 uM) leucine (lane 2). (C) IGF-I ligand blot of CM from HepG2
cells (lane 1) and amniotic fluid as a positive control (lane 2). IGFBPs identified by
their M, are indicated. ELISA data indicating concentration of albumin as percentage
of total protein in samples from cells in incubator air (control, (20% O,) and hypoxic
(1% 0,) conditions, and with leucine (control, 450 pM) (D) and without (0 pM)
leucine (E). Decreased levels of albumin in CM confirmed the effectiveness of the
treatment conditions.
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Statistical significance among each experimental group was determined by the
unpaired t test. Values are represented as means * SD. Statistical analysis was
performed using GraphPad Prism 3.0 software (GraphPad Software Inc., San Diego,

CA), and significance was accepted at P < 0.05.

7.3. RESULTS

7.3.1. Effect of hypoxia and leucine deprivation on IGFBP-1 expression and

phosphorylation in HepG2 cells

Air monitoring of the hypoxic chambers ensured desired levels of O, in hypoxic
treatments. Upon completion of the treatments (48 h), pO, tension levels of CM
showed an average (SEM) 43.3 (1.53) and 133.3 (7.36) Torr (mm Hg) for 1 and 20% O,
levels, respectively. The levels of pC0, remained relatively stable within time points
tested, and pHs of the media between the hypoxic and control treatments were also

comparable.

In agreement with previous reports (17, 36, 37), immunoblot analysis qualitatively
indicates (Figure 7.1A, lanes 1 and 2) that IGFBP-1 expression was induced in hypoxia
(26, 27). Similarly, leucine deprivation (0 uM leucine) also increased IGFBP-1 levels
compared with cells cultured with high concentrations of leucine (450 uM leucine)
(Figure 7.1B, lanes 1 and 2). Modest increases in IGFBP-1 levels were found (data not
shown) in cells cultured in lower leucine concentrations (70 and 140 uM leucine).

Furthermore, ligand blot analysis results in Figure 7.1C show detection of mainly
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phosphoisoforms based on pl using CM from HepG2 cells. (A) CM from cells grown
in 20% O, or 1% O,. The blot shown in A4 appears to have a higher intensity of
IGFBP-1 with a single dominant phosphoisoforms shifted in pl towards the acidic
end compared with the control (Al). (B) B1 shows CM from cells grown in 450 uM
leucine, B4 in leucine deprived cells (0 uM leucine). 3-D densitometric views of the
specified areas are shown in 2 and 5. Blots in 3 and 6 are the same sample of 2 and

4, after treatment with AKP.
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IGFBP-1 (lane 1), suggesting a predominance of this protein and negligible levels of

other IGFBPs in HepG2 CM (35).

ELISA estimations in Figure 7.1, D and E, show reduced concentration of albumin for
both hypoxia and leucine deprivation. Albumin is a major mediator of the acute
phase response to disturbances of homeostasis, mainly due to altered hepatic
metabolism (38). Decreased plasma albumin being characteristic of a negative acute
phase reaction and mimicked by HepG2 cells (37, 39) in hypoxia confirmed

effectiveness of the treatment, physiologically.

7.3.2. Identification of various IGFBP-1 phosphoisoforms isoforms in hypoxia

and leucine deprivation

2-D immunoblot analysis was performed qualitatively to examine possible differential
phosphorylation states in IGFBP-1 induced under hypoxic and leucine deprivation
conditions. Data with CM from the control HepG2 cells show three spots (28 KDa)
between pH 4.5 and 5.5, representing a mixture of non and variably phosphorylated
IGFBP-1 variants (Figure 7.2, A1 and B1). The 3-D densitometric view of the 2-D image
shown in Figure 7.2, A and B (panel 2), showed three major peaks. The change in
IGFBP-1 isoelectric point (pl) caused by phosphorylation is estimated to be pH —0.09
for the first phosphorylation, —0.08 for the second and third, and —0.07 for the fourth
subsequent (Scansite MW and pl calculator;

http://scansite.mit.edu.proxy2.lib.uwo.ca:2048). The pl difference between units
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illustrated in the 3-D view was manually estimated as pH approximately 0.1. Greater
intensity toward the higher pH is indicative of less phosphorylated states (40). The
peak in the most alkaline region is the non-phosphorylated variant. The other two
spots represent medium and highly phosphorylated IGFBP-1 isoforms. It is evident
from these results that HepG2 cells secrete a mixture of three major forms of IGFBP-
1 with the non-phosphorylated isoform as the dominant one. To confirm this, the
same CM sample was treated with AKP. As shown in panel 3, AKP treatment resulted
in a single non-phosphorylated form. The results of the hypoxia group are shown in
Figure 7.2A, panels 4 and 5. There was an intense spot/peak in the more acidic
region, representing the dominance of a highly phosphorylated isoform of IGFBP-1.
AKP treatment shifted the majority of the IGFBP-1s to the alkaline region (panel 6),

confirming the phosphorylation status.

Figure 7.2B shows representative 2-D immunoblots of IGFBP-1 isoforms under the
control (450 uM leu) with three distinct IGFBP-1 isoforms (panel 1); the least or non-
phosphorylated isoform is clearly the dominant form (Figure 7.2B, panel 2). AKP
treatment resulted in shifting of the other spots to the alkaline region (Figure 7.2B,
panel 3). In the leucine-deprived group (0 uM leucine), a higher proportion of
medium and highly phosphorylated variants were observed. Two of the three spots
found at around pH 4.5 had higher intensity (Figure 7.2B, panels 4 and 5) compared
with those of the control (Figure 7.2B, panels 1 and 2). Although there was no
marked reduction in the levels of non-phosphorylated isoform as seen in hypoxic

experiments, a significant increase in intensity of some spots suggests higher levels of

181



Fold change
N

Total BP-1 pBP-1
B 20%0, [ 1%0,

Fold change
N

Total BP-1 pBP-1

Bl 450 yM Leu 3 OpMLeu

FIGURE 7.3. ELISA data indicating the change in total and phosphorylated IGFBP-1
isoforms from incubator air (control, 20% O,) to hypoxic (1% O,) conditions (A) and
control [450 uM leucine (Leu)] to leucine deprived (0 uM Leu) conditions (B).
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phosphorylated isoforms. AKP treatment shifted these phospho-IGFBP-1s to the
alkaline region (Figure 7.2B, panel 6). These data suggest that hypoxia and leucine

deprivation increase the phosphorylation of IGFBP-1 in HepG2 cells.

It should be noted that a polyclonal IGFBP-1 is used in 2-D immunoblot analysis. The
use of this polyclonal was essential because the monoclonal 6303 antibody was not
efficient in detecting IGFBP-1 on 2-D immunoblots, possibly due to harsh sample

preparation conditions in 2-D gel analysis.

7.3.3. Total and phosphorylated IGFBP-1 concentrations by ELISA

The effects of hypoxia and leucine deprivation on total IGFBP-1 and serine
phosphorylated IGFBP-1 levels were determined and are represented as fold change
in Figure 7.3. As anticipated, the concentrations of total IGFBP-1 increased in both
hypoxia and in leucine deprivation group. The levels of serine phosphorylated IGFBP-
1 relative to their respective controls showed proportional increases (Figure 7.3, A
and B). The data indicate that an induction of total IGFBP-1 is accompanied by a

proportional increase in IGFBP-1 phosphorylation.

7.3.4. Mass spectrometry for identification of IGFBP-1 phosphorylation sites

Three phosphorylation sites, Ser101, Ser119, and Ser169, have been reported for
IGFBP-1 (41). Upon sequential Asp-N and trypsin digestions, the following three

phosphopeptides were detected, and the amino acid sequences [phosphoserine (pS)
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FIGURE 7.4. LC-MS/MS spectra showing newly identified phosphorylation site pSer98

for IGFBP-1 secreted from HepG2 cells under hypoxic (1% O,) conditions.

The

deconvoluted spectra of ions at 949.73 m/z is for the singly phosphorylated pSer101
with peptide sequence shown in A and 976.42 m/z is for the doubly phosphorylated
pSer101 together with pSer98 in B. Both ions were observed as triply charged ions.
In spectrum A, intense b ions confirm the amino acid sequence of the peptide; the
observed b18 ion at 1771.68 and the b18—-98 ion at 1673.75 , derived from b18 ion
with a loss of H;PO,, indicate the phosphorylation on Ser(101) residue. In spectrum
B, the precursor ion is 80 Da heavier than the ion in the spectrum A, indicating an
additional phosphorylation; the observed b15 ion at 1458.63 and the b15-98 ion at
1360.59 indicate the phosphorylation on the Ser(98) in addition to the Ser101.
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TaBLE 7.1. Ratios of IGFBP-1 phosphopeptide peak intensity in hypoxia (1% O,) and
leucine-deprived (0 pM leucine) samples relative to controls (20% O, and 450 uM
leucine)

IGFBP-1 phosphopeptide peak intensity

Treatment change (fold change)
20t0 1% O, pSer 101 pS1191 pS1691
Mean 3.17 2.07 4.22
SD 0.66 0.65 0.96
450 to O uM leu pSer 101! pS1192 pS169!
Mean 1.86 443 2.45
SD 1.10 0.28

The relative peak intensity measurements for each set (control and treatment
condition) were done sequentially to ensure identical analytical conditions in an
individual experiment. Three MS analyses were done separately using samples
collected from three independent cell culture experiments for both hypoxic and
leucine-deprived treatments.

! Two out of three experiments.

2 SD not determined because the intensity in one of the two control samples (450
UM Leu) was lower than the detection level.
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shown in parentheses] were confirmed by LC-MS/MS:
DASAPHAAEAGSPESPEPS(101)TEITEEELL, 949.73 m/z, +3; DNFHLMAPpPS(119)EE,
685.30 m/z, +2; and AQETpS(169) GEEISK, 629.78 m/z, +2. The phosphopeptides
shown with their mass to charge ratios (m/z) were detected in samples from hypoxic
(control, 20% O, and hypoxia, 1% O,) and in leucine deprivation (450 and O uM

leucine) treatments.

A new doubly phosphorylated peptide, DASAPHAAEAGSPEpPS(98)PEpS(101)TEITEEELL,
976.42 m/z. +3 was also detected but only when analyzed with EDTA added to the
sample. The modified protocol (34) increases the detection sensitivity of multi-
phosphorylated peptides. Using the CM from hypoxia treatments, the LC-MS/MS
spectra are shown with a peak at 949.73 m/z for the single phosphorylated peptide
at Ser101 (Figure 7.4A) and at 976.42 m/z for Ser98 with Ser101 (Figure 7.4B). This
doubly phosphorylated phosphopeptide was detected in two out of three samples
from hypoxia but not with the controls (20% O,), or leucine deprivation (450 and O

UM leucine) treatments.

7.3.5. Semiquantitation of the phosphorylation changes of IGFBP-1 induced

by hypoxia and leucine deprivation

We next performed LC-MS analysis of TiO, enriched IGFBP-1 phosphopeptides in CM
from different treatments. IGFBP-1 phosphopeptide peak intensity ratios were

calculated from the relative phosphopeptide peak intensities between the control
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and treated groups. The data from these experiments are summarized in Table 7.1.
For the hypoxia experiment, pSer101, pSer119, and pSer169 all showed equal to or
more than double increases in peak signal intensities relative to the control. Similarly,
fold increases were also recorded for leucine deprivation from two out of three

samples.

The doubly phosphorylated peptide with pSer98 and pSerl01 was detected in the
samples from hypoxia (1% O,) as shown in Figure 7.4B. Due to the absence of pSer98
in the controls (20% 0,), the fold increase upon treatment was not discernable.
However, these results clearly indicate that pSer98 was hyperphosphorylated in
hypoxia. Being adjacent to the major site, it is possible that pSer98 acts with pSer101

in hypoxic stress to contribute to changes in IGFBP-1 functions.

It should be noted that the MS analysis was performed using three independent
preparations from three separate cell culture experiments. Furthermore, the LC-MS
analyses were performed using equal volumes of CM at different times; therefore,
the data should be considered an estimate. Despite this caveat, the outcome of MS
analysis is highly consistent with the results obtained by immunoblotting (Figure 7.2,
A and B) and ELISA (Figure 7.3, A and B). Altogether, our LC-MS data clearly
demonstrate (Table 7.1) that the phosphorylation of IGFBP-1 was consistently
increased in hypoxia and in leucine deprivation treatment, but more prominently in

hypoxia.
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Table 7.2 The kinetics of the affinity of IGFBP-1 for IGF-I assessed in triplicate by
Biacore analysis for CM in hypoxia (1% O,) and leucine-deprived (450 uM leucine)
samples relative to controls (incubator air, 20% O, and 450 uM leucine)

Treatment Kd (M) Treatment Kd (M)
20% O, 450 uM Leu
Mean 1.54x10" Mean 1.40x10”
SD  0.01x10" SD  049x 10"
1% O, 0 pM Leu
Mean 5.83x107° Mean 0.64x107"°
SD 0.02x10"° SD 0.00x10"°
De-phos. De-phos.
Mean 7.09x 107 Mean 4.56x10"
SD  0.13x10" SD  0.07x10"

CM from hypoxic or leucine-deprived conditions were dephosphorylated by AKP and
the kinetics reassessed.
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FIGURE 7.5. The association and dissociation phases of concentration-dependent
binding of IGFBP-1 to immobilized rIGF-l, comparing hypoxic or leucine-deprived
treatment of the HepG2 cells with controls. Analyte (IGFBP-1) is CM from HepG2
cells grown in incubator air (control, 20% O,) or hypoxia (1% O,) for 48 h (A) and
control (450 uM Leu) and leucine-deprived (0 uM leucine) treatments (B) for 16 h.
The kinetic analysis shows alterations in dissociation phases for both hypoxic and
leucine (Leu) treatments. Resp. Diff., Response unit differences.
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7.3.6. IGF-1 binding Kinetics using SPR analysis

Biacore biosensor measurements were performed to gain insight into the influences
of phosphorylation on the ligand binding kinetics of the IGFBP-1 molecule. Hypoxia
and leucine deprivation treatment lowered the equilibrium dissociation constant (KD)
value of IGFBP-1 (Table 7.2). A representative comparison of association and
dissociation phases of the interaction of IGFBP-1 with IGF-I, in control vs. the hypoxia
group, is shown in Figure 7.5A, and with leucine (450 uM leu) and leucine deprivation
(O uM leu) groups in Figure 7.5B. Compared with IGFBP-1 prepared from the control
cells, IGFBP-1 prepared from the hypoxic cells and the leucine-deprived cells
exhibited slower dissociation rates, and the resultant complexes were more stable.
Kinetic analysis of the biosensorgram curves demonstrates that the IGFBP-1 binding
affinity for IGF-1 under basal conditions was comparable to those reported previously
using Biacore analysis (42). The estimations of the off rates suggest that binding
interactions of IGFBP-1 with IGF-I were affected by both hypoxia and leucine
deprivation but more significantly by leucine deprivation (Table 7.2). To ascertain
that the changes in ligand binding kinetics were indeed due to elevated
phosphorylation, these preparations were de-phosphorylated and analyzed. The
results showed that KD values were returned to the control levels (Table 7.2),
suggesting that the changes in phosphorylation states are responsible for the

changes in IGF binding affinity.
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mm 20% O2

3 1% 02

Biological activity (%)

IGF-1 (nM) 25 25 25 25
GFBP-1 0 8.3 25 75

FIGURE 7.6. Hypoxia-induced IGFBP-1 phosphorylation increases its ability to inhibit
IGF action. IGFBP-1 prepared from HepG2 cells grown under 20% O, (solid) and 1%
O, (open) was added to cultured HEK293 cells with or with IGF-I at indicated
concentrations. Values are represented as means with SD of two independent
assays, each performed in triplicates. (*p<0.05).
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7.3.7. Hypoxia treatment increases the biological potency of IGFBP-1 in

inhibiting IGF actions

We next determined the functional significance of the hypoxia-induced IGFBP-1
hyperphosphorylation. Addition of IGF-I (25 nM) to cultured HEK293 cells resulted in
a significant increase in cell number. Total IGFBP-1 isolated from direct CM from
HepG2 cells grown in either incubator air (20% 0O,), or hypoxia (1% O,) inhibited IGF-I
activity in a dose-dependent manner (Figure 7.6). The IGFBP-1 sample derived from
the hypoxia group was more potent than that from the 20% O, group. At the highest
dosage (75 nM) tested, it caused a 20% reduction in IGF-lI-induced cell proliferation.
In comparison, the less phosphorylated IGFBP-1 derived from the 20% O, group only
caused a 9% reduction. The difference was statistically significant (P < 0.05). A similar
trend was also observed at low doses (25 nM), although the difference was not
statistically significant. These functional data together with the binding kinetics data
indicate that the hypoxia-induced IGFBP-1 phosphorylation increases its ability to

inhibit IGF actions.

7.4. DISCUSSION

Increased expression of IGFBP-1 has been considered a marker of metabolic
irregularities in fetal nutrition (12, 43, 44) and in oxygen delivery (9, 45) that are
strongly linked to FGR (46-48). By subjecting human HepG2 cells to hypoxia and

leucine deprivation (27, 35, 49-51), we demonstrated that hypoxia and leucine
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deprivation lead to altered phosphorylation states of IGFBP-1. We have identified
pSerl69 as a major site of phosphorylation that may, along with pSer101, be
responsible for altering the affinity of hepatic IGFBP-1 with IGF-I. We have provided
data suggesting that elevated phosphorylation of the IGFBP-1 molecule increases its
IGF binding affinity. The highly phosphorylated IGFBP-1 also has greater biological
activity in inhibiting IGF-I-stimulated cell proliferation. These findings suggest that
IGFBP-1 phosphorylation may be a novel mechanism of fetal adaptive response to

hypoxia and nutrient restriction.

Regulation of IGFBP-1 and modulation of IGF-I actions are highly dynamic and
complex, particularly in human FGR (52). Besides the endocrine factors, IGFBP-1 is
induced by a variety of catabolic conditions. For example, fasting, malnutrition, and
protein restriction rapidly induce IGFBP-1 at the transcription level (19). The
depletion of a single amino acid (arginine, cysteine, and all essential amino acids) is
sufficient to induce IGFBP-1 expression in vitro. Other catabolic conditions regulating

IGFBP-1 expression include endoplasmic reticulum stress and hypoxic stress (19).

Induction of IGFBP-1 to reduce IGF action is considered to be part of a regulatory
mechanism during fetal development (17, 53). The stress signalling events that alter
IGFBP-1 expression have thus far been shown to be highly significant in signal
transduction events (54). The impacts of chronic hypoxia (7, 8, 17, 35, 55) and poor
nutrient transfer (20) to the fetus on regulation of the IGFBP-1 gene at the
transcription level are well studied. Tazuke and others (35) have identified a hypoxia

response element located in intron 2 of the human IGFBP-1 gene responsible for the
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hypoxia response in cultured human HepG2 cells. Likewise, recent studies using zebra
fish embryo show that the induction of IGFBP-1 gene expression by hypoxia is
mediated through hypoxia-inducible factor 1 (HIF-1) both in vitro and in vivo, and the
HIF-1 pathway is established in early embryonic stages (56). The functional
importance of the HIF-1 pathway in hypoxia-induced IGFBP-1 gene expression (8, 9)
has been suggested to be a mechanism that in the human fetus could restrict IGF-

mediated growth in utero.

The physiological role of IGFBP-1 depends not only on the levels of IGFBP-1 but also
on its phosphorylation (57). Phosphorylation and glycosylation of proteins usually
result in specific functional consequences or may be caused by a disease (58, 59).
IGFBP-1 phosphorylation is suggested as a key mechanism in modulation of cellular
responses to IGFs (60) and subsequently in restriction of IGF-I mediated fetal growth

(25, 61).

HepG2 cells represent fetal liver metabolism in vitro (62-64) and have successfully
been used in studies with IGFBP-1 involving fetal hypoxia (17, 36, 65). Furthermore,
IGFBP-1 phosphoisoforms purified from HepG2 show similar IGF-I binding
characteristics to that of the plasma (66). Considering that variable phosphorylation
of IGFBP-1 could modulate IGF-I bioavailability in hypoxia, we selected HepG2 cells

for the current study.

ELISA data revealed that the total serine phosphorylation of IGFBP-1 increased for
hypoxia and leucine deprivation, proportional to the overall increases in IGFBP-1

secretion. Although total protein was decreased, qualitatively, IGFBP-1 and its
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phosphorylation were concomitantly induced with both treatments. 2-D
immunoblotting combined with the ELISA results suggest that despite modest
changes detected in overall phosphorylation, the proportion of multi-phosphorylated
isoforms is substantially increased. The affinity of IGFBP-1 for IGF-I was also increased
for both hypoxic and leucine deprivation treatments, but more so, consequent to

hypoxia.

The relative phosphopeptide intensity for pSer169 increased most dramatically under
hypoxia. This was followed by pSer101. Protein phosphorylation being a complex
dynamic process often involves multiple phosphorylation sites (67). Although
technical challenges limit the identification of multiply phosphorylated peptides (34,
68), a doubly phosphorylated peptide was identified in hypoxia. With close proximity
of pSer98 with the major functional site, pSer101 (41), it is conceivable that in
hypoxia, interactions between the adjacent phosphoserines may be significant in the
mechanism of kinase actions (69). Future mutagenesis study should clarify the

importance of pSer98 in IGFBP-1 structure and in the functional responses (70, 71).

In the case of leucine deprivation, pSer119 appeared to increase the greatest
proportion, followed by pS169. In addition, the effects on IGFBP-1 induction and its
phosphorylation were not solely dose dependent (data not shown) when tested
under physiologically relevant concentrations (72). These results suggest that
possibly extreme nutrient restriction may be necessary to induce IGFBP-1
phosphorylation to exert any potential metabolic effects in regulation of IGF-I. The

differences in IGFBP-1 phosphorylation sites induced by hypoxic and leucine
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deprivation are of potential interest; distinct variations in IGFBP-1 phosphorylation
were also consistent with its IGF-binding kinetics. A greater binding affinity of IGFBP-

1 for IGF-I in hypoxia is also associated with stronger inhibitory activity to IGF actions.

During pregnancy, IGFBP-1 in plasma is in the non- and lesser-phosphorylated forms
(66, 73). The putative mechanisms leading to hyperphosphorylated IGFBP-1 in stress
conditions are unknown. IGFBP-1 is a substrate of multiple protein kinases (74-76).
We speculate that the balance of kinases regulated by environmental stimuli is
altered (35, 77, 78). As a result, the production and/or the activity of one or multiple
protein kinases (79) may be induced (80). Alternatively, reduced dephosphorylation
by AKP isoforms (81), such as due to aberrant glycosylation (58), may broaden action
potentials resulting in hyperphosphorylated IGFBP-1. Assuming that hypoxic
modulation of IGFBP-1 phosphorylation in cell culture reflects the in vivo situation,
further investigations should have important implications for the mechanisms
through which the fetus responds to low oxygen supply. Proteolysis and
dephosphorylation of IGFBP-1 are two physiological processes that may have
complementary roles in regulating the bioavailability of IGF-I. The widespread
oxygen-sensing (82) and signalling mechanisms (83) together with increased

phosphorylation in hypoxia could also affect IGFBP-1 proteolysis (25, 84).

Several factors have so far been associated with fetal stress that could contribute to
elevated levels of IGFBP-1 mRNA and protein (85-87). This study provides the first
biochemical and physiological evidence of altered IGFBP-1 phosphorylation as a

regulatory mechanism of fetal adaptive response to hypoxia and possibly to severe

196



under nutrition in utero. Whether IGFBP-1 phosphorylation may be a potential
mechanism in other catabolic conditions, that lead to elevated IGFBP-1 production,

(88-91) needs to be investigated.
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8.1. MATERNAL PLASMA PROTEIN CHANGES

8.1.1. Summary of findings

Maternal plasma proteome profiling of FGR pregnancies (Chapter 2) led to the
successful identification of a variant of Hp a2 as changing in FGR. Despite this
success, further broad profiling of the 2-D gels proved impossible due to the technical
challenges of profiling un-depleted plasma on small format 2-D gels. To improve the
proteomic analysis of the samples, optimizations to the methodology were carried
out to maximize the spot resolution (Chapter 3). The depletion of albumin and IgG
from the plasma, the adoption of large format 24 cm 2-D gels, and the use of more
advanced software with the “same-spots” feature, made a substantial and
measurable improvement in the resolution which proved to be significant and
reproducible (Chapter 3). Using this optimized approach, a new experiment was
undertaken with FGR mothers’ plasma (n=12) and gestational age-matched controls
(n=12). Though a further 15 proteins were found either increasing or decreasing, and
subsequently identified by LC-MS/MS and NCBI database searching, no novel
proteins of interest could be identified as changing with subsequent immunoblots or

quantitative immunoassay analysis (Data not presented in this thesis).

Hp was therefore the only maternal protein of interest identified by 2-DGE. Hp is up-
regulated by II-1B, TNF-a, and particularly IL-6 in the liver (1, 2). It is also expressed in
vascular endothelial cells and neutrophils (3) in response to TNF-a. The pro-
angiogenic protein Hp is therefore induced in inflammation. The same inflammatory

cytokines that up-regulate its expression are also powerful activators of vascular
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endothelial inflammation, a process antecedent to angiogenesis. It appears highly
plausible then that Hp expression may be related to localized vascular inflammation
in the maternal placenta. The levels of inflammatory cytokines as well as markers of

endothelial activation in the maternal plasma were therefore sought.

Inflammatory cytokines II-1B, 1-6, and TNF-a, as well as vascular endothelial
activation markers E-selectin, VCAM-1, and ICAM-1, were measured in the maternal
plasma (Chapter 6). Inflammatory cytokines were not increased in FGR. Interestingly,
both E-selectin and VCAM-1 were increased relative to placental size. VCAM-1 was
highly predictive of the placental weight and the fetus’ birthweight for normal
pregnancies, and also appeared to increase with gestational age. It was therefore
suggested that VCAM-1 be assessed further for its potential as a biomarker of

placental health (Chapter 6).

8.1.2. Significance of maternal plasma protein changes

Haptoglobin

Although, ELISA showed that Hp was not changed in overall levels between control
and FGR (data not presented in this thesis), a careful study of the Hp a2 variants by
Mikkat and others identified the structural differences between the variants, and
confirmed the post-translational modifications (PTMs) responsible for variant 1’s 2-

fold decrease (4).
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FIGURE 8.1. Hp structure and predicted life in maternal circulation. (A) The structure
of the Hp a2 variants as worked out by Mikkat and others (2004). MS/MS analysis
showed that variant 3 of haptoglobin (Hp) is native. Variant 2 of Hp is a mixture of
a2 subunits either missing a C-terminal arginine at position 143 (-R143), or a smaller
subset having an asparagine deamidation to an aspartic acid at position 5 (N5D).
Variant 1 then contains both modifications. Cleavage of R143 takes place normally
in the circulation by an unidentified carboxypeptidase. Variant 1 was found in
chapter 2 to be reduced 2-fold in FGR mothers’ plasma (p<0.006). (B) Deamidation
of Asp takes place predictably over time in plasma proteins. Given the adjacent
amino acids, Hp N5 has a predicted half-life of ~20 days before deamidation. Hp
turnover in the circulation has normally a half-life of 4 days. The predicted
proportion of Hp that is deamidated is graphed within a range of +/- 20%. Normal
haptoglobin turnover (4 +/-0.5 days, green) and haptoglobin turnover of twice that
rate (2 +/-0.5 days, red).
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The Hp variant 1 contains two modifications (Figure 8.1A): a deamidation at Asn5 and
a cleavage of C-terminal Argl43 (4). Argl43 is cleaved by a yet unidentified
carboxypeptidase in the circulation (5). Deamidation takes place naturally and at a
predictable rate, such that the half-life can be accurately inferred (6). Given the
primary structure of Asn at the 5™ amino acid, deamidation of Hp a2 is estimated
with a half-life of ~20 days. Since the normal turnover of haptoglobin in the
circulation is ~4 days (7), it can be estimated that 10-20% of Hp will be deamidated
normally (Figure 8.1B, green). This is roughly in proportion to the distribution of the
three variants by 2-DGE densitometry in controls (Figure 2.1 A and B). The 2-fold
decrease in Hp a2 variant 1 in FGR may be accounted for by the doubling of the
turnover rate of Hp, which would halve the proportion of deamidated Hp in
circulation (Figure 8.1B, red). Alternatively, there could be decreased cleavage of
Argl143 so that Hp may be more evenly divided between variants 2 and 3 (Figure

8.1A).

In either case (of increased Hp turnover, or increased Argl43 cleavage in the
circulation), changing Hp PTMs are very likely attributable to functional changes of
Hp in the maternal circulation. Although traditionally associated with an iron
transportation function, Hp has been identified as having a major role in
immunoregulation. Hp binds CD11b/CD18 (8), CD22 (9), and instigates a variety of
immuno-inhibitory effects in T-cells (10), B cells (9), neutrophils (11), and
macrophages (12). Together with the observation of its localization in the decidua at

the maternal-fetal interface throughout pregnancy (13, 14, 15), this has led to the
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speculation that Hp may be involved in suppressing the maternal immune response
to the fetal tissues. Since vascular failure is of primary concern in placental
insufficiency, it is of particular interest, that Hp is a potent inducer of angiogenesis.,
and has been associated with other vascular pathologies (16). Alterations in either its
anti-immune or pro-angiogenic functions may therefore be associated with

pathophysiological changes in FGR.

VCAM-1

Plasma levels of both soluble E-selectin and VCAM-1 are pro-angiogenic (17). VCAM-1
deletion is embryonic lethal in mice due to its importance in vascular formation in the
placenta (18, 19). It is expressed from proliferating endothelial cells, and is required
for blood vessel formation (20). That VCAM-1 expression correlates to placental
weight in controls, and also increases with GA in controls, strongly indicates that
VCAM-1 is functioning in normal vascular development. VCAM-1 expression increases
in plasma as placental growth continues, and so changing levels of VCAM-1 in

circulation in pregnancy most likely reflect changes in the placenta.

In FGR, VCAM-1 is more highly expressed before the prenatal period (i.e. <34 weeks).
The levels in FGR are unrelated to increased placental weight, and decrease instead
of increase with GA (Figure 6.6). Therefore its upregulation is in a manner unrelated
to normal placental development. VCAM-1 is expressed only in very low amounts

from endothelial cells in mature quiescent vasculature, but is upregulated in
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angiogenesis, and is also strongly induced in inflammation and injury (20, 21). Thus,
although in normal pregnancy VCAM-1 expression may be related to vascular
development, in placental insufficiency, localized placental inflammation may lead to

aberrantly upregulated levels of VCAM-1.

Maternal Vascular inflammation

Here we report evidence of maternal-vascular inflammation related to the placenta.
Changes in oxygen conditions can cause inflammation. In placental insufficiency,
maternal blood in the intervillous space, and blood returning to the mother’s heart
via the uterine veins, is higher than in normal pregnancies, as the fetal chorionic villi
have failed to remove sufficient oxygen and nutrients from the maternal supply (22)
(Figure 1.2.). The condition of supraoxic maternal-placental blood may be causing the
localized inflammation. Oxygen-mediated inflammation may be analogous to
reperfusion injury in the heart. In reperfusion injury, ROS mediated localized
inflammation leads to endothelial expression of E-selectin, VCAM-1, and ICAM-1.
Neutrophils roll and arrest on inflamed endothelial cells via cellular adhesion
molecules ICAM-1 and VCAM-1 (23). Changing levels of oxygen or abnormally high
ROS levels may then trigger inflammation; however, other factors could also be
contributing. It has been shown, for example, that primary trophoblast cells from
complicated pregnancies (FGR with preeclampsia) can induce endothelial activation
in the maternal post-placental vessels by secretion of chymotrypsin-like proteases

(24, 25).
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Both Hp and CAM expression changes may therefore be related to inflammation.
Other studies have shown increased inflammatory cytokine TNF-a in FGR mothers
with placental insufficiency (26). As these changes are in the maternal circulation,
vessel changes are unlikely to have any benevolent affect to maternal-fetal exchange
in placental insufficiency. Nevertheless, the findings indicate that there are maternal
vascular changes taking place in placental insufficiency. Most importantly however,
the protein changes caused by vascular inflammation/activation may act as
biomarkers, providing a basis for monitoring placental health in FGR with placental

insufficiency.

8.1.3. Haptoglobin and VCAM-1 as biomarkers

The changing levels of both Hp and VCAM-1 in FGR compared to controls suggests
they have potential as biomarkers of the disease. For a protein change to pass from
the discovery phase to a biomarker with potential clinical relavence, validation
criteria must be considered. Of primary interest are the sensitivity and specificity as
well as the positive and negative predictive values of the protein change (27).
Determination of these criteria involves large cohort studies with thousands of
patients with a well defined pathology, and highly specific and quantitiative

measurement’s, most often done by ELISA.

The considerable effort and investment in the validation phase necessitates the

carful prioritization and stratification of discovered markers. Selecting markers as
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potential candidates then is critical, and should include primarily consideration of its
potential specificity based on laboratory scale, highly specific immunobased
measurement. The protein’s levels should be chaning to as large a degree as possible
between pathological and control patients. And finally, the potential biomarker

should be resilient to variability inevitable with sample processing (27).

Although Hp and its modifications have a robust halflife (Figure 8.1), Hp may or may
not prove to be highly specific to FGR given its changing levels in a variety of diseases.
Detection of the identified specifiec PTM changes may prove more specific and
predictive of FGF than overall protein changes. However, the detection of a single
deamidation within the protein (in the absence of a highly specific antibody) presents
challenges to its validation. As a subsequent study to assess the potential predictive
value of Hp for placental insufficiency, the development of a Multiple Reaction
Monitoring (MRM) assay should be developed. Mass spectrometric based MRM
assays can rapidly select a known group of CID ions from a complex sample mixtures
and digests and analyze for predetermined changes such as PTMs. As such they are
highly sensitive and high-throughput, and therefore the development of an assay of
the ratio of Hp ions related to its PTMs, compared to the ions produced in the
absence of PTMs, could experimentally quantify the relative prevalence of variant 1
in FGR. Such a metod is practicable for larger scale validation that is required to
assess the predictive sensitivity and specificity of the Hp protein modifications. Both
the deamidation and the absence of the terminal arginine on Hp a2 could be

considered. Currently, the detection of deamidated gliadin with a highly specific
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antibody is being evaluated as a diagnostic test for Celiac disease (28, 29). For
diagnostic purposes, a highly specific antibody to the Hp protein modification would
also have to be developed, as mass-spectrometric based diagnostics are not yet

broadly implemented by health care providers.

VCAM-1 antibodies are available, therefore an assessment of its specificity for
placental insufficiency could be undertaken. As VCAM-1 is expressed only in
developing or inflamed vessels, there is minimal baseline plasma expression
originating from mature maternal vessels, and its blood plasma levels may therefore
reflect placental changes very sensitively. Since VCAM-1 is increased <34 weeks in
FGR but is decreased in the pre-perinatal period, there would be predictive value in
monitoring VCAM-1 levels at multiple time points throughout pregnancy. A rapid
increase in circulating VCAM-1 at a time point prior to 34 weeks followed by a
decrease would indicated placental insufficiency, where continually increasing (or
unchanging) VCAM-1 levels in the same time period would be normal. A large

prospective study is therefore suggested.

Since the levels of VCAM-1 were increased to a larger degree between control and
FGR after controlling for birthweight, the placental or fetal weight (which is
estimated routinely by ultrasound) could be controlled for greater predictive power.
Elevated levels of VCAM-1 based on standardized expected VCAM-1 levels for fetal
size for a given fetal size prior to 34 weeks, the time period of both the greatest
placental angiogenesis and the maximal separation of VCAM-1, may be a very

sensitive means to distinguish SGA from FGR. Furthermore, the pre-perinatal period
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would be a sufficiently early timepoint to identify FGR to facilitate fetal monitoring
and potentially early delivery, which is currently the most effective intervention (30).
The antecedent step in a subsequent validation study therefore, should be the
measurement of VCAM-1 in a large sample group at time points coinciding with US
examinations. Matching VCAM-1 levels with the estimated fetal size in control
pregnancies would determine a baseline expression. The predictive power in terms of
the sensitivity, specificity, false positive and negatives, of changing VCAM-1 levels in
mothers that went on to develop FGR could then be determined, as well as the full

extent of the biomarker’s clinical utility.

8.2. FETAL PLASMA PROTEIN CHANGES

8.2.1. Summary of findings

Improved 2-DGE following immunodepletion (Chapter 3) identified several proteins
in fetal plasma to be changing, including clusterin and fibrinogen (Chapter 4
supplemental). Targeted profiling of plasma proteins, using an in vitro model of liver
secretion changes in hypoxia, was more successful. From our HepG2 cell culture
model, transferrin and PAI-1 were added to fibrinogen and clusterin, as proteins
shortlisted as both changing with hypoxic treatment, and functioning in a capacity of
angiogenesis or blood vessel regulation (Chapter 4). These proteins were in fact
found to have oxygen dependent fetal plasma expression, presumably because of
hepatic secretion changes in in utero oxygen starvation (Chapter 4). As expected, the

liver secretion of IGFBP-1, which functions in fetal growth regulation, was also found
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to increase in hepatic secretion in hypoxia. Together this demonstrates that the liver

is altering secretion of several key proteins in an oxygen-dependent manner in FGR.

PAI-1, fibrinogen, transferrin, and clusterin are upregulated in response to
inflammation in an acute phase response. The hypothesis that placental
inflammation was leading to increasing expression of these proteins was therefore
evaluated as well. Inflammatory cytokines Il-1pB, IL-6, and TNF-a, as well as markers of
vascular inflammation, E-selectin, VCAM-1, and ICAM-1 in the fetal plasma were
therefore measured in the effluent placental blood (Chapter 6). Although, highly-
elevated levels of II-1R8, IL-6, and TNF-a demonstrate that there is substantial fetal-
placental inflammation (Chapter 6), no relationship existed between the levels of the
cytokines and the levels of the hepatic secreted proteins in plasma (Data not
presented in this thesis). However, it was found that the data nevertheless supports
the theory that inflammation is at least partially brought on by chronic hypoxia in
FGR, as levels of IL-6, TNF-a, and also ICAM-1 and E-selectin were correlated to blood

gas conditions.

The expression of the hepatic proteins PAI-1, fibrinogen, transferrin, clusterin and
IGFBP-1 then were hypoxic mediated. Although inflammatory cytokine levels were
also related to levels of oxygen, IL-6 and TNF-a did not explain the hepatic protein
secretion changes in vivo. The acute-phase like protein secretion changes in FGR
were therefore directly mediated by hypoxia, and not through cytokine

intermediaries. Acute phase-like secretion changes following hypoxic treatment of
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hepatocytes has been described in the literature (31). The functional consequences

of the most interesting hepatic protein secretion changes were therefore sought.

Angiogenesis - PAI-1

Since angiogenic regulation is central to the pathology of FGR, identifying changes in
liver secretion associated with angiogenic function was crucial. It was shown, using
the in vitro model, that liver secretions were inducing angiogenesis (Chapter 4). We
therefore set out to discover whether fetal plasma exhibited the same angiogenic
effect in relation to the levels of its hepatic secreted plasma proteins. The fetal
plasma from hypoxic pregnancies not only induced angiogenesis, but did so in an
oxygen-dependent manner (Chapter 5). Of the liver proteins analyzed, PAI-1 levels
exhibited the strongest relationship with angiogenesis, and were also very strongly
correlated with hypoxia (Chapters 4 and 5). Inhibition of plasma PAI-1 led to
confirmation of its significant involvement in angiogenic regulation in the plasma

(Chapter 5).

Although the increased angiogenic potential in plasma was related to hypoxia, the
levels of both FGF-2 and VEGF did not change between control and FGR (Chapter 5).
Their plasma levels correlated to the angiogenic-inducing potential of the plasma in
an in vitro assay for normal (control) pregnancies, but did not account for the
increased angiogenesis in FGR. This finding is consistent with other reports of

unchanged VEGF levels in FGR (32, 33). Since increasing angiogenesis is not explained
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by either FGF-2 or VEGF, alternative, oxygen-dependent mechanisms of regulation,
like PAI-1 upregulation, may well play a large role in vascular changes in FGR placenta

in utero.

Fetal Growth - IGFBP-1

Our findings confirmed previous reports of increased IGFBP-1 secretion from HepG2
cells. In addition to its expression however, IGFBP-1’s regulation of IGF-I is PTM-
dependent. Since it is known that phosphorylation changes may affect IGFBP-1’s
binding affinity (34), we set out to determine if hypoxia affected its phosphorylation
as well (Chapter 7). It was determined by 2-D blotting that not only hypoxia but
additionally leucine deprivation led to increased secretion of highly phosphorylated
variants from HepG2 cells. LC-MS/MS analysis revealed four serine phosphorylation
sites: three known sites (pSer101, pSer119, and pSer169); as well as one novel site
(pSer98). LC-MS further determined the site specific increases in phosphorylation.
The highly phosphorylated IGFBP-1 isoforms had greater affinity for IGF-I, and
inhibited IGF-I-stimulated cell proliferation more strongly. By binding to IGF-I with
high affinity, IGFBP-1 sequesters IGF-l in the circulation, thereby limiting its
bioavailability and growth promoting activity (34, 35). The finding here of IGFBP-1’s
increased phosphorylation in hypoxia may additionally modulate fetal growth in FGR

in vivo.
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8.2.2. Significance of fetal plasma protein changes

Liver secreted PAI-1 regulates angiogenesis in FGR

Given that the chorionic villi in FGR are compromised, it was unexpected that
umbilical vein plasma induces angiogenesis in FGR at all, as it might be inhibitive of
the process instead. That plasma PAI-1 had such a strong relationship with
angiogenesis in hypoxic pregnancies was logical, given its regulation via HIF-1 and its
known function in regulating the vasculature. Indeed, high circulating levels of PAI-1
are predictive of poor outcomes in many cancers because of their pro-angiogenic
affects. PAI-1-deficient mice show reduced vascularization of both maternal and fetal
placental tissues, where there are changes to the vasculature of the decidua and
labyrinth (36). Altering levels of PAI-1 then may very well be directly implicated in the

vascular changes in FGR of human pregnancies.

PAI-1 is upregulated via VEGF. In our experiments, PAI-1 very strongly correlated to
circulating VEGF levels in controls only. There may therefore be a dual regulation
such that in normal pregnancies PAI-1 is involved in a VEGF-mediated angiogenic
mechanism, while in FGR cases, PAI-1 mediated angiogenesis is increased directly via
its hypoxic upregulation. Angiogenesis follows endothelial migration which is driven
by dynamic ECM changes. Regulation of the ECM is one of the antecedent and
necessary steps in angiogenesis. PAI-1 is surmised to induce angiogenesis via
stabilization of the ECM, tipping the balance towards a stable scaffold for endothelial

proliferation and migration.
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PAI-1 mediated angiogenesis is therefore inherently not directed, as locally secreted
VEGF mediated angiogenesis might be; its increased levels regulate by simply
creating pro-angiogenic conditions. Further, it functions counter to VEGF mediated
secretion of proteases that break down the ECM. This could contribute to an
elongated versus branched phenotype of the chorionic villi, as it is plausible that high
levels of PAI-1 may favor non-sprouting (either proliferative or intercalative) over
VEGF mediated sprouting angiogenesis, where more substantial ECM reorganization
is perhaps necessary (Figure 1.4). PAI-1's pro-angiogenic effects would therefore
function primarily in elongation, creating the poorly branched and excessively
elongated chorionic villi phenotype, in the critical >25 week period, that is
characteristic of FGR with ARED (Figure 1.3). It is theorized then, that PAI-1 is directly

implicated in the fetal pathology through this proposed mechanism.

As plasma is in contact with all fetal and placental tissues, circulating PAI-1 levels are
likely to exhibit their pro-angiogenic effect at the sites of greatest endothelial
activity; the placental or fetal tissues undergoing vascular developmental changes.
This may be particularly the case if the plasma expression levels are mediated
primarily by liver secretions in hypoxia, and not by local endothelial expression. PAI-1
then, may contribute to vascular changes in the fetus that have long term effects. It is
well known that FGR babies have increased risk hypertension, coronary heart disease
and stroke (37, 38, 39). Hypoxic upregulation of plasma PAI-1 could mediate lasting
vascular changes in the fetus itself, potentially compromising vascular health in later

life in early development (DOHaD).
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Although we have identified circulating levels of PAI-1 as having a critical function in
plasma regulation of angiogenesis in FGR, it remains unclear whether its upregulation
is a primary etiological factor, or is a consequence of hypoxia that exacerbates, or
mitigates, the placental failure. It is furthermore not known if hepatic PAI-1
upregulation is sufficient to cause changes in vascular formation of the placenta on
its own, as endothelial cell secretion likely has a significant role as well. Further study
to determine what effect hepatic versus endothelial PAI-1 expression has on
angiogenic regulation in FGR remains to be undertaken. The use of PAI-1 knockout
mouse, or alternatively, a model with inducible PAI-1 expression (liver-specific or
otherwise), would help resolve remaining questions as to whether upregulation of
PAI-1 in vivo exacerbates or mitigates the placental vascular failure, and confirm that
the liver has a role in placental vascular regulation. The use of murine models
however is limiting because of the absence of chorionic villi. The drastically more
efficient labyrinth vascular organization in mice, may not reveal the full significance
of PAI-1 to maternal/fetal exchange. Therefore, the use of ewes or other animal
models together with the administration of PAI-1 inhibitors and surgically induced

fetal hypoxia, may better gauge the consequences of PAI-1 expression changes.

Vascular inflammation in the fetal-FGR placenta

The hepatic secreted proteins identified, PAI-1, fibrinogen, transferrin, and clusterin,
are regulated in an acute phase response by inflammatory cytokines. Inflammatory

cytokines furthermore are capable of inducing vascular inflammation. Vascular

221



remodeling changes in the FGR placenta may be induced directly by inflammation.
For these reasons, we measured the fetal levels of inflammatory cytokines II-1B, IL-6,
and TNF-a, as well as markers of vascular inflammation, E-selectin, VCAM-1, and
ICAM-1 in the fetal plasma (Chapter 6). The significant highly-elevated levels of II-18,
IL-6, and TNF-a demonstrate that there is very substantial fetal-placental
inflammation. The data further shows that inflammation is at least partially brought

on by chronic hypoxia.

It has been shown that chronic inflammation can lead to vascular changes and
angiogenesis. Increased levels of endothelial activation markers E-selectin and
especially ICAM-1 were all closely associated with inflammatory cytokine levels. TNF-
o has been shown to prime endothelial cells for new sprouting of blood vessels (40).
Murine models have shown that overexpression of TNF-a in the lung is sufficient to
induce vascular changes (41), and that there is inflammation and immune-mediated
angiogenesis following infection (42). Inflammation therefore has a very significant

role in angiogenesis.

Early inflammation in the placenta may be disruptive to normal angiogenic processes
causing endothelial dysfunction and leading to poorly branched vasculature.
Alternatively, inflammation may be in response to hypoxia as a result from the failure
of normal angiogenic processes earlier on. In such a scenario, inflammation may be a
healing mechanism analogous to angiogenic reperfusion of tissues in wound healing

or ischemic injury. Inflammation then may exacerbate the placental insufficiency, or
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conversely, mitigate it. An assessment of the effect of fetal-placental vascular

inflammation on vascular remodeling and angiogenesis is required.

Liver expression and phosphorylation of IGFBP-1

Secreted IGF-I, either localized or by liver in paracrine and endocrine fashions
respectively, stimulates fetal growth via IGFRI activation of the MAPK cell signaling
cascade (43). By binding to IGF-I with high affinity, IGFBP-1 sequesters IGF-I in the
circulation, thereby limiting its bioavailability for binding to IGFRI, and functioning to
limit fetal growth (44, 45). Here we were able to confirm using an in vitro model that
its fetal liver synthesis is increased under hypoxic and nutrient-deprived conditions
(46). IGFBP-1's regulation of IGF-I is also PTM-dependent. It has been proposed that
IGFBP-1's phosphorylation blocks IGFBP-1 polymerization thereby increasing binding
affinity for IGF-1 (34). We were able to show that there is increased phosphorylation
of hepatic secreted IGFBP-1 in conditions of hypoxia and leucine deprivation.
Furthermore, the increased affinity for IGF-I by the highly phosphorylated variants
suggests a further mechanism by which hepatic expression of IGFBP-1 may act to
moderate fetal growth.

Although HIF-1 regulation of IGFBP-1 expression accounts for its upregulation in
hypoxia, IGFBP-1 upregulation in amino acid deprivation reveals that an alternative
regulatory mechanism is present in metabolic starvation. As the mTOR pathway is
sensitive to several stress stimuli, including hypoxia and amino acid deprivation, it is

likely that IGFBP-1 expression and possibly phosphorylation may be regulated via
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MTOR. Preliminary data showing upregulation of IGFBP-1 expression in HepG2 cells
following treatment with an mTOR inhibitor (rapamycin) has demonstrated this to be
the case (data not shown in thesis).

mTOR exerts its kinase activity through complexing with Raptor (complex 1) or Rictor
(complex 2) that have discrete downstream targets. As HIF-1 transcription is
downstream of complex 1, IGFBP-1 may be upregulated via mTOR through its HRE.
Alternatively, inhibition of complex 2 phosphorylation of AKT may lead to IGFBP-1
regulation via downstream FOXO transcription factors, which are known to regulate
IGFBP-1 expression downstream of the insulin receptor. Characterization of phospho-
variants of IGFBP-1 following rapamycin treatment will reveal mTOR’s involvement in
IGFBP-1 phosphorylation. Since phosphorylation of IGFBP-1 increases in both hypoxia
and leucine deprivation, it is logical to expect that the kinases involved are also

regulated through mTOR as well.

8.3. OVERALL CONCLUSIONS

Here it has been proven that the condition of placental insufficiency leads to both
maternal and fetal plasma protein changes. Although, placental insufficiency
originates in the pathological formation of the fetal-placental vasculature, it is
apparent, based on these findings, that the pathological processes alter the contents
of the maternal circulation as well. Changes in endothelial proteins VCAM-1 and E-
selectin were detected in the mother’s plasma, as well as PTM changes to angiogenic

protein Hp, that together are suggestive vascular changes in the mother. It is logical
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to theorize that these changes may be associated with the reduced exchange across
the placenta, and corresponding intervillous conditions of abnormally abundant
oxygen in placental insufficiency. These proteins’ changing levels may be exploited as
biomarkers. VCAM-1 changes in particular may be highly predictive of placental
health problems. Validation of its changing levels in the disease could eventually lead
to new diagnostic tools to facilitate monitoring placental development in pregnancy,

which would improve clinical care, and ultimately fetal outcomes.

In the fetal circulation, the proteins proven to change with placental insufficiency are
also related to the vasculature, and to the regulation of fetal growth. The expression
of liver proteins was consistent with an acute phase-like change in liver secretion that
takes place with inflammation. It was established that despite a large degree of
inflammation, hypoxia was mediating acute phase-like protein changes directly. The
functional consequences of the most significant liver secreted plasma protein
changes were explored: The effect of increased PAI-1 expression’s on angiogenesis,
and increased IGFBP-1 expression and phosphorylation on IGF-I mediated cellular

growth, were demonstrated using in vitro experiments.

That FGR plasma is overwhelmingly pro-angiogenic despite the reduced vasculature
is a novel finding. It is also especially significant in the context that normal vascular
regulation via VEGF and FGF-2 is disrupted, as it suggests that other angiogenic
regulatory mechanisms may be abnormally upregulated in FGR. Here, it was
discovered that increased plasma levels of PAI-1 increased angiogenesis in plasma

immediately effluent from the vascular-compromised placenta. PAI-1's oxygen-
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dependent levels in the fetal plasma are therefore of consequence to the angiogenic-
inducing potential of the plasma itself. Characterizing the full extent of PAI-1 effects
on placental angiogenesis, and indeed the vascular health of FGR newborns through
adulthood, using animal models, may very well establish PAI-1 as a centrally
important molecule in the vascular pathology of FGR. The altered secretion of PAI-1
from liver may have a regulatory role on vascular development in an analogous

fashion to IGFBP-1 secretion’s regulation of fetal growth.

Here increased IGFBP-1 phosphorylation at four specific sites was identified from
liver secretions in hypoxia and leucine deprivation. Increased phosphorylation
increased IGF-l affinity and restricted IGF-I mediated proliferation. The findings
characterize an additional mechanism by which liver secretions may be regulating
IGF-I mediated fetal growth. Reduced growth mitigates placental insufficiency by
reducing the demands for metabolic substrates. It restricts growth to mitigate the
effects of limited maternal/fetal exchange in placental insufficiency. The changes in
IGFBP-1 phosphorylation identified here are therefore adaptive to placental

insufficiency.

The fetus’ ability to survive and very often thrive in later life, despite extreme in utero
environments of deprivation, is evidence of a remarkable degree of adaptability.
Here some important biochemical effectors circulating in the plasma that have roles
in adaptation, or in regulating angiogenesis or fetal growth have been elucidated.
The continuing investigation of their changing levels and their roles in FGR pathology

will lead to new diagnostics, and help formulate a better understanding of the FGR
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etiology that will eventually lead to effective interventions and better disease

management.
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SUPPLEMENTAL FIGURE 4.1. Representative 2-D gel illustrating pH 3-10NL of

conditioned media from HepG2 cells treated with O, concentrations of either 1%,
4% or 20% (ambient air). Proteins indicated are top scoring hits of spots identified
following in-gel digestion and LC-MS/MS identification of the spots. Proteins spots
indicated are not significantly changing by ANOVA . Complete MS data are listed in
Supplemental Table 4.1.
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SUPPLEMENTAL FIGURE 4.2. A representative 2-D gel showing pH 3-10NL of fetal cord
plasma after albumin and IgG depletion. Twelve FGR and twelve matching
gestational-age control fetal plasma samples (Figure 4.6 and Table 4.2) were
separated by 2-DGE after albumin and IgG depletion. Densitometric software
analysis compared changes by paired t-test (p<0.05) between control and FGR
groups. Proteins indicated are top scoring hits of significantly changing spots
identified by LC-MS/MS. Black borders indicates increasing spot, while lines
indicated decreasing spots in FGR compared to controls. Complete MS and
quantitative data are listed in Supplemental Table 4.2.
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SUPPLEMENTAL FIGURE 5.1. Maternal plasma levels of vascular regulating proteins from
mothers of FGR pregnancies with placental insufficiency compared to controls.
Although VEGF and FGF-2 appear modestly decreased in FGR, no significant
differences are present by t-test. Whiskers indicate range.
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SUPPLEMENTAL FIGURE 6.1. Maternal plasma levels of proteins in FGR samples
compared to controls. (A) Endothelial activation/inflammation markers (B)
Inflammatory cytokines. Whiskers indicate range.
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