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Abstract 

With the rapid growth in density, operating speeds and complexity of modern very-large-

scale integration (VLSI) circuits, there is a growing demand on efficient and accurate 

modeling and simulation of high speed interconnects and packages in order to ensure the 

signal integrity, reliability and performance of electronic systems. Such models can be 

derived from the knowledge of the physical characteristics of the structure or based on the 

measured port-to-port response. 

In the first part of this thesis, a passive macromodeling technique based on Method of 

Characteristics (referred as Passive Method of Characteristics or PMoC) is described which 

is applicable for modeling of electrically long high-speed interconnect networks. This 

algorithm is based on extracting the propagation delay of the interconnect followed by a low 

order rational approximation to capture the attenuation effects. The key advantage of the 

algorithm is that the curve fitting to realize the macromodel depends only on per-unit-length 

(p.u.l.) parameters and not on the length of the transmission line. In this work, the PMoC is 

developed to model multiconductor transmission lines. 

Next, an efficient approach for time domain sensitivity analysis of lossy high speed 

interconnects in the presence of nonlinear terminations is presented based on PMoC.  An 

important feature of the proposed method is that the sensitivities are obtained from the 

solution of the original network, leading to significant computational advantages. The 

sensitivity analysis is also used to optimize the physical parameters of the network to satisfy 

the required design constraints.    



iv 

A time-domain macromodel for lossy multiconductor transmission lines exposed to 

electromagnetic interference is also described in this thesis based on PMoC. The algorithm 

provides an efficient mechanism to ensure the passivity of the macromodel for different line 

lengths. Numerical examples illustrate that when compared to other passive incident field 

coupling algorithms, the proposed method is efficient in modeling electrically long 

interconnects since delay extraction without segmentation is used to capture the frequency 

response. 

In addition, this thesis discusses macromodeling techniques for complex packaging structures 

based on the frequency-domain behavior of the system obtained from measurements or 

electromagnetic simulators. Such techniques approximate the transfer function of the 

interconnect network as a rational function which can be embedded with modern circuit 

simulators with integrated circuit emphasis (SPICE). One of the most popular tools for 

rational approximations of measured or simulated data is based on vector fitting (VF) 

algorithms. Nonetheless, the vector fitting algorithms usually suffer convergence issues and 

lack of accuracy when dealing with noisy measured data. As a part of this thesis, a 

methodology is presented to improve the convergence and accuracy issues of vector fitting 

algorithm based on instrumental variable technique. This methodology is based on obtaining 

the “instruments” in an iterative manner and do not increase the complexity of vector fitting 

to capture the frequency response and minimize the biasing. 

Keywords: Multiconductor Transmission Lines, High Speed Circuits, Interconnects, 

Macromodeling, Method of Characteristics, Passivity, Vector fitting, Noise, Instrumental 

Variable, Electromagnetic Interference, Incident Fields. 
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Chapter 1  
 

1 Introduction 
 

 

1.1 Background and Motivation 

The rapid growth in density, operating speeds and complexity of modern integrated circuits 

has made electrical interconnects a critical part for determining signal integrity and speed 

performance of electronic systems. Improperly designed interconnects can increase signal 

delay, distortion, attenuation, ringing and crosstalk which can severely degrade system 

performance [1]-[3]. In addition, interconnect networks can be susceptible to electromagnetic 

fields. Electromagnetic interference can induce undesired voltages and currents in the circuit 

which may degrade the signal integrity or even damage the circuit [1],[4]-[7].  

These effects are observed at the chip, multi-chip, packaging and board levels. Furthermore, 

skin effect losses in the conductors and shunt losses in the dielectrics also become prominent 

at higher frequencies and distributed multiconductor transmission line (MTL) models with 

frequency-dependent parameters are required. However, the analysis of distributed 

transmission lines in the presence of nonlinear elements suffers from the mixed 
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frequency/time problem as well as CPU inefficiency. The mixed frequency/time problem 

arises from the fact that transmission lines are described by partial differential equations 

(PDE) which are traditionally solved in the frequency domain, whereas the transient 

responses of nonlinear elements are described in the time domain by nonlinear differential 

equations. In order to link transmission lines into nonlinear circuit simulators, 

macromodeling algorithms are required to convert these equations into ordinary differential 

equations (ODE) [1]-[3].  

Macromodeling can be roughly categorized into two classes of algorithms. The first class of 

algorithms are performed with the knowledge of the physical characteristics of the 

interconnect structure. The majority of these algorithms are based on quasi-TEM mode of 

propagation. For the case, when the physical properties of the interconnect structure is not 

known, or an analytic solution is not easy to derive, macromodeling can be performed based 

on rational approximation of the port-port measured or full-wave electromagnetic simulated 

data. 

In addition, macromodeling algorithms of a network with known physical characteristics can 

be either based on sectioning/rational approximation or delay extraction techniques. 

Algorithms that use sectioning/rational approximation are lumped RLGC macromodel [1], 

PRIMA [8], matrix rational approximation (MRA) [9]-[10], compact difference [11] and 

integral congruent transformation [12]-[13]. The advantage of these algorithms is that they 

can be made to be passive by construction. However, these algorithms approximate the 

propagation delay implicitly without using delay extraction. Consequently, to model long 
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lines with significant delay these algorithms require high order approximations to accurately 

capture the delay of the signal leading to inefficient transient simulation [14].  

In contrast, delay extraction methods like MoC [15], traditionally are not passive by 

construction. However they are very efficient for modeling of electrically long lines. With a 

sectioning/rational approximation approach, many poles have to be used to capture the 

transfer function of a long line and subsequently it increases the simulation time. With a 

Method of Characteristic (MoC) macromodel, the delay of the transfer function is extracted, 

and as a result, its “left-over” is approximated with a low order rational function which 

significantly reduces the computational complexity.  

Although, MoC provides fast solutions for long low loss transmission lines, there are major 

challenges in the implementation of the algorithm. One disadvantage is the potential loss of 

passivity that can occur in the constructed macromodel. Since transmission lines are passive 

elements, passivity of the macromodel is important since nonpassive but stable macromodels 

when connected to arbitrary nonlinear and even passive elements can lead to an unstable 

overall system [8]. This leads to erroneous artificial oscillations in the time domain 

simulation due to the instability of the entire network.  

In [16], a passive delay extraction macromodel (DEPACT algorithm) based on the modified 

Lie product has been proposed to efficiently model long low-loss lines. Nonetheless, the 

efficiency of the DEPACT macromodel depends on the losses of the transmission line. As 

the losses of the line increase, a higher order Lie product approximation is required to capture 

the frequency characteristics of the line. Recently, methodologies have been developed to 
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verify and identify the location of passivity violations of MoC-based macromodels and to 

restore the passivity of these models using perturbation techniques [17]-[19].  

Another difficulty with MoC-based algorithms is the numerical curve fitting required to 

realize the macromodel. For the case of MTLs eigen-mode analysis is required to decouple 

the transmission line equations. The numerical curve fitting required to capture the eigen-

characteristics can present many challenges in terms of computational expense and accuracy. 

These challenges become greater as the number of coupled lines increase, the losses of the 

line become more significant and the length of the line becomes longer. 

An additional important aspect of a macromodel is the ability to extract gradient information 

of a network referred as sensitivity analysis. An efficient and accurate sensitivity analysis 

with respect to physical/electrical interconnect parameters is very helpful for identifying the 

critical components in the design particularly when combined with optimization tools to 

increase the reliability and performance of the system. It is also very important for the 

macromodel to calculate the effect of an incident electromagnetic field coupling to 

transmission lines in the framework of nonlinear circuit simulators.  

Another useful class of algorithms is based on tabulated data [20]. Tabulated data can be 

obtained either from simulations or from measurements. The behavior of high speed 

interconnect networks such as chip interconnects, connections on multichip modules, micro-

strip printed circuit board traces, and cable connections can be represented by frequency-

dependent admittance [21]-[29], impedance, or scattering parameters [30], Green’s functions 

[31], transfer functions [32], etc.. These parameters can be obtained using a port-port 

measurement, or using a full-wave electromagnetic analysis or simulation. 
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1.2 Objectives and Contributions 

The objective of this thesis is to develop efficient macromodeling algorithms for distributed 

high-speed interconnect networks. For the case where the physical characteristics of the 

interconnect structure is known and the electrical model can be derived from Telegrapher's 

equations, the following contribution are made. 

The passive method of characteristics (PMoC) macromodel is developed for distributed lossy 

multiconductor transmission lines. A theorem is provided that specifies sufficient conditions 

to guarantee the passivity of the MoC by construction. A key feature of the proposed 

algorithm is that the curve fitting to realize the MoC depends only on the per-unit-length 

parameters and not on the discretization of the macromodel. Thus, with the knowledge of the 

rational functions derived by the per unit length parameters, the MoC is formulated in a 

closed form manner for any line length while ensuring passivity. PMoC macromodel extracts 

the propagation delay of transmission line, and hence, it requires lower order of rational 

approximation compared to segmentation algorithms. Numerical examples are provided to 

illustrate the accuracy and efficiency of the PMoC. 

The PMoC macromodel is extended to efficiently calculate sensitivities of high speed 

interconnects in the presence of nonlinear terminations. An important feature of the proposed 

method is that the sensitivities are analytically obtained from the solution of the original 

network, leading to significant computational advantages. The sensitivity analysis is also 

used in an optimization process of the physical parameters of a network to obtain the 

constrained design requirements.  
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Time-domain analysis of lossy multiconductor transmission lines in the presence of 

electromagnetic incident fields is obtained. The equivalent sources due to the incident fields 

coupling are formulated to take advantages of the PMoC macromodel, which provides an 

efficient mechanism to ensure the passivity of the macromodel for different line lengths. 

Numerical examples illustrate that when compared to other passive incident field coupling 

algorithms, the proposed method is efficient in modeling electrically long interconnects since 

delay extraction without segmentation is used to capture the frequency response. 

For the case where the macromodeling is derived from measurement, a methodology is 

presented to improve the convergence and accuracy issues of vector fitting algorithm for the 

noisy frequency-domain measured data. The proposed technique which is based on an 

instrumental variable approach, does not increase the computational complexity of vector 

fitting algorithm. 

 

1.3 Organization of the Thesis  

The thesis is organized as follows. Chapter 2 reviews the challenges of macromodeling high 

speed interconnects. The chapter addresses the issues of macromodeling techniques based on 

quasi-TEM mode of propagation when the physical structure of the interconnect network is 

known as well as the ones based on port-port tabulated data and when the physical structure 

is unknown. Chapter 3 develops a passive method of characteristics (PMoC) macromodel for 

the case of lossy multiconductor transmission lines. Numerical examples are also given in 

this chapter to demonstrate the efficiency of the macromodel. Chapter 4 expands the PMoC 
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macromodel to support sensitivity analysis followed by a few numerical examples. Chapter 5 

develops the PMoC macromodel in order to evaluate the effect of external electromagnetic 

fields. Chapter 6 discusses a new vector fitting algorithm based on an instrumental variable 

technique to characterize distributed electromagnetic systems described by noisy data. 

Finally, Chapter 7 summarizes the proposed work and also presents some suggestions for 

future related work. 
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Chapter 2  
 

2 Background and Literature Review 
 

 

2.1 Introduction 

Interconnects are the physical links between electrical devices in chips, electrical packages, 

printed circuit boards (PCB), backplanes, etc. Interconnects at low frequencies behave as 

short circuits, however, as the frequency increases, they behave as transmission lines and 

become responsible for majority of signal degradation such as signal delay, distortion, 

attenuation, ringing and crosstalk. The subject of this chapter is to review some of the 

interconnect macromodels and numerical techniques that are used for interconnect analysis. 

Section 2.2 explains macromodeling of high speed interconnect networks derived from quasi-

TEM mode of propagation. Section 2.3 provides several transmission line macromodels for 

nonlinear circuit simulators. Section 2.4 describes least square curve fitting algorithms to 

derive rational macromodels of distributed systems characterized from tabulated data. From 

this discussion, section 2.5 talks about the methodologies for improving the accuracy and 

convergence issues of least-squares fitting algorithm when dealing with noisy data. 
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2.2 High Speed Interconnect Models 

Figure 2-1 shows the three-dimensional and cross sectional views of an interconnect 

network.  The complexity of the interconnect macromodel depends on the physical 

dimensions and operating frequency of the circuit. These two factors determine whether the 

modeling of interconnects is based on quasi-transverse electromagnetic (quasi-TEM) or full 

wave assumptions. Quasi-TEM assumptions remain the dominant trend for analyzing IC 

interconnects, since the approximation is valid for most practical structures and offers 

relative ease and low computation cost compared to full wave approaches [2]-[3]. 

 In TEM mode of propagation, the electric and magnetic fields surrounding the space around 

the line conductors are transverse or perpendicular to the line axis [1]. TEM mode exists for 

transmission lines with homogenous medium and perfect conductors. In inhomogeneous 

mediums, electromagnetic waves are generated with different velocities. Moreover, 

interconnect networks with imperfect conductors produce electric fields along the surface 

Ground plane

ε, µ0

Interconnect
Substrate

Interconnect

Substrate

 
Figure 2-1:  Three-dimensional and cross sectional views of an interconnect structure. 
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conductor. Such interconnect structures violate the TEM wave characteristics, since TEM 

waves propagate with only one velocity and have no electric field along the surface 

conductor. However, for many structures if the cross section is electrically small and the 

conductor have low losses, the results are almost similar to TEM structures and thus they can 

be approximated as TEM mode, referred as quasi-TEM assumptions. 

One of the important characteristics of TEM mode of propagation (which is approximated for 

non-perfect conductors in quasi-TEM modes) is the ability of expressing the voltage and 

current values of each point of the conductor line. The voltages and currents for the quasi-

TEM distributed models are described by partial differential equations (PDEs) known as the 

Telegrapher's equations  

 )i()(t,)( zt,
t

zzt,
z ∂

∂−−=
∂
∂ LRiv  

)()(t,)( zt,
t

zzt,
z

vCGvi
∂
∂−−=

∂
∂                                         (2.1) 

where t and z are the time and position variable; v(t,z) and i(t,z) represent the voltage and 

current vectors of the transmission line, respectively; R, L, G and C are the per unit length 

(p.u.l.) resistance, inductance, conductance and capacitance matrices, respectively. The p.u.l 

parameters are used to determine the transmission line voltages and currents and can be 

obtained from the cross-sectional dimensions and physical characteristics of the transmission 

line [1]. 

One of the simplest forms of the distributed models is the delay-line or lossless line where 

R=G=0. More complicated models include per-unit-length losses of the conductor and the 
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dielectric substrate, as well as coupling between adjacent lines. At higher frequencies, edge, 

proximity, and skin effects become prominent and distributed models with frequency-

dependent parameters are required.  

The difficulty with quasi-TEM distributed models is that they cannot be directly linked to 

circuit simulators such as SPICE. Circuit simulators solve nonlinear ordinary differential 

equations (ODEs) and while Telegrapher’s equations are expressed as PDEs. To overcome 

this difficulty, numerical techniques are used to convert distributed models into ODEs.  

One of the basic solutions for linking distributed transmission lines to circuit simulators is 

using the conventional lumped segmentation model [1]. The number of segments required 

depends on the electrical length of the transmission line. For transmission lines that are 

electrically long (i.e. the length of the line is much greater than the wavelength) many 

segments are required. In addition to the lumped segmentation model, other more 

sophisticated algorithms exist such as exponential matrix rational approximation (MRA) [9]-

[10], method of characteristics [14]-[15],[33]-[37], delay extraction based macromodeling 

algorithm (DEPACT) [16], which are described briefly in the next sections.  

 

2.3 Simulating Interconnects in SPICE 

For the case when the physical characteristics of the interconnect structure is known and 

quasi-TEM is assumed, the electrical performance of interconnects can be expressed using 

the Telegrapher's partial differential equations (PDE). Commercial circuit simulators like 

SPICE being unable to solve the PDE's in the time domain, macromodeling algorithms are 
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required to convert the PDE to ordinary differential equations (ODE) which can be solved by 

numerical integration. Moreover, macromodeling algorithms can also be extended to perform 

sensitivity analysis and model incident field coupling to lossy transmission lines. This 

sections describes some of the existing macromodeling techniques based on quasi-TEM 

mode of propagation, followed by a review of sensitivity and incident field analysis. 

 

2.3.1 Lumped Segmentation 

Lumped segmentation technique uses lumped equivalent circuits of the transmission lines to 

approximate Telegrapher’s equations. Applying Euler’s method [1] to (2.1) yields 

)()()()(1 t
t

ztztt zzzz iLRivv
∂
∂∆−∆−=−+  

)()()()(1 t
t

xtztt zzzz vCGvii
∂
∂∆−∆−=−+                                 (2.2) 

where z=[1,2,...,η ], ∆z=l/η, η is the number of sections and l is the length of interconnect. 

Equation (2.2) can be implemented by lumped equivalent circuit composed of resistors, 

inductors and capacitors. Figure 2-2 shows the general lumped component for a two 

conductor transmission line.  

The commercial circuit simulators like HSPICE [38] use the following equation in order to 

estimate the number of sections for time domain analysis of digital systems  

rt
LClN ⋅= 20                                                          (2.3) 
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where rt  is the rise/fall time. The lumped segmentation model is passive and provides a 

direct method to discretize interconnects. However the approximation is only valid if ∆z is 

chosen to be a small fraction of the wave length. If the rise/fall time is fast or if the 

interconnect is electrically long, many lumped elements are required for an accurate model. 

This leads to large circuit matrices, increasing the simulation time. 

 

2.3.2 Matrix Rational Approximation  

Matrix rational approximation (MRA) macromodel directly converts the Telegrapher’s 

equations into time domain macromodels based on rational approximations of exponential 

matrices. An important feature of this macromodel is that it guarantees the passivity of the 

resulting interconnect macromodel by construction. This section briefly describes the matrix 

rational approximation; a more detailed explanation can be found in [9]-[10]. 

The Telegrapher’s equation can be written in the Laplace-domain as an exponential matrix 

function as 

Figure 2-2:  Lumped transmission line model for single transmission line. 
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where [ )(0 s,V , )(0 s,I ], [ )( sl,V , )( sl,I ] are the terminal voltage and current vectors of the 

transmission line and l is the length of the transmission line. The exponential matrix Ze  in 

(2.4) can be expressed with a matrix rational approximation as 

)()( ZQZP Z
NM e =                                                   (2.5) 

where )(ZPM , and )(ZQN  are polynomial matrices 

∑∑
== −

−==
M

i

i
M

i

i
iM iMiM

MiMp
00 )!(!)!2(

!)!2()( ZZZP  

∑∑
== −

−==
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i

i
N

i

i
iN iNiN

NiNq
00 )!(!)!2(

!)!2()( ZZZQ                                  (2.6) 

After some mathematical manipulations, (2.5) can be expressed as a macromodel represented 

by a set of ordinary differential equations, in a closed form. Since the MRA macromodel is 

described in terms of predetermined coefficients ip  and iq , and the p.u.l parameter, the 

macromodel can be constructed very quickly. However, MRA is not very computationally 

efficient for electrically long lines since the delay of the transmission line is not extracted and 

hence, a higher order of approximations is required to express Ze  as a matrix rational 
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approximation. In sections 2.3.3 and 2.3.4 two common delay extraction macromodels are 

reviewed. 

2.3.3 Method of Characteristics  

Among the most commonly used algorithms are those based on the generalized method of 

characteristics (MoC) [14]-[15],[33]-[37]. The MoC is based on extracting the line-

propagation delay and produce exact models when applied to lossless transmission lines [15]. 

Over the years, these algorithms have been extended to model lossy MTLs [14],[33]-[37]. 

The efficiency of MoC is derived by extracting the propagation delay which allows the 

attenuation function to be approximated with a low-order rational function. This significantly 

reduces the computational complexity of the transfer function; especially for long lines with 

low losses. 

The original method of characteristics [15] is able to represent interconnects as ODEs 

containing time delays. Although the original method of characteristics was developed in the 

time-domain using what is referred as characteristic curves (hence the name), a simpler 

alternative derivation in the frequency-domain is presented. The frequency domain solution 

of (2.1) for a two-conductor transmission line [39] is 


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

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where γ  is the propagation constant and 0Z  is the characteristic impedance. After some 

mathematical manipulations, the terms in (2.7) can be expressed as 

1101 WIZV +=  

  2202 WIZV +=                                                        (2.8) 

where 1W  and 2W  are defined as recursive relations  

]2[ 221 WVeW l −= −γ  

]2[ 112 WVeW l −= −γ .                                                  (2.9) 

For lossless transmission lines, γ  and 0Z can be reduced to  

LCs=γ ;     CLZ /0 =                                             (2.10) 

which makes γ  a purely imaginary number and 0Z  a real constant. The time domain solution 

of MoC can be obtained by taking the inverse Laplace transform of (2.8) and (2.9) as 

)()()( 1101 twtiZtv +=  

)()()( 2202 twtiZtv +=  

)()(2)( 221 twtvtw −=+τ  

)()(2)( 112 twtvtw −=+τ                                             (2.11) 
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where lγτ =  is represented as a delay term. An equivalent circuit realization of time domain 

macromodel of a lossless transmission line is demonstrated in Figure 2-3.  

For the case of lossy transmission lines, γ  is not purely imaginary and 0Z  is not a real 

constant and therefore, the direct time domain representation is not possible. In this case, 

numerical techniques have been proposed to incorporate lossy transmission line models 

[14],[33]-[37] using rational approximation of 0Z   and le γ− , however, these methods may 

have numerical passivity issues due to numerical errors of the rational approximation 

techniques. 

Methodologies are proposed to restore the passivity of MoC [19] which are based on 

perturbation of rational approximation in order to make the admittance matrix positive real. 

In Chapter 3, a macromodel based on MoC is described where the curve fitting to realize the 

MoC depends only on the per-unit-length parameters and not on the discretization of the 

macromodel. Thus, with the knowledge of the rational functions derived by the per unit 

length parameters, the MoC is formulated in a closed form manner for any line length while 

ensuring passivity. 

 

Figure 2-3: Circuit realization of MoC for a two-conductor transmission line. 

0Z

1v

1i

2v

2i

1w 2w

0Z



18 

 

 

2.3.4 Delay Extraction-Based Passive Compact Transmission-Line 

Macromodeling Algorithm (DEPACT) 

Consider the solution of Telegraphers equations for a general multiconductor as expressed in 

(2.4), where Z  matrix can be written as 

BAZ s+=                                                           (2.12) 

where 

l
--

--
⋅








−

−
=

∞

∞

0)(s)s((s)
)(s)s((s)0

CCG
LLR

A ;   l⋅







−

−
=

∞

∞

0
0
C

L
B           (2.13) 

and )(∞=∞ LL and )(∞=∞ CC  are the extracted p.u.l inductance and capacitance of the line 

and l represents the line length.  

The basic idea of the delay extraction-based passive compact transmission-line (DEPACT) 

macromodeling algorithm is to separate the extracted delay terms (  Bse ) from  )( BA se + thereby 

enabling  Ae to be modeled using a low order rational function. However, this is not a trivial 

task since the matrices A and sB do not commute, (i.e.   BABA ss eee ≠+ )( ).  

To approximate  s )( BA+e in terms of a product of exponentials, a modified Lie product [16] is 

used as   
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i eee 22

ABA

=Ψ                                                  (2.14b) 

where n is the number of sections. The associated error of the approximation scale to the 

second power of number of sections n, as || nε || ≅ O(1/ 2n ) [16] (i.e. (2.14) quickly converges 

to the exponential matrix of (2.13) with increase of number of sections, n). Equation (2.14) 

shows that the exponential function of (2.13) can be divided into subsections of ne 2A  and 

nse B . The matrix ne 2A  represents a lossy line segment and nse B  represents a lossless line 

segment. The products can be viewed as a cascade of transmission line subnetworks. For a 

two-conductor transmission line example, each iΨ  in (2.14b) can be realized as shown in 

Figure 2-4. Here, the lossy terms can be macromodeled using the MRA algorithm (section 

2.3.2) and the lossless sections can be modeled using the MoC approach (section 2.3.3). The 

ne 2
(s)A

ne
)( ∞B

0Z 1W 2W

ne
(s)A

ne
)B( ∞

0Z 0Z 0Z 0Z 0Z3W 4W 12 −nW nW2

ne 2
(s)A

ne
)( ∞B

Figure 2-4: Circuit realization of DEPACT macromodel. 
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resulting macromodels are of significant lower orders since for electrically long lines a 

significant portion of the delay is already extracted using MoC [16]. 

 

2.3.5 Sensitivity Analysis 

The design process of large distributed networks usually involves the balancing of mostly 

conflicting requirements to obtain the best possible performance. For example, decreasing 

the line width of the conductor decreases the parasitic capacitance of the line if the substrate 

thickness is not varied. However, this leads to greater signal attenuation as a result of the 

conductor losses. Hence, efficient and accurate sensitivity information with respect to 

interconnect parameters is important, since it provides circuit designers with valuable 

information in terms of identifying critical components in the design and provides gradient 

information needed for optimization. 

A simple way to calculate the sensitivities of a transmission line network with respect to 

interconnect parameter is the perturbation technique. However, there are many issues 

regarding the speed and accuracy of these methods [40]. Perturbation based techniques can 

lead to inaccurate results depending on the magnitude of the perturbation [41]. In addition, 

the perturbed network must be solved separately for every parameter of interest. 

Macromodeling algorithms have also been extended to perform sensitivity analysis [41]-[45]. 

To calculate the sensitivity of the network with respect to a transmission line electrical or 

physical parameter, the calculation of the derivatives of the modified nodal admittance 
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(MNA) matrices are required which depends on the transmission line model being used. In 

[41], a sensitivity analysis based on MoC is proposed which directly differentiates 

Telegrapher’s equations to derive the sensitivity network. In [40], a sensitivity analysis has 

been proposed based on numerical inversion of Laplace transform. The method is then 

improved in combination with a piecewise decomposition technique [42]. Later, the 

algorithm has been applied in an optimization process of high speed circuits [43]. In [44] and 

[45], the sensitivity information has been derived using MRA and DEPACT macromodels 

respectively. 

 

2.3.6 Transmission Line Macromodels with Incident Fields 

Susceptibility of high-speed circuits to external electromagnetic fields is another important 

issue in the modeling of high-speed circuits. Electromagnetic fields can induce currents in 

circuits that may influence the signal integrity of networks. 

The analysis of transmission lines excited by an external electromagnetic wave has been an 

active area of research [4]-[7],[46]-[55]. Majority of the works are based on the formulation 

given by Taylor in [4] which is applicable for two-conductor transmission lines. The 

technique is also expanded for frequency domain solution of excited MTLs in [5] and later 

for the time domain solutions in [6]-[7]. In these formulations, the excited transmission line 

model is composed of two parts: i. an unexcited transmission line and ii. forcing functions at 

the terminals of the transmission lines modeling the effects of the incident field. These 

techniques are based on the quasi-TEM mode of propagation along the transmission line. In 



22 

 

 

[52], a similar technique is proposed for the simulation of the traces in a multi-layered 

inhomogeneous medium. The fields in the layered medium were calculated using the 

physical optics technique without relying on the full wave analysis.  

In [53] and [54], the analysis of MTLs in the presence of an incident field has been evaluated 

using MRA and DEPACT macromodels respectively. Numerical rational approximation 

techniques are also required to model the effect forcing functions in nonlinear circuit 

simulators. More recently, a simplified version of DEPACT approach has been presented in 

[55] where the incident field coupling is modeled by embedding additional delay sources in 

each DEPACT cell. 

 

2.4 Macromodeling Based on Measured Data 

Another useful approach for macromodeling of transmission lines is based on rational 

approximation of frequency-domain sampled data in the forms of admittance, impedance, 

hybrid or scattering parameters. In this section two schemes of interpolation-based complex 

rational approximation [56] and vector fitting (VF) [20] are reviewed. 

 

2.4.1 Interpolation-Based Complex Rational Approximation 

A network function )(sY  of a linear system can be approximated by a rational function that 

interpolates the given function at given points. The rational function can be in a pole-residue, 
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pole-zero form or as a ratio of polynomials. Suppose the network function, )( isY  at given 

points is  is approximated by a rational function of degree (m,n) as 

∑

∑
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=

+

+
=≈ n

i

i
i
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i

i
i

n

m

sq

spp

sQ
sPsY

1

1
0

1
)(
)()(                                                     (2.15) 

with 0q  normalized to unity. Equation (2.15) has 1++= nmN  independent unknown. The 

coefficients are determined so that the approximating function evaluated at each frequency 

point, gives close approximation to the function )(sY   

0)(
)(
)( =− i

in

im sY
sQ
sP

                                                    (2.16) 

By canceling the denominators in (2.16) and choosing sN  frequency points over the 

frequency range of interest to, the linear homogenous system of sN  equations and N  

unknowns is determined as 

0)()()( =− iniim sQsYsP                                                 (2.17) 

which can be written in the form an overdetermined linear system of equation 

B=AX                                                                  (2.18) 

where  
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[ ]T21210 nm qqqpppp LL=X                             (2.20) 

[ ]T21 )()()( NssYsYsY L=B                                          (2.21) 

As the order m, n increase, the system in (2.18) becomes highly ill-conditioned and nearly 

singular and even with proper frequency normalization, the computational procedures are 

limited by the machine precision. 

The least squares solution of (2.18)-(2.21) results in complex coefficients kp  and kq which is 

not a physically realizable rational approximation. The approximation can be made realistic 

by utilizing the special properties of network functions. For instance, constraints necessary to 

insure a physically realizable passive network require that the coefficients of the polynomial 

rational function be real, and all the poles must have negative or zero real parts.  

In a addition, the response of a passive network can only decay in time from any transient 

initial state. As a result, only the real part, imaginary part, angle, or magnitude of the network 

function has to be approximated and the network function itself can be found from the 

resulting approximation.  

Next, a procedure for determining a rational function to approximate )(sY  is described using 

the real parts of the function. The real part of a network function (2.15) can be obtained by 
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( ) ))()((2
1)(  sYsYsYreal −+= . Taking the common denominator of  ( ))(  sYreal  , the 

rational approximation is expressed as 
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Note the poles of ( ))(  sYreal   belong to )(sY  and )( sY − , (i.e. the poles on the left plane 

belong to )(sY  and the poles on the right side belong to )( sY − ).  Thus, the denominator 

coefficients of in (2.22) can be obtained from (2.15). The following system of equations 

results from matching the real parts of the original function with (2.22) at the set of 

frequencies where the superscript r indicates the real part of a complex value as 
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 (2.23) 

It is to be noted that the equation (2.23) is notoriously ill-conditioned. The ill-conditioning 

can be improved by mapping the frequency domain [ minω , maxω ]  into normalized domain of 

[-1,1]. The order of approximating function must be greater than or equal to the actual order 
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sought. Once the poles of the systems are determined from (2.23), the unstable poles are 

removed and the remaining poles with negative real parts are used to formulate the stable 

partial fraction expansion of )(sY  as 
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and the residues are obtained from another overdetermined equation of 
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where superscripts i and r indicate the imaginary and real parts of a complex value. This 

procedure results in a stable rational approximation with real coefficients kp  and kq  [56]. 

 

2.4.2 Vector Fitting 

The vector fitting (VF) algorithm [20] uses an iterative approach to provide a rational 

function of the measured or simulated tabulated. The algorithm was originally introduced for 
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the analysis of power systems and transmission line modeling, and later extended to the field 

of signal integrity of high speed circuits [57]-[59]. 

The objective of the vector fitting algorithm is to determine a rational approximation for the 

transfer function, as 

),..,1,()];([)( PjisYs ij ∈=Y                                          (2.26a) 
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where kp  and k
ijr  correspond to real or complex conjugate poles and residues respectively; 

ijd  and ije  are optional quotient variables; s is the Laplace variable and P is the number of 

ports. 

To review the vector fitting algorithm, consider )(sY  as a one-port structure. The transfer 

function of )(sY is identified by specifying a set of starting poles kq  for a weight function 

defined as 
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In addition, the rational approximation for )()( sYsσ  is also described as 
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Multiplying (2.27) with the data values of )(sY  and equating with (2.28), yields the 

following system of equations 
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The coefficients of (2.29) are determined by choosing sN  frequency points over the 

frequency range of interest to obtain an overdetermined linear system. To ensure the least 

square approximation provides real or complex conjugate poles and residues, at each 

frequency point is  the system of (6.4) is expressed as 

ii BXA =                                                                  (2.30) 
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Re(.) and Im(.) denote the real and imaginary parts of the function, respectively. For real 

poles and residues, the coefficients of (2.31) are 
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For complex conjugate pole and residue pairs (i.e. imrekk jqqq ±=+1, , imrekk jccc ±=+1, , 

imrekk cjcc ~~~
1, ±=+ ) the coefficients of (2.31) are     
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The equations of (2.31) at sN  different frequency points are assembled to obtain an over 

determined linear system of equations   

 BAX =                                                           (2.34) 

The least square solution of (2.34) provides the rational approximations for )(sσ  and 

)()( sYsσ  which can be expressed in terms of poles and zeros as 
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Note that the poles of (2.35) cancel each other out to obtain a rational approximation estimate 

for )(sY  as 
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where the zeros of )(sσ  become the poles of )(sY . This new set of poles { kz~ } are used as 

the starting poles for the next iterations to replace { kq }.  The above procedure is repeated 

until the poles converge. Once the poles { kq } are determined, an additional least square 

solution is performed on (2.26) to directly determine residue and quotient values of )(sY .  

Due to the fact that the VF procedure of [20] allows multiple iterations to improve the pole 

location from an initial guess till the response of the obtained model is similar to the actual 

response within an error tolerance, it is more accurate than the interpolation based method 

described in the previous section. It is noted, however, that while both the work of [56] and 

VF can provide stable transfer functions, neither are by construction passive. Passivity is an 

important criterion to be satisfied for typical interconnect structures and EM devices since 

stable but non passive models can lead to unstable time domain solutions when linked with 

nonlinear drivers/loads. Once the transfer function is obtained using VF, passivity 
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enforcement techniques like those reported in [61]-[63] can be used to realize passive 

macromodels which can now be seamlessly integrated with commercial circuit simulators 

like SPICE [64]. 

 

2.5 Vector Fitting in the Presence of Noise 

Although VF can be converged in a few iterations, the convergence behavior may deteriorate 

when the frequency data samples contain a nonrational element such as noise [65]-[69]. In 

the next sections, a few techniques for improving the convergence of VF are reviewed. 

 

2.5.1 Modified Vector fitting 

In [67], the vector fitting algorithm is slightly modified by changing the weight function to 
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Multiplying (2.22) with the data values of )(sY  and equating with (2.28), yields the 

following system of equations 
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At each frequency point is , (6.38) is expressed in the form of (2.30) where  
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For 1≥k , the coefficient i
ka , i

ka~ , kr  and kr~  are defined by (2.32) and (2.33) for real and 

complex conjugate poles, respectively and )(~
0 i
i sYa = . Since the values of iB  are zero, to 

avoid the null solution an additional equation is added to the least square problem  

                                      (2.40) 

The equations of (2.39) at  sN  different frequency points are assembled with (2.40) to obtain 

an over determined linear system of equations similar to (2.34). Equation (2.40) imposes a 

relaxed constraint on the weight function of (2.37). Both weight functions (2.27) and (2.37) 

approach unity for all frequencies (i.e. , ) as the vector fitting algorithm 

converges [67].   

Equation (2.40) should be weighted in relative to the size of )(sY  in the least squares 

problem 
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where )(sw  is the specified weight for the fitting of )(sY . The above formulation is referred 

to as the relaxed vector fitting in the literature [67]-[68] and may enhance the reallocation of 

the poles to improve convergence. 

 

2.5.2 Vector Fitting with Adding and Skimming 

A different modification of standard VF, referred as vector fitting with adding and skimming 

(VF-AS), is proposed in [65], which addresses the convergence issues of VF when the 

frequency data samples are contaminated with noise. This paper illustrates the associated 

convergence issues are due to the spurious poles that appear during the iterations. To 

overcome this problem, an idea is suggested which is based on the identification and removal 

of spurious poles and on an incremental pole addition and relocation process in order to 

provide automatic order estimation even in the presence of significant noise.  

The spurious poles are responsible for destroying the convergence in VF since they are stuck 

in their location trying to fit the noise instead of the true data. Equation (2.23), which is the 

only constraint for relocation of poles in the VF algorithm, is not strong enough to force the 

spurious poles to converge to their expected location. Hence, a “hard” relocation of the poles 

is proposed to enhance the convergence of VF. This process is able to automatically detect 

the spurious poles and to place them in a location of the complex plane that is closer to the 

true poles. Since VF is sensitive to the initial guess of the solution, it is expected that a better 

guess for the poles will also improve the behavior of VF in the presence of noise.  
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Based on the above discussion, VF-AS involves two automatic steps of i. detection of 

spurious poles and ii. selection of the best location in the complex plane. In order to detect 

the spurious poles the following band limited norm is defined for each pole 
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where p is usually set to 2. The integral is over a bandwidth nΩ defined by the −10 dB level 

of the resonance curve. The values of this norm for spurious poles are significantly smaller 

than the values of actual poles. 

After detecting the spurious poles, it is required to determine a valid guess for the placement 

of poles. In order to achieve this target, the local frequency points are calculated at where the 

deviations between the fitted and measured data are maximum. The number of maxima to be 

computed equals the number of detected spurious poles. Then, the spurious poles are 

relocated to the complex conjugate poles corresponding to the maxima. The real part of the 

new staring poles is chosen to be considerably smaller than the imaginary part so that each 

new pole is highly resonant (this is a typical choice in VF). The adding and skimming of the 

poles continues iteratively until sufficient accuracy is obtained [65]. 

 

2.5.3 Variance Weighted Vector Fitting 

Variance weighted vector fitting (WVVF) algorithm [66] is a modification of the VF 

algorithm to estimate rational models of frequency responses affected by noise. The 
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technique is based on the use of a least-squares weighting function that contains information 

about the variance of the data samples used in macromodeling techniques. The measurement 

of the transfer function is assumed to be perturbed by a colored additive noise with a zero-

mean circular complex Gaussian distribution. The variance of the measured transferred 

function is then estimated by repeating the measurements on a point-by-point basis and is 

incorporated in the weighting function of VF algorithm as  

)(
1)( 2 s

sw
σ

=                                                          (2.42) 

The proposed weighting function gives information about the quality of the data samples to 

the least-squares estimator, improving its capability of retrieving the behavior of the system 

under study, and reducing the disturbing effect of the noise contribution [66]. 
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Chapter 3  
 

3 Analysis of Transmission Lines 
Based on Passive Method of 
Characteristics 

 

 

3.1 Introduction 

This chapter presents an efficient passive method of characteristics (MoC) 

macromodeling algorithm for lossy MTLs based on concepts proposed in [70]-[72]. In 

[70]-[71], a closed form passive MoC macromodel was described for two-conductor 

transmission lines. In this chapter, the methodology proposed in [70]-[71] is extended to 

MTLs. A theorem is provided specifying sufficient conditions to construct passive MoC 

macromodels for MTLs. A key feature of the proposed algorithm is that the curve fitting 

to realize the MoC depends only on the per-unit-length parameters and not on the 

discretization of the macromodel. Thus, with the knowledge of the rational functions 

derived by the per unit length parameters, the MoC is formulated in a closed form manner 

for any line length while ensuring passivity. In addition, the circuit equivalent realization 

of the proposed macromodel in a SPICE-like circuit simulator is also described. 
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3.2 Review of Transmission Line Theory 

Consider distributed transmission lines represented by Telegrapher equations in Laplace 

domain [1] as 

( ) )()(s)()( sz,sssz,
x

ILRV +−=
∂
∂  

( ) )()(s)()( sz,sssz,
x

VCGI +−=
∂
∂                                    (3.1) 

where s is Laplace transform variable, x is the position variable; V(z,s) and I(z,s) 

represent the voltage and current vectors of the transmission line, respectively; R(s), L(s), 

G(s) and C(s) are the frequency dependent per unit length (p.u.l.) resistance, inductance, 

conductance and capacitance matrices, respectively.  

The frequency domain solution of (3.1) can be expressed as [37] 
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represent the terminal voltages and currents of the transmission line; l is the length of the 

transmission line; )(sH  is the propagation operation, )(sΓ  is the propagation function 

and )(s0Y  is the characteristic admittance, defined as   

lses )()( ΓH −=  

)()())(()(( ssssss(s)2 LRCGΓ ++=  

)()()(()( sssss 1
0 CGΓY += −  .                                      (3.4) 

The solution of Telegrapher’s equations in (3.2) cannot be expressed in the time domain 

as ordinary differential equations, which makes it difficult to interface with nonlinear 

SPICE circuit simulators.  

 

3.3 Passive Method of Characteristics Macromodel 

The development of the PMoC begins for the two-conductor transmission line case [70] 

and then extends to multi-conductor transmission lines [73]. 

The PMoC is derived by extracting the propagation delay from )(sH  as 

 ( ) )()( )( sQeeesH sTsTslsT −−Γ−− ≈=                                        (3.5) 
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where ∞∞= LClT  is the extracted line delay and ))(()( sTslesQ −Γ−≈  corresponds to 

the delayless propagation operator that takes into the account the effects due to line 

dispersion and attenuation. ∞C  and ∞L  are,  respectively, the p.u.l. capacitance and 

inductance parameters evaluated at the maximum frequency point of interest. To make 

the curve fitting of the PMoC independent of the line length l, the rational approximation 

is performed on )(sΓ  instead of )(sQ , as 

( )( ) )()()()()()( sPsTsLssRsCssGs +≈++=Γ                         (3.6) 

where )(sP  is approximated as a rational function. In addition, the characteristic 

admittance )(0 sY  is also approximated as a rational function. It should be noted that the 

curve fitting for both )(sΓ  and )(0 sY  depend only on the p.u.l. parameters and is 

independent of the line length l and the discretization of the macromodel. To approximate 

)(sQ  using )(sP , a closed form Padé approximation of an exponential function is used 

as [70] [73], 
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Thus to analyze transmission lines at different line lengths, the rational function )(sP  is 

multiplied by the line length l and the appropriate order M and N is selected to obtain the 

desired frequency domain accuracy for )(sQ .  
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For the case of multi-conductor transmission lines, rational curve fitting is also performed 

on )(sΓ  and )(s0Y  as 

( ) 12/112/1 )(ˆ)ˆˆ()(ˆ)()()( −
∞∞

−
∞∞ +=≈+≈ IIII ssssss EPLCEEΓEPLCΓ  

-1)(ˆ)( V0I0 ss EYEY ≈                                                         (3.8) 

EV and EI are constant matrices and are selected such that they simultaneously 

diagonalize both ∞L  and ∞C  and have the following properties [1] 

 I
-1
V ELEL ∞∞ =ˆ

;     V
-1
I ECEC ∞∞ =ˆ

;     
-1
IEE =t

V                      (3.9) 

where ∞L̂  and ∞Ĉ  are diagonal matrices of the form { }nllldiag ,...,,ˆ
21=∞L , 

{ }ncccdiag ,...,,ˆ
21=∞C ; the superscript t denotes the transpose of the matrix and the 

matrices )(ˆ sP  and )(ˆ s0Y  are approximated as rational functions. Note that the matrices 

EV and EI, as well as the curve fitting of )(ˆ sΓ  and )(ˆ
0 sY  depend only on the p.u.l. 

parameters and not on the discretization of the macromodel or the line length. Next, it is 

required to extract the delay from )(sH , however )(sH  cannot be expressed as 

 1)(ˆ)ˆˆ(1)(ˆ 2/1
)( −−−− ∞∞≠= I

slsl
II

sl
I eees EEEEH P-LCΓ                          (3.10) 

since the matrices 2/1)( ˆˆ ∞∞ LC  and )(ˆ sP  do not commute (i.e. 

2/12/1 )ˆˆ()()()ˆˆ( ˆˆ
∞∞∞∞ ⋅≠⋅ LCLC PP ss ). To approximate )(sH  in a closed form manner, the 

matrix  2/1)ˆˆ( ∞∞ LCl  is expressed as  
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                    CLll PTLC ˆˆ)ˆˆ( min
2/1 +=∞∞                                       (3.11) 

where 

),...,,(ˆ
minmin22min11 λλλ −−−= nnCL lclclcdiagP                  (3.12) 

IT minmin
ˆ λl=                                                   (3.13) 

)min(min iilc=λ  is the minimum eigenvalue of 2/1)( ˆˆ ∞∞LC  and I  is the identity matrix. 

Since the matrices minT̂  and )(ˆˆ slsl CL PP +  commute, )(sH  can be expressed as 
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where -ΦQ es =)(  and )(ˆˆ slsl CL PPΦ += . The matrix Q(s) can now be approximated 

using the Padé approximation of an exponential function as 

 [ ] )()()( 1 ΦΦQ MN QPs −=                                     (3.15) 
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The above formulation uses the minimum eigenvalue of 2/1)( ˆˆ ∞∞LC  to extract the same 

delay for each line. As a result, the rational approximation for )(sQ  using (3.15) may 
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require a higher order approximation when compared to other MoC macromodels which 

use the eigenvalue of each line to extract the line delay [73]. However, the advantages of 

this approach are that the curve fitting depends only on the p.u.l. parameters and is 

independent of the discretization of the MoC. Thus with the knowledge of VE , IE , 

)(ˆ sΓ  and )(ˆ s0Y , the proposed MoC can be formulated in a closed form manner for any 

line length. This avoids computationally expensive and sometimes unreliable numerical 

fitting techniques that are on occasion associated with the MoC-based algorithms since 

VE , IE , )(ˆ sΓ  and )(ˆ s0Y  are determined offline and the accuracy of these values can 

be verified. In addition, the passivity of the PMoC is assured by construction for any line 

length, provided that the rational approximations of )(ˆ sΓ  and )(ˆ s0Y  satisfy the 

conditions of the passivity theorem in section 3.4. 

The PMoC macromodel can be realized in term of equivalent circuits as shown in Figure 

3-1 for a 2 conductor transmission line and Figure 3-2 for a 3-conductor transmission line 

(2 signal conductor and 1 reference line). Figure 3-2a realizes the transformation of the 

modal voltages and currents at the near and far end and Figure 3-2b realizes the partially 

decoupled transmission line. 

 

Figure 3-1: Basic equivalent circuit for the method of characteristics model. 
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(a) 

 

(b) 

Figure 3-2: Basic equivalent circuit of MoC model (a) Transformation of modal voltages 

and currents (b) Realization of partially decoupled network. 
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3.4 Passivity Theorem 

A linear network with admittance matrix Y(s) is said to be passive if it satisfies the 

following conditions [74]-[75] 

1) Y(s*) = Y*(s) for all s, where “*” is the complex conjugate operator.  

2) Y(s) is analytic for all complex values of ωσ js +=  satisfying 0>σ . 

3) Y(s) is a positive-real matrix. That is the product 0))()(( ** ≥+ zYYz sstt  for all 

complex values of ωσ js +=  satisfying 0>σ  and arbitrary vector z. 

To obtain passive macromodels, a theorem that specifies sufficient conditions to 

guarantee the passivity of the MoC by construction is described. This theorem is similar 

to the one present in [70] for two-conductor transmission lines and it is extended to 

MTLs in [73].   

Theorem 1: Let the MoC satisfy the following conditions: 

1) The rational approximations of )(ˆ s0Y , )(ˆ sΓ  and )(ˆˆ ss CL PP +  are positive real 

and the imaginary part of )(ˆˆ ss CL PP +  satisfies 0))(ˆˆIm( >+ zPPz*t ss CL  for 

0>ω  and 0))(ˆˆIm( <+ zPPz*t ss CL  for 0<ω  where z is any arbitrary complex 

vector and Im() denotes the imaginary part of the matrix function. 

2) The products formed by the rational functions of )(ˆ)(ˆ ss 0YΓ  and )(ˆ)(ˆ 1 ss ΓY0
−  are 

positive real. 

3) The scalar rational approximation of -se  can be expressed as 
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jBA
sP
sQjee

N

Ms- −=≈−= −

)(ˆ
)(ˆ

)sin(cos ωωσ                            (3.17) 

where ωσ cos−≈ eA  and ωσ sin−≈ eB  are the real and imaginary parts of 

)(ˆ/)(ˆ sPsQ NM , respectively, and (3.17) satisfies the following inequalities 

σ
ω

σ

σ 1
1

2
1

cos2
222 ≤

−−
≈

− −

−

BA
A

e
e                                     (3.18) 

σ
ωω

σ

σ
≤

−−
≈

− −

−

222 1
2

1
sin2

BA
B

e
e                                      (3.19) 

( ) ( ) 1sincos 2222
≤+≈+ −− BAee ωω σσ                                (3.20) 

for 0)Re( ≥= σs . If all the above three conditions are satisfied and 

))(ˆˆ()( sdsdes PPCLQ +−=  is approximated by replacing the scalar s in (3.17) by the rational 

approximation of )(ˆˆ ss CL PP +  multiplied by the line length l as in (3.15), then the 

resulting MoC macromodel given by (3.2)-(3.4) is passive. 

It should be noted that conditions 1 and 2 of theorem 1 are due to the physical properties 

of transmission lines, while the third condition results from the mathematical properties 

of the exponential function. As a result, these conditions are not restrictive in realizing 

transmission lines governed by (3.1) and only serve to ensure the passivity of the MoC 

macromodel. Since the p.u.l. parameters are nonnegative definite at each frequency point, 

the characteristic impedance ),(0 sY  the propagation function ),(sΓ  and the products 

),()()()( 0 sssss CGYΓ +=  )()()()( sssss-1
0 LRΓY +=  are all positive real functions [1]. 
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Thus the rational approximations of the modal characteristic admittance )(ˆ s0Y  and 

modal propagation constant )(ˆ sΓ  should also satisfy the aforementioned physical 

properties of transmission lines as given by conditions 1 and 2 of theorem 1. The modal 

propagation constant )(ˆ sΓ  is positive real since the matrices )(sΓ  and 

I
-1
I ss EΓEΓ )()(ˆ =   are similar matrices and both have the same eigenvalues [1] [76]. 

Furthermore, using (3.8) and (3.9), )(ˆ s0Y , )(ˆ)(ˆ
0 ss YΓ  and  )(ˆ)(ˆ ss-1

0 ΓY  are also positive 

real since they are expressed in terms of a congruent transform of positive real functions 

[8] [76],     

V
t
V ss EYEY )()(ˆ

00 =  

V
t
V ssss EYΓEYΓ )()()(ˆ)(ˆ

00 =                                       (3.21) 

I
-1

0
t
I

-1
0 ssss EΓYEΓY )()()(ˆ)(ˆ =  

 Also, the nonnegative p.u.l. parameters make the imaginary part of )(sΓ  satisfy 

0))(Im( >zΓz s*t  for 0>ω  and 0))(Im( <zΓz s*t  for 0<ω . To ensure that 

)(ˆˆ ss CL PP +  satisfies the same conditions as )(sΓ , the extracted delay minT̂  is selected 

such that min
ˆ-)(ˆ))(ˆˆ( TΓPP sdssl CL =+  satisfies the first condition of theorem 1. 

The third condition of the theorem is due to the mathematical properties of the 

exponential function. As a result, these conditions are not restrictive in realizing 

transmission lines governed by (1) and only serve to ensure the passivity of the MoC 

macromodel. Furthermore, it can be shown that the exponential function of 
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)sin(cos ωωσ jee-s −= −  satisfies the inequalities of (3.18)-(3.20) by using the following 

facts 1|cos| ≤ω , ,|sin| ωω ≤ σσσ ≥− − 2/)( ee  and 1sincos 22 =+ ωω , as  

 

   
2/)(

cos
1

cos2
2 σσσ

σ ωω
−−

−

−
=

− eee
e

σσσ
1

2/)(
1 ≤

−
≤ −ee

                      (3.22) 

σ
ωωω

σσσ

σ
≤

−
=

− −−

−

2/)(
sin

1
sin2

2 eee
e                                    (3.23) 

( ) ( ) 1sincos 222
≤=+ −−− σσσ ωω eee                                 (3.24) 

 

Thus the rational function used to approximate )sin(cos ωωσ jee-s −= −  given by (3.7) 

should also satisfy the inequalities of (3.18)-(3.20) as described by condition 3 of 

theorem 1. The proof of the theorem is given in [73]. 

 

3.5 Numerical Examples 

Two examples are presented in this section to demonstrate the validity and efficiency of 

the proposed MoC macromodel. The transient responses were obtained using HSPICE 

[38] and the comparison of CPU time was done using the Sun Blade 1500 workstation. 
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Example 1) An on-chip coupled interconnect network with frequency dependent per-unit-

length parameters proposed in [37] is shown in Figure 3-3. The frequency dependent 

p.u.l. parameters are listed in [37]. In this example, ∞L  and ∞C  are set to the p.u.l. 

inductance and capacitance values at the highest frequency point of interest chosen to be 

10GHz. The linear transformation matrices VE  and IE  are selected such that they 

simultaneously diagonalize both ∞L  and ∞C . The diagonal eigenvalues for 2/1)( ˆˆ ∞∞ LC   

are 7.5295e-9 s/m and 13.205e-9 s/m and the eigenvalue extracted is minλ =7.5295e-9 

s/m. For this example 73% of the delay is extracted from (3.14). The data of the per-unit-

length parameters are fitted to rational functions to approximate )(ˆ
0 sY  and )(ˆ sΓ  using 

the procedure outlined in [73] to ensure the condition of theorem 1 are satisfied. The 

maximum error tolerances are selected to be 0.5% with respect to the tabulated data. The 

interconnect network of Figure 3-3 was analyzed at 0.2cm, 0.5cm and 1cm. For the 

0.2cm line, a Padé approximation of M = 0 and N = 2 was used to match )(sQ  up to 

10GHz, while for the 0.5cm and 1cm the order was set to M = 1 and N = 3. Figure 3-4 

shows the rational approximation of )(sQ12  for the 0.2cm and 1cm line.  

 

Figure 3-3: On-chip coupled transmission line network with frequency dependent p.u.l 

(example1). 
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Figure 3-4: Padé approximation: Real part of Q12(s) (Example 1) (a) d = 0.2cm (b) d = 1cm. 
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Figure 3-5: On-chip line (0.5cm) Transient response (Example 1) (a) Active line (node V3) (b) Victim 

line (node V4) 
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The transient response of the transmission line of length 0.5cm corresponding to a unit 

step input voltage with a rise time of 0.07ns is provided in Figure 3-5. For their respective 

orders, both the proposed macromodel and the conventional lumped model [1] produce 

similar responses, while the W-element [38] gives a different response for the victim line 

as shown in Fig 3-5b. The responses produced by the proposed and conventional lumped 

model also match the results published in [37].  

Both the proposed algorithm and W-element use delay extraction to model the 

transmission line. For this example, the curve fitting to realize both macromodels is very 

challenging since this transmission line is very lossy and the coupling between the two 

lines is week. However unlike the W-element, the realization of the proposed algorithm is 

independent of the discretization of the macromodel. Both the eigen-mode decomposition 

of VE , IE  and the rational approximations of )(ˆ
0 sY  and )(ˆ sΓ  can be determined 

offline while ensuring conditions 1 and 2 of the theorem and the accuracy of these values 

 

Figure 3-6: On-chip line (0.5cm) transient response at node V4 (10 sections W-element) 

(Example 1) 
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can be verified. On the other hand, the numerical realization of the W-element depends 

on the discretization of the macromodel. As a result the accuracy of the W-element 

cannot be assured. One way to decrease the transfer function complexity of the W-

element is to decrease the length of the line. Fig 3-6 shows the transient response of the 

victim line by segmenting the W-element into 10 sections. The transient responses shows 

better agreement with the proposed model as the number of W-element segments 

increase.  

Table 3-1 gives a comparison of the CPU expense. It should be pointed out that the 

proposed method and conventional lumped model are implemented using external circuit 

elements while the W-element is an internal model provided by HSPICE. It was 

demonstrated in [37], that implementing macromodels internally can significantly 

improve the simulation times when compared to external circuit representations. As seen 

  

Table 3-1: CPU time comparision (Example 1) (sun blade 1500 workstation) 

Simulations Proposed MoC 
(sec) 

Lumped 
(sec) 

W-element 
 (1 section) 

(sec)  

W-element  
(10 section) 

(sec) 

d=0.2cm 0.15 0.28 0.13  0.72 

d = 0.5cm 0.16 0.62 0.13 0.72 

d = 1cm 0.16 1.21 0.13 0.72 
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from the table, the proposed method is about 2-to-7 times faster compared to the 

conventional lumped model, while ensuring the passivity of the macromodel. 

Example 2) In this example, a 9-coupled interconnect network (Figure 3-7) with 

nonlinear CMOS inverter is considered. Figure 3-8 shows the cross-section of the 9-

coupled transmission line. The p.u.l. parameters of the interconnect structure are 

 

Figure 3-7: Nine-coupled transmission line network with nonlinear CMOS inverters 

(Example2). 

 

 

Figure 3-8: Cross-section of 9-coupled transmission line (Example 2). 
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determined by using the HSPICE field solver [38] and include skin-effect losses. The 

matrices ∞L  and ∞C  are set to the p.u.l. inductance and capacitance values at the 

highest frequency point of interest chosen to be 3.5 GHz.  

Before proceeding with the solution, the relative dielectric constant is varied from rε =1 

to rε =16 to examine the amount of delay that is extract from (3.10). Table 3-2 shows the 

minimum and maximum eigenvalues for 2/1)( ˆˆ ∞∞LC   at 3.5 GHz and the percentage of 

the delay that is extracted from (3.10). When rε =1, the velocity of the electromagnetic 

wave through the dielectric slab and air are the same. Furthermore at 3.5GHz, the p.u.l. 

inductance is mainly due to the magnetic field external to the conductors. As rε  

increases, the electromagnetic wave velocity in the dielectric slab decreases. The 

different wave velocities violate the TEM characteristics since pure TEM waves travel 

Table 3-2: Minimum and maximum eigenvalues of 2/1)( ˆˆ ∞∞LC  and the percentage of the 

delay extracted (Example 2) 

rε  
Minimum 

Eigenvalue (s/m) 

Maximum 
Eigenvalue 

(s/m) 

Percentage  of delay 
extracted 

)/(*100 1min i
n
in λλ =Σ  

1 3.3429e-9 3.3585e-9 99.8% 

2 3.9933e-9 4.5461e-9 95.8% 

4.5 5.2423e-9 6.6267e-9 92.2% 

8 6.5987e-9 8.7278e-9 90.6% 

16 8.9539e-9 12.234e-9 89.4% 
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with only one velocity. This causes the eigenvalues of 2/1)( ˆˆ ∞∞LC  to be different. 

Nonetheless, quasi-TEM assumes that the velocities at different mediums are not 

substantially different and that the resulting field structure is similar to a TEM structure. 

As a result, the difference between the maximum and minimum eigenvalue is not too far 

apart and a significant portion of the delay can be extracted. For this example, 89.4% of 

the delay is extracted from (3.10) when rε =16. In addition, the proposed MoC 

macromodel can be formulated in a closed form manner while guaranteeing passivity. On 

the other hand, traditional MoC algorithms requires approximating 45 transfer functions 

for )(sQ  (i.e. 2/)( 2 nn + ; n=9 coupled lines) for each line length and the passivity of the 

macromodel is not assured.  

The data of the per-unit-length parameters are fitted to rational functions to approximate 

)(ˆ
0 sY  and )(ˆ sΓ  using the procedure outlined in Section 3.3. The maximum error 

tolerances are selected to be 0.5% with respect to the tabulated data. The interconnect 
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Figure 3-9: Padé approximation: Real part of Q11(s) (Example 2) (a) d = 0.5cm (b) d = 10cm. 
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network of Figure 3-7 was analyzed at 5cm and 10cm. For the 5cm line, a Padé 

approximation of M = 1 and N = 3 was used to match )(sQ up to 3.5GHz, while for the 

10cm the order was set to M = 2 and N = 4. Figure 3-9 shows the rational approximation 

of )(sQ11  for the 5cm and 10cm lines. Figure 3-10 shows the time domain responses of 

the transmission line of length 10cm corresponding to a unit step input voltage with a rise 

time of 0.1ns at nodes P1 and P2.  

 

Figure 3-10: Transient response for 10cm line (a) at node P1 (b) at node P2 (Example 2). 
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Table 3-3 gives a comparison of the CPU expense using the proposed method and 

conventional lumped model [1]. For this example, the proposed method is 22 to 34 times 

faster compared to the conventional lumped model, while ensuring the passivity of the 

macromodel.  

 

3.6 Conclusion 

In this chapter, an algorithm is described to construct passive MoC macromodels for 

MTLs. A key feature of the proposed algorithm is that the curve fitting of the MoC 

depends only on the p.u.l. parameters and not on the discretization of the macromodel. 

Thus with the knowledge of the rational functions describing  )(ˆ
0 sY  and )(ˆ sΓ  the 

proposed MoC can be formulated in a closed form manner for any line length, while 

guaranteeing the passivity of the macromodel. This avoids computationally expensive 

and sometimes unreliable numerical fitting algorithms that are on occasion associated 

with the MoC-based algorithms. 
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Chapter 4  
 

4 Sensitivity Analysis of 
Multiconductor Transmission Line 

 

 

4.1 Introduction 

In this chapter, a new algorithm to perform sensitivity analysis of nonlinear circuits with 

distributed interconnects is presented based on the passive method of characteristics 

(PMoC). The proposed algorithm differentiates the solution of Telegrapher’s equation 

and uses the PMoC to derive the sensitivity network with respect to any interconnect 

parameter. This approach differs from [41], which directly differentiates Telegrapher’s 

equations to derive the sensitivity network. A major advantage of the proposed algorithm 

is that the sensitivities are calculated from the solution of the original system (which is 

formulated in a closed form manner) resulting in significant computational advantages. 

Numerical examples are presented to illustrate the validity of the proposed approach. 
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4.2 Sensitivity Analysis 

This section extends the PMoC to efficiently calculate sensitivities of distributed 

transmission lines with nonlinear circuits. 

4.2.1 Derivation of Sensitivity Network 

To derive the sensitivity network, let the system of (3.2) be expressed as 

BuAX =                                                              (4.1) 

 where 
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Differentiating (4.1) with respect to a transmission line parameter λ  yields  

X
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Equation (4.3) represents the sensitivity network with respect to λ , where s
1V  and s

2V  

are the sensitivities of the voltages; s
1I  and s

2I  are the sensitivities of the currents; and 

s
1K  and s

2K  are the sensitivities of the 1K and 2K variables, respectively. 

The sensitivity network of (4.3) is similar to (4.1) and contains the following additional 

terms 
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From the above analysis, both the original and sensitivity networks have same A and B 

matrices and that XA/ )( λ∂∂  can be modeled with additional voltage and current sources. 

As a result, the Modified Nodal Analysis (MNA) matrices of the original and sensitivity 

networks will be the same, however, the applied sources of the two networks will be 

different due to XA/ )( λ∂∂ . Thus the solution of the sensitivity network does not require 

additional Lower-Upper (LU) decompositions to invert the sensitivity matrix equations, 

since the LU matrices are known from the solution of the original network. This leads to 

significant computational savings, since the sensitivities with respect to all design 

parameters are obtained from the solution of the original network. 
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4.2.2 Calculating λ∂∂ )/(s0Y  and λ∂∂ /)(sH  

This section discusses how to derive λ∂∂A/  which is obtained by differentiating (3.4) 

with respect to λ  to calculate λ∂∂ )/(s0Y  and λ∂∂ /)(sH . For two-conductor 

transmission lines, )(sY0  and )(sH  are scalar functions and differentiating these 

functions at each frequency point with respect to λ  yields 
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The time domain realization of the sensitivity network is obtained by approximating 

λ∂∂ /)(sH  as a delay rational function, where )(sH  is obtained using (3.4), and 

λ∂Γ∂ )/(s  and )(sΓ  are approximated as rational functions. Similarly, λ∂∂ )/(sY0 is also 

approximated as a rational function. 

For multi-conductor transmission lines, )(s0Y  is differentiated with respect to λ  
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where 
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           (4.10) 

Since the p.u.l. parameters are known, (4.9) and (4.10) can be used to calculate values 

λ∂∂ )/(s0Y  at each frequency point.  

The calculation of λ∂∂ /)(sH  is slightly more complicated, since it corresponds to an 

exponential matrix where the p.u.l. matrices do not compute (i.e.

ll ee l ΓΓ Γ −− ⋅∂∂∂∂ ≠ λλ )( ). Thus to calculate λ∂∂ /)(sH , the delay rational 

approximation of (3.10) is differentiated with respect to λ ,     
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where the Padé approximation of (3.7) is used to calculate λ∂∂ −Φe , as 
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The terms λ∂∂ )(ΦMQ  and λ∂∂ )(ΦNP  are obtained by differentiating (3.16), 
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where iq  and ip  correspond to the Padé coefficients of (3.16), defined as 

( ) ( ))!(!)!(/!)!( iMiNMMiNMqi −+−+= , ( ) ( ))!(!)!(/!)!( iNiNMNiNMpi −+−+=  and 

λλλλ ∂
∂−

∂
∂⋅+⋅

∂
∂=

∂
∂ minsslsl TΓΓΦ ˆ)()(                                    (4.15) 

The value λ∂∂ minT̂  corresponds to the derivative of the minimum eigenvalue of 

2/1)ˆˆ( ∞∞LCl  and is obtained using the procedure of [77].  Thus by solving (4.10)-(4.15), 

λ∂∂ /)(sH can be calculated.  

In this work, the time domain representations for both the original and sensitivity 

networks are obtained by using the vector fitting algorithm [20] to approximate )(sΓ  and 

)(s0Y  as rational functions and using the Padé approximation of (3.14)-(3.16) to 

approximate )(sH . For the sensitivity network, λ∂∂ )/(s0Y  and λ∂∂ −Φe  are also 

approximated as rational functions using the vector fitting algorithm [20]. With the 

knowledge of the rational functions )(sH  and λ∂∂ −Φe , (4.11) is used to derive the 

rational approximation for λ∂∂ /)(sH . Noted that the rational approximations of 

λ∂∂ )/(s0Y  and λ∂∂ /)(sH  do not significantly increase the computational complexity of 

the sensitivity network since they are modeled as external sources which depend on X 

(i.e. solution of the original network). As a result, MNA matrices for both the original 

and sensitivity networks are the same and the solution of the sensitivity network is 

obtained from the same LU matrices used to solve the original network.  
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4.2.3 Circuit Realization of Sensitivity Network 

The circuit realization of the original network using the PMoC macromodel is described 

in Chapter 3 for the two-conductor and multi-conductor cases. This section describes the 

circuit realization of the sensitivity network of (4.3). 

Figure 4-1 shows the circuit realization of the sensitivity network for a two-conductor 

transmission line, where )(0 sY and λ∂∂ )/(sY0  are approximated as rational functions and 

)(sH  and λ∂∂ /)(sH  are approximated as delayed rational functions as described in 

Section 4.2.2. As an example of a multi-conductor transmission line, Figure 4-2 shows 

the circuit realization of the sensitivity network of a three-conductor transmission line 

(two signal and one reference conductors). Figure 4-2a realizes the sensitivity variables at 

the near and far end due to the transformation matrices EV and EI. Figure 4-2b realizes 

the partially decoupled sensitivity network described by the transformed variables of 

)(ˆ s0Y , )(ˆ sH , λ∂∂ )/(ˆ s0Y  and λ∂∂ /)(ˆ sH .  

 

Figure 4-1: Basic sensitivity network realization of a 2-conductor transmission line 

based on PMoC. 
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(a) 

 
(b) 

Figure 4-2: Basic sensitivity network realization of a 3-conductor transmission line based 

on PMoC (a) sensitivity of modal transformation (b) sensitivity of partially decoupled 

network. 
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4.2.4 Sensitivity Analysis with respect to Other Physical Parameters 

When studying the sensitivity analysis of distributed networks, the design parameters of 

interconnects are usually required with respect to physical parameters (such as width and 

spacing of conductors). The sensitivity of electrical parameters is often intermediate steps 

to calculation of sensitivities of physical parameters. In the case where λ  represents a 

physical parameter of an interconnect, the sensitivity analysis can be obtained using the 

chain rule as 


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where jiR , , jiL , , jiG , , and jiC , are the p.u.l parameters and subscript i  and j  are 

matrix indices. 

 

4.3 Numerical Examples 

Three examples are presented in this section to demonstrate the validity and efficiency of 

the proposed sensitivity analysis. The transient responses were obtained using HSPICE 

[38], and the comparison of CPU time was done using the SUN Blade 1500 workstation. 

Example 1: In this example, a seven-transmission line network with nonlinear CMOS 

inverters is shown in Figure 4-3. The p.u.l. parameters of each line are R=8.26Ω/m, 

L=361nH/m, C=140pF/m, G=0.0 and the length of each line is 10cm. The input voltage 

is a trapezoidal pulse of amplitude 5V with rise/fall time of 0.2ns, pulse width of 5ns and 
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a period of 10ns. The transient response at node V1 using the PMoC and the conventional 

lumped model [1] is shown in Figure 4-4. Figure 4-5 shows the sensitivities with respect 

to the electrical p.u.l. parameters of the resistance, inductance, capacitance, and line 

 
Figure 4-3: Transmission line network with nonlinear termination (Example1). 

 

 
Figure 4-4: Transient response of V1 (Example1). 
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length. The results of the proposed method are compared with the perturbation of the 

conventional lumped segmentation model (referred to as SPICE Perturbation). Both the 

proposed method and the SPICE perturbation results are in good agreement. 

It is to be noted that using the proposed PMoC provides the following advantages. i) 

Using the PMoC provides significant CPU advantage compared to lumped segmentation 

model. For this example the PMoC required 3.7 seconds while the conventional lumped 

 
(a)                                                                  (b) 

(c)                                                                  (d) 

Figure 4-5: Sensitivity of V1 with respect to (a) p.u.l resistance (b) p.u.l inductance (c) p.u.l 

capacitance and (d) line length (Example1). 
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model required 36 seconds ii) Perturbation based techniques can lead to inaccurate results 

depending on the magnitude of the perturbation [41]. iii) In addition the perturbed 

network must be solved separately for every parameter of interest. However, in the 

proposed approach, the sensitivity information with respect to all the parameters can be 

essentially obtained from the solution of the original network, since both the original and 

sensitivity networks have the same MNA matrices and additional LU decompositions to 

invert the sensitivity network matrices are not required. 

 

 

Figure 4-6: Multiconductor transmission line network with nonlinear CMOS inverter 

(example 2). 

 

Figure 4-7: Transient response of V1 (example 2). 
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Example 2: A coupled interconnect network terminated with nonlinear CMOS inverters 

is shown in Figure 4-6. The length of each line is 10 cm and the p.u.l parameters are 

/cm  
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−

−
=C  (4.17) 

The input voltage is a step of amplitude 5V with rise time of 0.2ns. The transient 

response at node V1 using the PMoC and the conventional lumped model is shown in 

Figure 4-7. Figure 4-8 shows the sensitivities with respect to the electrical p.u.l. 

capacitance of 11C  and line length l. The results of the proposed method are compared 

with the perturbation of the conventional lumped segmentation model. Both the proposed 

method and the SPICE perturbation results are in good agreement.  

Example 3: This example illustrates the proposed sensitivity algorithm in a network 

optimization process. Figure 4-9 shows multi-conductor transmission lines, terminated 

    
(a)                                                                         (b) 

Figure 4-8: Sensitivity of V1 with respect to (a) p.u.l R11 (b) p.u.l L11 (c) p.u.l C11 and (d) line 

length l (Example 2). 
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with two nonlinear CMOS inverters. The physical description of the interconnect 

networks are depicted in Figure 4-10. The p.u.l parameters are computed from the 

physical description of Figure 4-10 using HSPICE field solver and include skin effect 

losses [64]. For this example, it is desired to achieve the following performance 

specifications: 

 

Figure 4-9: Multiconductor transmission line network with nonlinear CMOS inverter 

(example 3). 

 

Figure 4-10: Physical/geometrical parameters for the MTL subnetwork in Figure 4-9 

(Example 3). 
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1. The delays of V1 and V3 should not exceed 0.6 ns and 0.7 ns based on threshold 

voltage of 2 V. 

2. The voltage V1 > 2.6 V for t > 1 ns and V3 > 2.6 for t > 1.1 ns. 

3. The crosstalk of the victim line voltages (V2 and V4) should be confined between 

-0.5 V and 0.5V. 

The above performance specifications are subject to the following constraints: 

cm 10321 =++ lll ;       m 5002 µ=+ sw  

m 200m 50 µµ ≤≤ w ;     m 600m 300 µµ ≤≤ h                      (4-18) 

The initial values are taken as 

cm 41 =l ;  cm 332 == ll ;  m 100 µ=w ;  m 400 µ=h             (4-19) 

The input voltage of the circuit is a 3 V step source with a time rise of 0.2 ns. Sample 

sensitivities of node voltages V1 and V2 with respect to the conductor width w  and the 

length of the second line 2l  for the initial values of (4-19) are shown in Figure 4-11, 

showing good agreement between the proposed algorithm and perturbation of the 

conventional lumped model. Figure 4-12 shows the transient response of the circuit, 

clearly showing the performance specifications are being violated before optimization.  

Using the MATLAB optimization toolbox [78], coupled with the proposed sensitivity 

analysis implemented in HSPICE, the following optimized variable were obtained 

cm 500.01 =l ;  cm 4.7442 =l ;  cm 4.7563 =l  

m 11.135 µ=w ;   m 00.300 µ=h                                      (4.20) 
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Figure 4-12 shows the comparison between the circuit responses before and after 

optimization. As observed from the figure, the node voltages meet all the circuit 

specifications without violating any design constraints. 

 

 
(a)                                                                          (b)     

 
(c)                                                                           (d) 

Figure 4-11: Sensitivity of V1 and V2 with respect to interconnect width and length (Example 3). 

 

0 2 4 6 8 10
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

 

 

Proposed
SPICE Perturbation

Se
ns

iti
vi

ty
 o

f V
2 

w
rt 

w
 (V

ol
ts

/m
)

Time (ns)
0 2 4 6 8 10

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

 

 

Proposed
SPICE Perturbation

Se
ns

iti
vi

ty
 o

f V
1 

w
rt 

   
  (

V
ol

ts
/c

m
)

2l

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 

 

Proposed
SPICE Perturbation

Time (ns)

2l

0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

 

Proposed
SPICE Perturbation



73 

 

4.4 Conclusion 

This chapter describes an efficient approach to perform sensitivity analysis of lossy 

transmission lines in the presence of nonlinear terminations. The sensitivity information 

is derived using the developed Passive Method of Characteristics (PMoC).  An important 

 
(a)                                                                       (b) 

 
(c)                                                                      (d) 

Figure 4-12: Comparison of circuit responses before and after optimization (Example 3). 
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feature of the proposed method is that the sensitivities are calculated from the solution of 

the original system resulting in significant computational advantages when compared to 

perturbation methods. 
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Chapter 5  
 

5 Analysis of Excited Transmission 
Lines 

 

 

5.1 Introduction 

Electrically long interconnects exposed to electromagnetic interference may induce 

undesired results such as signal degradation, false switching and may even damage 

sensitive devices [1],[4]-[7]. As a result, circuit designers must analyze the 

electromagnetic interference and compatibility of high speed devices to ensure proper 

performance and operation. 

A passive MoC algorithm was developed in Chapter 3 where the curve fitting to realize 

the macromodel depends only on per-unit-length parameters and not on the discretization 

of the macromodel [70],[73]. In this chapter the PMoC macromodel is extended to model 

high speed interconnects exposed to incident fields. When compared to other passive 

incident field coupling macromodels, the proposed algorithm is efficient in modeling 
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electrically long interconnects since it uses delay extraction without segmentation to 

capture the frequency response. This will be illustrated by numerical examples.  

 

5.2 Formulation of Incident Field Coupling Equations 

To model transmission lines with incident field coupling, the transmission line equations 

of (3.1) are modified to [1] 

( ) ),(),()()(),( F szszssssz
z

VILRV =++
∂
∂  

( ) ),(),()()(),( F szszssssz
z

IVCGI =++
∂
∂                               (5.1) 

where s is Laplace transform variable; z is the position variable; V(z,s) and I(z,s) 

represent the voltages and currents of the transmission line; R(s), L(s), G(s) and C(s) are 

p.u.l. resistance, inductance, conductance and capacitance matrix parameters, 

respectively; ),(F szV  and ),(F szI  are the distributed forcing functions due to the 

incident field and can be expressed as 

),(),(),( LTF szsz
z

sz EEV +
∂
∂−=  

( ) ),()()(),( TF szssssz ECGI +−=                                     (5.2) 
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where +I  and −I  represent the frequency-varying coefficients of the homogeneous 

solution; ),(inc szV  and )(inc z,sI  describe the interaction of incident ),(F szV  and 

),(F szI  sources on the transmission line; l  is the length of the transmission line; [ )(1 sI ,

)(1 sV ] and [ )(2 sI , )(2 sV ] are the current-voltage pairs at the near-end and far-end ports 

respectively; )(1 sJ  and )(2 sJ  are controlled current sources and 

))()())(()((2 ssssss LRCGΓ ++=  

))()((1
0 sss CGΓY += −                                              (5.4) 

are the propagation function and characteristic admittance, respectively.  

Electromagnetic fields generated from a far radiating source are treated locally as 

uniform plane waves [7]. In this case, the electric field of the incident field can be 

expressed as 

zsysxs
zzyyxx

i zyx eeeaAaAaAsEzyxE βββ −−−++= ))((),,( rrrr
                   (5.5) 

where )(sE  is the electric field amplitude, xA , yA , and zA  are the direction cosines of 

the incoming wave and T
zyx ββββ ]  [=  is the propagation vector. Substituting (16) into 

(13) and solving (12), the particular solution of ),(inc szV  and )(inc z,sI  can be 

expressed as 

zs zessEz,s β−= )(~)()( incinc VV  

zs zessEz,s β−= )(~)()( incinc II                                         (5.6) 
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where 
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FF
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( ) ( ))(~)(~)( ))(()(~
FF
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        (5.7) 

and nI  is the unity matrix. The coefficients (s)F
~V  and (s)F

~I  are defined as 
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iyixi yAxA ±=Φ± ;   ixiyi xy ββψ ±=±                                (5.10) 

The expressions of (5.8)-(5.10) correspond for the case when the transmission line 

network has a ground plane. For the case when the transmission line network has no 

ground plane 0==Φ −−
ii ψ . The derivation of the equations is given in Appendix B. 

In the next section, the equivalent near- and far-end voltage and current sources due to 

the incident field are extracted based on the PMoC macromodel. 
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5.3 Modeling Incident Fields using PMoC 

To include the effects of incident field coupling the solution of (5.4) at the near and far 

end terminals (i.e. z = 0 and z = l )  can be expressed in a form similar to (3.2) as 

)()()-( 111011 sincinc JVVYII −−=  

)()()-( 222022 sincinc JVVYII −−=  

)]-()([)( 222201
incincles IIVVYJ Γ +−= −  

)]-()([)( 111102
incincles IIVVYJ Γ +−= −                                (5.11) 

where 

)(~)(),0(1 ssEs incincinc VVV ==  

)(~)(),0(1 ssEs incincinc III ==  

lsinclsincincinc zz eessEsl ββ −− === 12 )(~)(),( VVVV  

lsinclsincincinc zz eessEsl ββ −− === 12 )(~)(),( IIII                          (5.12) 

Equation (5.11) represents the solution of Telegrapher’s equations with the incident field 

coupling. In comparison to (3.2), equation (5.11) has the following additional terms inc
1V

, inc
2V ,  inc

1I  and inc
2I , which represent the external voltage and current sources used to 

model the effect of the incident fields. 

The circuit realization of (5.11) is shown in Figure 5-2. The time domain representation 

of the incident field coupling is obtained by approximating )(~ inc sV  and )(~inc sI  as 
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rational functions using the vector fitting algorithm [20].  As illustrated in (5.12), the 

incident field sources at the far end of the transmission line is derived from the incident 

field equations at the near end with a lzβτ =  time delay due to the time required by the 

incident wave to propagate the length of the line. This allows for efficient computation of 

the incident field coupling of transmission lines in the time domain. In this chapter, once 

Q(s), )(ˆ
0 sY , )(~ inc sV  and )(~inc sI  are described in terms of rational functions, the 

 

Figure 5-2: Circuit realization of a multiconductor transmission line with incident field 

coupling. 

 

 

Figure 5-3: Circuit diagram of the incident field equivalent voltage and current sources. 
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proposed macromodel is realized in HSPICE using Laplace and delay elements to obtain 

the time-domain response of transmission lines exposed to incident fields [64].  

The detailed circuit realization of the unexcited transmission line using the PMoC is 

described in [73], while the circuit diagram of the incident field coupling sources is 

provided in Figure 5-3. In this circuit representation, the electric field amplitude )(sE  is 

treated as a current source and the rational approximations of )(~ inc sV  and  )(~inc sI  as 

impedances to calculate  inc
1V  and  inc

1I  as node voltages. The terms V
jip ,  and I

jip ,  

represent the poles of the rational approximation; V
jir ,  and I

jir ,  are the residues and  V
ik  

and I
ik  are the quotient variables. The node vectors of  inc

1V  and  inc
1I  are also time 

shifted by lzβτ =  to calculate inc
2V  and  inc

1I .  Controlled sources are then used to place 

inc
1V , inc

2V ,  inc
1I  and inc

2I  in Figure 5-2 to model the overall effect of the incident field 

on transmission lines. 

 

5.4 Numerical Results 

Two examples are provided in this section to demonstrate the accuracy and efficiency of 

the proposed time domain macromodel in the presence of electromagnetic fields. The 

results of the proposed algorithm are also compared with other passive macromodels such 

as the matrix rational approximation [53] and DEPACT [54] algorithms. 

Example 1) Fig 5-4 shows the cross sectional view of a microstrip structure. The per-unit-

length parameters of the structure are obtained using HSPICE field solver, and includes 



83 

 

skin effect losses. The length of the line is 30 cm. The first analysis terminates the 

interconnect network with 120Ω resistors as shown in Figure 5-5, and the network is 

exposed to an incident electric field of double exponential waveform 

( ) ( )( )ttEtE βα −−−= expexp)( 0  with 8104×=α  and 910=β , the peak amplitude 0E

=1kV/m,  an elevation angle of  pθ  = 60o , an azimuthal angle of pϕ  = −60o  and a 

polarized angle of Eθ = −90o. The time domain responses of nodes 1, 2, 4 and 5 are 

shown in Figure 5-6. To verify the accuracy of the proposed macromodel, the results are 

also compared with the inverse discrete Fourier transform (IDFT) of the exact frequency-

domain solution [1]. Both methodologies give similar time domain responses. 

 

Figure 5-4: Cross-sectional view of the multiconductor transmission line (example 1). 

 

Figure 5-5: Transmission line network with linear termination (example 1). 
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Next, the interconnect structure is connected to nonlinear CMOS inverters as shown in 

Figure 5-7. The input of the circuit is a trapezoidal voltage source with the amplitude of 

1.8 volt, rise time of 0.1ns and pulse width of 10ns. The transmission line network is 

(a)                                                                          (b) 

(c)                                                                             (d) 

Figure 5-6: Transient response comparison for the network in Figure 5-5 (Example 1). 
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exposed to an incident field of trapezoidal waveform with rise time of 0.1ns and pulse 

width of 3ns, 0E =4kV/m, and the same angular parameters provided above.  

In Figure 5-8, the near and far-end responses at nodes 1, 2, 4 and 5 are compared with the 

DEPACT macromodel [54]. Figure 5-9 shows the response of the output of the inverter at 

Vout, illustrating that the electromagnetic interference may induce false switching since 

the voltage level of the output pulse drops significantly. For their respective orders all 

algorithms give similar responses. The computational costs of the simulations are listed 

in Table 5-1 for different line lengths (on an Intel 1.6 GHz machine with 1 GB memory). 

For this example, as the length of the line increases the efficiency of the PMoC is greater 

 

Figure 5-7: Transmission line network with nonlinear elements (example1). 

 

 

Table 5-1: Computational Cost Comparison (Example 1) 

Line length 10 cm 30 cm 50 cm 
Proposed CPU time (s) 4.3 5.1 5.1 

DEPACT 
[54] 

CPU time (s) 26.1 68.2 127.7 
# of sections 14 40 70 
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when compared to DEPACT. This is due to the fact that the PMoC uses delay extraction 

without segmentation to model long interconnects while DEPACT requires more 

segments for longer lines. 

 

(a)                                                                        (b) 

(c)                                                                         (d) 

Figure 5-8: Transient response comparison for the nonlinear network in Figure 5-7 (Example 1). 
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Example 2) Figure 5-10 shows a microstrip structure which is connected to nonlinear 

CMOS inverters. The circuit is derived using a trapezoidal voltage source with the 

amplitude of 1.8 volts, rise time of 0.1ns and pulse width of 4ns. The test structure is 

exposed to an incident field of Gaussian waveform ))/)(exp(()( 22
00 TttEtE −= , with 

t0=2ns, T=300ps, 0E =3kV/m, and angular parameters of Eθ = −90o, pθ  = 60o, and pϕ  = 

 

Figure 5-9: Output waveform of the nonlinear network in Figure 5-7 (Example 1). 

 

 

Figure 5-10: Transmission line network with nonlinear elements (Example 2). 

0 5 10 15 20

0

0.5

1

1.5

2

 

 

Proposed
DEPACT
Unexcited

l



88 

 

−60o. The near- and far-end responses of the circuit are compared with the matrix rational 

approximation macromodel [53] in Figure 5-11.  

The responses of the circuit with and without external field coupling at the output of the 

inverter outV  are plotted in Figure 5-12, illustrating the false switching due to the 

electromagnetic interference. For their respective orders both algorithms give similar 

responses. The transient simulation of the PMoC on a (Intel 1.6 GHz CPU with 1 GB 

 

(a)                                                                            (b) 

Figure 5-11: Transient response comparison for the nonlinear network in Figure 5-10 (a) near-end and 

(b) far-end (Example2). 

 

Table 5-2: Computational Cost Comparison (Example 2) 

Line length 10 cm 20 cm 

Proposed CPU time (s) 0.5 0.5 

MRA [53] 
CPU time (s) 9.2 17.8 
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memory) machine is shown in Table 5-2. PMoC required 0.5 seconds of CPU time, while 

the matrix rational approximation macromodel required 17.8 seconds on the same 

machine. For this example, the proposed method is 35 times faster compared to the 

matrix rational approximation macromodel due to the fact that the PMoC uses delay 

extract to model electrically long transmission lines. 

 

5.5 Conclusion 

In this chapter, an efficient approach to evaluate the effect of electromagnetic field 

coupling to multiconductor transmission lines is presented. The external sources due to 

the incident field coupling are approximated as rational functions and the unexcited 

component is implemented using the PMoC macromodel. This provides significant 

 

Figure 5-12: Output waveform of the nonlinear network in Figure 5-10 (Example 2). 
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computational savings in modeling electrically long transmission lines exposed to 

incident fields since the PMoC uses delay extraction without segmentation to reduce the 

complexity of the transfer function of transmission lines. 
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Chapter 6  
 

6 Improving Vector Fitting 
Convergence for Noisy Frequency 
Responses Using Instrumental 
Variables 

 

 

6.1 Introduction 

System identification has become a critical problem for analysis of high speed packages 

and microwave devices and structures. Among the various methodologies available, 

vector fitting (VF) [20] has emerged as one of the most convenient and popular tools for 

system identification. It approximates the broadband terminal response of any chosen 

device as a rational function and allows the integration of the device into traditional 

circuit simulators with IC emphasis like SPICE. It has recently found extensive 

application in analysis of power transmission lines and systems [79], characterization of 

electromagnetic devices [80]-[81] and signal integrity analysis of high speed interconnect 

network [14],[58],[82]-[84] to name a few. VF algorithm uses an iterative approach to 

improve the accuracy of a set of given initial poles. In [85], an orthonormal VF algorithm 
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is proposed which leads to better conditioned equations, reduction in the numerical 

sensitivity of the model parameterization to the choice of starting poles, and consequently 

better convergence. In [86], a Z-domain vector fitting algorithm is proposed which has 

less sensitivity to the selection of starting poles. A time domain vector fitting algorithm is 

also proposed [57] in order to identify the rational function based on time-domain 

measurements.  

Although VF algorithm usually converges to the final poles after a few iterations, it has 

been observed that VF will not produce accurate results for noisy data and will introduce 

a bias at the corners even after many iterations [20],[65]-[69]. This is due to the fact that, 

using a least-squares solver for pole identification during vector fitting, the error due to 

the noise will also become squared. 

A different modification of standard VF, referred as vector fitting with adding and 

skimming (VF-AS) is reviewed in Chapter 2, which addresses the convergence issues of 

VF when the frequency data samples are contaminated with noise. The algorithm is based 

on the identification and removal of spurious poles, an incremental pole addition, and 

relocation process in order to provide automatic order estimation even in the presence of 

significant noise. However, the process of identification of the spurious poles and 

selecting the new position of the poles increases the complexity of the algorithm. 

Relaxed vector fitting (RVF) [67], on the other hand, introduces a relaxed constraint to 

relocate poles to better positions, and hence, to improve the convergence sensitivity to the 

choice of the initial poles. 
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In this chapter, a methodology using instrumental variables is proposed which improves 

the accuracy and convergence of rational approximation of measured data in a noisy 

environment while it does not increase the computational complexity. This will be 

illustrated by numerical examples. 

 

6.2 Problem Description 

To review the problems of the vector fitting algorithm in the presence of noise, consider 

)(sY  as a one-port structure with a rational approximation for the transfer function, as 

    sed
ps

rsY
k k

k ++
−

= ∑
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)(                                          (6.1) 

where kp  and kr  correspond to real or complex conjugate poles and residues 

respectively; d  and e  are optional quotient variables and s is the Laplace variable. As 

described in Chapter 2, the coefficients of the rational function are determined by 

choosing sN  frequency points is  over the frequency range of interest to obtain an 

overdetermined linear system of  
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for the relaxed vector fitting algorithm. For real poles and residues, the coefficients of 

(6.3) and (6.4) are 
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and )(~
0 i
i sYa = . To avoid the null solution for the case of relaxed vector fitting algorithm 

an additional equation is added to the least square problem  

                                     (6.7) 

The equations of (6.2) at sN  different frequency points are assembled to obtain an over 

determined linear system of equations   

BAX = .                                                         (6.8) 

Next, consider the tabulated data from measurement is perturbed with a zero-mean 

complex random noise ε  as 
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where )(sY  is the exact theoretical transfer function in the absence of noise. Even though 

the noise of the data is assumed to be zero-mean, this section will illustrate that the 

solution of the least squares problem of (6.8) will be biased which may lead to less 

accurate results.  

To investigate the biasing effects of the original vector fitting algorithm in the presence 

of zero-mean noise, (6.9) at sample frequency is  (i.e. iii sYsY ε+= )()(ˆ ) is substituted 

into (6.2)-(6.6) to obtain 

A
iii HAA +=ˆ  

B
iii HBB +=ˆ                                                   (6.10) 
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For real poles and residues, i
ke~  is defined as 
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For complex conjugate pole and residue pairs, i
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~
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and kq  are the staring poles. The least square solution of (6.8) in the presence of noise 

can be expressed as 
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Note that ii AAT  and ii BTA  of (6.15) are the matrices obtained in the absence of noise. 

Since it is assumed that the biasing of the noise ε  is zero (i.e. expected value 0][ =εE ), 

the expected values of the second and third terms of (6.15) are also zero 

0HH == ])[(][ T
i

TA
i

A
ii EE AA  

0BHH == ])[(][ T
i

TA
i

B
ii EE A                                     (6.16) 

Thus, the matrices of (6.16) do not statistically bias the results of the least square 

approximation.  The forth terms of (6.15) are defined as 
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[ ]a
nm

A
i

TA
i h ,)( =HH  

[ ]b
m

B
i

TA
i h=HH )(                                             (6.17) 

 

where 





 +>+=

otherwise
Nnmeeeeh

i
n

i
m

i
n

i
ma

nm 0
2,)~Im().~Im()~Re().~Re( ''''

,  





 +>+=

otherwise
Nmeeh i

i
mi

i
mb

m 0
2)Im().~Im()Re().~Re( '' εε                   (6.18) 

and )2(' +−= Nmm  and )2(' +−= Nnn . Note that the expected value of 0])[Re( 2 ≠εE  

and 0])[Im( 2 ≠εE . This causes the non-zero terms of a
nmh ,  and b

mh   to statistically bias 

the least square approximation of (6.14),     

0HH ≠])[( A
i

TA
iE  

0HH ≠])[( B
i

TA
iE                                               (6.19) 

The nonzero a
nmh ,  terms bias the ii AA ˆˆ T  matrices which affect the solution of all 

unknown variables in (6.14). The nonzero b
mh  terms bias the kc~  residues, which are used 

to determine the poles of )(sY . It is the biasing effect of b
mh  which is mainly responsible 

for the failure of vector fitting to capture the actual poles of the system in the presence of 

zero-mean noise. 
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To investigate the biasing effects of relaxed vector fitting algorithm in the presence of 

zero-mean noise, (6.9) at sample frequency is  (i.e. iii sysy ε+= )()(ˆ ) is substituted into 

(6.4) -(6.7) to obtain  

A
iii HAA +=ˆ  

ii BB =ˆ                                                        (6.20) 

where 












=

)~Im(...)~Im(0...0
)~Re(...)~Re(0...0

0

0
i
N

i

i
N

i
A
i ee

eeH                               (6.21) 

For 1≥k , the coefficients i
ke~  are defined by (6.12) and (6.13) for real and complex 

conjugate poles, respectively and i
ie ε=0

~ . The least square solution of the relaxed vector 

fitting algorithm can be expressed as (6.14), where 

A
i

TA
ii

TA
i

A
iiiiii HHHH )()(ˆˆ TTT +++= AAAAAA  

i
TA

iiiii BHBB )(ˆˆ TT += AA                                      (6.22) 

Making the assumption that the biasing of the noise ε  is zero, the expected values of the 

second and third terms of (6.22) are 

0HH == ])[(][ T
i

TA
i

A
ii EE AA  

0BH =])[( i
TA

iE                                              (6.23) 
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Similarly, the matrix A
i

TA
i HH )(  is defined by (6.17)-(6.18), where )3(' +−= Nmm  and 

)3(' +−= Nnn . Since 0])[Re( 2 ≠εE  and 0])[Im( 2 ≠εE , the matrix A
i

TA
i HH )(  will 

bias the least square approximation of (6.14).  

0HH ≠])[( A
i

TA
iE                                             (6.24) 

In comparison with the traditional vector fitting algorithm, the biasing effect of relaxed 

vector fitting is less pronounced since formulation moves the b
mh  terms of (6.18) to 

(6.24). As a result, the matrix inversion of (6.14) distributes the biasing effects of (6.24) 

among all unknown variables of X. Thus, relaxed vector fitting is better able to capture 

the poles of the system in comparison to the traditional vector fitting algorithm.  

The next section describes an instrumental variable approach to eliminate the biasing 

effects of (6.19) and (6.24). Numerical examples will illustrate that combining the vector 

fitting algorithms with instrumental variable approach will provide more accurate pole 

estimations with less iteration to converge.  

 

6.3 Proposed Algorithm  

The previous section shows that in presence of noise, the least square solution is biased. 

More precisely, when the measured frequency-domain data is contaminated with noise, 

the poles are perturbed from their original positions [65] or may require additional 

iterations to converge. To minimize the biasing effects of the least square solution an 

instrumental variable approach is proposed. 
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6.3.1 Description of Instrumental Variable Algorithm 

The least squares solution using the instrumental variable approach can be defined as 

   























= ∑∑

=

−

=

ss N

i
ii

N

i
ii

1

T
1

1

T ˆˆ BΨAΨX .                                           (6.25) 

where iΨ  is referred as an instrument of the least squares solution. The objective of the 

instrumental variable is for iΨ  to match iA  where the errors of iΨ  are zero mean and 

uncorrelated with the noise of iÂ  and iB̂ . This leads to an unbiased solution for X  in 

(6.25) [87]-[90]. The construction of iΨ  can be generated from different estimates of 

)(sY , defined as 

η+= )()(ˆ sYsY                                                   (6.26) 

where η  is the error of the approximation of )(sY  and is assumed to be zero-mean and 

uncorrelated with ε . Substituting the sample frequency is  (i.e. iii sYsY η+= )()(ˆ ) into 

(6.2), generates the instrument iΨ  defined as 

Ψ+= iii HAΨ                                                 (6.27) 

where Ψ
iH  is the error of the instrument and it is similar to A

iH  as defined by (6.11) and 

(6.21) where ε  is replaced by η . To investigate the biasing effects of the instrumental 

variable approach the matrices of (6.25) are expressed as 

A
i

T
ii

T
i

A
iiiiii HHHH )()(ˆ TTT ΨΨ +++= AAAAAΨ  
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B
i

T
ii

T
i

B
iiiiii HHBHHBB )()(ˆ TTT ΨΨ +++= AAΨ                     (6.28) 

 

Since it is assumed that the biasing of ε  and  η  are zero, the expected values of the 

second and third terms of (6.28) are also zero. Furthermore, ε  and  η  are assumed to be 

uncorrelated (i.e. 0][ ≈iiE εη ) which causes the expected values of the forth terms in 

(6.28) to be zero. 

0HH ≈Ψ ])[( A
i

T
iE  

     0HH ≈Ψ ])[( B
i

T
iE                                              (6.29) 

The next section describes techniques for constructing the instrument variables for Ψ
iH .  

 

6.3.2 Methodology to Construct Instrument iΨ  

A simple way to create iΨ  is to use two sets of measurements that are uncorrelated. For 

the case when additional uncorrelated data samples are not available, the vector fitting 

algorithm can construct the instrumental variables by using the previous rational 

approximation for each of the iterations. Since the previous rational approximation is less 

correlated with the noise of the data, the biasing effect of the least squares solution is 

minimized.  The proposed vector fitting instrumental variable algorithm is summarized in 

the form of pseudo-code of Algorithm 1. 

Algorithm 1: Vector fitting algorithm using the instrumental variable technique. 
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Require: Obtain tabulated data of the frequency response.  

Require: Select maximum number of iterations maxN  and stopping accuracy yε . 

Require: Select starting poles over the frequency range of interest such that they are 

highly resonant. 

Step 1: Generate A  and B  matrices using the tabulated data )(ˆ sY  and the starting poles 

and solve the least squares problem of (6.8). 

Step 2: Compute the residues by solving the second least squares problem performed on 

(6.1). 

Step 3: Obtain )(sYapp , the estimate of )(sY  for different frequency point using the 

computed sets of poles and residues. 

Step 4: Check error criteria. 

if error tolerance of yapp εsYsY <− ||)()(ˆ||  is satisfied or the  number of iterations equals 

maxN  finish the algorithm. 

end 

Step 5: Generate A  and B  matrices using the tabulated data )(ˆ sY  and the new set of 

calculated poles. 

Step 6: Generate the instrument Ψ  using the estimate )(sYapp  (computed in Step 2) and 

the new set of calculated poles. 
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Step 7: Solve the least squares problem of (6.25) using the instrumental variable 

technique and go Step 2. 

 

6.4 Numerical Results 

Three examples are provided in this section to demonstrate the accuracy and efficiency of 

the proposed vector fitting algorithm in the presence of noise. 

Example 1) The first example is a synthetic transfer function with 18 poles [65] as 

demonstrated in Table 1. Several Gaussian noises with different RMS values are added to 

the frequency response of the system and the algorithms of vector fitting, relaxed vector 

fitting, vector fitting algorithm with the instrumental variable technique and relaxed 

vector fitting algorithm with the instrumental variable techniques are examined for the 

rational approximation of the noisy frequency response . Figure 6-1 shows the fitting of 

the noisy frequency response with signal to noise ratios (SNR) of 30dB and 20dB. As 

illustrated in the figure the conventional vector fitting algorithm is not able to catch all 

the poles and it has biasing at the convex areas, while vector fitting with the instrumental 

variable technique shows a good agreement with the original data. 

Due to the random nature of the noise, the frequency characteristics of the noise signal 

for the same SNR will be different for each simulation. As a result, the number of 

iterations required for the proposed algorithm to converge for each simulation will vary 

as well. Taking this into account, the results shown below are the average achieved for 20 

simulations that have been conducted with the same SNR value. 
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Table 6-1: Poles and Residues of the Transfer Function [65] 
Poles (GHz) Residues (GHz) 

-0.6930 ± j 2.3198 -0.9260 m j 0.0855 
-0.3110 ± j 5.9866 -0.2029 m j 0.0146 
-0.1175 ± j 1.2123 -0.0832 m j 0.0150 

-0.3550 ± j 14.0473 -0.1932 m j 0.0137 
-0.5322 ± j 19.8046 -0.7199 ± j 0.0580 
-0.3091 ± j 22.7294 -0.5464 m j 0.1157 
-1.1285 ± j 28.6601 -0.6624 m j 0.2276 
-0.3179 ± j 38.2834 -0.4653 m j 0.0417 
-0.5498 ± j 47.9715 -0.7635 m j 0.1634 

 
 
 

 
(a)                                                                   (b) 

Figure 6-1: Vector fitting for the transfer function of example 1 (a) SNR=30dB (b) 

SNR=20dB (Example 1). 

 
 

 
(a)                                                                   (b) 

Figure 6-2: RMS error vs. iteration count (a) SNR=20dB and (b) SNR=20dB (Example 1). 
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Figure 6-2 shows the RMS error values versus iteration count for SNR=20dB and  

SNR=20dB. Figure 6-3 shows the RMS error after the 15th iteration for different SNRs. 

For SNR=10 dB none of the algorithms were able to converge before 15th iterations, 

while for SNR=15dB relaxed vector fitting with instrumental variable was the only 

 
Figure 6-3: RMS Error after 15th iteration for different SNRs (Example 1). 

     
 

 
Figure 6-4: Average number of iterations to converge for different SNRs (Example 1). 
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algorithm to obtain the appropriate accuracy. One can see that all three algorithms except 

the conventional vector fitting are showing good results for the remaining noisy data, 

while the algorithms with instrumental variable benefit the best accuracy. 

Figure 6-4 shows the average required number of iterations versus the SNR. As 

illustrated in the figure, instrumental variable technique can accelerate the convergence of 

the vector fitting algorithm. It is to be noted that for the example, relaxed vector fitting 

algorithm with instrumental variable requires less number of iterations to converge and 

original vector fitting algorithm has sever issues in terms of convergence and accuracy. 

Moreover, depending on the noise, vector fitting algorithm with instrumental variable is 

usually superior to the relaxed vector fitting. 

Example2) A seven transmission line network with nonlinear CMOS inverters is shown 

in Figure 6-5. The p.u.l. parameters of each line are R=8.26Ω/m, L=361nH/m, 

Figure 6-5:Transmission line network with nonlinear termination (Example 2) 
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C=140pF/m, G=0.0 and the length of each line is 2cm. The input voltage is a step source 

of amplitude 1.8V with rise time of 0.2ns. The S-parameters of the three port circuit 

which is included in the box have been obtained using SPICE. In this example, different 

values of noises have been added to the computed S-parameters and different vector 

fitting algorithms have been applied. Figure 6-6 shows vector fitting for S(1,1) parameter 

with SNR=20dB using 30 poles. The results of the proposed method illustrate significant 

(a)                                                                 (b) 

Figure 6-6: Vector fitting for S(1,1) of the network in Figure 6-5 with SNR=20dB (a) 

magnitude and (b) phase plots (Example 2). 

 
 

(a)                                                                  (b) 

Figure 6-7: RMS Error for (a) SNR=30dB and (b) SNR=20dB (Example 2). 
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improvement in capturing the data compared to the results of the original vector fitting 

which lead to considerably inaccurate fitting and biasing.  

Figure 6-7 shows the RMS errors of S(1,1) of the noisy data with two SNRs of 30 and 20 

dB versus the iteration count.  Figure 6-8 shows the overall RMS Error after 10th 

iteration for different SNRs. The results of the proposed method are compared with the 

 
Figure 6-8: RMS Error after 10th iteration for different SNRs (Example 2). 

 
 

(a)                                                                    (b) 

Figure 6-9: Transient response of nodes V2 and V3 using vector fitting for noisy data with 

and without instrumental variables (SNR=20dB) (Example 2). 
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vector fitting and relaxed vector fitting algorithm. As demonstrated in Figure 6-7 and 8, 

the proposed instrumental variables can assist vector fitting algorithms with faster 

convergence and better accuracy. The transient response at nodes V2 and V3 using the 

proposed vector fitting algorithm and the conventional method is shown in Fig 9. 

Example 3) Figure 6-10 (a) shows a multi-conductor transmission line network, 

terminated with two nonlinear CMOS inverters. The physical description of the 

interconnect networks are depicted in Figure 6-10 (b) and the lengths of the lines are as 

following: l1 = 5cm, l2 = 3cm and l3 = 4cm. The p.u.l parameters are computed from the 

 
(a) 

 

 
(b) 

Figure 6-10: (a) Multiconductor transmission line network with nonlinear CMOS inverter 

and (b) physical/geometrical parameters for the MTL sub-networks (Example 3). 

l
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physical description using HSPICE field solver. The input voltage of the circuit is a 1.8 V 

step response with a time rise of 0.2 ns.  

The S-parameters of the three port circuit which is surrounded by the box have been 

calculated using the similar method as example 2. Then, different values of Gaussian 

noises have been added to the computed S-parameters and different vector fitting 

algorithms have been applied. 

(a)                                                                 (b) 

Figure 6-11: Vector fitting for S(2,2) of the network in Figure 6-10 with SNR=20dB (a) 

magnitude and (b) phase plots (Example 3). 

 
 

(a)                                                               (b) 

Figure 6-12: RMS Error (a) SNR=30dB and (b) SNR=20dB (Example 3). 
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Figure 6-11 shows vector fitting for S(2,2) parameter with SNR=20dB using 36 poles. 

The results of the proposed method illustrate significant improvement compared to the 

conventional vector fitting algorithm. Figure 6-12 shows the RMS errors of S(1,1) as the 

 
Figure 6-13: RMS Error after 10th iteration for different SNRs (Example 3). 

 
 

   
Figure 6-14: Transient response of nodes V3 using vector fitting for noisy data with and 

without instrumental variables (SNR=20dB) (Example 3). 
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iterations continue.  Figure 6-13 shows the overall RMS Error after 10th iteration for 

different SNRs. The results of the proposed method are compared with the vector fitting 

and relaxed vector fitting algorithm. The transient response at node V3 using the 

proposed vector fitting algorithm has been compared to the conventional vector fitting in 

Figure 6-14. 

 

6.5 Conclusion 

In this chapter, an efficient approach to increase the accuracy and convergence of VF 

algorithm for noisy frequency responses is presented which is based on instrumental 

variables technique. Using instrumental variable approach will not affect the 

computational complexity of VF, while it provides significant improvement in 

convergence and reduction of biasing. 
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Chapter 7  
 

7 Summary and Future Work 
 

 

7.1 Summary 

The objective of this thesis is to develop efficient algorithms to model high-speed 

interconnects in a circuit simulation environment. This thesis addresses both 

macromodels where the physical dimensions and characteristics of the structure are 

known and when the macromodels are derived based on the tabulated data. This work 

includes the following contributions. 

Firstly, a passive closed-form macromodeling technique based on method of 

characteristics is developed for multiconductor transmission lines. This algorithm is 

based on extracting the significant propagation delay of the transmission line followed by 

a low order rational approximation to capture the attenuation effects. The key advantage 

of the algorithm is that the curve fitting to realize the macromodel depends only on per-

unit-length (p.u.l.) parameters and not on the length of the transmission line. This avoids 



115 

 

computationally expensive and sometimes unreliable numerical fitting algorithms that are 

on occasion associated with the MoC-based algorithms. 

An efficient approach to perform sensitivity analysis of lossy transmission lines in the 

presence of nonlinear terminations is also presented where the sensitivity information is 

derived using the PMoC macromodel.  An important feature of the proposed method is 

that the sensitivities are calculated from the solution of the original system resulting in 

significant computational advantages when compared to perturbation methods. 

Perturbation based techniques can also lead to inaccurate results depending on the 

magnitude of the perturbation. In addition the perturbed network must be solved 

separately for every parameter of interest. However, in the proposed approach, the 

sensitivity information with respect to all the parameters can be essentially obtained from 

the solution of the original network, since both the original and sensitivity networks have 

the same MNA matrices and additional LU decompositions to invert the sensitivity 

network matrices are not required. The sensitivity analysis is also included in an 

optimization process to obtain the appropriate physical parameters of the network to 

satisfy the required design constraints. 

A time-domain macromodel for lossy multiconductor transmission lines exposed to 

electromagnetic interference is described in this thesis based on PMoC. The algorithm 

provides an efficient mechanism to ensure the passivity of the macromodel for different 

line lengths. The proposed method is efficient in modeling electrically long interconnects 

since delay extraction without segmentation is used to capture the frequency response.    
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An efficient approach to increase the accuracy and convergence of vector fitting for noisy 

frequency responses is described in this thesis. The proposed technique uses instrumental 

variables in order to solve the least square problem and hence, it provides better 

convergence and reduced biasing. The proposed approach will not affect the 

computational complexity of VF algorithms, while it provides a faster convergence 

compared to the original VF. 

Several numerical examples are provided in this thesis to demonstrate the validity and 

efficiency of the proposed algorithms. 

 

7.2 Future Work 

This section provides some suggestions for future research based on the work presented 

in this thesis: 

1. The analysis of excited MTLs is extended to analysis of shielding capability of 

shielded cables in [91]-[95]. The problem is formulated by considering an 

external transmission line having currents flowing on the exterior of the cable 

together with a ground plane return and an internal multiconductor transmission 

line consisting of internal conductors referenced to the interior part of the shield. 

Time-domain analysis of electromagnetic field coupling to shielded cables can be 

performed based on PMoC in order to achieve faster simulation times while 

ensuring the passivity.  
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2. The waveform relaxation algorithm [69]-[100] reduces the simulation costs of 

large networks. This technique attempts to break a large circuit into smaller 

subcircuits which can be solved iteratively in sequence or in parallel. PMoC 

macromodel of multiconductor transmission lines with several conductors can be 

partitioned into two-conductor transmission lines using with waveform relaxation 

techniques. Since each section is considered as a two-conductor transmission line, 

the enforcement of passivity conditions is also expected to be faster. 

3. Applications of PMoC for the optimization of power transmission line issues such 

as corona discharge, lightening discharge, and overvoltage analysis, can be 

examined. 

4. Providing an automatic optimization routine for ensuring passivity conditions of 

PMoC based on Hamiltonian matrix approach presented in [61]-[62]. This method 

improves computation complexity of the passivity enforcement techniques 

proposed in [19] for traditional MoC. This is due to the fact that the complexity of 

eigenvalue calculation of a network admittance matrix increases rapidly as the 

order increases and thus, it requires more time compared to the half-sized 

characteristic admittance )(s0Y , propagation function )(sΓ  and their products.  
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Appendices 

 

Appendix A: Formulation of Excited Transmission Lines 

The modeling of transmission lines with incident field coupling can be formulated as [1]  

( ) ),(),()()(),( szszssssz
z FVILRV =++

∂
∂  

  ( ) ),(),()()(),( F szszssssz
z

IVCGI =++
∂
∂                             (A.1) 

where s is Laplace transform variable; z is the position variable; V(z,s) and I(z,s) 

represent the voltages and currents of the transmission line; R(s), L(s), G(s) and C(s) are 

p.u.l. resistance, inductance, conductance and capacitance parameters, respectively; 

),( szFV  and ),( szFI  are the distributed forcing functions due to the incident field and 

can be expressed as 
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and zε  and tε  are longitudinal and transverse components of the incident electric field; 

),( ii yx  and ),( 00 yx  refer to the coordinates of the signal corresponding to the i th 

conductor; ρ  is a parameter of x and y in the transverse plane (Figure A-1). 

For the case when incident electric field is a uniform plane wave 

 zsysxs
zzyyxx

i zyx eeeaAaAaAsEzyxE βββ −−−++= ))((),,( 0
rrrr

                (A.4) 

where )(0 sE  is the amplitude; xA , yA , and zA  are the direction cosines of the incoming 

wave; T
zyx ββββ ]  [=  is the propagation vector. If the reference conductor is placed at 

the origin of the coordinate system, x=0, y=0, the transverse and longitudinal 

contributions of the incident electric field (A.3) for the case when there is no ground 

plane can be written as 

 

Figure A-1: Derivation of the contributions to the equivalent sources due to the transverse 

component of incident electric field for a multiconductor transmission line. 
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shown in Figure A-1 and 
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Subsequently, the distributed forcing functions ),( szFV  and ),( szFI  can be expressed 

as 
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For the case when the transmission line has a plane ground located on y-z plane, the 

ground plane can be replaced with the image of the incident source as 
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Therefore, the equations (A.5)-(A.9) can be substituted by (A.11)-(A.13) for the case 

when there is a ground plane, which results from the incident electric field iE
r

 and the 

image of the incident electric field refE
r
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Equations (A.8)-(A.9) and (A.11)-(A.12) are used in Chapter 5 to model the effects of 

incident electromagnetic field on transmission lines. 
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