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Abstract 

Despite the amazing biological diversity exhibited by viruses, their very existence relies 

upon their ability to overcome a set of common barriers. The nature of these barriers 

reflects the nature of viruses themselves. During their extracellular phase, viruses are 

metabolically inert obligate parasites. Upon encountering a host cell, productive infection 

necessitates that the virus successfully enter the cell, regulate the expression of its genes, 

and after assembling new progeny particles, egress such that the cycle of infection can 

continue. These three basic processes are not only attractive candidates for therapeutic 

intervention, but also reveal much about virus biology in the most basic sense. That is 

why these processes are the focus of the studies described herein. We have identified 

vimentin, an intermediate filament protein expressed primarily in cells of mesenchymal 

origin, as a cellular factor required for the efficient onset of human cytomegalovirus 

(CMV) infection in fibroblasts. We observed that an endotheliotropic (EC-tropic) strain 

of CMV relies more heavily on vimentin than the fibroblast-adapted strain, possibly 

reflecting different modes of entry utilized by these two strains. We have also performed 

the first functional study of the 55R E1A protein encoded by human adenovirus (HAdV). 

This protein was expressed at late times post-infection and was able to both transactivate 

expression of viral genes, and promote productive replication of HAdV in the absence of 

all other E1A isoforms. Finally, our focus returns to CMV where we describe a novel 

protein that we have dubbed ' nuclear rim-associated cytomegaloviral protein' 

(RASCAL). RASCAL is expressed with early-late kinetics and localizes to the nuclear 

rim, in deep intranuclear invaginations, and in unusual lamin B-positive vesicular 

structures at late times post-infection. RASCAL could be immunoprecipitated with 

pUL50, a member of the CMV nuclear egress complex (NEC) and pUL50 was sufficient 

to recruit RASCAL to the nuclear rim. These studies have illuminated novel processes 

through which two important human viruses enter cells, regulate viral gene expression 

and ultimately egress. Considered together, they have also expanded our understanding of 

three central aspects of virus biology upon which further studies can build. 
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Chapter 1 INTRODUCTION 

1.1 Preface 

"The aim of science is to seek the simplest explanation of complex facts. We are apt to 

fall into the error of thinking that the facts are simple because simplicity is the goal of our 

quest. The guiding motto in the life of every natural philosopher should be "Seek 

simplicity and distrust it.""-Alfred North Whitehead (1861-1947) English Mathematician 

and Philosopher-from Concepts of Nature 

The above quote by Alfred North Whitehead should not only serve as an important 

reminder to all those seeking to unravel nature's complexities, but should resonate with 

particular strength amongst virologists. At a glance, the focus of our studies would seem 

exceedingly simple: biological particles composed of small strands of nucleic acids with 

limited coding potential encased within a proteinaceous shell, some of which are 

surrounded by lipid envelopes, others which are not. In isolation, these particles are 

metabolically inert - unable to perform even the most basic functions associated with life, 

including self-replication. However, in the context of a host cell, an organism or indeed, 

an entire ecosystem, these seemingly simple particles perform a dazzlingly diverse array 

of functions, many of which have shaped, and continue to shape every aspect of life on 

this planet.  

 Herein, the author shall focus his attention on three essential processes common 

amongst all viruses: entry, gene regulation and egress. The first and last processes were 

investigated in the context of human cytomegalovirus infection, whereas gene regulation 

was studied in the context of human adenovirus infection. In each case, the author sought 

to arrive at the simplest explanation which rectifies a series of complex observations. It is 
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the sincere hope of the author that during the course of these studies, areas that were 

previously poorly understood have become illuminated, and that once completed, we will 

find many more questions to ask, and perhaps even arrive at a few answers.  

1.2 Human Cytomegalovirus 

1.2.1 General Characteristics 

CMV, also known as Human Herpesvirus 5 (HHV-5) belongs to the family 

herpesviridae, and is a member of the betaherpesvirus subfamily. These viruses exhibit 

strict species specificity and productively infect many differentiated cell types, including 

fibroblasts, endothelial cells (EC), epithelial cells, macrophages and dendritic cells (DC) 

(48, 67, 88, 129, 134, 199, 228). In fact, it is easier to mention the few cell types that do 

not seem to support productive CMV infection; these include lymphocytes and 

polymorphonuclear leukocytes (80, 200-201). CMV has been shown to use many 

different entry receptors (98) and permissiveness to infection seems to be determined at a 

post-penetration step (199, 202). Serial passaging of clinical isolates on human foreskin 

fibroblasts (HF) has resulted in the accumulation of mutations which improves growth of 

these strains on HF, while concomitantly decreasing their tropism for other cell types, 

such as EC and DC (31, 50, 135, 142-143). These strains are now called 'laboratory-

adapted,' and many were intially passaged on HF with the hope that they would become 

attenuated and could then be used for the generation of a vaccine (73). Unfortunately, this 

strategy was largely unsuccessful. However, new vaccine strategies have been developed 

over the past several years and are currently the focus of active investigation (191). 
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Infection by CMV is ubiquitious in the adult population, though frequency of infection is 

higher in less-developed countries. Primary infection usually occurs early in life and is 

especially prevalent in childcare settings. In immunocompetent individuals, primary 

infection is generally asymptomatic. However, severe disease often develops during 

reactivation of CMV in immunocompromised individuals, especially transplant recipients 

undergoing immunosuppressive drug regimes. This generally occurs because like other 

herpesviruses, CMV is able to establish latency within the host following primary 

infection, and periodically reactivates throughout the rest of the host's life.  In addition, 

CMV is somewhat unique among herpesviruses in that transplacental transmission occurs 

naturally. This type of transmission is much more common in women who experience 

primary infection during pregnancy, as opposed to those who experience a reactivation 

from latency (62, 123, 136). 

1.2.2 Virion Structure 

Like all herpesviruses, the CMV virion is composed of a double-stranded DNA genome 

enclosed within a proteinaceous, icosohedral capsid. The capsid itself is surrounded by 

another, less structured proteinaceous layer called the tegument (or matrix). The 

tegument consists of approximately 30 virus-encoded proteins, most of which are 

phosphorylated, as well as some other cellular proteins and various RNAs. While many 

proteins are found in the tegument, the most abundant are pp65 (encoded by UL83), pp71 

(encoded by UL82) and pp150 (encoded by UL32) at 15%, 9% and 9%  abundance by 

mass, respectively (225). These tegument proteins serve two primary functions. The first 

is to assist in the structural assembly and disassembly of the virion during entry and 
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egress. The second is to subvert the cell's normal response to infection, thereby creating 

an environment which is conductive to viral replication (136).  

In addition to making contacts with the capsid, tegument proteins also interact with the 

viral envelope and the proteins embedded therein. The mature virion envelope is 

ultimately derived from the endoplasmic reticulum (ER)/ER golgi intermediate complex 

(ERGIC). In terms of facilitating viral entry, the most essential envelope proteins 

encoded by CMV share significant homology with those encoded by other herpesviruses. 

These proteins form distinct complexes on the viral envelope commonly termed 

glycoprotein (g)B, gH:gL and gM:gN (27, 39). gB is expressed on the envelope as a 

disulfide-linked homodimer. It is responsible for the initial interaction between the virion 

and heparan sulfate proteoglycans present on the surface of target cells, as well as cell-to-

cell transmission and fusion of infected cells (136). It is also the major target of the 

neutralizing antibody response and has thus received attention as a vaccination candidate 

(69, 108). Together, these components generate a virion of approximately 200-300 nm in 

diameter (136). 

1.2.3 Genome 

The CMV genome is composed of a unique long (UL) and a unique short (US) sequence 

flanked by internal and terminal repeats. This arrangement of repeats promotes 

isomerization of the genome, leaving four possible combinations of infectious genomes 

(Fig. 1-1). These genomes range in size from 196-241 kbps, depending on the particular 

strain in question. The termini of the genome contain conserved packaging signals (pac-1 

and pac-2) which are recognized during encapsidation and determine the site of 
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concatamer cleavage (136). There is also a large origin of replication (oriLyt) located 

between genes UL57 and UL69 which is necessary for lytic replication of the viral 

genome (6, 23, 122). CMV is estimated to contain about 140 genes, approximately 80 of 

which are necessary for replication in fibroblasts (53, 245). The rest of the genes are 

thought to be involved in processes including cell-type specific tropism, temperance or 

immune modulation. Currently recognized ORFs have been characterized by a set of 

arbitrary criteria, most notably an insistence on undisrupted coding regions and for the 

coding of polypeptides greater than 100 amino acids in size.  Recent studies have re-

examined the historical annotation of CMV genomes and have resulted in the 

identification of a number of putative open reading frames (ORFs) that were previously 

unrecognized. Several of these ORFs are conserved among multiple clinical isolate and 

have thus been dubbed 'conserved ORFs (c-ORFs) (47, 50, 142). 

1.2.4 Entry and Tropism 

1.2.4.1 Factors associated with viral tropism 

Herein, we shall define 'entry' as all processes from the time of initial viral binding to the 

expression of immediate early genes. The process of CMV entry into a host cell begins 

with binding of gB to surface heparin sulfate proteoglycans (HSPGs) (39). Depending on 

the cell type being studied, gH:gL:gO or gH:gL:UL128-131 complexes are then required 

to promote higher affinity binding with one of the many known CMV receptors and/or 

downstream fusion of the viral envelope with the cellular membrane (98). In fact, the 

UL128-131 locus has been mapped as a major viral determinant of CMV tropism. The 
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gH:gL:UL128-131A complex is required for endocytic uptake of CMV virions into EC 

and epithelial cells, and in some cases this is followed by pH-dependent fusion of the 

viral envelope with the endocytic vesicle, which facilitates capsid release into the 

cytoplasm (159, 183-184). Interestingly, HF-adapted CMV strains are often found to 

have acquired large deletions or mutations in this region which inevitably result in loss of 

tropism breadth. For example, the common laboratory adapted strain, AD169, harbours a 

frameshift mutation in UL131A which results in the production of a truncated protein and 

subsequent loss of EC tropism (1, 3, 81, 230).  While the specific mutations acquired by 

other laboratory-adapted strains differ subtly, the restricted tropism that results is 

common. 

Numerous cellular factors also contribute to CMV tropism, though they have not yet been 

fully described. Strikingly though, penetration into the cell does not seem to be a major 

barrier. A myriad of cell surface receptors which facilitate CMV entry have been 

described throughout the years, though none appear to be absolutely required in all 

settings. These include various integrin family heterodimers: α2β1, α6β1 and αvβ3 (58, 

98, 230), platlet-derived growth factor-α receptor (205) and epidermal growth factor 

receptor, whose characterization as a bona-fide entry receptor has been controversial (97, 

233).  
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FIG. 1-1. Diagrammatic representation of the possible isomeric arrangements of the 

CMV genome. The unique long segment of the CMV genome contains the vast majority 

of CMV ORFs. It is flanked by a terminal repeat long (b) and an inverted repeat long (b'). 

The unique short region contains fewer ORFs, many of which encode proteins involved 

in immune evasion. The unique short region is flanked by an inverted repeat short (c') 

and a terminal repeat short (c). This genetic architecture allows for four possible isomeric 

arrangements of the CMV genome. The directionality of the UL and US segments in each 

isoform are denoted by arrows.  
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1.2.4.2 Penetration of CMV virions in different cell types 

Cytoplasmic release of AD169 capsids into HF occurs mainly through direct fusion of the 

viral envelope with the plasmalemma, although some studies have reported observing 

AD169 in phagolysosome-like structures within HF (40, 204). This may be explained by 

the fact that AD169 capsids express only the gH:gL:gO glycoprotein complex, and lack 

the gH:gL:UL128-131A complex which is known to be required for endocytic uptake of 

CMV in epithelial cells and EC (159, 183-184). The mechanism used by the EC-tropic 

strain TB40/E to enter fibroblasts has not been formally investigated, although it was 

assumed to be similar to AD169 despite the fact that TB40/E is able to express both 

gH:gL:gO and gH:gL:UL128-131A complexes (199). Recently, it has become clear that 

the cell type in which a viral strain is grown plays a major role in determining the tropism 

and spread of progeny virus. In fibroblast cultures, virus spread is mainly supernatant-

driven, whereas in EC cells, spread is mainly focal. Closer inspections of the viruses 

released from these cells revealed that HF infected with an EC-tropic strain of CMV 

release virus capable of infecting both EC and HF. In contrast, EC infected with the same 

EC-tropic strain of CMV released virus that could readily infect HF, but was much 

poorer at infecting EC. This phenotype correlated with the amount of gH:gL:UL128-

131A incorporated into the virions of virus found in the supernatant, with virions from 

HF-derived supernatants carrying significantly more of this complex. Further 

experiments demonstrated that all of these observations resulted from retention of EC-

tropic virus expressing gH:gL:UL128-131A on/in EC cells (192). 
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1.2.4.3 The cytoskeleton and its role during CMV entry 

The cellular cytoskeleton is composed of three major networks: microtubules, 

microfilaments and intermediate filaments. The basic units of microtubules are α- and β-

tubulin heterodimers. These dimers assemble in a head-to-tail orientation to form 

protofilaments, 13 of which create a hollow microtubule with an outer diameter of 25 nm. 

These structures exhibit a defined polarity whereby the 'plus' end of microtubules is 

extremely dynamic and the 'minus' end is quite stable and is tethered to the microtubule 

organizing centre (MTOC) (102). Two classes of motor proteins facilitate transport along 

these 'cellular roadways.' Plus-ended motor proteins are called kinesins and this 

superfamily includes at least 45 members in mammalian cells. These proteins move cargo 

towards the cell periphery. They are composed of two heavy chains and two light chains 

(130). Minus-end transport (ie. toward the cell centre) is accomplished by dynein. The 

structure of dynein is complex, as each motor consists of two heavy chains, two 

intermediate chains and multiple intermediate light/light chains (168). Its processivity is 

stablized by a large protein complex called dynactin which interacts with specific cargo 

(223). 

Microfilaments are the smallest of the cytoskeletal elements and their basic units consist 

of α-, β- and γ-actin. α-actin is found most commonly in the contractile elements of 

muscle tissue, whereas β- and γ-actin co-exist in most other cell types to generate 

microfilaments. Like microtubules, actin microfilaments have a definite polarity. ATP-

bound actin monomers (G-actin) assemble into protofilaments (F-actin), two of which 

wind around one another to form a microfilament of 5-9 nm in diameter. The polarity of 



10 

 

 

these filaments can be detected by decoration microfilaments with myosin S1 fragments 

which create 'barbed' (+) and 'pointed' (-) ends. The actin motor proteins myosin V and 

myosin VI are largely responsible for the transport of cargo along microfilaments. 

Myosin V is a plus-end-directed motor protein that transports cargo to the cell surface, 

while mysoin VI carries endocytic vesicles inward (4). 

As their name suggests, intermediate filaments (IF) have a diameter of about 10 nm, 

intermediate in relation to microfilaments and microtubules. The major role of IF proteins 

is to provide mechanical support for the cell, as there are no known motor proteins which 

transport cargo on them. All IF proteins have the same basic structure, globular N- and C-

terminal domains surrounding an alpha-helical central rod. Individual IF proteins first 

dimerize in the rod domain to form a coiled coil. These dimers then polymerize in an 

antiparallel orientation, meaning that unlike microtubules and microfilaments, they do not 

exhibit polarity. There are approximately 70 IF genes which are subdivided into six types 

of IFs, whose characterization is based on protein structure and amino acid similarity. 

Acidic and basic keratins comprise the type I and II IFs, respectively. Type III IFs can 

form either homo- or heteropolymers; desmin, glial fibrillary acidic protein (GFAP), 

peripherin and vimentin belong to this group. Type IV IFs include α-internexin, synemin, 

syncoilin and the neurofilaments. The lamins (A, B and C), which provide structural 

support in the nucleus, comprise the type V IFs. Nestin is an example of a type VI IF and 

is expressed in many cell types during development, but generally does not persist into 

adulthood (56, 64).  



11 

 

 

The profile of IFs expressed by different cells vary. Some cells express only one type of 

IF, while others express several. This property has been exploited by scientists and 

medical practitioners such that certain IFs can now be used as biomarkers to monitor 

disease states. For example, vimentin is expressed specifically in mesenchymal cells, but 

not in epithelial cells. Thus, vimentin expression can be used to monitor mesenchymal to 

epithelial transition and epithelial to mesenchymal transition, which is a common process 

during the metastasis of many cancers (104). 

Many viruses utilize and alter the cytoskeleton during infection. In certain cases, 

cytoskeletal elements must be depolymerized in order for large capsids to be transported 

through the cell body. In other cases, cytoskeletal elements are stabilized and exploited, 

along with their motor proteins, for capsid transport (49, 117). In the case of CMV, de-

enveloped capsids associate with the microtubule network following capsid release into 

the cytoplasm. Microtubules then facilitate their transport toward the MTOC. Treatment 

of cells with microtubule depolymerizing agents nocodazole and colchicine severely 

hinders CMV infection, but also results in the structural collapse of vimentin, an 

important IF protein. Therefore, one must be cautious in the interpretation of such 

experiments (103, 154). At around the same time, depolymerization of the actin 

microfilament network is observed and may be necessary for efficient transport of 

capsids through the actin microfilament-dense cytosol (11, 101, 116). The role of the IF 

network during CMV entry has not been assessed. 

The method by which capsids are transported from the MTOC to the nucleus is poorly 

understood, but eventually capsids are thought to dock at nuclear pores through which 
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they deposit their genomes.  Though this has not been studied carefully in the context of 

CMV, elegant atomic force microscopy studies have been able to visualize Herpes 

Simplex Type I (HSV-1) capsids docked at the nuclear pore complex (NPC) depositing 

densely compacted rod-like structures (thought to be the HSV-1 genome) into the nucleus 

(196). 

1.2.5 CMV Gene Expression 

Following nuclear deposition of the viral genome, immediate-early (IE) gene expression 

is initiated. IE1 and IE2 proteins are the first to be expressed and are the major viral 

transactivating factors. In addition to the roles these proteins play in activating 

downstream viral genes, IE1 blocks signal transducers and activators of transcription 

(STAT) signaling in order to prevent interferon (IFN) activation while IE2 induces cell-

cycle arrest and apoptosis (14, 160, 240-241). At approximately 6 hours post infection 

(hpi) IE proteins activate transcription of delayed-early (DE) genes. DE genes are 

expressed until 18-24 hpi, and many play important roles in initiation of viral DNA 

replication and modulation of the host cell environment to create a milieu which is 

conducive to viral replication (7, 237). Late (L) gene regulation is not well-studied in the 

context of CMV, but in general, L genes are characterized as those whose expression 

begins later than 24 hpi and/or are sensitive to inhibition of viral DNA synthesis (136). 

Most genes that belong to this class are involved in encapsidation, virion assembly and 

egress (164). 
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1.2.6 Encapsidation and Egress 

1.2.6.1 Nucleocapsid assembly 

Encapsidation takes place in the nucleus adjacent to CMV DNA replication 

compartments. The process is initiated by a set of conserved herpesvirus proteins: MCP, 

TRI1, TRI2, SCP and PORT, that together form a procapsid around the UL80.5 gene 

product, precursor of the assembly protein (pAP). Another protein, precursor of the 

maturational protease (pPR), is also required for DNA encapsidation and procapsid 

maturation to nucleocapsid. pPR is self-cleaved by the maturational protease (PR, also 

called assemblin) which is initially within the same peptide. PR is also responsible for 

cleavage of pAP to its various intermediate forms and its mature form, assembly protein 

(AP). PR, AP and intermediate pAP isoforms are all removed from nucleocapsids after 

packaging of viral DNA (68). 

1.2.6.2 The nucleus as a barrier during CMV egress 

After successful assembly of the nucleocapsid, a complex egress pathway ensues which 

eventually results in the envelopment of capsids and their release from the cell. Before 

reaching the cytoplasm, capsids must first traverse the nuclear envelope. This barrier 

consists of an inner and outer nuclear membrane, separated by a perinuclear space. 

Within the perinuclear space are several proteinaceous structures which link the two 

membranes and provide the nucleus with structural support. The NPC consists of a 

network of proteins called nucleoporins, which form channels linking the cytoplasm with 

the nucleoplasm. These complexes associate with other proteins and are tightly regulated 
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as they largely control the transport of materials into and out of the nucleus (52). 

However, viral capsids are too large to pass through these complexes. The perinuclear 

space is also rich in a rigid network of lamins which link the periphery of NPCs to 

chromatin. Together, these structures represent a formidable barrier through which the 

virus must escape. 

1.2.6.3 The nuclear lamina 

 The nuclear lamins are type V IF proteins and include lamins A, B1, B2 and C. Lamin 

B1 and B2 are encoded by distinct genes, whereas lamins A and C result from differential 

splicing of the product encoded by the lmnA gene. Lamin B is mainly associated with the 

inner nuclear membrane (INM) and plays a critical role in maintenance of nuclear shape. 

Lamin A associates more specifically with the nucleoplasm, performing specialized roles 

and contributing to nuclear stiffness (28, 95, 109). 

Lamins have the same conserved structural features as other members of the IF family. 

They are composed of a central alpha-helical rod domain flanked by globular head and 

tail regions. The rod domains of two individual lamin molecules dimerize in a parallel 

manner, and these dimers interact with one another to form longer lamin filaments and 

regular cross-connections (175). In addition to providing the nucleus with structural 

support, the lamina also serves as a scaffold for proteins which span the nuclear envelope, 

interact with chromatin or with structures present in the cytosol including lamin B 

receptor (LBR) and emerin, chromatin-modifying enzymes and transcription factors, as 

well as cytoskeleton-interacting proteins (137, 171). 
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Despite its role in mediating nuclear rigidity, the nuclear lamina is a dynamic structure 

and must reorganize at various stages throughout the cell cycle. The assembly and 

disassembly of the nuclear lamina is regulated by site-specific phosphorylation events by 

various kinases, including the cAMP-dependant kinases protein kinase A (PKA), protein 

kinase C (PKC) and cdc2/cyclin dependent kinase 1 (CDK1) (149). Lamin A/C is 

phosphorylated by CDK1 at Ser-22, Ser-390 and Ser-392 while lamin B is 

phosphorylated by CDK1 only at Ser-22 to promote disassembly of the nuclear lamina 

during mitosis (87, 149, 167). This strategy is also exploited by the viral NEC in order to 

facilitate capsid escape from the nucleus. 

1.2.6.4 The CMV nuclear egress complex 

The first stage of CMV egress is primary envelopment which occurs at the inner nuclear 

membrane.  Following successful assembly of viral nucleocapsids and their accumulation 

proximal to the INM, the viral pUL97 kinase is recruited to the nuclear envelope by 

cellular p32, and also interacts with LBR (120). At this location, pUL97 phosphorylates 

lamins at CDK1 sites, leading to their local disruption (84). Lamin phosphorylation by 

UL97 generates a binding site for the cellular peptidyl-prolyl cis/trans-isomerase, Pin1. 

During CMV infection Pin1 relocalizes to viral replication centres and to the nuclear 

lamina (133). Disassembly of the nuclear lamina seems to promote the accumulation of 

viral proteins pUL53 and pUL50 (homologs of herpes simplex virus (HSV) proteins 

pUL31 and pUL34 and epstein-barr virus (EBV) proteins BFLF2 and BFLF1) to the 

nuclear membrane. These proteins interact with phosphorylated p32, lamin A/C and LBR 

to form the basic NEC (30, 131-132, 185). pUL50 is a type II integral membrane protein 
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that accumulates in the INM. It is required for the proper localization of pUL53 proximal 

to the INM and unlike its HSV homolog pUL34, it is sufficient to recruit PKC to the 

NEC. Recruitment of PKC aids in further disruption of the nuclear lamina in order to 

allow passage of primary enveloped capsids through the perinuclear space (131, 141). 

Disassembly of the nuclear lamina results in marked morphological changes within the 

nucleus itself. In particular, large infoldings of the INM have been observed proximal to 

nucleocapsids and these areas seem to be where primary envelopment takes place (29, 43, 

70, 194). Enveloped particles then enter the perinuclear space and are then thought to 

fuse with the outer nuclear membrane (ONM) resulting in de-envelopment (Fig. 1-2). It is 

likely that other viral and cellular factors contribute to the nuclear egress of CMV, but 

have yet to be identified. These factors may also aid in remodeling of the nucleus and/or 

the assembly, trafficking and maturation of virions. 
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FIG. 1-2. Process of CMV nuclear egress. 1. The process of nuclear egress begins with 

assembly of the CMV NEC. This complex mediates disassembly of the nuclear lamina, 

which subsequently results in deep invaginations of the INM to regions of the nucleus 

containing viral nucleocapsids. 2. Nucleocapsids acquire their primary envelope by 

budding through in INM into the perinuclear space. 3. Viral particles containing primary 

envelopes move through the perinuclear space towards the ONM. 4. Particles that have 

undergone primary envelopment fuse with the ONM to facilitate nucleocapsid release 

into the cytoplasm. 5. De-enveloped nucleocapsids are transported through the cytoplasm 

and eventually acquire their secondary and final envelope, before being released at the 

plasma membrane.  
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1.2.6.5 Secondary envelopment and release 

The vast majority of tegument proteins are thought to associate with the capsid during the 

cytoplasmic stage of egress. While the tegument is often considered to be amorphous, 

recent studies suggest that those proteins that associate most closely with the capsid may 

actually exhibit an icosohedral symmetry (128). Assembly of the capsid-proximal layers 

of the tegument seem to be mediated by a complex series of protein-protein interactions 

that exhibit a high degree of redundancy. This process may be nucleated by the UL48 

gene product, a homolog of HSV-1 UL36 (or large tegument protein) which interacts 

with capsid pentons (124, 128). The UL32 gene product pp150 is another major tegument 

protein that plays a crucial role in virion maturation. pp150 associates with capsids in the 

nucleus and continues to accumulate at the cytoplasmic inclusion and locations of 

secondary envelopment and final maturation (48, 186, 188). Together with UL99-

encoded pp28, these proteins form the basis of a transport complex which ultimately 

results in the secondary envelopment of nucleocapsids at cytoplasmic assembly 

compartments located adjacent to the nucleus. This compartment consists of a series of 

concentric rings that surround the MTOC, with trans-golgi network and endosome-

derived rings located most centrally and golgi/ER-derived rings forming the periphery 

(45, 188, 198). This rearrangement causes the characteristic 'kidney bean' nuclear 

morphology observed at late times post-infection, and the 'owl's eye' cellular morphology 

typical of CMV infection. Once secondary envelopment has been completed, vesicles 

containing mature virions are transported to the cell membrane where the virus is 

released (136). 
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1.3   Human Adenovirus 

1.3.1 General Characteristics 

Adenoviruses were first discovered in 1952 as the etiological agents responsible for acute 

respiratory infections (89, 179). However, these infections are responsible for only a 

minority of childhood respiratory illnesses, which themselves are generally self-limiting. 

The most striking early observation involving adenovirus infections came in 1962, when 

Trentin and colleagues showed that HAdV-12 caused malignant tumors upon infection of 

newborn hamsters (220). This was the first example of an oncogenic human virus, 

although HAdV has never been shown to cause cancer in humans. Nevertheless, this 

observation sparked an explosion of interest in the field which led to the use of HAdV as 

a tool to understand many critical cellular processes and pathways including: mRNA 

splicing, regulation of gene expression, DNA replication and cell cycle control. 

There are currently approximately 50 types (formerly serotypes) of HAdV, which are 

divided into 6 species (formerly subgroups) based on their ability to agglutinate red blood 

cells (178). Recently, the accuracy and utility of naming and characterizing HAdVs 

according to the traditional methods of serology and agglutination has come into 

question. This has sparked a debate in the field as to the design of a new naming 

convention for HAdVs that will serve both the clinical and basic science communities, 

and more accurately group viruses based on parameters which reflect the relationships 

among the viruses themselves (9, 96, 193). 
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1.3.2  Virion Structure 

 Unlike herpesviruses, HAdV particles are non-enveloped. The capsids are icosohedral in 

shape and approximately 90 nm in diameter, with fibers projecting from the vertices 

(181-182). 240 hexon (trimer of polypeptide II) capsomers and 12 penton capsomers 

constitute the major structural components of the virion (71). Fibers project from the 

penton base (hexamers of polypeptide III) and play an important role in receptor binding 

and entry (251). The minor capsid protein VI is important for endosomal escape (242). 

Recent cryo-electron microscopy and crystallography studies have greatly enhanced 

understanding of HAdV capsid structure and assembly (115, 173). Protein IIIa is 

responsible for coordinating the penton base with its five surrounding hexon units 

through an interaction with the vertices of these subunits that together form group-of-six 

tiles. Protein IX acts as a network of 'ropes' linking hexons together to form group-of-

nine tiles. These ropes also link group-of-nine tiles to one another, further contributing to 

capsid stability. Yet another underlying network, coordinated by protein IIIa and VIII, 

bind each group-of-six tile to five surrounding group-of-nine tiles (115, 173).  

The viral DNA is condensed within the core by three basic, arginine-rich proteins: 

polypeptides V, VII and µ (8, 91, 180). Terminal protein is covalently bound to the 5'-

ends of viral DNA by a phosphodiester bond between the β-hydroxyl group of serine 562 

and the 5' hydroxyl of the terminal deoxycytosine (174, 203). Polypeptide VII is the most 

predominant core protein, with over 800 copies per virion (181, 187). The core also 

contains approximately 10 copies of the viral cysteine protease p23, which is responsible 

for cleavage of several virion precursor proteins during assembly and maturation (236). 
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Polypeptide V appears to link the virion core to the capsid via an interaction bridging the 

penton base and polypeptide VI (57).  

1.3.3 Genome 

The HAdV genome is approximately 36 kbp in size and is flanked by inverted terminal 

repeats which function as origins of replication during asymmetric synthesis of viral 

DNA (46, 177). The viral genome packaging sequence is composed of a series of repeats 

located between the left terminal inverted repeats and early region 1A (E1A) (75, 85). 

HAdV-2 was the first HAdV to have its genome sequenced completely (177), although 

subsequently many more complete sequences have been compiled for both HAdV and 

AdVs from other species.   

The HAdV genome contains five early transcription units (E1A, early region 1B (E1B), 

E2, E3, and E4), three delayed-early units (IX, IVa2 and E2 late) and one late 

transcription unit (major late) which encode L1-L5. By convention, the map of the HAdV 

genome is depicted with E1A at the left end. While the sequence of most structural 

proteins is highly conserved, more variability is evident in early regions 1, 3, 4 and in the 

small virus-associated RNA (VA RNA), which is transcribed by RNA polyermase III 

(46). Genes are transcribed from both strands of viral DNA, with E1A, E1B, IX, major 

late, VA RNA and E3 transcribed from the rightward reading strand, while the leftward 

reading strand encodes E4, E2 and IVa2 (18). 

All mRNAs transcribed by RNA polymerase II give rise to multiple species through 

alternative splicing and/or use of alternative poly(A) sites. The lack of a consistent 

terminology for naming of HAdV proteins has led to a confusing nomenclature whereby 
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some proteins are named according to the sedimentation coefficients of the mRNAs 

which encode them or the particular number of amino acids residues present in the 

protein (ie. E1A), others are named according to the molecular weight of the proteins 

themselves (ie. E1B and E3), the ORF from which they arise (ie. E4) or descriptively, 

according to their function (ie. E2) (18). For the sake of clarity herein, E1A isoforms 

shall be referred to according to the number of residues composing each isoform (ie. 

289R, 243R, etc... in the case of HAdV-2/5). 

1.3.4  Viral Entry and Egress 

Most detailed studies of the HAdV infection cycle have been completed using HAdV-2. 

Thus, the following observations apply directly to HAdV-2 and more generally to other 

HAdVs. Initial HAdV attachment to cells is mediated by interaction of the fiber protein 

with coxsackie B virus and adenovirus receptor (CAR) (17). The penton base then binds 

integrin family members (specifically, αvβ3 and αvβ5 which are present on most epithelial 

cells) via an RGD motif (239). The penton-integrin interaction results in release of the 

fibers and endocytosis of the fiber-less virion (144). As endosomes mature and acidify, 

partial disassembly of the virion is initiated and continued as virions are released into the 

cytosol (22, 170). The reducing environment inside of the cell activates the virion-

associated viral protease, which cleaves protein VI, releasing the capsid from the viral 

core (79).  

Following endosomal escape, viral particles are transported towards the nucleus on 

microtubules by dynein motor proteins (44, 77, 111, 118, 215). Viral particles then dock 
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at NPCs where disassembly is completed and viral genomes are deposited into the 

nucleus (78).  

Expression of E1A begins almost immediately upon nuclear deposition of the viral 

genome (147). Transcription of E1A is initially controlled by a constitutive enhancer 

element (86) and once expressed, E1A activates the expression of downstream viral 

genes, as will be discussed extensively below.  

Following extensive replication of the viral genome and production of structural virion 

components, virion assembly begins in the nucleus of host cells. Following their 

translation, hexon and penton monomers rapidly assembly into capsomers in the 

cytoplasm. They are then transported into the nucleus where assembly continues (18). 

HAdV DNA is packaged into virions starting at the left end of the genome, where the 

packaging signal is located (85). Precursor of the major histone-like protein (pVII) 

associates with viral DNA late during infection and may form a complex with core 

protein V and precursor of µ (235, 250). Packaging is promoted by viral IVa2, L1 52/55K 

and L4 22 kDa proteins (156, 165). 

 Protein VI, VII, VIII, µ and terminal protein are cleaved by the viral cysteine protease, 

which is also packaged in the virion. This completes virion maturation and renders the 

particle infectious (217, 234). 

Escape and spread of progeny virus is mediated through a variety of cooperating 

mechanisms. First, the viral L3 protease is able to cleave the IF protein cytokeratin K18, 

weakening the overall structural integrity of the cell (34). The 11.6 kDa E3 protein, also 
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known as 'adenovirus death protein' is an integral membrane glycoprotein and is highly 

expressed at late times post-infection (218). The protein localizes to the nuclear 

membrane, ER and golgi apparatus. It is known to interact with MAD2B, a regulator of 

the anaphase-promoting complex, though how this interaction results in cell death 

remains poorly understood (244). Finally, released, free fiber proteins bind to and prevent 

oligomerization of CAR at tight junctions. This is likely to promote viral spread and 

mediate access to the airway during respiratory infection (229). 

1.3.5 E1A 

1.3.5.1 General properties 

For the sake of clarity, the following sections will focus on E1A of HAdV-2/5 unless 

otherwise specified. E1A is located at the left end of the HAdV genome and is the first 

transcription unit to be expressed after infection. The primary E1A transcript is 

alternatively spliced to generate 5 mRNA species which encode proteins of 289, 243, 

217, 171 and 55 residues (R). Splicing maintains the reading frame of each isoform 

except 55R. Sequence comparison of the largest E1A isoform across multiple AdV 

serotypes revealed four regions of high conservation which have been dubbed 'conserved 

regions (CR) 1-4'. While 289R E1A possesses each of these regions, the smaller E1A 

isoforms may lack one or more CRs. 55R E1A is the only E1A isoform that lacks all four 

conserved regions (Fig. 1-3) (161).   

E1A is essential for efficient infection of human cells, which reflects the diverse and 

complex functions it performs (99). In addition to activating viral gene expression, E1A 

also reprograms host cells, forcing them out of quiescence and into the cell cycle (15, 19, 
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61, 66). Since E1A does not exhibit DNA binding activity, it is able to perform these 

functions by binding to and subverting the normal function of over 50 cellular proteins. 

This has led to the description of E1A as a 'viral hub protein' (161).  

Interactions between E1A and its many cellular partners occur mainly through molecular 

recognition features (MoRFs) or linear motifs. These are short segments of the primary 

amino acid sequence that exhibit a high degree of structural plasticity. Indeed, with the 

exception of CR3, E1A is thought to be intrinsically unstructured (60). Such flexibility 

allows E1A to adopt one of many possible conformations subsequent to binding of 

particular targets. Many of these MoRFs can also be found in the endogenous, cellular 

binding partners of E1A targets. Amazingly, these MoRFs often overlap in E1A, making 

for extremely dense regions of protein binding. Intuitively, only certain combinations of 

concurrent binding of E1A to its cellular targets is possible due to steric hindrance, and 

this property may be important in determining the novel complexes nucleated by E1A 

(161). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

FIG. 1-3. Comparison of the 55R E1A isoform with CRs present in 289R and 243R E1A. 

The 55R E1A protein shares only the first 26 amino acids encoded by exon 1 with the 

larger E1A isoforms. Splicing of the 9S mRNA causes a frameshift in exon 2 of 55R E1A 

that results in a novel C-terminal amino acid sequence relative to the other E1A isoforms. 

289R E1A, the largest E1A isoform, contains all 4 CRs. The 243R E1A isoform is 

different from 289R E1A only in that it lacks CR3.

3. Comparison of the 55R E1A isoform with CRs present in 289R and 243R E1A. 

The 55R E1A protein shares only the first 26 amino acids encoded by exon 1 with the 

larger E1A isoforms. Splicing of the 9S mRNA causes a frameshift in exon 2 of 55R E1A 

terminal amino acid sequence relative to the other E1A isoforms. 

289R E1A, the largest E1A isoform, contains all 4 CRs. The 243R E1A isoform is 

different from 289R E1A only in that it lacks CR3. 
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3. Comparison of the 55R E1A isoform with CRs present in 289R and 243R E1A. 

The 55R E1A protein shares only the first 26 amino acids encoded by exon 1 with the 

larger E1A isoforms. Splicing of the 9S mRNA causes a frameshift in exon 2 of 55R E1A 

terminal amino acid sequence relative to the other E1A isoforms. 

289R E1A, the largest E1A isoform, contains all 4 CRs. The 243R E1A isoform is 

 



27 

 

 

1.3.5.2 E1A-induced cell cycle progression 

 The cells of the respiratory epithelium normally infected by HAdV are terminally 

differentiated, quiescent cells. Thus, they lack an abundance of many substrates required 

by HAdV during the replication cycle. To overcome this difficulty, the virus has evolved 

a variety of mechanisms which together force the host to re-enter the cell cycle, making it 

more conducive to viral replication. E1A plays a central role in this process by targeting 

cellular proteins that are key regulators of growth and cell cycle pathways, including 

retinoblastoma (Rb)-family proteins, p300/CREB-binding protein (CBP) and C-terminal 

binding protein (CtBP). 

243R E1A, which lacks CR3 (a strong transcriptional activation domain), is sufficient to 

induce S-phase induction and cell cycle progression of contact-inhibited primary cells 

(26, 207, 248). Expressed alone, CR1 or CR2 is sufficient to induce S-phase, but both are 

required for progression into mitosis and for transformation in cooperation with E1B or 

activated RAS (93, 209). CR2 was shown to bind Rb and Rb family members p107 and 

p130 (13, 38, 55, 238). These proteins regulate the E2F family of transcription factors, 

many of which control cellular genes required for S-phase entry (including CDK2, 

cyclins A and E, and c-MYC) (54, 63, 146, 148, 221). E1A CR2 contains an LxCxE motif 

which binds with high affinity to the same pocket domain on Rb family proteins that is 

bound by E2Fs (148). Binding of E1A to Rb family proteins results in the release of E2Fs 

from Rb-mediated inhibition, resulting in constitutive activation of E2F-responsive 

promoters (21). In a normal context, Rb inhibition is relieved by phophorylation mediated 

by cyclin-dependant kinase (CDK)-cyclin complexes whose activity is stimulated by 

mitogens in G1. Expression of CDK inhibitors which prevent Rb phosphorylation are 
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partially responsible for senescence, which is also detrimental to virus replication (16, 

190, 210). Through bypassing these cellular pathways, CR2 ensures efficient S-phase 

entry, although other functions of E1A are required to push cells through the complete 

cell cycle (92). 

While initiating relief of Rb-mediated E2F repression provides a solid mechanistic 

explanation for the ability of CR2 to induce S-phase progression, the way in which CR1 

causes this same phenomenon is much less clear. One important contribution is likely the 

association of CR1 with the histone acetyltransferases (HAT) p300 and CBP (10, 13, 211, 

232). In normal settings, p300/CBP are recruited to specific promoters via their 

interaction with various transcription factors where they activate transcription by 

acetylating histone tails or specific lysines present in other transcription factors (74). E1A 

binding to p300/CBP is actually tripartite, involving both the non-conserved N-terminus 

and CR1 (152, 162). Despite this knowledge, it is unclear how binding of E1A to 

p300/CBP contributes to S-phase induction. Binding may inhibit HAT activity, although 

even this point remains controversial (2, 32, 83). Interestingly, inhibition of p300 has 

been shown to markedly increase expression of MYC, which is important for G0 to S 

transition (74). Effects such as this, although elusive, will be important to study more 

directly in order to better understand CR1-mediated S-phase induction and will likely 

yield important new knowledge of cell cycle regulation in general. 

Many of the cellular factors targeted by E1A are responsible for regulating large 

networks of gene expression. This was most elegantly demonstrated in series of recent 

reports showing that E1A is able to reprogram the expression of virtually every gene 
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within the cell over the course of an infection (59, 90). The N-terminus of E1A contains a 

CoRNR box motif also found in nuclear receptor (NR) corepressors, which mediates 

interaction with NRs. This motif is responsible for the interaction of E1A with 

unliganded, but not liganded thyroid hormone receptor (TR) (125). Strikingly, despite 

binding in the corepressor mode, E1A is able to activate transcription from thyroid 

hormone response elements, effectively ensuring constitutive activation of TR-responsive 

genes in the presence and absence of hormone (94, 125-126, 189, 227).  

Recently, 289R E1A was shown to activate E2F-responsive gene expression 

independently of binding Rb-family proteins. This is accomplished through targeting of 

E2F/DP-1 via a direct interaction with DP-1. 289R E1A appears to be recruited to E2F-

responsive promoters by DP-1/E2F heterodimers, stimulating their activity. Interestingly, 

this effect seems to be most profound in the context of E2F4 and E2F5, both considered 

'repressive' E2Fs (163). E1A is also able to eliminate p130-E2F4 and histone deacetylase 

(HDAC)1/2-mSin3B repressive complexes from the promoters of E2F-regulated genes in 

quiescent cells. This dramatically decreases H3K9 methylation of these promoters and 

correspondingly increases H3K9/14 acetylation, which ultimately results in increased 

transcription from E2F-regulated genes (161, 195). This may be yet another example of 

redundant targeting of a critical cellular pathway, and the ability of E1A to stimulate 

activation of genes that are normally repressed in quiescent cells. 

The N-terminus and CR1 also bind a series of other chromatin remodeling complexes, 

including p400, Tip60, Gcn5, PCAF and TRAAP (65, 107, 150, 212). How interaction 

with these proteins and their associated complexes contributes to S-phase progression is 
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equally mysterious. A final set of less mysterious CR1 targets include the CDK inhibitors 

p21 and p27 (5, 33, 151). Binding of these inhibitors abrogates their association and 

inhibition of CDK-cyclin complexes, thereby promoting cell cycle progression. 

The major target of CR4, found near the C-terminus of E1A, is CtBP (35). This protein 

acts as a transcriptional corepressor, and upon homodimerization and recruitment to a 

promoter by sequence-specific transcription factors, forms a silencing complex (36). 

Binding of E1A to CtBP derepresses target promoters and may result in recruitment of 

activating complexes, though this has not been tested directly (161). The only other 

factors that have currently been identified which bind CR4 are the dual specificity 

tyrosine phophorylation-regulated kinase 1A (Dyrk1A) and Dyrk1B. These kinases are 

involved in regulating proliferation, differentiation and cell survival (127). Their binding 

site on E1A overlaps that of CtBP, suggesting that binding of these two factors may be 

mutually exclusive. While the global effects of E1A-Dyrk binding have yet to be 

elucidated, E1A has been shown to stimulate Dyrk kinase activity in vitro (249). 

Interestingly, CR4 is required for E1A-mediated transformation of rodent cells in 

cooperation with E1B. However, it also suppresses oncogenic transformation in 

cooperation with activated ras (24, 51, 213-214). Delineating the molecular basis of these 

paradoxical phenotypes will provide important insights regarding the mechanism of E1A-

induced transformation. 

1.3.5.3 E1A-induced transcription of viral genes 

 The CR3 region of E1A functions as a strong activation domain when fused to the Gal4 

DNA-binding domain and recruited to a Gal4 responsive promoter (113, 121). This 



31 

 

 

region is also important in stimulating transcription from the four early HAdV promoters, 

as mutations in CR3 substantially reduce the abundance of early viral transcripts (20, 99). 

243R E1A (which lacks CR3) can stimulate a low level of early gene transcription, 

whereas 289R alone activates transcription of early promoters to the same level as 

wildtype (140, 243). Since E1A does not possess DNA binding activity itself, it 

associates with cellular transcription factors (through the C-terminal end of CR3) which 

bind HAdV early promoters (114). Each early promoter contains binding sites for cellular 

transcriptional activators upstream of the TATA-box (100). 

Unlike most of E1A, CR3 appears to exhibit distinct structural features and forms a zinc 

finger domain (42). One of the major contributors to CR3-mediated transcriptional 

activation is MED23. MED23 is a subunit of the mediator complex, which is composed 

of approximately 30 total subunits. Mediator plays a key role in transcriptional activation 

and functions by bridging DNA-bound activators with the general transcriptional 

machinery, in particular, RNA polymerase II. This nucleates assembly of the preinitiation 

complex (112). CR3 binds MED23 both in vitro and in vivo, thereby recruiting the 

mediator complex to specific viral and cellular promoters and greatly enhancing 

transcriptional activity at these promoters (25, 72, 231).   

243R E1A specifically activates the E2 early promoter (12, 169). This promoter contains 

two inverted E2F binding sites which are activated by E2Fs following E1A-mediated 

relief of Rb repression (12, 105-106, 169, 246). Free E2Fs interact with dimers of 

E4orf6/7, which greatly increases their affinity for the E2F binding sites found within the 
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viral E2 early promoter (41, 121, 153). As E2 products accumulate, viral DNA 

replication begins to occur and the late stage of viral gene expression begins. 

Expression of most late HAdV transcripts is controlled by the major late promoter 

(MLP). This promoter exhibits low levels of activity during the early stages of infection 

and is activated several hundred fold at late times (197). Although activation of the MLP 

is understood to be mediated by binding of E1A to Sp1 and MAZ transcription factors 

(the MLP contains binding sites for both of these proteins), this does not account for the 

delayed kinetics of transcription from the MLP (158). Studies to date suggest that both 

cis- and trans-acting factors regulate these kinetics.  

The cis-acting factor appears to rely on DNA replication, although the precise mechanism 

for regulation of kinetics remains poorly understood (216). It has been suggested that 

DNA replication may facilitate removal of protein VII, the basic protein that is associated 

with viral DNA that is translocated through the NPC, thereby allowing transcription 

factors access to the MLP (18). The fact that the transcription factor USF (also called 

MLTF) can only bind the MLP after onset of DNA replication provides further support 

for a cis-acting change in viral chromatin that is required for binding of factors that drive 

transcription from MLP (219). 

The HAdV IVa2 protein has been implicated as a transactivator of the MLP. It binds in 

the +85 to +120 region upstream of the transcriptional initiation site and cooperates with 

USF/MLTF to enhance MLP activity (110, 119, 138-139, 157). IVa2 itself is expressed 

with delayed early kinetics and together with MLP, functions as an elegant molecular 

timer to control the kinetics of viral gene expression. The second viral transactivator of 
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the MLP appears to arise from an internally spliced mRNA arising from L4, although the 

mechanism underlying this action awaits further study (18, 155). 

1.3.5.4 E1A interaction with the proteasome 

 Both 289R and 243R E1A have been shown to interact with, and affect the function of 

the proteasome. This was first demonstrated in 1999, when Grand and colleagues showed 

that E1A binds to hSug1 (S8), a component of the 19S regulatory subunit of the 26S 

proteasome. Surprisingly, HAdV-12 E1A was shown to inhibit activity of the 20S 

proteasome in vitro, but had little or no effect on the function of the 26S proteasome (76). 

Later studies would reveal that E1A could also interact with S4, another member of the 

19S regulatory subunit of the 26S proteasome. S4 possesses ATPase activity and binding 

of E1A significantly reduced this activity. This reduction correlated with an increase in 

the half-life of p53 in the presence of the human papillomavirus (HPV) E6 protein. E6 is 

normally responsible for targeting p53 for proteasomal degradation during HPV 

infection. E1A-26S proteasome complexes could be found in both the nucleus and the 

cytoplasm, suggesting the E1A might alter proteasome function in both locations. The 

binding region for S4 and S8 was mapped to residues 4-25 on E1A. Strikingly, despite 

the fact that E1A was found to be a substrate for proteasomal degradation, binding to S4 

or S8 was not required for this degradation to occur. In addition, degradation of E1A was 

found to be mediated by a C-terminal PEST domain and did not depend on ubiquitylation 

(222). 

S8 also possesses ATPase activity and in addition to binding the E1A N-terminus, it can 

also interact specifically with CR3. Recruitment of S8 (and the 26S proteasome) to early 
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viral promoters by CR3 enhances its ability to stimulate transcription of early HAdV 

genes. The 20S proteasome can also be recruited by CR3, independent of S8 and the 26S 

proteasome. E1A, S8 and the 20S proteasome can all be found on HAdV early gene 

promoters and sequences. In fact, inhibition of proteasome function diminishes the ability 

of E1A to transactivate viral genes (172). Active proteasomal function is required for 

efficient transactivation by many cellular factors as well, including nuclear receptors and 

coactivators. Presumably, turnover of promoter-bound factors and dissociation of 

transcriptional complexes on certain genes must occur before transcriptional re-initiation 

can take place (145). Taken together, these observations suggest that efficient 

transactivation by E1A also requires proteasomal activity, and that E1A-mediated 

recruitment of the proteasome to viral promoters enhances transactivation of early viral 

genes. 

1.3.5.5 55R E1A     

The 55R isoform of E1A is generated from the 9S mRNA species, described over 30 

years ago (20). It is the smallest E1A species and contrary to 289R and 243R E1A, it 

accumulates at late times of infection (166). While it is not entirely clear what causes the 

shift in splice site preference to generate 55R E1A at late times of infection, it appears to 

require replication of viral DNA. Interestingly, the 9S E1A mRNA species is not 

produced in 293 cells, which harbor an integrated copy of the left end (E1A and E1B) of 

the HAdV genome (206). 55R E1A is the only E1A species that does not contain any of 

the CRs. In addition, reconstitution of its splice junction results in a frame shift relative to 

all other E1A isoforms. As a result, 55R E1A shares its first 26 amino acids encoded  in 

exon 1 with all other E1A isoforms.  The remaining 29 amino acids encoded after the 
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splice junction linking exon 1 and exon 2 are read from a different reading frame and are 

therefore unique to the 55R E1A protein (176, 224, 226). 

Despite historical knowledge of the 9S mRNA species and its kinetics of expression, the 

55R E1A protein has never been studied directly. Therefore, almost nothing is known 

about its function. This is due, in large part, to the fact that none of the existing E1A 

antibodies (of which there are many), seem to recognize the 55R isoform. Early studies 

using 55R cDNA plasmids or mutant virus that could only express 55R E1A indicated 

that unlike the 289R and 243R isoforms, 55R E1A could not transform primary BRK 

cells when expressed in combination with activated ras (82, 247). Neither could it induce 

DNA synthesis in growth-arrested NIH 3T3 cells (208). This is not entirely surprising 

given the subsequent knowledge that 55R lacks all of the regions known to be required 

for E1A-induced transformation. 55R E1A also fails to stabilize p53 and induce apoptosis 

(37). Nevertheless, 55R E1A does share its first 28 amino acids (the first 26 encoded by 

exon 1, plus a V and L which are regenerated from sequences encoded by exon 2 as a 

consequence of the frameshift caused by splicing) with its larger E1A counterparts. 

Several proteins are known to bind (at least partially) in this region, including thyroid 

hormone receptor, TRRAP, S4 and S8 (161). 55R E1A may maintain interaction with 

these known targets of the larger E1A isoforms to either produce similar functional 

outcomes, or perhaps more interestingly, to cause novel outcomes. Finally, the C-

terminal region of 55R E1A remains completely unexplored territory and is itself likely 

to interact with novel cellular targets that will expand our knowledge of HAdV biology 

and may also provide novel insights into biology of the cell. 
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1.4 Thesis Overview 

Here, we explore three essential processes in the life of any virus: entry, gene regulation 

and egress. Entry is explored in the context of CMV infection. We have identified the IF 

vimentin as a host factor required for the efficient onset of CMV replication in HF. Our 

results demonstrate that the EC-tropic strain TB40/E is more negatively affected by 

disruption or absence of vimentin than the HF-adapted strain, AD169. In vimentin null 

cells, viral particles were observed to remain in the cytoplasm longer than in their 

wildtype counterparts. These findings suggest that vimentin may function during viral 

entry to facilitate viral trafficking and/or docking of viral particles to the NPC. In 

addition, our results suggest that more broadly tropic CMV strains, such as TB40/E, 

exhibit a higher degree of reliance on the vimentin cytoskeleton which may reflect 

fundamental differences in the process of entry of these strains. 

In examining viral gene regulation, we turned our attention to HAdV. We have developed 

a novel antibody which allows for the direct study of the smallest E1A isoform, 55R 

E1A. We show that 55R E1A is able to stimulate viral replication relative to E1A null 

virus. Using a co-infection system, we found that in the context of 289R E1A, the effect 

of 55R E1A on viral replication was not dose-dependent. However, in the presence of 

243R E1A, 55R E1A improved virus replication in a dose-dependent manner. This is due, 

at least in part, to the ability of 55R to stimulate viral gene expression. Interestingly, the 

profile of viral gene transactivation by 55R E1A is distinct from that of wildtype E1A. 

Finally, we show that 55R interacts with the S8 component of ATPase proteins 

independent of 20S (APIS), but not S4. Knockdown of S8 had a deleterious effect on the 
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growth of a virus expressing only 55R E1A. This is the first study to functionally 

characterize the 55R E1A protein, describe its effect on virus growth and identify a novel 

interaction between it and a cellular target. We are confident that this represents an 

exciting new field in the study of adenoviruses and that elucidating additional functions 

and cellular targets of 55R will yield important contributions to our understanding of the 

functions of E1A and of HAdV biology, in general. 

In the final data chapter of this thesis, we turn our attention back to CMV in order to 

study the process of viral egress. We identify and describe a novel protein encoded by c-

ORF29 which we have called RASCAL. Two isoforms of RASCAL were found to be 

encoded by different CMV strains. The majority of strains encode a 97 amino acid 

protein, while an extended 176 amino acid isoform is unique to strains Towne, Toledo, 

HAN20 and HAN38. RASCAL localizes to the nuclear rim, in deep intranuclear 

invaginations and in cytoplasmic vesicles at late times post-infection. These RASCAL-

containing vesicles are positive for lamin B, strongly suggesting that they are derived 

from the nuclear membrane. The localization of RASCAL observed during infection was 

dependent on a member of the NEC, pUL50. Indeed, RASCAL could be co-

immunoprecipitated with UL50, indicating that they are part of the same complex and 

strongly suggesting that RASCAL is a novel component of the CMV NEC. The presence 

of RASCAL in the Lamin B positive vesicles presents the intriguing possibility that 

RASCAL is also involved in steps of virion maturation subsequent to escape of 

nucleocapsids from the nucleus. 
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Taken together, these studies highlight three crucial stages of virus replication as 

exemplified by CMV and HAdV. The insights gained from this work are likely to have 

broader implications in our understanding of viral replication and cell biology. Although 

the utility of therapeutically targeting the specific proteins/pathways described herein has 

not yet been tested directly, any drug capable of interfering with the essential processes 

of viral entry, gene regulation or egress could serve as a potent antiviral agent. We hope 

that whether in the short or long-term, the knowledge gained from this work will advance 

our field and have a positive impact on human health. 
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Chapter 2 
 

ONSET OF HUMAN CYTOMEGALOVIRUS REPLICATION 
IN FIBROBLASTS REQUIRES THE PRESENCE OF AN 

INTACT VIMENTIN CYTOSKELETON 

2.1 Introduction 

 

CMV is a ubiquitous herpesvirus that can cause serious disease in immunocompromised 

individuals (8, 58). Virtually all cell types, with the exception of lymphocytes and 

polymorphonuclear leukocytes, can support CMV replication in vivo (80), and this 

remarkably broad tropism is the basis of the numerous clinical manifestations of CMV 

infection (8, 58). The range of permissive cells in vitro is more limited, with HF and 

endothelial cells being the most widely used for propagation of clinical isolates. Two 

extensively studied strains, AD169 and Towne, were generated by serial passage of tissue 

isolates in HF for the purpose of vaccine development (22, 68). During this process, both 

strains accumulated numerous genomic changes (11) and lost the ability to grow in cell 

types other than HF. By contrast, propagation in endothelial cells produced strains with 

more intact genomes and tropism, such as TB40/E, VR1814, TR, and PH (59, 80). 

 

The viral determinants of endothelial and epithelial cell tropism have recently been 

mapped to the UL128-UL131A genomic locus (32, 92, 93). Each of the products of the 

UL128, UL130, and UL131A genes is independently required for tropism and 

participates in the formation of a complex at the surface of the virion with the viral 

glycoproteins gH and gL (74, 93), which can also independently associate with gO (45). 
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The gH/gL/UL128-131A complex appears to be required for entry into endothelial cells 

by endocytosis, followed by low-pH-dependent fusion of the virus envelope with 

endosomal membranes (73, 74) although some virus strains expressing the UL128-

UL131A genes do not require endosome acidification for capsid release (66, 79). 

 

HF-adapted strains consistently contain mutations in the UL128-131A genes (32). Loss 

of endothelial cell tropism in AD169 has been associated with a frameshift mutation in 

the UL131A gene, leading to the production of a truncated protein and to the loss of the 

gH/gL/UL128-131A complex, but not the gH/gL/gO complex, from the surface of 

AD169 virions (1, 3, 92). Reestablishment of wild-type UL131A expression in AD169 by 

repair of the UL131A gene mutation or by cis-complementation yielded viruses with 

restored tropism for endothelial cells but with reduced replication capacities in HF (1, 

92). Interestingly, the efficiencies of entry of wild-type and repaired or complemented 

AD169 viruses were comparable, suggesting that the presence of UL131A did not 

interfere with the initial steps of infection in HF but negatively affected virion release (1, 

92). 

 

The cellular determinants of CMV tropism are numerous and have not been fully 

identified. Virus entry begins with virion attachment to the ubiquitously expressed 

heparin sulfate proteoglycans at the cell surface (17), followed by engagement of one or 

more receptor(s) including the integrin heterodimers α2β1, α6β1, and αVβ3 (23, 39, 94); 

the platelet-derived growth factor-α receptor (84); or the epidermal growth factor  

receptor, whose role in CMV entry is still debated (38, 95). 
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Subsequent delivery of capsids into the cytoplasm requires fusion of the virus envelope 

with cellular membranes. Release of AD169 capsids in HF occurs mainly by fusion at the 

plasma membrane at neutral pH although incoming virions have also been found within 

phagolysosome-like vacuoles (16, 83). Fusion with the plasmalemma appears to be 

mediated by the gH/gL/gO complex as AD169 virions do not contain the gH/gL/UL128-

131A complex, and infectivity of a gO mutant was severely reduced (37). The 

mechanism used by strain TB40/E to penetrate into HF has not been described but was 

assumed to be similar to that of AD169 (80) even though TB40/E virions contain both 

gH/gL/gO and gH/gL/UL128-131A complexes. 

 

Transport of released, de-enveloped capsids toward the nucleus is mediated by cellular 

microtubules, and treatment of Towne-infected HF with microtubule-depolymerizing 

agents substantially reduced expression levels of the viral nuclear IE1 (64). 

Depolymerization of actin microfilaments was also observed in HF as early as 10 to 20 

min post-infection with the Towne strain while stress fiber disappearance was evident at 

3 to 5 hpi with AD169 (4, 42, 54), suggesting that microfilament rearrangement may be 

required to facilitate capsid transition through the actin-rich cell cortex. 

 

The role of IF in CMV infection not been studied. In vivo, expression of the IF protein 

vimentin is specific to cells of mesenchymal origin like HF and endothelial cells (12). 

Although the phenotype of vimentin
-/- 

(vim
-
) mice appears to be mild (15), vimentin-null 

cells display numerous defects including fragmentation of the Golgi apparatus (26), 
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development of nuclear invaginations in some instances (76), and reduced formation of 

lipid droplets, glycolipids, and autophagosomes (29, 52, 87). Vimentin IF interact with 

integrins α2β1, α6β4, and αVβ3 at the cell surface and participate in recycling of integrin-

containing endocytic vesicles (40, 41). They also accompany endocytic vesicles during 

their perinuclear accumulation (34), regulate endosome acidification by binding to the 

adaptor complex AP-3 (86), control lysosome distribution into the cytoplasm (87), and 

promote directional mobility of cellular vesicles (69). The vimentin cytoskeleton is 

tightly associated with the nuclear lamina (10) and was shown to anchor the nucleus 

within the cell, to mediate force transfer from the cell periphery to the nucleus, and to 

bind to repetitive DNA sequences as well as to supercoiled DNA and histones in the 

nuclear matrix (56, 89, 90). Microtubules and vimentin IF form close connections in HF 

(30). Drug-induced disassembly of the microtubule network alters IF synthesis and 

organization, leading to the collapse of vimentin IF into perinuclear aggregates (2, 25, 30, 

70). By contrast, coiling of IF after injection of antivimentin antibodies has no effect on 

the structure of microtubules (28, 46, 53), indicating that the interaction between 

vimentin IF and microtubules is functionally unidirectional. 

 

In this work, we sought to assess the role of the vimentin cytoskeleton in CMV entry. We 

hypothesized that vimentin association with integrins at the cell surface, with endosomes 

and microtubules in the cytoplasm, and with the lamina and matrix in the nucleus 

facilitates viral binding and penetration, capsid transport toward the nucleus, and nuclear 

deposition of the viral genome. 
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We found that, akin to microtubules, vimentin IF do not depolymerize during entry of 

either AD169 or TB40/E. In comparison to AD169, onset of TB40/E infection in HF was 

delayed, and the proportion of infected cells was reduced. Virus entry was negatively 

affected by the disruption of vimentin networks after exposure to acrylamide (ACR), by 

IF bundling in cells from patients with giant axonal neuropathy (GAN), and by the 

absence of vimentin IF in vim
-
 mouse embryo fibroblasts (MEF). In vim

-
 cells, the 

efficiency of particles trafficking toward the nucleus appeared significantly lower than in 

vimentin
+/+

 (vim
+
) cells, and in each instance the negative effects were more pronounced 

in TB40/E-infected cells than in AD169-infected cells. These data show that vimentin is 

required for efficient entry of CMV into HF and that the EC-tropic strain TB40/E is more 

reliant on the presence and integrity of vimentin IF than the HF-adapted strain AD169. 

2.2 Materials and Methods 

2.2.1 Cells and virus 

Primary foreskin HF (a gift from E. S. Mocarski, Atlanta, GA) were propagated in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal clone serum 

III (HyClone), 4 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 1 

mM sodium pyruvate, and 100 U/ml penicillin and 100 μg/ml streptomycin (all from 

Gibco Invitrogen Corp. [completeDMEM]) and were used between passages 17 and 27 

postisolation. Normal dermal HF (MCH070 cells) and dermal HF from a patient with 

GAN (WG0321cells) were obtained from the Repository for Mutant Human Cell Strains 

at Montreal Children’s Hospital and were propagated as described above with the 
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addition of 10% fetal bovine serum (HyClone). To induce vimentin IF bundling, cells 

were cultured in medium lacking serum for 4 days. Vim
+
 (MFT-6) and vim

- 
(MFT-16) 

immortalized MEF (a gift of R. Evans, Aurora, CO) were propagated as described for 

foreskin HF. Human CMV strains AD169varATCC and TB40/E were kind gifts from E. 

S. Mocarski and were originally obtained from the ATCC and C. Sinzger (Tübingen, 

Germany), respectively. Propagation and purification of both strains were performed as 

described previously (35). Virus titers were determined by plaque assay on HF 

monolayers in 12-well tissue culture plates. Five different stocks of TB40/E and five of 

AD169 were used for the experiments described. The identity of each strain was verified 

by PCR amplification of AD169 and TB40/E genomic extracts with primers mapping to 

the UL150 gene.  

2.2.2 Cell infection 

For analysis of microtubules, microfilaments, and vimentin IF structure, HF were plated 

at a density of 5 × 10
4
 cells/cm

2
 in 24-well plates with coverslips 1 day prior to infection 

with AD169 or TB40/E at a multiplicity of infection (MOI) of 5. Mock-infected samples 

were exposed to culture medium alone. Cells were harvested at 5 and 30 min (min) post-

infection and at 1, 2, and 4 hpi. For expression analyses of IE1 and IE2, HF were plated 

as above and infected with AD169 or TB40/E at an MOI of 1 or 5 at confluence (3 days 

post-seeding). After adsorption for 1 h, cells were washed twice and incubated in fresh 

DMEM until 2, 4, 8, 24, 48, 72, and 96 hpi. Endpoint titers of cell-free virus were 

determined by plaque assay on confluent HF by serial dilution of supernatants from HF 

infected with AD169 or TB40/E at an MOI of 1 and collected at 24, 48, 72, 96, 120, 144, 
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and 168 hpi. MCH070 and WG0321 cells were seeded in serum-free DMEM at a density 

of 5 × 10
4
 cells/cm

2
 in 24-well plates with coverslips 4 days prior to infection with 

AD169 or TB40/E at an MOI of 1 or 10. After adsorption for 1 h, cells were washed 

twice and incubated in fresh DMEM until 4, 8, and 24 hpi. For IE1/IE2 expression 

analyses, vim
+
 and vim

-
 MEF were seeded at a density of 7.7 × 10

4
 cells/well in 24-well 

plates with coverslips 1 day prior to infection with AD169 or TB40/E at an MOI of 1 or 

10. After adsorption for 1 h, cells were washed twice and incubated in fresh DMEM until 

4, 8, and 24 hpi. For pp150 staining analyses, vim
+
 and vim

-
 MEF were prechilled on ice 

for 20 min before exposure to AD169 or TB40/E virions (MOI of 3) for 1 h on ice. Cells 

were then transferred to 37°C for 1 h, washed three times with culture medium, and 

further incubated for 4 and 8 h. 

2.2.3 ACR treatment of HF 

Confluent HF cultures were exposed for 2, 4, 6, and 8 h to a 5 mM ACR solution made 

by diluting ACR/bis-ACR solution (30% [wt/vol]; Bio-Rad, Hercules, CA) in culture 

medium. Uninfected cells were harvested immediately after ACR incubation or after 

ACR removal, washing, and incubation in fresh medium for 4 h. For infection with 

AD169 or TB40/E at an MOI of 1 or 5, ACR-pretreated cells were washed, exposed to 

each virus for 1 h, washed again, and collected at 4 hpi. 

2.2.4 Antibodies and immunoflourescence staining analysis 

Cells were fixed, permeabilized, and blocked as described previously (36) before 

incubation with monoclonal antibodies anti-human vimentin (1:200; V9; Santa Cruz 
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Biotechnology, Santa Cruz, CA), anti-α-tubulin (1:100; B-5-1-2; Sigma, St. Louis, MO), 

anti-pp150 (1:400; originally from W. Britt, Birmingham, AL), or anti-IE1/IE2 (1:500; 

fluorescein isothiocyanate-conjugated MAb810F; Chemicon, Temecula, CA) for 1 h at 

room temperature (RT). Samples were then washed in phosphate-buffered saline (PBS)–

0.05% Tween-20 and incubated with Alexa Fluor 594-conjugated anti-mouse 

immunoglobulin G (1:100; Molecular Probes, Eugene, OR) for 1 h at RT. For dual 

stainings, fixed cells were incubated with a primary antibody and with the Alexa Fluor 

594-conjugated goat anti-mouse antibody, blocked with normal mouse immunoglobulin 

G (1:100; Caltag, Burlingame, CA), and finally stained for IE1/IE2 with MAb810F. 

Microfilaments were stained with a 1:100 dilution in PBS of Alexa Fluor 568-conjugated 

phalloidin (Molecular Probes, Eugene, OR), and nuclei were labeled with a 0.2 mg/ml 

dilution of Hoechst 33342 (Molecular Probes, Eugene, OR) in PBS for 3 min at RT. 

Coverslips were mounted in 90% glycerol–10% PBS containing 2.5 g/liter of 1, 4 

diazabicyclo-(2, 2, 2)-octane (DABCO; Alfa Aesar, Pelham, NH) and analyzed on a 

Zeiss Axioskop 2 magneto-optical trap fluorescence microscope equipped with a 

Qimaging Retiga 1300 coded monochrome 12-bit camera. Images were collected and 

pseudo-colored using Northern Eclipse, version 7.0, software. Confocal images were 

acquired on a Zeiss LSM 510 META ConfoCor2 laser-scanning confocal microscope 

equipped with Zeiss LSM 510 META image processing software. 
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2.3   Results 

2.3.1 Virus entry does not alter vimentin IF structure 

To determine whether the integrity of vimentin IF can impact viral entry, foreskin HF 

infected with AD169 or TB40/E were harvested at 5 and 30 min and at 1, 2, and 4 hpi; 

cells were stained with anti-vimentin and anti-IE1/IE2 antibodies and analyzed by 

fluorescence microscopy (Fig. 2-1 and data not shown). In HF infected with AD169 at an 

MOI of 5, nuclear IE1/IE2 staining was observed in about 10% of the cells as early as at 

2 hpi (Fig. 2-1R), indicating that, by this time, AD169 entry had been successfully 

completed, with the nuclear deposition of the viral genome and the onset of viral gene 

synthesis. By contrast, IE1/IE2 expression was not detected in TB40/E-infected cultures 

until 4 hpi (data not shown).  

 

In mock-infected cells, vimentin filaments formed a dense, web-like network stretching 

in all directions toward the cell periphery and forming a border around the nucleus (Fig. 

2-1A to D). Cells infected with AD169 (Fig. 2-1E to X) or TB40/E (data not shown) 

exhibited a staining pattern virtually identical to that of mock-infected cells at each of the 

times tested, suggesting that vimentin IF did not undergo substantial modifications during 

the initial phase of infection. At later times (24, 72, and 96 hpi), infected cells became 

rounded and enlarged. Despite these morphological changes, the vimentin perinuclear 

border and cytoplasmic network remained intact (data not shown). 
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Parallel sets of samples were also stained for α-tubulin and for actin to determine the 

effects of viral entry on the structure of microtubules and microfilaments. In AD169 or 

TB40/E-infected cells, no microtubule disassembly was observed from 5 min to 4 hpi 

(data not shown), consistent with the role of microtubules in facilitating capsid movement 

toward the nucleus (64). During infection with AD169, microfilament depolymerisation 

and stress fiber disappearance occurred in 2.6% ± 5% and 35% ± 20% of IE1/IE2- 
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FIG. 2-1. Organization of the vimentin cytoskeleton during entry of AD169 in HF. Mock-

infected (A to D) or AD169-infected (MOI of 5; E to X) HF harvested at 5 or 30 min 

post-infection and at 1, 2, or 4 hpi were stained with a monoclonal anti-vimentin antibody 

followed by an Alexa Fluor 594-conjugated goat anti-mouse antibody (red) and a 

fluorescein isothiocyanate-conjugated anti-IE1/IE2 antibody (green). Nuclear DNA was 

stained with Hoechst 33342 (blue). Merged images are shown in panels on the right. 

Original magnification was 400× for panels A to D and 100 for panels E to X. 
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expressing cells at 2 and 4 hpi, respectively. Interestingly, development of this phenotype 

occurred later and to a lower extent in TB40/E-infected HF, with 5% ± 5% and 7.6% ± 

5% of IE1/IE2-positive cells displaying loss of stress fibers at 4 and 8 hpi, respectively. 

Together, these results indicate that microtubules and vimentin IF remain structurally 

intact throughout the initial steps of infection with both strains, suggesting that the 

integrity of both networks may be required during virus entry. Moreover, onset of 

replication and microfilament disassembly in TB40/E-infected HF occurred 

approximately 2 h later than in AD169-infected cells, indicating a potential delay in the 

initiation of TB40/E infection in HF. 

 

2.3.2 AD169 and TB40/E kinetics of infection in HF are different 

To directly compare the growth kinetics of AD169 and TB40/E in HF, confluent cell 

monolayers were infected in parallel with AD169 or TB40/E at an MOI of 1 or 5. Cells 

were harvested at 2, 4, 8, 24, 48, 72, and 96 hpi, and IE1/IE2 expression was monitored 

by immunofluorescence staining analysis. Cell supernatants were also collected at 24, 48, 

72, 96, 120, 144, and 168 hpi, and the amount of cell-free virus released during infection 

was quantified by plaque assay. IE1/IE2 expression was detected in 16% ± 5% (MOI of 

1) and in 7.4% ± 3% (MOI of 5) of AD169-infected HF at 2 hpi, with the percentage of 

positive cells increasing with time up to 89% ± 8% (MOI of 1) and 97% ± 2% (MOI of 5) 

at 96 hpi (Fig. 2-2A and B). By contrast, IE1/IE2 expression was not detected at 2 hpi in 

TB40/E-infected HF (Fig. 2-2A and B) while at 4 hpi, approximately 10% of infected 

cells 
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FIG. 2-2. AD169 and TB40/E infection time course in HF. Cells and supernatants from 

cultures infected with AD169 or TB40/E at an MOI of 1 (A and C) or 5 (B) were 

collected at the indicated times postinfection. (A and B) Cells were stained for IE1/IE2, 

and the percentage of expressing cells was calculated. Means and standard deviations of 

the percentage values of IE1/IE2-positive cells scored in five separate fields per sample 

in one representative experiment are shown. (C) Amount of cell-free virus released in 

supernatants of AD169- and TB40/E-infected HF as quantified by plaque assay. 
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displayed nuclear staining at either MOI. From 4 hpi onwards, the percentage of TB40/E 

infected cells increased with time at a rate comparable to that of AD169-infected cells, so 

that a 1.5- to 2-fold difference in the proportion of AD169- and TB40/E-positive cells 

was maintained at each time, irrespective of the MOI used. 

 

Consistent with this difference in the number of infected cells, the amount of cell-free 

virus released in the supernatant of TB40/E-infected cultures was about 100-fold lower 

than that released by AD169-infected cells at 72 hpi and about fivefold lower at 96 hpi. 

At later times, yields became similar, mostly because of the drop in the AD169 virus 

production (Fig. 2-2C). These data indicate that the onset of TB40/E infection in HF is  

delayed compared to AD169 and that the initial difference in the proportion of infected 

cells is maintained with time. Consequently, TB40/E-infected cells also released smaller 

amounts of newly formed particles over time. 

2.3.3 Pretreatment of HF with ACR inhibits the onset of infection 

To determine whether the integrity of the vimentin cytoskeleton is required to facilitate 

the onset of viral infection, HF were treated with a 5 mM ACR solution for 2, 4, 6, or 8 h 

prior to infection with either AD169 or TB40/E. ACR is a neurotoxin that has been 

extensively used to disrupt the organization of IF in neurons and in other cells types (2, 

20, 21, 33, 75). ACR treatment of HF induced cell rounding and contraction, 

accompanied by the aggregation of vimentin IF in elongated bundles extending into the 

cells’ retraction fibers (Fig. 2-3A to E) (2, 20) and by the appearance of invaginations or 

folds in the nuclear envelope (Fig. 2-3F). Consistent with literature reports (20, 47), actin 



75 

 

 

stress fiber disassembly but no microtubule depolymerisation was detected in ACR-

treated cells (data not shown). As the emergence of nuclear folds has been described to 

occur in some vimentin null cells, in cells expressing vimentin mutants or containing 

thick IF bundles, and in ACR-treated neurons (33, 43, 76, 78), we used the percentage of 

cells with nuclear invaginations as an estimate of the extent of IF disruption. As expected, 

an exposure time-dependent increase in percentage values was observed, from 1.5% ± 

1% after 2 h to 32% ± 7% after 8 h of continual treatment (Fig. 2-3G). The number of 

cells displaying nuclear folding became even larger after replacement of ACR with fresh 

medium for 4 h (Fig. 2-3G), while incubation in fresh medium for 24 h led to the 

complete reestablishment of the vimentin IF network and to the disappearance of nuclear 

invaginations (data not shown), underscoring the reversible nature of ACR-induced 

changes (2). ACR treatment also did not trigger widespread cell death, as the proportion 

of cells displaying apoptotic nuclei never increased above 2% (Fig. 2-3H). 

 

HF pretreated with ACR were infected with AD169 at an MOI of 1 or 5, and the 

percentage of cells with nuclear invaginations or with apoptotic nuclei at 4 hpi was 

determined. The extent of nuclear folding in samples infected at either MOI was similar 

to that of uninfected cells treated with ACR and subsequently incubated for 4 h in fresh 

medium (Fig. 2-3, compare panels I and G), suggesting that infection had no effect on the 

formation of nuclear invaginations. By contrast, a slightly higher fraction of dead cells 

was found after infection of ACR-treated cells, with the highest value (4.2% ± 3%) 

observed after 8 h of pretreatment and infection at an MOI of 5 (Fig. 2-3J). 
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The proportion of AD169-infected, untreated cells expressing IE1/IE2 was 28% ± 8% at 

an MOI of 1 and 57% ± 14% at an MOI of 5 (Fig. 2-4A). ACR pretreatment led to a 

marked decline in the proportion of IE1/IE2-positive cells. The extent of this decline was 

dependent on the length of the pretreatment period, with a maximum reduction, relative 

to untreated samples, of 12-fold (MOI of 1) and 14-fold (MOI of 5) in cells pretreated for 

8 h.  

 

The percentage of untreated HF expressing IE1/IE2 after infection with TB40/E was 11% 

± 2% at an MOI of 1 and 13% ± 0.2% at an MOI of 5. In cells pretreated with ACR for 6 

h, the proportion of IE1/IE2-positive cells had dropped to 0.6% ± 0.9% (19-fold 

reduction; MOI of 1) and 1.2% ± 1.1% (11-fold reduction; MOI of 5) while in cells 

pretreated with ACR for 8 h, no IE1/IE2 expression was detected (Fig. 2-4B). Thus, 

pretreatment of HF with ACR significantly inhibited the onset of both AD169 and 

TB40/E replication. 

 

To assess the reversibility of inhibition, HF were either left untreated or were pretreated 

with ACR for 4 h prior to ACR removal and exposure to AD169 or TB40/E at an MOI of 

1. Removal of the virus inoculum was followed by extensive washing of cells to remove 

unbound particles and by incubation in fresh medium for 4, 18, and 24 hpi. At 4 hpi, the 

percentage of IE1/IE2- expressing cells in the pretreated samples was approximately 5-

fold (AD169) and 3.5-fold (TB40/E) lower than that of untreated cells at the same time 
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FIG. 2-3. Effects of ACR pretreatment and AD169 infection on IF organization and 

nuclear morphology in HF. (A to F) Fluorescence microscopy analysis of vimentin IF 

organization in untreated HF (A) and in HF exposed to a 5 mM solution of ACR for 2 

(B), 4 (C), 6 (D), or 8 h (E) prior to staining with antivimentin antibodies. (F) Confocal 

microscopy image of lamin B-stained cell nuclei after 6 h of ACR pretreatment. (G and 

H) Percentage of cells with nuclear invaginations (G) or with nuclear outlines consistent 

with apoptosis (H) in HF monolayers harvested immediately after ACR treatment for the 

indicated times (white bars) or harvested after ACR removal and incubation of cells in 

fresh medium for 4 h (black bars). (I and J) Percentage of cells with nuclear invaginations 

(I) or with apoptotic nuclei (J) in HF monolayers harvested after ACR treatment for the 

indicated times and AD169 infection at an MOI of 1 (white bars) or 5 (black bars) for 4 

h. Mean and standard deviation values from three independent experiments are shown. 
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FIG. 2-4. Impact of ACR pretreatment on AD169 and TB40/E infection efficiency. (A 

and B) Percentage of IE1/IE2-expressing HF either untreated (No ACR) or after exposure 

to a 5 mM solution of ACR for 2, 4, 6, or 8 h prior to infection with AD169 or TB40/E at 

an MOI of 1 or 5 for 4 h. (C and D) Percentage of IE1/IE2-expressing HF left untreated 

(white bars) or treated with a 5 mM solution of ACR for 4 h (black bars) prior to 

infection with AD169 or TB40/E at an MOI of 1. Mean and standard deviation values 

from three (A and C) and two (B and D) independent experiments are shown. 
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point (Fig. 2-4C and D). This result was expected, as the vimentin cytoskeleton remains 

largely disorganized at 4 h after ACR removal (Fig. 2-3G). However, at 18 and 24 hpi the 

 proportion of IE1/IE2-positive nuclei in ACR-pretreated cells was similar or greater than 

that of their untreated counterparts, indicating that the block in progression of the 

infection was removed after the reestablishment of a normal vimentin cytoskeleton. 

2.3.4 Vimentin bundling in HF from GAN patients reduces the 

efficiency of infection 

In addition to IF aggregation, ACR treatment of HF also caused stress fiber disassembly 

(data not shown) and the development of nuclear invaginations (Fig. 2-3F) and was 

reported to inhibit protein synthesis (2). Each of these effects might contribute to the 

observed decrease in the percentage of infected cells. To assess the effects of vimentin IF 

disruption on viral entry using a different system, we compared the efficiency of onset of 

AD169 and TB40/E infection in dermal HF harvested from patients with GAN (WG0321 

cells) and from healthy control subjects (MCH070 cells). 

 

GAN is a neurodegenerative disorder characterized by bundling of IF in neurons and in 

other cell types, including HF (67, 96). This phenotype can be conditionally induced in 

vitro by exposing HF from GAN patients to low-serum conditions (48, 51). Serum 

starvation for a period of 4 days induced vimentin bundling in 88.8% ± 2.9% of WG0321 

cells but did not affect the IF network of MCH070 cells (Fig. 2-5A to F). IF alteration in 

WG0321 cells was phenotypically different from that occurring in ACR-treated HF, with 

the appearance of dense, spherical bundles of vimentin IF in specific areas of the cell and 
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with peripheral filaments and nuclear contacts  remaining unperturbed in the majority of 

the cells. In addition, retraction fibers, nuclear invaginations, and microfilament or 

microtubule depolymerisation were not observed (Fig. 2-5D to F and data not shown). 

Serum-starved WG0321 and MCH070 cells were infected with either AD169 or TB40/E 

at an MOI of 1 or 10, and the percentage of IE1/IE2-positive cells at 4, 8, and 24 hpi was 

determined. At 4 hpi, 55% ± 16% (MOI of 1) and 78% ± 12% (MOI of 10) of AD169-

infected MCH070 cells showed IE1/IE2 expression (Fig. 2-5G, H, I, and K). These 

percentages were slightly higher than those observed at 4 hpi in HF, likely on account of 

the greater degree of quiescence reached by MCH070 cells after serum starvation. At the 

same time point, a 3-fold (MOI of 1) and a 1.2-fold (MOI of 10) reduction in the 

percentage of IE1/IE2-positive nuclei was observed in WG0321 cells (Fig. 2-5I and K). 

By contrast, at 8 and 24 hpi, WG0321 and MCH070 cell populations contained equal 

proportions of IE1/IE2-expressing cells at each MOI. These data suggest that vimentin 

bundling in WG0321 cells may be detrimental to the onset of AD169 replication and that 

this effect is both MOI and time dependent: smaller differences are observed between the 

two cell populations after infection at an MOI of 10, and no differences are observed at 

later time points postinfection. 

 

No IE1/IE2-positive nuclei were detected at 4 hpi in TB40/E-infected WG0321 or 

MCH070 cells at either MOI (Fig. 2-5J and L). At 8 and 24 hpi, however, both WG0321 

and MCH070 cells expressed IE1/IE2, indicating that initiation of TB40/E replication 

was delayed but not abrogated. Similar to the situation in HF (Fig. 2-2A and B), infection 

of MCH070 with TB40/E yielded approximately 30 to 40% fewer IE1/IE2-positive cells 
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than infection with AD169 at 8 and 24 hpi and at both MOIs, indicating that efficient 

initiation of TB40/E infection is impaired in HF, regardless of their origin (foreskin or 

dermis) and of the presence (HF) or absence (MCH070) of serum in the culture medium. 

A 1.8-fold reduction in the proportion of IE1/IE2-positive nuclei was observed at 8 h 

after TB40/E infection of WG0321 cells compared to MCH070 cells, irrespective of the 

MOI used (Fig. 2-5J and L). At 24 hpi, the extent of this reduction appeared to decrease 

slightly to 1.65-fold (MOI of 1) and 1.5-fold (MOI of 10), but was not eliminated as it 

was for AD169-infected WG0321 cells. 

Combined, these data indicate that the presence of vimentin bundles can directly or 

indirectly impair the efficient onset of both AD169 and TB40/E replication. In contrast to 

infection with AD169, the degree of impairment of TB40/E infection was MOI 

independent, and the defect could not be corrected with time. 
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FIG. 2-5. Structure of vimentin IF and expression of viral IE1/IE2 proteins in WG0321 

and WG0321 dermal fibroblasts. (A to F) Serum-starved dermal fibroblasts from healthy 

donors (MCH070) and from patients with GAN (WG0321) were stained for vimentin and 

with Hoechst 33342. Merged images are shown as indicated. (G and H) Serum-starved 

MCH070 (G) and WG0321 (H) dermal fibroblasts were infected with AD169 at an MOI 

of 10 for 4 h prior to staining for vimentin (green) and for IE1/IE2 (red). (I to L) 

Percentage of serum-starved MCH070 (white bars) and WG0321 (black bars) cells 

expressing IE1/IE2 after infection with AD169 (I and K) or TB40/E (J and L) at an MOI 

of 1 or 10. Mean and standard deviation values from three (I, K, and L) and two (J) 

independent experiments are shown. ND, not detected. 
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2.3.5 Absence of vimentin impairs the onset of infection 

To further investigate the role of vimentin on virus entry, immortalized vim
+
 and vim

-
 

MEF were infected with AD169 or TB40/E at an MOI of 1 or 10, and the proportion of 

IE1/IE2-positive cells at 4, 8, and 24 hpi was determined. MEF do not support human 

CMV replication but allow normal entry events to proceed (49, 50), with the block in 

infection occurring after IE gene expression. Consistent with literature data, IE1/IE2 

expression was observed in MEF infected with either strain (Fig. 2-6), but the 

percentages of IE1/IE2-positive cells were lower than those found in HF or MCH070 cell 

populations, possibly as a result of the reduced degree of quiescence reached by 

immortalized cells compared to primary HF. While the proportion of AD169-infected 

vim
+
 MEF remained unchanged over time, a sudden increase in the number of TB40/E-

infected vim
+
 MEF was observed between 8 and 24 hpi at each MOI.  

 

At all times tested and at both MOIs, the percentage of IE1/IE2-expressing vim
-
 MEF 

infected with AD169 was markedly lower than that observed in vim
+
 MEF (Fig. 2-6 A 

and C). The largest differences were recorded during infection at an MOI of 1, with 

fivefold, fourfold, and threefold reductions at 4, 8, and 24 hpi, respectively. At an MOI of 

10, differences appeared to be slightly reduced, to an average of 2.3-fold. Interestingly, 

while the proportion of IE1/IE2-positive, vim
+
 cells remained fairly constant (Fig. 2-6A 

and C,), the percentage of IE1/IE2-positive, vim
-
 cells appeared to slowly increase with 

time at both MOIs (Fig. 2-6A and C), suggesting that the onset of AD169 infection in 

vim
-
 cells was delayed but not abrogated. 
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FIG. 2-6. Viral IE1/IE2 gene expression in vim
+
 and vim

-
 MEF. Percentage of vim

+
 

(white bars) and vim
-
 (black bars) MEF expressing IE1/IE2 after infection with AD169 

(A and C) or TB40/E (B and D) at an MOI of 1 or 10. Mean and standard deviation 

values from two independent experiments are shown.  
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Similar to what was observed in HF, the proportion of TB40/E-infected vim
+
 cells at 

either MOI was about three- to fourfold lower than that of AD169-infected vim
-
 cells 

(Fig. 2-6, compare A to B and C to D). In addition, the absence of vimentin appeared to 

have a larger impact on the onset of TB40/E infection, with 7- to 9-fold and 3- to 17-fold 

reductions in the percentages of IE1/IE2-positive vim
-
 cells observed at an MOI of 1 and 

10, respectively (Fig. 2-6B and D). Finally, and contrary to infection with AD169, the 

percentages of IE1/IE2-positive vim
-
 cells appeared to steadily decrease with time during 

TB40/E infection at both MOIs, an indication of abortive infection. 

 

Together, these data show that the presence of vimentin is required for the efficient start 

of both AD169 and TB40/E replication. While onset of AD169 infection in vim
-
 cells is 

initially delayed, it appears to recover with time. By contrast, TB40/E infection becomes 

abortive, suggesting a larger degree of reliance on vimentin for the initial stages of 

TB40/E infection. 

2.3.6 Vimentin is required for proper viral particle trafficking 

To assess whether vimentin affected intracellular capsid transport, virion localization was 

tracked by staining AD169- or TB40/E-infected vim
+
 and vim

-
 MEF for pp150, a 

tegument phosphoprotein that remains strongly associated with capsids during entry and 

that has been used as capsid marker in other studies (64, 81). At 1 hpi with AD169, the 

pp150 signal was found predominantly at the cell surface and within the cytoplasm of 

vim
+
 and vim

-
 cells (Fig. 2-7A and B), and no obvious differences were found between 



88 

 

 

cell types in the total numbers of particles per cell at 1 and 4 hpi. By 8 hpi, only few vim
+
 

cells still contained particles while the pp150 signal was clearly evident in the cytoplasm 

of several vim
-
 cells (Fig. 2-7C and D). The number of pp150-positive, vim

+
 cells seemed 

to decline with time much more rapidly than the number of pp150-positive, vim
-
 cells, 

suggesting that capsid disassembly and concomitant loss of the pp150 signal might occur 

more rapidly in the presence of vimentin. To quantify this result, the percentage of 

pp150-positive vim
+
 and vim

-
 MEF was determined after infection with AD169 or 

TB40/E at an MOI of 3 in synchronized infections. After virus adsorption at 4°C for 1 h, 

cultures were shifted at 37°C for 1 h to allow for penetration to occur, then washed, and 

further incubated for 4 and 8 h. The proportions of pp150-positive cells after virus 

adsorption and penetration were virtually identical in all samples (Fig. 2-7E), indicating 

that the absence of vimentin did not affect binding of either strain. After 4 h at 37°C, 

however, the percentage of pp150-positive vim
+
 cells infected with AD169 was 

dramatically lower than that of vim
-
 cells (Fig. 2-7E). By 8 h, a slight additional decrease 

in the percentage of particle-containing cells was observed in vim
-
 cells (Fig. 2-7E). In 

TB40/E-infected cultures, the proportions of virion-containing vim
+
 and vim

- 
cells after 1 

h at 37°C were almost identical, and no decrease relative to the percentage of pp150-

positive cells after virus adsorption for 1 h at 4°C was observed (Fig. 7E). This situation 

remained unchanged in vim
-
 MEF until the 8-h time point, when a decrease in the 

percentage of cells with particles was registered. By contrast, vim
+
 cultures were 

characterized by a more gradual decrease in pp150-positive cells over time. Thus, the rate 

of pp150 signal loss in AD169-infected, vim
+
 cells was significantly faster than that in 

TB40/E-infected, vim
+
 cells, suggesting that AD169 virions may be reaching the nucleus 
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more rapidly than TB40/E virions. To assess if this was indeed the case, the proportion of 

pp150-positive virions localizing at the cell surface, in the cytoplasm, or in close 

proximity to the nucleus of infected cells at 1 h posttransfer at 37°C was calculated. In 

vim
+
 cells infected with AD169, particles were equally distributed between the cytoplasm 

and the nucleus while in vim
-
 cells, virions accumulated in the cytoplasm (Fig. 2-7F). The 

majority of virus particles were also found in the cytoplasm of vim
+
 and vim

-
 cells 

infected with TB40/E, supporting the hypothesis of a slower rate of intracellular 

movement of TB40/E virions than of AD169 virions. In vim
-
 cells, a slightly higher 

proportion of TB40/E particles were also observed at the cell periphery, suggesting that 

penetration of TB40/E capsids may also be delayed by the absence of vimentin. 

2.4 Discussion 

During entry, all viruses interact with components of the cellular cytoskeleton to reach 

their appropriate intracellular sites of replication (71). The role of microfilaments and 

microtubules in mediating transport of viral particles has been well established for several 

viruses, including other herpesviruses (31, 55, 71). Although vimentin IF lack polarity 

and do not directly participate in intracellular cargo movements, they are dynamically 

integrated with microfilaments and microtubules and are important for infection with a 

variety of viruses. Expression of vimentin at the cell surface allows for binding and 

internalization of porcine reproductive and respiratory syndrome virus (44) while its 

association with capsid components of the human immunodeficiency virus type 1 (88), 

Theiler’s murine encephalomyelitis virus (62), and adenovirus type 2 (5) assists with 

virus entry. Vimentin was shown to promote assembly of African swine fever virus, frog 
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virus 3, and vaccinia virus by forming protective cage-like structures around the sites of 

virion production (61, 72, 85), to enhance egress of bluetongue virus particles via 

interactions with the outer capsid protein VP2 (18), and to be required for Junin virus 

replication at a stage subsequent to entry but preceding viral protein synthesis (7). A 

specific role for vimentin in entry of herpesviruses has not been described. Here, we 

show that vimentin IF are likely to play a role during entry of two CMV strains with 

different tropisms and that their degree of dependency on an intact vimentin cytoskeleton 

correlates with the extent of tropism, possibly as a result of different entry mechanisms. 

Like all herpesviruses, CMV replicates in the nucleus and requires virions to be actively 

transferred from the cell membrane to the nuclear envelope at the start of infection. Entry 

can occur by direct penetration across the plasma membrane or by macropinocytosis, 

depending on the cell type and the virus strain (16, 79, 83). Both mechanisms require 

fusion of the virus envelope with cellular lipid bilayers, and the subsequent transport of 

capsids along cellular microtubules, whose structural integrity is maintained during entry. 

Consistent with data from Arcangeletti et al. (4), our results show that the vimentin 

cytoskeleton is not disassembled during the initial steps of CMV infection, suggesting 

that maintenance of an intact IF network may be necessary for entry. Vimentin disruption 

and reorganization are induced early during infection with a variety of viruses including 

reovirus (77), respiratory syncytial virus (27), frog virus 3 (60), Thelier’s murine 

encephalomyelitis virus (62), vaccinia virus (24), and adenovirus types 2, 5, 4, and 9 (6). 

By contrast, IF connections are preserved in cells infected with herpes simplex virus type 

1 (HSV-1) (63), equine herpes virus type 1 (91) and adenovirus types 3, 7, and 12, whose 

particles are predominantly found within phagosomes (6), indicating that the requirement  
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FIG. 2-7. Detection of virus particles in vim
+
 and vim

-
 MEF. (A to D) Confocal 

immunofluorescence images of AD169-infected MEF stained for pp150 at 1 and 8 hpi. 

The pp150 signal is depicted in red while the green signal emanates from cellular 

autofluorescence. (E) Percentage of AD169- and TB40/E-infected vim
+
 and vim

-
 MEF 

containing pp150-positive particles immediately after adsorption (black bars) and at three 

different times postpenetration (dark gray, light gray, and white bars; times are indicated 

at the top of the panel). A minimum of 110 cells were counted for each sample. Mean and 

standard deviation values from separate cell fields in one representative experiment (out 

of three) are shown. (F) Proportion of pp150-positive particles localizing at the cell 

surface, in the cytoplasm, or at the nucleus in vim
+
 and vim

-
 MEF infected with AD169 

or TB40/E at 1 h postpenetration. Mean and standard deviation of values from eight 

different cells per sample are shown. AD, AD169; TB, TB40/E. 
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for an intact IF cytoskeleton may be shared among different herpesviruses and may be 

relevant for entry via intracellular vesicles. 

 

In contrast to IF, microfilament disassembly was evident by 2 hpi with AD169 and by 4 

hpi with TB40/E. Binding of some herpesviruses to the cell surface triggers rapid 

reorganization of the actin cytoskeleton (55), and actin depolymerization close to viral 

particles was observed upon fusion of the Towne envelope with the plasma membrane 

(42). Microfilament disassembly appeared to be beneficial for the onset of Towne and 

AD169 infection (4, 42) as it likely facilitated virion transit across the actin-rich cell 

cortex. By contrast, treatment with actin depolymerizing drugs inhibited uptake of HSV-1 

particles in cells where entry by phagocytosis dominated over fusion at the plasma 

membrane (14), pointing at a possible requirement for intact microfilaments to support 

myosin VI-mediated transport of endocytic vesicles toward the cell center (9). Thus, the 

difference we observed between AD169 and TB40/E in the timing of microfilament 

depolymerization may potentially reflect two different mechanisms of entry of each strain 

into HF, with fusion at the plasma membrane followed by immediate actin disassembly 

being predominant for AD169 and endocytosis accompanied by delayed microfilament 

reorganization being more common for TB40/E. AD169 virions contain the gH/gL/gO 

complex, which mediates entry by fusion with the plasma membrane, but lack the 

gH/gL/UL128-131A complex, which is required for entry by endocytosis (73, 74). By 

contrast, TB40/E virions contain both gH/gL/gO and gH/gL/UL128-131A complexes 

endowing TB40/E virions with the potential to enter HF either by fusion at the cell 

surface, by endocytosis, or by a combination of both mechanisms. 
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Onset of TB40/E infection was delayed by approximately 2 h relative to infection with 

AD169, and this resulted in a similar delay throughout the time course of infection, with 

the proportion of IE1/IE2-positive cells in TB40/E-infected monolayers remaining lower 

than that in AD169- infected cells at each time and irrespective of the MOI used (Fig. 2-

2A and B). These differences are likely to be due to slower and less efficient transport of 

TB40/E particles, especially if TB40/E entry mechanisms require the generation and 

intracellular movement of vesicles. Fusion of AD169 virions at the plasma membrane 

may allow capsids to associate with microtubules in a rapid and efficient manner while 

escape of TB40/E capsids from endosomes may require longer times. Although the 

intracellular content of AD169 and TB40/E DNA in HF was reported to be 

similar at 1.5 hpi (81), HF internalization of radiolabeled AD169 particles was found to 

be more efficient than that of the clinical strain TR (73). The delay in TB40/E infection 

onset was also reflected by the lower levels of cell-free virus produced by infected cells 

at 72, 96, and 120 hpi although by 144 and 168 hpi AD169 and TB40/E yields had 

equalized (Fig. 2-2C). To our knowledge, this is the first report directly comparing 

growth of AD169 and TB40/E in HF. A 10-fold reduction in cell-free virus yields relative 

to AD169 has been described for another clinical strain, VR1814 (1), while repair or 

complementation of the UL131A gene mutation in AD169 reduced virus production in 

HF (1, 92). It is thus conceivable that expression of UL131A might be detrimental for 

efficient TB40/E production in HF, and additional functions encoded by genes mutated 

during the process of AD169 adaptation to growth in HF may also contribute to the 

phenotype we observed. 
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Previous studies have shown that drug-mediated disassembly of microtubules inhibits 

onset of infection by CMV (64), HSV-1 (63), and other viruses (31, 57, 71). 

Microtubules and IF are closely connected; hence, chemical disruption of microtubule 

networks also invariably leads to changes in the organization of IF, complicating the 

separation of each system’s contribution. To dissect the role of vimentin IF during CMV 

entry, we determined the efficiency of onset of AD169 and TB40/E infection in 

fibroblasts with disrupted or absent IF.  

 

ACR has been widely used to selectively and reversibly disrupt vimentin IF without 

altering microtubule structures (2, 65, 75) and has been employed in studies addressing 

the role of IF in Junin, bluetongue, and dengue virus replication (7, 13, 18). Treatment of 

HF with ACR prior to infection with AD169 or TB40/E resulted in an exposure time-

dependent decrease in the percentage of infected cells (Fig. 2-4A and B), suggesting that 

the integrity of vimentin IF is required for CMV entry. Changes in cell and nuclear 

morphology and ACR-induced inhibition of protein synthesis may also have contributed 

to reduce infection rates while the concomitant disassembly of actin stress fibers may 

have affected the onset of TB40/E, but not of AD169 infection, as microfilament 

disassembly facilitates entry of AD169 virions (4). By contrast, cell death was not 

considered to be a significant factor as the percentage of cells with apoptotic nuclei 

remained consistently low (Fig. 2-3H and J), and removal of ACR allowed for 

resumption of infection (Fig. 2-4C and D). Intriguingly, infection recovery after ACR 

removal suggests that viral particles are still capable of entering cells with disrupted 
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vimentin IF. Perhaps in the absence of an extended vimentin cytoskeleton, virions remain 

trapped in the cytoplasm or become unable to deposit the viral genome in nuclei with 

membrane invaginations. Restoration of a proper IF cytoskeleton accompanied by the 

disappearance of nuclear folding may then allow for viral particle trafficking and nuclear 

genome deposition to resume. 

 

To establish the role of vimentin IF during CMV infection in a setting that did not 

involve exposure to pharmacological agents, IF bundling was induced in fibroblasts from 

GAN patients by serum starvation. The phenotype of IF in GAN HF cultures was less 

uniform than that in ACR-treated cultures, with some cells showing more prominent 

bundling than others and with bundles localizing in distinct areas of each cell, leaving the 

rest of the IF network fairly intact (Fig. 2-5F). Inhibition of AD169 infection in this 

system appeared to be temporary and MOI dependent, which suggests that particles could 

circumvent the obstacle represented by accumulated IF when given enough time or when 

present in large amounts. By contrast, TB40/E infection was severely impacted, and the 

percentage of infected cells did not substantially increase with time or at higher MOIs. 

These results point again at possible differences in AD169 and TB40/E entry 

mechanisms. As retrograde transport of endocytic vesicles is severely impaired in 

neurons from GAN-null mice (19), it is tempting to speculate that transport of CMV 

particles toward the nucleus may be preferentially delayed in GAN HF if capsids are 

contained within endosomes rather than free in the cytoplasm following penetration at the 

cell surface. A block in the endocytic route of infection is also less likely to be overcome 
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by raising the MOI as the speed and direction of vesicle movements would still remain 

the limiting factors even in the presence of numerous particles. 

 

Both AD169 and TB40/E were able to infect MEF cells (Fig. 2-6), but as was observed 

with HF cultures, the efficiency of onset of TB40/E infection in MEF was lower than that 

of AD169, pointing at a possible conservation of entry mechanisms between human and 

mouse HF. While the proportion of AD169- infected vim
+
 MEF remained stable from 4 

to 24 hpi, an increase in the percentage of TB40/E-infected cells was observed at 24 hpi 

at both MOIs. Intriguingly, the number of vim
+
 MEF containing AD169 particles 

decreased very rapidly after penetration and remained stable at later times while the 

reduction in the number of TB40/E-positive cells occurred much more gradually (Fig. 2-

7). Combined, these results suggest that entry of AD169 is more rapid and efficient than 

that of TB40/E, with prompt capsid trafficking and nuclear genome translocation 

occurring in the majority of AD169-infected cells. By contrast, cytoplasmic movement of 

TB40/E virions is lengthier, and, perhaps as a result of this delay, the percentage of cells 

expressing IE1/IE2 increases only at later times in infection. Initiation of infection with 

both strains in vim
-
 MEF is dramatically hampered, particularly at low MOIs, 

demonstrating that this protein is required for infection. Intriguingly, although the 

absence of vimentin seemed to only reduce the speed of AD169 particle translocation, it 

effectively blocked progression of TB40/E virions. Consequently, the proportion of 

AD169-infected vim
- 

cells still increased over time while TB40/E infection became 

abortive, perhaps as a result of virion degradation in the cytoplasm. Viral DNA was 
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indeed reported to be eliminated from the cytoplasm of endothelial cells as a consequence 

of failures in particle transport toward the nucleus and in nuclear genome deposition (82). 

 

In summary, the efficiency of onset of CMV infection depends on the presence and 

integrity of the vimentin cytoskeleton, which may facilitate virus entry at different steps. 

As the proportions of vim
+
 and vim

-
 pp150-positive cells were similar, a role for vimentin 

as a CMV receptor at the cell surface is unlikely (Fig. 2-8, step a). Likewise, participation 

of IF in uncoating of clathrin from endocytic vesicles (86) is not expected to impact 

CMV entry (Fig. 2-8, step b), as clathrin-coated endosomes are too small to 

accommodate CMV virions (79). By contrast, vimentin could promote capsid binding to 

microtubules after entry at the plasma membrane (Fig. 2-8, step c), enhance 

internalization of endocytic vesicles carrying virions bound to integrins (Fig. 2-8, step d), 

or allow for rapid AP-3-mediated acidification of endosomes and concomitant 

intracytoplasmic release of endocytosed virions (Fig. 2-8, step e). Finally, vimentin 

interactions with the nuclear lamina (10) and with cellular DNA (89, 90) may increase 

the speed of viral genome translocation across the nuclear envelope and of IE gene 

transcription (Fig. 2-8, step f). Additional work will be needed to pinpoint the exact steps 

during viral entry that require vimentin assistance. Based on the differences we observed 

between AD169 and TB40/E, these will likely depend on the mechanisms of virus entry 

and will require the engagement of different virion components encoded by each strain. 
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FIG. 2-8. Hypothetical steps during CMV entry requiring vimentin assistance for 

efficient completion. Vimentin IF and microtubules are shown as three parallel thin lines 

and as thick gray lines, respectively. Black hexagons enclosed in a circle depict 

enveloped virions while isolated black hexagons represent virus capsids. Steps are as 

follows: (a) vimentin IF acting as receptors for CMV virions at the surface, (b) AP-3-

mediated involvement of vimentin IF in internalization of clathrin-coated endosomes, (c) 

enhancement of capsid attachment and movement along microtubules via vimentin IF, (d) 

internalization of integrin-bound virions under the control of vimentin IF, (e) AP-3-

mediated involvement of vimentin IF in endosome acidification and cytoplasmic release 

of capsids, and (f) facilitation of nuclear genome deposition and of gene transcription 

onset by nuclear lamina- and matrix-associated vimentin. MTOC, microtubule organizing 

center.  
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Chapter 3 
 

CHARACTERIZATION OF THE 55 RESIDUE E1A PROTEIN 
ENCODED BY SPECIES C HUMAN ADENOVIRUS 

3.1 Introduction 

HAdV belong to the family Adenoviridae. These viruses have been isolated from 

vertebrates ranging from fish to humans. The first human adenoviruses were isolated in 

1953 by independent groups searching for etiological agents responsible for acute 

respiratory infections (19, 48). However, it was not until 1962, when Trentin and 

colleagues discovered that HAdV-12 could cause tumors when injected into newborn 

hamsters, that interest in the field exploded (56). This was the first demonstration of a 

human virus that could cause cancer. Subsequent to that seminal observation, HAdV has 

been used extensively to study fundamental biological processes ranging from regulation 

of the cell cycle to mRNA splicing. 

Later studies would reveal that genes encoded at the leftmost end of the HAdV genome 

were responsible for its oncogenic capacity. E1A of HAdV type 2/5 encodes 5 proteins of 

289, 243, 217, 171 and 55 R (Fig. 3-1A). These proteins are generated by differential 

splicing of a single mRNA species. At the earliest stages of infection, E1A transcription 

is controlled by a constitutive enhancer and expression of the largest two isoforms 

dominates, with the smaller three isoforms accumulating later (42, 55). While the largest 

two proteins have been studied extensively, no specific functions have been assigned to 

the smallest three isoforms. The 289R and 243R E1A products are extensively 

phosphorylated and these modifications are important for regulation of E1A function (11, 
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29, 62). E1A is sufficient to immortalize primary rodent cells when expressed alone (20), 

and can transform these cells in cooperation with a second oncogene, such as E1B (14) or 

activated Ras (49).  During infection, the major functions of E1A include inducing the 

host cell to enter S-phase and activating the transcription of downstream viral genes (4). 

These functions of E1A are essential for efficient replication of HAdV (23, 52). 

 E1A does not exhibit DNA binding activity, and its ability to activate transcription is 

mediated by its interaction with variety of cellular transcription factors and regulatory 

proteins (39). 289R E1A activates transcription from early viral promoters as well as 

wild-type, although 243R can also perform this function to a lesser degree (33-35, 46, 

67). This difference in the ability to activate expression of viral genes is largely attributed 

to CR3 which is present in 289R E1A, but absent in 243R E1A. By itself, CR3 functions 

as a potent activation domain when fused to a Gal4 DNA-binding domain (31). Its ability 

to activate transcription is dependent upon its association with the mediator complex via 

direct interaction with MED23 (1, 7, 13, 30, 60). Interactions of CR3 with other cellular 

proteins, including TATA box-binding protein (TBP) (27), the proteosome component S8 

(45) and the acetyltransferase p300/CBP (40-41) also play an important role in CR3-

mediated transcriptional activation. Transcription from the E2 early promoter represents a 

special case as it is induced in a specific, and indirect manner via 243R E1A-mediated 

activation of the E2F family of transcription factors. The 243R E1A protein binds pRb, 

thereby facilitating the release of E2Fs. Free E2Fs then bind to inverted sites located 

within the E2 promoter to activate transcription (3, 25-26, 43, 71).  The major late 

promoter, which controls expression of the viral structural proteins, is active at a low 

level at early times post-infection and expression increases several hundred fold at late 
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times (51). Binding of E1A to Sp1 and MAZ transcription factors contributes to this 

activation, but does not account for the delayed kinetics of expression from this promoter 

(38). 

Recruitment of APIS to early viral promoters by E1A enhances transcription of early 

viral genes (45).  The HAdV-5 289R and 243R E1A proteins and the HAdV-12 266R and 

235R proteins can be immunoprecipitated with proteasomes (15). Amino acids 4-25 

mediate binding of E1A to members of the 19S regulatory components of the 

proteasome, human hSug1 (S8) and S4. Binding inhibits the ATPase activity of this 

subunit which correlates with decreased proteasome activity (57). S8 is also recruited by 

CR3 to enhance transcription of early viral genes. Interestingly, the 20S proteasome is 

also recruited to CR3 independently of APIS and the 26S proteasome. E1A, S8 and the 

20S proteasome are found on early gene promoters and sequences during infection and 

thus, may be important in transcriptional initiation and elongation. In addition, inhibition 

of proteasome activity represses E1A-dependent transcriptional activation, further 

supporting the importance of this interaction during infection (45). 

Despite the fact that no specific functions have been assigned to the smallest three E1A 

proteins, the 55R isoform constitutes a particularly interesting case. Its function has 

remained elusive despite the initial discovery of its mRNA species over 30 years ago (5). 

This may be attributed, at least in part, to the fact that no existing E1A Abs are able to 

recognize the 55R product. While 55R shares the first 26 amino acids encoded by exon 1 

with the other E1A proteins, reconstitution of the splice junction linking exon 1 and exon 

2 results in a frameshift relative to the other isoforms which results in a unique C-
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terminal amino acid sequence (10, 47, 59). The 55R mRNA species accumulates 

preferentially at late times post-infection and seems to require replication of the viral 

genome, since 55R mRNA species are only detected in HAdV-infected human HEK293, 

and not in mock infected cells despite the integration of genomic E1A and constitutive 

expression of 289R and 243R E1A in this cell line (8, 53-54, 59, 66). These properties 

suggest that in addition to possibly binding targets which are known to interact with the 

extreme N-terminus of the larger E1A isoforms, 55R E1A may also interact with unique 

targets via its novel C-terminus region. Due to the late kinetics of 55R E1A expression, 

these interactions may play important roles during the latest stages of HAdV infection. 

Here, we characterize an antibody which specifically recognizes the 55R E1A protein 

encoded by HAdV-2. This antibody can be used for detection of HAdV-2 55R E1A by 

western blot, indirect immunofluorescence and immunoprecipitation. We report for the 

first time a series of phenotypic and functional properties associated with 55R E1A. It is 

primarily localized to the nucleus and is sufficient to promote virus growth in growth-

arrested IMR-90 fibroblasts. This may be due, in part, to the ability of 55R E1A to 

activate transcription of viral genes with kinetics and magnitudes that are unique in 

comparison to genomic E1A. Finally, we demonstrate that 55R E1A interacts with S8, a 

member of the APIS complex, but not with S4. This is the first reported cellular target of 

55R E1A. Knockdown of S8 was detrimental to virus replication, suggesting that this 

interaction is functionally important during infection. 

3.2 Materials and Methods 

3.2.1 Cells and viruses 
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HEK293, HEK293T, HT1080, A549 and IMR-90 cells were originally obtained from the 

American type culture collection (ATCC). dl309 (expresses all E1A proteins) (23), dl312 

(does not express any E1A proteins) (23), dl520 (does not express 289R E1A) (16), dl521 

(expresses only 55R E1A) (16), pm975 (does not express 243R E1A) (34) and HAdV-2 

have all been described previously. JM17-55R was constructed cloning the 55R E1A 

coding sequence into pXC-Myc+ which had been digested with EcoRI and SalI to 

remove the myc epitope tag. Recombinant virus was rescued by transfecting 5 µg of the 

new plasmid, pXC-55R HAdV-2 E1A, into HEK293 cells along with 10 µg of pJM17 

using a 1:14 DNA-to-Superfect (Qiagen) ratio. Virus was then plaque purified and 

screened by sequencing of viral DNA.  All cells were propagated in DMEM (Wisent) 

supplemented with 10 % heat-inactivated FBS, 100U/ml penicillin and 100 µg/ml 

streptomycin (all from Gibco). All viruses were grown on either HEK293 or A549 and 

were purified using cesium chloride gradient, as described previously (68). 

3.2.2 Cell transfections and infections 

To analyze the kinetics of 55R E1A mRNA and protein expression, A549 cells were 

infected with HAdV-2 at an MOI of 1. Samples were collected at 24, 48, 72, 96 and 120 

hpi to analyze the kinetics of E1A mRNA expression. For analysis of protein expression, 

samples were collected at 6, 24, 48 and 72 hpi. 

For virus replication assays, IMR-90 cells were seeded in 6-well dishes and were growth 

arrested by contact inhibition for 3 days after reaching confluency. For single-virus 

infections, cells were infected with either dl309, pm975, dl520, dl521 or dl312 at an MOI 

of 5 and were then incubated at 37° C, 5 % CO2 for 1 h to permit adsorption. Cells were 
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washed 5 times with PBS and were re-incubated with fresh medium. For growth assays, 

supernatants were collected at 4, 48 and 120 hpi and the titre of cell-free virus was 

assessed by plaque assay on HEK293 cells. For analysis of viral gene expression, cells 

were collected at 24, 48, 72, 96, 120 and 144 hpi. Virus co-infection replication assays 

were performed in a similar manner, with growth arrested IMR-90 cells being infected 

with either pm975 + dl521, pm975 + dl312, dl520 + dl521 or dl520 + dl312 at an MOI of 

5 per virus. 

For transfections, HT1080 and HEK293T cells were seeded on glass coverslips at a 

density of 5 × 10
4
 cells/cm

2
 one day prior to transfection with Superfect (Qiagen) 

according to manufacturer's guidelines. 

siRNA knockdown of S8 was performed in A549 seeded at 5 × 10
4
 cells/cm

2
 using 

siLentFect
TM

 (Bio-Rad) transfection reagent and 10 nM PMSC5 Silencer® Select siRNA 

(Ambion). A second set of cells were treated with siRNA Control #2 (Ambion). 

Following a 12 h incubation, cells were infected with either dl521 or dl312. Supernatants 

were collected at 24 and 96 hpi and virus yield was determined by plaque assay on 

HEK293 cells.  

3.2.3 mRNA isolation and qRT-PCR 

Total RNA was isolated using TRIzol reagent (Invitrogen) and was subjected to first 

strand cDNA synthesis using Superscript II reverse transcriptase (Invitrogen) and a 

mixture of random hexamers and oligo(dT)20, according to manufacturer's instructions. 

qRT-PCR was performed using EXPRESS SYBR GreenER qPCR supermix (Invitrogen) 

on a Bio-Rad iQ5 iCycler according to manufacturer's guidelines. E1B 2.2 kb, E3A, E4 
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orf6/7 (45), E2 (2) and hexon (24) were amplified using primers described previously. 

GAPDH was amplified using the forward primer CCTGGCCAAGGTCATCCATGAC 

and the reverse primer TGTCATACCAGGAAATGAGCTTG.  Conventional RT-PCR 

was performed using PCR-EZ D-PCR Master Mix (Bio Basic Inc.). E1A species were 

amplified using the forward primer CCACGGAGGTGTTATTACCG and the reverse 

primer TCAGGATAGCAGGCACCAAT. 55R E1A was detected using the forward 

primer AATGAATTCTTGGACCAGCTGATCGAAGAGG and reverse primer 

GATCCTTATGGCCTGGGGCGTTTACAGCTCAAG. 

3.2.4 Plasmid construction 

pLE-9S and pEGFP-N1 were kind gifts of E. Moran and J. Torchia, respectively. All 

ligations were performed using T4 Ligase (NEB) according manufacturer's instructions.  

To construct pCANmycEGFP-55R, HAdV-2 55R-EGFP was cut out of pEGFP-55R 

using NcoI and XbaI. Overhangs were filled in using the Klenow fragment from E. coli 

DNA polymerase I (NEB) and the insert was ligated into the BamHI site of pCANmyc 

that had also been blunted using the Klenow fragment. pEGFP-N1-9S was constructed by 

PCR of HAdV-2 55R E1A from pCANmycEGFP-55R using the forward primer 

ATCTCGAGATGAGACATATTAT, which contains a BamHI restriction site and the 

reverse primer GTGGATCCTTGGATAGCAGG, which contains an XhoI restriction site. 

The insert and vector (pEGFP-N1) were each digested with BamHI and XhoI and were 

then ligated together.  pCANmyc-55R was constructed by cloning 55R hAdV-2 E1A in-

frame with the N-terminal myc tag of pCANmyc. GST-55R/53R E1A fusions were made 

by cloning the 55R E1A proteins from HAdV-2 and HAdV-5, as well as the 53R E1A 
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protein of HAdV-12 into the EcoRI/SalI sites of pGEX 4T1. PCNA4-HA-S8 and 

PCNA4-HA-S4 have been described previously (45). 

3.2.5 Generation of anti-55R E1A Abs 

Polyclonal rabbits Abs were generated against a peptide corresponding to the unique C-

terminal region of HAdV-2 55R E1A: KYG-43-NRSLQDLPGVLNWCLLS-55. The 

peptide was coupled to keyhole limpet hemocyanin (KLH) using bis-diazobenzidine. 5 

mg of peptide was conjugated to 5 mg of KLH.  The KLH-peptide conjugate was injected 

subcutaneously into female New Zealand White rabbits. Each rabbit was injected at four 

sites with 100 ug at each site. Before injecting, the KLH-peptide conjugate was 

emulsified with Freund's Complete Adjuvant for the initial inoculation and with Freund's 

Incomplete Adjuvant for subsequent injections. The rabbits were injected at three week 

intervals and test bleeds were taken 10 days following the preceding injection. 

Antibody reacting against the peptide was affinity purified using a peptide column that 

was prepared by conjugating 5 mg of peptide to 6 mls bed volume of Affi-gel 10 

(BioRad) via hydroxysuccinimide linkage. The serum was diluted two-fold in Tris-

buffered saline (TBS) and then passed twice over the affinity column.  The column was 

washed and then eluted with 100 uM glycine, pH 2.2 and the eluted antibody was 

dialysed against TBS.  The antibody was initially tested against sequential dilutions of the 

peptide spotted onto nitrocellulose.  The rabbits underwent a total of eight injections. 

3.2.6 Protein purification 

pGEX4T1-HAdV-2-55R, pGEX4T1-HAdV-5-55R and pGEX4T1-HAdV-12 53R were 

expressed in E. coli RIL (Stratagene) and were purified using standard methods. 
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3.2.7 Immunoprecipitation, GST-pulldown and immunoblot analysis 

For immunoprecipitation experiments, HEK293T or A549 were lysed in NP-40 lysis 

buffer (0.5 % NP-40, 50 mM Tris pH 7.8, 150mM NaCl) supplemented with protease 

inhibitor cocktail (Sigma). One microgram of anti-GFP mAb (Clontech) was used for 

immunoprecipitation of EGFP-55R in combination with 125 µl of 10 % protein A-

sepharose resin (Sigma) from 0.5 mg of cell lysate. Samples were agitated for 1 h at 4 °C. 

Beads were washed five times with lysis buffer and samples were boiled in 1x lithium 

dodecyl sulfate (LDS) sample buffer for 5 min. Samples were separated on a sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and were transferred 

onto a polyvinylidene difluoride (PVDF) membrane (GE Healthcare). Membranes were 

blocked in 5 % nonfat milk in 1x Tris-buffered saline with 0.1 % Tween-20. 

For western blots, cells were lysed in NP-40 lysis buffer and were then boiled in sample 

buffer and treated as described above. Membranes were stripped by heating in a 2 M 

glycine buffer, pH 2.2 with 0.5 % SDS. Ponceau staining was performed according to 

standard protocols. 

GST pulldowns were performed using 0.25 µg of GST-55R E1A and 0.5 mg of lysate 

from HEK293T or A549 cells that had been transfected with constructs expressing HA-

S8, HA-S4 or were left untransfected. Samples were agitated for 1 h at 4 °C with 12.5 µl 

of glutathione sepharose 50 % slurry and were then treated as described for 

immunoprecipitation experiments. HA-S8 and HA-S4 were detected using rat anti-HA 

mAb (1:2000, 3F10, Roche). EGFP was detected using anti-GFP mAb (1:2000, 
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Clontech). 55R E1A was detected using custom rabbit polyclonal anti-HAdV-2 55R E1A 

antibodies (1 µg/ml). 

Secondary antibodies used included goat anti-mouse IgG (1:200 000, Jackson Labs), goat 

anti-rabbit IgG (1:200 000, Jackson Labs) and goat anti-rat IgG (1:20 000, Pierce); all 

were conjugated to horseradish peroxidase. Membranes were incubated with ECL+ 

substrate (GE Healthcare) for 1 min prior to exposures.  

3.2.8 Immunofluorescence microscopy 

All cells were seeded on coverslips in 24-well tissue culture dishes and were fixed in 3.7 

% paraformaldehyde (Fisher) for 30 min at room temperature. After washing in PBS, 

cells were permeabilized on ice using 0.2 % Triton X-100 (Biobasic) for 20 min. 

Coverslips were transferred to humidity chambers and were blocked using 10 % FBS in 

PBS (blocking buffer, BB) for 30 min at room temperature. Cells were incubated at room 

temperature for 1 h with anti-55R E1A rabbit polyclonal Abs (1:50), anti-E1A mAb M73 

hybridoma supernatant (neat) and/or anti-myc (9E10 hybridoma supernatant, neat) 

primary Abs.  After washing 3x with BB, cells were incubated for another hour at room 

temperature with with Alexa Fluor® 546 goat anti-mouse IgG, Alexa Fluor® 594 goat 

anti-rabbit IgG and/or Alexa Fluor® 488 goat anti-mouse IgG (all from Molecular 

Probes). Finally, cells were washed 3x with PBS and nuclei were labeled with 0.2 mg/ml 

Hoechst 33342 (Molecular Probes) for 3 min at room temperature. Cells were washed 

three more times and coverslips were then mounted on glass microscope slides using 

mounting media consisting of 90 % glycerol (Biobasic), 10 % PBS and 2.5 g/litre 1,4-

diazabicyclo(2,2,2)octane (DABCO, Alfa Aesar). Imaging was performed using a Zeiss 
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Axioskop 2 magneto-optical trap fluorescence microscope equipped with a QImaging 

Retiga 1300-coded monochrome 12-bit camera. Images were captured and pseudocolored 

using Northern Eclipse version 7.0 software. Confocal images were acquired using a 

Zeiss LSM 510 META confocal laser scanning microscope equipped with Zeiss Zen 

imaging software for analysis. 

3.3 Results 

3.3.1 Characterization of anti-55R E1A polyclonal Abs 

Despite discovery of the putative 55R E1A product of species C HAdV over 30 years 

ago, the protein itself has never been detected or systematically characterized in the 

context of infection. This is due, in part, to the fact that none of the existing Abs which 

recognize various epitopes of E1A from species C HAdV are able to detect the 55R 

isoform. To address this issue, we generated rabbit polyclonal antibodies which 

specifically recognize the 55R E1A species of subgroup C HAdV.  

A peptide was synthesized corresponding to residues 43-55 of the unique C-terminal 

region of HAdV-2 (KYG-43-NRSLQDLPGVLNWCLLS-55). This peptide was coupled 

to keyhole limpet hemocyanin and was used to immunize rabbits. Antibodies were 

affinity purified from rabbit serum and specificity was demonstrated by dot blot assay 

using the immunizing peptide (data not shown). In order to determine the breadth of 

specificity of the affinity purified Abs, a western blot was performed against purified 

GST-55R E1A from HAdV-2 and HAdV-5, as well as the equivalent 53R E1A isoform 

of HAdV-12. Interestingly, the antibody demonstrated exquisite specificity for 55R E1A 

from HAdV-2, but was unable to detect the 55R E1A protein from HAdV-5 (Fig. 3-1C), 
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a closely related species C HAdV with only 3 non-identical amino acids located in the C-

terminus of the protein (Fig. 3-1B). The Abs were also unable to recognize the 53R E1A 

protein of HAdV-12, a more divergent species A HAdV, or GST alone (Fig. 3-1C). 

We next sought to determine whether the Abs could be used to immunoprecipitate 

HAdV-2 55R E1A. To do this, lysates were prepared from HEK293T cells expressing 

EGFP-55R E1A, EGFP alone or from mock transfected cells. Lysates were then 

incubated with polyclonal anti-55R E1A Abs along with protein A-sepharose beads. 

After washing the beads thoroughly and boiling them with LDS sample buffer, proteins 

were separated by SDS-PAGE and were transferred to a PDVF membrane. A band 

corresponding to the molecular weight (MW) of EGFP-55R E1A appeared only in the 

sample from EGFP-55R E1A-expressing cells when the membrane was probed with anti-

55R E1A polyclonal antibodies or anti-GFP mAb (Fig. 3-1D). Thus, the polyclonal anti-

55R E1A Abs can likely recognize both native and denatured HAdV-2 55R E1A. 

Finally, we aimed to determine whether our anti-55R E1A Abs could be used to study the 

subcellular localization of 55R E1A by indirect immunofluorescence. HT1080 cells were 

either mock transfected (data not shown) or were transfected with a construct which 

expressed myc-55R. 24 h post-transfection, cells were fixed and stained using anti-55R 

E1A and anti-myc followed by Alexa Fluor® 594 goat anti-rabbit IgG or Alexa Fluor® 

488 goat anti-mouse IgG. Samples were analyzed by confocal microscopy and 

colocalization of signal was observed only in cells expressing myc-55R E1A (Fig. 3-1E), 

demonstrating that the Ab could also be used for determination of the subcellular  
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FIG. 3-1. Characterization of 55R E1A polyclonal antibodies. A) Graphical depiction of 

the mRNA species generated by splicing of the primary E1A transcript. B) Amino acid 

sequence comparison of the proteins encoded by the 9S mRNA species of HAdV-2, 

HAdV-5 and HAdV-12. Amino acids which differ between HAdV-2 and HAdV-5 are 

denoted in red. C) Western blot of GST-purified 55R E1A (or 53R E1A, in the case of 

HAdV-12) using our custom rabbit polyclonal anti-55R E1A Abs. D) EGFP-55R E1A 

was immunoprecipitated from HT1080 cells using custom rabbit polyclonal anti-55R 

E1A Abs. e) Indirect immunofluorescence images of HT1080 cell expressing myc-55R 

E1A, stained with an anti-myc Ab and anti-55R E1A polyclonal Abs. Nuclei were stained 

with Hoechst 33342. 
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localization of 55R E1A. 55R E1A could be found in both the nucleus and cytoplasm of 

these cells, similar to what has been described for the larger E1A isoforms (12, 28). 

3.3.2 55R E1A is Expressed at Late Times Post-Infection and is 
Localized Mainly to the Nucleus 

Although several studies have reported the kinetics of 55R E1A expression at the mRNA 

level, the expression kinetics of the protein itself have never been investigated (8, 53-54, 

58-59, 66). Indeed, prior to this study, the 55R E1A protein has never been detected in 

the context of infection. To examine the relationship between 55R E1A mRNA 

expression and expression of the 55R E1A protein, A549 cells were infected with HAdV-

2 at an MOI of 1. Kinetics of E1A mRNA expression were first examined by RT-PCR in 

order to verify the results of earlier studies under our specific experimental conditions. 

Expression of 13S and 12S mRNA could be detected at 24 hpi and increased from 48 to 

96 hpi. Expression of 11S and 10S mRNA was detectable from 48 to 120 hpi, with 

maximal expression at 96 hpi. The 9S E1A mRNA species could also be detected from 

48-120 hpi, with maximal expression occurring at 96 hpi (Fig. 3-2A). The reduced 

abundance of all mRNA species at 120 hpi is likely due to both cell death (which was 

observed at this stage of infection) as well as the end of one round of viral replication and 

the beginning of a second round of infection in previously uninfected cells. These results 

closely matched those found in previously published reports (58-59). 

Next, we analyzed samples prepared in parallel for expression of E1A proteins by 

immunofluorescence microscopy. Using the M73 antibody, which recognizes the C-

terminal region encoded by exon 2 of all E1A products except 55R E1A, expression of 

E1A protein could begin to be detected as early as 6 hpi. This increased up to 24 hpi and 
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then stayed relatively consistent. Conversely, expression of 55R E1A could be detected 

only faintly and in very few cells starting at 24 hpi, with expression increasing up to 72 

hpi (Fig. 3-2B). These results are consistent with 55R E1A expression occurring 

primarily at late times post-infection, as suggested by the kinetics of 9S mRNA species. 

Importantly, this is the first time that 55R E1A has been detected in the context of viral 

infection. Interestingly, 55R E1A seems to be localized mainly in the nucleus, similar to 

the larger E1A isoforms, despite the fact that it lacks the nuclear localization signal 

present in these proteins (Fig. 3-2B). These results show for the first time that like the 9S 

E1A mRNA, 55R E1A protein is expressed preferentially at late times post-infection and 

appears to be present mainly in the nucleus of infected cells. 

3.3.3 55R E1A activates expression of viral genes 

 Given the kinetics of 55R E1A expression and its localization in the nucleus, we sought 

to assess whether, akin to the largest E1A isoforms, 55R E1A could transactivate viral 

genes. To accomplish this, we performed a qRT-PCR assay on growth-arrested IMR-90 

cells infected with dl309, JM17-55R, dl521 and dl312 using primers which recognize 

transcripts expressed from selected viral promoters (2, 24, 45). RNA was extracted from 

contact inhibited IMR-90 fibroblasts which had been infected with the viruses mentioned 

above for 24, 48, 72, 96,  
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FIG. 3-2. Determination of 55R E1A mRNA and protein expression kinetics in A549 

cells. A549 cells were infected with HAdV-2 at an MOI of 1. A) Cells were collected at 

24, 48, 72, 96 or 120 hpi for RT-PCR analysis of each E1A mRNA species. GAPDH was 

also analyzed as a loading control. B) Cells were grown on coverslips and were collected 

and fixed at 6, 24, 48 and 72 hpi. The larger E1A isoforms were labeled with the 

monoclonal E1A Ab M73, while 55R E1A was labeled with custom rabbit polyclonal 

anti-55R E1A Abs. Nuclei were stained with Hoechst 33342.  
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120 or 144 hpi. All samples were normalized internally to GAPDH and viral gene 

expression was compared to that observed for dl312-infected samples. 

dl309, which expresses all E1A isoforms, induced expression of E1B approximately 

10,000-fold relative to dl312 at 24 hpi. The level of transactivation induced by dl309 

reached a maximum of approximately 317 000-fold by 120 hpi. In comparison, JM17-

55R, which constitutively expresses only 55R E1A, resulted in only a 52-fold induction 

of E1B expression relative to dl312 24 hpi, with no appreciable increase as the infection 

progressed. In correlation with the expected expression kinetics of 55R E1A, the levels of 

E1B steadily increased during dl521 infection (harbors genomic E1A and splices only 

55R E1A) up to a maximum of 165-fold at 72 hpi (Fig. 3-3A). Thus, 55R E1A is able to 

induce expression of E1B to a modest extent when compared to wild-type E1A. In 

addition, the maximal degree of induction remains consistent whether 55R E1A is 

expressed constitutively from cDNA or requires splicing of the primary E1A transcript.  

The E2A transcript was induced later and to much lower levels compared to E1B during 

dl309 infection. This was expected based on the indirect mode of E2 promoter activation 

by E1A (3, 25-26, 43, 71). At 72 hpi, E2A was induced approximately 5-fold compared 

to dl312 infection. This level of induction remained relatively consistent until 144 hpi. 

During infection with viruses expressing 55R E1A only, E2A levels did not reliably 

increase above those observed in dl312 until 144  hpi and even then expression only 

reached 2- to 4-fold above background (Fig. 3-3B).  

Levels of E3A expression during dl309 infection ranged from approximately 26 000-fold 

at 24 hpi to 1.2-million fold at 48 hpi. Induction of E3A expression was much more 
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modest during infection with 55R E1A-expressing viruses. At 24 hpi, E3A was induced 

only 2- and 10-fold by JM17-55R and dl521, respectively. Maximum E3A induction 

reached 4000-fold at 96 hpi during dl521 infection and 2900-fold at 120 hpi during 

JM17-55R infection.  Again, both the kinetics and magnitude of E3A expression differed 

during infection with 55R E1A-expressing viruses when compared to dl309, expressing 

wildtype E1A (Fig. 3-3C). 

Unlike E3A, which was induced to much higher levels at 24 hpi by wildtype E1A virus 

than those expressing only 55R E1A, E4orf6/7 levels were comparable among all three 

viruses tested at this time point and were around 50-fold higher than those observed 

during dl312 infection. In this case, the kinetics of transcript expression were also similar 

among all three viruses and peaked at 120 hpi, although by this point transcript levels in 

dl309-infected cells were over three logs higher than those observed in cells infected with 

JM17-55R or dl521 (Fig. 3-3D). 

Finally, transactivation of the MLP was read out by assessing the levels of hexon mRNA 

expression induced by each virus. During dl309 infection, hexon transcript levels 

progressively increased from 46-fold above dl312 at 24 hpi to a maximum of 424 000-

fold above dl312 at 120 hpi. In comparison, hexon was induced only 7-fold by JM17-55R 

at 24 hpi, and not at all by dl521. By 96 hpi, dl521 had reached its maximum degree of 

hexon expression at 24 000-fold greater than dl312, while induction by JM17-55R 

reached a plateau of 800- to 900-fold at 96 and 120 hpi, respectively (Fig. 3-3E). 
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FIG. 3-3. Transactivation of viral genes by 55R E1A. A-E) Contact-inhibited primary 

IMR-90 fibroblasts were infected with dl309, JM17-55R, dl521 or dl312 at an MOI of 5. 

Cells were collected at 24, 48, 72, 96 or 120 hpi. Samples were subjected to qRT-PCR 

analysis using primers specific to transcripts controlled by various HAdV promoters 

including A) E1B, B) E2A, C) E3A, D) E4orf6/7 or E) Hexon. All samples were 

normalized internally to GAPDH and then to the levels of gene expression observed in 

dl312-infected cells using the ∆∆CT method.  
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Taken together, these results show that 55R E1A is able to transactivate the expression of 

viral genes. This was true in the case of both dl521, which contains genomic E1A but 

splices only the 9S product, and of JM17-55R, which carries 55R cDNA in an E1A-

deleted background. In each case, the levels of viral gene expression observed were 

distinct (and usually several log-fold lower at peak expression) from that of virus 

harboring wildtype E1A, as were the kinetics of gene expression. The ability of 55R E1A 

to transactivate viral genes is particularly interesting in light of the fact that 55R E1A 

does not contain any of the CRs present in the larger E1A isoforms. Further elucidation 

of the mechanism through which 55R accomplishes this feat will be of great interest. 

3.3.4 55R E1A is sufficient to promote replication of HAdV in 
Contact-Inhibited IMR-90 fibroblasts 

The observation that 55R E1A was able to transactivate expression of viral genes led us 

to investigate whether this E1A isoform could also promote virus growth when expressed 

alone in an E1A-deleted virus background. Contact-inhibited IMR-90 cells were infected 

with dl309, pm975, dl520, JM17-55R, dl521 or dl312 at an MOI of 5. Supernatants were 

collected at 4, 48 and 120 hpi and the yield of cell-free virus was assessed by plaque 

assay on HEK293 cells. In samples collected at 4 hpi, no more than 40 plaque-forming 

units (pfu/ml) were ever present and there was no significant difference between dl312 

and the viruses expressing various E1A proteins. Since growth was measured as fold-

change relative to dl312 (E1A-deleted virus), this demonstrated that washing of cells 1 h 

after adsorption efficiently removed residual virus particles and ensured that virus yield at 

later times was due to de novo virus replication (data not shown).  
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As expected, dl309 grew best on the contact-inhibited IMR-90 fibroblasts, followed by 

pm975. To our surprise, JM17-55R produced approximately 7-fold more virus than dl520 

at 48 hpi, while at 120 hpi this trend was reversed, with dl520 producing about 14-fold 

more virus than JM17-55R. dl521 grew to titres which closely resembled those reached 

by dl520 at both 48 and 120 hpi. Most importantly, viruses expressing only 55R E1A 

consistently exhibited a 30- to 2800-fold growth advantage compared to E1A-deleted 

virus, demonstrating that on its own, 55R E1A was sufficient to promote replication of 

HAdV in contact-inhibited IMR-90 (Fig. 3-4A).  Therefore, not only can 55R E1A 

transactivate expression of viral genes, it is also sufficient to promote viral replication. 

Due to the genetic organization of genomic E1A, it was not possible to construct a virus 

that lacks expression of only 55R E1A without inducing mutations in the other E1A 

isoforms. Such a strategy runs the serious risk of confounding the interpretation of results 

gathered from this type of approach due to the large numbers of proteins with which E1A 

interacts. Nevertheless, it was important to evaluate the impact of 55R E1A on virus 

growth in the context of the two major E1A isoforms, 289R and 243R. To accomplish 

this, we made use of a co-infection model, whereby growth arrested IMR-90 fibroblasts 

were infected with either pm975 or dl520, in combination with either dl521 or the E1A-

deleted dl312. Cells were infected with each virus at an MOI of 5, for a total MOI of 10. 

In combination with a virus expressing 289R E1A (pm975), co-infection with dl521 only 

moderately improved virus yield compared to co-infection with dl312. However, co-

infection of dl521 with a virus expressing only 243R E1A (dl520) resulted in 1-log 

growth increase relative to co-infection with dl312 at 48 hpi. This improved to a 2-log 

increase by 120 hpi (Fig. 3-4B). It is important to note that both pm975 and dl520 can, on 



130 

 

 

their own, produce 55R E1A. Thus, these results suggest that in combination with 289R 

E1A, endogenous levels of 55R E1A are sufficient to maximize virus replication in 

contact-inhibited IMR-90. However, in the context of 243R E1A, additional 55R E1A 

provided by co-infection with dl521 has a growth-promoting effect which implies a 

unique mechanism for the replication-promoting phenotype exhibited by 55R E1A. 
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FIG. 3-4. Replication of viruses expressing 55R E1A in contact-inhibited IMR-90 cells. 

A) Contact-inhibited primary IMR-90 cells were infected with dl309, pm975, dl520, 

JM17-55R, dl521 or dl312 at an MOI of 5. Supernatants were collected at 4, 48 or 120 

hpi and cell-free virus titres were determined by serial dilution on HEK293 cells. B) 

Contact-inhibited primary IMR-90 fibroblasts were infected with pm975 and dl312, 

pm975 and dl521, dl520 and dl312 or dl520 and dl521. Supernatants were collected at 4, 

48 and 120 hpi and the titres of cell-free virus were assayed as described in A). 
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3.3.5 55R interacts with the S8 component of the 19S regulatory 
proteasome 

Interaction of the major E1A isoforms with the APIS complex has been demonstrated 

previously and is known to be important in the ability of E1A to enhance transcription of 

early genes (45). Binding of E1A to the S4 and S8 components of APIS was initially 

mapped to amino acids 4-25 on the E1A protein (57). Later studies would show that S8 

could also be recruited by CR3 (45). In light of the fact that 55R E1A shares homology to 

the larger E1A isoforms in its first 28 amino acids, we sought to determine whether it too 

could interact with components of APIS and whether this interaction was important for 

its ability to enhance virus replication. 

To determine whether 55R E1A could interact with S4 and/or S8, A549 cells were 

transfected with a construct expressing either HA-S4, HA-S8 or were mock transfected as 

a control. Lysates from these cells were incubated with GST-purified HAdV-2 55R E1A 

which was pulled down with glutathione sepharose beads. Quite interestingly, we 

observed an interaction of GST-55R E1A with HA-S8, but not with HA-S4 (Fig. 3-5A). 

To confirm whether this interaction occurred in a more natural setting, we also 

cotransfected A549 cells with constructs expressing 55R-GFP or GFP alone with 

constructs expressing HA-S8. Indeed, 55R-GFP was able to pull down HA-S8, whereas 

GFP alone could not (Fig. 3-5B).  

To determine whether this interaction had functional consequences in the context of virus 

replication, we knocked down endogenous S8 in A549 cells using validated siRNA 

directed against S8. We infected cells with either dl312 or dl521 and normalized dl521 

growth to that observed using dl312 in cells treated with siRNA directed against S8 



133 

 

 

(siS8) or a scrambled siRNA control. This allowed us to control for any non-specific 

effects of S8 knockdown on virus growth. Interestingly, at 48 hpi dl521 growth in cells 

treated with siS8 was reduced 2-fold compared to cells treated with control siRNA (Fig. 

3-5C). This led us to conclude that the interaction of 55R E1A with S8 is functionally 

important in the ability of 55R E1A to promote virus replication. While the specific 

mechanism for the replication-promoting phenotype of the 55R E1A-S8 interaction 

remains to be elucidated, it is likely that it is important in the ability of 55R E1A to 

transactivate viral genes, analogous to the larger E1A isoforms. 

3.4 Discussion 

Despite discovery of the 9S mRNA species over 30 years ago, the protein that it encodes, 

as well as the function of that protein has remained completely elusive. Early studies 

successfully demonstrated that the 9S mRNA product is processed preferentially at late 

times post-infection, and that this shift in splice site preference seems to require viral 

DNA replication (8, 53-54, 59, 66). Unfortunately, the kinetics of 55R E1A protein 

expression could not be assessed at that time. To our knowledge, none of the abundant 

E1A-directed Abs generated since that time have been able to specifically detect the 55R 

E1A protein. This limitation has severely hampered efforts to biochemically and 

functionally characterize this E1A species. 

To address this important issue, we generated polyclonal rabbit Abs against a peptide 

corresponding to amino acids 43-55 of the unique C-terminal region of the 55R E1A 

protein from HAdV-2. We demonstrated that these Abs specifically recognized GST-

purified 55R E1A from HAdV-2, but not from the closely related HAdV-5 55R E1A or  
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FIG. 3-5. Interaction and consequences of 55R E1A interaction with the APIS component 

S8. A) Lysates were prepared from A549 cells transiently transfected with constructs 

expressing either HA-S8 or HA-S4. Lysates were incubated with GST-purified 55R E1A 

and complexes were pulled down using glutathione sepharose beads. Membrane was 

probed with anti-HA (3F10). B) Lysates were prepared from A549 cells transiently 

transfected with constructs expressing HA-S8 and either 55R-GFP or GFP alone. 

Complexes were immunopreciptated using rabbit polyclonal anti-55R Abs and Protein A 

sepharose beads. Membrane was probed with anti-HA (3F10). C) A549 cells were treated 

with scrambled siRNA or siRNA directed against S8. These cells were infected with 

either dl521 or dl312 and supernatants were collected 48 hpi. Virus titres were 

determined by serial dilution of supernatants on HEK293cells.  
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the equivalent, but more distantly-related 53R E1A protein encoded by HAdV-12 (Fig. 3-

1C). The utility of these Abs was demonstrated in western blot, immunoprecipitation and 

indirect immunofluorescence assays (Fig. 3-1C-E). We are convinced that the 

development of this extremely valuable tool will aid in the further study of the HAdV-2 

55R E1A protein, especially given the breadth of assays for which it is useful. 

We next set out to finally reconcile earlier studies which have described the kinetics of 

9S mRNA expression with the kinetics of 55R E1A protein expression. In agreement 

with earlier studies performed on other cell lines, 9S mRNA expression was observed at 

late times post-infection of A549 cells (48-96 hpi, Fig. 3-2A) (58-59). Co-staining of the 

larger E1A isoforms and 55R E1A yielded two interesting and important findings. Firstly, 

the kinetics of 55R E1A protein expression match nicely with the kinetics of 9S mRNA 

expression that we observed in A549 cells. Secondly, 55R E1A was found to localize 

primarily to the nucleus, similar to the larger E1A isoforms, despite the fact that it lacks 

the NLS present in the larger proteins (Fig. 3-2B). The ability of 55R E1A to enter the 

nucleus may be explained by the fact that molecules less than 40 kDa in size are able to 

pass relatively freely through the NPC (61). 55R E1A falls well below this limit, with a 

predicted MW of approximately 6 kDa. Once in the nucleus, 55R E1A is likely enriched 

and retained there by binding to cellular partners also present in the nucleus. 

The localization of E1A in the nucleus led us to investigate whether, akin to the larger 

E1A isoforms, 55R E1A had any role in transactivation of viral genes. This is one of the 

two major functions of E1A, the other of course being the induction of S-phase. Early 

studies have yielded some peripheral observations regarding the effects (or lack thereof) 
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of 55R E1A on the host cell, but none have examined the role of 55R E1A on viral 

replication directly. For example, dl521 was not able to transform either cloned rat 

embryo fibroblasts or baby rat kidney cells (16). This is not surprising given that it lacks 

several regions known to be essential for transformation by the larger E1A proteins. In 

addition, the 289R and 243R E1A isoforms have long been known to cause the cyt and 

deg phenotypes (later recognized to be apoptosis) in the absence of E1B 19K. 

Conversely, virus expressing 55R E1A in the absence of E1B 19K failed to produce this 

phenotype (64). E1A-induced apoptosis has been attributed to the ability of E1A to bind 

p300 and pRb, key regulators of E2F1-induced apoptosis (44). The regions required for 

binding of these factors are missing from the 55R E1A isoform. Similar work examining 

the role of E1B 19K in regulating early gene expression hinted at some interesting 

properties of a virus carrying 9S cDNA in an E1A-deleted background. Namely, while 

E1B 19K repressed viral gene expression in HeLa cells infected with 13S and 12S cDNA 

viruses, it had a stimulatory effect on early gene expression in cells infected with a 9S 

cDNA virus (63-64). While the particular reasons for this phenotype remain unclear, they 

led us to wonder whether 55R E1A could also transactivate viral gene expression in 

contact-inhibited, primary IMR-90 cells.  

Indeed, our studies showed that viruses expressing only 55R E1A were sufficient to 

transactivate expression of both early and late viral genes. While the kinetics and 

magnitude of this transactivation varied from gene-to-gene, as expected, the maximal 

levels of expression induced were consistently lower than virus expressing wildtype E1A 

(Fig. 3-3). The transactivating properties of 289R and 243R E1A have been studied quite 

extensively. The difference in phenotypes induced by 289R and 243R E1A have been 
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attributed to the presence of CR3 in the 289R protein, which itself serves as a potent 

transcriptional activation domain (31). As mentioned earlier, the ability of CR3 to 

activate transcription relies heavily on its association with MED23, a component of the 

mediator complex (1, 7, 13, 30, 60). CR1, 2 and 4 are then responsible for many of the 

properties exhibited by 243R E1A, including those common to 289R E1A, through 

mediating interactions with a variety of cellular factors including: pRb (21, 32, 65), 

p300/CBP (37, 69), TRRAP (9), BS69 (17, 22), UBC9 (18, 70) and CtBP (6, 50). As 55R 

E1A does not contain any of the CRs, the mechanism through which it is able to 

transactivate viral genes remains of great interest. This may be mediated in part through 

interactions with proteins known to bind within the first 28 amino acids of E1A which are 

conserved in 55R. In addition, it is highly probable that 55R E1A interacts with novel 

partners through its unique 27 C-terminal amino acids. This region is predicted to be 

unstructured and does not contain any easily recognizable domains which would help 

predict binding partners or function. An in-depth, systematic characterization of this 

region will be the focus of intense future studies. 

While the ability of 55R E1A to stimulate expression of viral genes in contact-inhibited 

IMR-90 cells was highly interesting, it did not guarantee that the virus could replicate 

productively under these conditions. It is known that E1A-deleted viruses can undergo 

low level replication in transformed cell lines. However, E1A-null viruses replicate 

extremely poorly in primary, growth arrested cells unless infected at extremely high 

MOIs (36). Therefore, we assessed the replication of HAdVs expressing various 

combinations of E1A proteins in growth-arrested, primary IMR-90 cells infected at an 

MOI of 5. In all cases, replication was normalized to that observed during infection with 
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dl312 (an E1A-null virus) such that any growth above this level could be attributed to a 

replication-promoting role for the respective E1A protein(s) carried by each virus. As 

expected, dl309 harboring wildtype genomic E1A replicated to the highest titres at both 

48 and 120 hpi. This was followed by pm975, which expresses 289R, but not 243R E1A. 

dl520, which expresses 243R E1A, but not 289R E1A, grew approximately 2- to 3-logs 

better than dl312-infected virus at 48 and 120 hpi, respectively. Surprisingly, JM17-55R 

carrying 9S cDNA in an E1A-deleted background, and dl521 grew to equivalent, and in 

some cases, higher titres than dl520 (Fig. 3-4A). Again, this was unexpected given the 

lack of CRs present in 55R E1A and coupled with the observation that it does not have 

the potent transforming effects on cells of its larger counterparts (16). The differences 

observed in the growth of JM17-55R and dl521 likely reflect both the expression level 

and kinetics of 55R E1A. While both viruses express 55R E1A under the control of the 

E1 promoter, it is expressed constitutively by JM17-55R and must be spliced from 

genomic E1A during infection with dl521. 

During natural infection, 55R E1A is not expressed alone, but in the context of the other 

E1A isoforms. Therefore, it was important for us to examine the effect of 55R E1A on 

virus replication in the presence of the larger E1A proteins. Co-infection experiments 

revealed that infection of cells with pm975 and dl521 did not enhance virus replication 

beyond that observed in cells infected with pm975 and dl312. This suggests that the 

endogenous levels of 55R E1A produced by pm975 are sufficient to maximize virus 

replication in combination with 289R E1A. However, co-infection of cells with dl520 and 

dl521 enhanced virus titres 1- to 2-logs relative to cells infected with dl520 and dl312 at 

48 and 120 hpi, respectively. These results indicate that in the context of 243R E1A, 
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addition of exogenous 55R E1A can enhance virus replication (Fig. 3-4B). This 

observation is especially intriguing given that 243R E1A causes only low levels of viral 

gene transactivation on its own, while 289R can by itself activate viral gene expression to 

wildtype levels (34, 67). Together, these observations lend even more strength to the 

evidence that 55R E1A directly and actively transactivates expression of viral genes, 

which promotes productive virus replication. 

Finally, we determined that like 289R and 243R E1A, 55R E1A was able to bind S8, a 

regulatory component of the 26S proteasome and member of the APIS complex. This is 

the first reported cellular binding partner of 55R E1A (Fig. 3-5A, B). The binding site for 

S8 was originally mapped to residues 4-25 of E1A (57). These residues are conserved in 

the 55R E1A isoform. S4, another member of APIS, was also found to bind residues 4-25 

of E1A. Notably, 55R E1A does not appear to bind this APIS subunit (57). The reason 

for this selectivity is unclear but may a result of an inhibitory effect exerted by the C-

terminus of 55R E1A on the binding of S4. Alternatively, binding to S4 may be promoted 

by regions of the larger E1A proteins not present in 55R E1A. 

Further studies determined that S8 can also bind to CR3. CR3 could recruit S8 to early 

viral promoters which in turn stimulated the transactivation activity of CR3. On the other 

hand, inhibition of proteasome function was detrimental to the ability of CR3 to 

transactivate viral genes. Unfortunately, the result of proteasome inhibition on virus 

growth was not evaluated (45). Despite the fact that 55R E1A does not contain CR3, we 

hypothesized that its interaction with S8 might have a similar functional outcome and that 

this outcome should impact virus replication if important. Knockdown of S8 reduced 
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growth of dl521 2-fold by 48 hpi in A549 cells (Fig. 3-5C). Since growth was normalized 

to dl312, this effect could be fully attributed to the effect of S8 knockdown on the 

function of 55R E1A. Therefore, in addition to identifying the first binding partner of 

55R E1A, we have also determined that this interaction is important for its transactivating 

and growth promoting activities. 

In summary, we have developed the first Abs capable of specifically recognizing the 55R 

E1A isoform of HAdV-2. These antibodies could be used for detection of 55R E1A by 

western blot, immunoprecipitation and indirect immunofluorescence. This is the first 

report describing the kinetics of 55R E1A protein expression, which was done in parallel 

with the expression kinetics of 9S mRNA. We have discovered that like the larger E1A 

isoforms, 55R E1A is localized predominantly in the nucleus of host cells, despite the 

fact that it lacks the NLS present in the larger E1A proteins. 55R E1A was able to 

transactivate viral genes in contact-inhibited IMR-90 cells, and was sufficient to promote 

replication of the virus in these same cells. We have identified the first binding partner of 

55R E1A in S8, a component of APIS. This interaction is presumed to occur through 

amino acids 4-25, also present in the larger E1A proteins. Interestingly, 55R E1A 

demonstrates a unique specificity in this regard, and does not bind to S4, which was also 

shown to interact with the larger E1A isoforms through amino acids 4-25. Knockdown of 

S8 had a detrimental effect of growth of dl521, a virus which expresses only the 55R 

E1A isoform. Therefore, this interaction is likely to be important in mediating the 

transactivating and replication-promoting properties of 55R E1A. We believe that this 

study represents an extremely important contribution to the E1A field and in the 

understanding of AdV biology in general. This is the first report to observe and 
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functionally characterize 55R E1A since its discovery over 30 years ago. Further studies 

focused on unraveling the mechanism of 55R E1A-mediated viral gene transactivation 

and of its growth promoting properties will be important in understanding novel 

mechanisms controlling viral gene regulation. In addition, identification of putative 

binding partners of the unique C-terminal region of 55R E1A is likely to enhance our 

understanding of the interactions of HAdV with host cells, and more specifically, the 

E1A-mediated events that are important at late times post-infection. 
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Chapter 4 
 

RASCAL IS A NEW HUMAN CYTOMEGALOVIRUS-
ENCODED PROTEIN THAT LOCALIZES TO THE 

NUCLEAR LAMINA AND IN CYTOPLASMIC VESICLES AT 
LATE TIMES POST-INFECTION 

4.1 Introduction 

CMV is a highly prevalent betaherpesvirus that can cause severe multiorgan disease in 

immunocompromised individuals (45). The ability of this virus to infect an exceptionally 

wide variety of different cell types substantially contributes to pathogenesis (5, 68). CMV 

tropism is largely determined by a finely tuned interplay between cellular and viral 

factors, many of which act at the earliest stages of infection (30, 68). We recently showed 

that the cellular protein vimentin is required for efficient onset of infection in primary 

human foreskin fibroblasts (HF). Interestingly, the degree of reliance on the presence and 

integrity of vimentin intermediate filaments is dependent on the virus strain, with the 

broadly tropic strain TB40/E being more negatively affected than the HF-adapted, 

attenuated strain AD169 (44).  

Serial passage of clinical isolates in HF or in EC has produced strains with different 

tropisms. The attenuated strains AD169 and Towne were developed as vaccine 

candidates by propagation in HF for more than 50 (AD169) and 125 (Towne) serial 

passages (19, 53, 61). During this process, both strains, compared to clinical isolates, 

accumulated multiple mutations and genomic deletions, resulting in the loss of more than 

19 ORFs (8). The number of serial passages in HF of another commonly used strain, 

Toledo, has been more moderate (19, 54, 58). This, however, did not prevent the 
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emergence of numerous genomic mutations, including the inversion of a 15-kb fragment 

(8, 16, 56). As a consequence of these changes, productive infections by AD169, Towne, 

and Toledo are largely restricted to HF. In contrast, propagation of clinical isolates in EC 

has yielded a series of strains with more-intact genomes and broader tropisms, such as 

TB40/E, VHL/E, and FIX (VR1814) (25, 60, 71). These strains retain the ability to grow 

in a wider variety of cell types, including EC, epithelial cells, and DC, in addition to HF 

(23, 28, 59, 60, 68).  

The UL128, UL130, and UL131A gene products were recently identified as essential 

mediators of CMV infection of EC and epithelial cells (26, 72, 73) and of virus transfer 

from infected EC to monocyte-derived DC (23). Each of these proteins is independently 

required for the broader tropisms of EC-propagated CMV isolates (63, 64), and the 

presence of mutations affecting their functionality has been directly linked to the inability 

of AD169, Towne, and Toledo to initiate productive infections in EC and epithelial cells 

(26, 72, 73). We have shown that mature Langerhans-type DC differentiated in vitro from 

CD34
+
 hematopoietic progenitor cells are highly permissive to direct infection with 

TB40/E or VHL/E, with 48 to 72% of cells in culture expressing the viral immediate-

early genes IE1 and IE2 at 48 hpi (28). In contrast, only 2 to 5% and 0% of mature 

Langerhans cells were IE1/IE2 positive after exposure to Towne and Toledo, 

respectively. However, productive infection was detected in 12 to 17% of cells infected 

with AD169, despite the fact that this strain lacks expression of the UL131A gene as a 

consequence of a frameshift mutation (26). These results suggested the existence of 

additional viral genes with products involved in mediating tropisms for specific cell 

types, such as DC. To identify possible candidates, we compared the amino acid 
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sequence of each ORF found in the genome of TB40-BAC4, a sequenced clone of the 

TB40/E strain in a bacterial artificial chromosome (BAC) (GenBank accession number 

EF999921) (69), to the sequence of each ORF found in AD169 and AD169- BAC 

(accession numbers X17403 and AC146999) (10, 49), Towne and Towne-BAC 

(accession numbers FJ616285, AC146851, and AY315197) (17, 18, 49), and Toledo-

BAC (accession number AC146905) (49). The product of a putative ORF, originally 

identified by Murphy et al. and named c-ORF29 (49), was considered of particular 

interest because the amino acid sequence of the putative protein encoded by Toledo and 

Towne was extended by 79 residues compared to the putative protein encoded by TB40/E 

and AD169. This led to our speculation that that the extended version might result in a 

nonfunctional version of the c-ORF29-encoded protein. We thus focused our studies on 

the products of this ORF. 

Here, we show for the first time that CMV c-ORF29 encodes a protein expressed at early 

to late times postinfection and localizes to the nuclear rim in peculiar invaginations of the 

nuclear lamina and in cytoplasmic vesicular structures at late times p.i. Based on this 

localization pattern, we named this gene product nuclear rim-associated cytomegaloviral 

protein, or RASCAL. Surprisingly, no difference was observed in the distributions of 

RASCAL during infection of HF with TB40/E or Towne, suggesting that the intracellular 

trafficking of this protein is not affected by the presence of the additional residues at the 

C terminus of RASCAL from strain Towne (RASCALTowne). Ectopic expression of 

RASCAL in human embryo kidney 293T (HEK293T) cells further revealed that this 

protein requires the presence of the NEC member UL50 to reach the nuclear rim, while 

coimmunoprecipitation (co-IP) assays provided evidence for the existence of an 
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interaction between RASCAL and UL50. These findings suggest that RASCAL may be a 

new component of the NEC with possible roles in remodeling the nuclear lamina during 

nucleocapsid egress from the nucleus. 

4.2 Materials & Methods 

4.2.1 In silico analysis 

RASCAL amino acid sequences were analyzed using the following programs: ClustalW2 

(32), NetPhosK (4), NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/), SignalP3.0 

(2), Kyte-Doolittle hydropathy plot (31), TMpred 

(http://www.ch.embnet.org/software/TMPRED_form.html), TopPred II (11), dense 

alignment surface (DAS) (13), ESLpred (3), HSLpred (22), TargetP1.1(20), and SubLoc 

v1.0 (29). 

4.2.2 Cells and virus 

 HF and HEK293T cells were gifts of E. S. Mocarski, Emory University, Atlanta, GA, 

and were propagated in Dulbecco’s modified Eagle medium supplemented with 10% 

fetal clone serum III (HyClone), 100 U/ml penicillin, 100 µg/ml streptomycin, 4 mM 

HEPES, and 1 mM sodium pyruvate(all from Gibco Invitrogen Corp.). HF were used 

between passages 17 and 27 postisolation. Human CMV strains AD169varATCC and 

TB40/E and the green fluorescent protein (GFP)-tagged derivative of TownevarRIT3, 

Towne/GFP-IE2 (J. Xu, D. Formankova, and E. S. Mocarski, unpublished), were 

originally obtained from the American Type Culture Collection, from C. Sinzger 
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(Tübingen, Germany), and from E. S. Mocarski (Emory University, Atlanta, GA), 

respectively. Propagation and purification of all strains were performed as previously 

described (28). 

4.2.3 HF infection and cell transfection 

HF were plated at a density of 5 × 10
4 

cells/cm
2
 3 days prior to exposure to AD169, 

TB40/E, or Towne/GFP-IE2 at a multiplicity of infection (MOI) of 3 or 5. Mock-infected 

samples were exposed to culture medium alone. After virus adsorption at 37°C in 5% 

CO2 for 1 h, the inoculum was removed, and cells were washed three times with medium 

prior to incubation in fresh medium until they were harvested at different times p.i. For 

phosphonoformic acid (PFA) treatment, HF were exposed to Towne/GFP-IE2 (MOI of 3) 

for 1 h at 37°C, washed, and further incubated in fresh culture medium containing 300 

µg/ml of PFA (Sigma, St. Louis, MO). HEK293T cell transfection was performed using 

PolyFect (Qiagen) as per the manufacturer’s guidelines. 

4.2.4 mRNA isolation and RT-PCR 

mRNA was isolated from mock-, TB40/E-, or Towne/GFP-IE2-infected HF using the 

µMACS mRNA isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). First-

strand cDNA synthesis was performed using SuperScript III reverse transcriptase 

according to the manufacturer’s guidelines (Gibco Invitrogen Corp.). c-ORF29 TB40/E 

was amplified with the forward primer GCGGATCCTAATGGGGGAACGCC (labeled a 

> in Fig. 2A,top) and the reverse primer GTGGATCCAGAGATGCGGAAAAGCC 

(labeled <b in Fig. 2A, top),  c-ORF29 Towne was amplified with the forward primer 
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GCGGATCCTAATGGGGGAACGCC (labeled a > in Fig. 2A, top) and the reverse 

primer CCTCGAGAAAAGCACGCAAGC (labeled <c in Fig. 2A, top), vimentin was 

amplified with the forward primer CGGATCCATGTCCACCAG and the reverse primer 

CGAATTCTTCAAGGTCAT, UL99 was amplified with the forward primer 

CGGATCCATGGGTGGCGAACTCT and the reverse primer 

GGATATCTGAAAGGACAAGGGGGCG, and β-actin cDNA was amplified with the 

forward primer GGTCATCACCATTGGCAATGAGCGG and the reverse primer 

GGACTCGTCATACTCCTGCTTGCTG. 

4.2.5 Plasmid construction 

L-RASCALTB40/E (where the prefix “L” stands for LNCX) was generated by excising 

GFP from LNCX-GFP (LGFP) (36) using EcoRI and EcoRV and by replacing it with the 

RASCALTB40/E sequence amplified by PCR using a forward primer containing the 

EcoRI restriction site (GGAATTCATGGGGGAACGCCGTGTG) and a reverse primer 

containing the RASCALTB40/E stop codon and the EcoRV restriction site 

(GCGATATCTTAAGATGCGGAAAAGCCA). L-RASCALTB40/E-GFP was generated by 

cloning RASCALTB40/E, lacking its stop codon, in frame with the N terminus of GFP 

using the EcoRI and BamHI restriction sites present in LGFP. The forward primer used 

to make L-RASCALTB40/E-GFP was the same as that used to make L-RASCALTB40/E. 

The reverse primer (GTGGATCCAGAGATGCGGAAAAGCC) contained a BamHI 

restriction site and was designed to remove the RASCAL stop codon. Hemagglutinin-

tagged LNCX UL50 (LNCX UL50-HA) was generated by amplifying the UL50 

sequence from cDNA populations derived from AD169-infected HF using the forward 
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primer AGAATTCATGGAGATGAACAAGGTT, containing an EcoRI restriction site, 

and the reverse primer 

TTTTGTCGACTCAAGCGTAATCTGGAACATCGTATGGGTAGTCGCGGTGTGCG

GAG, containing the HA tag nucleotide sequence. This PCR product was cloned into the 

pSC-B vector (Stratagene, La Jolla, CA) and subsequently excised using EcoRI before 

being ligated into the EcoRI restriction site of LNCX (43). FLAG- tagged L-UL53 (L-

UL53-FLAG) was created by amplifying the UL53 sequence from cDNA populations 

derived from TB40/E-infected HF using the forward primer 

AGAATTCATGTCTAGCGTGAGCG, containing the EcoRI restriction site, and the 

reverse primer 

TTTTGTCGACTCACTTGTCATCGTCGTCCTTGTAGTCAGGCGCACGAATGCTG

TTGA, containing the FLAG tag nucleotide sequence and the SalI restriction site. The 

UL53-FLAG PCR product was ligated into the EcoRI and SalI sites of LGFP after 

excision of the GFP coding sequence. 

4.2.6 Generation of anti-RASCAL Abs 

Polyclonal rabbit antibodies (Abs) were raised by ProSci Inc. (Poway, CA) against the 

RASCAL peptide YAPFDSHRRHVSELRGHRD conjugated to the keyhole limpet 

hemocyanin. Abs were affinity purified and were provided at a final concentration of 1.7 

mg/ml. 
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4.2.7 Immunoblot analysis 

Cell pellets from mock-, TB40/E-, or Towne/GFP-IE2-infected HF and from HEK293T 

cells nontransfected or transiently transfected with L-RASCALTB40/E-GFP or with L-

RASCALTB40/E were resuspended in 3% sodium dodecyl sulfate (SDS) lysis buffer 

containing 125 mM Tris-HCl (pH 6.8), 3% SDS, 10 mM dithiothreitol, 0.4 mM 

phenylmethylsulfonyl fluoride, and complete EDTA-free protease inhibitor cocktail 

(Roche). Cell lysates were boiled at 100°C for 5 min, and cell debris were eliminated by 

centrifugation at 16,100 × g for 3 min. Protein concentrations were determined with the 

DC protein assay kit (Bio-Rad). Protein extracts were then separated by electrophoresis 

on a 15% SDS-polyacrylamide gel and transferred to polyvinylidene difluoride 

membranes. Membranes were blocked overnight at 4°C in blocking buffer containing 10 

mM Tris-Cl (pH 7.5), 100 mM NaCl, 5% milk powder, 0.1% Tween 20 prior to 

incubation with rabbit anti-RASCAL Abs (1:1,000) or with mouse anti-HA Abs (1:1,000) 

for 1 h at room temperature (RT). Membranes were rinsed in wash buffer (10 mM Tris-Cl 

[pH 8.0], 150 mM NaCl, and 0.05% Tween 20) and were incubated with horseradish 

peroxidase-conjugated goat anti-rabbit IgG (1:4,000; Vector Laboratories) or goat anti-

mouse IgG (1:5,000; Vector Laboratories) for 1 h at RT. For reprobing, membranes were 

incubated in 62.5 mM Tris-Cl (pH 6.8), 100 mM β-mercaptoethanol, and 2% SDS at 

50°C for 30 min, rinsed with phosphate-buffered saline (PBS) containing 0.1% Tween 

20, blocked overnight at 4°C, and incubated with preimmune rabbit serum (1:1,000) 

followed by horseradish peroxidase-conjugated goat anti-rabbit IgG (1:4,000), both for 1 
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h at RT. Signal was developed by enhanced chemiluminescence (ECL plus kit; GE 

Healthcare). 

4.2.8 Co-immunoprecipitation assays 

HEK293T cells were transfected with LNCX (control) or were cotransfected with L-

RASCALTB40/E and LNCX UL50-HA at a 1:3 molar ratio or with LNCX UL50-HA and 

L-UL53-FLAG at a 1:1 molar ratio in T25 flasks. At 24 h posttransfection, cells were 

harvested in 500 µl of co-IP buffer containing 50 mM Tris-HCl (pH 8), 100 mM NaCl, 5 

mM EDTA, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride, and complete EDTA-

free protease inhibitor cocktail (Roche) prior to the addition of 5 µg of mouse monoclonal 

anti-HA Abs (Invitrogen) or of polyclonal anti-RASCAL Abs for 2 h at 4°C under 

rotation. Extracts were incubated with 100 µl of protein A-Sepharose bead slurry (Sigma) 

for 2 h at 4°C, pelleted, washed in lysis buffer containing 200 mM NaCl, and subjected to 

immunoblot analysis as described above. 

4.2.9 Immunofluorescence staining analysis 

Cells were fixed in 3.7% paraformaldehyde (Fisher Chemicals, Fairlawn, NJ) for 30 min 

at RT, permeabilized in 0.2% Triton X-100 (USB Corporation, Cleveland, OH) for 20 

min on ice, and blocked in 100% horse serum (HS; PML Microbiologicals, Wilsonville, 

OR) for 30 min at RT. Cells were then incubated with rabbit polyclonal anti-RASCAL 

Abs (1:500) alone or in combination with monoclonal Abs directed against the FLAG tag 

(1:1,000; clone M2; Sigma, St. Louis, MO), the HA tag (1:500; Invitrogen), IE1/IE2 

(1:500; fluorescein isothiocyanate [FITC]-conjugated MAb810F; Chemicon, Temecula, 
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CA), lamin B (1:50; Santa Cruz Biotechnology, Santa Cruz, CA), or lamin A/C (1:50; 

Santa Cruz Biotechnology, Santa Cruz, CA). Samples were washed in PBS-0.05% Tween 

20 prior to incubation with Alexa Fluor 594-conjugated goat anti-rabbit IgG Abs (1:500; 

Molecular Probes, Eugene, OR) alone or in combination with FITC-conjugated goat anti-

mouse IgG Abs (1:100; Invitrogen, Carlsbad, CA). For control stainings, cells were 

incubated with preimmune sera diluted 1:500 in 100% HS. For dual staining of cells 

expressing UL50-HA and UL53-FLAG, samples were incubated with mouse monoclonal 

anti-FLAG Abs and rabbit polyclonal anti-HA Abs (1:500; Zymed), followed by FITC-

conjugated goat anti-mouse IgG Abs and Alexa Fluor 594-conjugated goat anti-rabbit 

IgG Abs. All Abs were diluted in 100% HS and were incubated on samples for 1 h at RT. 

Nuclei were labeled with Hoechst 33342 (0.2 mg/ml; Molecular Probes, Eugene, OR) for 

3 min at RT and were mounted in 90% glycerol-10% PBS containing 2.5 g/liter of 1,4- 

diazabicyclo(2,2,2)octane (DABCO; Alfa Aesar, Pelham, NH). Samples were analyzed 

on a Zeiss Axioskop2 magneto-optical trap fluorescence microscope equipped with a 

QImaging Retiga 1300-coded monochrome 12-bit camera. Images were captured and 

pseudocolored using Northern Eclipse version 7.0 software. Confocal images were 

acquired on a Zeiss LSM 510 META ConfoCor2 confocal laser scanning microscope 

equipped with Zeiss LSM 510 META image processing software. 
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4.3 Results 

4.3.1 Identification of the ORF encoding RASCAL and in silico 

analysis of the predicted amino acid sequence 

The genomic region of TB40-BAC4 corresponding to nucleotides 9100 to 11200 was 

screened for the presence of ORFs with the potential to encode proteins of at least 80 

amino acids (aa) and containing a 5’ATG codon. One ORF of 294 nucleotides encoding a 

putative protein of 97 aa was found. As described for c-ORF29 (48, 49), the sequence of 

this ORF was located on the negative strand of the genome (nucleotides 9855 to 10148 in 

TB40-BAC4) and partially overlapped (206 nucleotides) the 5’ end of the US17 gene 

(Fig. 1A, left). An ortholog of this ORF was found in the Towne-BAC genome, spanning 

nucleotides 199167 to 199697 (in GenBank accession no. AY315197) and overlapping 

the 5’ end of the US17 gene by 442 nucleotides (Fig. 4-1A, right). In contrast to what was 

previously reported for c-ORF29 (48, 49), however, searches of the nonredundant 

nucleotide collection databases using the BLASTN algorithm failed to reveal the 

presence of a full-length c-ORF29 ortholog in the genome of chimpanzee CMV. A 

ClustalW2 global alignment of the predicted amino acid sequence of c-ORF29 from 

strain TB40-BAC4 (RASCALTB40/E) with sequences from 13 other human CMV strains 

showed that RASCAL is highly conserved and that not only strains Towne and Toledo, 

but also two new CMV strains, HAN20 and HAN38, carry a longer version of this 

protein, containing 79 additional amino acids (Fig. 4-1B). No significant homology 
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between either isoform of RASCAL and proteins of cellular or viral origin was detected 

in extensive searches of multiple amino acid sequence databases. 

Two potential phosphorylation sites with scores greater than 80% were identified in 

RASCALTB40/E by the NetPhosK software, one of which was specific for protein kinase C 

(PKC) at Thr 48 and the other for protein kinase A (PKA) at Ser 65. One additional site 

for PKA was found in the longer version of the protein at Ser 103 (Fig. 4-1B). A single 

potential N-glycosylation site was detected by the NetNGlyc software at residue Asn 17 

(Fig. 4-1B). However, the SignalP3.0 algorithm failed to predict the presence of a signal 

sequence at the N terminus of RASCAL, suggesting that this protein may not be 

recognized by the glycosylation machinery in vivo. 

A Kyte-Doolittle hydropathy plot of RASCALTB40/E revealed the presence of two regions 

of at least 17 aa with overall hydrophobicity values greater than 1, one located at the N 

terminus (aa 6 to 24) and the other at the C terminus (aa 79 to 97) (Fig. 4-1C, left, shaded 

boxes). Both were predicted to contain a transmembrane domain (TMD) by three protein 

topology prediction algorithms, TMpred, TopPred II, and DAS. The amino acid 

sequences of these putative TMDs are highly conserved in all strains (Fig. 4-1B, black 

lines). Although strains Merlin, JP, and HAN13 carry a single amino acid replacement of 

Leu 12 with Ile, HAN38 carries a Leu 13-to-Ser substitution, and 3301 carries a Val 6-to-

Met substitution, none of these changes altered the outcome of the predictions. Two 

additional hydrophobic regions consisting of more than 17 aa were detected in 

RASCALTowne (Fig. 4-1C, right, boxes with dashed borders), but neither was predicted to 

be a TMD by all three software programs. 
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4.3.2 RASCAL expression in infected and transfected cells 

To determine if c-ORF29 was expressed during infection, we performed reverse 

transcriptase-PCR (RT-PCR) analyses of mRNA extracts from mock-, TB40/E-, or 

Towne/GFP-IE2-infected HF using the primers schematically depicted in the top panel of 

Fig. 4-2A. A single product of approximately 300 nucleotides was detected in extracts 

from TB40/E-infected cells amplified with primers a > and < b (Fig. 4-2A, bottom). 

Mock-infected samples and control reaction mixtures lacking the cDNA template were 

negative (Fig. 4-2A, bottom, and data not shown). Although the sequence of primer < c is 

complementary to nucleotides 9621 to 9624 of the TB40/E genome, no product was 

obtained when the same extracts were amplified with primers a > and < c (not shown), 

suggesting that no transcript spanning the region between these primers was produced in 

cells infected with TB40/E. In contrast, a single product of about 550 nucleotides was 

observed in extracts from Towne/GFP-IE2-infected cells amplified using primers a > and 

< c (not shown). Sequence analysis of this PCR product confirmed the presence of a T-to-

C mutation at position 292, resulting in the conversion of a TAA stop codon into a CAA 

codon coding for the amino acid Gln.  RT-PCR analyses of mRNA extracts from HF 

infected with TB40/E in the presence of PFA revealed that c-ORF29 expression was 

reduced, but not completely abrogated, in the absence of viral DNA replication (Fig. 4-

2B). In contrast, no expression of the true late gene UL99 was detected in PFA-treated 

cells (Fig. 4-2B). Together, these data indicate that c-ORF29 is transcribed with early-late 

kinetics during infection and confirm that the Towne strain carries a longer version of this 

ORF. 
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To determine if c-ORF29 did encode a protein, affinity-purified, polyclonal rabbit Abs 

were raised against residues 21 to 39 of the predicted RASCALTB40/E amino acid 

sequence. The specificities of these Abs were tested using Western blot analyses of 

protein extracts from HEK293T cells transiently transfected with expression plasmids 

encoding RASCALTB40/E only or RASCALTB40/E fused to the N terminus of the GFP 

amino acid sequence (RASCALTB40/E-GFP). Two proteins with expected molecular masses 

of approximately 11 kDa (Fig. 4-2C, asterisk) and 38 kDa (Fig. 4-2C, arrowhead) were 

detected in extracts from cells transfected with expression plasmids encoding 

RASCALTB40/E and RASCALTB40/E-GFP, respectively. These proteins were not recognized 

by the anti-RASCAL Abs in extracts from nontransfected cells (Fig. 4-2C) or by the 

preimmune serum (not shown). Moreover, the 38-kDa protein was also specifically 

detected in membranes reprobed with anti-GFP monoclonal Abs (not shown), indicating 

that this polypeptide did contain both the RASCAL and the GFP epitopes. Two additional 

bands of 15 and 20 kDa were observed in extracts from both transfected and 

nontransfected cells and were considered to be cellular proteins nonspecifically 

recognized by the anti-RASCAL Abs. Finally, two products with molecular masses of 

less than 15 kDa were observed exclusively in cells expressing RASCALTB40/E-GFP, 

suggesting that they might correspond to degradation products of the fusion protein. 

To assess if RASCAL was expressed in CMV-infected cells, protein extracts from mock-, 

TB40/E-, and Towne/GFP-IE2-infected HF were separated by SDS-polyacrylamide gel 

electrophoresis (PAGE). The same membrane was probed with anti-RASCAL Abs and, 

after being stripped, with preimmune serum. A single band of approximately 11 kDa was 

detected in extracts from TB40/E-infected HF and in extracts from HEK293T cells 
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expressing RASCALTB40/E, used as the control (Fig. 4-2D, left, asterisks). This band was 

not detected in samples from mock- and Towne/GFP-IE2-infected cells. In addition, two 

proteins with molecular masses larger than 15 kDa but smaller than 20 kDa were 

observed exclusively in extracts from Towne/GFP-IE2-infected HF (Fig. 4-2D, left). 

While the larger protein (Fig. 4-2D, left, square) is likely to correspond to RASCALTowne 

(predicted molecular mass, 19.4 kDa), the smaller protein remains uncharacterized. None 

of these bands, including the nonspecific protein of approximately 15 kDa recognized by 

the anti-RASCAL Abs in HF and HEK293T cell extracts, was detected by the preimmune 

serum (Fig. 4-2D, right). 

4.3.3 RASCAL localizes at the nuclear envelope and in cytoplasmic 
vesicular structures during infection 

To establish the subcellular localization of RASCAL during infection, mock-, AD169-, 

TB40/E-, and Towne/GFP-IE2-infected HF (MOI of 5) were harvested at 24, 48, 72, 96, 

120, and 144 hpi. Cells were stained with the preimmune serum or with the affinity-

purified anti-RASCAL Abs and with FITC- conjugated anti-IE1/IE2 Abs. Nuclei were 

stained with Hoechst 33342. No signal was observed in mock-infected cells (Fig. 4-3A to 

C), indicating that no cellular proteins were recognized nonspecifically by the anti-

RASCAL Abs in immunofluorescence staining assays. Similarly, staining of infected 

cells with the preimmune serum did not yield any specific signal (not shown). At 24 hpi, 

RASCAL fluorescence was barely detectable (not shown). By 48 hpi, a prominent 

cytoplasmic signal was observed in infected cells, with a punctuate pattern more densely 

concentrated around the nucleus (Fig. 4-3D to F). At 72 hpi, RASCAL accumulation in a 

perinuclear ring was clearly detectable in a large proportion of cells (Fig. 4-3G to I, 
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arrow), and by 96 hpi most of the RASCAL signal emanated from the nuclear rim, with 

very little diffuse fluorescence remaining in the cytoplasm (Fig. 4-3J to L). In some cells, 

RASCAL appeared to also concentrate in cytoplasmic vesicular compartments distributed 

from the nuclear envelope to the cell surface (Fig. 4-3J to L, asterisk). At 96 hpi and, 

more prominently, at 120 hpi, RASCAL fluorescence appeared to originate almost 

exclusively from peculiar structures likely located on the nuclear envelope and 

characterized by a central “knot” with rod-like extensions (Fig. 4-3M to O, arrowheads). 

These nuclear envelopes and the cytoplasmic structures became clearly visible at 144 hpi 

(Fig. 4-3P to R), at a time when few or no perinuclear rings were still detectable. The 

same staining pattern was observed in AD169- and TB40/E-infected cells (not shown), 

indicating that the presence of the 79 additional amino acids in RASCALTowne did not 

interfere with its localization. 

To determine if the RASCAL protein was produced in the absence of viral DNA 

replication, HF were infected with Towne/GFP-IE2 (MOI of 3) in the presence or 

absence of PFA. Cells were harvested at 24, 48, 72, 96, 120, and 144 hpi and stained for 

RASCAL and for IE1/IE2. As expected, intranuclear accumulation of IE1/IE2 at the sites 

of viral genome replication (52) was observed exclusively in untreated HF (Fig. 4-4B and 

D). In these cells, RASCAL expression was detected starting from 24 hpi, and signal 

accumulated at the nuclear rim, on the nuclear envelope, and in cytoplasmic vesicles at 

late times p.i. (Fig. 4-4A and C). In contrast, no RASCAL-specific signal was detected in 

PFA-treated cells at each time p.i. (Fig. 4-4E and G and data not shown), suggesting that 

expression of the RASCAL protein was reduced to levels below detection in the absence 

of viral DNA replication. 
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FIG. 4-1. Genomic location of the c-ORF29 gene and in silico analysis of the RASCAL 

amino acid sequence. (A) Schematic map of the TB40-BAC4 (GenBank accession no. 

EF999921) and of the Towne-BAC (accession no. AY315197) genomic regions 

corresponding to nucleotides 9200 to 10200 (TB40/E) and 198750 to 199750 (Towne). 

The black horizontal line depicts the viral genome, with vertical lines positioned every 

500 nucleotides. ORFs are represented by arrows pointing in the direction of 

transcription. (B) ClustalW2 alignment of RASCAL amino acid sequences from 14 

human CMV strains. Viral genome accession numbers are as follows: TB40-BAC, 

EF999921; PH-BAC, AC146904; TR-BAC, AC146906; FIX-BAC, AC146907; 3157, 

GQ221974; 3301, GQ466044; HAN13, GQ221973; JP, GQ221975; Merlin, AY44689; 

AD169, X17403; HAN38, GQ396662; HAN20, GQ396663; Toledo-BAC, AC146905; 

and Towne-BAC, AC146851. Dots and dashes indicate identical and absent amino acids, 

respectively. The asterisks mark the specific amino acid predicted to be phosphorylated 

by PKA or PKC or to be N glycosylated (N-glyc). The black lines underscore the putative 

TMDs. (C) Kyte-Doolittle (K-D) hydropathy plot of RASCALTB40/E and RASCALTowne 

amino acid sequences, performed using a window size of 9 aa. The shaded boxes include 

the stretch of amino acids corresponding to the putative TMDs, while the boxes with the 

dashed borders include the two additional hydrophobic regions of more than 17 aa 

detected in RASCALTowne. 
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4.3.4 RASCAL and lamin B colocalize at the nuclear lamina and in 

cytoplasmic vesicular structures  

To establish the subcellular localization of RASCAL during infection, mock-, AD169-, 

TB40/E-, and Towne/GFP-IE2-infected HF (MOI of 5) were harvested at 24, 48, 72, 96, 

120, and 144 hpi. Cells were stained with the preimmune serum or with the affinity-

purified anti-RASCAL Abs and with FITC-conjugated anti-IE1/IE2 Abs. Nuclei were 

highlighted with Hoechst 33342. No signal was observed in mock-infected cells (Fig. 4-

3A to C), indicating that no cellular proteins were recognized nonspecifically by the anti-

RASCAL Abs in immunofluorescence staining assays. Similarly, staining of infected 

cells with the preimmune serum did not yield any specific signal (not shown). At 24 hpi, 

RASCAL fluorescence was barely detectable (not shown). By 48 hpi, a prominent 

cytoplasmic signal was observed in infected cells, with a punctuate pattern more densely 

concentrated around the nucleus (Fig. 4-3D to F). At 72 hpi, RASCAL accumulation in a 

perinuclear ring was clearly detectable in a large proportion of cells (Fig. 4-3G to I, 

arrow), and by 96 hpi most of the RASCAL signal emanated from the nuclear rim, with 

very little diffuse fluorescence remaining in the cytoplasm (Fig. 4-3J to L). In some cells, 

RASCAL appeared to also concentrate in cytoplasmic vesicular compartments distributed 

from the nuclear envelope to the cell surface (Fig. 4-3J to L, asterisk). At 96 hpi and, 

more prominently, at 120 hpi, RASCAL fluorescence appeared to originate almost 

exclusively from peculiar structures likely located on the nuclear envelope and 

characterized by a central “knot” with rod-like extensions (Fig. 4-3M to O, arrowheads). 

These nuclear envelopes and the cytoplasmic structures became clearly visible at 144 hpi 
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(Fig. 4-3P to R), at a time when few or no perinuclear rings were still detectable. The 

same staining pattern was observed in AD169- and TB40/E-infected cells (not shown), 

indicating that the presence of the 79 additional amino acids in RASCALTowne did not 

interfere with its localization. 

To determine if the RASCAL protein was produced in the absence of viral DNA 

replication, HF were infected with Towne/GFP-IE2 (MOI of 3) in the presence or 

absence of PFA. Cells were harvested at 24, 48, 72, 96, 120, and 144 hpi and stained for 

RASCAL and for IE1/IE2. As expected, intranuclear accumulation of IE1/IE2 at the sites 

of viral genome replication (52) was observed exclusively in untreated HF (Fig. 4-4B and 

D). In these cells, RASCAL expression was detected starting from 24 hpi, and signal 

accumulated at the nuclear rim, on the nuclear envelope, and in cytoplasmic vesicles at 

late times p.i. (Fig. 4-4A and C). In contrast, no RASCAL-specific signal was detected in 

PFA-treated cells at each time p.i. (Fig. 4-4E and G and data not shown), suggesting that 

expression of the RASCAL protein was reduced to levels below detection in the absence 

of viral DNA replication. 

4.3.5 RASCAL interacts with UL50 and requires its presence to 
gather at the nuclear lamina 

At early times p.i. (48 hpi), RASCAL localizes mainly in a cytoplasmic punctuate pattern 

(Fig. 4-3D to F). Relocalization to the nuclear rim occurs only later in infection (72 hpi 

[Fig. 4-3G to I]), at a time when both UL50 and UL53 are abundantly expressed and 

gathered at the NEC. This suggested that RASCAL might require the presence of other 

NEC components to reach the nuclear lamina. To test if, akin to UL53, RASCAL 

relocalization to the nuclear lamina was mediated by UL50, three expression plasmids 
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were constructed, one containing RASCALTB40/E, one containing a C-terminal FLAG-

tagged version of UL53 (UL53-FLAG), and one containing a C-terminal HA-tagged 

version of UL50 (UL50-HA), as described previously (14, 40). HEK293T cells 

transfected with one of these constructs were stained with rabbit anti-RASCAL Abs and 

with mouse anti-HA or mouse anti-FLAG Abs. No signal was detected in cells 

expressing UL50-HA or UL53-FLAG after being stained with anti-RASCAL Abs (Fig. 

4-7B and D), indicating that these Abs did not cross-react with either protein. As 

previously shown (7, 41, 42), UL50-HA localized at the nuclear lamina and in 

cytoplasmic vesicular structures (Fig. 4-7A), while UL53-FLAG was predominantly 

nuclear, with some cytoplasmic dotted staining (Fig. 4-7C). When expressed in the  
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FIG. 4-2. RASCAL expression in infected and transfected cells. (A, top) Schematic 

depiction of the primers used to amplify c-ORF29 by RT-PCR from TB40/E- or 

Towne/GFP-IE2-infected HF. The > and < symbols depict the direction of 

polymerization. The sequence of primer a  > is complementary to nucleotides 1 to 13 of 

c-ORF29TB40/E and of c-ORF29Towne, the sequence of primer < b is complementary to 

nucleotides 277 to 291 of c-ORF29TB40/E and of c-ORF29Towne and to nucleotides 189 to 

203 of US17, while the sequence of primer < c is complementary to nucleotides 515 to 

528 of c-ORF29Towne and nucleotides 427 to 440 of US17. (Bottom) RT-PCR analysis 

of c-ORF29 transcription in mock or TB40/E-infected HF at the indicated times p.i., 

using primers a > and < b. Amplification of vimentin’s cDNA was used as the PCR 

control. (B) RT-PCR analysis of c-ORF29 and of UL99 transcription in HF infected with 

TB40/E in the presence (+) or absence (-) of PFA (300 µg/ml). Amplification of β-actin’s 

cDNA was used as the PCR control. (C) Immunoblot analysis results of RASCALTB40/E 

expression in protein extracts from HEK293T cells nontransfected or transfected with 

expression plasmids encoding RASCALTB40/E-GFP or RASCALTB40/E. The blot was 

incubated with an anti-RASCAL polyclonal Ab as described in Materials and Methods. 

Expected molecular masses were 10.6 kDa for RASCALTB40/E and 37.6 kDa for 

RASCALTB40/E-GFP. Asterisk, RASCALTB40/E; arrowhead, RASCALTB40/E-GFP. (D) 

Immunoblot analysis of RASCAL expression in protein extracts from mock-, TB40/E-, 

or Towne/GFP-IE2-infected HF and in HEK293T cells expressing RASCALTB40/E. The 

same membrane was incubated first with an anti-RASCAL polyclonal Ab (left) and 

subsequently with the preimmune serum (right) as described in Materials and Methods. 

Expected molecular masses were 10.6 kDa for RASCALTB40/E and 19.4 kDa for 

RASCALTowne. Asterisk, RASCALTB40/E; square, RASCALTowne.
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FIG. 4-3. RASCAL intracellular localization. Mock-infected (A to C) or Towne/GFP-

IE2-infected HF (MOI of 5) (D to R) were harvested at the indicated times p.i. and were 

stained with affinity-purified rabbit anti-RASCAL polyclonal Abs followed by Alexa 

Fluor 594-conjugated goat anti-rabbit Abs. The signal emitted from the GFP-IE2 protein 

was further amplified with FITC-conjugated anti-IE1/IE2 Abs, and nuclear DNA was 

stained with Hoechst 33342. The arrows point at RASCAL accumulation at the nuclear 

rim, the arrowheads indicate the peculiar structures observed on the nuclear surface at 

late times p.i., and the asterisks mark the locations of the cytoplasmic RASCAL-positive 

vesicles. Original magnification, 400×. 
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FIG. 4-4. RASCAL expression in the absence of viral DNA synthesis. HF infected with 

Towne/GFP-IE2 (MOI of 3) in the presence or absence

harvested at the indicat

RASCAL polyclonal Abs followed by

and FITC-conjugated anti IE1/IE2 Abs. Original magnification, 400

RASCAL expression in the absence of viral DNA synthesis. HF infected with 

IE2 (MOI of 3) in the presence or absence of PFA (300 

harvested at the indicated times p.i. and stained with affinity-purified rabbit anti

ASCAL polyclonal Abs followed by Alexa Fluor 594-conjugated goat anti

conjugated anti IE1/IE2 Abs. Original magnification, 400×. 
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RASCAL expression in the absence of viral DNA synthesis. HF infected with 

of PFA (300 µg/ml) were 

purified rabbit anti-

conjugated goat anti-rabbit Abs 
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absence of CMV infection, RASCALTB40/E did not accumulate at the nuclear rim but 

displayed a punctuate cytoplasmic staining similar, although not completely identical, to 

that observed in infected HF at 48 and 72 hpi (compare Fig. 4-7E to Fig. 4-3D and G). 

Coexpression of UL50-HA and UL53-FLAG induced the relocalization of UL53-FLAG 

to the endoplasmic reticulum and to the nuclear rim (Fig. 4-7F to H), as expected (7, 40).  

Expression of RASCALTB40/E in the presence of UL53-FLAG did not modify the 

localization of either protein (Fig. 4-7I to K), while coexpression of RASCALTB40/E and 

UL50-HA triggered the accumulation of RASCALTB40/E in a UL50-positive, perinuclear 

region (Fig. 4-7L to N). These data indicate that the presence of UL50, but not of UL53, 

is required to mediate RASCALTB40/E tethering to the nuclear rim and suggest that 

RASCALTB40/E may interact with UL50. Expression of RASCALTB40/E in the presence of 

both UL50-HA and UL53-FLAG did not change the localization pattern of either 

RASCALTB40/E or UL53, and both proteins still accumulated at the nuclear lamina 

together with UL50 (not shown), suggesting that UL50 may bind to RASCALTB40/E and 

UL53 via two different interaction domains. To investigate if RASCAL did indeed 

interact with UL50, protein extracts from HEK293T cells transfected with LNCX or 

cotransfected with L-RASCALTB40/E and LNCX UL50-HA were subjected to co-IP using 

anti-HA or anti-RASCAL Abs. As a control, extracts from HEK293T cells transfected 

with LNCX or cotransfected with LNCX UL50-HA and L-UL53-FLAG were subjected 

to co-IP using anti-HA Abs. As expected (7, 40, 41, 65), UL53-FLAG did 

coimmunoprecipitate with UL50-HA (Fig. 4-8A, lane 4), while no signal was observed in 

immunoprecipitates from control cells (Fig. 4-8A, lane 3). Specific bands of about 44 

kDa (UL50-HA) and 10 kDa (RASCAL) were detected in cell lysates (Fig. 4-8B, left,  



 

 

FIG. 4-5. RASCAL colocalization with lamin B and with lamin A/C at the nuclear

envelopes of infected cells. Confocal images of TB40/E

harvested at 72 hpi (A to C) or 96 hpi (D to L) and stained with affinity

anti-RASCAL polyclonal Abs

Abs (red), with monoclonal anti

Abs (green), or with monoclonal anti

anti-mouse Abs (green). 

invaginations through the nucleus (G

RASCAL colocalization with lamin B and with lamin A/C at the nuclear

envelopes of infected cells. Confocal images of TB40/E infected HF (MOI of 5) 

harvested at 72 hpi (A to C) or 96 hpi (D to L) and stained with affinity

ASCAL polyclonal Abs followed by Alexa Fluor 594-conjugated goat anti

Abs (red), with monoclonal anti-lamin B Abs followed by FITC-conjugat

(green), or with monoclonal anti-lamin A/C Abs (K-L) followed by FITC

 Consecutive confocal planes were images to show the extent of 

invaginations through the nucleus (G-I). Bar size, 10 µm. 
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RASCAL colocalization with lamin B and with lamin A/C at the nuclear 

HF (MOI of 5) 

harvested at 72 hpi (A to C) or 96 hpi (D to L) and stained with affinity-purified rabbit 

conjugated goat anti-rabbit 

conjugated anti-mouse 

followed by FITC-conjugated 

Consecutive confocal planes were images to show the extent of 
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FIG. 4-6. RASCAL colocalization with lamin B but not lamin A/C in cytoplasmic 

vesicles. Confocal images of TB40/E-infected HF (MOI of 5) harvested at 96 hpi and 

stained with affinity-purified rabbit anti-RASCAL polyclonal Abs followed by Alexa 

Fluor 594-conjugated goat anti-rabbit Abs (red), with monoclonal anti-lamin B Abs 

followed by FITC-conjugated anti-mouse Abs (green) (A to F), or with monoclonal anti-

lamin A/C Abs followed by FITC-conjugated anti-mouse Abs (green) (G to I). The area 

magnified in panels D to F is framed by a square box in panels A to C. Arrowheads 

indicate the points of close contact between the cytoplasmic vesicles and the nuclear 

lamina. Bar size, 5 µm.  
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lane 10) and in immunoprecipitates (Fig. 4-8B, left, lane 8, and right, lane 14) from L-

RASCALTB40/E- and LNCX UL50-HA cotransfected cells, irrespective of whether anti-

HA or anti- RASCAL Abs were used as immunoprecipitating reagents. No bands were 

detected in extracts from control cells (Fig. 4-8B, left, lanes 5, 6, and 9, and right, lanes 

11 and 12). Together, these data indicate that RASCAL and UL50 can be found in the 

same complex and suggest that RASCAL is likely to be a new NEC member. 

4.4 Discussion 

In this report, we show that the putative CMV gene c-ORF29 encodes a protein, 

RASCAL, displaying a dual localization to the nuclear lamina and to cytoplasmic 

vesicles at late times during infection. Accumulation of RASCAL at the nuclear lamina 

requires the presence of UL50. The interaction of these two proteins suggests that 

RASCAL is likely to be a new component of the NEC. The occurrence of lamin B-

positive vesicular structures in the cytoplasm of infected cells at late times p.i. has been 

previously reported (42, 47, 66), but the nature and function of these vesicles has not yet 

been determined. The presence of RASCAL and lamin B within these structures suggests 

that they may originate from the nuclear envelope. We thus speculate that RASCAL may 

play a role in facilitating the transition of nucleocapsids across the nuclear envelope and 

may have additional functions in promoting virion maturation and trafficking toward the 

plasma membrane. 

Akin to all herpesviruses, CMV genome replication and encapsidation occur in the nuclei 

of host cells (45). Release of newly assembled nucleocapsids into the cytoplasm 
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necessarily entails crossing of the nuclear envelope, in a process presumed to involve an 

initial envelopment of nucleocapsids by budding through the INM, followed by a de-

envelopment step as virions traverse the outer nuclear membrane (ONM) (34, 37, 38, 50, 

67). The INM is structurally supported by the nuclear lamina, a dense fibrillar network 

composed of A- and B-type lamins and their partners (57). Localized destabilization of 

this structure is required for virions to gain access to the INM and is mediated by 

components of the NEC, a multiprotein complex composed of the viral proteins UL50, 

UL53, and UL97 and of the cellular proteins p32, LBR, and PKC (41). UL50 is a key 

mediator of the NEC formation and directly interacts with UL53, p32, and PKC (41). 

Recruitment of UL53 and PKC to the nuclear lamina is strictly dependent on the presence 

of UL50, while p32 can reach this location also via interactions with LBR (7, 40, 41). 

UL50 also acts to enhance the accumulation at the NEC of the viral kinase UL97, 

although UL97 recruitment is largely mediated by binding to p32 (35). 

Similar to UL53 and PKC, RASCAL localization to the nuclear rim is dependent on 

UL50 (Fig. 4-7L to N). RASCAL and UL50 could also be coimmunoprecipitated (Fig. 4-

8B), indicating the existence of direct or indirect interactions between the two proteins. 

Thus, RASCAL may either be a new UL50 binding partner or may be recruited to the 

NEC via interactions with PKC and/or p32.  

Both RASCAL and UL53 were able to reach the nuclear lamina when coexpressed in the 

presence of UL50 (not shown), indicating a lack of competition between these two 

proteins for binding to UL50. Thus, if the RASCAL-to-UL50 link is direct, two distinct 

binding domains must exist on the surface of UL50, one for RASCAL and one for UL53. 
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Although our data do not exclude the possibility of an interaction between RASCAL and 

UL53, complete overlap of signals emanating from each of these proteins was not 

observed in the cytoplasm of cotransfected cells, and expression of UL53-FLAG did not 

result in the relocation of RASCAL to the nucleus (Fig. 4-7I to K). We thus believe that 

the formation of RASCAL-UL53 complexes is unlikely to occur.  

Quite interestingly, no differences were observed in the intracellular localization of 

RASCALTB40/E and RASCALTowne during infection, despite the fact that the RASCAL 

version encoded by Towne is substantially longer than that encoded by TB40/E (Fig. 4-1 

and 2). As both proteins accumulate at the NEC, the domains required for this 

localization must be located within the first 97 aa of RASCAL, while the presence of the 

79 additional amino acids in RASCALTowne does not contribute to, or interfere with, the 

recruitment process. We thus speculate that the two proteins, although similarly localized, 

will prove to be functionally different and that these differences will be dependent on 

their ability to interact with specific cellular and/or viral proteins in addition to the 

components of the NEC. Studies are currently in progress to identify the exact domains 

required for the tethering of RASCALTB40/E and RASCALTowne to the nuclear lamina and 

to isolate the potential binding partners of each protein. 

Extensive overlap of the RASCAL and lamin B signals was observed at the nuclear rim 

and in intranuclear invaginations of the INM in TB40/E-, Towne/GFP-IE2-, or AD169-

infected HF (Fig. 4-5A to I and data not shown). Substantial infoldings of the INM have 

been described in a number of ultrastructural studies of CMV-infected cells, and the 

presence of UL50, UL53, and UL97 at these sites was documented by immunoelectron 
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and immunofluorescence microscopy (6, 7, 14, 24, 35, 50, 62, 67). These invaginations 

were shown to be sites of nucleocapsid budding across the INM and were proposed to 

enhance the efficiency of virion egress from the nucleus by increasing the surface area of 

the INM and by acting as channels for the unhindered transport of primary enveloped 

virions toward the ONM (6). Confocal microscopy imaging of cells stained for RASCAL 

and lamin B clearly showed that both these proteins are located at sites found deep within 

the nuclear volume (Fig. 4-5D to I). In contrast, lamin A/C colocalization with RASCAL 

was less prominently in the nuclear invaginations and more evident at the openings of the 

INM channels (Fig. 4-5J to L). Although these staining pattern differences could 

potentially be due to some variation in the binding efficiency of each Ab, it is also 

conceivable that they might reflect functional differences between the two types of 

lamins (57). Together, these results strongly suggest that RASCAL is associated with the 

INM and provide further support to the hypothesis that RASCAL is a new component of 

the NEC. 

Although expression of UL50 and UL53 was reported to be sufficient for the remodeling 

of the nuclear lamina and for the formation of INM invaginations in COS7 cells (7), the 

presence of nuclear foldings was not observed in HeLa (40) or in HEK293T (Fig. 4-7F to 

H) cells coexpressing these proteins. Expression of RASCALTB40/E in the presence of 

UL53 (Fig. 4-7I to K), UL50 (Fig. 4-7L to N), or both (not shown) also did not induce the 

formation of INM folds, indicating that RASCAL expression on its own, or in 

conjunction with UL50 and UL53, is not sufficient to trigger the development of these 

structures. These data suggest that the generation of INM invaginations in the absence of 

infection may be cell type dependent and may be affected by the intracellular content and 
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FIG.  4-7. Localization of UL50-HA, UL53-FLAG, and RASCALTB40/E in transfected 

cells. (A to D) Confocal images of HEK293T transiently transfected with expression 

plasmids encoding UL50-HA (A and B) or UL53-FLAG (C and D) and stained with 

mouse anti-HA Ab (A), mouse anti-FLAG Abs (C), or affinity-purified rabbit anti-

RASCAL polyclonal Abs (B and D) followed by FITC-conjugated goat anti-mouse Abs 

(green) or Alexa Fluor 594-conjugated goat anti-rabbit Abs. (E to M) Confocal images of 

HEK293T coexpressing UL50-HA and UL53-FLAG (E to F), UL53-FLAG and 

RASCALTB40/E (H to J), or UL50-HA and RASCALTB40/E (K to M). Cells were stained 

with rabbit anti-HA and mouse anti-FLAG Abs followed by Alexa Fluor 594 goat anti-

rabbit Abs (green) and FITC-conjugated goat anti-mouse Abs (red) (E to G), with mouse 

anti-FLAG and rabbit anti-RASCAL Abs followed by FITC-conjugated goat anti-mouse 

Abs (green) and Alexa Fluor 594-conjugated goat anti-rabbit Ab (red) (H to J), or with 

mouse anti-HA and rabbit anti-RASCAL Abs followed by FITC-conjugated goat anti-

mouse Abs (green) and Alexa Fluor 594-conjugated goat anti-rabbit Abs (red) (K to M). 

Bar size, 10 µm. 
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FIG. 4-8. Determination of RASCAL’s interaction with UL50 by co-IP. (A) Immunoblot 

analysis of protein extracts from HEK293T cells transiently transfected with LNCX or 

cotransfected with L-RASCALTB40/E and LNCX UL50-HA. Proteins were denatured in 

3% SDS lysis buffer (lysate) or were subjected to co-IP with anti-HA Abs (left) or with 

anti-RASCAL Abs (right) prior to separation on 10% (UL50-HA) or 15% 

(RASCALTB40/E) SDS-PAGE gels. An aliquot corresponding to 2% of the original co-IP 

buffer volume was loaded onto the gels as the input control (input). Membranes were 

probed with anti-HA (1:500) or anti-RASCAL (1:1,000) Abs. (B) Immunoblot analysis 

of protein extracts from HEK293T cells transiently transfected with LNCX or 

cotransfected with LNCX UL50-HA and L-UL53-FLAG. Proteins were denatured in 3% 

SDS lysis buffer (lysate) or were subjected to co-IP with anti-HA Abs, prior to separation 

on 10% SDS-PAGE gels. Membranes were probed with anti-HA (1:500) or anti-FLAG 

(1:500) Abs. Expected molecular masses were 43.9 kDa for UL50-HA, 10.6 kDa for 

RASCALTB40/E, and 43.3 kDa for UL53-FLAG.  
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availability of PKC, a kinase whose activity is required to enhance the disassembly of the 

nuclear lamina during mitosis (12) and during egress of herpes simplex virus type 1 

(HSV-1) and of murine and human CMV (33, 40, 46, 47, 51). In addition to PKC, the 

viral kinase UL97 is recruited to the nuclear lamina (35) and substantially contributes to 

its phosphorylation-mediated dissolution (27, 35, 41, 42, 55). The presence of these two 

kinases at the NEC fostered the speculation that they might phosphorylate specific NEC 

components. Although no significant posttranslational modification was detected for 

UL53 in infected HF (14), phosphorylation of both UL50 and UL53 was reported to 

occur after in vivo labeling of transfected cells with 33P (40), and phosphorylation of 

UL50 was shown to be mediated by PKC (40).  

We did not observe substantial changes in the SDS-PAGE mobility of RASCALTB40/E 

from either infected or transfected cells (Fig. 4-2C and D), despite the predicted presence 

of potential phosphorylation sites for both PKC and PKA (Fig. 4-1B). Protein 

phosphorylation, however, has been reported to increase, decrease, or leave unaffected 

the apparent molecular weights of proteins separated on SDS-PAGE gels. It is thus 

conceivable that both RASCALTB40/E and RASCALTowne might indeed be phosphorylated. 

The potential presence of this modification might explain the appearance of a faster-

migrating band in protein extracts from Towne-infected cells (Fig. 4-2D), particularly 

considering that the amino acid sequence of RASCALTowne is predicted to contain two 

additional phosphorylation sites compared to that of RASCALTB40/E. Further analyses are 

in progress to clarify this issue. While expression of UL53 was reported to occur with late 

kinetics (14), c-ORF29 transcription was observed starting from 6 hpi (Fig. 4-2A), and its 

protein product was detected at low levels starting from 24 hpi, with signal intensities 
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markedly increasing at later times (Fig. 4-3). These data suggest that RASCAL 

accumulation in infected cells may begin before synthesis of UL53 and, possibly, of 

UL50, while RASCAL gathering at the nuclear rim occurs exclusively at late times p.i., 

when both UL50 and UL53 are present within the NEC. c-ORF29 transcription was 

reduced, but not completely abolished, in the absence of viral DNA replication (Fig. 4-

2B), while signal from the protein product of c-ORF29 became completely undetectable 

by immunofluorescence staining analysis of PFA-treated cells (Fig. 4-4). These results 

suggest that, as with the synthesis of another NEC component, UL97, RASCAL is 

expressed with early-late kinetics, requiring viral DNA replication for maximum 

expression (39). 

As previously mentioned, the c-ORF29 and US17 nucleotide sequences partially overlap. 

Although the kinetics of US17 gene expression have not been studied in detail, the 

presence of early transcripts hybridizing to the US17 gene region was detected in 

microarray studies of viral gene expression in Towne-infected HF (9). Interestingly, 

however, synthesis of the US17 protein was observed starting from 72 hpi and was 

entirely inhibited by treatment with PFA (15). These data suggest that, although both the 

US17 and c-ORF29 genes are located on the negative strand of the genome and have 

partially overlapping sequences, their transcription may be controlled by different 

promoters. 

While expression of both UL50 and UL53 is absolutely necessary for the production of 

viral progeny from infected cells (18, 74), growth of two distinct US17 deletion mutant 

viruses in HF was not impaired (18, 74). As the c-ORF29 and US17 nucleotide sequences 
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extensively overlap, it is likely that deletion of c-ORF29 will also not lead to dramatic 

reductions in mutant virus yields, at least in HF. Although the absence of RASCAL 

expression might still affect the efficiency of virion egress in HF, we expect that more 

dramatic effects may be observed in cell types other than HF. 

Substantial overlap of the RASCAL and lamin B, but not lamin A/C, signals was 

observed in cytoplasmic vesicles distributed from the nucleus to the cytoplasm of 

infected HF at late times p.i. (Fig. 4-3J, M, and P, 4-4A and C, and 4-6A to F). Although 

the existence of similar vesicles has been mentioned in previous analyses of human- or 

murine-CMV-infected cells stained for lamin B (47, 66), their origin and nature has not 

yet been established and is the subject of ongoing investigations. Our confocal 

microscopy images indicate that they are likely to originate from the nuclear envelope 

(Fig. 4-6), an assumption further reinforced by the fact that they do appear to contain 

lamin B. It is currently unclear, however, whether they consist of a single or of a double 

membrane and if they are derived from the INM, the ONM, or both. As these structures 

have been noticed before in cells expressing exogenous UL50 (7), it is possible that they 

may contain additional NEC components and possibly even nucleocapsids. If so, they 

may constitute a completely novel, alternative route of virion maturation and transport 

from the nucleus to the cell surface. Alternatively, they may represent sites of viral 

particle degradation, similar to the nuclear envelope-derived, four-layered structures 

described in the cytoplasm of HSV-1-infected HF (1), which were recently shown to be 

autophagosomes (21). 
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The presence of RASCAL at these sites raises the intriguing possibility that RASCAL 

might remain associated with virions during egress, possibly becoming a tegument 

component. UL50 was reported to be an envelope glycoprotein in proteomic analyses of 

the CMV particles (70), and UL53 was shown by immunoelectron microscopy to be a 

tegument protein (14), although this localization was not confirmed by the proteomic 

study (70). It is thus conceivable that RASCAL may accompany newly formed 

nucleocapsids during their journey from the nucleus to the periphery, perhaps by 

triggering the formation of nucleus-derived vesicles. If so, RASCAL may indeed function 

as a new determinant of viral tropism by enhancing virion egress from specific cell types 

or, if included in the tegument, by promoting entry of viral particles into uninfected cells. 
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Chapter 5 
 

GENERAL DISCUSSION 

"Every honest researcher I know admits he's just a professional amateur. He's doing 

whatever he's doing for the first time. That makes him an amateur. He has the sense to 

know that he's going to have a lot of trouble, so that makes him professional." 

-Charles Franklin Kettering (1876-1958) U.S. Engineer and Inventor  

5.1  Thesis Summary and Significance of Research 

Despite their amazing biological diversity, all viruses face at least three common 

obstacles: they must enter host cells, express their genes and replicate, and finally, exit 

the host cell so that the cycle of infection can continue. While the breadth of strategies 

employed by viruses to accomplish each of these feats is striking, so too are the 

commonalities exhibited by many viruses that are otherwise quite phylogenetically 

distinct. The study of these fundamental processes not only teaches us much about our 

virus of particular interest, but also of the basic biological pathways in general. 

Herein, I have described studies focusing on each of these three common processes. In 

Chapter 2, I have shown that vimentin, an IF protein, is required for the efficient onset of 

CMV infection. We found that vimentin remains stable during entry of CMV strains 

AD169 and TB40/E (Fig. 2-1). Virus entry was hampered in HF treated with the 

vimentin-disrupting agent, ACR (Fig. 2-4), and in cells harvested from patients with 

GAN, a genetic disorder which causes vimentin bundling (Fig. 2-5). Finally, virus entry 

was also negatively affected during infection of vim
- 
MEFs (Fig. 2-6). In these cells, virus 

particle trafficking towards the nucleus appeared much less efficient than in vim
+
 MEFs 
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(Fig. 2-7). In each case, the EC-tropic strain TB40/E exhibited a greater reliance on 

vimentin during entry than the fibroblast-adapted strain, AD169. These observations may 

indicate that these two strains, which were previously thought to enter HF in a similar 

manner, actually employ different modes of entry in this cell type. Further, these studies 

highlight a potentially important and previously underappreciated role for IFs during 

entry of CMV, and possibly other herpesviruses. 

In Chapter 3, I have shifted models and focused on the 55R E1A protein of species C 

HAdV. This protein is encoded by the 9S mRNA species and is the smallest of all the 

E1A isoforms. While the mRNA encoding this protein was discovered over 30 years ago, 

the lack of an Ab which specifically recognizes 55R E1A has precluded more detailed 

biochemical and functional characterization to this point. To address this issue, we 

generated rabbit polyclonal Abs against the unique C-terminal amino acid sequence of 

HAdV-2. I have demonstrated that these Abs can be used to detect HAdV-2 55R E1A by 

western blot, immunoprecipitation and by indirect immunofluorescence (Fig. 3-1). I have 

confirmed that like 9S mRNA, 55R E1A is expressed at late times post-infection and that 

the protein is localized primarily to the nucleus (Fig. 3-2). Using several mutant and 

recombinant viruses, I have shown that 55R E1A is capable of transactivating the 

expression of viral genes in primary, contact-inhibited IMR-90 cells (Fig. 3-3). This 

promoted virus replication, as viruses expressing only the 55R E1A isoform were able to 

replicate productively and to titres several log-fold greater than E1A null virus in these 

same cells (Fig. 3-4). I have also identified the first binding partner of 55R E1A in S8 

(Fig. 3-5A, B). S8 is a component of APIS, a regulatory subunit of the 26S proteasome. 

Knockdown of S8 reduced the infectious yield of a virus which expresses only the 55R 
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E1A isoform, indicating that this interaction is important for the replication-promoting 

properties of 55R E1A (Fig. 3-5C). These studies are the first to detect and functionally 

characterize the 55R E1A isoform. The identification of the transactivating and growth-

promoting capacities of this protein are intriguing observations that are likely to spawn a 

new field of E1A research. 

Studies described in Chapter 4 again focus on CMV, and in particular, on a novel CMV-

encoded protein which we have dubbed RASCAL. RASCAL is encoded by c-ORF29, 

which is located within the US segment of the CMV genome. Interestingly, the RASCAL 

protein encoded by CMV strains Towne and Toledo is extended by 79 residues, giving 

the protein a total size of 177 amino acids, compared to the 98 amino acid protein 

encoded by strains TB40/E and AD169 (Fig. 4-1B). However, the phenotypes that we 

observed did not seem to be affected by this extension. RASCAL is expressed with early-

late kinetics (Fig. 4-2A, B) and localizes to the nuclear rim and in deep intranuclear 

invaginations at late times post-infection (Fig. 4-3, 4-5). This localization was dependent 

on the NEC component pUL50 (Fig. 4-7). Co-immunopreciptation experiments revealed 

an interaction between RASCAL and pUL50, suggesting that RASCAL is likely a new 

viral component of the CMV NEC (Fig. 4-8). Intriguingly, RASCAL was also found in 

small membranous, lamin B-positive vesicles that appeared to emanate from the nucleus 

at late times post-infection (Fig. 4-6). In the future, it will be interesting to determine 

whether these unique structures play an active role in viral egress. It will also be 

important to dissect the particular mechanism through which RASCAL may aide in the 

egress of CMV.  



200 

 

 

Taken together, these studies represent focused investigations of three critical stages in 

viral replication: entry, gene regulation and egress. In addition to gaining valuable 

knowledge regarding the biology's of CMV and HAdV, these studies have also yielded 

insights into more basic and general biological principles. The study of processes so 

fundamental to virus replication always provide the enticing opportunity to identify 

targets for therapeutic intervention. While it is unclear whether the particular proteins and 

pathways described herein represent viable therapeutic targets, contextualization of the 

relative contributions of these phenomena to the process of viral replication as a whole 

will surely aide in the rational design of compounds that have the potential to improve 

human health on a global scale. 

5.2 Requirement for an Intact Vimentin IF Network to 

Facilitate Efficient Onset of CMV Infection 

Although virus entry may seem like a relatively discreet and straightforward matter of 

penetrating the cell membrane, it is in fact a complex, multifactorial process that relies on 

the exploitation of many cellular pathways. After binding to and penetrating the cell 

membrane, CMV capsids associate the microtubule network where they are presumably 

transported by dynein motor proteins toward the MTOC (36). While the MTOC is located 

in close proximity to the nucleus (generally within 1.5 µm in the case of fibroblasts, and 

even larger distances in other cell types, such as neurons), how capsids make their way 

from the MTOC to NPCs where nuclear deposition of the viral genome occurs remains 

poorly understood (49). These distances are 10-80 fold larger than the diameter of the 

capsid itself (19). The size of CMV capsids coupled with the density of the cytoplasmic 
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environment make passive diffusion an unlikely explanation for this process (28, 54). 

Together, these observations would suggest that the virus has evolved a more efficient 

mechanism to facilitate this process. In addition, studies which have investigated the role 

of microtubules in CMV transport have used methods that also result in the disruption of 

IFs, confounding the interpretation of their results (36). 

The impact of microtubules and microfilaments on the entry of herpesviruses has been 

appreciated for some time (28). However, the contributions of IFs during this process 

have largely been ignored. This is likely due, in large part, to the fact the IFs are unique 

among the three classes of cytoskeletal proteins in that they lack polarity and associated 

motor proteins (15). Despite this perceived deficiency, they do possess many other 

properties that could be considered important in the context of viral infection. IFs are 

responsible for providing mechanical support for the cell, maintaining the shape and 

positioning of the nucleus, and organelle targeting, among other functions (13). Finally, 

the IF network stretches from the plasma membrane (and in some cell types, from the cell 

surface) to the nucleus, thereby providing multiple opportunities for exploitation during 

viral entry. 

Early observations outlining the dynamics of microtubule and microfilament 

polymerization during CMV infection led us to first investigate that status of the IF 

network from viral penetration to expression of IE genes. We found that, akin to 

microtubules, the vimentin IF network remains stable from binding to expression of IE 

genes (Fig. 2-1) (36).  Given the differential regulation of the other cytoskeletal 

components, we hypothesized that maintenance of vimentin stability might be 
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functionally important during CMV entry in HF. We also observed that in comparison to 

infection with AD169, onset of TB40/E infection as measured by IE gene expression was 

substantially delayed in HF. This delay was maintained throughout virus replication up to 

144 hpi, at which time titres of AD169 and TB40/E equalized (Fig. 2-2). AD169 entry in 

HF occurs predominantly through direct fusion at the plasma membrane (9, 53). This 

seems to be mediated by the gH/gL/gO glycoprotein complex present on AD169 virions 

(21). Historically, entry of TB40/E into HF has been assumed to occur through the same 

mechanism, despite the fact that in addition to the gH/gL/gO complex expressed by 

AD169, TB40/E is also capable of expressing gH/gL/UL128-131A. This complex seems 

to be required for endothelial and epithelial cell tropism (17, 60-61). Strains expressing 

UL128-131A have been observed to enter endothelial cells by endocytosis, followed by 

fusion of the viral envelope with the endosomal membrane, which may or may not 

require low pH (39, 46-47, 51). Considered in the context of the delayed kinetics of 

TB40/E entry in HF relative to AD169 observed in our study, it is tempting to speculate 

that TB40/E may also enter HF by endocytosis, or by a combination of endocytosis and 

direct fusion, depending on the viral glycoprotein - cellular receptor complex that is 

primarily engaged upon binding. More detailed studies will be necessary to delineate the 

precise pathway(s) through which TB40/E enters HF. Understanding these processes in 

detail is of great importance, especially considering the attractiveness of targeting entry 

in the rational design of anti-viral therapeutics. 

To determine if the stability of the vimentin IF network was indeed important during the 

onset of CMV infection, we treated HF with ACR, a vimentin IF-disrupting agent, prior 

to infection with strains AD169 or TB40/E. ACR treatment induced aggregation of 
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vimentin into bundles which were most dense along the cell's retraction fibers. Vimentin 

aggregation was accompanied by rounding of the cell and a morphological change of the 

nuclei, characterized primarily by folds and invaginations of the nuclear membrane (Fig. 

2-3A-F). As reported in the literature, this treatment left the microtubule network intact, 

thereby allowing us to assess the role of vimentin IF network directly (2, 37, 48). ACR 

treatment had an exposure time-dependent inhibitory effect on infection with either 

AD169 or TB40/E. As expected, the overall proportion of cells infected with TB40/E was 

lower than that of AD169, consistent with the delay in onset of TB40/E infection of HF 

observed earlier (Fig. 2-4A, B). Importantly, the effect of ACR treatment on the onset of 

infection could be overcome at later times post-infection (Fig. 2-4C, D). This was 

attributed to the reversibility of ACR treatment on the structure of the vimentin 

cytoskeleton and also gave us confidence that ACR did not have a direct effect on the 

CMV particles themselves. 

Given the potentially pleiotropic effects of ACR on the cell, we felt that it was important 

to validate our results in other model systems. We were able to exploit fibroblasts from 

patients with GAN, a neurodegenerative disorder caused in part, by bundling of IFs (42, 

66). In HF, this phenotype could be conditionally induced by growing cells from GAN 

patients in low serum conditions (23). Of particular interest to us, the vimentin 

abnormalities caused by serum starvation of fibroblasts from GAN patients were distinct 

from those caused by ACR treatment. GAN fibroblasts exhibited local regions of 

spherical vimentin bundling, while the structure of vimentin IFs in other parts of the cell 

remained structurally intact (Fig. 2-5A-H). Infection of these cells with AD169 at an 

MOI of 1 delayed onset of infection at 4 hpi, but this delay was overcome at 8 and 24 hpi. 
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Infection at an MOI of 10 reduced the impact of vimentin bundling in GAN HF on 

AD169 infection.  In comparison, we could not detect IE1/IE2 expression in GAN 

fibroblasts or normal dermal fibroblasts infected with TB40/E at 4 hpi. This delay relative 

to AD169 infection was thus consistent in fibroblasts regardless of their origin. At 8 and 

24 hpi we observed significantly reduced levels at IE1/IE2 expression in fibroblasts from 

GAN patients infected with TB40/E at an MOI of 1. This reduction was not appreciably 

reduced when cells were infected at an MOI of 10 (Fig. 2-5I-L).  

Together with the results gathered during infection of ACR-treated HF, the GAN model 

continued to suggest that an intact vimentin cytoskeleton was crucial for the efficient 

onset of CMV infection. In the context of AD169 infection, vimentin bundling in GAN 

fibroblasts caused a delay in the onset of infection that could be overcome by both time 

and MOI. Based on these results, we speculated that vimentin IFs may be important in 

the proper trafficking of CMV particles to the nucleus. At low MOIs, particles which 

encountered these bundles would be temporarily impeded. However, at higher MOIs the 

probability that one or more particles could travel from the cell periphery to the nucleus 

in a regions where the structure of vimentin IFs remained intact would be greatly 

improved. Additionally, vimentin bundling in GAN fibroblasts did not result in the severe 

distortions in nuclear morphology induced by ACR treatment. This reduced the 

possibility that widespread nuclear instability simply abrogated the ability of viral 

particles to dock at or translocate their genomes through NPCs. TB40/E was more 

negatively affected by vimentin bundling than AD169 further suggesteing that these two 

strains may enter fibroblasts using different mechanisms. 



205 

 

 

As a final validation that the vimentin IF network is important during onset of CMV 

infection, we compared the efficiency of infection with AD169 or TB40/E in vim
+
 or 

vim
-
 MEFs. While MEFs do not support productive human CMV infection, the restriction 

event occurs after expression of IE genes (24-25). Therefore, these cells represented an 

excellent system through which to study the impact of vimentin on CMV entry. Vim
-
 

MEFs displayed a significantly reduced proportion of IE1/IE2-expressing cells than vim
+
 

MEFs infected with AD169 or TB40/E. The proportion of vim
+
 MEFs infected with 

AD169 remained consistent over time and at both tested MOIs. However, the proportion 

of vim
-
 MEFs expressing IE1/IE2 moderately increased with time, indicating that the 

absence of vimentin delayed onset of infection, rather than inhibiting it altogether (Fig. 2-

6A, C). 

Contrary to the steady proportion of vim
+
 cells observed at all times during AD169 

infection, we observed a sharp rise in the proportion of vim
+
 cells expressing IE1/IE2 

during TB40/E infection between 8 and 24 hpi. In contrast, the number of IE1/IE2-

expressing vim
-
 cells slowly decreased over time. The decrease was not due to the 

proliferation of uninfected cells, and thus seems to represent abortive infection (Fig. 2-

6B, D). In agreement with our earlier observations, TB40/E was again more negatively 

affected by the absence of vimentin than was AD169. The consistency with which this 

phenotype was observed serves as strong evidence that these two strains utilize distinct 

entry pathways in fibroblasts. 

To identify the stage at which the absence of vimentin impairs the onset of CMV 

infection, we tracked individual viral particles stained with an antibody specific for the 
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capsid-associated tegument protein pp150 during the early stages of infection of vim
+
 and 

vim
-
 MEFs (Fig. 2-7). This protein is known to remain associated with the capsid until 

disassembly following nuclear deposition of the viral genome (36, 52). There was no 

difference in the number of pp150+ cells exposed to either strain of virus for 1 h at 4°C. 

This indicated that vimentin does not affect binding of either AD169 or TB40/E. After 

transfer of cells to 37°C for 1h, the proportion of pp150+ cells remained consistent 

among all samples. However, by 4 hpi a sharp decrease was observed in the proportion of 

pp150+ vim
+ 

cells infected with AD169 relative to pp150+ vim
-
 cells treated in the same 

way. This trend was also observed 8 hpi, although the overall number of pp150+ cells 

steadily decreased. TB40/E infection produced similar results, however the differences 

between pp150+ vim
+
 and pp150+ vim

-
 cells was less pronounced at 4 hpi (Fig. 2-7E). 

Since pp150 remains associated with the capsid throughout entry, loss of signal is likely 

to represent degradation subsequent to disassembly of the capsid after nuclear deposition 

of the viral genome. Taken together, these results suggest that vimentin IFs increase the 

efficiency of this process at a step subsequent to binding.  

To more precisely determine the fate of viral particles in vim
+
 and vim

-
 MEFs, we 

monitored their localization 1 h after transfer to 37°C, at a time wherein the number of 

pp150+ cells had been determined to be equal among all treatment groups (Fig. 2-7F). 

Interestingly, we found that there was a general decrease in the proportion of particles 

localized at the nucleus in vim
-
 MEFs infected with either AD169 or TB40/E. In the case 

of AD169, the was accompanied by a concomitant increase in the proportion of particles 

maintained in the cytoplasm, while TB40/E particles appeared to be retained mainly at 

the cell periphery (Fig. 2-7A-D). This again led us to conclude that an intact vimentin 
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cytoskeleton is important for the efficient onset of CMV infection and that it is likely to 

play a role subsequent to virus binding, potentially during trafficking of particles towards 

the nucleus. 

In summary, we have investigated a previously unappreciated aspect of CMV entry in 

fibroblasts. We have shown that TB40/E exhibits a consistent delay in the onset of 

infection in fibroblasts relative to AD169. Our results demonstrate that both the 

fibroblast-adapted strain AD169, and the EC-tropic strain TB40/E rely on an intact 

vimentin cytoskeleton during onset of infection in fibroblasts. The structure of vimentin 

IFs remain unchanged during entry of both CMV strains in fibroblasts, akin to 

microtubules. Disruption of the vimentin IF network using the chemical agent 

acrylamide, vimentin bundling in fibroblasts harvested from patients with GAN, and the 

absence of vimentin in vim
-
 MEFs all had a negative effect on the efficiency of CMV 

infection. TB40/E consistently exhibited a greater degree of reliance on vimentin IFs than 

did AD169. Coupled with the delay in onset of infection observed for TB40/E and its 

retention at the periphery of vim
-
 MEFs, we speculate that TB40/E may enter fibroblasts 

through a mechanism other than direct fusion at the plasma membrane. The presence of 

the gH/gL/UL128-131A glycoprotein complex on TB40/E particles offers the possibility 

that strains expressing this complex are also capable of entering fibroblasts through an 

endocytic pathway, similar to that observed in endothelial and epithelial cells. Given 

recent advances in dissecting the multitude of possible endocytic routes of entry exploited 

by enveloped virus, careful future studies will be needed to understand the specific 

cellular processes involved (22). The apparent defect in viral particle trafficking observed 

during infection of vim
-
 MEFs suggested that vimentin IFs are likely to play a role in the 



208 

 

 

trafficking of AD169 and TB40/E virions post-penetration. Again, retention of TB40/E 

virions at the periphery of vim
-
 cells may imply that vimentin is also important during 

penetration of this strain. These dual roles for vimentin during TB40/E entry may account 

for the greater degree of reliance on vimentin IFs displayed by TB40/E in the various 

systems explored herein. 

Future studies should focus on elucidating the processes through which TB40/E enters 

fibroblasts. This is likely to be an important point especially as it relates to the 

development of entry-inhibitor anti-viral therapeutics. In addition, dissecting the specific 

role assumed by vimentin during the onset of CMV infection will be important in 

enhancing our understanding of the IF network during CMV entry. It is possible, perhaps 

even likely, that these same mechanisms are involved in the onset of infection with other 

types of herpesviruses. Finally, it would be of particular interest to determine whether IF 

types expressed by other cells function in a way that is analogous to vimentin during 

CMV entry. Epidemiological data relating the susceptibility of patients with disorders 

which affect IFs to CMV infection would be especially interesting in this regard. 

5.3 A Transactivating and Growth-Promoting Role for 55R 

E1A During HAdV Infection 

It is amazing that despite over three decades of intense study, there remains much to be 

learned about the many functions of E1A during HAdV infection. This speaks to the 

amazing complexity and importance of regulating the expression of both viral and 

cellular genes during the course of infection. While the majority of studies have focused 

on the products of the 13S and 12S mRNA species, little to nothing is known about the 
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specific functions of the the product of the 9S mRNA species. The 9S E1A mRNA 

produced by species C HAdV encodes a 55R protein. Unlike the products of the 11S and 

10S E1A which do not contain any novel sequences relative to the 13S product, splicing 

of 9S E1A causes a frameshift which results in 27 unique C-terminal residues (12, 44, 

59). This is not the only property that makes 55R E1A unique relative to all other 

isoforms, it also accumulates preferentially at late times post-infection and seems to 

require replication of viral DNA to do so efficiently (8, 55-56, 59, 65). A major barrier to 

the direct study of 55R E1A function has been the lack of an Ab which specifically 

recognizes this E1A isoform. Therefore, we set out to generate such and Ab and 

subsequently perform an initial characterization of 55R E1A encoded by species C 

HAdV. 

Anti-55R E1A polyclonal Abs were generated in rabbits using a peptide immunogen 

corresponding to residues 43-55 of 55R E1A from HAdV-2 coupled to keyhole limpet 

hemocyanin. These Abs were affinity-purified and using purified recombinant protein 

and we were able to show that they are exquisitely specific for the detection of 55R E1A 

from HAdV-2 (Fig. 3-1C). The Abs could also be used to detect HAdV-2 55R E1A by 

indirect immunofluorescence and to immunoprecipitate 55R E1A (Fig. 3-1D, E). We 

were pleased that this new reagent could be used for all of the applications tested and are 

confident that it will be a useful tool for future studies focused on elucidating the 

functions of 55R E1A. 

As mentioned previously, earlier studies have reported that the 9S E1A mRNA species is 

expressed with late kinetics and seems to require viral DNA replication (8, 55-56, 59, 
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65). However, the lack of an Ab which recognizes 55R E1A has precluded an analysis of 

the kinetics of protein expression until now. In agreement with previous reports, we 

found that 9S mRNA was expressed at late times post-infection in A549 cells (58-59). 

Protein expression matched these results closely. The larger E1A isoforms could be 

detected starting at 6 hpi and expression increased up to 24 hpi. In contrast, 55R E1A 

could be detected only weakly at 24 hpi and expression increased up to 72 hpi (Fig. 3-2). 

This was the first time that endogenous 55R E1A has ever been detected. Of particular 

interest was the observation that during infection, 55R E1A appears to be located 

predominantly in the nucleus of host cells (Fig. 3-2B). 55R E1A lacks the NLS present in 

the larger E1A isoforms, however, at a predicted MW of only 6 kDa it falls well below 

the approximately 40 kDa exclusion size mediated by the NPC (63). Once in the nucleus, 

55R E1A may be retained through binding to other factors also present in the nucleus, 

resulting in the apparent enrichment observed by immunofluorescence analysis. 

The localization of 55R E1A in the nucleus led us to question whether 55R E1A played 

any role in regulation of viral gene expression. Along with helping push host cells into 

the S-phase of the cell division cycle, this is one of the major functions of E1A, 

especially the 289R protein (3). We found that compared to dl312 (an E1A-null virus), 

viruses expressing only the 55R E1A isoform from either cDNA (JM17-55R) or from 

mutated genomic DNA (dl521), transactivated the expression of all viral genes tested to 

at least a limited extent. As expected, the maximal level of transactivation achieved by 

viruses expressing only 55R E1A was consistently lower than those observed during 

dl309 infection (Fig. 3-3). 289R E1A, which is expressed during dl309 infection, contains 

CR3, a potent transactivating domain. This activity is mediated through interactions with 
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a variety of cellular proteins, including MED23 (a component of the mediator complex), 

TBP, p300/CBP and S8 (1, 4, 16, 26, 29, 40-41, 43, 62). 55R E1A lacks this region as 

well as all of the other CRs. In fact, it shares only it's first 29 amino acids with the other 

E1A isoforms. Unlike HAdV-12, these 29 amino acids encoded by HAdV-2 do not seem 

to possess a transactivation function (27). This would suggest that the transactivating 

properties of 55R E1A are mediated, at least in part, by the novel C-terminal domain 

found within this protein. Potential binding partners of this region remain completely 

unexplored and represent an exciting new field of research. Identifying these putative 

factors will help in elucidating the mechanism through which 55R E1A transactivates 

viral gene expression and may uncover as yet undiscovered functions. Given the kinetics 

of expression, it is tempting to speculate that 55R E1A may preferentially induce viral 

and cellular genes that are important at the later stages of HAdV infection. In support of 

this, hexon was one of the most strongly-induced transcripts by viruses which expressed 

only the 55R E1A isoform (Fig. 3-3E). E4orf6/7 transcription was also potently 

stimulated by viruses expressing 55R E1A. This protein is known to dimerize with free 

E2Fs, which increases their affinity to stimulate transcription of the viral E2 promoter 

(10, 31, 35). Since processing of the 9S transcript seems to rely on viral DNA replication, 

this may serve as a positive feedback loop at late times post-infection to ensure that the 

viral genome is replicated to appropriate levels and that 55R E1A is expressed efficiently. 

While we have shown that 55R E1A is capable of transactivating the expression of viral 

genes, it does not appear to be sufficient to transform primary rodent cells in cooperation 

with E1B, nor does it share the pro-apoptotic properties of 289R E1A (18, 64). This led 

us to question whether 55R E1A could, in addition to transactivating the expression of 
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viral genes, promote productive replication of HAdV in contact-inhibited, primary IMR-

90 fibroblasts. To assess this, contact inhibited IMR-90 cells were infected with a variety 

of viruses capable of expressing multiple combinations of E1A isoforms, including both 

JM17-55R and dl521, which express only 55R E1A. Replication assays were performed 

and titres for each virus were normalized to those gathered from infections with dl312, an 

E1A-null virus. As expected, virus expressing wildtype E1A grew to the highest titres, 

followed by a virus which expresses 289R, but not 243R E1A. Viruses expressing only 

55R E1A consistently replicated to titres over one log-fold greater than E1A-null virus. 

To our surprise, replication of JM17-55R at 48 hpi and dl521 and 120 hpi exceeded that 

of dl520, a virus which expresses 243R E1A, but not the 289R protein (Fig. 3-4A). These 

results demonstrate that the 55R E1A can not only stimulate expression of viral genes, 

but can also promote productive viral replication to a substantial degree in an E1A-null 

background. 

Studying the effect of the 55R E1A isoform in isolation provided a controlled 

environment through which we were able to dissect the functions of that particular E1A 

isoform without confounding influences from the other E1A proteins. However, during 

infection 55R E1A is expressed in the context of the other E1A isoforms, and therefore 

determining the contribution of 55R E1A to HAdV replication in the context of the other 

E1A isoforms was important. To do this, we performed co-infections experiments 

whereby contact-inhibited IMR-90 cells were infected with either a 289R E1A-

expressing virus (pm975) or a 243R E1A-expressing virus (dl520) and either dl521 (55R 

E1A only) or dl312 (E1A null). In combination with pm975, dl521 co-infection did not 

increase viral titres above those observed during co-infection with dl312. In contrast, 
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dl521 increased viral titres 1- and 2-log-fold at 48 and 120 hpi, respectively, in 

combination with dl520 (Fig. 3-4B). Since both pm975 and dl520 are capable of 

expressing 55R E1A on their own, these results indicate that endogenous levels of 55R 

E1A are sufficient to maximize the replication potential of HAdV in combination with 

289R E1A. However, when 289R E1A is not expressed, as is the case during dl520 

infection, providing additional 55R E1A can further enhance viral replication. These 

results agree well with our earlier observation that both JM17-55R and dl521 are capable 

of replicating to titres greater than those of dl520 in contact-inhibited IMR-90 cells. 

Given that 55R E1A shares its first 29 amino acids with the larger E1A proteins, we 

hypothesized that cellular partners which interact with this region may also be important 

for the function of 55R E1A. Based on our finding that 55R E1A was able to 

transactivate expression of viral genes, we focused our attention on S4 and S8. These two 

proteins are components of APIS, the regulatory component of the 26S proteasome. Both 

have been shown to interact with E1A residues 4-25 (57). Later, S8 was also shown to 

interact with CR3 and could be recruited to HAdV early gene promoters (43). Most 

interesting in the context of our work, was the observation that inhibition of proteasome 

activity had an inhibitory effect on the ability of E1A to transactivate viral genes (43). 

However, the effect of proteasome inhibition on viral replication was not directly tested. 

We found that 55R E1A interacted well with S8 in both GST pulldown and 

immunoprecipitation assays. Surprisingly, we did not detect an interaction with S4 (Fig. 

3-5A). These results would suggest that 55R E1A interacts with S8 selectively, and that 

either the C-terminus of 55R E1A had an inhibitory effect on the S4 interaction, or that 

regions present in the larger E1A isoforms but absent from the 55R isoform stabilize the 
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interaction. We hypothesized that if the interaction of 55R E1A with S8 played an 

important role in its ability to transactivate viral gene expression, knockdown of S8 

should have an impact on the ability of a virus expressing only 55R E1A to replicate. 

Indeed, we found that knockdown of S8 in A549 cells reduced viral titres by 2-fold 48 

hpi (Fig. 3-5C). This strongly suggests that the interaction with S8 plays an important 

role in the replication-promoting properties of 55R E1A. Not only does the S8 interaction 

provide some insight into the mechanism through which 55R E1A accomplishes its 

functions, it is also the first reported binding partner of 55R E1A. 

In the future, it will be of great interest to determine additional binding partners of 55R 

E1A, specifically those which bind the unique C-terminal region of the protein. 

Identifying these interactions and elucidating their functional consequences will provide 

additional insight into a severely understudied area of HAdV biology - the function of the 

55R E1A protein. 

5.4 RASCAL, a Potential New Member of the CMV NEC 

The nuclear egress of CMV nucleocapsids is a complex process that requires the 

formation of a multiprotein complex consisting of both viral and cellular factors. While 

several members of this complex have recently been identified, it is highly likely that 

additional factors are also involved. CMV, like other herpesviruses, contains a very large 

genome by virus standards and thus, many ORFs have yet to be characterized. Several 

studies in the past have demonstrated that serial passage of clinical isolates on HF leads 

to the mutation or deletion of ORFs which are responsible for maintaining the broad cell 

tropism exhibited during natural infection (7, 17, 60-61). While the loss of epithelial and 
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endothelial cell tropism has been mapped to mutations in the UL128-131A gene locus, 

AD169, a fibroblast-adapted CMV strain which contains a frameshift mutation leading to 

a non-functional UL131A product, remains able to infect mature Langerhans cells (17, 

20, 60-61). This suggests that other, as of yet uncharacterized ORFs, may help mediate 

CMV tropism for specific cell types. In an attempt to identify these factors, we compared 

each ORF present in TB40/E-BAC4 to the corresponding ORFs from five other common 

CMV strains. A recently identified putative ORF, originally called c-ORF29, was of 

particular interest as the putative protein encoded by CMV strains Towne and Toledo was 

75 amino acids longer than the corresponding protein encoded by AD169 and TB40/E 

(34). Thus, we set out to characterize the role of this putative protein during CMV 

infection, and to compare the two variants of the protein to one another. 

In silico analysis of both short and long RASCAL sequence revealed the presence of 

putative transmembrane domains at the N- and C-termini of the short RASCAL isoform. 

Two additional regions of high hydrophobicity were identified in the long RASCAL 

isoform, but neither were reliably predicted to be a transmembrane domain. The protein 

was also predicted to contain PKC and PKA phosphorylation sites (Fig. 4-1B, C). These 

predictions were particularly insightful in light of the fact that RASCAL was found to 

localize at the nuclear membrane and to interact with components of the CMV NEC, 

which contains PKC and is known to rely on extensive phosphorylation events to 

remodel the nuclear lamina. In the future it will be interesting to determine whether 

RASCAL is indeed phosphorylated, and whether phosphorylation is important in 

regulating its function. 
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To ensure that c-ORF29 actually produced a transcript, we performed RT-PCR analysis 

on HF that had been infected with either TB40/E or Towne/GFP-IE2. In each case we 

observed a band corresponding to the predicted size of the respective c-ORF29 isoform. 

Sequencing confirmed that a T-to-C transition had occurred at position 292 of 

RASCALTowne that resulted in the conversion of a TAA stop codon into a CAA codon, 

which codes for Gln. To determine the kinetics of c-ORF29 expression, HF were  treated 

with PFA, a compound that inhibits viral DNA replication by interfering with UL44 - the 

viral DNA polymerase processivity subunit, or were left untreated. These cells were then 

infected with TB40/E and samples were collected at multiple times post-infection for RT-

PCR analysis of c-ORF29 expression. PFA treatment diminished, but did not completely 

abolish c-ORF29 expression, indicating that it is expressed with early-late kinetics (Fig. 

4-2A, B). Interestingly, despite the incomplete inhibition of c-ORF29 mRNA expression, 

PFA treatment of HF was subsequently found to reduce RASCAL protein levels below 

detectable levels (Fig. 4-4). These experiments were performed using rabbit polyclonal 

Abs generated using a peptide corresponding to residues 21 to 39 of RASCALTB40/E. This 

antibody was able to recognize RASCAL isoforms encoded by both TB40/E and 

Towne/GFP-IE2 (Fig. 4-2C, D). 

In order to narrow down the potential function of RASCAL during infection, we sought 

to determine its subcellular localization during infection. To this end, HF were infected 

with either Towne/GFP-IE2 (Fig. 4-3), AD169 or TB40/E, and samples were collected 

and stained at multiple times post-infection. RASCAL expression was clearly detectable 

starting at 48 hpi, with punctate cytoplasmic staining and enrichment around the nucleus 

(Fig. 4-3). As infection progressed, enrichment at the nuclear membrane continued and 
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RASCAL could be found co-localizing with lamin B in deep intranuclear invaginations 

(Fig. 4-3, 4-5). These structures were reminiscent of those previously reported during 

immunofluorescence and ultrastructural studies of CMV infection. The invaginations 

were subsequently found to occur at late times post-infection and to contain UL50, UL53 

and UL97, central components of the CMV NEC (5-6, 11, 14, 30, 38, 45, 50). In these 

regions, the nuclear lamina has been reported to be dissolved and the INM seems to 

stretch down to areas which are dense with CMV nucleocapsids. Indeed, capsids can be 

seen budding into these structures, and therefore, they are thought to be regions of 

primary envelopment (5). 

Strikingly, at late stages of infection RASCAL was also observed in lamin B-positive 

vesicles that appeared to be derived from the nuclear envelope and stretched throughout 

the body of the cell (Fig. 4-6). These structures were induced during infection by CMV 

strains encoding either the large or small RASCAL isoforms. The size of these structures, 

coupled with their distance from the nuclear envelope raises the intriguing possibility that 

they may undergo active retrograde transport. Whether these structures contain CMV 

virions or other viral components remains to be seen. Closer examination of the contents 

contained within these structures will be of great interest in future studies, as will 

examining their potential role in the CMV replication cycle. 

Due to the kinetics of RASCAL accumulation at the nucleus, we questioned whether 

other viral factors might be required to mediate its localization. Indeed, pUL50 and its 

homologs are known to be required for the proper localization of pUL53 (and its 

homologs) during assembly of the NEC (32-33). Exogenous expression of RASCAL in 
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HEK293T cells revealed that when expressed alone, RASCAL does not become enriched 

at the nuclear rim. However, co-expression of RASCAL with UL50-HA, but not UL53-

FLAG was sufficient to induce accumulation of RASCAL at the nuclear envelope (Fig. 

4-7). The association of RASCAL with pUL50 was also confirmed by 

immunoprecipitation (Fig. 4-8). Interestingly, contrary to results obtained using COS7 

cells, expression of RASCAL, UL50 and UL53 either alone or in combination with one 

another were insufficient to induce the invaginations of the INM observed during 

infection (6). This suggests that functioning of the NEC may, in some cases, be cell-type 

dependent. 

It was surprising that at no point in our study did we observe a functional difference 

between the long and short RASCAL proteins. This leaves us to hypothesize that 

differences in the function of these two isoforms might be quite subtle and/or context-

dependent. We did not directly compare the two RASCAL isoforms in the context of 

measuring efficiency of viral egress. Therefore, it is possible that differences may exist at 

that level. It is also possible that the elongated RASCAL isoform may have additional 

functions only in particular cell types, potentially by interacting with specific viral or 

cellular NEC components required in only these cells. 

In the future, it will be important to carefully map all of the binding partners of RASCAL 

so that its relative contribution to the NEC can be determined. It will also be interesting 

to determine whether, and in what contexts, the long and short isforms of RASCAL 

function differently. The RASCAL- and lamin B-positive vesicles observed at late times 

post-infection are especially intriguing, as they may constitute a previously unknown 
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pathway that contributes to CMV egress. In conclusion, we have identified novel CMV 

protein that exhibits interesting nuclear and vesicular localization at late times post-

infection. This protein appears to exist in complex with pUL50, and requires pUL50 for 

its enrichment at the nuclear rim. Together, these results suggests that RASCAL may be a 

novel viral component of the CMV NEC. 

5.5 Concluding Remarks 

" Science is facts; just as houses are made of stone, so is science made of facts; but a pile 

of stones is not a house, and a collection of facts is not necessarily science." 

-Jules Henri Ponticaré (1854-1912) French Mathematician 

This work has described studies concerned with exploring three processes essential in the 

replication cycle of all viruses: entry, gene regulation and egress. Considered in isolation, 

each chapter seems to focus on the investigation of a fixed process, applicable to one 

particular virus. Even such stepwise contributions to our understanding of viral biology 

should not be overlooked. We have, after all, not only described a function for two 

previously unstudied viral proteins and identified a novel cellular factor important during 

CMV entry, but in doing so, have also catalyzed new fields for future investigation. It is 

this contextualization of observations and the spawning of new ideas that underlie the 

very nature of science, and differentiate it from a collection of meaningless facts. 

Considered together, the studies described herein tell a much more important story about 

the very nature of infection and the many processes which even the simplest of viruses 

must accomplish in order to replicate productively. It is in considering these broader 

truths that we are able to extract the truly immeasurable contribution of scientific inquiry 

to society. We should not forget the privilege that we experience being in a position to 
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make such contributions, nor the responsibility that such a privilege entails.  Each of 

these studies has built on years of research describing either the importance of the 

cytoskeleton during virus entry, the pleiotropic functions of E1A during HAdV infection, 

or the mechanism of CMV nuclear egress and composition of the CMV NEC. Our 

contributions to these areas have improved the current state of knowledge underlying 

three fundamental viral processes. We are confident that this work will now serve as the 

foundation of future studies that will continue to expand our understanding of the natural 

world, and that directly or indirectly, they will play a key role in a much larger body of 

biomedical knowledge that continually catalyzes the improvement of human health. 
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