
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

9-16-2011 12:00 AM 

Uncovering New Bonding Motifs: The Synthesis of Chalcogen and Uncovering New Bonding Motifs: The Synthesis of Chalcogen and 

Phosphorus Complexes Supported by Nitrogen Based Ligands Phosphorus Complexes Supported by Nitrogen Based Ligands 

Caleb D. Martin, The University of Western Ontario 

Supervisor: Paul J. Ragogna, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Chemistry 

© Caleb D. Martin 2011 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Inorganic Chemistry Commons 

Recommended Citation Recommended Citation 
Martin, Caleb D., "Uncovering New Bonding Motifs: The Synthesis of Chalcogen and Phosphorus 
Complexes Supported by Nitrogen Based Ligands" (2011). Electronic Thesis and Dissertation Repository. 
287. 
https://ir.lib.uwo.ca/etd/287 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=ir.lib.uwo.ca%2Fetd%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/287?utm_source=ir.lib.uwo.ca%2Fetd%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Uncovering New Bonding Motifs: The Synthesis of Chalcogen and Phosphorus 
Complexes Supported by Nitrogen Based Ligands 

 
Spine Title: The Synthesis of Novel Chalcogen and Phosphorus Complexes 

 
Thesis format: Integrated Article 

 
 
 

by 
 
 
 

Caleb D. Martin 
 
 
 
 

Graduate Program in Chemistry 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Caleb D. Martin 2011 



 ii 

THE UNIVERSITY OF WESTERN ONTARIO 
School of Graduate and Postdoctoral Studies 

 
 

CERTIFICATE OF EXAMINATION 
 
 
 

Supervisor 
 
 
______________________________ 
Dr. Paul J. Ragogna  
 
 

Examiners 
 
 
______________________________ 
Dr. Manuel Alcarazo  
 
 
______________________________ 
Dr. Paul Charpentier 
 
 
______________________________ 
Dr. John Corrigan  
 
 
______________________________ 
Dr. Martin Stillman  

 
 
 

The thesis by 
 

Caleb Daniel Martin 
 

entitled: 
 

Uncovering New Bonding Motifs: The Synthesis of Chalcogen and 
Phosphorus Complexes Supported by Nitrogen Based Ligands 

 
is accepted in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

 
 
 
______________________             _______________________________ 
         Date    Chair of the Thesis Examination Board 



Abstract 
 

The chemistry of the main group elements with nitrogen based ligands has been an area 

that has received little attention in comparison to transition metals. The preliminary 

investigations have focused on groups 13 and 14 revealing new bonding motifs and 

interesting reactivity. This has motivated us to synthesize group 15 and 16 derivatives in 

new bonding arrangements capable of activating small molecules. 

In pursuit of isolating such species, the reactivity of sulfur dichloride and “S(OTf)2” with 

a series of diazabutadiene (DAB) ligands was explored. The substitution on the ligand 

was extremely influential on the outcome of the reaction. Alkyl groups on the nitrogen 

atom resulted in the production of 1,2,5-thiadiazolium heterocycles by loss of an alkyl 

group whereas methyl groups on the backbone carbon atom led to reaction with the 

eneamine tautomer of the ligand to give N,C-bound heterocycles. This could be avoided 

with aryl groups or hydrogen atoms on the backbone carbons and aryl groups on the 

nitrogen centres. The latter reactions produced dicationic analogues of the N-Heterocyclic 

carbene, the first examples for sulfur. 

The chemistry of the chalcogen halides and bistriflate synthons with the diiminopyridine 

(DIMPY) ligand showed similar trends. Methyl groups on the backbone carbon resulted 

in bonding through a methyl carbon whereas phenyl groups or hydrogen atoms in the 

same position produced N,N’,N’’-chelated cations or dications. The dicationic triflate 

salts are stable in the open atmosphere, a remarkable feature for highly charged cations. 

The chemistry was also extended to phosphorus. Collectively these species represent the 

first DIMPY complexes for phosphorus, sulfur, selenium and tellurium.  

Sulfur(II) dications with amine donors, namely pentamethyldiethylenetriamine could also 

be prepared. The complex was highly unstable indicating imine and pyridine groups offer 

greater stabilization. In addition to the chelate complexes, monodentate pyridine ligands 

coordinate to a dicationic sulfur centre. The monodentate species displayed reactivity 

with a variety of unsaturated organic substrates. Altering the group on the para position 

of the pyridine proved to have a significant effect on the reactivity indicating potential 

tuneability for the system. 
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Chapter 1   
 

Advancing the Frontiers of Main Group 
Chemistry 

 
 

1.1 Recent Developments in Main Group Chemistry 

The past six years have seen a renaissance in main group chemistry.1,2 Previously, the 

objectives of main group chemists were primarily focused around the generation of 

functional materials and isolating new bonding motifs.3 Although those themes still exist, 

recently, the realization has occurred that the p-block elements can perform tasks that 

were previously restricted to transition metals. These include the activation of small 

molecules, catalysis, and sequestering highly reactive molecular entities.  

The general evolution of this new p-block chemistry has typically been to synthesize or 

discover a very reactive species, then to develop its utility in small molecule activations 

or catalytic transformations. Some great examples of species that have followed this trend 

include carbenes,2 the frustrated Lewis pair,4 the p-block carbene analogues5 and the 

heavy analogues of alkenes and alkynes.1  

The group 15 and 16 elements in unusual coordination geometries and electronic 

environments should also have promise in the field of small molecule activation. The 

approach to isolating such species can be through the coordination of donor ligands to the 

main group centre. As the nitrogen based ligands have stabilized several reactive group 

13 and 14 derivatives such as the carbene analogues, this approach should readily 

translate to the later groups. This dissertation will focus on the synthesis of reactive 

cationic pnictogen and chalcogen centres sequestered using nitrogen based ligands, and 

subsequently examine the reactivity of these species. 

 

1.2 Carbenes and Carbene Analogues 

Main group complexes including carbenes and their p-block analogues have been shown 

to be reactive towards a variety of molecules. Carbenes have a neutral two coordinate 
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carbon centre, with a lone pair and an unoccupied p-orbital forming a sextet within its 

valence shell.2 For many years these species were proposed as reaction intermediates, but 

were not isolated in a laboratory as a stable species until 1988.9 Although the first 

carbene had little use, this molecule served as a stepping stone to a succeeding report by 

Arduengo in 1991, known as the classic N-Heterocyclic carbene (NHC; 1.1; Figure 

1.1).10 These molecules proved to be excellent ligands for transition metals and their 

metal complexes proved to be very fruitful in catalytic reactions.11 The initial NHC was a 

five-membered C3N2 ring with two nitrogen centres adjacent to carbon and a carbon-

carbon double bond in the framework. A proper Lewis structure of the NHC is an ylide 

with lone pairs on the nitrogen atoms delocalizing electron density into the empty p-

orbital on carbon and satisfying its octet (1.1a and 1.1b). Although the first example had 

a carbon-carbon double bond within the five membered heterocycle providing a 6 !-

electron aromatic system for further stabilization, it was not essential as the saturated 

analogue (1.2) has been isolated.12 The incorporation of the NHC has been an important 

discovery in transition metal chemistry, ultimately resulting in a catalyst that won a share 

of the 2005 Nobel Prize. 

 

 
Figure 1.1: Structural representations of the classic NHC (1.1) indicating the ylidic 

nature of the molecule and the saturated analogue (1.2). 

 

The area of carbene research has since blossomed with the quest of isolating new 

carbenes by different methods to stabilize the reactive carbon atom (Figure 1.2 contains a 

small selection).13 The carbenes can be in both cyclic or acyclic systems. They can have a 

variety of heteroatoms such as P, Si, S or O adjacent to the central carbon atom but 

typically the neighbouring atoms have a lone pair to stabilize the empty p-orbital on 

carbon (1.3-1.7).9,14-16 A recent report of the cyclopropenylidene (1.8) proved that 

heteroatoms next to carbon were not required to isolate the carbene centre.17 The bond 

angles, donor ability and chemistry of all of these derivatives have been shown to have 

NNR R NNR R NNR R NNR R

1.1 1.1a 1.1b 1.2
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significant differences and give the potential to tune the electronics for specific "-donor 

properties.13 

 

 
Figure 1.2: A selection of carbenes with various atoms adjacent to the carbene centre. 

 

The number of carbenes available is vast; the most effective derivatives in small molecule 

activation have both high degrees of nucleophilicity and electrophilicity (small singlet-

triplet or HOMO-LUMO gap; Figure 1.3).2 The ferrocene bridged carbene (1.9),18 acyclic 

alkyl amino carbene (1.10),19 cyclic alkyl amino carbene (1.11),19 and amido carbene 

(1.12)20 are all species that have the desired small HOMO-LUMO gap. These molecules 

readily activate dihydrogen, ammonia, carbon monoxide, nitriles, Si-H and P-H bonds.2   

 

 
Figure 1.3: A selection of carbenes effective in the activation of small molecules. 

 

The heavier congener of the NHC, the five membered N-heterocyclic silylene (NHSi; 

1.13; Figure 1.4), has also proven to be extremely active in this realm of chemistry.21 The 

five membered NHSi has activated O-H bonds, alkyl/aryl halides, silyl halides, azides, 

olefins, alkynes, ketones, imines, nitriles and elemental chalcogens among others.   

An analogous six membered ring system, supported by the !-diketiminate ligand (1.14; 

Figure 1.4) was prepared in 2006 and has even greater reactivity than its five membered 

counterpart.5 This particular molecule has three reactive sites: the exocyclic alkene, the 

lone pair and the empty p-orbital on silicon, giving the potential for versatile reactivity. In 
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addition to being effective in the activation of the majority of the substrates described 

above with the five membered NHSi, the six membered system also reacts with the 

pnictines (NH3, PH3 and AsH3).22 Ammonia and phosphine react at the silicon centre to 

form a phosphide and amide (1.15) with a silicon hydride. Arsine produces the analogous 

molecule (1.16) but it lies in equilibrium with a donor stabilized arsa-silene (1.16a) by 

transfer of a hydrogen to a carbon on the ligand framework indicating the reactivity of the 

alkene and giving insight to the versatility of this reagent.  

 

 
Figure 1.4: Structure of five membered NHSi (1.13) and the activation of the pnictines 

(PnH3) with the six membered NHSi (1.14).  

 

The phosphorus analogues of the carbene, the phosphenium cations, have also been a 

contributor in the field of small molecule activation.23 A nice example is observed from 

the mixture of a diorganohalophosphine in the presence of gallium trichloride to generate 

a phosphenium cation in situ that can then stoichiometrically insert into one, two or three 

P-P bonds of the tetrahedron of white phosphorus (Scheme 1.1; 1.17-1.19).24 Other 

reactivity studies show they undergo cycloadditions with unsaturated hydrocarbons.25  

 

 
Scheme 1.1: Reactivity of a phosphenium cation with P4. 
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As silicon and phosphorus are useful in transformations with small molecules, the group 

16 third row element, sulfur, should also possess such desirable reactivity if the proper 

bonding motif can be achieved. A report in 1979 has reported the isolation of such 

species, formally a sulfenium dication.26 This species would be isoelectronic to both the 

silylene and phosphenium cation. The molecule bears a charge of 2+ on the sulfur centre, 

hence greater reactivity can be anticipated in comparison to the neutral (Si) or 

monocationic (P) row three derivatives and its chemistry should be explored.  

 

1.3 Heavy Analogues of Alkenes and Alkynes 

Heavy analogues of alkenes and alkynes have also proven to be capable in the activation 

of several small molecules.1 These heavy unsaturated systems are very reactive and need 

extraordinarily bulky groups to stabilize the main group centres. An example of their 

reactivity is the distannyne (1.20; Scheme 1.2) displaying reversible reactivity with 

ethylene.27 Compound 1.20 binds two equivalents of ethylene by cycloaddition (1.21) and 

in a vacuum the ethylene is easily removed from the tin atoms. In addition to olefins, 

these species can activate many other molecules including dihydrogen.28 

 

 
Scheme 1.2: Demonstration of the reversible binding of a distannyne (1.20) with 

ethylene. 

  

1.4 Frustrated Lewis Pairs 

The seminal paper by Stephan et al. on frustrated Lewis pairs (FLPs) has burgeoned a 

whole new area of research.4,29 The concept of an FLP is having the combination of a 

sterically congested Lewis acid and Lewis base preventing the formation of the classical 

adduct (1.22; Scheme 1.3). This quenched reactivity permits the two species to act on 

substrates synergistically. The first reaction reported was the cleavage of dihydrogen 

(1.23).30 The bifurcation of H2 is difficult as the bond is strong (436 kJ/mol) and has no 

polarization. The only prior example of a non-metal species carrying out such chemistry 
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was a digermyne reacting with H2 to produce a mixture of germanes and the 

corresponding germene.28 This chemistry has been developing rapidly. Some FLPs have 

proven to be effective in the delivery of H2, and are now capable of catalytically 

hydrogenating numerous organic substrates.31,32  

The Lewis bases proficient in FLP chemistry have been extended beyond phosphines to 

include pyridines, imines, amines and carbenes among others.4 The Lewis acids however 

have been limited; the most prominent being B(C6F5)3 and other fluorinated aryl boranes. 

There have only been sparse reports of aluminum trihalides and an electron deficient 

allene acting as the Lewis acceptor.33,34 The bond activations have been useful to many 

small molecules including N2O, CO2, ethers, alkenes, alkynes, in addition to S-S and O-H 

bonds.33-37 

 

 
Scheme 1.3: An example of the reactivity of “frustrated Lewis pairs” with H2. 

 

1.5 Isolating Reactive Molecular Units 

In terms of developing novel complexes capable of activating small molecules, reactive 

molecular units are good targets. In addition to carbenes, many other unstable element 

centres and molecular units exist. These species include highly reactive radicals and units 

that are extremely electron rich or electron deficient. Elaborate methods have been 

utilized in the past by many talented chemists to generate these derivatives. Significant 

discoveries have been made by spectroscopically observing very reactive species under 

cryogenic and photolytic conditions in noble gas matrices or by observing such species in 

the gas phase.38-40 Although this research is very important in understanding the 

fundamental structure and bonding of molecules, the practicality of utilizing species that 

require heroic efforts to generate in a flask is not feasible.  

These low temperature and gas-phase investigations have spawned numerous studies into 

developing methods of isolating reagents stable in a laboratory under an inert atmosphere 

and at ambient temperature. The two most common means to stabilize these reactive units 

have been to incorporate the species within the coordination sphere of metals, or to 

+ B(C6F5)3tBu3P B(C6F5)3
H2 [HPtBu3   ] [HB(C6F5)3   ]PtBu3

1.231.22
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provide supporting substituents to electronically stabilize and/or sterically protect such 

fleeting molecules. 

Utilizing metals to sequester molecular units has proven to be effective with the recent 

examples of BF, BO-, NO2
-, N3

- and N2H2
2- (1.24-1.28; Figure 1.5).6,41-47 The metals 

stabilize the electron deficient or electron rich units primarily through !-backbonding 

interactions. The BF molecule is isoelectronic to CO, a stable gas abundant in the 

atmosphere. As boron and fluorine have very different electronegativites, the relative 

orbital energies prevent significant mixing between the electronegative fluorine with the 

electropositive boron centre, rendering the molecule extremely reactive. The BF species 

was able to be isolated by binding two ruthenium metal centres to the boron atom, 

stabilizing it by !-backbonding interactions (1.24).6 The early transition metals (e.g. 

yttrium) are very good at stabilizing electron rich units as they have high energy d-

orbitals which can !-backbond with the higher energy antibonding orbitals and has 

proven to be effective in isolating NO2
-, N3

- and N2H2
2- (1.26-1.28, respectively) among 

others.43-47 This is in contrast to the late metals that have d-orbitals lower in energy to 

interact with electron deficient centres such as BF and BO- (1.24 and 1.25).6,42   

 

 
Figure 1.5: Structures of transition metal stabilized reactive intermediates. 

 

In addition to metals utilizing d-orbitals for !-backbonding stabilization, strong donor 

ligands such as phosphines, pyridines and carbenes can also be used to isolate reactive 

species. This approach has been known for many years with an example being the 

carbodiphosphorane, a carbon(0) complex first generated in 1961 (1.29; Figure 1.6).48 
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(1.29); a dianionic carbon centre with two covalent bonds (1.29a); or by the 

representation with two carbon-phosphorus double bonds (1.29b).  

The recent synthesis of the carbodicarbene (1.30) has generated a renewed interest in this 

carbon(0) chemistry.7 The carbodicarbene is similar to the carbodiphosphorane, simply 

exchanging the phosphines for carbenes. A resonance structure can be drawn as an allene 

(1.30a).49,50 At the time of publication, this species represented the allene with the highest 

degree of bending known. Reports have shown that bent allenes are very strong "-donors 

and can even act as four electron donors.51,52 Carbodiphosphoranes display the ability to 

act as Lewis bases in FLP chemistry, proving that these molecules are not only anomalies 

in the traditional bonding of carbon.53  

This carbon(0) chemistry has inspired research on making p-block analogues of the 

carbodicarbene. Examples include the nitrogen(I) and phosphorus(I) cations (1.31), as 

well as the selenium(II) and tellurium(II) dicationic analogues (1.32).54-57 The tellurium 

centre can accommodate an additional two carbenes to form a square planar complex 

(1.33).55 The best bonding description for the latter species are donor-acceptor 

complexes. 

 

  
Figure 1.6: Structural representations of the carbodiphosphorane (1.29), carbodicarbene 

(1.30), the pnictogen(I) (1.31) and chalcogen(II) analogues (1.32) and the four coordinate 

tellurium species (1.33). 
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Donor ligands have shown the ability to stabilize many other low coordinate reactive 

main group molecules. This has been accomplished with the B2H2, Si2, P2 and As2 

molecules in recent years (1.34-1.36; Figure 1.7).58-61 The B2H2 molecule (1.34) features 

the first boron-boron double bond, with each boron atom having a hydride and a carbene 

to satisfy its octet.59 The bonding of the Si2 molecule (1.35) can be described as a based 

stabilized disilene with a lone pair on each silicon centre.58 The group 15 species, 

diarsenic and diphosphorus (1.36),60,61 do not have multiple bonding like the other 

examples, simply a single bond. The Si2, P2 and As2 examples can be viewed as new 

allotropes of silicon, phosphorus and arsenic. These examples differ from typical 

allotropes as the organic groups on the main group centres make them soluble in many 

organic solvents.62 

 

 
Figure 1.7: Carbene stabilized homoatomic main group molecules. 

 

Germanium dihydride was recently stabilized by a similar concept.63 The strategy 

involved having a carbene donate electron density into the empty p-orbital on germanium 

and the lone pair on germanium coordinate to the Lewis acid BH3 (1.37; Figure 1.8). This 

is an interesting example of a molecule stabilized by both a Lewis acid and a Lewis base. 

In order to isolate the tin analogue, a transition metal Lewis acid was needed (1.38).64 

Thus proving that in some cases transition metals are better ligands than non-metals at 

stabilizing main group centres.  

 
Figure 1.8: Examples of stabilizing main group centres using a Lewis acid and Lewis 
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base. 

 

1.6 Main Group Polycations 

Recent years have shown an interest in isolating main group polycations (e.g. 1.32 and 

1.33; Figure 1.10).8 Polycations are molecules of which a formal charge of 2+ or greater 

can be assigned to the central element of interest. These species are predicted to be highly 

unstable, hence have the ability to activate small molecules. This instability makes them 

challenging synthetic targets as the molecules in this bonding arrangement are typically 

electron deficient, often lacking the quintessential octet. To satisfy this deficiency, an 

approach has been to bind Lewis bases to the central element and occupy the empty 

coordination sites as performed with the other reactive molecular units (e.g. 1.29-1.38).  

The known group 13 polycations are restricted to boron and aluminum (Figure 1.9). The 

addition of pyridine to BBr3 displaces two or all three halides to access boron di- and tri-

cations depending on the stoichiometry (1.40, 1.41).65,66 The first structurally 

characterized species for this group was a boron dication featuring a !-diketiminate 

ligand to stabilize the boron centre in conjunction with bipyridine (1.42).67 A similar 

approach has been followed with aluminum, in this case a tetraamine coordinated to the 

dicationic aluminum (1.43).68 The tetraamine was necessary as aluminum accommodates 

larger coordination numbers. 

 

  
Figure 1.9: Structural representations of the known group 13 dications. 
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species acts as a Lewis base and can be viewed as a dicationic analogue of a phosphine.  

The approach to prepare the majority of the germanium and tin dications has been to 

utilize macrocycles to complex the main group centre with multiple weak contacts. The 

cryptand ligand forms a stable cavity to completely encapsulate the germanium(II) ion 

(1.46).71 Crown ethers, depending on cavity size, can sequester dicationic complexes of 

Ge and Sn.72-74 Small cavities (with respect to the ionic radius of the main group element) 

form sandwich species or appropriately sized macrocycles can isolate Ge(II) or Sn(II) 

dicationic centres within the cyclic ring (1.47-1.49). The crown ethers can also be 

substituted for nitrogen based macrocycles such as cyclic amines (1.50).73 The weak 

dative interactions in the macrocyclic species should allow for the release of Ge2+ and 

Sn2+ for various reactions. 

 

 
Figure 1.10: Structural representations of the known group 14 dications. 
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centre and occupy the vacant coordination sites rendering the pnictogen centre stable 

(1.54).78  

 

 
Figure 1.11: Structural representations of the known group 15 dications. 

 

The group 16 elements are interesting synthetic targets as they are more electronegative 

than the former three groups. Two examples have been mentioned for group 16 with 

carbene donors stabilizing chalcogen(II) dicationic centres (1.32 and 1.33; Figure 

1.6).54,55 The pioneering work in this area was done by Furukawa el al. in the 

development of trans-annulated chalcogen(IV) dications featuring proximal chelating 

thioethers to stabilize the dicationic centre (1.55, 1.56; Figure 1.12).79-83 Two sulfur(VI) 
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sulfur(IV) species are formally dicationic analogues of the ubiquitous hydrocarbon 
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high coordination numbers, it is anticipated that these molecules would be inert for bond 

activation reactions. It is not surprising that these species are air and moisture stable. 
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other examples and the current standard for comprehensive characterization of new 

bonding motifs involves obtaining a structure from X-ray diffraction studies. Attention 
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Figure 1.12: Structural representations of the known group 16 dications. 

 

1.7 Nitrogen Based Ligands 

The use of nitrogen based ligands whether they be monodentate, multidenate, neutral or 

anionic has been a critical component to many facets of inorganic chemistry research. 

This has been highlighted not only in the main group polycations but also in the carbene 

analogues.89 Although these p-block examples have been prepared, the target element 

centres sequestered have typically been transition metals.90 The metal complexes have 

been useful in several areas of catalysis, which in turn has opened their applications to 

numerous areas of organic synthesis.91 The types of available nitrogen based ligands are 

vast with prominent examples being amides, amines, imines, pyridines and nitriles (1.61-

1.65, respectively; Figure 1.13). The latter four species are neutral, hence form dative 

bonds to the metal whereas amides have a covalent linkage to the metal. Even though 

several of the mentioned ligands form dative bonds (1.62-1.65), the donor properties of 

each are significantly different and can have a great effect on chemistry at the metal 

centre. 

 

 
Figure 1.13: Monodentate nitrogen ligands binding to metal centres. 
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From the ligands listed above, it can be envisioned that numerous combinations of either 

the same, or different units can be incorporated into a single ligand. Derivatives with 

symmetric chelates include diamides (1.66), macrocyclic amines (1.67), diazabutadiene 

(1.68) and 2,2’-bipyidine (1.69; Figure 1.14). Common species with more than one type 

of nitrogen donor are the anionic #-diketiminate (1.70), amidinate (1.71), 2-

amidopyridine (1.72), as well as the neutral diiminopyridine ligands (1.73). The chelate 

effect of these ligands offers additional stability to the metal centre. The combination of 

anionic and neutral moieties can be easily altered to have multidentate ligands with 

various anionic charges. The number of spacer atoms between the donors can also be 

changed to adjust the cavity to accommodate the metal centre. In many cases the ligand 

has various sites available to incorporate electron withdrawing, electron donating or 

bulky groups that offers the potential to easily fine-tune the electronics and sterics. The 

combination of all of these features justifies their wide utility in current chemistry.  

 

 
Figure 1.14: Schematic diagram of metal complexes supported by multidentate nitrogen 

based ligands. 
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some detail whereas minimal reports exist for groups 15 and 16.95  

 

 
 

  
Scheme 1.4: The synthesis of the NHP (1.74) from DAB and PI3 (top) and the synthesis 

of the six membered NHSi (1.14; bottom). 

 

1.8 Chalcogen Chemistry with Multidentate Nitrogen Based Ligands 

The Richards group has performed some studies on the chemistry of the #-diketiminate 

ligand with the chalcogen tetrahalides.96,97 The experiments show that rather than the 

expected reactivity occurring through the two nitrogen atoms, the carbon on the ligand 

framework forms a bond to the chalcogen. This is postulated to occur through reaction 

with the eneamine tautomer (1.75’, Scheme 1.5). The outcome of the reactions was 

highly variable being dependent on the chalcogen, halide, solvent, stoichiometry and the 

groups on the nitrogen atoms. The yields also ranged from small batches of single 

crystals to 60%. When tellurium(IV) chloride was used, a carbon bound TeCl4 moiety is 

obtained (1.76). In the case with SeCl4, a selenium(II) product is produced in all cases but 

four different products were observed in changing the previously mentioned variables 

(1.77-1.80). The latter observation indicates that the chalcogen(IV) halides are 

susceptible to releasing dihalide that in many cases halogenates the ligand. The chemistry 

with the chalcogen(II) halides with nitrogen based ligands should be easier to control and 

be more viable targets. Furthermore, the bonding through a methyl group indicates that 

reactivity through the eneamine tautomer is favourable. 
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Scheme 1.5: Reaction products of ChX4 reagents with #-diketiminate ligands featuring 

methyl groups on the $-carbon. 
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Scheme 1.6: Reactions of neutral DIMPY and BIAN ligands with tellurium(IV) halides. 
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polycation, Se2+ (1.83; Scheme 1.7).99 This was accomplished by the reaction of SeCl4, 
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2- counteranion in 

addition to the byproduct 2-chloro-2-methylpropane.100 This research has yet to be 

extended to sulfur. The chemistry of sulfur with these ligands should also provide 

interesting outcomes. 

 

 
Scheme 1.7: Reactions of SeCl4 with DAB ligands. 
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the ligands with a series of main group halides will be explored determining that the 

substitution on the ligand framework in many cases has a significant impact on the 

chemistry. As previous groups have observed with nitrogen based ligands, bonding 

through carbon atoms on the ligand framework is problematic. Studies both controlling 

and avoiding this reactivity will be of focus. All of the ligands have been widely used in 

transition metal chemistry and learning more about their reactivity will undoubtedly be 

helpful for the rest of the periodic table.  

The synthetic targets will ultimately be intrinsically interesting molecules. These include 

the dicationic sulfur carbene analogue, the first N,N’,N’’-chelated chalcogen and 

phosphorus DIMPY complexes, as well as multidentate amine and pyridine sequestered 

sulfur(II) dications. Following the synthesis, the molecules will be tested as reagents for 

small molecule activations. From the conclusions of these studies, steps towards a greater 

understanding of the group 15 and 16 elements with nitrogen based ligands will be made 

and the information should be transferrable to the rest of the p-block and the d-block. 

This report by no means closes the door on a chapter of main group chemistry but rather 

opens it to a series of opportunities with new molecules and their subsequent chemistries.  
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Chapter 2 

Reactions of Diazabutadiene and 
Bisiminoacenaphthene Ligands with the In Situ 

Generated “S(OTf)2” Synthon and SCl2
! 

 
 
2.1 Introduction 

The reactivity of "-diimine ligands (e.g. 1,4-diazabutadiene, DAB; 1,2-

bisiminoacenaphthene, BIAN; Figure 1) with the majority of the elements on the periodic 

table has been widely explored. The bulk of these studies have been conducted on metals, 

whereas non-metallic elements have, for the most part, been ignored.1 Exceptions lie with 

carbon, boron and phosphorus, which have been extensively studied with Schiff-base 

ligand systems and revealed highly novel outcomes.2  

.  

 
Figure 2.1: The structures of the diazabutadiene (DAB) and bisiminoacenaphthene 

(BIAN) ligands. 

 

With respect to the common main group starting materials, reagents for such chemistry 

are the electrophilic main group halides. Boron trichloride reacts in a 1:1 stoichiometry 

with aryl BIAN derivatives with the displacement of a halide resulting in the diimine 

sequestered boron cation with a chloride anion (Figure 2.2; A). If the same reaction is 

conducted with a second equivalent of BCl3 or 2 equivalents of BBr3, the halide binds to 

                                                 
! A version of this work has been published in a) Martin, C. D.; Jennings, M. C.; Ferguson, M. J.; 
Ragogna, P. J. Angew. Chem. Int. Ed., 2009, 2210. b) Martin, C. D.; P. J. Ragogna Inorg. Chem. 2010, 49, 
4324. And c) Dutton, J. L.; Martin, C. D.; Sgro, M. J.; Jones, N. D.; Ragogna, P. J. Inorg. Chem. 2009, 48, 
3239. This work has been reproduced with permission. 
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the second BX3 molecule resulting in a BX4
- anion.3,4 Similarly, an alkyl DAB ligand 

reacts stoichiometrically with BBr3 producing an analogous cationic diimine BBr2 

complex with a Br- counterion (B).5 The reaction of an aryl DAB with BCl3 in a 1:1 

stoichiometry in hexanes gives rise to covalent N-B bonds with a loss of the diimine 

framework giving a neutral diazaborolidine with double-halogenation of the backbone 

carbon atoms (C).6,7 Switching the solvent to CH2Cl2 produces a different outcome as the 

elimination of HCl occurs generating a carbon-carbon double bond in the ligand 

framework (D).7 

 

 
Figure 2.2: Reaction products of DAB and BIAN ligands with boron trihalides. 

 

Reactions of DAB or BIAN ligands with PBr3 proceed cleanly in the presence of a halide 

trap (e.g. cyclohexene) and undergo a charge-transfer giving the corresponding bromo- 

phosphines (Figure 2.3; E, F).8 The reaction proceeds by generating a P(I) intermediate 

which is then oxidized to P(III) by the ligand in a subsequent step by a charge-transfer 

process. These halophosphorus compounds are precursors to N-heterocyclic 

phosphenium cations (G, H) via halide abstraction. The phosphenium cations can also be 

made directly with a 1:1 mixture of SnCl2 and PCl3 or PI3 alone with either DAB or 

BIAN ligands.9-11 The reactivity proved consistent in all cases regardless of the 

substitution on the backbone carbon. 
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Figure 2.3: Bromophosphines and phosphenium cations derived from DAB and BIAN 

ligands. 

 

Research in our group has been focused on the interactions of these ligands with the 

chalcogens, mainly focused on selenium.12-21 Selenium dichloride and dibromide react 

with BIAN or DAB ligands with aryl groups on N produce a “trapped” SeX2 unit (Figure 

2.4; I, J).16 If tert-butyl groups are present on nitrogen, SeCl4 and SeCl2 both produce 

1,2,5-selenadiazolium ring system (K, L).12,14 The reaction of an aryl DAB with SeCl4 in 

the presence of SnCl2 which acts as both a reductant and halide abstracting agent yields 

the dicationic N-Heterocyclic carbene analogue (M).13 This discovery was significant as 

it is a rare chalcogen(II) dication and represented the first example of an NHC analogue 

to the right of group 15 on the periodic table as all of the 2nd to 5th row elements for 

groups 13-15 had been reported, with the exception of indium. A dicationic sulfur centre 

would be an appealing addition to this series as the electronegativity is greater than 

selenium, its isolation is anticipated to be more challenging. 

 

 
Figure 2.4: Reaction products of selenium halides with BIAN and DAB ligands. 

 

The DAB ligands represent the direct precursor to the carbene analog. In the literature no 

reactions of sulfur reagents with "-diimine ligands have been reported. In this context, 
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we have conducted a comprehensive study on the reactivity of "-diimine ligands (Figure 

2.5; 2.1-2.10) with SCl2 and an SCl2 mixture with two stoichiometric equivalents of 

TMSOTf (TMS = trimethylsilyl; OTf = trifluoromethanesulfonate/triflate) with the 

ultimate target being the dicationic sulfur NHC analog. Interestingly, the substitution at 

nitrogen and the groups on the backbone carbon play a critical role in the outcome of the 

reaction. Through these studies we have isolated a series of new sulfur-nitrogen 

heterocycles, among them the NHC analog.  

 

 
Figure 2.5: The DAB and BIAN ligands reacted with sulfur reagents in this study. 

 

2.2 Results and Discussion 

2.2.1 Synthesis 

The 1:1 stoichiometric reaction of SCl2 with 2.1 in THF immediately produced a deep red 

solution. Normal pentane was added to the mixture resulting in the precipitation of an 

orange powder. Washing the powder with Et2O and obtaining an 1H NMR spectrum of 

the redissolved solids in CDCl3 revealed two separate resonances for the methine protons 

on the diisopropylphenyl groups (# = 3.14 ppm and 2.20 ppm) bound to the nitrogen 

atoms with equivalent integrations indicating asymmetry in the ligand framework. The 

integration on the backbone methyl group was reduced from six to three and two new 

singlets were observed each integrating to one (# = 8.32 ppm and 6.10 ppm). Although 

the proton NMR spectrum was indicative of a single product, the assignment could not be 

made solely on these data. Crystals were grown from a CH2Cl2 solution and a solid-state 

structure obtained that revealed an unusual N,C-bound five-membered SNC3 heterocycle 

contrary to the expected N,N’-bound species observed in group 13-15 chemistry (2.1SCl; 

Scheme 2.1). The NMR spectroscopic data support the solid-state structure as the two 
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singlets can be rationalized from the olefinic C-H proton originating from the former 

methyl group and an N-H on the exocyclic nitrogen. 

 

 
Scheme 2.1: Reaction of 2.1 and 2.2 with SCl2 to produce the SNC3 heterocycles. 

 

A similar 1H NMR spectrum was obtained from the reaction of 2.2 with SCl2, indicating 

two inequivalent cyclohexyl groups. The sparingly soluble pale beige powder isolated 

was believed to be 2.2SCl, however combustion analysis of the product was consistent 

with the hydrochloride salt 2.2SCla. Attempts at removing the HCl with base were 

unsuccessful or led to decomposition of the heterocycle. Unfortunately, despite numerous 

attempts, X-ray quality crystals could not be grown but by analogy to the Dipp derivative, 

the structure could be assigned. The difference of 2.2SCla being a hydrochloride salt 

versus the free base as in 2.1SCl, is attributed to the increase in basicity that the 

cyclohexyl group provides in comparison to the diisopropylphenyl group.  

A proposed mechanism for the reaction is outlined in Figure 2.6. The methyl substituted 

ligands can undergo tautomerization to the corresponding eneamine which is believed to 

be the active species reacting with SCl2 through the alkene. This is followed by the imine 

coordinating to sulfur to form the five membered ring and eliminating HCl (in the case of 

2.2, the hydrochloride adduct is isolated). This reactivity has also been observed with the 

diiminopyridine and $-diketiminate ligands.19,22,23 
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Figure 2.6: Proposed reaction pathway to generate the S1N1C3 heterocycles. 

 

Although interesting and unique to group 16, the reactivity of the methyl group was 

undesireable in regards to obtaining the N,N’-bound species. In this regard, our approach 

moved to DAB ligands lacking methyl groups on the backbone carbon atoms.  

To examine the effect of alkyl substitution on the nitrogen atom, the reactions of 

“S(OTf)2” with tert-butyl and cyclohexyl DAB ligands (2.3 and 2.4) in CH2Cl2 were 

carried out (Scheme 2.2).* The reaction of TMSOTf and SCl2 in a 2:1 stoichiometry in 

CH2Cl2 at -78°C yielded a light orange solution. A solution of ligand was added to the 

“S(OTf)2” mixture which produced pale beige slurries. The addition of n-pentane induced 

further precipitation, the supernatant was discarded and the solids dried in vacuo. The 1H 

NMR spectrum of the redissolved solids revealed pure products with a break in symmetry 

of the two backbone protons observed in both cases (2.3S[OTf], ! = 10.13, 9.03 ppm; 

2.4S[OTf], ! = 10.09, 8.93 ppm). Also noteworthy, was a 50% reduction of the 

integration values of the tert-butyl or cyclohexyl protons suggesting the loss of an alkyl 

group on one of the nitrogen atoms. An in situ 1H NMR spectroscopy experiment in 

CDCl3 of the reaction of 2.3 with “S(OTf)2” clearly indicated the formation of 2-chloro-

2-methylpropane (! = 1.62 ppm) as a reaction byproduct.  

 

                                                 
* In an attempt to characterize this “S(OTf)2” species, the mixture was probed by 19F{1H} NMR 
spectroscopy. The 19F{1H} NMR spectrum at room temperature gave a singlet shifted to lower field, 
indicating a more ionic triflate. However, despite extensive attempts to identify a single, pure product, 
nothing definitive could be ascertained. Furthermore, if the chemistry (reported in this chapter) is carried 
out in the absence of OTf-, only starting material and decomposition products are observed in the 1H NMR 
spectra. Therefore we assign S(OTf)2 as an in situ preparation. 
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Scheme 2.2: Reaction of N-alkyl DAB ligands with “S(OTf)2”. 

 

 

Figure 2.7: Stacked plot of 1H NMR spectra of 2.3S[OTf] in CDCl3 (bottom) and the 

selenium congener in CD3CN (top). 

 

The 1H NMR spectra were reminiscent of the related selenium system with 2.3 (! = 9.49, 

9.40 ppm) which also had a break in symmetry of the ligand framework (Figure 2.7).14 
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cf. [NOct4][OTf] ! = -78.5 ppm). Based on these data the compounds could be assigned 

the same connectivity as the selenium derivative, the thiadiazolium triflate salts 

2.3S[OTf] and 2.4S[OTf].14,20 This 1,2,5-chalcadiazolium ring system is not unusual for 

the heavy chalcogens (S, Se, Te).12,14,20,24-26 Unfortunately these compounds were highly 

unstable in solution with 2.4S[OTf] decomposing within 10 minutes of being 

synthesized. Even as a powder at room temperature, decomposition was observed within 

20 minutes. Given this instability, crystallization attempts were unsuccessful.  

Based on the previous observations, alkyl substitution on nitrogen was to be avoided as 

well as methyl groups on the backbone carbon atom in order to produce N,N’-bound 

sulfur complexes. The natural evolution was to explore DAB ligands with aryl groups on 

N and protons on the backbone carbon atoms (aryl = Dipp, 2.5; Dmp, 2.6; pMeOPh, 2.7; 

Scheme 2.3). Any attempts at reactions of SCl2 with DAB ligands resulted in recovery of 

starting material, hence “S(OTf)2” was utilized. To a solution of “S(OTf)2” in CH2Cl2, 

one equivalent of a DAB ligand in CH2Cl2 was added dropwise generating crimson (2.5, 

2.6) or purple solutions (2.7). Removal of the volatiles in vacuo gave rise to red/orange or 

purple powders.  

 

 
Scheme 2.3: Reactions of aryl DAB ligands with “S(OTf)2”.  

 

Proton NMR spectroscopy of the redissolved crude powder in CD3CN from the reactions 

revealed a major product (~70% purity) with a diagnostic downfield shift of the backbone 

protons on the DAB ligand (! = 10.23-9.69 ppm cf. free ligand ! = 8.42-8.13 ppm).27 The 

major products in the spectra consisted of one set of resonances indicative of a symmetric 

bonding environment as the signal for the backbone protons integrated to two with 

respect to the two aryl groups. Single resonances were observed in the 19F{1H} NMR 

spectrum consistent with ionic triflate in solution (! = -78.6 to -78.7 ppm). Based on 

these data, the bonding was assigned as the N,N’-chelated dicationic chalcogen 
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complexes (2.5S[OTf], 2.6S[OTf] and 2.7S[OTf]) with two triflate counteranions. The 

solid-state structures obtained confirmed this but did display distant S%%%O contacts to the 

sulfur centre.  

Upon increasing the stoichiometry of “S(OTf)2” to 1.5 stoichiometric equivalents in all 

three reactions, the yield in the crude mixture increased to approximately 85%. We 

postulate that the imine nitrogen atoms are sufficiently basic to deprotonate the backbone 

protons on the dicationic heterocycle which are acidic upon the coordination of the ligand 

to the highly charged sulfur center. This ultimately results in decomposition of the 

desired product, as the protonated ligand became more prevalent in the crude 1H NMR 

spectrum. Decreasing the amount of free ligand in solution hinders this process and 

allows the reaction to proceed more cleanly. Conveniently, the excess SCl2 and TMSOTf 

can be easily removed by washing with n-pentane or in vacuo. A related observation has 

been made with the heterocyclic nitrenium cation (nitrogen analog of G; Figure 2.3) as 

the backbone proton on these systems can also be abstracted.28  

Despite extensive efforts to develop a high yielding purification procedure, the highest 

isolated yield of a pure product for the para-methoxy derivative was on the order of 5%, 

despite the reaction going to 85% as indicated by 1H NMR spectroscopy. The difficulties 

in purifying this material can be attributed to the high insolubility of 2.7S[OTf] in 

organic solvents and adding to this problem, 2.7S[OTf] also has very similar solubility to 

the impurities.  

To examine an analogous ligand framework lacking the reactive backbone protons, the 

chemistry was extended to the closely related aryl BIAN ligand system (aryl = Dipp, 2.8; 

pMeOPh, 2.9; Scheme 2.4) and the DAB ligand featuring phenyl groups on both the 

nitrogen atoms and the backbone carbon atoms (2.10). We anticipated that incorporating 

large organic groups should improve the solubility and avoid the acidic backbone 

hydrogens. Crude powders from the reactions of “S(OTf)2” with 2.8-2.10 displayed the 

desired enhanced solubilities in organic solvents making the isolation of larger quantities 

of pure material possible. The para-methoxyphenyl BIAN derivative (2.9S[OTf]) was 

isolated as deep red crystals in 51% yield by two subsequent recrystallizations from a 1:1 

solvent mixture of CH3CN and Et2O of the bulk powder at -30°C as confirmed by 1H 

NMR spectroscopy. Crystals suitable for X-ray crystallographic studies were grown by 
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vapour diffusion of Et2O into acetonitrile confirming the structure of 2.9S[OTf]. The 

diisopropylphenyl analog (2.8S[OTf]) and DAB derivative with phenyl groups on both 

carbon and nitrogen (2.10S[OTf]) were purified by recrystallization of the bulk powder 

from a saturated solution of CH2Cl2 and pentane stored at -30°C overnight, which 

generated orange X-ray quality crystals of both compounds in good yield (73% and 60%, 

respectively).  In all cases 1H NMR spectroscopy revealed a symmetric bonding 

environment regarding the ligand framework. The 1H NMR spectra displayed downfield 

shifts of the BIAN (2.8S[OTf] and 2.9S[OTf]) and phenyl protons (2.10S[OTf]) on the 

backbone carbon atoms in the products consistent with the coordination of the ligand to a 

highly charged center.29,30 Single resonances in the 19F{1H} NMR spectra were indicative 

of ionic triflate (2.8S[OTf] ! = -78.6 ppm; 2.9S[OTf] ! = -78.3 ppm; 2.10S[OTf] ! = -

78.4 ppm). These data supported the synthesis of dicationic SC2N2 heterocycles.  

 

 
Scheme 2.4: Reactions of "-diimine ligands containing aryl groups on the backbone 

carbon atoms with “S(OTf)2”. 

 

The connectivity of the heterocycles with aryl groups on the backbone carbon atoms was 

analogous to the DAB complexes with H-substitution on the backbone carbon confirming 

that the acenaphthene or the phenyl groups do not change the outcome of the reaction but 

improves the solubility of the products allowing the isolation of the para-methoxy 

derivative.  

As triflates are known to covalently bind to electropositive centers in many 

circumstances, an anion exchange reaction was carried out by stirring 2.5[OTf] with 

K[B(C6F5)4] in CH2Cl2 to produce the dication with the more weakly coordinating anion 

in order to confirm the ionic nature of the sulfur complexes (Scheme 2.5). After 

recrystallization, the 1H NMR spectrum of the redissolved crystals matched that of 

2.5S[OTf]. The 19F{1H} NMR spectrum indicated the absence of triflate and the presence 
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of [B(C6F5)4], confirming the composition as (2.5S[B(C6F5)4]). The solid-state structure 

had the same dicationic SN2C2 heterocycle present. 

 

 
Scheme 2.5: Anion exchange reaction of 2.5S[OTf] with K[B(C6F5)4] to produce 

2.5S[B(C6F5)4]. 

 

The dicationic salts (2.5S[X]-2.10S[X]) all were unstable in solution at room temperature 

for periods greater than 2 hours but solid samples could be stored for weeks in an inert 

atmosphere at room temperature. The compounds all represent the first dicationic 

structural mimics of the N-Heterocyclic carbene. 

 

2.2.2 X-ray Crystallography 

Examination of the solid-state structure of 2.1SCl reveals an N-C bound AX3E2 sulfur 

center in a distorted T-shaped geometry (Figure 2.8). Chlorine and nitrogen atoms each 

occupy an axial position and the carbon atom resides in the equatorial site. The result of a 

proton transfer (eneamine tautaumer) is confirmed by the C(1)-C(2) bond length of 

1.373(6) Å and the C(2)-N(2) bond at 1.380(6) Å, which are contracted and extended, 

respectively in comparison to the uncoordinated ligand. The sulfur-chlorine bond shows 

significant elongation [2.849(2) Å], this metrical parameter indicates ionic character to 

the complex. However, the distance is well within the sum of the van der Waals radii 

(!v.d.w. S-N 3.65 Å)31 and despite this elongation, the chlorine atom still defines a T-

shaped geometry about sulfur. This elongation of the S-Cl bond may be a function of 

hydrogen bonding in the solid state to the proton bound to N(2) of an adjacent molecule 

(Cl···H 2.50 Å) in addition to the nitrogen atom donating strongly into the same p-orbital 

on sulfur. 
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Figure 2.8: Solid-state structure of 2.1SCl. Thermal ellipsoids are drawn to the 50% 

probability level, CH2Cl2 solvate and hydrogen atoms are omitted for clarity. Selected 

bond lengths (Å): S(1)-N(1) 1.710(3), S(1)-C(1) 1.686(4), C(1)-C(2) 1.374(6), C(2)-C(3) 

1.422(6), C(2)-N(2) 1.377(5), C(3)-N(1) 1.322(6). 

 

In all of the crystal structures of 2.5S[OTf]-2.7S[OTf] the bonding motif is a planar 5-

membered SC2N2 ring [Figure 2.9; Tables 2.1 and 2.2; largest deviation from planarity 

0.020(9)Å]. The color of compound 2.7S[OTf] in the solid state and in solution is deep 

purple, contrary to 2.5S[OTf] and 2.6S[OTf], which are orange. This high coloration is 

likely a result of the oxygen atoms para to the DAB ligand donating into the DAB !-

system extending the conjugation. The metrical parameters indicate that the interplanar 

aryl/ SC2N2 ring angles are significantly smaller than those of 2.5S[OTf] and 2.6S[OTf]. 

The angles are on the order of 30° whereas in 2.5S[OTf] and 2.6S[OTf], the aryl rings 

are much closer to being orthogonal to the sulfur heterocycle (2.7S[OTf]: 26.8°, 37.9° cf. 

2.5S[OTf]: 80.7°, 97.2°; 2.6S[OTf] 76.1°). This phenomenon also could be present as 

2.7S[OTf] does not present bulky substituents on the ortho positions of the aryl ring, 

permitting the ring to orient itself with the SC2N2 plane. 

The BIAN and all phenyl DAB complexes are essentially isostructural to the DAB 

derivatives bearing protons on the backbone carbons (2.5S[OTf]-2.7S[OTf]; Figure 

2.10). The bulkier BIAN and phenyl substituted backbone orient the aryl rings more out 

of the plane than the hydrogen substituted DAB ligands. With respect to the BIAN 

complexes, 2.9S[OTf] is highly colored like the para-methoxy substituted DAB complex 
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2.7S[OTf] and orients the aryl rings more in plane than the bulkier Dipp derivative, 

2.8S[OTf] (interplanar angles: 2.9S[OTf] = 46.3, 80.5 cf. 2.8S[OTf]= 76.2°, 81.3°).  

The endocyclic bonds in all six dicationic complexes within the SC2N2 ring [C-N 

1.293(9)-1.339(6); C-C 1.379(8)-1.439(5) Å] support the retention of two C=N double 

bonds and a C-C single bond, consistent with the free ligand.  Sulfur-nitrogen bonds 

slightly shorter than typical sulfur-nitrogen single bonds [1.655(3)-1.708(3) Å cf. 1.74 Å] 

are observed, which can be rationalized by the binding of the ligand to the electron 

deficient sulfur(II) center. These endocyclic bond lengths are in close agreement with 

computational results  (C-C 1.389, C-N 1.331, S-N 1.705 Å). Although a Lewis 

representation properly delocalizes the dicationic charge on the peripheral nitrogen 

atoms, given the previously published computational data and solid-state structural 

features, the bonding in these compounds can be best described by a N,N’-chelated sulfur 

center bearing two lone pairs with a formal charge of +2. This dative model is further 

underscored by the relative ease with which the sulfur atom can be displaced from the 

chelate ring by the addition of strong Lewis bases such as phosphines. 
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2.5[OTf] 2.6[OTf] 2.7[OTf] 

 

Figure 2.9: Solid-state structures of 2.5S[OTf]-2.7S[OTf]. Ellipsoids are drawn to 50% probability, all hydrogen atoms excluding 

hydrogen atoms interacting with the anion and solvates are omitted for clarity. 
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2.8S[OTf] 2.9S[OTf] 2.10S[OTf] 

 

Figure 2.10: Solid-state structures of 2.8S[OTf]-2.10S[OTf]. From left to right, top to bottom: Ellipsoids are drawn to 50% 

probability, all hydrogen atoms excluding hydrogen atoms interacting with the anion and solvates are omitted for clarity Isopropyl 

groups are omitted for clarity in 2.8S[OTf]. 
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Table 2.1. Selected metrical parameters for 2.5S[OTf]-2.10S[OTf] and 2.5S[B(C6F5)4]. Bond lengths are in angstroms (Å) and angles 

in degrees (°). 

 2.5S[OTf] 2.6S[OTf] 2.7S[OTf] 2.8S[OTf] 2.9S[OTf] 2.10S[OTf] 2.5S[B(C6F5)4] bCalculated32 
aS-N 1.696(6) 

1.699(6) 
1.695(3) 1.658(5) 

1.682(4) 
1.697(3) 
1.708(3) 

1.705(3) 
1.704(3) 

1.676(2) 
1.679(2) 

1.655(3) 1.705 

aN-C 1.293(9) 
1.324(9) 

1.305(5) 1.323(7) 
1.339(6) 

1.312(5) 
1.316(5) 

1.323(4) 
1.325(4) 

1.325(3) 
1.329(3) 

1.313(4) 1.331 

aC-C 1.407(10) 1.390(8) 1.379(8) 1.439(5) 1.412(4) 1.421(4) 1.396(7) 1.389 
O!!!S 2.313(5) 2.615(3)  2.997(6) 2.654(4)  2.454(2)  2.638(2) -- -- 
O!!!H 2.265  2.309  2.290  -- -- -- -- -- 
N-S-N 87.8(3) 88.0(2) 90.3(2) 90.38(15) 90.15(12) 88.80(11) 90.9(2) 90.3 
aSC2N2 

deviation from 
planarity 

0.011(10) 
 

0.005(8) 
 

0.020(9) 
 

0.019(5) 0.005(4) 0.004(5) 0.001(7) -- 

Aryl/SC2N2 
angle 

80.7, 82.8 76.1 26.8, 37.9 76.2, 81.3 46.3, 80.5 86.2, 89.5 76.6 -- 

 
aAll metrical parameters refer to endocyclic E-E bonds. bCalculated optimized geometries are for the N-Ph substituted derivatives 

featuring protons on the backbone carbon atoms. 
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Table 2.2. X-ray details of 2.1SCl, 2.5S[OTf]-2.10S[OTf] and 2.5S[B(C6F5)4]. 
Compound 2.1SCl 2.5S[OTf] 2.6S[OTf] 2.7S[OTf] 2.8S[OTf] 2.9S[OTf] 2.10S[OTf] 2.5S[B(C6F5)4] 
Empirical 
formula 

C29H41Cl3N2S1 C28H36F6N2O6S3 C24H30F6N2O7S3 C20H19F6N3O8S3 C38.5H40Cl1F6N2O6S3 C28H20F6N2 O8S3 C28H20F6N2O6S3 C76H40B2Cl4F40N2S 

FW (g/mol) 556.05 706.77 668.68 639.56 872.36 722.64 690.64 1936.58 
Crystal system Monoclinic Triclinic Orthorhombic Orthorhombic Monoclinic Orthorhombic Triclinic Orthorhombic 
Space group P21/c P-1 Ibca Pna2(1) P2(1)/c Pbca P-1 Pbcn 

a (Å) 10.887(2) 10.488(2) 16.0424(14) 7.2453(9) 20.459(4) 18.324(4) 10.446(2) 18.958(4) 
b (Å) 19.883(4) 10.941(2) 16.6859(15) 16.174(2) 12.219(2) 13.677(3) 11.972(2) 12.585(3) 
c (Å) 14.898(3) 15.231(3) 22.960(2) 22.279(3) 17.293(4) 23.463(5) 13.970(3) 32.661(7) 
! (deg) 90 77.92(3) 90 90 90 90 113.30(3) 90 
" (deg) 92.75(3) 82.44(3) 90 90 110.96(3) 90 94.40(3) 90 
# (deg) 90 73.50(3) 90 90 90 90 108.73(3) 90 
V (Å3) 3221(1) 1633.8(6) 6146.1(10) 2610.8(6) 4036.8(14) 5880(2) 1477.4(5) 7792(3) 

Z 4 2 8 4 2 8 2 4 
Dc (mg m-3) 1.147 1.437 1.445 1.627 1.435 1.633 1.553 1.651 

radiation, $(Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 
temp (K) 193(2) 150(2) 193(2) 193(2) 150(2) 150(2) 150(2) 150(2) 

R1[I>2%I]a 0.0795 0.0856 0.0674 0.0597 0.0717 0.0601 0.0481 0.0645 
wR2(F2)a 0.2628 0.2095 0.2042 0.1476 0.1982 0.1749 0.1377 0.1824 
GOF (S)a 1.045 1.167 1.036 1.055 1.0200 1.017 1.089 1.051 

 

a R1(F[I > 2(I)]) = !�|Fo| - |Fc |�/ ! |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; 

p = no. of parameters varied; w = 1/[2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by the 

refinement program. 
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Sulfur-oxygen contacts between the cations and anions in all species within the sum of 

the van der Waals radii (!v.d.w. S-O = 3.25 Å) are observed.31 However, there is no 

distortion of the corresponding sulfur-oxygen bond in the triflate ions, contrary to what is 

observed in covalently bound substituents. In these covalent species, the corresponding S-

O bond length for the coordinated oxygen atom is significantly elongated with respect to 

the other two S-O bonds within the triflate.17 In the compounds with H-substitution on the 

imine carbon, the closest cation-anion interactions lie between the oxygen atom and the 

acidic backbone proton. The contacts are well within the sum of the van der Waals radii 

(shortest contact 2.290 Å cf. 2.60 Å).31 In spite of the oxygen contacts with the dicationic 

sulfur center, these species are distinct dication-anion pairs. Spectroscopic solution data 

and the metrical parameters are consistent of a dicationic species as they are in agreement 

with the computational results.32 

Compound 2.5S[B(C6F5)4] also displays detectable cation–anion contacts in the solid 

state (Figure 2.11). The closest contact occurs between the backbone proton of the ligand 

and a fluorine atom from a C6F5 ring, which lies within the sum of the van der Waals 

radii (2.080 cf. 2.60 Å).31 One long S!!!F contact on the very edge of the sum of the van 

der Waals radii [3.077(3) cf. 3.20 Å] is also found.31 However, the corresponding C-F 

bond in the anion displays no tendency towards elongation as observed in other main-

group compounds [1.351(4) cf. 1.414(6) Å].33 The two anions are symmetry related, and 

an AX4E2 electron-pair configuration might be expected about sulfur, which would 

exhibit a clear square-planar geometry common to 12-electron chalcogen centers. 

However, the angle between the N-S-N and F!!!S!!!F planes is not consistent with a 

square-planar geometry (deviation from planarity is 20.4°). These combined observations 

lead to the conclusion that no substantial S!!!F cation-anion interactions are present. The 

virtually identical bonding arrangements between the triflate and the [B(C6F5)4] 

derivatives indicate that both are true dicationic heterocycles. 
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Figure 2.11: Solid-state structure of 2.5S[B(C6F5)4] (left) with views of the fluorine contacts about the sulfur centre (right). Ellipsoids 

are drawn to 50% probability, all hydrogen atoms not in the backbone, solvate molecules and fluorine atoms excluding those 

interacting with the anion are omitted for clarity. Selected anion cation contacts (Å): F(65A)!!!S(1) 3.079(3), F(62)!!!H(1A) 2.084. 
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2.3 Conclusion 

The reactivity of DAB and BIAN ligands with SCl2 and “S(OTf)2” is highly dependent 

on both the substitution on the !-carbon and the nitrogen atoms, which was very different 

from the reported chemistry with the other non-metals. Methyl groups on the backbone 

carbon atoms led to N,C-bound sulfur heterocycles. If alkyl groups were present on N and 

hydrogen atoms on the backbone carbon, 1,2,5-thiadiazolium rings were produced. In 

cases where H, BIAN or phenyl groups were bound to the !-carbon and aryl groups on 

nitrogen the N,N’-sequestered sulfur(II) dicationic triflate salts were synthesized and 

structurally characterized. Although contacts between the cation and anion were present 

in the solid-state, an anion exchange reaction to produce the B(C6F5)4 salt confirmed 

these compounds as dicationic species. These derivatives represent the first sulfur 

structural mimics of N-heterocyclic carbene.  

 

2.4 Experimental Section 

2.1SCl 

A solution of 2.1SCl (0.100 g, 0.248 mmol; THF 5 mL) was added to a 

solution of SCl2 (0.0255 g, 0.248 mmol; THF 5 mL) immediately 

giving an orange slurry, which was allowed to stir for 10 min. The 

product was precipitated by the addition of Et2O (5 mL). The 

supernatant was decanted and the precipitate was washed with Et2O (2 " 5 mL) and dried 

in vacuo giving 2.1SCl as a pale yellow powder.  

Yield: 0.080 g, 69%; d.p. 230-233 °C; 
1H NMR (CDCl3, # ppm) 8.32 (s, 1H), 7.57 (t, 1H, 3J = 8.0 Hz), 7.33 (d, 2H, 3J = 8.0 Hz), 

7.29 (m, 1H), 7.21 (d, 2H), 6.10 (s, 1H), 3.14 (sept, 2H, 3J = 7.2 Hz), 2.32 (s, 3H), 2.20 

(sept, 2H, 3J = 6.8 Hz), 1.15 (m, 24H);  
13C{1H} NMR (CDCl3, # ppm) 158.2, 146.5, 145.9, 142.4, 135.0, 132.1, 131.0, 130.4, 

127.8, 124.1, 28.5, 24.9, 24.0, 23.6, 15.7;  

FT-Raman (cm-1(ranked intensity)): 112(12), 142(4), 304(14), 455(3), 515(1), 551(10), 

888(8), 1045(13), 1252(5), 1450(7), 1372(9), 1588(6), 2868(15), 2910(2), 2964(11);  

FT-IR (cm-1(ranked intensity)): 773(4), 809(1), 850(11), 937(12), 1058(9), 1216(14), 

1256(10), 1327(15), 1371(5), 1399(8), 1473(3), 1518(7), 1555(6), 2968(2), 3127(13). 

N

CH3 N

Dipp

Dipp
H

S
Cl
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Elemental analysis (%), Found (Calcd): 71.08(71.38), 8.58(8.35), 5.88(5.95);  

ESI-MS (m/z): 435 [M - Cl]+ 

 

2.2SCla 

A solution of 2.2 (0.100 g, 0.406 mmol; 5 mL THF) was added to a 

solution of SCl2 (0.0414 g, 0.406 mmol; THF 5 mL) immediately 

giving a pale beige precipitate, and the reaction mixture was allowed to 

stir for 10 min. The supernatant was decanted, and the precipitate was 

washed with THF (5 " 8 mL) and dried in vacuo giving 2.2Sa.  

Yield: 0.069 g, 49%; d.p. 195-197 °C;  
1H NMR (CD3CN; # ppm) 7.86 (s, 1H), 4.61 (m, 1H), 3.21 (m, 1H), 2.55 (s, 3H), 2.19-

1.12 (m, 22H);  
13C{1H} NMR (C5D5N, # ppm) 157.4, 142.2, 134.5, 68.2, 62.0, 34.2, 32.9, 26.3, 25.7, 

25.6, 25.0, 14.8;  

FT-Raman (cm-1(ranked intensity)): 116(6), 164(12), 231(15), 351(20), 465(7), 482(4), 

589(2), 700(11), 789(16), 802(10), 848(19), 885(18), 975(17), 1028(8), 1058(14), 

1266(13), 1445(9), 2858(3), 2898(5), 2946(1);  

FT-IR (cm-1(ranked intensity)): 482(3), 568(11), 685(7), 851(16), 941(19), 976(17), 

1026(6), 1153(9), 1191(20), 1263(13), 1379(12), 1456(2), 1491(14), 1541(18), 1560(8), 

2516(15), 2630(4), 2860(5), 2938(1) 3106(10). 

Elemental analysis for SCl2C16H28, Found (Calcd): C 53.98(54.68), H 7.39(8.04), N 

7.66(7.98);  

ESI-MS (m/z): 279 [M $ HCl2]+ 

 

General Synthesis of 2.3[OTf]-2.10[OTf] 

Trimethylsilyltrifluoromethane sulfonate in CH2Cl2 (1.5 mL) was added dropwise to a 

solution of SCl2 in CH2Cl2 (10 mL) at -78 °C and stirred for 15 min. A solution of DAB 

or BIAN in CH2Cl2 (8 mL) was added dropwise to the mixture yielding beige slurries 

(2.3, 2.4) or orange/red solutions (2.5, 2.6, 2.8) or purple (2.7, 2.9) solutions. Amounts 

and workup are listed individually below. 

 

N

CH3 N

Cy

Cy
H

S
Cl

HCl.
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2.3S[OTf] 

TMSOTf (0.264 g, 1.19 mmol), SCl2 (0.058 g, 0.595 mmol), 2.3 (0.100 

g, 0.595 mmol). Normal pentane was added to the reaction mixture, 

resulting in the formation of more white precipitate. The supernatant 

was decanted, and the solid dried in vacuo giving a white powder. The material was 

found to be unstable in solution for periods greater than 15 min and as a solid for periods 

greater than 30 min; therefore, 13C NMR data and elemental analysis could not be 

obtained.  

Yield: 0.136 g, 88%; d.p. 95$101 °C;  
1H NMR (CDCl3, #) 10.13 (s, 1H), 9.03 (s, 1H), 2.01 (s, 9H);  
19F{1H} NMR (CH3CN, #) -78.4;  

FT-IR (cm-1 (ranked intensity)); 518(6), 553(14), 574(11), 638(4), 846(7), 1001(13), 

1027(3), 1169(5), 1248(1), 1278(2), 1382(10), 1418(9), 1480(15), 3073(8), 3089(12);  

FT-Raman (cm-1(ranked intensity)) 314(5), 349(3), 575(12), 706(2), 758(8), 783(11), 

846(6), 1030(1), 1151(14), 1226(13), 1448(15), 2920(10), 2997(4), 3088(9). 

 

2.4S[OTf] 

TMSOTf (0.202 g, 0.907 mmol), SCl2 (0.047 g, 0.454 mmol), 2.4 (0.100 

g, 0.454 mmol). Normal pentane was added to the reaction mixture, 

resulting in the formation of a beige precipitate. The supernatant was 

decanted, and the solid dried in vacuo giving a beige powder. The material was found to 

be unstable in solution for periods longer than 10 min and as a solid for periods greater 

than 20 min; therefore, 13C NMR data and elemental analysis could not be obtained.  

Yield: 0.099 g, 69%; d.p. 48 °C;  
1H NMR (CDCl3, # 10.09 (s, 1H), 8.93 (s, 1H), 5.33 (m, 1H), 2.39-1.28 (m, 10H);  
19F{1H} NMR (CH3CN, #) -78.4;  

FT-IR (cm-1(ranked intensity)) 517(12), 556(4), 575(9), 731(6), 760(5), 812(1), 841(3), 

897(2), 1029(15), 1168(13), 1251(14), 1459(11), 2866(8), 2943(10), 3064(7);  

FT-Raman (cm-1 (ranked intensity)) 121(8), 316(7), 349(6), 575(12), 626(15), 760(3), 

805(11), 1034(1), 1147(9), 1247(13), 1273(10), 1354(14) 1451(3), 2866(4), 2949(2). 

N NtBu
S [OTf]

N NCy
S

[OTf]
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2.5S[OTf] 

TMSOTf (0.266 g, 1.20 mmol), SCl2 (0.062 g, 0.60 mmol), 2.5 

(0.150 g, 0.399 mmol). The solids were washed with Et2O (4"5 mL) 

giving a light orange powder.  

Yield: 0.185 g, 78%%; d.p. 147-149%°C; 
1H NMR (CD3CN, #) 10.23 (s, 2%H), 7.81 (t, 2%H, 3J = 7.6 Hz), 7.60 (d, 4%H, 3J = 7.6 Hz), 

2.45 (sept, 4%H, 3J = 6.8 Hz), 1.33 (d, 12%H, 3J = 6.4 Hz), 1.30 ppm (d, 12%H, 3J = 6.8 Hz); 
13C{1H} NMR (CH3CN, #) 163.0, 145.9, 135.9, 131.5, 126.9, 30.4, 24.6, 24.4;  
19F{1H} NMR (CH3CN, #) -78.7;  

FT-IR (cm-1(relative intensity)) 519(8), 577(12), 638(3), 762(13), 810(10), 1007(5), 

1028(1), 1170(6), 1201(4), 1230(7), 1270(2), 1317(14), 1371(15), 1468(9), 2975(11);  

FT-Raman (cm-1(relative intensity)) 126(4), 316(15), 673(2), 762(7), 1007(13), 1028(6), 

1047(8), 1068(14), 1244(5), 1351(3), 1445(1), 1583(12), 2914(9), 2942(10), 2982(11);  

Elemental analysis (%) calcd for C28H36F6N2O6S3: C 47.58, H 5.14, N 3.97; found C 

47.24, H 5.52, N 3.94.  

ESI-MS: m/z 408 ([M]+, [C26H36N2S]+). 

 

2.6S[OTf] 

TMSOTf (0.378 g, 1.70 mmol), SCl2 (0.088 g, 0.851 mmol), 

2.6 (0.150 g, 0.567 mmol). The solids were redissolved in 

CH3CN (6 mL), and the product was selectively precipitated 

with Et2O (6 mL) to yield a light orange powder.  

Yield: 0.277 g, 82%%; d.p. 148-151%°C;  
1H NMR (CD3CN, !) 10.17 (s, 2%H), 7.66 (t, 2%H, 3J = 5.6 Hz), 7.47 (d, 4%H, 3J = 5.2 Hz), 

2.32 (s, 12%H);  
13C{1H} NMR (CH3CN, !) 162.2, 136.0, 135.7, 135.4, 131.2, 18.3;  
19F{1H} NMR (CD3CN, !) -78.6 ppm.  

FT-IR (cm-1(relative intensity)) 518(5), 578(8), 638(3), 762(13), 784(6), 1030(2), 

1095(12), 1169(4), 1231(11), 1276(1), 1393(15), 1479(7), 1523(9), 1604(10), 3113(14); 

FT-Raman (cm-1(relative intensity)) 123(1), 318(14), 349(15), 505(6), 552(13), 681(8), 

N N DippDipp
S 2

H H

[OTf]2

N N
S 2

H H

[OTf]2
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761(12), 1028(9), 1068(4), 1156(7), 1258(11), 1336(2), 1406(10), 1436(3), 1583(5);  

Elemental analysis (%) calcd for C20H20F6N2O6S3: C 40.40, H 3.39, N 4.71; found C 

40.59, H 3.51, N 4.78. 

 

2.7S[OTf] 

TMSOTf (0.372 g, 1.68 mmol), SCl2 (0.086 g, 0.84 

mmol), 2.7 (0.150 g, 0.558 mmol). Despite numerous 

efforts 2.7S[OTf] could only be isolated in small 

quantities (less than 10 mg) by vapour diffusion of Et2O into CH3CN.  

d.p. 185-187 °C;  
1H NMR (CD3CN, #) 9.69 (s, 2H), 7.86 (d, 4H, 3J = 6.0 Hz), 7.32 (d, 4H, 3J = 4.8 Hz), 

3.99 (s, 6H);  
19F{1H} NMR (CH3CN, #) -78.7;  

FT-IR (cm-1(ranked intensity)) 518(11), 575(14), 639(8), 760(12), 833(7), 977(15), 

1033(3), 1161(2), 1272(1), 1438(9), 1465(6), 1509(5), 1577(13), 1591(4), 3076(10);  

FT-Raman (cm-1(ranked intensity)) 415(14), 702(11), 795(13), 1005(9), 1091(5), 

1146(7), 1171(8), 1300(1), 1341(2), 1434(3), 1451(4), 1505(10), 1563(12), 1596(6), 

1650(15);  

Elemental Analysis (%) calcd for S3O6F6C18H16N2: C 36.12, H 2.69, N 4.65; found C 

36.12, H 3.12, N 4.65. 

 

2.8S[OTf] 

TMSOTf (0.167 g, 0.600 mmol), SCl2 (0.031 g, 0.300 mmol), 2.8 

(0.150 g, 0.300 mmol). The volatiles were removed in vacuo, the 

powder was redissolved in CH2Cl2 (4 mL), and n-pentane was added 

(6 mL); the solution was stored at -30 °C overnight giving a red 

crystalline material. The crystals were collected, and n-pentane (2 

mL) was added to the mother liquor yielding a second crop of crystals;  

Yield: 0.171 g, 73%; d.p. 154-156 °C;  
1H NMR (CD3CN, #) 8.56 (d, 2H, 3J = 8.0 Hz), 7.91 (t, 2H, 3J = 8.0 Hz), 7.84 (t, 2H, 3J = 

8.0 Hz), 7.60 (d, 4H, 3J = 8.0 Hz), 7.47 (d, 2H, 3J = 7.2 Hz), 2.94 (sept, 4H, 3J = 6.8 Hz), 

N N
S 2

H H

O O

[OTf]2

N N DippDipp
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1.40 (d, 12 H, 3J = 6.8 Hz), 1.15 (d, 12H, 3J = 6.4 Hz);  
13C{1H} NMR (CH3CN, #) 165.5, 146.0, 140.5, 136.0, 132.2, 132.1, 131.9, 130.6, 129.8, 

127.6, 120.7, 30.2, 24.4, 24.3;  
19F{1H} NMR (CDCl3, #) -78.3;  

FT-IR (cm-1(ranked intensity)) 353(15), 474(9), 524(6), 577(10), 637(2), 771(5), 810(12), 

832(13), 1031(3), 1165(10), 1230(11), 1275(1), 1511(14), 1611(8), 2968(7);  

FT-Raman (cm-1(ranked intensity)) 85(5), 136(12), 352(6), 474(3), 562(4), 977(7), 

1020(10), 1030(8), 1102(15), 1217(9), 1249(8), 1368(14), 1506(1), 1586(13), 1603(2). 

 

2.9S[OTf] 

TMSOTf (0.169 g, 0.76 mmol), SCl2 (0.039 g, 0.38 mmol), 

2.9 (0.150 g, 0.38 mmol).  The volatiles were removed in 

vacuo and the powder was redissolved in CH3CN (4 mL) 

and Et2O was added (4 mL), the solution was stored at -

30ºC for two hours giving a deep red microcrystalline 

material. This was recrystallized from a 1:1 CH3CN:Et2O mixture yielding pure material;  

Yield: 0.140 g, 51%; d.p. 160-161ºC; 
1H NMR (CD3CN, !) 8.73 (d, 2H, 3J = 8.4 Hz), 8.12 (d, 2H, 3J = 7.2 Hz), 8.08-8.02 (m, 

6H), 7.42 (d, 2H, 3J = 8.8 Hz), 4.03 (s, 6H);  
13C{1H} NMR (CH3CN, !) 165.7, 162.1, 148.5, 139.3, 131.6, 131.4, 128.6, 125.4, 120.2, 

117.6, 57.3;  
19F{1H} NMR (CH3CN, !) -78.6;  

FT-IR (cm-1(ranked intensity)) 472(10), 521(7), 571(12), 637(2), 778(9), 837(4), 1030(3), 

1154(8), 1218(13), 1276(1), 1374(15), 1419(14), 1445(11), 1507(5), 1601(6);  

FT-Raman (cm-1(ranked intensity)) 358(13), 432(5), 472(11), 792(14), 977(15), 1158(3), 

1184(7), 1210(4), 1261(8), 1334(6), 1372(10), 1441(9), 1508(1), 1569(12), 1598(2). 
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2.10S[OTf] 

TMSOTf (0.195 g, 0.878 mmol), SCl2 (0.045 g, 0.439 mmol), 

2.10 (0.160 g, 0.439 mmol). The volatiles were removed in vacuo, 

and the powder was redissolved in CH2Cl2 (4 mL). Normal 

pentane was added (4 mL), the solution was then stored at -30 °C 

overnight giving an orange powder. The supernatant was 

decanted, and the solids were washed with n-pentane (3 " 5 mL) and dried in vacuo.  

Yield: 0.184 g, 60%; d.p. 111-113 °C;  
1H NMR (CDCl3, #) 8.08 (d, 4 H, 3J = 8.4 Hz), 7.73 (t, 2H, 3J = 7.6 Hz), 7.67-7.55 (m, 

10H), 7.37 (t, 4H, 3J = 8.0 Hz);  
13C{1H} NMR (CH3CN, #) 165.9, 135.5, 132.8, 132.1, 131.6, 130.4, 128.1, 124.0;  
19F{1H} NMR (CH3CN, #) -78.4;  

FT-IR (cm-1 (ranked intensity)) 1596(9), 1485(10), 1457(14), 1433(8), 1296(13), 1250(1), 

1162(5), 1025(2), 788(15), 758(4), 729(11), 694(6), 637(3), 574(12), 519(7);  

FT-Raman (cm-1 (ranked intensity)) 3074(11), 1596(2), 1505(8), 1484(15), 1433(6), 

1365(1), 1318(13), 1117(4), 1026(7), 1002(3), 627(14), 464(9), 404(10), 356(12), 102(5). 

 

2.5[B(C6F5)4] 

A CH2Cl2 solution of K[B(C6F5)4] (0.204 g, 0.284 mmol; 5 mL) 

was combined with 2.5SOTf (0.100 g, 0.142 mmol) in CH2Cl2 

(5 mL) at room temperature and stirred for 15 min. The mixture 

was filtered, and n-pentane (8 mL) was added to the supernatant resulting in the 

precipitation of a deep red powder. The powder was dried in vacuo.  

Yield: 0.208 g, 83%%; d.p. 124-126%°C; 
1H NMR (CD3CN, !) 10.21 (s, 2%H), 7.83 (t, 2%H, 3J = 7.8 Hz), 7.61 (d, 4%H, 3J = 8.4 Hz), 

2.42 (sept, 4%H, 3J = 7.2 Hz), 1.33 (d, 12%H, 3J = 7.8 Hz), 1.29 ppm (d, 12%H, 3J = 6.0 Hz);  
13C{1H} NMR (CH3CN, !) 163.5, 149.5 (d, 1J = 244.7 Hz), 146.1, 139.7 (d, 1J = 246.5 

Hz), 137.7 (d, 1J = 247.0 Hz), 136.5, 131.7, 127.2, 125.8, 30.7, 24.7, 24.5; 
19F{1H} NMR (CD3CN, !) -133.1, -163.3, -167.8;  
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FT-IR (cm-1(relative intensity)) 575(14), 637(12), 663(6), 685(7), 757(5), 776(8), 

805(15), 981(2), 1093(3), 1206(11), 1279(10), 1375(13), 1465(1), 1517(4), 1646(9); 

FT-Raman (cm-1(relative intensity) 144(1), 394(11), 422(12), 449(7), 476(9), 492(6), 

587(8), 693(10), 1044(4), 1056(5), 1238(13), 1313(2), 1415(3), 1337(14), 1580(15);  

Elemental analysis (%) calcd for C74H36B2F40N2S: C 50.28, H 2.05, N 1.81; found C 

50.27, H 1.83, N 1.60. 
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Chapter 3  
 

Reactions of Chalcogen Halides and 
Pseudohalides with Unsaturated and Saturated 

Tridentate Nitrogen Ligands! 
 
 

3.1 Introduction 

3.1.1 Chemistry of Unsaturated Tridentate Nitrogen Ligands 

The diiminopyridine ligand (DIMPY; 3.1-3.3; Figure 3.1) has become an omnipresent 

ligand in transition-metal chemistry as it can stabilize metal centres that have shown great 

utility in catalysis.1 Analogous neutral or monocationic p-block derivatives from groups 

13-15 have been reported, although often with only a few or singular representatives, 

except in the cases of tin and lead, where a plethora of compounds have been identified.2-

11 Nonmetal as well as dicationic congeners have remained elusive. These highly charged 

species are of interest, as they possess atom centres that are potentially powerful reagents 

for a variety of stoichiometric or catalytic reactions.12 

 

 
Figure 3.1: The diiminopyridine (DIMPY), the methyl substituted diazabutadiene (DAB) 

ligands and the corresponding eneamine tautomers. 

 

The traditional bonding motif for these Schiff bases has typically been via chelation 

through the nitrogen centres in the multifunctional ligands. In reports with the 1,4-

                                                 
! A portion of this work has been published in Martin, C. D.; Le, C. M.; P. J. Ragogna J. Am. Chem. Soc. 
2010, 131, 15126. and has been reproduced with permission. 
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diazabutadiene ligands (DAB; e.g. 2.1, 2.2), reactions with group 13-15 halides showed 

virtually the same reactivity with the ligand to produce N,N’-bound species regardless of 

the substitution on the backbone carbon atom (R’).13-20 For the chalcogens it has been 

determined that the substitution on the backbone carbon atom gives different products.21-

25 Hydrogen atoms, phenyl groups or an acenaphthene group led to the formation of 

N,N’-chelate chalcogen complexes of TeCl2, TeBr4, SeCl2, SeBr2 and Ch2+ (Ch = S, Se, 

Te; Figure 3.2; A-D) whereas a methyl group on the "-carbon resulted in N,C-bound 

heterocycles (2.1ChX and 2.2ChX). The latter result is postulated to occur by reaction 

with the eneamine tautomer of the ligand (2.1’ and 2.2’).21 The tellurium(IV) halides 

formed heterocycles featuring an exocyclic imine (2.1TeX and 2.2TeX) in contrast to 

sulfur and selenium(II) halides that had an exocyclic amine (2.1SCl, 2.2SCl, 2.1SeX and 

2.2SeX). 

 

 
Figure 3.2: Reaction products of chalcogen halides with DAB and DIMPY ligands. 

 

Recent discoveries have shown the ability of DIMPY ligands to stabilize low oxidation 

state main group complexes [e.g. In(I), As(I)].4,7 There has been only one report of a 

reaction of this class of ligands with the chalcogen halides by Cowley et al. in 2006.24 

The reaction of TeCl4 with a methyl substituted DIMPY ligand (3.2) resulted in an 
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N,N’,C-bound tellurium complex (3.2TeCl), rather than the expected N,N’,N’’-bound 

species. As with the DAB chemistry it is believed that reaction is occurring with the 

eneamine tautomer (3.2’). This chapter reports a synthetic study of the DIMPY ligand 

with the chalcogen halides and chalcogen bis(triflate) synthons with different substitution 

at the "-carbon while keeping the groups on N constant with diisopropylphenyl groups 

(Dipp). The difference of a hydrogen, methyl or phenyl group greatly influenced the 

reaction giving neutral, monocationic or dicationic chalcogen(II) centres. These 

molecules represent the first N,N’,N’’-DIMPY coordination complexes for the chalcogens 

in addition to the first DIMPY main group dications.  

 

3.1.2 Non-Metal Chemistry with Saturated Nitrogen Ligands 

From the observations that imine ligands can sequester sulfur centres,25,26 it can be 

envisioned that the chemistry of chalcogen dications can be extended to saturated 

nitrogen systems. A survey of the literature reveals only a few multidentate amine donor 

complexes with the non-metal elements exist, aside from boron.27-31 From these sparse 

reports, it is apparent that the amine ligands have the ability to stabilize highly reactive 

centres (Figure 3.3) such as main group cations and polycations.28,31  

 

 
Figure 3.3: Structures of the amine sequestered non-metal complexes (E-H).  

 

Germanium(II) dications can be sequestered within the cavity of the macrocyclic amines 

Me4-CYCLAM (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and Me3-TACN 

(1,4,7-trimethyl-1,4,7-triazacyclononane) by the nitrogen atoms stabilizing the electron 

deficient germanium centre (E, F).31 The acyclic multidentate ligands, TMEDA 

(N,N,N’,N’-tetramethylethylenediamine) and PMDETA (N,N,N’,N’’,N’’-
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pentamethyldiethylenetriamine; 3.4) form complexes with the phosphadiazonium cation 

rendering the reactive phosphorus centre stable (G, H).28  

There are no structurally characterized homoleptic amine chalcogen complexes known. 

Some reports examine the ionic nature of amines with the chalcogen tetrahalides in 

solution but ultimately these studies offer no solid-state structural information.32 This 

study reports the first isolated and structurally characterized sulfur amine complex, 

accomplished utilizing the PMDETA ligand.  

 

3.2 Results and Discussion 

3.2.1 Synthesis of the Diiminopyridine Chalcogen Complexes 

The 1:1 stoichiometric reaction of a selenium dihalide (SeX2, X = Cl, Br) with the 

hydrogen substituted DIMPY ligand (3.1) in THF immediately gave orange (X = Cl) or 

red (X = Br) slurries. The products could be precipitated from solution by the addition of 

n-pentane yielding fine red and orange powders, respectively. The supernatant was 

decanted and the solids dried in vacuo. Redissolving the powders in CD3CN and 

obtaining a 1H NMR spectrum revealed virtually identical spectra for both the SeCl2 and 

SeBr2 reactions as highly pure products with a symmetric ligand framework. Downfield 

shifts were observed for the two protons on the "-carbon atoms with respect to the free 

ligand consistent with the coordination to selenium (X = Cl, # = 9.78 ppm; X = Br, # = 

9.74 ppm cf. # = 8.44 ppm).33 Crystals suitable for X-ray diffraction studies revealed a 

SeX+
 monocation sequestered by the DIMPY ligand paired with an SeX3

- anion 

(dimerizes in the solid state to give Se2X6
2-; Scheme 3.1). Removing the solvent from the 

supernatant in vacuo and obtaining a 1H NMR spectrum of the redissolved powder 

indicated an appreciable amount of unreacted ligand. Given the 1:1 stoichiometric 

reaction only producing ~45% yield, and the product containing a ratio of one ligand to 

two SeX2 moieties, the stoichiometry of SeX2 was increased to two, which improved 

yields to over 85%. These data prove the production of 3.1SeX regardless of the 

stoichiometry. The reactivity was contrary to the SeX2 DAB complexes (C) as the DAB 

ligands do not displace a halide. The difference in reactivity between the two ligands is 

rationalized by the additional donor on the DIMPY ligand requiring a halide to vacate a 
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coordination site to form the preferential square planar bonding arrangement about 

selenium. 

 

  
Scheme 3.1: Reaction of selenium dihalides with 3.1 to produce 3.1SeBr and 3.1SeCl. 

 

Stirring a CH2Cl2 solution of 3.1 with a solution of SCl2 in the same solvent and obtaining 

a 1H NMR spectrum revealed only the presence of free ligand indicative of no reaction. 

Reactions of the same ligand with the chalcogen tetrahalides SeCl4, SeBr4, TeBr4 and 

TeCl4 all resulted in mixtures as indicated by 1H NMR spectroscopy. It is known that the 

chalcogen halides are susceptible to releasing X2 that would degrade the product or 

halogenate the ligand.34-36 This has also been observed in DAB phosphorus and boron 

chemistry.15,37 

The analogous reactions were performed with the methyl-substituted ligand (3.2). Stirring 

TeBr4 with 3.2 in THF produced an orange suspension over four hours (Scheme 3.2). 

Filtering the solids and removing the solvent from the supernatant gave an orange powder 

that was washed with Et2O. Redissolving the powder in CDCl3 and obtaining an 1H NMR 

spectrum revealed a single product with a break in symmetry of the ligand framework 

with two separate isopropyl resonances. Further evidence was a peak at # = 4.57 ppm 

integrating to two protons consistent with a methylene resonance and a peak at # = 2.37 

ppm integrating to three protons that accounts for the methyl group; both are shifted 

downfield with respect to the free ligand (# = 2.28 ppm).38 The FT-IR spectrum lacked an 

N-H stretch supporting the presence of an exocyclic imine. It was also apparent that one 

of the methyl groups on an "-carbon was absent, indicating that the N,N’,C-bound TeBr3 

unit, analogous to the reported 3.2TeCl complex was the isolated product.24 Thus the 

reaction was again occurring through the eneamine tautomer (3.2’). Crystals suitable for 
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X-ray diffraction studies were grown from vapour diffusion of n-pentane into THF 

confirming the identity of 3.2TeBr, the DIMPY analogue of 2.1TeBr. 

The reaction of SeCl2 with 3.2 in THF produced a dark red solution. Normal pentane was 

added producing a red precipitate. The solids were collected by filtration and washed 

with Et2O to yield a red powder after drying in vacuo. The 1H NMR spectrum of the 

redissolved material in CDCl3 displayed a break in symmetry of the ligand framework 

once again in addition to a reduction of the integration of the methyl group to three, 

consistent of binding through one of the methyl groups on an "-carbon atom. A new peak 

with respect to the free ligand was observed at # = 8.16 ppm integrating to one suggesting 

a single C-H. The FT-IR spectrum of a KBr pellet of the powder displayed a diagnostic 

N-H stretch (broad peak at 3425 cm-1) supporting the presence of an exocyclic amino 

group, not observable in the 1H NMR spectrum. Although crystals of suitable quality for 

X-ray diffraction studies could not be grown, the identity of the compound could be 

assigned as 3.2SeCl based on these data and by analogy to the DAB chemistry 

(2.1SeCl).21 As observed in the corresponding DAB chemistry, tellurium forms a 

complex with an exocyclic imine whereas selenium produces an exocyclic amine. 

 

 
Scheme 3.2: Reactions of TeBr4 and SeCl2 with 3.2. 

 

The reactions of SeCl4, SeBr4, SeBr2 and SCl2 with 3.2 all produced indiscernible 

complex mixtures based on 1H NMR spectroscopy. It is unpredictable if the reactivity 

with the eneamine tautomer is controllable and unfortunately this was not the case for 

SeBr2 and SCl2 as mixtures were produced of which the desired products could not be 

isolated or observed from the crude 1H NMR spectra.  
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In order to examine the effect of an aryl group on the "-carbon, the reaction of SCl2 with 

3.3 (phenyl substitution at nitrogen) in CH2Cl2 was carried out resulting in the generation 

of an orange solution (Scheme 3.3). Addition of n-pentane to the solution and storing the 

reaction vial at -35 °C produced a large crop of yellow crystals. Obtaining a 1H NMR 

spectrum of the dried crystals redissolved in CDCl3 revealed a single product with a 

symmetric ligand framework. The protons on the 3 and 5 positions of the pyridine ring 

were shifted downfield with respect to free ligand ($# = 1.90 ppm).2 A solid-state 

structure from X-ray diffraction studies on crystals grown by vapour diffusion of n-

pentane into chloroform revealed a N,N’,N’’-bound sulfur(II) dication with two chloride 

counteranions (3.3S[Cl]). In general this confirms the higher reactivity of DIMPY ligands 

in comparison to their DAB counterparts as the corresponding reaction of a DAB ligand 

with phenyl groups on the "-carbon atoms showed no reaction with SCl2 in the absence 

of TMSOTf. 

 

 
Scheme 3.3: Reactions of SCl2 and SeX2 with 3.3. 

 

The 1:2 stoichiometric reaction of the phenyl substituted DIMPY ligand (3.3) with the 

SeX2 reagents were carried out as 3.1 reacted in this stoichiometry. The reactions 

produced brown (X = Br) and purple (X = Cl) solutions. Adding n-pentane to the mixture 

resulted in the precipitation of orange (X = Cl) and brown (X = Br) powders. 

Redissolving the powders in CDCl3 and obtaining an 1H NMR spectrum revealed 

diagnostic downfield shifts of the pyridine protons on the ligand similar to SCl2. X-ray 
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quality crystals were grown by vapour diffusion of n-pentane into a saturated CH2Cl2 

solution of 3.3SeCl indicating the identity as two N,N’,N’’-chelated SeCl+ monocations 

paired with an SeCl4
2- dianion. This would arise from a 2:3 stoichiometry of the ligand to 

SeCl2. It is suspected that a mixture of complex counter anions is present with various 

combinations of selenium and chlorine. From the analogous 1H NMR spectrum it is 

ascertained that the reaction product is a SeBr+ cation, although the exact nature of the 

anion is not certain. Unfortunately crystals suitable for diffraction experiments could not 

be grown to confirm this. The difference of a hydrogen and a phenyl group on the "-

carbon proved not to be significant in the case of selenium as both derivatives formed 

monocationic complexes. 

Further evidence that complexation of 3.3 has occurred are sharp resonances in the proton 

NMR spectra. The free ligand undergoes restricted rotation on the NMR time scale due to 

the presence of the bulky phenyl groups that results in severe broadening of all signals 

except at elevated temperatures (115 °C in dimethyl sulfoxide-d6).2 However, the 

complexes formed with SeX2 and SCl2 do not display hindered dynamics at ambient 

temperature on the NMR timescale. This phenomenon has also been observed in other 

complexes with phenyl substituted DIMPY ligands in the literature.2-4 Examination of the 

corresponding reactions of SeCl4, SeBr4, TeCl4 and TeBr4 with 3.3 all resulted in 

complex mixtures or decomposition. 

The reactivity of the chalcogen bis(triflate) synthons with 3.1 was explored in hopes of 

generating the homologous series of chalcogen(II) dications similar to 3.3S[Cl] with 

triflate anions.22,25,39 The 1:1 stoichiometric reaction of a Ch(OTf)2 (Ch = S, Se, Te) 

synthon with 3.1 at room temperature or -78 °C (3.1S[OTf]) resulted in the precipitation 

of solid material (Scheme 3.4). The supernatant was decanted from 3.1Se[OTf] and 

3.1Te[OTf], and the powders were washed with Et2O. The resulting solids were dried in 

vacuo to give yellow and amber powders, respectively. For compound 3.1S[OTf], the 

solvent was removed in vacuo, and the solids were recrystallized from a 1:1 

acetonitrile/Et2O solution. 
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Scheme 3.4: Reactions of “Ch(OTf)2” with 3.1 and 3.1a to produce the dicationic triflate 

salts. 

 

The solids isolated were redissolved in acetonitrile-d3 and obtaining the 1H NMR spectra 

displayed resonances for the protons on the "-carbon atoms shifted further downfield 

than the monocationic compounds (3.1SeCl and 3.1SeBr) diagnostic for a dicationic 

complex (3.1Ch[OTf], # = 10.53 to 10.35 ppm; cf. 3.1SeX, # = 9.78 to 9.74 ppm). All of 

the spectra indicated a single product with a symmetric environment for the DIMPY 

ligand. The 19F{1H} NMR spectra were indicative of ionic triflate in solution for all of the 

complexes, signifying negligible cation-anion association in solution (3.1Ch[OTf], # = -

78.5 to -78.6 ppm; cf. ionic [NOct4][OTf], # = -78.5 ppm; covalent CH3OTf, # = -75.4 

ppm).40 Crystals of 3.1S[OTf] and 3.1Se[OTf] suitable for X-ray diffraction studies were 

grown by vapour diffusion of Et2O into acetonitrile solutions of the redissolved bulk 

powders. In both cases, the diffraction experiments revealed dicationic complexes of 

sulfur and selenium, where the salts were isolated in high yields (3.1S[OTf], 82%; 

3.1Se[OTf], 87%) analogous to 3.3S[Cl]. Despite valiant efforts, suitable crystals of 

3.1Te[OTf] could not be obtained, however the material was comprehensively 

characterized, and all of the data were consistent with the proposed formulation (isolated 

in 99% yield). The same reaction was carried out with virtually the same DIMPY ligand 

substituting 2,6-dimethylphenyl groups on N (3.1a) rather than 2,6-diisopropylphenyl 

N
NNR R

H H

+ "Ch(OTf)2"

Ch = S, Se, Te
X = Cl, Br, OTf

"Ch(OTf)2" = N N
Te

Dipp Dipp

OTf OTf

N N
Se

Dipp Dipp

Cl Cl

+ 2 TMSOTfSCl2 + 2 TMSOTf

N
NNR R

H H

Ch [OTf]2

Ch = S Ch = Se Ch = Te

R = Dipp, 3.1
R = Dmp, 3.1a

Ch = S, R = Dipp; 3.1S[OTf]
Ch = Se, R = Dipp; 3.1Se[OTf]
Ch = Te, R = Dipp; 3.1Te[OTf]
Ch = Te, R = Dmp; 3.1aTe[OTf]

2



 61 

groups to slightly change the crystallization properties but keep similar electronics and 

sterics at the nitrogen atom. The spectroscopic data were consistent with the 3.1Ch[OTf] 

complexes and to our delight, X-ray diffraction quality crystals were able to be grown by 

vapour diffusion of diethyl ether into an acetonitrile solution confirming the identity of 

3.1a[TeOTf] obtained in 90% yield.   

Surprisingly, storing samples of the dications under open air led to no signs of 

decomposition for a period of three weeks for 3.1Se[OTf] and 2 months for 3.1S[OTf] 

and 3.1Te[OTf]. This is in stark contrast to the highly unstable bidentate dicationic 

derivatives.25,26 Even after the addition of water to 3.1S[OTf], no decomposition was 

observed over 1 h, a remarkable feature for main group polycationic species. However, 

compounds 3.1Se[OTf] and 3.1Te[OTf] decomposed immediately upon the addition of 

water.  

 

3.2.2 Synthesis of a Dicationic Sulfur(II) Amine Complex 

A solution of PMDETA (3.4) in CH2Cl2 was added to a freshly prepared CH2Cl2 solution 

of SCl2 and TMSOTf in a 1:1:2 stoichiometry generating a copious amount of white 

precipitate (Scheme 3.5). The supernatant was decanted and the solids were dried in 

vacuo. Redissolving the bulk material in CD3CN and obtaining an 1H NMR spectrum 

revealed what appeared to be a single product but with the terminal methyl resonances 

split into two peaks and second order coupling observed for the ethylene bridges. As the 
1H NMR spectrum was complex, X-ray diffraction studies on crystals grown by liquid 

diffusion of Et2O into CH3CN. The solid-state structure revealed an N,N’,N’’-chelated 

sulfur(II) dication. 

The 1H NMR spectrum could be rationalized as the ligand bound to the chalcogen centre 

is in a locked configuration. Two resonances are observed for the terminal methyl groups 

as the methyl groups become inequivalent in a locked system. The methyl resonances are 

also shifted downfield from free PMDETA (# = 3.03, 2.87 ppm cf. # = 2.23 ppm) 

consistent with the binding to an electron deficient centre. Further evidence of a locked 

ligand framework in solution were the four resonances with integral values of two and 

having second order coupling for the bridging ethylene groups. In the free ligand the 

ethylene groups are simplified as two triplets integrating to four. Proton decoupled 
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fluorine NMR spectroscopy confirmed ionic triflate in solution (! = -78.5 ppm). All of 

these data are consistent with the formulation of an N,N’N’’-chelated sulfur(II) dication 

supported by the PMDETA ligand isolated in 91% yield (3.4S[OTf]).  

 

 
Scheme 3.5: The synthetic route to 3.4S[OTf]. 

 

3.2.3 X-Ray Crystallography of the Chalcogen DIMPY Complexes 

The solid-state structures of 3.1SeCl and 3.1SeBr both revealed a selenium halide 

monocation sequestered in the DIMPY chelate (Figure 3.4; See Table 3.1 for X-ray 

details and Table 3.2 for selected bond lengths and angles). The cationic selenium centre 

is in a distorted square planar geometry consistent with an AX4E2 electron pair 

configuration. The Se-N bond lengths are slightly longer for the imine nitrogens than the 

pyridine nitrogen atoms. The selenium halide bonds are long [X = Cl, 2.6498(14) Å; X = 

Br, 2.845(2) Å] which is attributed to the strong donation of the pyridine nitrogen into the 

same p-orbital. The imine within the ligand framework is retained [C-N = 1.278(15)-

1.298(6)]. The counter anion is a SeX6
2- dianion (SeX3

- dimer) shared over two 

asymmetric units. 

Examining the solid-state structure of 3.2TeBr, reveals the tellurium centre in a distorted 

octahedron with a stereochemically inactive lone pair (Figure 3.5). Occupying the six 

coordination sites are three bromines, a carbon, the pyridine and a distant imine contact to 

complete the octahedron. The tellurium-bromine bond lengths are very similar to the 

methyl-DAB reaction products [Range 2.6323(7) - 2.6774(7) cf. 2.634(1) - 2.680(1) Å]. 

The N-Te bond distance for the pyridine nitrogen is markedly shorter than that of the 

imine [2.359(3) cf. 2.793(3) Å] which retains its N-C double bond [1.268(5) Å]. The 

exocyclic carbon-nitrogen bond is also characteristic of an imine moiety [1.269(5) Å]. 

The carbon-tellurium bond of 2.133(4) Å is consistent with a typical Te-C single bond. In 

S
N

N N
2

N
N NSCl2 + 2 TMSOTf + - 2 TMSCl

3.4S[OTf]PMDETA
3.4

[OTf]2
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general, these metrical parameters are in close agreement to the previously published 

3.2TeCl.24 

The solid-state structure of 3.3SeCl reveals a SeCl+ monocationic DIMPY complex as 

observed in 3.1SeCl. The bond lengths within the cation are very similar, almost within 

statistical error with the other. The main difference in the structure lies in the counter 

anion, a SeCl4
2- dianion rather than Se2Cl6

2- in 3.1SeCl. This particular anion is rare, as 

only two other solid-state structures have been reported in the CSD.41,42 The metrical 

parameters of the anion are consistent with the literature precedent featuring a square 

planar geometry about selenium. 
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3.1SeCl 

 
3.1SeBr 

 

Figure 3.4: Solid-state structures of 3.1SeCl and 3.1SeBr. Ellipsoids are drawn to 50% 

probability, hydrogen atoms, anions, solvates and isopropyl groups are omitted for 

clarity.  
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3.2TeBr 

 
3.3SeCl 

 

Figure 3.5: Solid-state structures of 3.2TeBr and 3.3SeCl. Ellipsoids are drawn to 50% 

probability, hydrogen atoms, anions, solvates and isopropyl groups are omitted for 

clarity. Selected bond lengths (Å) and angles (º) for 3.2TeBr (3.3SeCl reported in Table 

3.1): Te(1)-C(1) 2.133(4), Te(1)-N(2) 2.359(3), Te(1)-Br(2) 2.6323(7), Te(1)-Br(3) 

2.6562(8), Te(1)-Br(4) 2.6774(7), Te(1)-N(3) 2.793(3), N(3)-C(8) 1.268(5), N(1)-C(2) 

1.269(5), C(2)-C(1) 1.508(6). 
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Compounds 3.3[Cl], 3.1S[OTf], 3.1Se[OTf], and 3.1aTe[OTf] all exhibit a T-shaped 

geometry about the chalcogen centre, consistent with an AX3E2 electron pair 

configuration (Figures 3.6 and 3.7). Both of the imine nitrogen atoms occupy axial 

positions within the trigonal bipyramid, and the pyridine nitrogen and the two lone pairs 

occupy the equatorial positions. A positive correlation is observed between increasing 

size of the central atom and increasing Ch-N bond lengths for 3.3S[Cl], 3.1S[OTf], 

3.1Se[OTf], and 3.1bTe[OTf]. In all of the compounds, the axial Ch-N bonds are longer 

than the equatorial Ch-N bonds which is attributed to the two imine nitrogens donating 

into the same p-orbital. For 3.1S[OTf], the N(2)-S(1) bond is slightly shorter than typical 

N-S single bonds [1.719(3) Å (cf. 1.76 Å)] and slightly longer than in the only other 

known sulfur(II) dicationic systems [1.655(3)-1.699(6) Å], which can be attributed to the 

increase in coordination number from two to three.25,26,43  

There are no detectable cation-anion contacts within the sum of the van der Waals radii 

between the triflate or chloride anion and the chalcogen centre in 3.1S[OTf], 3.3S[Cl] or 

in 3.1Se[OTf]. Compound 3.1bTe[OTf] displays distant Te!!!O contacts within the sum 

of the van der Waals radii [closest contact 2.776(4) Å cf. 3.58 Å].43 Upon close inspection 

of the tellurium structure, the corresponding sulfur oxygen bond lengths within the anion 

show no asymmetry, consistent with the absence of a covalent interaction between the 

dicationic chalcogen centre and the anion.  

In all of the N,N’,N’’-chelated chalcogen dications and monocations, the dative bonding 

model has been drawn (Schemes 3.1, 3.3 and 3.4), but in view of the metrical parameters, 

the charge is likely delocalized throughout the dication, resulting in a hybrid structure 

best represented as the pyridinium/iminium salts.   
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3.3S[Cl] 

 
3.1S[OTf] 

 

Figure 3.6: Solid-state structures of the dications 3.3S[Cl], and 3.1S[OTf]. Ellipsoids are 

drawn to the 50% probability level. Hydrogen atoms, isopropyl or methyl groups, 

solvates, and anions not interacting with the chalcogen centre have been omitted for 

clarity. 
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3.1Se[OTf] 

 
3.1aTe[OTf] 

 

Figure 3.7: Solid-state structures of the dications 3.1Se[OTf], and 3.1aTe[OTf]. 

Ellipsoids are drawn to the 50% probability level. Hydrogen atoms, isopropyl or methyl 

groups, solvates, and anions not interacting with the chalcogen centre have been omitted 

for clarity. 
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Table 3.1: X-ray details for 3.1SeCl, 3.1SeBr, 3.2TeBr, 3.3S[Cl], 3.3SeCl, 3.1S[OTf], 3.1Se[OTf] and 3.1aTe[OTf]. 
Compound 3.1SeCl 3.1SeBr 3.2TeBr 3.3S[Cl] 3.3SeCl 3.1S[OTf] 3.1Se[OTf] 3.1aTe[OTf] 
Empirical 
formula 

C37H45F6Cl4N6Se2 C37H39F6Br4N3Se2 C37H42Br3N3OTe C45H49Cl8N3S C86H94Cl6N6Se3 C37H49F6N3O7S3 C37H49F6N3O7S2Se C27H26F6N4O6S2Te 

FW (g/mol) 873.51 1045.30 912.07 947.53 1661.25 857.97 904.87 808.24 
Crystal system Monoclinic Monoclinic Monoclinic Triclinic Monoclinic Monoclinic Monoclinic Monoclinic 
Space group P21/n P21/c P21/n P-1 P21/c C2/c C2/c P21 

a (Å) 11.413(2) 11.950(2) 10.592(2) 12.5843(19) 12.7211 19.380(4) 19.3723(11) 11.995(2) 
b (Å) 14.309(3) 14.476(3) 14.103(3) 13.324(2) 20.3795 15.591(3) 15.4754(9) 8.2243(16) 
c (Å) 26.438(5) 26.043(8) 26.190(5) 16.054(2) 17.9128 14.358(3) 14.5351(7) 16.523(3) 
! (deg) 90 90 90 71.556(3) 90 90 90 90 
" (deg) 101.87(3) 103.39(3) 98.63(3) 72.774(3) 95.894 92.26(3) 91.768(2) 100.76(3) 
# (deg) 90 90 90 80.973(4) 90 90 90 90 
V (Å3) 4225.6(15) 4382.7(18) 3868.1(13) 2433.1(6) 4619.3(8) 4335.1(15) 4355.5(4) 1601.4(5) 

Z 4 4 4 2 2 4 4 2 
Dc (mg m-3) 1.373 1.584 1.566 1.293 1.194 1.315 1.380 1.676 

radiation, $ (Å) .71073 .71073 .71073 .71073 .71073 .71073 .71073 .71073 
temp (K) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 

R1[I>2%I]a 0.0604 0.0930 0.0438 0.0775 0.0652 0.0496 0.0434 0.0362 
wR2(F2)a 0.1825 0.3007 0.1339 0.2031 0.1769 0.1297 0.1149 0.0988 
GOF (S)a 0.966 1.279 1.055 1.045 0.950 1.034 1.037 1.101 

 

a R1(F[I > 2(I)]) = !�|Fo| - |Fc |�/ ! |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; 

p = no. of parameters varied; w = 1/[2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by the 

refinement program. 
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Table 3.2: Selected bond lengths (Å) and angles (°) for the N,N’,N’’-DIMPY complexes 3.1SeCl, 3.1SeBr, 3.3S[Cl], 3.3SeCl, 

3.1S[OTf], 3.1Se[OTf] and 3.1aTe[OTf]. 
Bond Length 3.1SeCl 3.1SeBr 3.3S[Cl] 3.3SeCl 3.1S[OTf] 3.1Se[OTf] 3.1aTe[OTf] 
Ch(1)-N(1) 2.209(4) 2.086(9) 1.883(4) 2.107(4) 1.9068(17) 2.025(2) 2.243(4) 

Ch(1)-N(3/1Aa) 2.056(4) 2.137(9) 1.923(4) 2.078(4) 1.9068(17)a 2.025(2)a 2.241(4) 
Ch(1)-N(2) 1.931(4) 1.932(9) 1.727(4) 1.928(4) 1.719(3) 1.872(3) 2.098(3) 

C(1)-N(1/1Aa) 1.278(6) 1.278(15) 1.295(6) 1.275(7) 1.280(3) 1.275(3) 1.284(6) 
C(7/1Aa)-N(3/1Aa) 1.298(6) 1.292(15) 1.279(5) 1.286(7) 1.280(3)a 1.275(3)a 1.284(7) 

Ch(1)-X(1) 2.6498(14) 2.845(2) -- 2.6948(18) -- -- -- 
        

Bond Angle        
N(1)-Ch(1)-N(2) 76.01(16) 78.1(4) 82.37(18) 78.03(19) 82.39(6) 78.79(6) 72.77(15) 

N(2)-Ch(1)-N(3/1Aa) 78.55(15) 76.7(4) 82.68(17) 76.84(18) 82.39(6)a 78.79(6)a 73.35(16) 
N(1)-Ch(1)-X(1) 111.23(11) 96.7(3) -- 97.93(14) -- -- -- 

N(3/1Aa)-Ch(1)-X(1) 94.17(11) 107.6(3) -- 106.95(14) -- -- -- 
 

a The cations in 3.1S[OTf] and 3.1Se[OTf] lie on a site of symmetry with N(1) and N(3) being symmetry related. 
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3.2.4 X-Ray Crystallography of the Dicationic Sulfur(II) Amine Complex  

X-Ray crystallographic studies confirmed the proposed structure of 3.4S[OTf] from the 

solution spectroscopic data (Figure 3.8; See Table 3.4 for X-ray Data). The asymmetric 

unit consisted of two dications, four triflate anions and five acetonitrile molecules. The 

closest sulfur-oxygen contact between a cation and an anion [3.158(4) Å] lies on the edge 

of the sum of the van der Waals radii of the two atoms (3.25 Å) however there is no 

elongation of the corresponding S-O bond in the anion.43 The lack of an elongated S-O 

bond length in the triflate anion confirms negligible cation-anion interactions. 

 

 

Figure 3.8: Solid-state structure of 3.4S[OTf]. Only one dication from the asymmetric 

unit is shown. Ellipsoids are drawn to 50% probability. Hydrogen atoms, acetonitrile 

solvates, anions and the other dication are omitted for clarity. Selected bond lengths (Å) 

and angles (°); metrical parameters for other cation in the asymmetric unit are in brackets: 

S(1)-N(1) 2.071(4) [2.028(4)], S(1)-N(2) 1.821(4) [1.826(4)], S(1)-N(3) 2.043(4) 

[2.049(4)]; N(1)-S(1)-N(2) 85.94(17) [86.78(18)], N(2)-S(1)-N(3) 86.74(17) [86.15(17)], 

N(1)-S(1)-N(3) 171.38(18) [172.56(18)].  

 

The electron configuration in 3.4S[OTf] can be described as AX3E2 with two nitrogen 

atoms occupying the axial positions while the third nitrogen atom and the two lone pairs 

reside in equatorial sites, leading to a T-shaped geometry. A comparison of the metrical 

parameters with 3.1S[OTf], the other T-shaped chalcogen dication with triflate 

counterions can be found in Table 3.4. The axial equatorial N-S-N bond angles are close 

to 90° [range 85.94(17)° to 86.78(18)°] and bond angles between the two axial nitrogen 
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atoms are close to 180° [171.38(18)° and 172.56(18)°] consistent with a distorted T-

shaped geometry. These angles are larger than the related diiminopyridine complex 

(3.1S[OTf]) as the PMDETA ligand is more flexible than the rigid DIMPY framework.  

As observed in 3.1S[OTf], the more proximal bond length of the equatorial nitrogen 

[1.821(4) Å and 1.826(4) Å] and distal bond lengths of the axial nitrogen atoms [range 

2.028(4) Å - 2.071(4) Å] are rationalized by the donation of the two axial amines into the 

same p-orbital. The nitrogen sulfur bond lengths of 3.4S[OTf] are significantly longer 

than 3.1S[OTf] indicating the lesser stabilization that the PMDETA ligand offers in 

comparison to the DIMPY ligand. This is also reflected in the relative stabilities of the 

two compounds as 3.1S[OTf] is stable in the open atmosphere for weeks and 3.4S[OTf] 

decomposes instantly upon exposure to air.  

 

Table 3.3: Bond lengths (Å) and angles (°) of 3.1S[OTf] and 3.4S[OTf] (avg). 

Bond Length 3.1S[OTf] 3.4S[OTf] 
S(1)-N(1) 2.050(4) 1.9068(17) 

S(1)-N(3/1A)a 2.046(4) 1.9068(17)a 
S(1)-N(2) 1.824(4) 1.719(3) 

   
Bond Angle   

N(1)-Ch(1)-N(2) 86.36(18) 82.39(6) 
N(2)-Ch(1)-N(3/1A)a 86.21(17) 82.39(6) a 
N(1)-S(1)-N(3/1A)a 172.47(18) 164.78(12) 

 
a The dication resides on a site of symmetry. 
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Table 3.4: X-ray details of 3.4S[OTf]. 

Compound 3.4S[OTf] 
Empirical formula C64H122F24N22O24S12 

FW (g/mol) 2424.56 
Crystal system Monoclinic 
Space group P21/n 

a (Å) 17.482(4) 
b (Å) 13.711(3) 
c (Å) 22.602(5) 
! (deg) 90 
" (deg) 92.79(3) 
# (deg) 90 
V (Å3) 5411.3(19) 

Z 2 
Dc (mg m-3) 1.488 

radiation, $ (Å) 0.71073 
temp (K) 150(2) 

R1[I>2%I]a 0.0783 
wR2(F2)a 0.2627 
GOF (S)a 1.063 

 

a R1(F[I > 2(I)]) = !�|Fo| - |Fc |�/ ! |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all 

data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. of parameters varied; w = 

1/[2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by 

the refinement program. 
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3.3 Conclusion 

By the reactions of chalcogen halides with diiminopyridine ligands featuring -H, -Ph or -

CH3 substitution on the !-carbon, new sulfur, selenium and tellurium complexes were 

isolated including the first N,N’,N’’-chelated complexes with this ubiquitous ligand. The 

methyl DIMPY derivative (3.2) reacted through one of the methyl groups to give N,N’,C-

bound complexes with an exocyclic imine (Ch = Te) or an exocyclic amine moiety (Ch = 

Se). The reaction is believed to go through the eneamine tautomer and expel hydrohalide 

in the process much like the DAB chemistry. The hydrogen DIMPY ligand (3.1) reacted 

with the selenium dihalides in a 1:2 stoichiometry to afford the N,N’,N’’-chelated SeX+ 

monocationic complexes, differing from the neutral DAB SeX2 complexes. The phenyl 

substituted DIMPY (3.3) proved to be more reactive than the H substituted derivative to 

produce a dicationic sulfur complex with two chloride counteranions. In the case for 

selenium, a four coordinate monocationic complex centre with a rare SeX4
2- anion was 

isolated. Selenium binds weakly to a halide as it can accommodate higher coordination 

numbers making a square planar geometry in contrast to sulfur. In many cases with 

chalcogen halide starting materials in the +4 oxidation state undesirable halogenation 

occurred. 

The reaction of “S(OTf)2” with the saturated amine PMDETA also produced an N,N’,N’’ 

sequestered sulfur(II) dication. This compound represents the first homoleptic amine-

sulfur complex. The structure is resilient in solution confirmed by the second order 

coupling of the protons on the ethylene linkers. Solid-state structural analysis indicates 

that the sulfur nitrogen bonds are significantly longer than the known pyridine or imine 

sulfur bonds suggesting a weak interaction between the ligand and the sulfur centre.  

The diiminopyridine dicationic derivatives proved to be air stable, an unexpected 

observation given the high instability of the corresponding dicationic diazabutadiene 

complexes. This is a remarkable feature given that a dicationic charge is centralized on 

the chalcogen atom and should deem them highly unstable. The PMDETA complex was 

highly unstable but this weak bonding indicates the species should be a good reagent for 

the release of S2+. 
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3.4 Experimental Section 

3.1SeCl 

A solution of 3.1 (0.077 g, 0.170 mmol in 3 mL 

THF) was added to a freshly prepared solution of 

SeCl2 (0.341 mmol in 6 mL THF) and stirred for 5 

minutes resulting in a red slurry. Normal pentane 

(6 mL) was added resulting in the formation of 

more solids. The supernatant was decanted and the resulting solids washed with Et2O. 

The red powder was dried in vacuo.  

Yield: 0.110 g, 86 %; d.p. 180-182 °C;  
1H NMR (CD3CN, ") 9.78 (s, 2H), 9.05 (br, 2H), 8.95 (br, 1H), 7.45 (t, 2H, 3J = 7.6 Hz), 

7.37 (d, 4H, 3J = 7.6 Hz), 2.68 (br, 4H), 1.19 (d, 24H, 3J = 6.4 Hz); 

 FT-Raman (cm-1, ranked intensity): 2966(15), 1611(2), 1585(9), 1569(1), 1542(6), 

1411(11), 1245(3), 1171(4), 1024(10), 563(14), 335(7), 302(5), 174(13), 132(12), 105(8);  

FT-IR (cm-1, ranked intensity): 2965(1), 2856(7), 1541(13), 1460(3), 1385(14), 1365(10), 

1167(8), 1097(12), 1061(2), 1023(6), 949(15), 925(11), 806(5), 791(4), 752(9);  

ESI-MS m/z 567 [M+] M = C31H39N3SeCl. 

 

3.1SeBr 

A solution of 3.1 (0.115 g, 0.253 mmol in 3 mL 

THF) was added to a freshly prepared solution of 

SeBr2 (0.507 mmol in 6 mL THF) and stirred for 

5 minutes resulting in a deep red slurry. Normal 

pentane (6 mL) was added resulting in the formation of more solids. The red powder was 

dried in vacuo.  

Yield: 0.196 g, 84 %; d.p. 130-132 °C;  
1H NMR (CD3CN, ") 9.74 (s, 2H), 9.09 (br, 2H), 8.99 (br, 1H), 7.45 (br, 2H), 7.37 (d, 

4H, 3J = 7.2 Hz), 2.66 (br, 4H), 1.20 (m, 24H); 

FT-Raman (cm-1, ranked intensity): 2937(14), 1609(4), 1568(3), 1541(9), 1441(15), 

1409(7), 1291(13), 1240(5), 1168(6), 1023(8), 562(12), 309(10), 232(2), 208(1), 147(11).  
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FT-IR(cm-1, ranked intensity): 2963(2), 1539(10), 1459(3), 1385(11), 1364(7), 1164(5), 

1097(14), 1060(1), 1022(6), 922(8), 805(4), 790(12), 750(9), 719(13), 561(15).  

ESI-MS m/z 612 [M+], M = C31H39N3SeBr. 

 

3.2SeCl 

A solution of 3.2 (0.164 g, 0.342 mmol in 4 mL THF) was added 

to a freshly prepared solution of SeCl2 (0.341 mmol in 4 mL 

THF) and stirred for 5 minutes generating a red solution. Normal 

pentane (8 mL) was added to the mixture resulting in a red 

precipitate. The supernatant was removed and the solids washed with Et2O (5 X 5 mL) 

and the red solids dried.  

Yield: 0.129 g, 58 %; d.p. 188-190 °C;  
1H NMR (CDCl3, ") 8.35-8.25 (m, 2H), 8.16 (s, 1H), 8.02 (d, 1H, 3J = 7.8 Hz), 7.30-7.16 

(m, 6H), 4.44 (s, 1H), 3.11 (sept, 2H, 3J = 7.2 Hz), 2.69 (sept, 2H, 3J = 7.2 Hz), 2.37 (s, 

3H), 1.22 (d, 24H, 3J = 7.2 Hz);  

FT-Raman (cm-1, ranked intensity): 2964(14), 2927(11), 1632(3), 1588(4), 1572(1), 

1516(8), 1444(13), 1295(7), 1246(9), 1005(10), 886(15), 331(12), 252(6), 144(5), 85(2);  

FT-IR(cm-1, ranked intensity): 3425(5, broad), 3299(4), 2961(1), 2865(14), 1633(15), 

1602(8), 1534(9), 1515(11), 1463(2), 1386(6), 1365(7), 1207(13), 818(10), 798(12), 

765(3). 

 

3.2TeBr  

A solution of 3.2 (0.100 g, 0.208 mmol in 3 mL THF) was 

added to a solution of TeBr4 (0.093g, 0.208 mmol in 3 mL THF) 

and stirred for 4 hours resulting in an orange solution. The 

mixture was centrifuged and the solvent removed from the 

supernatant producing an orange powder.  

Yield: 0.109 g, 62 %; d.p. 171-173°C; 
1H NMR (CDCl3, ") 8.79 (d, 1H, 3J = 7.8 Hz), 8.45 (t, 1H, 3J = 7.8 Hz), 8.25 (d, 1H, 3J = 

7.8 Hz), 7.25-7.17 (m, 6H), 4.57 (s, 2H), 2.96 (sept, 2H, 3J = 7.2 Hz), 2.78 (sept, 2H, 3J = 
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7.2 Hz), 2.37 (s, 3H), 1.26 (overlapping doublets, 12H), 1.13 (overlapping doublets, 

12H);  
13C{1H} NMR (CDCl3, ") 160.8, 146.2, 142.5, 141.4, 133.8, 133.6, 132.1, 131.6, 129.6, 

127.2, 125.1, 28.4, 26.5, 23.4;  
125Te{1H} NMR (CD2Cl2, ") 1290;  

FT-Raman (cm-1, ranked intensity): 3063(13), 2964(8), 2930(9), 1629(4), 1589(3), 

1568(7), 1463(11), 1316(6), 1243(5), 1011(14), 648(12), 365(15), 178(1), 166(2), 

105(10).  

FT-IR (cm-1, ranked intensity): 2964(2), 1628(5), 1587(12), 1462(3), 1364(10), 1315(11), 

1241(9), 1172(8), 1093(15), 1010(7), 911(4), 822(14), 789(6), 758(13), 731(1). 

 

3.3SeCl  

A solution of 3.3 (0.075 g, 0.124 mmol in 2 mL THF) 

was added to a freshly prepared solution of SeCl2 (3.72 

mmol in 6 mL THF) generating a red solution. Normal 

pentane (10 mL) was added to the solution precipitating 

orange material. The mixture was stored at -35°C for 30 minutes and centrifuged. The 

supernatant was decanted and the solids washed with Et2O (2 # 6 mL). The solids were 

dried in vacuo giving an orange powder.  

Yield: 0.090 g, 66 %; d.p. 174-177°C.;  
1H NMR (CD3CN, ") 8.87-8.75 (m, 3H), 7.68-7.23 (m, 16H), 2.71 (sept, 4H, 3J = 6.4 

Hz), 1.27 (d, 12H, 3J = 6.4 Hz), 0.98 (d, 12H, 3J = 6.4 Hz); 

FT-Raman (cm-1, ranked intensity): 3060(9), 1597(3), 1560(4), 1403(6), 1350(15), 

1302(12), 1247(10), 1152(5), 1100(11), 1044(13), 1023(8), 1000(7), 575(14), 241(2), 

132(1);  

FT-IR (cm-1, ranked intensity): 2966(9), 1560(11), 1458(5), 1444(10), 1386(14), 

1340(12), 1265(13), 1055(8), 935(15), 806(4), 784(3), 763(7), 727(2), 693(1), 656(6). 
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3.3SeBr 

A solution of 3.3 (0.075 g, 0.124 mmol in 2 mL THF) 

was added to a freshly prepared solution of SeBr2 (3.72 

mmol in 6 mL THF) resulting in a dark red solution. A 

red precipitate was generated after adding n-pentane (10 

mL) to the mixture. The supernatant was removed and the remaining solids were washed 

with Et2O (2 # 6 mL).  

Yield: 68 %, 0.125; d.p. 182-184°C;  
1H NMR (CD3CN, ") 9.07-8.92 (m, 3H), 7.73-7.29 (m, 16H), 2.73 (sept, 4H, 3J = 6.8 

Hz), 1.26 (overlapping doublets, 12H), 0.94 (overlapping doublets, 12H).  

FT-Raman(cm-1(ranked intensity)) 3063(13), 1596(6), 1567(5), 1400(8), 1356(10), 

1216(15), 1151(9), 1100(14), 1042(11), 1000(12), 241(2), 190(3), 143(4), 109(1), 86(7). 

FT-IR(cm-1(ranked intensity)) 2963(2), 2927(8), 2867(13), 1578(4), 1462(10), 1446(7), 

1347(5), 1150(15), 1100(9), 1056(12), 1026(11), 787(3), 767(6), 693(1), 660(14). 

 

3.3S[Cl]  

A solution of 3.3 (0.150 g, 0.247 mmol in 4 mL CH2Cl2) was 

added to a solution of SCl2 (0.025 g, 0.247 mmol in 4 mL 

CH2Cl2) immediately generating a yellow solution. The 

addition of n-pentane and storing the solution at -35°C 

overnight resulted in the formation of a large crop of yellow crystals. The supernatant 

was decanted and the crystals dried in vacuo.  

Yield: 95 %; d.p. 124-127°C; 
1H NMR (CD3CN, ") 9.43 (d, 2H, 3J = 8.4 Hz), 9.27 (t, 1H, 3J = 7.8 Hz), 7.82-7.38 (m, 

16H), 2.91 (sept, 4H, 3J = 6.8 Hz), 1.11 (d, 12H, 3J = 6.8 Hz), 0.78 (d, 12H, 3J = 6.8 Hz);  
13C{1H} NMR (CDCl3, ") 160.8, 146.2, 142.5, 141.4, 133.8, 133.6, 132.1, 131.6, 129.6, 

127.2, 125.1, 28.4, 26.5, 23.4;  

FT-Raman (cm-1(ranked intensity)) 3064(9), 1598(1), 1580(2), 1537(15), 1400(4), 

1332(14), 1246(13), 1222(7), 1154(5), 1099(12), 1054(8), 1000(6), 498(11), 401(10), 

101(3).  
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FT-IR (cm-1(ranked intensity)) 2963(2), 2927(8), 2867(13), 1578(4), 1462(10), 1446(7), 

1347(5), 1150(15), 1100(9), 1056(12), 1026(11), 787(3), 767(6), 693(1), 660(14). 

 

3.1S[OTf] 

Sulfur dichloride (0.348 g, 3.38 mmol) was added neat to a 

solution of TMSOTf (1.500 g, 6.75 mmol) in CH2Cl2 (40 

mL) at -78°C and stirred for 15 min. A solution of 3.1 

(1.532 g, 3.38 mmol) in CH2Cl2 (15 mL) was added 

dropwise to the mixture yielding a yellow/orange solution. The volatiles were removed in 

vacuo and the resulting powder was redissolved in CH3CN (10 mL). Diethyl ether 

(10mL) was added, and the solution stored at -30°C resulting in the formation of a large 

crop of yellow crystals. The crystals were washed with Et2O (3 # 10 mL) and dried in 

vacuo.  

Yield: 2.65 g, 82 %; d.p. 240-265°C; 
1H NMR (CD3CN, ") 10.36 (s, 2H), 9.70 (d, 2H, 3J = 8.0 Hz), 9.36 (t, 1H, 3J = 7.6 Hz), 

7.61 (t, 2H, 3J = 8.0 Hz), 7.45 (d, 4H, 3J = 7.6 Hz), 2.56 (septet, 4H, 3J = 6.4), 1.14 

(overlapping doublets, 24H); 
13C{1H} NMR (CD3CN, ") 156.7, 145.0, 144.4, 141.4, 137.2, 133.2, 130.9, 125.4, 29.3, 

24.8, 24.2;  
19F{1H} NMR (CD3CN, ") -78.5;  

FT-IR (cm-1(ranked intensity)) 429(3), 574(15), 723(2), 759(14), 935(5), 1061(13), 

1085(10), 1109(12), 1335(8), 1389(6), 1508(4), 1553(1), 1598(7), 2874(9), 3073(11);  

FT-Raman (cm-1(ranked intensity)) 98(4), 138(3), 350(11), 758(10), 1032(7), 1045(6), 

1108(12), 1168(8), 1248(5), 1445(14), 1552(1), 1587(2), 1626(9), 2870(15), 2941(13).  

ESI-MS: m/z 484 ([M – H]+), 634 ([M + OTf]+).  

Anal. Calcd for C33H39F6N3O6S3: C 50.56, H 5.02, N 5.36; Found: C 50.93, H 4.89, N 

5.40. 
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3.1Se[OTf] 

To a solution of SeCl2BIAN in THF (0.200 g, 0.31 mmol; 4 

mL), neat TMSOTf (0.1396 g, 0.63 mmol) was added 

giving a crimson solution. A solution of 1 (0.1426 g, 0.31 

mmol) in THF (4 mL) was added to the mixture resulting in 

the formation of a red slurry. Normal pentane (6 mL) was added generating more 

precipitate. The supernatent was decanted and the resulting solids washed with Et2O (3 # 

6 mL) and dried in vacuo giving a yellow powder.  

Yield: 0.2260 g, 87%, d.p. 217-221°C;  
1H NMR (CD3CN, ") 10.35 (s, 2H), 9.56 (d, 2H, 3J  = 8 Hz), 9.30 (t, 1H, 3J  = 8 Hz), 7.59 

(t, 2H, 3J  = 8 Hz), 7.46 (d, 4H, 3J  = 7.6 Hz), 2.63 (septet, 4H, 3J  = 6.8 Hz), 1.19 (d, 12H, 
3J  = 6.8 Hz), 1.15 (d, 12H. 3J  = 6.8 Hz);  
13C{1H} NMR (CD3CN, ") 158.7, 144.4, 143.4, 137.5, 133.7, 132.2, 125.2, 28.9, 24.0, 

23.9;  
19F{1H} NMR (CD3CN, ") -78.5;  

FT-IR (cm-1(ranked intensity)) 431(12), 472(14), 548(15), 870(10), 905(11), 977(9), 

1552(13), 1735(5), 1913(6), 1954(8), 2300(7), 2384(2), 2479(3), 2606(1), 2737(4);  

FT-Raman (cm-1(ranked intensity)) 102(7), 143(4), 347(9), 575(10), 889(14), 1033(6), 

1172(8), 1444(15), 1619(3), 1248(5), 1550(2), 1587(1), 2871(13), 2939(12), 2972(11).  

ESI-MS: m/z 532 ([M – H]+), 682 ([M + OTf]+).  

Anal. Calcd for C33H39F6N3O6Se: C 47.70, H 4.73, N 5.06; Found: C 48.30, H 4.16, N 

5.12. 

 

3.1Te[OTf] 

A solution of 3.1 in CH2Cl2 (3 mL) was added to a solution 

of Te(OTf)2BIAN in CH2Cl2 (4 mL). The mixture was 

stirred for 5 min, yielding a dark red/brown solution. 

Normal pentane (5 mL) was added until a yellow precipitate was generated. The 

supernatant was decanted and the powder washed with Et2O (3 # 6 mL) and solids dried 

in vacuo giving an amber powder;  

Yield: 0.0902 g, 99%; d.p. 232-236°C;  
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1H NMR (CD3CN, ") 10.53 (s, 2H), 9.43 (d, 2H, 3J = 8.4 Hz), 9.14 (t, 1H, 3J = 8 Hz), 

7.57 (t, 2H, 8 Hz), 7.45 (d, 4H, 3J = 8 Hz), 2.67 (septet, 4H, 6.4 Hz), 1.19 (overlapping 

doublets, 24 H);  
13C{1H} NMR (CD3CN, ") 163.3, 146.3, 143.9, 143.0, 138.4, 137.4, 131.8, 125.4, 29.4, 

24.7, 24.0;  
19F{1H} NMR (CD3CN, ") -78.6;  
125Te{1H} NMR (CD3CN, ") 2190;  

FT-IR (cm-1(ranked intensity)) 487(6), 699(4), 728(7), 861(5), 935(8), 1390(12), 1417(3), 

1483(15), 1541(11), 1571(9), 1594(10), 1717(1), 1955(2), 2873(14), 3064(13). 

 

3.1aTe[OTf] 

The identical synthesis was used as for 3.1Te[OTf] 

substituting 3.1a for 3.1. 3.1a (0.0508 g, 0.13 mmol), 

Te(OTf)2BIAN (0.1164 g, 0.13 mmol). 

Yield: 0.0881 g, 90%; d.p. 221-277°C;  
1H NMR (CD3CN, ") 10.47 (s, 2H), 9.34 (d, 2H, 3J = 7.6 Hz), 9.08 (t, 1H, 3J = 8 Hz), 

7.38 (t, 2H, 3J  = 7.2 Hz), 7.32 (d, 4H, 3J = 7.2), 2.20 (s, 12H);  
13C{1H} NMR (CD3CN ") 163.9, 146.8, 143.5, 141.5, 138.2, 132.3, 131.0, 129.9, 18.42;  
19F{1H} NMR (CD3CN, ") -78.7 ppm;  

FT-IR (cm-1(ranked intensity)) 411(12), 446(7), 707(11), 1370(15), 1671(6), 1745(8), 

1795(2), 1877(5), 1921(10), 1956(9), 2022(3), 2295(4), 2750(1), 3500(13), 3616(14);  

FT-Raman (cm-1(ranked intensity)) 124(1), 503(10), 520(13), 538(9), 574(4), 599(7), 

648(12), 1031(3), 1091(14), 1173(5), 1260(11), 1418(8), 1573(2), 1617(6), 2818(15).  

ESI-MS: m/z 469 ([M – H]+), 618 ([M + OTf]+).  

Anal. Calcd for C25H23F6N3O6S2: C 39.13, H 3.02, N 5.48 Found: C 39.34, H 3.06, N 

5.26. 

 

3.4S[OTf] 

Neat TMSOTf (0.426 g, 1.916 mmol) was added to a solution of 

SCl2 (0.099 g, 0.96 mmol) in CH2Cl2 (10 mL). To this solution, a 

solution of 3.4 (0.166 g, 0.958 mmol) in CH2Cl2 (5 mL) was added 
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yielding a white precipitate. The supernatant was removed and the solids washed with 

Et2O (3 X 10 mL). The white powder was dried in vacuo. 

Yield: 0.443 g, 91%; d.p. 128-130ºC; 
1H NMR (CD3CN, "); 4.37 (dd, 2H 2J = 12.8 Hz, 3J = 4.8 Hz), 4.06 (td, 2H, 2J = 13.2 Hz, 
3J = 5.6 Hz), 3.67(dd, 2H, 2J = 14.4 Hz, 3J = 5.2 Hz), 3.59 (s, 3H), 3.57 (td, 2H, 2J = 14.4 

Hz, 3J = 4.8 Hz), 3.03 (s, 6H), 2.87 (s, 6H);  
13C{1H} NMR  (CH3CN, ") 67.8, 56.2, 53.2, 51.2, 49.8;  
19F{1H} NMR (CD3CN, ") -78.5;  

FT-IR (cm-1(ranked intensity)) 420(7), 489(2), 519(10), 575(9), 640(14), 768(8), 920(6), 

972(5), 1036(15), 1111(1), 1161(13), 1228(12), 1474(11), 1654(3), 2820(4);  

FT-Raman (cm-1(ranked intensity)) 85(1), 121(15), 154(6), 169(3), 221(8), 276(9), 

315(10), 349(11), 433(14), 480(7), 575(5), 599(13), 758(4), 802(12), 1036(2). 
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Chapter 4  
 

The Synthesis and Reactivity of Sulfur(II) 
Dications Stabilized By Monodentate Ligands! 

  
 
4.1 Introduction 

It has been anticipated that species bearing a high charge localized on a central element 

such as main group polycations should have reactivity garnered towards the activation of 

small molecules. There have been many of these types of molecules prepared in recent 

years but no examples have demonstrated the ability to activate small molecules.1-25 This 

is a vital area in the fields of organic and inorganic chemistry especially for the 

transformation of abundant chemical feedstocks into more complex molecules or for 

targeted synthesis.26 In the past, transition metal catalysts have been the dominant players 

in this field but recently, nonmetal reagents have shown utility in this area, spurring 

further developments within the p-block. Most noteworthy has been the development of 

the “Frustrated Lewis Pair” by the Stephan and Erker groups. The Frustrated Lewis Pair 

is derived from the combination of a sterically encumbered Lewis acid and Lewis base 

that the formation of a classical adduct permitting them to react with a substrate.27,28 

Certain carbenes, specifically the cyclic alkyl amino and diamido derivatives, have also 

shown the ability to transform several unreactive substrates and have proven useful in the 

activation of a variety of molecules, such as dihydrogen, alkynes, alkenes, carbon 

dioxide, ammonia, and nitrous oxide.29-38 Aside from these reagents, other nonmetal 

examples for performing such tasks are minimal.39-45  

Main group complexes have shown a rich chemistry in addition reactions across the 

double bond in unsaturated organic substrates. Notable examples include hydroborations 

and, in the presence of a catalyst, hydrostannation and hydrosilylation reactions.46,47 With 

respect to the reactivity of sulfur compounds with alkenes, sulfur homopolyatomic 

                                                 
! A version of this work has been published in Martin, C. D.; Ragogna, P. J. Inorg. Chem. 2010, 49, 8164. 
and has been reproduced with permission. 
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cations form novel heterocycles with nitriles through cycloaddition reactions and sulfur 

chlorides have been shown to undergo additions with olefins.48,49 A particular reaction of 

interest early in the 20th century was in the production of sulfur mustard.50 This chemical 

warfare agent was first synthesized in 1822 by Despretz, which was accomplished by the 

direct reaction of SCl2 with ethylene to produce the toxin.51 The reaction has been studied 

extensively since that time, and the proposed mechanism involves the formation of a 

cationic thiiranium intermediate (4.1), followed by attack of the halide to a carbon atom 

in the three-membered ring to yield the desired thioether (4.2, Scheme 4.1).52 Although 

these reactions have been known for a number of years, developments are still being 

made today, and most noteworthy is the work by Denmark.53,54 The thioether preparation 

has been very useful in organic synthesis but toxicity is a concern and an alternative 

pathway avoiding this issue is desired. 

 

 
 
Scheme 4.1: The reaction of sulfur chlorides with olefins in thioether synthesis. 

 

In this context, we have tested the dicationic sulfur molecules featuring bi- and tridentate 

(2.5S-2.10S; 3.1S and 3.4S) ligands about the sulfur atom in small molecule activations 

(Figure 4.1).4-6 Preliminary reactivity studies have thus far been unsuccessful as the 

tridentate derivatives are too stable, and the bidentate species react uncontrollably. Herein 

we synthesize the first monodentate sequestered sulfur(II) dications featuring 

monodentate pyridine ligands (4.3). These species readily undergo addition with carbon-

carbon and carbon-nitrogen double bonds into the sulfur-nitrogen dative bond displaying 

new reactivity for main group polycations. Pyridine ligands are of interest as the 

substitution on the pyridine ring has a distinct influence on the donor properties at the 

nitrogen atom, and this provides a means of tuning the electronic properties of the 

dication. The synthesis, characterization, and reactivity of these new sulfur(II) dications, 
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with electron donating, neutral, and withdrawing substituents at the para position of the 

ligand is examined. 

 

 
Figure 4.1: Bi- and tridentate supported sulfur(II) dications (2.5S-2.10S, 3.1S and 3.4S) 
and the new monodentate derivatives (4.3); Dipp = 2,6-diisopropylphenyl, pMeOPh = 
para-methoxyphenyl, Dmp = 2,6-dimethylphenyl. 

4.2 Results and Discussion 

4.2.1 Synthesis 

The addition of two stoichiometric equivalents of TMSOTf to SCl2 in CH2Cl2 at -78 °C 

generated an orange solution, to which a para-substituted pyridine (4.3Ph, R = Ph; 

4.3NMe2, R = NMe2; 4.3CF3, R = CF3) in CH2Cl2 was added resulting in the immediate 

generation of a copious amount of white precipitate (Scheme 4.2). The supernatant was 

removed by decantation or filtration and the white solids were dried in vacuo. Proton 

NMR spectroscopy of the bulk materials in CD3CN displayed a single set of signals 

consistent with only one pyridine species present for all three derivatives. Diagnostic 

features were downfield shifts of the pyridine signals with respect to the free ligands, 

which is consistent with the bidentate and tridentate derivatives and is indicative of 

binding to an electron deficient centre. The 19F{1H} NMR spectra of 4.3Ph, 4.3NMe2, 

and 4.3CF3 revealed signals for ionic triflate in solution (! = -78.6 ppm cf. [NOct4][OTf] 

! = -78.5 ppm) and 4.3CF3 contained a second signal at -68.5 ppm for the trifluoromethyl 

group, also shifted downfield with respect to the free pyridine. X-ray diffraction 
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experiments of 4.3Ph and 4.3NMe2 confirmed the identity of the compounds, two 

pyridine ligands coordinating to a dicationic sulfur centre, consistent with the 

multinuclear NMR spectroscopic data. All three compounds were prepared in high yields 

(4.3Ph: 89%; 4.3NMe2: 93%; 4.3CF3: 87%) and were all extremely air/moisture 

sensitive, decomposing rapidly upon exposure to the open atmosphere. 

 

 
Scheme 4.2: Synthetic route to pyridine stabilized sulfur(II) dications (4.3Ph, 4.3NMe2, 

and 4.3CF3). 

 

Benchmark reactions of these new complexes were then carried out using a series of 

organic substrates (Scheme 4.3). The reaction of 4.3Ph with the simplest olefin, ethylene, 

was monitored by 1H NMR spectroscopy and after 15 min elapsed, the reaction mixture 

began turning light brown. The 1H NMR spectrum showed the emergence of a signal at ! 

= 5.41 ppm for free ethylene, two overlapping triplets as well as four sets of triplets 

ranging between 2.9 and 5 ppm (Figure 4.2). After allowing the reaction to proceed for 

2.5 h, there was a predominant set of resonances indicating the reaction was proceeding 

to a single product. It is also noteworthy that throughout the course of the reaction the 

{1H}19F NMR spectrum displayed a peak characteristic of covalent triflate (! = -75.0 

ppm). The reaction was left to stir overnight, allowing for complete conversion. 

Single crystals of sufficient quality for X-ray diffraction experiments were grown from 

the bulk powder by vapor diffusion of Et2O into a saturated acetone solution in the open 

atmosphere. The redissolved crystals in acetonitrile-d6 gave two triplets at 4.73 and 3.19 

ppm, which each integrated to four with respect to the ligand indicative of an equal 

number of pyridine ligands to ethylene groups in the product. These signals were shifted 

upfield from ethylene consistent with a change in hybridization from sp2 to sp3 at the 

carbon centre. On the basis of these data the structure was assigned as 4.4Ph, with the 

ethylene moiety inserted into the sulfur-nitrogen dative bond, which was confirmed by X-

NR2+SCl2 2 TMSOTf+
S

N N

R R

2
CH2Cl2
-78o C
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ray diffraction studies.  

 
Scheme 4.3: Reactivity of the dicationic systems with organic substrates. 
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Figure 4.2: Stacked 1H NMR plot of the reaction progress of 4.3Ph with ethylene in 

CD3CN zoomed in on the ethylene region; Top: spectrum 15 min after the solution was 

exposed to ethylene; Middle: spectrum after 2.5 h; Bottom: spectrum of purified 4.4Ph. ii 

and iii denote thiiranium intermediates; iv, v, and vi denote other intermediates; i denotes 

product. 

 

A proposed mechanism for this insertion is outlined in Figure 4.3. The first step likely 

involves dissociation of one of the pyridine ligands from 4.3R giving A, which undergoes 

a cyclization with ethylene to produce the thiiranium ring B. Although a weak 

nucleophile, a triflate counterion ring opens to give C, where free pyridine in solution 

easily displaces the triflate (D). Although it is more intuitive to have the free pyridine act 

as the nucleophile in this step, covalent triflate signals are clearly present in the 19F{1H} 
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NMR spectra (consistent with C and G), which subsequently disappear as the reaction 

proceeds.55 This process then occurs a second time (through E, F, and G) to yield the 

final product 4.4R. In total 10 sets of triplets are expected; however, only six are clearly 

observed; the intermediates A and E are likely consumed very quickly, thus not 

observable on the NMR time scale and the overlapping signals are assigned to species B 

and F as they resemble peaks reminiscent of protons within a thiiranium ring.53 

Intermediates C, D, and F would each produce an additional two sets of signals and the 

asymmetric G two more set of triplets, to produce five pairs of triplets (total of 10). This 

mechanism is only a hypothesis, an in-depth kinetic study would be necessary to clearly 

elucidate the definitive steps. 

 

 

Figure 4.3: Proposed mechanism of the conversion of 4.3R to 4.4R. In steps (i) and (ii) 

pyridine could also ring open the thiiranium intermediate. 
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The analogous reactions were carried out with 4.3NMe2 and 4.3CF3, examining a more 

electron donating group (NMe2) at the para position as well as a more electron 

withdrawing group (CF3) with respect to the phenyl substituted species to determine the 

effect of varying the donor strength of the ligand. The dimethylamino substituted dication 

did not react at all with ethylene even at elevated pressures and temperatures (200 psi,  

90°C), whereas a faster reaction was observed for 4.3CF3. The proton NMR spectrum of 

the redissolved solids revealed similar resonances for the ethylene moiety, reminiscent of 

4.4Ph, consistent with the formation of the ethylene inserted product 4.4CF3. This 

indicates the potential for tuning the system by taking advantage of the variability at the 

para position. 

To see if the reactivity could be extended to other olefins, neat cyclohexene was added to 

an acetonitrile solution of 4.3Ph. The solution slowly transformed to a light brown 

colour. After stirring overnight, the volatiles were removed in vacuo giving a brown 

paste. Proton NMR spectroscopy of the unpurified material indicated the presence of 

primarily one cyclohexene containing product. Two successive recrystallizations of the 

material by vapor diffusion of Et2O into acetone gave colourless crystals. The 

integrations in the 1H NMR spectrum of the redissolved crystals in acetone-d6 indicated 

the presence of an equivalent number of cyclohexyl and pyridine groups. The two signals 

of the alkene protons were shifted to higher field with respect to cyclohexene. By analogy 

to the ethylene reaction, the product was assigned as 4.5Ph, the product resulting from 

the addition of two cyclohexyl units into the S-N bonds. It is noteworthy that the product 

contains four chiral centres giving the possibility of several enantiomers. However, only a 

single diastereomer was observed by proton NMR spectroscopy. 

To investigate the reactivity of these complexes with heteroatomic olefins, carbon-

nitrogen bonds were studied using N,N"-diisopropylcarbodiimide (DIC). One equivalent 

of DIC was added to a solution of 4.3Ph in CH3CN, and the solution was stirred for 10 h 

resulting in a light brown colour. The volatiles were removed in vacuo leaving a brown 

paste. The paste was redissolved in acetonitrile and diethylether was added. Upon storing 

the solution at -35°C, a white precipitate was obtained. Redissolving the solids in CD3CN 

and obtaining a 1H NMR spectrum, a loss of symmetry in the DIC moiety was apparent. 

Two sets of resonances for the pyridine protons indicated two chemically inequivalent 



 93 

pyridines were present, and in total, integrated in a 2:1 ratio with respect to the DIC 

molecule, indicative of the incorporation of a single diimide into the product. The 
19F{1H} NMR spectrum displayed a single peak consistent with ionic triflate in solution 

(! = -78.5 ppm). On the basis of these data, the product was tentatively assigned as the 

addition product of the sulfur dication into one of the C#N bonds in DIC (4.6Ph) with 

the formation of a new S-N bond and a new N-C bond with the diimide. X-ray diffraction 

experiments confirmed the identity of this reaction product. 

 

4.2.2 X-ray Crystallography 

Compounds 4.3Ph and 4.3NMe2 were crystallized by vapor diffusion of Et2O into 

acetonitrile yielding colourless crystals. The two compounds are isostructural, and are 

both in the C2/c space group with the molecule lying on a centre of symmetry (Figures 

4.4 and 4.5). Both pyridine ligands are bound to the dicationic sulfur centre with bond 

lengths slightly shorter than typical nitrogen-sulfur single bonds, which is attributed to 

their attraction to the electropositive centre (1.737(3), 4.3Ph and 1.717(3), 4.3NMe2 cf. 

1.76 Å).56 The difference in these bond lengths is subtle but surprisingly; this has a large 

influence in the reactivity. The N-S-N bond angles are 101.1(2)° and 100.3(2)°, 

consistent with two ligands and two lone pairs or an AX2E2 electron pair configuration. 

The oxygen atoms of the triflate anions do lie within the sum of the van der Waals radii 

for O and S (closest contact S$$$O 2.829(3), 4.3Ph; S$$$O 2.888(3), 4.3NMe2; cf. 3.25 Å); 

however, they do not complete a square planar geometry about the sulfur centre (Figure 

4.6) which would be consistent with covalently bound triflate to a chalcogen centre.56,57 

In fact, the interplanar bond angles show a significant deviation from an ideal square 

planar geometry (25.5° for 4.3Ph, 26.4° for 4.3NMe2 cf. 0°). Furthermore, there is no 

elongation in the corresponding sulfur-oxygen bond length with respect to the other 

sulfur-oxygen bonds in the triflate anions, which would be observed if a covalent 

interaction were present [4.3Ph: S(2)-O(1) 1.430(3), cf. 1.424(3) and 1.434(3) Å; 

4.3NMe2: S(2)-O(1) 1.435(3) cf. 1.430(3) and 1.442(3) Å].7 On the basis of these data, 

the molecules were assigned the structures of a dicationic sulfur(II) centre stabilized by 

two pyridine ligands with two triflate counterions. Despite numerous attempts, we were 

unable to grow crystals of suitable quality for X-ray diffraction experiments for 4.3CF3. 
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However, on the basis of the analogous spectroscopic data, the structure was assigned to 

4.3CF3. 

 

 
Figure 4.4: Solid-state structure of 4.3NMe2. Ellipsoids are drawn to 50% probability 

and all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): 

S(1)-N(1) 1.717(3), S(1)$$$O(3) 2.888(3), N(1)-S(1)-N(1A) 101.1(2). 

 
Figure 4.5: Solid-state structure of 4.3Ph. Ellipsoids are drawn to 50% probability and 

all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): S(1)-

N(1) 1.737(3), S(1)$$$O(1) 2.829(3), N(1)-S(1)-N(1A) 100.3(2). 

a)  b)  

Figure 4.6: View of the dicationic sulfur centre in (a) 4.3NMe2 and (b) 4.3Ph, interplanar 

O-S-O and N-S-N angles: 4.3Ph: 25.5° and 4.3NMe2: 26.4°. 
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Upon the examination of the solid-state structure of the reaction product with ethylene, 

4.3Ph ethyl groups were found to be inserted in between the pyridine nitrogen and the 

formerly dicationic sulfur centre from 4.3Ph, generating new N-C bonds with the 

pyridine ligand and S-C bonds with the dicationic centre (Figure 4.7). The carbon-carbon 

bond length has elongated significantly from that of ethylene [1.33 cf. 1.518(3) Å] 

consistent with the conversion from a double to a single bond. The newly formed N-C 

and S-C bonds are also consistent with single bonds confirming the structure as 4.4Ph. 

 
Figure 4.7: Solid-state structure of 4.4Ph. Ellipsoids are drawn to 50% probability, and 

all hydrogen atoms and solvates are omitted for clarity. Selected bond lengths (Å) and 

angles (°): S(1)-C(1) 1.805(2), N(1)-C(2) 1.487(3), C(1)-C(2) 1.518(3), C(1)-S(1)-C(1A) 

103.28(16). 

The addition reaction product with cyclohexene showed a related solid-state structure to 

4.4Ph (Figure 4.8). However, the fact that the carbon atoms bear an additional group in 

comparison to ethylene gives the potential for multiple products, as there are four chiral 

centres in the molecule. On the basis of the 1H NMR data, only one species was observed. 

Compound 4.5Ph crystallized in the triclinic space group P-1, with two molecules lying 

within the unit cell related to one another by a centre of symmetry. The asymmetric unit 

revealed a molecule in the R,R,R,R - configuration; however, given the centrosymmetric 

space group, the other molecule in the unit cell is its mirror image (S,S,S,S - 

configuration). This means the crystal is a 50:50 racemic mixture of the two enantiomers, 

consistent with the 1H NMR spectroscopic data as both species would produce identical 
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spectra. It can be concluded that the pyridine and sulfur in all cases are positioned anti to 

one another, which is reasonable as this arrangement imposes more favourable steric 

interactions. 

 

Figure 4.8: Solid-state structure of 4.5Ph displaying the molecule in the R,R,R,R - 

configuration within the unit cell; only one position of the disordered phenyl group is 

shown. Ellipsoids are drawn to 50% probability and all hydrogen atoms are omitted for 

clarity. Selected bond lengths (Å) and angles (°): S(1)-C(1) 1.824(4), S(1)-C(11) 

1.824(4), C(1)-C(2) 1.530(5), C(11)-C(12) 1.519(5), C(2)-N(1) 1.490(5), C(12)-N(2) 

1.496(5), C(1)-S(1)-C(11) 106.92(18). 

 

Examination of the solid-state structure of 4.6Ph (Figure 4.9) further demonstrates the 

ability of 4.3Ph to undergo addition reactions. In this case, one pyridine group remains 

bound to the sulfur centre, and the other has migrated to the central carbon atom in the 

diimide unit. The sulfur is now bound to a nitrogen atom from the DIC species. The 

sulfur-nitrogen bond lengths are 1.664(4) and 1.801(4) Å for the newly formed bond to 

the diimide and for the pyridine ligand, respectively. The latter is longer than that in the 

dication, which could be attributed to the reduced cationic character at sulfur. The newly 

formed S-N bond is shorter than a single bond, indicating a strong interaction with the 
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DIC moiety. The nitrogen-carbon bond lengths from the DIC unit are 1.379(5) and 

1.254(5) Å, consistent with the retention of one double bond and the elongation of the 

other to a single bond. The geometry about the nitrogen atom is trigonal planar [sum of 

angles about N(11) = 360.0°]. The most accurate structural representation would have the 

positive charge on the nitrogen atom from the DIC moiety and a double bond to the sulfur 

centre. The elongated pyridine sulfur interaction from the dication is a result of the 

pyridine being bound to a neutral sulfur atom (Table 4.1). 

 

Figure 4.9: Solid-state structure of 4.6Ph. Ellipsoids are drawn to 50% probability and 

all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): S(1)-

N(11) 1.664(4), S(1)-N(1) 1.801(4), N(11)-C(1) 1.379(5), C(1)-N(12) 1.254(5), N(2)-

C(1) 1.477(5), N(1)-S(1)-N(11) 105.37(17), S(1)-N(11)-C(3) 121.4(3), C(1)-N(11)-C(3) 

122.8(3), S(1)-N(11)-C(1) 115.8(3). 
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Table 4.1: X-ray details for 4.3Ph, 4.3NMe2, 4.4Ph, 4.5Ph and 4.6Ph. 

Compound 4.3Ph 4.3NMe2 4.4Ph 4.5Ph 4.6Ph 
Empirical formula C24H18F6N2O6S3 C16H20F6N4O6S3 C31H32F6N2O7S3 C36H38F6N2O6S3 C31H32F6N4O6 S3 

FW (g/mol) 640.58 574.54 754.77 804.86 766.79 
Crystal system Monoclinic Monoclinic Monoclinic Triclinic Triclinic 
Space group C2/c C2/c C2/c P-1 P-1 

a (Å) 25.234(3) 20.142(4) 30.303(6) 11.287(2) 8.3050(5) 
b (Å) 9.8706(13) 10.009(2) 10.033(2) 12.121(2) 15.0203(10) 
c (Å) 11.2571(15) 11.392(2) 11.027(2) 14.544(3) 15.1251(10) 
! (deg) 90 90 90 83.80(3) 107.243(4) 
" (deg) 104.2900(10) 90.17(3) 92.44(3) 89.35(3) 95.421(4) 
# (deg) 90 90 90 72.99(3) 98.949(3) 
V (Å3) 2717.1(6) 2296.5(8) 3349.4(12) 1891.1(7) 1760.2(2) 

Z 4 4 4 2 2 
Dc (mg m-3) 1.566 1.662 1.497 1.413 1.447 

radiation, $ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 
temp (K) 173(2) 150(2) 150(2) 150(2) 150(2) 

R1[I>2%I]a 0.0596 0.0583 0.0505 0.0664 0.0759 
wR2(F2)a 0.1657 0.1323 0.1375 0.1914 0.2325 
GOF (S)a 1.283 1.065 1.042 1.013 1.043 

 

a R1(F[I > 2(I)]) = !�|Fo| - |Fc |�/ ! |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; 

p = no. of parameters varied; w = 1/[2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by the 

refinement program. 
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4.3 Conclusion 

Through these studies, a new series of sulfur(II) dications were synthesized by utilizing 

monodentate pyridine ligands to stabilize the sulfur centre. These compounds may be 

described as pyridinium salts, but based on the lability of the sulfur-nitrogen bond in the 

chemistry of the molecules, the dative model is more accurate, and these species 

represent the first monodentate stabilized sulfur(II) dications. The substitution at the para 

position on the pyridine ring could be altered, which was influential on the reactivity at 

the sulfur centre and proved to be useful in reacting the dications with olefins. It was 

determined that the strong donor ligand, dimethylaminopyridine, prevented any reaction 

from occurring, while the phenyl and trifluoromethyl substituted pyridine readily reacted 

inserting the olefin into the sulfur-nitrogen bond. The reaction is very similar to that of 

sulfur dichloride with ethylene in the production of sulfur mustard. The reaction products 

possess a carbon atom bound to a pyridinium centre, which represents an excellent 

leaving group and should be useful in the onward synthesis of new organic molecules. 

The system was extended from ethylene to cyclohexene showing the analogous reactivity 

producing only products with substituents anti to one another. Moreover, the addition 

chemistry was also transferable to carbon-nitrogen bonds. The 1:1 stoichiometric reaction 

with N,N!-diisopropylcarbodiimide resulted in the pyridine bonding to the central carbon 

in the diimide and a covalent sulfur nitrogen bond. The versatility of this system is 

interesting and the scope should be explored. 

 

4.4 Experimental Section 

4.3Ph 

A solution of SCl2 (0.032 g, 0.315 mmol) and TMSOTf 

(0.140 g, 0.629 mmol) in CH2Cl2 (5 mL) was prepared at -78 

°C. To this mixture 4-phenylpyridine (0.098 g, 6.29 mmol) in 

CH2Cl2 (5 mL) was added immediately generating a white precipitate. The supernatant 

was decanted and the solids were dried in vacuo.  

Yield: 0.180 g, 89%; d.p. 170-172 °C;  
1H NMR (CD3CN, ") 9.33 (d, 4H, 3J = 6.6 Hz), 8.45 (d, 4H, 3J = 6.6 Hz), 8.01 (d, 4H, 3J 

= 8.4 Hz), 7.74 (t, 2H, 3J = 7.8 Hz), 7.68#7.65 (m, 4H);  

S
N N

Ph Ph

2 [OTf]2
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13C NMR (CH3CN, ") 155.2, 152.0, 136.6, 136.4, 133.1, 131.8, 128.8;  
19F{1H} NMR (CH3CN, ") -78.6; 

FT-IR (cm-1(ranked intensity)) 3110(11), 1619(5), 1518(15), 1487(14), 1236(1), 1167(8), 

1028(3), 833(12), 770(4), 729(10), 694(7), 574(9), 639(2), 518(6), 385(13);  

FT-Raman (cm-1(ranked intensity)) 3072(14), 1621(5), 1596(1), 1511(8), 1301(2), 

1226(4), 1081(6), 1058(12), 1034(3), 1000(7), 780(11), 616(13), 403(10), 315(15), 

113(9). 

 

4.3NMe2 

The analogous procedure for 4.3Ph was utilized with the 

same quantities substituting DMAP (0.077 g, 0.629 mmol) 

for 4-phenylpyridine.  

Yield: 0.168 g, 93%; d.p. 136-138 °C;  
1H NMR (CD3CN, ") 8.34 (d, 4H, 3J = 8.0 Hz), 6.90 (d, 4H, 3J = 8.4 Hz), 3.24 (s, 12H);  
13C NMR (CH3CN, ") 158.1, 147.1, 110.0, 41.4;  
19F{1H} NMR (CH3CN, ") -78.6; 

FT-IR (cm-1(ranked intensity)) 519(8), 574(12), 636(4), 804(11), 833(9), 1030(1), 

1082(13), 1149(6), 1220(5), 1270(2), 1403(10), 1446(14), 1575(7), 1630(3), 3064(15);  

FT-Raman (cm-1(ranked intensity)) 112(10), 246(13), 314(6), 350(7), 575(12), 649(9), 

769(1), 941(5), 1032(2), 1226(14), 1405(15), 1577(3), 1640(4), 2948(8), 3100(11).  

Elemental analysis: Calc for C16H20F6N4O6S3 C 33.45, H 3.51, N 9.76; found C 33.45, H 

3.22, N, 9.56. 

 

4.3CF3 

A solution of SCl2 (0.032 g, 0.315 mmol) and TMSOTf 

(0.140 g, 0.629 mmol) in CH2Cl2 (5 mL) was prepared at -

78 °C. To this mixture 4-trifluoromethylpyridine (0.093 g, 

0.629 mmol) in CH2Cl2 (5 mL) was added generating a white precipitate. Normal pentane 

(5 mL) was added resulting in more solids precipitating from solution. The supernatant 

was decanted and the solids were dried in vacuo.  

Yield: 0.171 g, 87%; d.p. 179-181 °C;  
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1H NMR (CD3CN, ") 9.65 (d, 4H, 3J = 6.4 Hz), 8.50 (d, 4H, 3J = 6.4 Hz);  
13C NMR (CH3CN, ") 153.8, 127.8, 123.1;  
19F{1H} NMR (CH3CN, ") -65.5 (s, 6F), -78.6 (s, 6F); 

FT-IR(cm-1(ranked intensity)) 1613(11), 1519(10), 1329(5), 1257(1), 1229(14), 1149(3), 

1085(8), 1036(2), 803(7), 735(12), 703(13), 654(4), 597(15), 575(9), 518(6);  

FT-Raman (cm-1(ranked intensity)) 3101(10), 1639(15), 1326(14), 1067(3), 1031(2), 

800(1), 762(4), 653(11), 576(13), 484(12), 353(5), 318(7), 285(9), 231(8), 129(6). 

 

4.4Ph 

A solution of 4.3Ph (0.150 g, 0.234 mmol) in CH3CN 

(10 mL) was prepared in a Schlenk round bottomed 

flask in a dinitrogen atmosphere. The flask was 

immersed in a liquid nitrogen bath and the solution was frozen. The nitrogen was 

removed in vacuo and the flask was warmed to room temperature allowing the solvent to 

thaw. The flask was filled with one atmosphere of ethylene and stirred overnight. The 

solvent was removed in vacuo resulting in a yellow paste. The desired material was 

crystallized in the open atmosphere by vapor diffusion of ether into acetone.  

Yield: 0.112 g, 69%; m.p. 138-141 °C;  
1H NMR (CD3CN, ") 8.75 (d, 4H, 3J = 7.2 Hz), 8.29 (d, 4H, 3J = 6.6 Hz), 7.95-7.93 (m, 4 

H), 7.69-7.62 (m, 6H), 4.73 (t, 6.6 Hz, 4H), 3.19 (t, 6.6 Hz, 4H);  
13C NMR ((CD3)2CO, "): 157.3, 146.2, 134.8, 133.1, 130.7, 129.0, 125.7, 60.4, 32.4;  
19F{1H} NMR (CH3CN, ") -78.6;  

FT-IR (cm-1(ranked intensity)) 1641(4), 1561(11), 1525(15), 1492(14), 1440(9), 1275(1), 

1223(12), 1143(5), 1029(3), 867(13), 766(6),  691(8), 637(2), 572(10), 517(7);  

FT-Raman (cm-1(ranked intensity)) 3109(10), 1655(9), 1329(15), 1228(14), 1177(11), 

1083(8), 1034(1), 839(3), 759(7), 665(4), 575(12), 350(6), 316(5), 109(13), 85(2).  

Elemental Analysis: Calc for C31H32F6N2O7S3 C 48.27, H 3.76, N 4.02; Found C 48.79, H 

3.65, N, 3.84;  

ESI-MS m/z 547 [M2+][OTf-]. 
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4.4CF3 

The analogous procedure for 4.4Ph was used 

substituting 4.3CF3 (0.200 g, 3.21 mmol) in place of 

4.3Ph. The resulting yellow paste was dissolved in 

THF (3 mL) and pentane (3 mL) was added in the open atmosphere. The solution was 

stored at -30 °C overnight generating a white solid. The supernatant was decanted and the 

solids were dried in vacuo.  

Yield: 0.089 g, 41%; m.p. 146-148 °C;  
1H NMR ((CD3)2CO, ") 9.61 (d, 4H, 3J = 6.4 Hz), 8.67 (d, 4H, 3J = 6.4 Hz), 5.26 (t, 4H, 
3J = 7.2 Hz), 3.56 (t, 4H, 3J = 6.8 Hz);  
13C NMR ((CD3)2CO, "): 148.8, 126.1, 126.0, 62.2, 32.4;  
19F{1H} NMR ((CD3)2CO, ") -65.0 (6F), -78.2 (6F); 

FT-IR (cm-1(ranked intensity)) 3068(10), 1654(15), 1474(8), 1326(12), 1262(7), 1147(1), 

1080(4), 1032(3), 864(6), 836(13), 747(9), 640(2), 600(14), 574(11), 518(5);  

FT-Raman (cm-1(ranked intensity)) 3105(11), 1654(9), 1431(15), 1331(14), 1228(13), 

1171(6), 1083(5), 1035(1), 835(2), 757(7), 666(4), 575(12), 349(3), 314(8), 107(10). 

 

4.5Ph 

To a solution of 4.3Ph (0.200 g, 0.313 mmol) in acetonitrile (5 

mL), neat cyclohexene (0.039 g, 0.625 mmol) was added and the 

reaction was stirred overnight resulting in a light brown solution. 

The volatiles were removed in vacuo giving a brown paste. The 

material was purified by two recrystallizations by vapor diffusion 

of Et2O into a concentrated acetone solution in the open atmosphere.  

Yield: 0.106 g, 42%; m.p. 249-251 °C;  
1H NMR ((CD3)2CO, "): 9.28 (d, 4H, 3J = 5.6 Hz), 8.63 (d, 4H, 3J = 6.4 Hz), 8.13#8.11 

(m, 4H), 7.73#7.67 (m, 6H), 4.59 (td, 3J = 8.0 Hz, 3J = 4.0 Hz, 2H), 3.28 (td, 3J = 7.6 Hz, 
3J = 4.0 Hz, 2H), 2.42-2.39 (m, 2H), 2.21-1.15 (m, 16H);  
13C NMR ((CD3)2CO, "): 157.9, 134.8, 133.3, 130.8, 129.1, 128.8, 126.0, 76.1, 51.4, 

36.0, 34.1, 25.9, 25.3;  

S NN

CF3 CF3

[OTf]2

S
N N

Ph Ph
[OTf]2
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19F{1H} NMR ((CD3)2CO, ") -78.0; 

FT-IR (cm-1(ranked intensity)) 3055(12), 1635(2), 1524(15), 1491(14), 1441(10), 

1260(1), 1154(5), 1031(3), 868(13), 770(6), 727(9), 688(11), 638(4), 573(8), 517(7);  

FT-Raman (cm-1(ranked intensity)) 2866(14), 1635(2), 1560(1), 1520(7), 1227(15), 

1163(3), 1034(5), 1001(4), 795(12), 756(8), 574(11), 408(9), 348(13), 263(10), 109(6); 

Elemental analysis: Calc for C36H38F6N2O6S3 C 53.72, H 4.76, N 3.48; Found C 53.53, H 

4.59, N, 3.73;  

ESI-MS m/z 655 [M2+][OTf-]. 

 

4.6Ph 

A solution of 4.3Ph (0.100 g, 0.156 mmol) in acetonitrile 

(4 mL) was prepared in a vial and neat DIC (0.020 g, 

0.156 mmol) was added. The solution was stirred for 10 h 

and acquired a light brown colour. The volatiles were 

removed in vacuo producing a brown oil. The oil was dissolved in a minimal amount of 

acetonitrile (1 mL) and diethylether (2 mL) was added dropwise. The vial was stored at -

35 °C for 1 h which caused the precipitation of a white powder. The supernatant was 

removed and the solids were dried in vacuo.  

Yield: 0.49 g, 41%; d.p. 155-157 °C;  
1H NMR (CD3CN, ") 9.10 (br, 2H), 8.85 (br, 2H), 8.56 (d, 2H, 3J = 5.4 Hz), 8.34 (dd, 2H, 
3J = 7.2 Hz, 4J = 1.8 Hz), 8.07 (d, 2H, 3J = 7.8 Hz), 7.99 (d, 2H, 3J = 7.8 Hz), 7.76 (t, 1H, 
3J = 7.2 Hz), 7.73-7.65 (m, 5H), 3.99 (br, 1H), 3.19 (br, 1H), 1.35 (br, 6H), 1.27, (d, 6H, 
3J = 6.0 Hz).  
13C NMR (CD3CN, "): 161.1, 158.9, 143.4, 134.7, 133.4, 134.3, 133.7, 133.5, 130.8, 

130.7, 129.8, 129.2, 127.3, 127.2, 126.0, 59.5, 53.4, 23.7, 21.8;  
19F{1H} NMR (CH3CN, ") #78.6; 

FT-IR (cm-1(ranked intensity)) 3080(15), 1638(6), 1524(13), 1489(11), 1294(4), 1232(5), 

1151(7), 1029(2), 834(9), 763(3), 720(14), 685(12), 639(1), 575(10), 518(8);  

FT-Raman (cm-1(ranked intensity)) 1629(3), 1616(9), 1597(1), 1297(2), 1220(4), 

1517(8), 1088(10), 1036(5), 1005(6), 771(15), 754(12), 402(11), 348(13), 312(14), 

110(7);  

ESI-MS m/z 766 [M3+][OTf-]. 

S
N N

N

N

Ph Ph

[OTf]2
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Chapter 5 
 

 The Reactivity of Phosphorus Halides with 
Diiminopyridine Ligands! 

 
 

5.1 Introduction 

Recent years have witnessed a surge of interest in probing the reactivity of "-diimine 

ligands with the main group elements. The 1,4-diaza-1,3-butadiene (DAB) system has 

been widely explored, while studies with the diiminopyridine ligand (DIMPY, Figure 5.1; 

R = group on N; 5.1: R = H; 5.2: R = CH3; 5.3: R = C6H5)
# have been mostly restricted to 

the heavy group 13-15 elements (n $ 3), which preferentially form complexes with the p-

block centres in low oxidation states.1-8 For example, the redox reaction of AsI3 with 5.2 

yields an As(I) species, in contrast to the analogous transformation with DAB, which 

produces an As(III) cation.4 The previous chapters provide good evidence that for DAB, 

DIMPY and also the related %-diketiminate ligands, the substitution on both the "-carbon 

and imine nitrogen atoms can be highly influential in the outcome of the reaction. 

Hydrogen atoms on the "-carbon are often found to be acidic and prone to halogenation9-

11 whereas the methyl substituted derivative can react as the eneamine tautomer (e.g. for 

DIMPY 5.2’).12-16  
 

 

Figure 5.1: The DIMPY ligands (left; 5.1-5.3), and tautomerization of 5.2 to the 

                                                 
! A version of this work has been accepted for publication Martin, C. D.; Ragogna, P. J. Dalton Trans. 
DOI: 10.1039/c1dt11111f. 

# The ligands 3.1, 3.2 and 3.3 are represented in this chapter for simplicity by 5.1, 5.2 and 5.3, respectively. 
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eneamine 5.2’ (right). 
Despite the vast amounts of P-N chemistry in the literature, phosphorus surprisingly lacks 

a DIMPY complex. Although not observed with arsenic, we surmised that the related 

eneamine chemistry could proceed with phosphorus. This reactivity is unable to occur 

with the less common -H and -C6H5 ligands (5.1 and 5.3) and should provide a P(I) 

species via redox reaction.* In this context, we exploit the reactions of DIMPY ligands 

with varying substitution on the "-carbon (5.1-5.3) with the phosphorus trihalides (PCl3, 

PBr3 and PI3) with the goal of synthesizing the first phosphorus diiminopyridine 

complex. 

 

5.1 Results and Discussion 

5.1.1 Synthesis 

A solution of 5.2 in CH2Cl2 was added to PI3 in the same solvent and stirred for 20 

minutes at room temperature resulting in a colour change from yellow to red. A 31P{1H} 

NMR spectrum of an aliquot of the reaction mixture revealed a complex mixture of 

phosphorus containing products (Figure 5.2). The analogous transformations were 

performed with 5.1 and 5.3, also generating red solutions (Scheme 5.1). 

 

 

Scheme 5.1: Synthetic route to the P(I) DIMPY complexes 5.1P[I3] and 5.3P[I3]. 

 

The in situ 31P{1H} NMR spectra obtained for the latter two reactions displayed a 

dominant resonance, shifted to high field relative to PI3 (5.1: & = 169 ppm; 5.3: & = 154 

ppm cf. PI3 & = 174 ppm). Red solids were precipitated from the reaction mixture by 

                                                 
* Scifinder search results indicate that 5.2 is the most widely used: 5.2: 331 references; 5.1: 30 references; 
5.3: 14 references. (all examples have 2,6-diisopropylphenyl substitution at N) 
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adding n-pentane, washed with Et2O and dried in vacuo. The corresponding 1H NMR 

spectra of the redissolved solids indicated the presence of a single DIMPY containing 

product. The spectrum obtained from the reaction with 5.1 (Figure 5.3) had the resonance 

for the protons on the "-carbon atom split into a doublet with coupling consistent with 

typical 3JH-P values and the peak was shifted downfield suggesting the successful 

incorporation of phosphorus into the ligand framework ('& = 0.90 ppm, 3JH-P = 5.6 

Hz).17,18 Diagnostic features in both spectra were downfield shifts of the protons at the 3 

and 5 positions on the pyridine rings (5.1: '& = 0.71 ppm; 5.3: '& = 1.12 ppm)17,19 

consistent with the coordination of the ligand to a cationic centre. 

 

 

Figure 5.2: Stacked in situ 31P{1H} NMR spectra of reactions of PI3 with the DIMPY 

ligands. From top to bottom: 5.2, 5.1 and 5.3. 

 

X-ray diffraction analyses of single crystals of both compounds grown by vapour 

diffusion of n-pentane into CHCl3 confirmed the identity of the redox products 5.1P[I3] 

and 5.3P[I3] isolated in 81% and 77% yields, respectively (Figure 5.4). Given the 

plethora of unidentifiable products in the 31P NMR spectrum for the attempted synthesis 
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of 5.2P[I3] the reaction was not pursued. It is speculated that this is due to uncontrollable 

reactivity with the eneamine tautomer (5.2’).† 

 

 
Figure 5.3: Proton NMR spectrum of 5.1P[I3] in CDCl3 (bottom: full sweep window; top 

left: doublet for the backbone protons. 

 

Complex 5.1P[I3] was reacted with 1.5 stoichiometric equivalents of Na2[B12Cl2] at room 

                                                 
† Although this chemistry could be harnessed for other main group examples in previous studies,12-14 this 
was not the case for this system. 
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temperature for 12 hours to yield the anion exchange product with the more robust 

B12Cl12 dianion. Centrifuging the reaction mixture, precipitating the orange product with 

n-pentane from the supernatant and drying in vacuo gave the salt in 65% yield. The 
31P{1H} and 1H NMR spectra were similar to 5.1P[I3] and a single peak in the 11B{1H} 

NMR spectrum (& = -12.7 ppm) confirmed the presence of B12Cl12
2-. X-ray diffraction 

experiments on orange crystals grown by vapour diffusion of Et2O into CH2Cl2 

confirmed the identity of 5.1P[B12Cl12] as the cationic phosphorus DIMPY complex in a 

2:1 ratio with a B12Cl12
2- counteranion. 

 

 
Scheme 5.2: Metathesis reaction of 5.1P[I3] with Na2[B12Cl12] to produce 5.1P[B12Cl12]. 

 

Examining the analogous chemistry of PCl3 with 5.1 or 5.3 in the presence of the halide 

trap cyclohexene20,21 to aid the redox reaction in targeting the P(I) complex did not result 

in any reaction based on in situ 31P{1H} NMR spectroscopy, even at reflux temperatures 

in toluene. A new phosphorus signal (& = 166 ppm) slowly appeared in the reaction of 

phosphorus tribromide with 5.1 and 6 stoichiometric equivalents of cyclohexene at room 

temperature. Conversion to one peak was observed upon reaction at 40°C for 3 days 

(Scheme 5.3). Heating the sample above 40°C led to decomposition. The compound 

could be isolated as orange crystals in 28% yield which were subjected to X-ray 

diffraction analysis revealing a P(I) cation within the HDIMPY framework and a bromide 

counteranion (5.1P[Br]). In all cases, the attempted transformation with PBr3, 

cyclohexene and 5.3 resulted in no reaction even when refluxing in toluene. Reactions of 

PBr3 or PCl3 with 5.3 and cyclohexene produced mixtures by 31P{1H} NMR 

spectroscopic analysis with no indication of clean formation of a P(I) salt.  
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Scheme 5.3: Reaction of 5.1 with PBr3 to produce 5.1P[Br]. 

 

 

5.2.2 X-ray Crystallography 

The solid-state structures of 5.1P[I3], 5.1P[B12Cl12], 5.1P[Br] and 5.3P[I3] reveal a T-

shaped phosphorus(I) cation consistent with two lone pairs and three bound nitrogen 

centres (AX3E2 electron pair configuration; Figure 5.4 and 5.5). The pyridine nitrogen 

occupies an equatorial site while the two imine nitrogen atoms reside in axial positions. 

For all four compounds, the anions are distant from the cationic P(I) centres. The Npyr-P 

bond in 5.3P[I3] lies on a site of symmetry while in all the complexes of 5.1, the two 

imine groups are asymmetrical. Previously reported computational data on the prosphorus 

diiminopyridine compound bearing hydrogen atoms on the "-carbon atom and nitrogen 

atoms indicate that the assymetrical structure is the minimum on the potential energy 

surface.22 These observations are likely a phenomenon observed in the solid-state and 

gas-phase as in solution NMR spectroscopic studies, only one peak is observed for the 

diagnostic protons on the "-carbon indicating an equilibrium position. 

 



 112 

 

 
5.1P[I3] 

 
5.3P[I3] 

 

Figure 5.4: Solid-state structure of the cation in 5.1P[I3] and 5.3P[I3]. Thermal ellipsoids 

are drawn to the 50% probability level. Anion, hydrogen atoms, solvates and isopropyl 

groups are removed for clarity. For 5.3P[I3] only one assymetric unit is shown.  
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5.1P[B12Cl12] 

 
5.1P[Br] 

 

Figure 5.5: Solid-state structure of the cation in 5.1P[B12Cl12] and 5.1P[Br]. Thermal 

ellipsoids are drawn to the 50% probability level. Anion, hydrogen atoms, solvates and 

isopropyl groups are removed for clarity.  
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Table 5.1: Selected bond lengths (Å) for 5.1P[I3], 5.3P[I3], 5.1P[B12Cl12] and 5.1P[Br]. 

 5.1P[I3] 5.3P[I3] 5.1P[B12Cl12] 5.1P[Br] 
P(1)-N(1) 1.877(7) 1.934(6), 

1.936(6) 
1.808(2) 1.755(3) 

P(1)-N(3) 1.975(8) a 2.177(2) 2.318(3) 
P(1)-N(2) 1.722(6) 1.722(8), 

1.714(9) 
1.730(2) 1.722(3) 

C(1)-N(1) 1.303(11) 1.311(9), 
1.333(10) 

1.320(3) 1.327(5) 

C(7)-N(3) 1.316(11) a 1.284(3) 1.285(4) 
 
a

 The cation lies on a site of symmetry with N(1) and C(1) being related to N(3) and C(7) 

by symmetry making the corresponding bond lengths equal. 
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Table 5.2: X-ray details of 5.1P[I3], 5.3P[I3], 5.1P[B12Cl12] and 5.1P[Br]. 

Compound 5.1P[I3] 5.3P[I3] 5.1P[B12Cl12] 5.1P[Br] 
Empirical 
formula 

C32H40Cl3I3N3P C43H47B2I3N3P C31H39B6Cl6N3P C32H39BrCl2N3P 

FW (g/mol) 984.69 1017.51 762.18 647.44 
Crystal 
system 

Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21 P2/c C2/c P21/c 
a (Å) 11.690(2) 24.522(2) 18.3065(6) 17.049(3) 
b (Å) 12.287(2) 8.6258(8) 17.4020(6) 13.120(3) 
c (Å) 13.601(2) 21.669(2) 25.0012(9) 17.259(4) 
! (deg) 90 90 90 90 
" (deg) 93.493(4) 113.291(2) 92.7560(10) 119.39(3) 
# (deg) 90 90 90 90 
V (Å3) 1950.0(5) 4210.0(7) 7955.4(5) 3363.6(12) 

Z 2 4 8 4 
Dc (mg m-3) 1.677 1.605 1.273 1.278 
radiation, $ 

(Å) 
0.71073 0.71073 0.71073 0.71073 

temp (K) 150(2) 150(2) 150(2) 150(2) 
R1[I>2%I]a 0.0500 0.0707 0.0416 0.0606 
wR2(F2)a 0.1399 0.1703 0.0936  0.2018 
GOF (S)a 1.056 1.149 1.051 1.070 

 

a R1(F[I > 2(I)]) = !�|Fo| - |Fc |�/ ! |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all 

data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. of parameters varied; w = 

1/[2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by 

the refinement program. 
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5.3 Conclusion 

In summary, 5.1P[I3], 5.1P[B12Cl12], 5.1P[Br] and 5.3P[I3] represent examples of 

uncommon P(I) salts.23-25 The DIMPY complexes differ from the analogous 1,4-diza-1,3-

butadiene (DAB) species as they do not undergo a charge transfer process with the ligand 

to produce P(III) heterocycles. These compounds represent the first isolated phosphorus 

DIMPY complexes, only the second example for a non-metal, made possible by utilizing 

the less common hydrogen and phenyl substituted ligands rather than the methyl 

derivative. 

 

5.4 Experimental Section 

5.1P[I3] 

A solution of 5.1 (0.150 g, 0.331 mmol) in CH2Cl2 (4 mL) was 

added to a solution of PI3 (0.136 g, 0.331 mmol) in the same 

solvent (4 mL) in the dark. The solution was stirred for 20 

minutes resulting a deep red solution. Normal pentane (8 mL) 

was added to precipitate red powder. The supernatant was discarded and the solids 

washed with Et2O (3 X 5 mL) and dried in vacuo.  

Yield: 0.231 g, 81%; d.p. 254-256 oC;  
1H NMR (CDCl3, & (ppm)) 9.34 (d, 2H, 3JH-P = 5.6 Hz), 9.01 (d, 2H, 3J = 8.0 Hz), 8.30 (t, 

1H, 3J = 8.0 Hz), 7.43 (t, 2H, 3J = 7.6 Hz), 7.30 (d, 4H, 3J = 7.6 Hz), 2.49 (septet, 4H, 3J = 

6.8), 1.15 (overlapping doublets, 24H);  
13C{1H} NMR (CDCl3, & (ppm)) 146.3, 142.4, 136.9 (d, 2JC-P = 10 Hz), 135.6, 131.1, 

129.6, 128.2, 124.0, 28.9, 24.9;  
31P{1H} NMR (CDCl3, & (ppm)) 169;  

FT-IR (cm-1 (ranked intensity)) 469(8), 736(5), 756(6), 778(12), 798(1), 1071(3), 

1055(11), 1102(14), 1167(10), 1260(7), 1351(9), 1381(13), 1455(4), 2957(2), 2962(15); 

FT-Raman (cm-1 (ranked intensity)) 87(10), 118(1), 479(13), 586(14), 710(8), 888(12), 

1044(6), 1247(5), 1355(15), 1387(11), 1590(4), 2865(7), 2933(3), 2962(2), 3068(9);  

ESI-MS: m/z 484 ([5.1P]+). 
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5.3P[I3] 

A solution of 5.3 (0.150 g, 0.248 mmol) in CH2Cl2 (4 mL) was 

added to a solution of PI3 (0.102 g, 0.248 mmol) in the same 

solvent (4 mL) in the dark. The solution was stirred for 20 

minutes resulting a deep red solution. Normal pentane (8 mL) 

was added to precipitate a red powder. The supernatant was discarded and the solids 

washed with Et2O (3 X 5 mL) and dried in vacuo.  

Yield: 0.195 g, 77%; d.p. 323-324 oC;  
1H NMR (CDCl3, & (ppm)) 8.65 (d, 2H, 3J = 8.0 Hz), 8.21 (t, 1H, 3J = 8.0 Hz), 7.53-7.47 

(mult, 10H), 7.17 (t, 2H, 3J = 7.6 Hz), 2.55 (septet, 4H, 3J = 6.8), 1.10 (d, 12H, 3J = 6.4 

Hz), 0.89 (d, 12H, 3J = 6.8 Hz);  
13C{1H} NMR (CDCl3, & (ppm)) 155.6, 143.2, 136.9 (d, 2JC-P = 9 Hz), 133.1, 131.4, 

131.3, 131.0, 129.4, 129.3, 128.2, 124.1 28.9, 26.9, 23.1;  
31P{1H} NMR (CDCl3, & (ppm)) 154;  

FT-IR (cm-1(ranked intensity)) 700(5), 732(7), 766(9), 804(4), 1023(11), 1056(6), 

1226(12), 1253(15), 1303(13), 1321(2), 1362(10), 1384(8), 1444(14), 1460(3), 2964(1);  

FT-Raman (cm-1(ranked intensity)) 117(1), 244(14), 402(13), 496(12), 1000(4), 

1043(11), 1156(5), 1248(9), 1350(15), 1482(7), 1518(3), 1598(2), 2930(8), 2969(10), 

3052(6);  

ESI-MS: m/z 636 ([5.3P]+).  

Elemental analysis: Calc. for C43H47N3PI3 C 50.73, H 4.66, N 4.13; Found C 50.70, H 

4.75, N, 4.06. 

 

5.1P[Br] 

In an NMR tube, neat PBr3 (0.21 mL, 0.221 mmol) was added 

to a CDCl3 (1 mL) solution of 5.1 (0.100 g, 0.221 mmol) and 

cyclohexene (0.134 mL, 1.33 mmol). The NMR tube was 

agitated and placed in an oil bath at 40°C for 3 days resulting in a deep red solution. To 

the mixture, CH2Cl2 (1 mL) and n-pentane (3 mL) were added sequentially and the 

solution stored at -30°C for an hour to produce orange crystals of 5.1P[Br].  

Yield: 0.035g, 28%; d.p. 141-143 oC;  
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1H NMR (CDCl3, & (ppm)) 9.87 (d, 2H, 3JH-P = 5.2 Hz), 9.57 (d, 2H, 3J = 7.6 Hz), 8.27 (t, 

1H, 3J = 7.6 Hz), 7.41 (t, 2H, 3J = 7.6 Hz), 7.28 (d, 4H, 3J = 7.6 Hz), 2.36 (septet, 4H, 3J = 

6.8), 1.13 (br, 24H);  
13C{1H} NMR (CDCl3, & (ppm)) 147.8, 142.2, 136.9 (d, 2JC-P = 10 Hz), 135.5, 132.1, 

129.4, 127.7, 123.8, 28.8, 24.6;  
31P{1H} NMR (CDCl3, & (ppm)) 166;  

FT-IR (cm-1 (ranked intensity)) 471(15), 639(12), 723(2), 758(10), 804(6), 922(4), 

1072(7), 1100(14), 1177(8), 1324(5), 1364(9), 1459(3), 1587(11), 2189(13), 2962(1).  

ESI-MS: m/z 484 ([5.1P]+). 

 

5.1P[B12Cl12] 

A slurry of Na2[B12Cl12] (0.213 g, 0.349 mmol) in 

CH2Cl2 (5 mL) was added to a solution of 5.1P[I3] (0.200 

g, 0.231 mmol) in CH2Cl2 (5 mL) and stirred for 12 

hours. The resulting slurry was centrifuged and n-pentane (8 mL) was added to the 

supernatant and the solution stored at -30°C over night. The supernatant was decanted 

and the resulting orange solids dried in vacuo.  

Yield: 0.111 g, 65%; d.p. 196-197 oC;  
1H NMR (CD2Cl2, & (ppm)) 9.29 (d, 2H, 3JH-P = 5.2 Hz), 9.40 (d, 2H, 3J = 8.0 Hz), 8.30 

(t, 1H, 3J = 8.0 Hz), 7.45 (t, 2H, 3J = 8.0 Hz), 7.33 (d, 4H, 3J = 8.4 Hz), 2.41 (septet, 4H, 
3J = 6.8), 1.13 (overlapping doublets, 24H);  
11B{1H} (CD2Cl2, & (ppm)) -12.7;  
13C{1H} NMR (CD2Cl2, & (ppm)) 149.6, 145.7, 140.1 (d, 2JC-P = 10 Hz), 138.7, 134.0, 

132.9, 131.5, 127.2, 32.1, 27.8;  
31P{1H} (CD2Cl2, & (ppm)) 169 ppm;  

FT-IR (cm-1 (ranked intensity)); 534(2), 714(10), 757(7), 802(6), 1031(1), 1168(9), 

1256(13), 1324(5), 1364(8), 1460(4), 1499(14), 1604(11), 2868(15), 2962(3), 3067(13);  

FT-Raman (cm-1 (ranked intensity)) 112(3), 141(2), 163(1)*, 299(4), 472(8), 1044(13), 

1177(14), 1244(7), 1323(15), 1442(10), 1636(12), 1505(6), 1589(5), 2932(9), 2965(11). 

*Peak at 163(1) corresponds to I2 impurity.  

ESI-MS: m/z 484 ([5.1P]+), 1038(5.1P[B12Cl12] – H). 



 119 

5.5 References 

(1) Jurca, T.; Lummiss, J.; Burchell, T. J.; Gorelsky, S. I.; Richeson, D. S. J. Am. 
Chem. Soc. 2009, 131, 4608. 

(2) Martin, C. D.; Le, C. M.; Ragogna, P. J. J. Am. Chem. Soc. 2009, 131, 15126. 
(3) Scott, J.; Gambarotta, S.; Korobkov, I.; Knijnenburg, Q.; de Bruin, B.; Budzelaar, 

P. H. M. J. Am. Chem. Soc. 2005, 127, 17204. 
(4) Reeske, G.; Cowley, A. H. Chem. Commun. 2006, 1784. 
(5) Jurca, T.; Dawson, K.; Mallov, I.; Burchell, T.; Yap, G. P. A.; Richeson, D. S. 

Dalton Trans. 2010, 39, 1266. 
(6) Nomiya, K.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Kasuga, N. C.; 

Yokoyama, H.; Nakano, S.; Onodera, K. J. Inorg. Biochem. 2004, 98, 601. 
(7) Casas, J. S.; Castellano, E. E.; Ellena, J.; García-Tasende, M. S.; Sánchez, A.; 

Sordo, J.; Vázquez-López, E. M.; Vidarte, M. J. Z. Anorg. Allg. Chem 2003, 629, 
261. 

(8) Pedrido, R.; Romero, M. J.; Bermejo, M. R.; González-Noya, A. M.; Maneiro, 
M.; Rodríguez, M. J.; Zaragoza, G. Dalton Trans. 2006, 5304. 

(9) Martin, C. D.; Ragogna, P. J. Inorg. Chem. 2010, 49, 4324. 
(10) Mair, F. S.; Manning, R.; Pritchard, R. G.; Warren, J. E. Chem. Commun. 2001, 

1136. 
(11) Hinchliffe, A.; Mair, F. S.; McInnes, E. J. L.; Pritchard, R. G.; Warren, J. E. 

Dalton Trans. 2008, 222. 
(12) Dutton, J. L.; Martin, C. D.; Sgro, M. J.; Jones, N. D.; Ragogna, P. J. Inorg. 

Chem. 2009, 48, 3239. 
(13) Reeske, G.; Cowley, A. H. Chem. Commun. 2006, 4856. 
(14) Cowley, A. H.; L., Z.; Jones, J. N.; Moore, J. A. J. Organomet. Chem. 2004, 689, 

2562. 
(15) Gushwa, A. F.; Karlin, J. G.; Fleischer, R. A.; Richards, A. F. J. Organomet. 

Chem. 2006, 691, 5069. 
(16) Gushwa, A. F.; Richards, A. F. Eur. J. Inorg. Chem. 2008, 728. 
(17) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; 

Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strmberg, S.; White, 
A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728. 

(18) Wang, X.; Huang, J.; Xiang, S.; Liu, Y.; Zhang, J.; Eichhöfer, A.; Fenske, D.; 
Bai, S.; Su, C.-Y. Chem. Commun. 2011, 47, 3849. 

(19) Kleigrewe, N.; Steffen, W.; Blömker, T.; Kehr, G.; Fröhlich, R.; Wibbeling, B.; 
Erker, G.; Wasilke, J.-C.; Wu, G.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 
13955. 

(20) Norton, E. L.; Szekely, K. L. S.; Dube, J. W.; Bomben, P. G.; Macdonald, C. L. 
B. Inorg. Chem. 2008, 47, 1196. 

(21) Dutton, J. L.; Sutrisno, A.; Schurko, R. W.; Ragogna, P. J. Dalton Trans. 2008, 
3470. 

(22) Ellis, B. D.; Macdonald, C. L. B. Inorg. Chim. Acta 2007, 360, 329. 
(23) Ellis, B. D.; Macdonald, C. L. B. Coord. Chem. Rev. 2007, 251, 936. 
(24) Reeske, G.; Hoberg, C. R.; Hill, N. J.; Cowley, A. H. J. Am. Chem. Soc. 2006, 

128, 2800. 
(25) Reeske, G.; Hoberg, C. R.; Cowley, A. H. Inorg. Chem. 2007, 46, 1426. 



 120 

Chapter 6  
 

Conclusions and Future Directions 
 
 

6.1 Conclusions 

This thesis described numerous reactions of chalcogen halides, chalcogen pseudohalides 

and phosphorus halides with a series of neutral nitrogen based donors. The donors 

utilized were the diazabutadiene (DAB), diiminopyridine (DIMPY), 

bisiminoacenaphthene (BIAN), pentamethyldiethylenetriamine (PMDETA) and pyridine 

ligands. The main group complexes isolated varied from neutral to cationic and 

dicationic.  

 

6.1.1 Reactions of Nitrogen Based Ligands with Chalcogen Halides and 

Pseudohalides 

The reactions of SCl2 and an “S(OTf)2” synthon with !-diimine ligands (BIAN, DAB), 

varying the substitution on the nitrogen and !-carbon atoms revealed that the groups on 

both positions are highly influential on the outcome of the reaction. The reaction of 

“S(OTf)2” with a DAB ligand bearing alkyl groups on the nitrogen atoms and hydrogen 

atoms on the !-carbon atoms resulted in the loss of one of the alkyl groups on a nitrogen 

atom to produce 1,2,5-thiadiazolium salts. If alkyl or aryl groups were present on N and 

methyl groups on the !-carbon, the reaction with SCl2 proceeded through the eneamine 

tautomer of the ligand yielding N,C-bound neutral SNC3 heterocycles by the elimination 

of HCl. The reaction between “S(OTf)2” and a ligand featuring aryl substituents on 

nitrogen and hydrogen atoms, phenyl groups or acenaphthene on the backbone carbon 

atoms produced a series of N,N’-chelated sulfur(II) dications. The dicationic species 

represent the first dicationic structural mimics of the ubiquitous N-Heterocyclic carbene 

for sulfur and the first sulfur(II) dications. In general, the reactivity of SCl2 and S(OTf)2 

with DAB and BIAN ligands proved to be different than that of the other non-metallic 

elements. 
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The reactions of chalcogen halides with the diiminopyridine ligands were also examined 

in detail. The substitution on nitrogen was constant with diisopropylphenyl groups in all 

cases and variable at the !-carbon with hydrogen, methyl or phenyl groups. The DIMPY 

ligands differ from the DAB and BIAN ligands as they have a pyridine moiety between 

the two imine groups and form tridentate chelates. The reaction of a methyl substituted 

DIMPY ligand and TeBr4 formed an N,N’,C-bound TeBr3 complex which agreed with the 

literature report of the analogous transformation with TeCl4. The corresponding reaction 

with SeCl2 also produced an N,N’C-bound chalcogen centre but the bonding differed as 

an exocyclic amine was produced in contrast to the Te species having an exocyclic imine.  

The selenium dihalides reacted with -H and -Ph substituted DIMPY derivatives to 

produce square planar SeX+ cations sequestered within the DIMPY cavity. The anions 

were shown to vary, but in all cases produced complex selenium halide dianions. Stirring 

SCl2 with the phenyl substituted ligand produced an N,N’,N’’-chelated sulfur(II) dication 

with two chloride anions whereas no reaction occurred between SCl2 and the hydrogen 

derivative. In many cases, indiscernible mixtures were obtained presumably from the 

release of halide.  

Reactions of “Ch(OTf)2” synthons with the hydrogen substituted DIMPY ligand 

produced the homologous series of N,N’,N’’-chelated chalcogen(II) dications. These 

species displayed remarkable stability, a surprising feature for donor stabilized main 

group polycations. A comparison of these results with the DAB chemistry indicate that 

the DIMPY ligands are stronger donors given the stability of the dications, and the ability 

to displace a halide in reactions involving the selenium dihalides. Collectively these 

species represent the first N,N’,N’’-chelated chalcogen DIMPY complexes, a ligand that 

has extensive chemistry reported for the transition metal elements. 

The isolation of sulfur(II) dications was not restricted to chelating imine ligands and was 

extended to a multidentate amine ligand. Pentamethyldiethylenetriamine (PMDETA) was 

shown to form a tridentate chelated sulfur(II) dication in a reaction with “S(OTf)2”. The 

geometry and electron configuration of the molecule was analogous to the DIMPY 

derivatives. A striking difference was significantly lengthened sulfur nitrogen bond 

lengths for the PMDETA derivative indicating a weaker interaction between the ligand 
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and the dicationic centre. These weak interactions indicate that this species should be a 

good reagent for the delivery of S2+. 

After synthesizing these new molecules that feature novel bonding motifs, the goal was to 

utilize such species in small molecule activation reactions. In the past, these types of 

transformations have been restricted to transition metals. Unfortunately, the DAB, BIAN, 

DIMPY and PMDETA complexes did not display reactivity with substrates. Sulfur(II) 

dications stabilized by monodentate pyridine ligands were prepared and reacted with 

carbon-carbon and carbon-nitrogen double bonds via insertion into the sulfur pyridine 

bond. The substitution on the para position of the pyridine ligand could be altered with 

electron donating (NMe2), electron withdrawing (CF3) or neutral (Ph) groups which 

proved to be very influential on the reactivity. The stronger donating pyridine (NMe2) 

prevented reaction from occurring while the weaker donor ligand (CF3) decreased the 

reaction time in comparison with the phenyl substituted derivative. This result indicating 

the reactivity can be tuned. These transformations represent the first examples of small 

molecule activation by main group polycations. 

 

6.1.2 Reactions of Diiminopyridine Ligands with Phosphorus Halides  

Despite several reports of phosphorus DAB chemistry, a phosphorus DIMPY complex 

was absent in the literature. Examining reactions of PI3 with hydrogen, methyl and phenyl 

substituted DIMPY ligands it was revealed that only the hydrogen and phenyl derivatives 

yielded phosphorus DIMPY complexes while the more popular methyl derivative 

produced multiple products. Extrapolating the results from the chalcogen chemistry 

rationalize that uncontrollable reactivity occurs with the eneamine tautomer that is easily 

avoided with the -H and -Ph ligands. The complexes are rare reports of P(I) complexes 

and the first of such featuring a tridentate ligand. 

 

6.1.3 Summary 

Collectively the observations of the diazabutadiene, bisiminoacenaphthene and 

diiminopyridine chemistry with phosphorus and the group 16 elements draws conclusions 

that the reactivity of these ligands is not always as predicted through nitrogen chelation. 

Methyl groups on the !-carbon have a tendency to react through the eneamine tautomer 
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which in some cases can be controlled to give N,C-bound heterocycles. Alkyl groups on 

nitrogen are susceptible to being lost in the course of the transformation while aryl groups 

on nitrogen proved to be innocent. The presence of hydrogen and phenyl groups on the 

backbone carbon atom and aryl groups on N allowed the synthesis of the desirable 

chelated main group centres. Preliminary studies indicate amines can also chelate 

dicationic chalcogen centres.  Although these observations are all derived from results of 

the p-block elements, they will undoubtedly give insight to the reactivity with transition 

metals complexes that are very important in an array of catalytic reactions. 

 

6.2 Future Directions 

6.2.1 Group 16 amide complexes 

Although significant progress was made in the area of phosphorus and chalcogen 

chemistry with nitrogen based ligands, there remains a great deal of unknown chemistry 

in this realm. All of the reported examples were with neutral donors. The dative linkages 

between the main group element and ligand may not be the best approach towards 

accessing derivatives capable of small molecule activation as the main group centre can 

be easily displaced from the ligand. Efforts toward synthesizing chalcogen reagents with 

covalent linkages to the ligand deserve attention given the fact that the NHC, NHSi and 

NHP, all of which possess covalent bonds to the ligand have proven to be effective in this 

regard.1-3 

Cowley et al. reported the isolation of a sulfenium dication (6.1) in 1979 but a solid-state 

structure was not reported and the molecule was not fully characterized.4 This species 

would have an empty p-orbital and a lone pair on sulfur meaning it would be 

isolelectronic to the NHSi and NHP. The synthesis outlined in the communication is 

feasible (Scheme 6.1); the compound is prepared by a halide abstraction from the neutral 

sulfur difluoride starting material (6.2) with arsenic pentafluoride. Other fluoride 

abstracting agents such as TMSOTf and BF3 could be used to simplify the preparation. 

This molecule should be structurally characterized and its chemistry examined in detail. 

In addition to the acyclic derivative (6.1), the cyclic species (6.3) would also be of 

interest as the molecules would have different properties and reactivities. An expedient 

synthesis consists of synthesizing the neutral SN2C2 heterocyclic precursor (6.5) by 
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deprotonation of a saturated DAB ligand (6.4) and reaction of the dilithiated salt with 

SCl2. Fluorination of the sulfur centre with xenon difluoride would produce the 

sulfur(IV) species (6.6) and subsequent halide abstraction with TMSOTf to yield the 

cyclic sulfenium dication.  

 

 
Scheme 6.1: Proposed synthesis of the acyclic (6.2) and cyclic sulfenium dications (6.6). 

 

Monoanionic chelating ligands have also shown the ability to sequester reactive element 

centres, however there are minimal reports in the literature for group 15 and 16.5,6 

Richards et al. reported the reactions of chalcogen tetrahalides with !-diketiminate 

ligands featuring methyl groups on the framework which ultimately led to uncontrollable 

reactions with the eneamine tautomer.7,8 From the observations with DAB and DIMPY 

ligands, methyl groups should be avoided for such chemistry.9,10  

The !-diketiminate chalcogen complexes should be attainable by making the appropriate 

modifications to the ligand but more interesting derivatives would be the amidinate group 

16 species (6.7). The four membered ring would impose strain on the system rendering 

the molecules more reactive than the six membered species derived from the !-

diketiminate ligands. A singular example in the literature has been reported with regards 

to group 16 amidinate chemistry.11 The reaction of TeCl4 with a TMS-amidinate (6.8) 

ligand eliminated TMSCl to produce the chelated tellurium(IV) complex (6.7; Scheme 

6.2). No further studies have been performed on this complex.  

As indicated in the other reports of group 16 chemistry with nitrogen based ligands, the 

chalcogen(IV) halides are prone to releasing dihalogen usually interfering in future 

reactions.7,12 Keeping this in mind, the chalcogen(II) reagents do not have such 

susceptibility and would be better targets for this chemistry. The tellurium(II) derivative 

(6.9) could be prepared by the facile reduction of the known Te(IV) complex (6.7) with 
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SbPh3. The synthesis of the sulfur(II) and selenium(II) systems (6.11) could be achieved 

by the same synthetic route as the Te(IV) complex simply utilizing SeCl2 and SCl2 as the 

chalcogen sources (Scheme 6.3). The corresponding cationic species (6.10, 6.12) could 

be prepared by halide abstraction. Through the synthesis of these covalently bound 

chalcogen cations, the achievement of obtaining reagents capable of activating numerous 

small molecules is certainly possible. 

 

 
Scheme 6.2: Synthesis of the known Te(IV) amidinate complex (6.7) and the proposed 

synthetic route to the Te(II) cationic species (6.10). 

 

  
Scheme 6.3: Proposed synthesis of the sulfur and selenium amidinate complexes. 

 

6.2.2 Utilizing “ChOTf2” Synthons to Generate New Bonding Arrangements 

We have demonstrated the ability to utilize a series of “ChOTf2” synthons to deliver 

chalcogen(II) centres to ligand frameworks.13-17 These reagents should be useful in a 

number of other transformations to access new chalcogen based molecules which 

otherwise could not be synthesized. Sources of chalcogens, as the elemental form or the 

halides have the propensity to react with phosphines to oxidize the phosphorus atom 

giving the thermodynamically favourable phosphine chalcogenides (R3PCh).12 Previous 

attempts to synthesize phosphine sequestered chalcogen dications have led to 

decomposition products primarily consisting of the oxidized phosphorus product. 

However, with the “ChOTf2” synthons, the phosphine sequestered dications (6.13) will 

be accessible (Scheme 6.4). These complexes are of interest as they are analogues to the 

carbodiphosphorane (1.29); a molecule that has been known for five decades.18,19 
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Scheme 6.4: The synthesis of the phosphine sequestered chalcogen dications utilizing 

“Ch(OTf)2” synthons. 

 

Another series of molecules that have proven to be difficult to isolate have been the 

chalcogenophosphanes (6.14; Ch = S, Se, Te). The sulfur derivative (thiophosphane) has 

long been sought but only isolated by incorporating donating substituents to form ylide 

structures or by incorporating the moiety into the coordination sphere of transition metal 

centres.20-23 Reports have shown that the tri-tert-butylphenyl thiophosphane can be 

prepared, but trimerizes and disproportionates.24 To kinetically stabilize the species, 

extremely bulky groups are needed such as the terphenyl group (terphenyl = 2,6-bis[(2,6-

diisopropyl)phenyl]phenyl).25 By utilizing Ch2+
 synthons, a direct reaction with the 

dilithiated terphenyl phosphine (6.15) should yield a series of monomeric 

chalcogenophosphanes. The nature of the bonding and reactivity of these molecules 

should be very interesting.   

 

 
Scheme 6.5: Proposed synthesis of the chalcogenophosphanes utilizing “Ch(OTf)2” 

reagents; R = terphenyl = 2,6-bis[(2,6-diisopropyl)phenyl]phenyl). 

 

An interesting molecule derived from the chalcogenophosphanes would be the one-

electron oxidation product with ferrocenium triflate (Scheme 6.6). This could lead to a 
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radical species that would undergo dimerization to form dicationic heteroatom analogues 

of cyclobutadienide (6.16).  

 

 
Scheme 6.6: Oxidation of the chalcogenophosphanes (6.14) to yield the heterocycle 

(6.16). 

 

6.3 Final Remarks 

In summary, the molecules prepared in this dissertation have expanded on the 

understanding of the chemistry of nitrogen based ligands with the pnictogens and 

chalcogens. These discoveries should be applicable to many other elements spanning the 

periodic table. Preliminary reports show the monodentate pyridine sequestered sulfur(II) 

dications are reactive towards unsaturated organic substrates. An in depth study of the 

scope of this reaction would be beneficial to explore its utility in organic synthesis. In 

addition the proposed molecules in this chapter should also have promise in such studies. 

The results from the project will without a doubt branch into many new journeys in main 

group chemistry. By continuing these studies, phosphorus and chalcogen reagents having 

the capabilities of transition metals should be attainable. 
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Appendix 1 

General Experimental Details 

 

All manipulations were performed under an inert atmosphere in a nitrogen filled MBraun 

Labmaster dp glove box or using standard Schlenk techniques.   

Sulfur dichloride,1 SeCl2BIAN,2 Te(OTf)2BIAN,3 DAB,4-6 BIAN7,8 and DIMPY9-11 were 

synthesized using literature procedures. The DAB ligand 2.10 was made by the method 

described by Gibson substituting aniline as the amine.12 Selenium dichloride and SeBr2 

were prepared as THF solutions following the literature procedures and used within 

minutes of preparation.13,14 Trimethylsilyltrifluoromethanesulfonate, 4-

dimethylaminopyridine, 4-trifluoromethylpyridine, N,N’-diisopropylcarbodiimide, SeCl4, 

SeBr4, TeCl4 and TeBr4 were purchased from Alfa Aesar and used as received. 

Phosphorus triiodide was obtained from Sigma Aldrich and used as obtained. The 

reagents PCl3, PBr3 and PMDETA were purchased from Alfa Aesar and distilled prior to 

use. Ethylene was obtained from PRAXAIR Specialty Gases and Equipment and 4-

phenylpyridine from Fisher Scientific. Dichloromethane, CH3CN, n-pentane, n-hexane, 

THF and Et2O were obtained from Caledon Laboratories and dried using an MBraun 

Controlled Atmospheres Solvent Purification System. Acetone and THF were used as 

received from Caledon. The dried solvents were stored in Strauss flasks under an N2 

atmosphere, or over 4 Å molecular sieves in the glove box.  Solvents used for 1H NMR 

spectroscopy [CD2Cl2, CDCl3, CD3CN and (CD3)2CO] were purchased from Sigma-

Aldrich, and dried by storing in the glove box over 4 Å molecular sieves.   

Multinuclear NMR data are listed in ppm, relative to Me4Si (13C and 1H) and CFCl3 (19F), 

coupling constants are in Hertz and all NMR spectra were recorded on an INOVA 400 

MHz (1H = 399.76 MHz, 13C = 100.52 MHz, 19F = 376.15 MHz, 125Te = 126.12 MHz) 

spectrometer or INOVA 600 MHz spectrometer. All 31P chemical shifts were externally 

referenced to 85% H3PO4 (! = 0.00 ppm) and 19F NMR spectra were referenced to CFCl3 

(! = 0.00 ppm) using neat CF3(C6H5) (! = -63.9 ppm) as an external reference standard. 

Boron-11 experiments were referenced externally to BF3-Et2O (! = 0.00 ppm). The 
125Te{1H} spectra were externally referenced to TeMe2 (! = 0.00 ppm using H6TeO6 ! = 

712 ppm). Single crystal X-ray diffraction data were collected on a Nonius Kappa-CCD 
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area detector or a Bruker Apex II-CCD detector using Mo-K! radiation (! = 0.71073 Å).  

Crystals were selected under N-paratone oil, mounted on nylon loops or MiTeGen 

micromounts then immediately placed in a cold stream of N2.  Structures were solved and 

refined using SHELXTL.  

Samples for FT-Raman spectroscopy were packed in capillary tubes and flame-sealed. 

Data were collected using a Bruker RFS 100/S spectrometer, with a resolution of 4 cm-1. 

FT-IR spectra were collected on samples as KBr pellets using a Bruker Tensor 27 

spectrometer, with a resolution of 4 cm-1. Decomposition points were recorded in flame-

sealed capillary tubes using a Gallenkamp Variable Heater. Elemental analyses were 

performed by Columbia Analytical Services in Tucson, AZ; Laboratoire d'analyse 

élémentaire at Université de Montréal or Guelph Chemical Laboratories Ltd., Guelph, 

Ontario, Canada. 
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