
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

August 2011 

X-ray Photoelectron Spectroscopy Studies on the Oxidation X-ray Photoelectron Spectroscopy Studies on the Oxidation 

Processes of Nickel, Chromium and their Alloys Processes of Nickel, Chromium and their Alloys 

Bradley P. Payne, The University of Western Ontario 

Supervisor: Professor N. Stewart McIntyre, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Chemistry 

© Bradley P. Payne 2011 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Materials Chemistry Commons, and the Physical Chemistry Commons 

Recommended Citation Recommended Citation 
Payne, Bradley P., "X-ray Photoelectron Spectroscopy Studies on the Oxidation Processes of Nickel, 
Chromium and their Alloys" (2011). Electronic Thesis and Dissertation Repository. 201. 
https://ir.lib.uwo.ca/etd/201 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=ir.lib.uwo.ca%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=ir.lib.uwo.ca%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/201?utm_source=ir.lib.uwo.ca%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


X-ray Photoelectron Spectroscopy Studies on the 

Oxidation Processes of Nickel, Chromium and their 

Alloys 

 

By 

Bradley Philip Payne 

Graduate Program 

in 

Chemistry 

Submitted in partial fulfilment 

of the requirements for the degree of 

Doctor of Philosophy 

The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario, 

August, 2011 

 

 

© Bradley Philip Payne 2011 



 
 

ii 
 

THE UNIVERSITY OF WESTERN ONTARIO 

FACULTY OF GRADUATE STUDIES 

CERTIFICATE OF EXAMINATION 

 

Thesis Supervisor    Examination Board 

 

______________________________ ______________________________ 

 Professor N. Stewart McIntyre Professor Oleg Semenikhin 

______________________________ 

 Professor J. Clara Wren 

______________________________ 

 Professor Hugo de Lasa 

______________________________ 

 Professor Serge Kaliaguine 

 

 

The thesis by 

Bradley Philip Payne 

entitled 

X-ray Photoelectron Spectroscopy Studies on the Oxidation Processes of Nickel, 

Chromium and their Alloys 

is accepted in partial fulfilment of the 

requirements for the degree of 

Doctor of Philosophy 

 

 

Date________________________    _____________________________ 

            Chair of Examining Board 



 
 

iii 
 

ABSTRACT 

The reaction of polycrystalline Ni metal surfaces with low pressures (~ 130 Pa) of 

O2 gas or H2O vapour produced thin defective nickel oxide films containing both Ni2+ 

and Ni3+ species at 25oC and 300oC.  Exposure of Ni metal samples to H2O vapour 

resulted in a much slower reaction rate when compared to similar doses of O2 gas.  This 

difference was attributed to a slower place exchange with a surface hydroxyl (OH (ads)) 

intermediate compared to that of an adsorbed oxygen atom (O (ads)).  This OH (ads) 

species appears only to be stabilized on metallic Ni and termination of oxide growth is 

believed to occur once all the available surface metal sites have been covered with oxide. 

The Cr 2p3/2 spectra of polycrystalline Cr2O3 contain multiplet structures that bear 

a strong resemblance to those calculated by Gupta and Sen for the free Cr3+ ion.  The Cr 

2p3/2 spectrum for Cr(OH)3 was isolated from that produced by Cr2O3 and the multiplet 

structure was qualitatively reassembled for that of the hydroxide.  Reactions of either O2 

gas or H2O vapour with metallic Cr both produced thin Cr2O3 films that were deficient in 

Cr3+ and, depending on the reactant, showed varying concentrations of hypo-

stoichiometric Cr moieties.  No such species was observed following the oxidation of a 

NiCr (20%) (NiCr) alloy surface in an acidic (pH = 5) aqueous solution.  

The O/Ni ratios derived from the XPS spectra of a number of well-characterized 

Ni oxides were calculated and found to correspond well to the expected O/Ni ratios for 

these oxides.  These ratios were then applied to the analysis of oxides that were 

electrochemically grown on Ni and NiCr alloy surfaces. 

The exposure of polycrystalline Ni metal and NiCr alloy surfaces to basic aqueous 

environments under mildly oxidizing potentials (0.0 V vs. Ag/AgCl) and temperatures of 
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25° and 150°C produced predominately β-Ni(OH)2-rich films.  Decreasing the pH of the 

electrolyte at 150°C resulted in an increase in the Cr2O3 and Cr(OH)3 content of the oxide 

films formed on the alloy surfaces.  Reactions on metallic Ni and NiCr surfaces under 

highly oxidizing potentials (1.5 V vs. Ag/AgCl) in basic solutions resulted in an increase 

in the NiO content of these films compared to similar exposures carried out at milder 

oxidation conditions.  This was attributed to accelerated dehydration of the β-Ni(OH)2 

phase.  In addition, an increase in the Cr(OH)3 contribution on the alloy surface oxidized 

at a more oxidative potential suggested a more rapid dissolution of Cr under these 

conditions.  The composition of the corrosion product formed after an exposure to a 

highly oxidizing potential was found to be unchanged following a subsequent reaction of 

equivalent length a much lower oxidizing potential. 

 

Keywords: Ni oxidation, Cr oxidation, NiCr alloy oxidation, XPS, ToF SIMS 
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Chapter 1 Introduction 

1.1 The Study of Thin Films 

An understanding of the structure and composition of the oxides formed on metals 

and their alloys is important as these films provide a barrier of protection between the 

material and the environment.  Of particular interest is an understanding of the reaction 

products formed during the initial stages of reaction, as the nature of the oxides formed at 

this juncture will greatly affect long term surface passivation and/or metal degradation.  

To accurately monitor these films the surface analytical techniques employed must be 

sensitive to low elemental concentrations, differences in elemental chemical states and/or 

bonding environments, and have an information depth of 10 nm or less. 

X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical 

Analysis (ESCA) is a technique that meets all of these criteria.  Present day instruments 

are able to detect all elements in the periodic table except for H and He and have 

detection limits of 0.1 atomic % (at.%).  Certain spectrometers (i.e. Kratos Axis Ultra) 

have tuneable spatial resolutions that allow for the analysis of areas as large as 700 µm x 

300 µm to spots as small as 10 – 20 µm in diameter to be probed.  XPS can also provide 

information on the oxidation state and local bonding environment of atoms within a 

surface.  Due to the high elemental sensitivity and tuneable spatial resolution of XPS, 

changes in oxide chemistry can be monitored over relatively large (few hundred µm) or 

more localized (tens of µm) areas.  The ability of XPS to differentiate between atoms of 

the same oxidation state having different bonding arrangements allows for the 

quantitative analysis of surfaces containing mixed oxide phases.  This is of particular 

importance when studying the corrosion products formed in aqueous environments where, 
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depending on the reaction conditions and the material being studied, many different metal 

oxides, hydroxides and oxyhydroxides may be present.  The inability of XPS to detect H 

does not completely limit this technique when it comes to studying metal hydroxides and 

oxyhydroxides, as the local electronic densities around a metal cation and oxygen anion 

(O2-) change depending on whether a H atom is present or not.  That being said, 

investigating the role of atomic H in an oxidation process requires the use of a 

complementary surface analytical technique.  Finally, depending on the material being 

analyzed XPS has a maximum analysis depth of approximately 10 nm and as a result, the 

thickness and/or structure of any oxide overlayers thinner than this detection depth can be 

modeled using complementary analytical algorithms [1-2]. 

1.2 Project Overview 

In this thesis XPS was used as the primary investigative tool to study the oxides 

formed on polycrystalline samples of Ni metal, Cr metal and NiCr (20%) (NiCr) alloy 

surfaces exposed to O2 gas, H2O vapour or aqueous solutions under controlled 

electrochemical potentials and pHs.  In order to better understand the reaction products 

formed on these surfaces the XPS spectra of a number of well characterized Ni- and Cr-

containing oxide and hydroxide powders were also examined.  The role of H in the 

oxidation processes on Ni and the NiCr alloys studied was monitored using another 

analytical technique Secondary Ion Mass Spectrometry (SIMS). 

This work is intended to provide a knowledge base to which the study of the 

oxides grown on more complex NiCr-containing alloys can be compared in the future.  

Currently, NiCr-containing alloys are used in a number of highly reactive environments 

including, but not limited to, turbines, jet engines and the steam generator (SG) tubing of 
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pressurized water reactors (PWR) [3].  Of particular interest to our research group are the 

ternary NiCrFe alloys 600 and 690, which are used in the latter application.  

1.3 Oxidation Mechanisms 

The initial oxidation of a bare metal surface is generally understood to begin with 

the adsorption of O2 gas, which subsequently dissociates into adsorbed atomic oxygen (O 

(ads)) [4-5].  The O (ads) atoms then covalently bond to adjacent metal atoms, weakening 

the attachment of the latter to the metal crystal.  This is followed by the place exchange 

of a metal and an O2- ion at the metal/gas interface resulting in the formation of the first 

one or two monolayers of oxide (see Figure 1.1(a)).  The formation of thin passive films 

beyond the place exchange process can be described using either inverse logarithmic, 

direct logarithmic or parabolic rate laws [4-10].  Typically, the logarithmic mechanisms 

best describe film formation at low temperature, while the parabolic law better models 

oxide growth at higher temperatures.  The transition temperature from logarithmic growth 

to parabolic growth is ambiguous and dependent on the metal being oxidized. 

The theory of inverse logarithmic kinetics was first suggested by Mott [6] and 

Mott and Cabrera [7].  They proposed that, at low temperatures oxidation was driven by 

the tunnelling of electrons from the metal to O (ads) species at the surface.  This 

tunnelling of electrons produces an electric field, in which ions are mobile, resulting in 

the thickening of the oxide with time (see Figure 1.1(b)).  The potential across the oxide 

is assumed to be constant and as a result the strength of the field diminishes with time.  

Oxidation is terminated when the electric field is no longer strong enough to support ion 

migration.  The integrated form of the inverse logarithmic rate equation is shown below 

[8]: 
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x
 = − � kT

q aV
� lnt + C 

1.1 

where x is the oxide thickness, k represents Boltzmann’s constant, T is the reaction 

temperature, q is the ionic charge, a is equal to half of the ion jump distance, V is the 

potential across the oxide, t is the exposure time, and C is a constant. 

The inverse logarithmic theory was unable to accurately model the low 

temperature oxidation of all metal surfaces.  As a result, the direct logarithmic kinetic 

model was later proposed by Eley and Wilkinson [4].  As with the inverse logarithmic 

mechanism, oxidation is driven by ion migration in an electric field created by tunnelling 

electrons.  In this model the electric field, not the potential, across the oxide film is 

assumed to be constant and oxide growth continues until the potential can no longer 

support ion migration.  The direct logarithmic rate equation is presented below in its 

integrated form [4]: 

x = �RT
γ
� lnt + C' 1.2 

where x represents the film thickness, R is the universal gas constant, T is the reaction 

temperature, γ is the observed increase in activation energy as the oxide film thickens, t is 

the exposure time and C′ is a constant.  

At elevated temperatures the oxidation of metal surfaces tends to follow parabolic 

kinetics as described by Wagner [7,11-13].  The Wagner model assumes that the oxide 

formed is compact and adherent, the reaction rate is controlled by either cation or anion 

diffusion through the film, thermodynamic equilibria are established at both the 

metal/oxide and oxide/gas interfaces, thermodynamic equilibrium also exists throughout 

the film, and the oxide formed only deviates slightly from stoichiometry.  For oxides in 
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which cations are the mobile species diffusion is driven along the metal chemical 

potential gradient across the film.  Conversely, for oxides in which anion diffusion 

dominates, the driving force of the reaction is proportional to the O2 chemical potential 

gradient.  In both cases, as the film thickens, the rate of oxidation decreases until the 

reaction terminates.  The full integrated parabolic kinetic rate equation is shown below 

[7,11-13]: 

x = C”t1/2 1.3 

where x represents the film thickness, C” is the parabolic rate constant and t is the 

exposure time.  The parabolic rate constant is dependent on the volume of the oxide 

present per metal atom, the diffusion coefficient and the concentration of mobile species. 

Metal oxides can generally be grouped into three different classes; p-type, n-type 

and amphoteric semi-conductors [13].  During the growth of a p-type oxide a small 

number of cation vacancies and electron holes are created within the oxide lattice (cation 

deficient).  In p-type oxides the mobile species are cations, which migrate/diffuse through 

lattice defect sites such as vacancies and/or grain boundaries to the oxide/gas interface 

where they react with O2.  In the case of NiO, defect formation involves the creation of a 

Ni2+ vacancy at the oxide/gas interface and, in order to balance charge, two neighbouring 

Ni2+ atoms each lose an electron forming two Ni3+ (electron holes).  Conversely, n-type 

oxides can be grouped into two classes.  In the first class oxidation proceeds via the 

migration of free electrons and excess metal ions through interstitial lattice positions in 

the oxide, while in the second class film growth proceeds via the formation of anion 

vacancies (anion deficient) and anion migration.  In the former case the oxide grows at  
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Figure 1.1: The mechanism for the oxidation of a metal (M) surface exposed to O2 
gas.  The initial place exchange reaction resulting in the first layers of oxide is shown 
in (a).  The continuous growth of a film following logarithmic or parabolic kinetics 
beyond the place exchange process is shown in (b).  The vacancies ( ) present within 
the film provide pathways for ion migration. 
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the oxide/gas interface while in the latter case oxidation occurs at the metal/oxide 

boundary.  Some oxides such as Cr2O3 are known as amphoteric and will exhibit either p-

type or n-type characteristics depending on the reaction conditions.  For example at low 

O2 pressures Cr2O3 behaves like a cation excess n-type semiconductor, while at higher O2 

activities it exhibits p-type properties. 

Oxide film growth on metal surfaces exposed to aqueous solutions is best described 

using the Point Defect Model (PDM) proposed by Macdonald et al. [14-15].  A simplified 

version of the PDM is presented in Figure 1.2 for a MO type oxide.  This model is similar 

to the direct logarithmic mechanism proposed by Eley and Wilkinson [4], in which the 

electric field across the film is assumed to be constant.  In simplified terms, film growth 

proceeds via the dissolution of metal cations (M2+ → M2+
(aq)) at the oxide/solution 

interface.  This introduces cationic vacancies (VM
2-) to the film similar to the p-type oxide 

growth discussed earlier.  These vacancies will migrate in the electric field towards the 

oxide/metal interface where they are filled with metal cations (M2+) produced at the metal 

surface.  The oxidation of metal atoms at the metal surface introduces oxygen vacancies 

(VO
2+) to the oxide which will diffuse towards the oxide/solution interface.  At the 

film/electrolyte boundary adsorbed H2O and/or dissolved O2 gas are reduced creating O2- 

anions, destroying the anionic vacancies.  In the PDM model the film behaves like an 

electronically doped semi-conductor due to the presence of the cationic and anionic 

vacancies.  More recently, the PDM has been expanded by Bojinov et al. to include film 

properties such as capacitance, resistance, thickness and conductivity in the theoretical 

calculations [16-17].  The model of Bojinov et al. is termed the Mixed Conduction Model 

(MCM). 
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Figure 1.2: Simplified diagram of the PDM model showing the major cationic, 
anionic and vacancy species involved in the growth of an MO type oxide during 
reaction with a H2O molecule. 
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1.4 X-ray Photoelectron Spectroscopy 

XPS uses soft X-rays to excite core and valence electrons within the atoms of a 

surface.  If the X-ray energy is large enough photoelectrons are expelled from the 

material and their kinetic energies (KE) are measured by the instrument.  This excitation 

process is known as the photoelectric effect and is illustrated in Figure 1.3.  Differences 

in chemical elements within the near surface region are identified on the basis of their 

binding energy (BE), which is measured relative to the Fermi level (EFermi) of the 

individual atoms.  The KE and BE of the photoelectron are related via the following 

equation:  

KE = hν - BE - φspectrometer 1.4 

where hν represents the energy of the absorbed photon and φspectrometer is the work 

function of the spectrometer. 

In general, X-rays having energies in the 1-2 keV range will penetrate several 

hundred nm into a surface ionizing atoms to that depth.  In order for the resultant 

photoelectrons to be detected they first must escape from the surface without interacting 

with overlaying atoms; which may lead to loss of KE (inelastic scattering).  The 

probability that a photoelectron will reach the surface without losing any of its KE can be 

approximated using the Beer-Lambert Law: 

Id = I0e
-d/λ 1.5 

where Id is the photoelectron intensity originating from atoms at depth d, I0 is the signal 

emanating from the surface atoms, and λ is the electron inelastic mean free path (IMFP).  

The IMFP represents the average distance a photoelectron can travel before undergoing 

inelastic scattering and is dependent on both the material properties (i.e. density) and  
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Figure 1.3: An electron energy diagram for a Ni2+ cation showing the absorption of a 
photon and resultant expulsion of a 2p level photoelectron. 
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electron KE.  If a Gaussian probability distribution is assumed, then 95% of the 

photoelectrons detected would have been produced within a depth of 3λ.  Typical IMFPs 

for the metal 2p core photoelectrons for transition metals and their oxides are calculated 

to be on the order of 1.1 – 1.8 nm (using Al Kα) [18-19] resulting in an information 

depth between 3.3 – 5.4 nm for these systems. 

All XPS analysis completed as part of this work was performed at Surface 

Science Western, located at the University of Western Ontario, using a Kratos Axis Ultra 

Spectrometer.  Figure 1.4(a) shows a simplified layout of the main components of the 

XPS instrument.  The Kratos Axis Ultra spectrometer is equipped with a monochromatic 

Al Kα X-ray source having a characteristic excitation energy of 1486.6 eV and a line 

width between 0.3 – 0.4 eV.  This instrument also contains a dual X-ray source capable 

of producing achromatic Mg Kα and Zr Lα photons with respective energies/line widths 

of 1253.6/0.7 eV and 2042.4/1.7 eV.  The base pressures in the analytical chamber are 

typically near 3 x 10-7 Pa prior to introduction of the sample. 

Photoelectrons ejected from a sample surface are focused towards the entrance slit 

of a combined concentric hemispherical (CHA) and spherical mirror (SMA) energy 

analyzer.  Prior to entering the analyzer the energies of the photoelectrons are retarded to 

a fixed pass energy (EP).  To monitor the photoelectron counts as a function of BE 

(spectrum mode) the CHA is used.  Once inside the CHA the photoelectrons travel 

between two curved plates (hemispheres) having focusing potentials -V1 and -V2 (see 

Figure 1.4(b)).  The instrument transmission function is defined as the fraction of the total 

number of photoelectrons collected at the sample surface that pass through the CHA into 

the detector.  The transmission function is dependent on the CHA slit width, CHA radius  
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Figure 1.4: (a) Simplified schematic following a photoelectron (e-) through a Kratos 
Axis Ultra spectrometer. (b) The expanded view of the energy analyzer setup in 
spectrum mode employing the CHA.  Under these conditions the photoelectrons enter 
the energy analyzer at point A and travel between two negatively charged plates.  The 
grey lines represent possible pathways these electrons may travel through the energy 
analyzer.  Only the photoelectrons with the selected pass energies will exit the analyzer 
at point B and enter the detector.  (c) The expanded view of the energy analyzer setup in 
imaging mode employing the SMA.  The presence of the mesh hemispherical electrode 
and additional slit allows for specific photoelectron BEs to be selected allowing for 
high-resolution images to be collected. 
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and the initial KE of the photoelectrons.  The absolute resolution (∆E) of the instrument 

is defined by the full width at half maximum (FWHM) of the resultant photoelectron 

peaks.  The absolute resolution of the instrument increases with decreasing pass energy.  

Any increase in spectral resolution results in a loss of photoelectron signal due to a higher 

dispersion of the electrons around the exit slit. 

To collect chemical state images on the surface of the sample the SMA is 

employed.  Similar to the CHA portion of the analyzer the SMA has two hemispherical 

electrodes.  The main differences between the two analyzers is that an inner mesh 

electrode and an additional energy selecting slit are employed in the SMA design (see 

Figure 1.4(c)).  These two advancements allow chemical state images to be collected over 

a range of photoelectron BEs.  The image datasets can then be combined using analytical 

software [1] and converted into spectral datasets producing XPS spectra at each image 

pixel [20-21]. 

Once the electrons exit the CHA they enter a channel plate detector which 

consists of several semiconducting glass tubes connected in series known as channel 

electron multipliers (CEMs).  Electrons entering the CEMs collide with the walls of the 

tubes resulting in a cascade effect as secondary electrons are produced.  The cascade 

effect results in an increase in the electron signal by a factor of > 104. 

By convention XPS spectra are plotted as a function of photoelectron intensity vs. 

BE.  Survey spectra, sometimes termed wide or broad scans, are collected using a high 

pass energy (> 120 eV), a high energy step (0.7 eV) and a large BE window (> 1000 eV).  

These spectra have low resolution however, the large BE range allows for the 

photoelectron peaks for all elements present to be analyzed.  Figure 1.5 shows the survey 
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spectrum acquired for a sample of polycrystalline NiO powder containing a small C 

impurity.  Several electronic structures are observed and attributed to photoelectrons 

excited from the Ni (2s, 2p, 3s, 3p), O (1s) and C (1s) core energy levels, photoelectrons 

ejected from the Ni (3d) and O (2s) valence orbitals, as well as electrons originating from 

Ni LMM and O KLL Auger processes.  In all cases only the electrons that had escaped 

from the surface without undergoing any inelastic scattering interactions contributed to 

the intensity of these peaks.  At higher BEs (> 600 eV) an increase in the spectral 

background is observed and arises from the detection of photoelectrons having undergone 

one or more energy loss events while escaping the surface (see Equation 1.4). 

From the XPS survey spectrum the elemental concentration for a surface 

containing two or more elements (except for H and He) can be determined using the 

following formula: 

XA = 

IA
SA

∑ In
Snn

 1.6 

where XA, IA and SA represent the atomic concentration (in at%), the peak area and the 

relative sensitivity factor (RSF) for element A, in a surface having n elements.  Any 

contributions from the energy loss background to the photoelectron peak intensities are 

removed using a subtraction algorithm.  In Figure 1.5(a) all spectral background intensity 

was removed using a Shirley baseline.  The RSF values correct for differences in peak 

intensities resulting from the probability a specific photoelectron transition will occur 

(cross-section), element IMFP, instrument transmission function and detector efficiency.  

A library of RSF values has been compiled for the Kratos Axis Ultra spectrometer and 

are based on the empirically derived cross-sections of Wagner [1,22-23].  Using Equation  
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Figure 1.5: (a) The survey spectrum collected for a polycrystalline NiO powder sample 
containing a small C impurity.  The elemental concentrations in at.% for the Ni, O and C 
species have been calculated using Equation 1.6 and are also presented.  (b) The high-
resolution Ni 2p spectrum taken for the same NiO sample.  The electronic structural 
features arising from j-j coupling (Ni 2p3/2, Ni 2p1/2), multiplet splitting and shake up 
interactions are clearly visible.   
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1.6 and the Ni 2p3/2, O 1s and C 1s peak areas the relative concentrations of these three 

surface species were calculated (see Figure 1.5(a)). 

The oxidation state and local bonding environments of atoms within a surface are 

monitored using high-resolution spectra.  These scans are typically collected at a low pass 

energy (10 – 20 eV), a low energy step (0.1 – 0.05 eV) and BE windows ranging from 20 

– 40 eV.  An example Ni 2p high-resolution spectrum for a polycrystalline NiO powder is 

presented in Figure 1.5(b). 

At the atomic level, absorption of a photon results in the expulsion of a 

photoelectron producing an atom in an excited state.  The observed BE of this 

photoelectron is defined as the difference in energy between the photoionized atom (final 

state) and the unexcited atom (initial state).  The chemical shift refers to the small 

changes in photoelectron BE of an atom based on its local bonding environment and/or  

chemical state.  These BE differences can be explained qualitatively using the charged 

sphere model.  In this model the individual atoms of a surface are considered to be hard 

spheres having a valence charge q at a fixed radius of r.  Inside the sphere the charge 

distribution is considered to be uniform and as a result any change in the valence charge 

density will shift the BE of all core electrons by: 

∆BE = q/r 1.7 

As an example, consider the oxidation of metallic Cr to Cr3+.  The loss of 3 valence 

electrons would result in the remaining electrons being held more tightly by the nucleus 

of the atom and thereby an increase in BE would be observed. 

In the case of an insulating material the continued exposure to a monochromated 

X-ray source will result in a build-up of positive charge on the surface over time.  As a 
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result the photoelectron peaks become broadened and no chemical state information can 

be obtained.  This “charging” effect is minimized by flooding the sample surface with 

low energy electrons. 

The cross-section (peak shape and intensity) for each core energy level 

photoelectron peak is defined by the principal quantum number n, the angular momentum 

quantum number l, and the electron spin angular momentum quantum number s.  

Following photoionization from an orbital where l = 0 (i.e. 1s shell) a singlet 

photoelectron peak is observed as only one final state is possible.  For orbitals where l > 

0 (i.e. 2p shells) the orbital angular momentum and spin angular momentum of the 

remaining electron can couple either in parallel (lower energy) or anti-parallel (higher 

energy), resulting in two possible final states.  This gives rise to a doublet structure  

defined by the following relationship: 

j = (l ± s) 1.8 

where j is the total angular momentum quantum number.  This phenomenon is referred to 

as spin-orbit or j-j coupling (see Figure 1.5(b)).   In the case of the 2p spectral line j 

values of 3/2 (2p3/2) and 1/2 (2p1/2) are obtained.  The separation between the doublet 

peaks increases with atomic number z and is scaled by a factor of 1/r3, with r representing 

the radius of the orbital from which the photoelectron has been ionized.  The relative 

electron populations of the respective doublet peaks are defined by 2j + 1 resulting in a 

2p3/2:2p1/2 ratio of 2:1. 

The 2p spectra for transition metal cationic species having unpaired d electrons 

are further complicated by additional fine structures resulting from multiplet splitting (see 

Figure 1.5(b)).  These structures arise from the parallel or anti-parallel coupling of the 
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spin angular momentum of an unpaired core electron with the spin angular momentum of 

unpaired 3d valence electrons.  Exchange interactions between electrons with parallel 

spins are lower in energy than the interactions between electrons with anti-parallel spins, 

producing a doublet structure.  Additional contributions from atomic relaxation and 

ligand interactions also contribute to the multiplet structures observed.  Other high BE 

spectral features common to many transition metals are shake up and/or shake off peaks 

(see Figure 1.5(b)).  Shake up peaks arise from simultaneous loss of a photoelectron and 

excitation of a valence electron to a higher unoccupied bound state.  Shake off are similar 

in origin only instead of the valence electron being excited to an unoccupied energy level 

it is lost to the continuum, resulting in a doubly ionized final state.  The observed BE of 

the latter peaks are much higher than those for the former.  In the mid 1970s Gupta and 

Sen (GS) used a Hartree-Fock free ion method to model the 2p core line final states for 

many of the transition metals [24-25].  Their models produced a good approximation of 

the observed line shapes for most transition metals. 

The core line shape of the photoelectron peaks collected for pure metal surfaces 

tend to have an asymmetric character that tail off to higher BE.  The degree of asymmetry 

of the core line peak for any metal is related to its density of states at the Fermi level.  In 

metals the valence and conduction bands overlap and as a result electrons are easily 

promoted above the Fermi level to any number of unoccupied energy levels.  Moving 

valence electron density away from the nucleus effectively strengthens the “hold” the 

nucleus has on the core electrons, resulting in the ejection of photoelectrons having 

slightly less KE than the ground state atom.  Some metal spectra also exhibit plasmon 

loss features, which arise from photoelectrons that have excited oscillations in valence 
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electrons while passing through the surface.  These collective oscillations require specific 

amounts of energy leading to set KE losses and the appearance of characteristic peaks at 

higher BE.  An example Ni 2p spectrum collected for a sputter cleaned Ni metal surface 

showing the asymmetry of the main line peak and plasmon loss structures is presented in 

Figure 1.6. 

XPS can also be employed to model the thickness of oxide films provided that the 

thickness of the oxide is less than the maximum photoelectron escape depth.  For the 

Kratos Axis Ultra Spectrometer the maximum analytical depth is obtained when the 

detector is positioned normal (at 90°) to the sample surface.  The surface sensitivity of the 

instrument can be increased by changing the angle at which the photoelectrons enter the 

detector.  The depth from which photoelectrons are detected is described by: 

d = 3λsinθ 1.9 

where θ represents the angle the photoelectrons are detected relative to the sample 

surface.  This type of scan is known as a shallow angle measurement or angle resolved 

XPS (ARXPS) and can be used to determine if a particular chemical species is confined 

to the very near surface.  

The thickness of an oxide overlayer can also be calculated using the intensities of 

the metal and oxide phases derived from fitted high-resolution XPS spectra.  The 

overlayer equation shown here was first derived by Carlson [26] and later rearranged in 

terms of oxide thickness d by Strohmeier [27]: 

d = λosin θ ln �Nmλm
Noλo

Io

Im
+ 1�   1.10 
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Figure 1.6: The high resolution Ni 2p spectrum for an atomically clean Ni metal surface.  
The asymmetric nature of the Ni 2p3/2 and Ni 2p1/2 mainlines is clearly visible.  
Additional structures due to plasmon losses are also observed at higher BE on both the 
Ni 2p3/2 and 2p1/2 lines.  
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where m and o represent the metal and oxide phases respectively, λ is the IMFP,  N 

stands for the volume density of metal atoms in either the metal or the oxide phase, I is 

the peak area for either the metal or the oxide, and θ is the take off angle of the electrons. 

A third method for measuring oxide thickness was developed by Tougaard and is 

commercially available in a software package called QUASES [2,28].  The basis for 

the Tougaard algorithms is the concept of inelastic scattering.  When a photoelectron 

travels through a surface it may undergo one or more energy loss events.  The probability 

that an electron will experience one or more energy loss interactions increases sharply 

with depth.  From Equation 1.4 a loss in KE due to scattering will result in an increase in 

the observed BE and leads to the formation of the extrinsic background located on the 

higher BE side of a photoelectron peak.  The Tougaard algorithms model the 

photoelectron energy loss (extrinsic) backgrounds using material dependent IMFPs and 

energy loss cross-sections.  The IMFP was previously described as the average distance a 

photoelectron can travel before undergoing an inelastic collision, while the energy loss 

cross-section represents the average amount of energy a photoelectron will lose per 

scattering event (20 – 30 eV).  Based on the typical IMFP lengths QUASES has 

maximum operational depth between 5 to 10 nm, depending on the surface being 

analyzed.  The change in the spectral background with the distribution of atoms in a 

surface is shown in Figure 1.7(a). 

The QUASES software package is divided into two analytical programs 

‘Analyze’ and ‘Generate’.  The ‘Analyze’ program calculates overlayer thicknesses by 

modeling the extrinsic background associated with any photoelectron peak by 

determining the depth from which photoelectrons originated.  The ‘Generate’ program  
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Figure 1.7: Diagram showing the differences in the extrinsic background for the Cu 
2p peak as a function of the atomic distribution within the near surface region.  The 
grey areas represent the portion of the sample containing the Cu atoms.  (b) The five 
different QUASES depth profiles are also shown.  The grey areas represent the 
material that is being modeled [29]. 
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 determines the surface structure of the oxide by modeling the distribution of atoms in the 

experimental spectrum using a combination of reference spectra whose extrinsic 

backgrounds have been modified for the depth from which they are situated in the surface.  

The advantage to the ‘Generate’ programs is that it allows for the near surface 

morphology to be modeled using five different profiles (see Figure 1.7(b)). 

1.5 Time of Flight Secondary Ion Mass Spectrometry 

Time of Flight Secondary Ion Mass Spectrometry (ToF SIMS) is another primary 

surface analytical technique that is extremely sensitive to the outermost surface layers 

(monolayer resolution).  The detection limit of ToF SIMS is much lower than that of XPS 

and is on the order of ppm and ppb.  Typical analysis areas using ToF SIMS range in size 

from 500 µm x 500 µm to 50 µm x 50 µm.  Unlike XPS, SIMS is able to detect all 

elements in the periodic table and thus the location of H within an oxide film can be 

examined.  Any analysis of H is typically completed using deuterium (D) to minimize the 

contributions from atmospheric H to the measurement.  In contrast to XPS, chemical state 

information is not easily obtained from SIMS data however detailed images of surface 

structures can be collected.  This is of particular importance when investigating the 

effects grain boundaries or highly defective areas have on surface oxidation.  The 

destructive nature of SIMS allows for in-depth profiles of the surface to be collected, and 

when used in conjunction with XPS, a detailed distribution of the oxide/hydroxide phases 

within a surface can be obtained.  

In SIMS based techniques a sample’s surface is bombarded with primary ions, 

which can knock out non-volatile secondary ions, molecular ion fragments and neutral 

atoms.  In static SIMS a pulsed primary ion beam is used yielding monolayer resolution.  
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The ion beam employed will depend on the properties of the material being studied as 

well as the nature of analysis being performed.  In ToF SIMS the ions ejected from the 

surface enter a Time of Flight (ToF) mass analyzer where they are accelerated by a 

constant electric field.  The velocity at which the ions travel through the analyzer is 

dependent on their mass to charge ratio; with the smallest ions reaching the detector first.  

A channeltron detector is typically used to amplify the ion signal, which is similar to the 

electron multiplier used in XPS.  All SIMS experiments were carried out with a ToF 

SIMS IV GbmH Secondary Ion Mass Spectrometer, with a bismuth cluster analysis ion 

source and cesium ion sputtering source.   

1.6 Thesis Outline 

In this thesis detailed analysis of the oxidation of polycrystalline Ni, Cr and NiCr 

surfaces are presented.  In addition, the XPS O 1s:Metal 2p atomic ratios for a number of 

well characterized Ni- and Cr-containing oxides and hydroxides were investigated. 

In Chapters 2 and 3 detailed XPS studies of the oxidation of polycrystalline Ni 

metal surfaces by ultra pure O2 gas (Chapter 2) and H2O vapour (Chapter 3) are presented.  

The oxide chemistry (i.e. Ni2+ and Ni3+ content) of the resultant films was monitored 

using high-resolution Ni 2p3/2 spectra.  Changes in oxide thickness and film surface 

structures with both temperature (25° and 300°C) and increasing O2/H2O dose were 

modeled using QUASES ‘Analyze’ and ‘Generate’.  The QUASES results were also 

used to determine the kinetics of the respective Ni-O2/H2O reactions.  ToF SIMS was 

also employed to monitor localized oxide growth (Chapter 2) and H distribution within 

these oxide films (Chapter 3). 
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The high-resolution Cr 2p3/2 spectra for Cr2O3 collected from polycrystalline 

powder and vacuum fractured and annealed aggregate samples were compared in Chapter 

4.  In addition, a possible line shape for the Cr 2p3/2 spectrum of Cr(OH)3 was empirically 

derived and is also presented.  The oxidation of polycrystalline Cr metal surfaces exposed 

to either ultra pure O2 gas or H2O vapour was studied as well.  Finally, corrosion products 

formed on a NiCr alloy exposed to an acidic aqueous solution were also monitored and 

discussed. 

The high-resolution O 1s XPS spectra of a number of well characterized NiO, β-

Ni(OH)2, NiOOH and NiCr2O4 powder samples were examined in Chapter 5.  Particular 

emphasis was placed on separating the O 1s intensities of species bound to Ni in the 

oxide/hydroxide crystals from surface adsorbed and/or interstitial species.  The O/Ni 

ratios for the different powder samples were calculated and found to mirror the expected 

stoichiometry for those compounds. 

In Chapter 6 a detailed study of the corrosion products formed on Ni metal and 

NiCr alloy surfaces was completed.  The changes in film composition with temperature, 

exposure time, pH and electrochemical potential were modeled by rigorously fitting the 

high-resolution Ni 2p3/2, Cr 2p3/2 and O 1s XPS spectra.  The thicknesses of the oxides 

formed on the pure Ni metal surfaces were calculated using the Strohmeier formula.  ToF 

SIMS was used to monitor the changes in the distributions of the Ni- and Cr- containing 

oxidation products on the NiCr surfaces. 

Chapter 7 provides a summary of the results obtained in this work. 
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Chapter 2 Structure and growth of oxides on polycrystalline nickel surfaces 

2.1 Introduction 

The oxidation of Ni metal surfaces at ambient temperatures leads to the formation 

of thin passive films that tend to be described best using logarithmic kinetics [1].  

Following passivation there is little subsequent change in oxide thickness with time [2].  

The mechanism is believed to follow that which was first suggested by Mott and Cabreraa 

[3].  Reactant O2 molecules adsorb onto the surface of the metal and decompose into 

atomic oxygen (O (ads)) [4].  The O (ads) then bonds covalently with the Ni metal atoms 

at the surface, weakening their attachment to the lattice [4].  Owing to the difference in 

electronegativity between Ni and O, a dipole forms which allows the two atoms to 

exchange places [4].  Such a place exchange mechanism is responsible for the formation 

of the first one or two monolayers of oxide only [4].  Further oxidation is driven by the 

formation of an electric field created by the tunnelling of electrons from the Ni atoms in 

the metal, through the thin oxide layer, to the O (ads) sitting on the surface [1].  The 

presence of this electric field induces the movement of ions through the oxide leading to 

the formation of a thicker film [1].  After the film reaches a certain thickness, the electric 

field is no longer strong enough to promote ion diffusion and oxidation stops [1].  

At higher temperatures, the exposure of Ni metal to O2 results in the formation of 

thicker films than those found at lower temperatures.  The oxidation kinetics is best 

described using a parabolic relationship [1].  Parabolic kinetics was first suggested by 

Wagner in the 1930s when he observed that cations could move through defects in an 

                                                 
a For clarification the oxidation of Ni metal surfaces exposed to gas phase O2 has been shown to be 
modeled best using the direct logarithmic kinetic rate law proposed by Eley and Wilkinson [1].  Their 
theory was based on the inverse logarithmic mechanism first suggested by Mott and Cabrera [3]. 
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oxide film [2].  The increased thermal energy due to the elevated temperatures allows for 

more cations to be mobile, leading to further reaction with O2 [4]. 

This paper compares the structure and growth rate of the oxide films deposited on 

polycrystalline and single crystal (100) Ni surfaces when exposed to doses of O2 in the 

range of many thousands of Langmuirs (L, 1L = 1.33 x 10-4 Pa⋅s); this is a regime much 

higher than that used in the many studies of the initial attachment of O to a clean Ni 

surface [5-11].  This particular research is intended to form a base with which the 

oxidation of more complex Ni alloys will be compared. 

2.2 Experimental 

Ni metal (Alpha 99.995 % pure) samples were cut from a polycrystalline metal 

rod and polished to a mirror finish using 0.05 µm γ-Al2O3 paste.  Typical grain size 

observed after oxidation varied, with the larger grains being between 150 and 175 µm 

across.  In addition, a (100) single crystal obtained from MacTecK GmbH (99.95 % pure) 

was used without further polishing.  A 4 mm diameter area of the surface was sputter 

cleaned for 15 min using a 4 kV argon ion (Ar+) beam and a 15 mA emission current.  

This was followed by annealing at 600°C for 30 min to minimize the point defects 

formed as a result of ion bombardment.  Fresh areas were used for each experiment 

because it was found that, even after annealing, some residual damage was sometimes 

left by the sputter treatment.  The single crystal surface was particularly prone to 

transformation to a polycrystalline form after extended ion bombardment and annealing.  

Following cleaning and annealing, polycrystalline and single crystal surfaces were 

exposed to high purity O2 (99.99% pure) at a pressure of about 130 Pa at a temperature of 

25° or 300°C for periods ranging from 1 to 100 min.  The pressure gauge located in the 
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reaction chamber was calibrated using a Baratron® Absolute Capacitance Manometer.  

The gauge was found to report an absolute pressure within 6 Pa of the manometer. 

Most structural and kinetic measurements were carried out by XPS.  Of particular 

interest were the structures of the initial Ni and O species as revealed by the Ni 2p and O 

1s spectra.  In addition, a measure of the thickness of each oxide formed was made using 

QUASES™-based methods described in earlier publications [12-16].  All XPS analysis 

was carried out using a Kratos AXIS Ultra XPS generally using both monochromatic Al 

Kα (1486.7 eV) and achromatic Zr L (2042.4 eV (Lα)) X-ray sources.  Use of the latter 

source for QUASES™ measurements was necessitated by the presence of a background 

from Ni and O Auger lines when the Al source was used.  The XPS analyses were all 

carried out using the following parameters: a 90o electron take off angle, the hybrid focus 

lens, the charge neutralizer set to 1.6 A, 2.4 eV, and an analysis area of 700 x 300 µm.  

Broad scan survey spectra were collected using a pass energy of 160 eV and a 0.7 eV 

energy step, while high-resolution scans of the Ni 2p, O 1s, and C 1s regions were taken 

at a pass energy of 20 eV and an energy step of 0.05 eV.  Also, Ni 2p high-resolution 

27-µm scans were obtained using a pass energy of 40 eV and an energy step of 0.1 eV in 

an attempt to see the difference in oxide growth from grain to grain. 

It was determined, using the C 1s line, that some of the thicker oxide films formed 

exhibited evidence of differential charging by as much as 0.3 eV.  The binding energies 

in these spectra were corrected such that the adventitious carbon peak had a binding 

energy (BE) of 285.0 eVb. 

                                                 
b In all other chapters a BE calibration of 284.8 eV was applied using the C 1s main line peak. 
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Spectra of both metallic Ni and NiO figure prominently in all of the experimental 

data; spectral representatives are required both for peak subtractions and for the 

QUASES™ fitting described below.  Representative spectra were obtained using 

sputtered polycrystalline metallic Ni (Alpha 99.995% pure) and polycrystalline NiO 

powder (Alpha 99.998% pure).  The Ni 2p spectra used in peak subtractions are shown in 

Figure 2.1. 

Spectral analysis was carried out using Casa XPS Version 2.2.107 [17].  This was 

used both for subtraction of Ni 2p spectra and the analysis of XPS images.  For spectral 

subtraction, the Ni metal contribution along with its extrinsic loss region were removed 

by normalizing the intensity of a clean Ni 2p scan to the metal portion in each of the 

oxidized spectra.  This was followed by the removal of the NiO contribution and its 

satellite structure to reveal if any other Ni species were present.  This second subtraction 

involved normalizing the intensity of the main NiO line at 854.0 eV to the peak having 

the same BE on the Ni metal subtracted spectra. 

Computer-corrected XPS images were acquired in an attempt to see variation in 

the oxidation of various grains.  Images were collected over a range covering the Ni 2p3/2 

envelope of 870 eV–848 eV at an interval of 0.2 eV, using medium magnification 

(400 x 400 µm), an 80 eV pass energy, imaging aperture 2, charge neutralizer set to 1.6 A, 

2.8 eV, and a dwell time of 240 s.  X-ray focusing was assisted by drilling two holes into 

the surface of the Ni metal to produce regions of zero photoelectron counts.  Our 

procedure is similar to that used by Barkshire et al. [18-19], Prutton et al. [20], 

Artyushkova and Fulghum [21-22], Walton and Fairley [23-24], and Smith, Briggs, and 

Fairley [25].  The image data set was then processed using the CasaXPS software.  This  
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technique converts the image data set into a spectral data set and then uses a multivariate 

routine to maximize the signal to noise ratio.  From these spectra, the metallic Ni 

(852.6 eV) [26-27], Ni plasmon (858.6 eV) [26], and Ni2+ (854.6 eV) [26-28] 

contributions were determined using asymmetric (metal) [12,29] and Gaussian-

Lorentzian peaks [17].  Following compositional analysis the Ni metal and Ni2+ VAMAS 

files were converted to be read using MATLAB version 6.5 [21,22,30].  In MATLAB a 

matrix was constructed using the Strohmeier formula to calculate the oxide thickness at 

each of the image pixels (every 0.2 eV) by using the percent contribution of each of the 

Ni metal and Ni2+ components. 

Measurements on the overall surface oxides were carried out using QUASES™ 

‘Analyze’ and ‘Generate’ [16].  Total surface film thicknesses were determined using the 

‘Analyze’ program and the O 1s extrinsic loss structure of XPS survey scans collected 

with an Al Kα X-ray source.  From XPS survey scans, it was also found that all Ni metal 

surfaces were covered with small amounts of carbon contaminates.  The resultant carbon 

 
 
Figure 2.1: High-resolution Ni 2p3/2 spectra of (a) a polished, sputtered, and annealed 
Ni metal surface and (b) a sample of a polycrystalline NiO powder. 
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overlayer thicknesses were also measured with ‘Analyze’ this time using the background 

associated with the Ni 2p region obtained from Zr L survey scans.  The photoelectron 

inelastic mean free paths (IMFPs) used to analyze all spectra were determined using the 

TPP-2M formula [31].  In previous work on metallic Fe, Grosvenor et al. used an electron 

attenuation length (AL) for Fe 2p photoelectrons that was roughly 20% shorter than the 

IMFP calculated using the TPP-2M calculator [14,15].  A similar correction for Ni has 

been assumed and ALs of 1.35 and 1.43 nm were determined for the O 1s and Ni 2p 

photoelectrons respectivelyc.  The major difference between this study and the previously 

mentioned work [12-15] is the use of a Ni specific energy loss cross-section to determine 

film thicknesses.  Most analysis of the transition metals, such as Fe, and their oxides, is 

done using the universal cross-section developed by Tougaard [32].  For the oxidized Ni 

metal samples, it was found that the universal cross-section did not properly model the 

spectral background due to the presence of the strong Ni plasmon peaks.  To develop the 

new cross-section REELS data were collected from a sample of NiO powder (Alpha 

99.998 % pure) using a PHI P660 AES/SAM spectrometer and a 0.5 keV electron beam.  

The new Ni cross-section was then kindly calculated by Tougaard using the QUASES-

XS-REELS software [33]. 

Following the depth analysis of the individual samples, their surface composition 

was determined using QUASES™ ‘Generate’.  By modeling the Ni 2p energy loss region 

using different contributions from Ni metal and NiO reference spectra the atomic 

distribution in the near surface of all the oxidized samples was determined.  Respective 

                                                 
c During the preparation of a subsequent manuscript (see Chapter 3) it was determined that the IMFP values 
calculated for both metallic Ni and  NiO were overestimated by approximately 20%.  The IMFPs for these 
species were recalculated and the new values were applied to estimate the thickness of the oxide films 
formed on Ni metal surfaces exposed to H2O vapour.  In addition, the thicknesses of the films studied in 
this work were re-evaluated using the shorter IMFP values and the results are summarized in Appendix A.       
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ALs of 1.41 and 1.43 nmc were calculated for the metal and NiO components using the 

TPP-2M calculator. 

To verify the oxide thicknesses determined by QUASES™ ‘Analyze’, the results 

were compared to values calculated using the Strohmeier equation.  The Strohmeier 

method uses the intensities of the metal and oxide phases derived from fitted high-

resolution XPS spectra [34].  This technique is limited to films of 10 nm or less, the 

operational depth of XPS.  The Strohmeier equation is expressed below [34]: 

d = λosin θ ln �Nmλm
Noλo

Io

Im
+ 1�   2.1 

The thickness of the film is represented by d, λo is the AL, m and o denote the metal and 

oxide components respectively, N stands for the volume density of metal atoms in either 

the metal or the oxide phase, I is the peak area for either the metal or the oxide, and θ is 

the take off angle of the electrons. 

An ION-TOF ToF-SIMS IV Secondary Ion Mass Spectrometer, equipped with a 

bismuth cluster ion source was also used to obtain secondary electron and O- secondary 

ion images showing the grain boundaries on a Ni metal surface. 

2.3 Results and Discussion 

2.3.1 Reactions at 300°C and 130 Pa 

Ni metal samples were exposed to high purity O2 for several periods of 1, 4, 20, 

and 60 min.  The resulting high-resolution spectra of the Ni 2p3/2 regions are shown in 

Figure 2.2(a-d).  The first two spectra are dominated by the presence of metallic Ni from 

the substrate; increased oxidation clearly diminishes the importance of the metallic 

contribution.  In order to derive more detail from the oxidic components, the pure  
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Figure 2.2: High-resolution Ni 2p3/2 photoelectron spectra following O2 exposure 
times of 1, 4, 20, and 60 minutes at 300°C and 130 Pa.  The identification of the 
spectral components lying above Ni metal is clarified in Figure 2.3. 
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metallic Ni components (see Figure 2.1(a)) were removed in such a manner that all 

intrinsic and extrinsic loss components from the metal were included in the process.  The 

subtracted spectra are shown in Figure 2.3(a-d). 

After a 60 min exposure, the subtracted spectrum (see Figure 2.3(d)) had a 

position and shape that exactly matched the very characteristic spectrum of NiO (see 

Figure 2.1(b)) whose origin was recently discussed [26].  The Ni 2p3/2 spectrum has a 

principal line at 854.0 eV, and a prominent shoulder at 855.7 eV.  Inspection of the 

subtracted Ni 2p3/2 spectra (see Figure 2.3(a-b)) for surface oxides formed at earlier 

stages also shows the dual peak structure of NiO, but in addition, the presence of a 

second component superimposed on the above mentioned shoulder is apparent.  This 

second component becomes less important with increased oxidation.  We attribute this 

second component to the presence of Ni3+ species within the NiO matrix.  A shallow 

angle measurement (15°) was carried out on one of the 4 min exposures.  When the Ni 

metal component was subtracted from this spectrum (not shown), the Ni3+ spectral 

component was found to increase when compared to the 90o take off angle.  This suggests 

that the distribution of the Ni3+ within the oxide film is skewed to the surface, as one 

might have predicted, on the basis of electron hole (Ni3+) creation [35].  Therefore, in the 

early stages of oxide growth, the reduction of O2 to O2- occurs through the removal of 

electrons from Ni2+ atoms in the outermost layers of NiO, producing Ni3+.  The ‘positive’ 

charge located at the oxide surface pulls electrons from the Ni metal, creating Ni2+ 

cations.  These cations will migrate towards the surface where they will react with O2, 

while at the same time the Ni holes will move inwards towards the metal in the electric 

field created by the tunnelling electrons.  After longer exposures to O2 (see Figure  
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Figure 2.3: High-resolution Ni 2p3/2 spectra following subtraction of the Ni metal 
component showing the contributions from Ni2+ and Ni3+. The spectra are shown for 
O2 exposure times of 1, 4, 20, and 60 minutes at 300°C and 130 Pa. As exposure time 
increases, the resulting oxide more closely resembles NiO. 
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2.3(c-d)), the subtracted spectra more resembled pure NiO, with little contribution from 

Ni3+.  From this result, it appears that there is a change in the transport mechanism 

sometime around 20 min of exposure.  At this point, transport occurs via O vacancies and 

Ni cation migration from the metal/oxide interface. 

The spectra in Figure 2.3 were again subtracted, this time to remove the NiO 

component along with its satellite structure.  The results for the shortest exposures are 

shown in Figure 2.4(a-b).  These spectra should reflect only the Ni3+ component.  The 

shape of the principal Ni 2p3/2 line is similar to the experimental spectra observed for Ni3+ 

in NiOOH that is discussed in ref. 26.  The sharp peak located at approximately 853.9 eV 

in both spectra is the result of an incomplete subtraction process. 

 

 
 
Figure 2.4: High-resolution Ni 2p3/2 spectra after subtraction of both the Ni metal and 
NiO components showing the residual spectra of Ni3+ for O2 exposure times of 1 and 
4 minutes at 300oC and 130 Pa. The subtracted spectra are similar to that of NiOOH, 
which is shown in reference [26]. The spike at 853.9 eV in both spectra is due to an 
incomplete subtraction process. 

 

 High-resolution spectra of the O 1s region were also collected and analyzed to 
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exposure (see Figure 2.5(a)) revealed the presence of a doublet that was distorted at the 

higher BE end, thus suggesting the presence of three distinct O species.  The peak centred 

at 529.6 eV was assigned to O2- species bound to Ni2+ in bulk NiO [36,37].  The next 

higher BE photoelectron peak (531.4 eV) has the chemical shift of an O (ads) speciesd 

[38].  A small peak located at 533.1 eV is attributed to the presence of adsorbed O2 (O2 

(ads))d at the oxide surface.  These latter species were shown to be highly concentrated at 

the outer surface by angular dependent XPS (not shown).  The peak at 533.1 eV was not 

labelled as an absorbed water species because ultra pure O2 (< 3 ppm H2O) was used.  In 

addition, prior to all gas exposures, the reaction chamber was scanned for the top 50 

contaminates using a Residual Gas Analyzer (RGA), a quadrapole mass spectrometer.  

The RGA results showed that the water levels in the chamber were typically around 

1.30 x 10-5 Pa, seven orders of magnitude less than the dosing pressure.  With further 

oxidation (see Figure 2.5(b-d)), there is an observably large decrease in the relative 

concentrations of the two adsorbate species compared to the bulk oxide. 

Oxide growth kinetics measurements primarily used the two QUASES™ software 

routines to analyze XPS survey spectra.  Overlayer thicknesses from deposited 

adventitious carbon were first determined by analysis of the Ni 2s region using the 

‘Analyze’ program and Zr L excitation.  The film thicknesses were then modeled using 

‘Analyze’ and the O 1s region of the Al Kα survey spectrum.  Figure 2.6(a-b) show the 

Ni 2s and O 1s regions fitted by QUASES™ ‘Analyze’ for a sample exposed to O2 gas 

for 60 min at 300°C and 130 Pa.  Both spectra in Figure 2.6 show a good overlap of the  

                                                 
d Following publication of this work the O (ads) and O2 (ads) species were reassigned as defective oxygen 
(O (def)) and adsorbed carbonaceous species.  These redesignations were based on observed O/Ni and O/C 
peak area ratios derived from more thorough analyses of the Ni 2p3/2, O 1s and C 1s high-resolution spectra 
(see Chapters 3 and 5). 
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Figure 2.5: O 1s high-resolution spectra following 1, 4, 20, and 60 minute exposures 
to O2.  These four spectra correlate with the four Ni spectra shown in Figure 2.2(a-d).  
There appears to be three distinct oxygen species present (O2-, O (ads), and O2 (ads)).   
As exposure time is increased the contribution from the adsorbed species decreases 
substantially.  These spectra were not corrected for charging. 
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Figure 2.6: QUASES™ ‘Analyze’ modeled peaks from a Ni surface exposed to ultra 
pure O2 at 300°C and 130 Pa for 60 minutes: (a) Ni 2s using Zr L X-ray source; (b) O 
1s using Al Kα X-ray source. 
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energy loss cross-section with the extrinsic loss portion of the scans.  From ‘Analyze’, a 

carbon overlayer of 0.3 nm and an overall film thickness of 4.6 nm were determined.  In 

order to verify the ‘Analyze’ results, film thicknesses were also estimated using the 

Strohmeier equation.  The values obtained with this method were found to be within 0 to 

0.3 nm of the ‘Analyze’ data.  A complete summary of all overlayer and oxide thickness 

data is presented in Table 2.1.  Contrary to what was observed with the XPS survey scans, 

the ‘Analyze’ fits showed that two samples did not contain a contaminant overlayer.  The 

reason for this discrepancy may be due to the use of the higher energy Zr X-ray source, 

which produced much noisier spectra than Al Kα radiation.  For QUASES™ background 

subtractions, the line of best fit is set by eye, thus the increased spectral noise leads to a 

higher error in the overlayer calculations.  Plotting the ‘Analyze’ depth results versus 

exposure time in Langmuirs, using the parabolic, direct, and indirect logarithmic kinetic 

models, determined the reaction kinetics.  The resulting R2 values from the three models 

were 0.94, 0.87, and 0.56, respectively.  The parabolic relationship was found to be the 

best fit for the data; this plot is presented in Figure 2.7. 

The structure of each of the surface oxides was then modeled using QUASES™ 

‘Generate’.  The ‘Generate’ result for the sample oxidized for 60 min and 300°C is 

displayed in Figure 2.8.  Again, there is very good overlap between the experimental and 

the reference spectra within the modeling energy range.  The experimental spectrum was 

best fitted for the ‘island active substrate’ model for Ni metal, and the ‘buried layer’ 

model for the NiO reference spectra.  When the ‘island active substrate’ is selected, only 

the photoelectrons having been emitted from substrate atoms and passed through the 

island overlayers are analyzed [16].  The combination of the ‘island active substrate’ and  
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Table 2.1: Determination of Oxide Thickness (nm) at 300°C and 130 Pa using 
QUASES™ 

Exposure Time 
(min) 

Overlayer 
Thickness 

(nm) 

QUASES™ 
Oxide 

Thickness 
(nm) 

Fraction of 
Surface 

Coverage 

Strohmeier 
Oxide 

Thickness 
(nm) 

1 0.5 1.2 0.8 1.0 
1 0.5 0.6 0.6 0.6 
1 0.2 1.4 0.7 1.2 
1 0.2 1.5 0.9 1.3 
4 0.4 1.5 0.7 1.3 
4 0.2 1.0 0.7 0.8 
4 0.4 1.3 0.8 1.2 
4 0.3 1.8 0.6 1.7 
20 0.4 3.1 0.4 3.1 
20 0.5 3.0 0.5  
60 0.0 4.7 0.8 4.6 
60 0.3 4.2 0.8 3.9 
60 0.0 4.6 0.7 4.5 

 
 
Figure 2.7: Change in overall oxide thickness on Ni metal for O2 doses (Langmuirs 
(L)) at 300oC and 130 Pa as determined by QUASES™ ‘Analyze’.  Results are best 
fitted to a parabolic relationship. The determined R2 value for a parabolic fit was 0.94, 
while R2 values of 0.87, and 0.56 were observed for the direct and inverse logarithmic 
plots respectively. 
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‘buried layer’ models suggests that, following the initial adsorption of O2, oxidation 

begins at localized areas, or by forming islands of oxide on the surface.  These islands are 

separated by adsorbate covered Ni metal (‘island active substrate’) and grow thicker with 

increasing exposure time.  NiO is a p-type oxide, meaning that the mobile species are the 

Ni2+ cations, which can migrate through vacancies or along grain boundaries to the 

surface where they can react with the incoming O2 [2].  The output of the ‘Generate’ 

program also gives a fraction of surface coverage indicating how much of the analyzed 

area (700 x 400 µm) is topped by the oxide/overlayer.  The surface coverage values can 

range between 0 and 1, with the former representing no oxidation at all, and the latter, the 

complete coverage of the spot analyzed.  For the example shown in Figure 2.8, ‘Generate’ 

determined a surface coverage of 0.8, meaning that the oxidized area could be covered by 

either one large island or many smaller ones separated by spaces that are too small for 

XPS to detect under these conditions.  Surface coverage values for the ‘Generate’ fits 

ranged from 0.4 to 0.9; these values are recorded in Table 2.1.  As the surface becomes 

more saturated with O, the islands will begin to coalesce, leading to the eventual 

passivation of the surface.  Finally, this oxide film is covered with a thin layer of 

adventitious carbon, leading to the ‘buried layer’ appearance. 

Oxide growth rate on a single crystal (100) surface was compared to that of 

polycrystalline Ni.  The (100) Ni metal sample was exposed to O2 at the same 

temperature and pressure conditions specified above for 60 min.  Two separate exposures 

produced oxide thicknesses of 0.9 and 1.2 nm.  The average thickness of 1.0 nm is about 

four times less than the average thickness (4.5 nm) found for oxide grown on 

polycrystalline Ni exposed under the same condition.  The oxidation of Ni metal single  
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 crystals has previously been studied following exposures to O2 following doses of up to 

a few hundreds of Langmuirs [5,39].  The faster growth on the polycrystalline surfaces 

must occur primarily via grain boundaries. 

XPS was used to study the influence of the grain orientation of specific metal 

grains on the growth rate of their surface oxides; these measurements were made using 

the 27-µm aperture.  The small size of the aperture compared to the typical grain size of 

150 to 175 µm would suggest that most microanalyses would fall within one grain face.  

For a sample oxidized for 20 min, having an average oxide thickness from Table 2.1 of 

3.0 nm, four separate 27-µm area measurements were made at random points on the 

sample surface.  The oxide thicknesses measured using the Strohmeier equation were 3.0, 

3.1, 3.0, and 3.1 nm.  Thus, it appears that there is no evidence of differential oxide 

 
 
Figure 2.8: The Ni 2s QUASES™ ‘Generate’ result of a Ni metal surface exposed to 
dry O2 for 60 minutes at 300°C and 130 Pa analyzed using Zr L radiation. A very 
good overlap is found between the modeled and the experimental spectra along the 
extrinsic loss portion. 
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growth as a result of grain orientation.  This could suggest that oxide growth is driven by 

a mechanism other than that at the grain face.  While this result indicates an even oxide 

growth, the QUASES™ results suggest otherwise.  This contradiction could arise from an 

island growth that is nanometric in size. 

Any excessive cleaning and annealing of polycrystalline Ni caused the sample to 

undergo oxidation at a significantly reduced rate.  This result is similar to what Haugsrud 

observed, as he found that annealing the surface lowered the oxidation rate by a factor of 

three [40].  Two Ni metal samples were exposed to multiple sputter and anneal cycles 

without repolishing, then oxidized for 60 min at 300°C and 130 Pa.  The surfaces were 

examined using XPS, and oxide thicknesses of 3.1 and 2.7 nm were determined using 

QUASES™.  These films are 32 and 40% thinner than the average oxide thickness of 

4.5 nm found on newly polished Ni surfaces oxidized under the same conditions.  Sample 

areas that had been subjected to more than one cleaning and annealing cycle were found 

to have grains that had transformed into a highly twinned structure.  Polycrystalline 

specimens are thus susceptible to more damage mechanisms during surface preparation 

than are single crystal specimens. 

2.3.2 Reactions at 25°C and 130 Pa 

Similar studies to those above were conducted at 25°C with exposures to O2 for 

periods of 10, 25, 50, and 100 min.  The high-resolution Ni 2p3/2 spectra for all exposures 

were dominated by a strong Ni metal line; as a consequence, the metallic contributions 

were removed just as in the case of the samples oxidized at 300°C.  The resulting Ni 2p3/2 

subtracted spectra are shown in Figure 2.9(a-d).  Based on the interpretation of the Ni 2p 

spectra in Figure 2.3, it appears that even after a 100 min exposure there is still a 
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considerable contribution from Ni3+.  This contrasts with what was observed at 300°C; in 

this case Ni3+ remains an important contributor to transport throughout the process. 

The O1s spectra for the four exposure times at 25°C are shown in Figure 2.10(a-

d).  As with the 300°C exposures, three discrete O species were found:  O2-, O (ads)d, and 

O2 (ads)d.  Compared to the 300°C exposures, a higher proportion of the O present is in 

the adsorbed state, the result of a slower conversion to oxide and the formation of much 

thinner films.  Little change in the relative adsorbate proportions is found in the longer 

exposures, presumably because the oxide is nearing its limiting thickness.  As with the 

300°C samples, the O (ads) peak areas were compared, but this time only a small 

decrease was observed with oxide thickness; this is likely due to the passivation of the 

surface with a thin oxide film. 

Measurement of the oxide growth rate at this temperature again employed the use 

of QUASES™ ‘Analyze’ and followed the same procedure as for the 300°C exposures.  

The ‘Analyze’ oxide thicknesses were all within 0.3 nm of the values obtained using the 

Strohmeier equation.  The results of both analytical methods along with sample overlayer 

thicknesses are summarized in Table 2.2.  Comparison of the oxide thicknesses found at 

25° and 300°C shows a reaction rate four to five times slower at the lower temperature.  

The ‘Analyze’ results were again plotted against O2 exposure in Langmuirs and fit with 

the three kinetic models.  The direct logarithmic relationship gave the best fit, having an 

R2 value of 0.83 (see Figure 2.11), while the parabolic and indirect logarithmic plots gave 

R2 values of 0.78 and 0.65, respectively.  As expected, the growth of oxide on 

polycrystalline Ni metal at 25oC obeys the Mott-Cabrera modela for low temperature 

oxidation [3]. 
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Figure 2.9: High-resolution Ni 2p3/2 Ni metal subtracted spectra showing the 
contributions from Ni2+ and Ni3+ following O2 exposure times of 10, 25, 50, and 100 
minutes at 25°C and 130 Pa.  The subtracted spectra show very little change in oxide 
composition as exposure time is increased. 
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Figure 2.10: O 1s high-resolution spectra following 10, 25, 50, and 100 minute 
exposures to O2.  These were not charge corrected.  These four spectra correlate with 
the four subtracted Ni metal spectra shown in Figure 2.9(a-d).  Three distinct oxygen 
species are present: (O2-, O (ads), and O2 (ads)).  As exposure time is increased the 
contribution from the lattice oxide species increases but there is still a strong 
adsorbate signal.  The spectrum in (a) is noisy because of the very small quantity of 
oxide formed at this stage in the process. 
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Surface oxide structures for the films grown at 25°C were modeled using 

QUASES™ ‘Generate’.  As with the 300oC exposures, the experimental spectra were 

best fit with the ‘island active substrate’ and ‘buried layer’ depth concentration profiles 

for the Ni metal and NiO standards, respectively.  The ‘Generate’ results indicate that 

oxidation is occurring at localized areas on the surface.  Surface coverage fractions for 

the analyzed areas ranged from 0.4 to 1; and are presented in Table 2.2.  Film thickening 

at this temperature is the result of ion movement due to the presence of an electric field 

created by tunnelling electrons [1].  As time progresses, the oxide film thickens until the 

electric field is no longer strong enough to support ion diffusion [1].  As with the 300oC 

results, the ‘buried layer’ appearance of the oxide is due to an overlayer of adventitious C. 

Evidence for localized growth was also sought using XPS imaging, employing a 

specimen that had been exposed to O2 for 10 min at 25°C and 130 Pa.  The images 

showing the NiO and Ni metal distribution near the surface were processed and replotted 

as a distribution of Log INiO/INi.  This is effectively a map of the thickness of NiO on the 

surface, as determined by the Strohmeier equation.  The resulting ‘Strohmeier map’ is 

shown in Figure 2.12(a); the greatest thickness corresponds to the darkest red coloration 

and the thinnest to the darkest blue.  The color scale shows what we believe to be random 

variation in the oxide thickness across most of the image.  However, thicker oxides were 

found in the upper right corner.  Secondary electron and secondary ion images generated 

with a bismuth cluster ion showed that this area contained a large grain that is more 

susceptible to O uptake (see Figure 2.12(b-c)).  This imaging result suggests that there 

could be some dependence on grain surface orientation during oxidation at this 

temperature. 
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Table 2.2: Determination of Oxide Thickness (nm) at 25°C and 130 Pa using 
QUASES™ 

Exposure Time 
(min) 

Overlayer 
Thickness 

(nm) 

QUASES™ 
Oxide 

Thickness 
(nm) 

Fraction of 
Surface 

Coverage 

Strohmeier 
Oxide 

Thickness 
(nm) 

10 0.4 0.2 0.7 0.08 
10 0.5 0.1 1.0 0.03 
10 0.4 0.2 1.0 0.2 
25 0.1 0.4 0.6 0.2 
25 0.5 0.8 0.8 0.7 
50 0.2 0.7 0.4 0.5 
50 0.3 0.9 0.5 0.7 
50 0.5 1.1 0.8 1.0 
100 0.4 1.3 0.6 1.0 
100 0.4 0.9 0.7  

 

 
 
Figure 2.11: Change in overall oxide thickness on Ni metal at 25°C and 130 Pa as 
determined by QUASES™ ‘Analyze’. The results are best fit using a direct 
logarithmic relationship.  The determined R2 value for a direct logarithmic fit was 
0.83, while R2 values of 0.78, and 0.65 were observed for the parabolic and inverse 
logarithmic plots respectively. 
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2.4 Conclusions 

In this paper we were able to show via spectral subtraction that both Ni2+ and Ni3+ 

species are present on Ni oxidized surfaces.  Oxidation of Ni surfaces at 25°C seemed to 

proceed mainly via Ni hole formation at the NiO surface.  Similar findings were observed 

for the initial stages of oxidation at 300°C, however, the mechanism appeared to change 

around 20 min of exposure.  After 20 min, there was a noticeable reduction in Ni3+ 

present, suggesting that O vacancies possibly play a role in ion migration. 

Analysis of O 1s spectra for the two temperature regimes showed the presence of 

three O species:  O2-, O (ads), and O2 (ads).  At 300°C, the contribution from the O2 (ads) 

disappeared with exposure time, whereas at 25°C, it remained relatively constant and in 

significantly higher relative concentrations. 

 
 

Figure 2.12: XPS map of NiO thickness for a Ni metal surface exposed to O2 for 10 
minutes at 25°C and 130 Pa (a).  Oxide thickness is greatest in the neighbourhood of 
grain a in (b).  This grain is known to be more susceptible to oxidation on the basis of 
the O- secondary ion image in (c). 
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QUASES™ analytical algorithms were used not only to determine the oxide 

thickness, but also its surface distribution.  Oxidation at both 25° and 300°C was found to 

occur through ‘island growth’.  QUASES™ is a powerful means of interfacial analysis 

because it not only determines film thickness, but also maps the oxide-metal interface.  

Other methods, such as the Strohmeier formula, are accurate for depth analysis, but 

assume a uniform coverage of oxide, which may not always be accurate.  Oxidation 

kinetics for the 25° and 300°C experiments determined using QUASES™ measurements 

were found to be direct logarithmic and parabolic respectively. 

Comparison of the oxide kinetics on an active single crystal Ni surface with a 

polycrystalline Ni surface revealed a decidedly higher oxide growth rate on the 

polycrystalline surface.  This indicates that ion transport on the latter surface is likely to 

occur mostly at grain boundaries, rather than at the grain face.  Our small spot and 

imaging studies do not, however, show localized growth at the grain boundaries; rather, 

the oxide thicknesses on samples exposed to 300° and 25°C appear to be mostly even.  

This suggests that, following diffusion to the surface, ion transport occurs readily across 

most grain faces, and that the surface orientation plays a relatively small part in 

accommodating the transported ions to a place exchange reaction.  Evidence of some 

grain dependent growth was, however, observed on a sample surface reacted at 25°C. 

The absence of localized growth, as determined by micro XPS, should not be 

confused with the evidence of localized growth, as determined by QUASES™.  The latter 

phenomenon could be very short range (on a nanometric scale) responding to early 

formation of islands [4] following nucleation of an oxide structure. 
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Samples that had been prepared by multiple annealing steps were found to be 

transformed to a highly twinned grain structure and a much-reduced rate of surface 

oxidation.  This could result in the number of high angle boundaries available for ion 

transport. 
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Chapter 3 The study of nickel metal oxidation by water vapour 

3.1 Introduction 

The reaction of Ni metal surfaces with H2O vapour has been found to be much 

slower than with gaseous O2 [1].  This difference is important in view of the corrosion-

resistant nature of Ni and its alloys.  Previous studies of the Ni-H2O reaction have used 

single crystals and low doses and dose rates of H2O [1-6]. 

The initial reaction of single crystal Ni (100) surfaces and H2O vapour was 

studied using XPS by Benndorf et al., particularly at low temperatures [2-3].  At 

temperatures below -120oC adsorbed H2O molecules (H2O (ads)) were the sole source of 

an O 1s signal with a binding energy (BE) that increased with increasing dose (533.1–

534.4 eV) [3].  This shift was attributed to a decrease in the O-surface interaction due to 

the formation of multiple layers of H-bonded clusters of H2O molecules.  At higher 

temperatures, formation of an O 1s oxidic peak was observed, along with peaks in the BE 

range of 532.6-532.8 eV.  The possibility of adsorbed OH (OH (ads)) was eliminated 

using isotope exchange measurements.  It was concluded that the reaction occurred by 

H2O (ads) dissociating into adsorbed O (O (ads)) and H2 gas. 

The reaction of H2O vapour with clean as well as O pre-covered single crystal Ni 

(210) metal surfaces was also studied by Carley et al. using XPS at low temperatures [6].  

After adsorption of H2O at temperatures below -100oC, heating of the surface resulted in 

an O 1s peak at 531.5 eV, which is attributed to the formation of OH (ads) species.  The 

group of Norton et al. also exposed clean and pre-covered single crystal Ni (100) and 

(111) metal surfaces to H2O vapour as well as O2 gas and air containing H2O at 

temperatures near 20oC [1].  The reactivity of clean single crystal metal surfaces was 
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determined to be almost 103 times less reactive towards H2O vapour than O2 gas.  

Reactions of clean or pre-oxidized Ni with H2O vapour at ambient conditions produced a 

new peak at 531.3 eV [1].  The presence of any Ni(OH)2 species was eliminated using 

nuclear reaction analysis (NRA).  Rather, the authors proposed a Ni2O3-like species with 

some involvement by H.  

A study from this laboratory of the equivalent Fe-H2O vapour reaction [7-8] has 

identified OH groups as one product of the reaction and has suggested that their 

subsequent decomposition produces H atoms that could assist in blocking migration of 

cations to the surface [7-9]. 

From the studies described above it can be seen that the surface products of this 

very important Ni reaction are still ambiguous.  Much of this is due to differing 

interpretations of XPS O 1s spectra of the products.  Such spectra are potentially the 

single most useful means for identifying different products, but unfortunately there have 

been large uncertainties both with the species represented as well as with their line 

positions.  

This paper reports another study of the Ni-H2O vapour reaction.  In addition to a 

study of the kinetics of oxide growth over an exposure regime much wider than the 

previous studies, the present work undertakes a detailed analysis of possible 

interpretations of the O 1s spectra associated with each reaction.    

Most of the surface characterization done in this work was carried out using XPS 

and algorithms developed by Tougaard [10].  These algorithms have been incorporated 

into a software package called QUASES™, which is separated into two analytical 

routines ‘Analyze’ and ‘Generate’ [11].  The ‘Analyze’ program can be used to determine 
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the thicknesses of surface overlayers, such as oxide films, by modeling the depth from 

which the detected photoelectrons originated.  The ‘Generate’ program maps the atomic 

distribution throughout the surface using a combination of reference spectra whose 

extrinsic backgrounds have been modified as a result of the depth from which they are 

located [11-12].  Similar oxidation studies using Ni and O2, as well as Fe and O2, and Fe 

and H2O have been completed using this same program [7-8,12-16]. 

In this paper the oxidation of Ni metal surfaces was studied following doses of up 

to 3.0 x 1010 Langmuir (L) of H2O vapour at pressures around 130 Pa and temperatures of 

25oC and 300°C.  The pressure of the vapour reactant used here is many orders of 

magnitude higher than those used in most surface reaction studies.  Pressure differences 

have been shown to change the reaction mechanism in other surface oxidation studies 

[13,17].  In fact, the pressures used here are within a few orders of magnitude to those 

used in liquids. 

3.2 Experimental 

Polycrystalline Ni metal samples were cut into 3.4 mm thick discs from a 

polycrystalline rod (Alfa Aesar, 99.995% pure) and one face was polished to a mirror 

finish using 0.05 µm γ-Al2O3 paste.  The size of the grains found on each surface 

typically ranged from 70-175 µm in diameter.  From a qualitative analysis of texture 

using SEM to compare channeling contrast, the distribution of contrasting grain shades 

appeared to be relatively even.  From a previous study it was suggested that grain 

boundaries play a dominant role in the outward transport of Ni cations and that the 

character of the boundaries is likely to play a more important role here than the 

orientation(s) of the grain faces themselves [14].  After polishing, the samples were 
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sonicated in methanol and then placed into an isolated chamber in a Kratos AXIS Ultra 

XPS having base pressures ranging between 4 x 10-6–7 x 10-7 Pa for surface cleaning.  

All Ni metal samples were Ar+ sputtered for 15 minutes using a 4 kV beam with an 

emission current of 15 mA.  Following sputter cleaning, the samples were annealed at 

600oC for 30 minutes.  The roughness of the surfaces following ion bombardment and 

annealing was not measured however, examination of these surfaces showed brightened 

regions where the sputtering had occurred.  During the annealing process the chamber 

pressure increased to around 3 x 10-5 Pa.  To verify that an atomically clean surface had 

been obtained (no detectable impurities) the samples were transferred under vacuum to an 

analytical chamber having pressures close to 7 x 10-7 Pa where XPS survey scans were 

collected.  The survey scans showed that surface contamination from either O or C was 

no more than 0.3 atom %.   

All oxidation experiments were carried out in a reaction chamber attached to the 

XPS instrument having a base pressure of 7 x 10-6 Pa.  Prior to any vapour exposures, a 

Residual Gas Analyzer (RGA), a quadrapole mass spectrometer, was used to monitor the 

amount of contaminant gases present.  The Ni metal surfaces were then exposed to doses 

of H2O vapour that had been heated to remove as much O2 and CO as possible.  Any 

remaining contaminant gas was removed through multiple freeze-pump-thaw cycles.  

After several cycles, the amount of O2 present in the H2O container was undetectable by 

RGA analysis.  The H2O vapour exposures were carried out at 25oC and 300°C for doses 

of 1.2 x 109, 3.0 x 109, 3.6 x 109, 8.4 x 109, and 3.0 x 1010 La.  The pressures in the 

reaction chamber were measured using a combination Pirani and Penning gauge. 

                                                 
a Ni metal surfaces were exposed to H2O vapour at a constant pressure of ~ 130 Pa for 20 (1.2 x 109 L) , 50 
(3.0 x 109 L), 60 (3.6 x 109 L), 140 (8.4 x 109 L), and 500 (3.0 x 1010 L) min. 
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All Ni metal surfaces were analyzed using both monochromatic Al Kα and 

achromatic Zr Lα X-ray sources.  The XPS survey scans were collected using the 

following parameters:  hybrid focussing lens, pass energy = 160 eV, an energy step 

size = 0.7 eV, charge neutralizer = 1.6 A and 2.4 eV, and the slot beam size (700 x 300 

µm).  The Al Kα spectra were taken over a binding energy (BE) range = 1100–0 eV, a 

scan time = 180 s, and the number of sweeps = 10.  The Zr Lα excited scans were 

acquired over a BE range = 1800–0 eV, a scan time = 360 s, and the number of sweeps = 

20.  High-resolution XPS analysis of the Ni 2p, O 1s, and C 1s envelopes used Al Kα 

excitation only at pass energy = 20 eV over energy windows ranging between 20-40 eV, 

depending on the element being analyzed.  An analysis region of 700 x 300 µm would 

encompass an area involving 8-10 separate crystals based on the grain sizes stated above. 

CasaXPS Version 2.3.14 was used for the analysis of all the XPS spectra [18].  

The surface at.% of each element present was determined using XPS survey spectra.  The 

total amount of Ni on each surface was calculated using the area of the Ni 2p3/2 peak only 

[18].  To monitor the oxide composition, high-resolution XPS was employed on the Ni 2p, 

O 1s, and C 1s regions.  Relative elemental concentrations were determined using 

Scofield cross-sectionsb corrected for the kinetic energy of the particular photoelectrons.  

This was particularly useful for estimating surface coverage of the metal. 

It was determined that each Ni surface contained small amounts of adventitious 

carbon (C (adv)) on the surface; this was used for spectral calibration as the C (adv) peak 

was set to a BE of 284.8 ± 0.1 eV.  Each C 1s spectrum also showed the presence of three 

                                                 
b All elemental concentrations were calculated using relative sensitivity factors (RSFs) specifically derived 
for use with a Kratos Axis Ultra Spectrometer and not those calculated by Scofield.  The origin of these 
RSF values is discussed in Chapter 5. 
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additional C species centred at 286.3 ± 0.2 eV, 287.7 ± 0.1 eV and 288.6 ± 0.1 eV (see 

Figure 3.1(a)).  These peaks are assigned to alcohol (−COH), carbonyl (−CO), and ester 

(−COO−) functional groups respectively [19].  The identification of these adsorbate 

species becomes important when analyzing the O 1s spectra (see Figure 3.1(b)), as they 

will also add to the observed photoelectron signal here, and thus complicate the analysis 

of this spectrum.  Four small peaks associated with O-containing adsorbates are visible at 

higher BE in most O 1s spectra; all their intensities are tied to those in the corresponding 

C 1s spectrum.  Figure 3.1(c) shows an expanded view of this region illustrating more 

clearly the BE positions of the −COH (532.7 ± 0.2 eV), −CO (532.1 ± 0.1 eV) and 

−COO− (532.1 ± 0.3 eV, 533.6 ± 0.1 eV) adsorbate species [19]. 

The CasaXPS software was also used for spectral subtractions; in these the 

contribution from the Ni metal substrate was removed to reveal the underlying structures 

resulting from oxidation.  Each subtraction entailed a normalizing of the intensity of a 

clean Ni metal reference component having a BE of 852.6 eV (see Figure 3.2(a)) with the 

intensity of the same peak found on the oxidized scans.  A second subtraction was then 

undertaken to remove the NiO contribution this time by normalizing the intensity of the 

main NiO line at 854.0 ± 0.2 eV.  Care had to be taken to separate the correction of the 

charging components (oxides) from those of the metallic substrate.  An identical method 

for spectral analysis was reported in previous publications [14,20].  Figure 3.2(b-c) also 

contains the high-resolution spectra of powdered polycrystalline NiO and Ni(OH)2.  Both 

powders contain Ni2+ species, however the shapes of the two main lines are distinctly 

different [21].  Spectra of possible Ni3+ structures, such as γ-NiOOH and β-NiOOH are 

presented in Figure 3.3(a-b). 
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Figure 3.1: High-resolution spectrum of the C 1s region of a Ni metal surface exposed 
to H2O vapour showing the BE shifts of the C (adv), −COH, −CO, and −COO− species 
(a).  The corresponding peak positions in the O 1s region for the −COH, −CO, and 
−COO− species are shown in (b), with an expanded view of this region shown in (c). 
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 Comparison of the Ni spectra in Figures 3.2 and 3.3 shows an overlap between 

the Ni 2p1/2 peak of the clean metal scan with the satellite structure in the Ni 2p3/2 portion 

of the NiO, Ni(OH)2, and both NiOOH standard spectra.  This overlap  must be taken into 

account to accurately analyze surfaces containing Ni metal along with one or more 

oxidized Ni species.  All Ni 2p envelopes collected as a part of this study were subject to 

analysis using the Ni metal, NiO, Ni(OH)2 and NiOOH peak fitting parameters presented 

recently by Biesinger et al., where the BE of each peak was allowed to drift by ± 0.1 eV 

[20].  The fits developed by Biesinger et al. employ an off-set in the Shirley background 

to more accurately model the Ni 2p spectra of surfaces containing both metallic and 

oxidized species. 

The corresponding O 1s spectra for the NiO and Ni(OH)2 powders are shown in 

Figure 3.2(d-e).  The NiO powder appears to contain two major O species at 529.3 eV 

and 531.0 eV.  The BE of the first peak is assigned to O bonded within a regular oxide 

crystal (O2-) and the second is assigned to oxygen atoms in positions adjacent to Ni 

vacancies (O (def)) within the oxide structure.  Similar assignments of this peak have 

been made previously by several other authors [1,20,22-25].  In the case of the Ni(OH)2 

powder only one major O species at 531.1 eV is evident and is assigned to a hydroxide 

bound to Ni (OH-).  Fitting of the γ-NiOOH O 1s spectrum (see Figure 3.3(c)) showed 

both O2- and OH- signals at 529.5 eV and 531.1 eV respectively.  The same two O2- and 

OH- components appear in the β-NiOOH spectrum (see Figure 3.3(d)) with BE shifts of 

529.3 eV and 530.8 eV respectively.  All the O 1s envelopes were also fit with the four 

small peaks associated with the C and O adsorbates mentioned previously.  A more 

detailed analysis of these spectra is given in Chapter 5. 
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Figure 3.2: High-resolution Ni 2p3/2 spectra of (a) a clean Ni metal surface, (b) a 
polycrystalline NiO powder, and (c) a polycrystalline Ni(OH)2 powder.  High-
resolution O 1s spectra of (d) NiO and (e) Ni(OH)2.  Part of the metal Ni 2p1/2 line can 
be observed in (a). 
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Figure 3.3: High-resolution Ni 2p3/2 spectra of (a) γ-NiOOH and (b) β-NiOOH 
powders.  High-resolution O 1s spectra of (c) γ-NiOOH and (d) β-NiOOH. 
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Further analysis of the oxidized surfaces was carried out using algorithms that 

were developed by Tougaard [10].  The basis of the Tougaard approach is that 

photoelectrons moving through a surface can undergo multiple scattering events prior to 

escaping to the vacuum phase.  These energy loss interactions lead to the formation of the 

background found on the low kinetic energy (KE) side of the peaks in XPS spectra [10].  

The shape of the background is defined by the distribution of atoms within the near 

surface region.  Modeling of these structures can be undertaken using one of the five 

depth concentration profiles that are included with the QUASES™ software package; 

‘buried layer, ‘island active substrate’, ‘islands passive substrate’, ‘exponential profile’, 

or ‘several buried layers’ [12].  For the purposes of this work both the ‘buried layer’ and 

‘island active substrate’ profiles were employed during surface analysis.  The ‘buried 

layer’ profile models the energy lost by the photoelectrons emitted from atoms contained 

within a homogenous layer as they pass through an overlying material having a different 

composition.  The ‘island active substrate’ models the extrinsic losses of photoelectrons 

emitted from substrate atoms as they pass through overlying islands.  These islands do 

not have to be uniform in size and/or shape [12].  The probability that an electron emitted 

from an atom located at a certain depth will reach the surface is dependent on both a 

material-specific inelastic mean free path (IMFP) and the energy loss cross-section.  The 

latter term simply represents both the likelihood the photoelectron would undergo a 

scattering event as well as the average energy lost per collision [10].  The IMFP values 

for the different Ni-containing species were calculated using the NIST Electron Inelastic 

Mean Free Path Database (Version 1.1) [26] software, which uses the TPP-2M equation 

[27].  Previous IMFP calculations completed by this group were then subsequently 
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shortened by 20% to give the actual photoelectron attenuation length (AL) [14].  It was 

later determined that the IMFPs estimated as part of Ni-O2 work were calculated 

incorrectly.  The current IMFPs calculated as part of this work compare well to the ALs 

presented in reference [14] and are now used for analysis of all oxide films.  The same 

database was used by Biesinger et al. to determine their IMFP values [20].   

Sample oxide thicknesses were calculated with the ‘Analyze’ program using an 

IMFP of 1.4 nm and the O 1s region of XPS survey spectra excited with Al Kα X-rays.  

The oxide surface structures were modeled using ‘Generate’, and the Ni 2s peak collected 

from Zr Lα excited scans.  Each sample was fit using reference spectra acquired from a 

clean polycrystalline Ni metal surface and a sample of powdered polycrystalline NiO.  

Photoelectron IMFPs of 1.4 nm and 1.5 nm were calculated for the metal and NiO 

standards respectively.  All QUASES™ ‘Generate’ analysis used a Ni-specific energy 

loss cross-section that was calculated by Tougaard [14]. 

The QUASES™ ‘Analyze’ results were verified using the Strohmeier method 

[28].  The Strohmeier overlayer equation is given below, 

 

d = λosin θ ln �Nmλm
Noλo

Io

Im
+ 1�   3.1 

 
where d represents the thickness of the overlayer, λo is the photoelectron IMFP, m and o 

denote the metal and oxide components respectively derived from fitted high-resolution 

XPS spectra, N stands for the volume density of metal atoms in either the metal or the 

oxide phase, I is the peak area for either the metal or the oxide, and θ is the take off angle 

of the electrons. 
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For a study using ToF-SIMS, a sample of polycrystalline Ni metal was cut from 

the same rod above and polished with 0.05 µm γ-Al2O3 paste.  Following polishing, the 

sample was sonicated in methanol then introduced into an ION-TOF (GmbH) ToF-SIMS 

IV single-reflection mass spectrometer.  The surface was sputtered using a 3 kV Ar+ 

beam and with 140 nA target current for 8100 s. 

After sputtering, the surface was heated into the range of 300-400oC, and then 

exposed to H2O vapour containing high purity deuterium (D) for 20 minutes (∼ 1.2 x 109 

L) at an average pressure of 130 Pa.  During the dose, the pressure dropped to as low as 

10 Pa, and spiked to as high as 530 Pa for no more than a few seconds.  D2O was used 

instead of H2O because of the high probability of H contamination from within the 

vacuum system.  A shallow depth profile into the surface was collected using the dual 

beam mode, monitoring negative secondary ions.  The analysis beam was a 25 kV pulsed 

Bi+ with a 0.5 pA target current, rastered over a 200 x 200 µm area.  The sputter beam 

was a 3 kV Cs+ rastered over 500 x 500 µm with a target current of 10 nA.  The Bi+ 

analysis region was centred within the Cs+ sputter crater to avoid edge effects.  The ToF 

SIMS results were analyzed using the IONSPEC program [29]. 

3.3 Results and Discussion 

Figure 3.4 contains Ni 2p3/2 high-resolution spectra collected from metal surfaces 

exposed to H2O vapour at 300°C for doses of 1.2 x 109, 3.6 x 109, 8.4 x 109, and 

3.0 x 1010 L.  A small contribution from the metal Ni 2p1/2 peak is visible on all spectra at 

high BE.  With continuing exposure time, an increase in the Ni 2p line shape and 

background was observed as a result of surface oxidation.  The intensity of the Ni metal 
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peak found in the Ni 2p spectra in Figure 3.4 makes it difficult to observe, in its entirety, 

the line shape of the oxidized species.  The metal contribution was therefore removed, 

and the subtracted spectra for the 3.6 x 109, 8.4 x 109, and 3.0 x 1010 L exposures are 

shown in Figure 3.5(a-c).  Subtraction of the metal component from the surface exposed 

to 1.2 x 109 L produced a very noisy spectrum (not shown), indicating that very little 

oxidation has occurred.  From the subtracted spectra, the characteristic shape and BE 

positions of NiO suggests it to be the major non-metal phase present for these doses.  

However, the intensities under the doublet shape of the NiO main line suggest the 

presence of an additional component near 856 eV.  To further investigate the Ni species 

present following H2O vapour exposures the NiO component was removed and the 

resulting spectra are shown in Figure 3.5(d-f).  In all the subtracted spectra two additional 

components near 856 eV and 853 eV were found.  The peak near 856 eV is thought to be 

the result of a Ni3+ species at the very near surface brought on by the presence of Ni 

vacancies.  A similar result had been observed following the exposure of Ni metal 

surfaces to O2 gas at 25oC and during the initial stages of reaction at 300°C [14].  The 

sharp peak near 853 eV is thought to be the result of S contamination.  All of the oxidized 

surfaces were found to contain between 1 to 5% S.  Although no high-resolution analysis 

of the S 2p region was undertaken the BE associated with these S species from XPS 

survey spectra was found to range between 162.1 eV to 162.9 eV indicative of a NiS [30].   

From the subtraction results shown above it is evident that any analysis of the Ni 

2p envelopes is complicated by the presence of Ni metal, Ni2+ (from NiO), Ni3+ (from 

defective NiO) and NiS on each surface.  Fitting of the Ni 2p spectra entailed using 

contributions from Ni metal, NiO and NiOOH components [20].  The NiOOH component  



71 
 

 
 

   

 
 

Figure 3.4: High-resolution Ni 2p3/2 spectra collected after (a) 1.2 x 109 L, (b) 3.6 x 
109 L, (c) 8.4 x 109 L, and (d) 3.0 x 1010 L of exposure to H2O at 300°C.  A small 
contribution from the metal Ni 2p1/2 peak is visible on all spectra. 
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Figure 3.5: Ni 2p3/2 spectra with the Ni metal component subtracted following 
exposures of (a) 3.6 x 109 L, (b) 8.4 x 109 L, and (c) 3.0 x 1010 L of H2O vapour.  A 
doublet structure of the main line is visible, suggesting the formation of NiO.  The 
resulting spectra following removal of the NiO contributions for doses of (d) 3.6 x 109 
L, (e) 8.4 x 109 L, and (f) 3.0 x 1010 L of H2O vapour are also shown.  A small signal 
from NiS is also visible at the low BE end of the spectrum.  The remaining Ni signal 
resembles that of NiOOH, a Ni3+ containing material. 
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was chosen to represent the defective NiO because it contains Ni3+ species and has a 

similar line shape to the subtracted spectra shown in Figure 3.5(d-f).  The surface 

percentages calculated for the Ni metal, Ni2+ and Ni3+ species obtained from these peak 

fittings are presented in Table 3.1.  It appears that following doses of 3.6 x 109, 8.4 x 109, 

and 3.0 x 1010 L each surface contains between 3 to 5 % Ni3+ (see Figure 3.4(b-d)).  For 

the case of the lowest dose, a Ni3+ component of around 1% with a large uncertainty was 

determined.   

 
Table 3.1: Near-surface compositions of Ni and O species for surfaces exposed to 
H2O vapour at 300°C. 

Dose (L) 

Ni 
metal 
(%) 

Ni2+ 
(%) 

Ni3+ 
(%) 

Ni2+ + 
Ni3+ 
(%) 

O2- 
(%) 

O 
(def) 
(%) 

O2- +  
O (def) 

(%) O/Ni 
         

1.2 x 109a  71 - 1 1 - 1 1 1 
3.6 x 109 46 12 4 16 8 10 18 1.1 
3.6 x 109 41 14 5 19 9 11 20 1.1 
8.4 x 109 26 20 3 23 16 8 24 1.0 
8.4 x 109 26 18 5 23 13 14 27 1.2 
3.0 x 1010 26 20 5 25 15 14 29 1.2 
3.0 x 1010 20 21 4 25 16 12 28 1.1 

a Large uncertainty in the measurement due to the small amount of oxide present. 
 

Analysis of the O 1s envelopes collected from surfaces subjected to H2O 

exposures of 3.6 x 109 L or greater showed two major peaks at 529.4 ± 0.1 eV and 531.2 

± 0.1 eV (see Figure 3.6(b-d)).  The first peak is assigned to O2- and the second peak is 

believed to be the result of an O (def) species.  When the combined intensities of both the 

O2- and O (def) species are compared to the surface Ni2+ and Ni3+ percentages obtained 

from the Ni 2p analysis, O/Ni ratios of close to 1 are observed (see Table 3.1).  This 

result suggests that the films formed here are similar in structure to that of the reference 

NiO (see Chapter 5).  The peak attributed to O (def) cannot represent a bound OH- 
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species since reference OH- compounds studied had O/Ni ratios between 1.6 and 2.0 (see 

Chapter 5).  For the O 1s spectrum collected following a dose of 1.2 x 109 L the peak at 

531.3 eV was assigned to O (def).  The O/Ni ratio calculated for this surface was found to 

be 1 (see Table 3.1).  In this case the presence of an adsorbed O species cannot be 

completely ruled out due to both the large uncertainty in the Ni 2p fit above and the 

QUASES™ analysis described below.  There is no evidence for the presence of H2O (ads) 

on any of these surfaces at this temperature.  This suggests that any H2O reactant 

dissociates quickly on the surface and is not observed as an intermediate. 

 The oxide thicknesses on all samples exposed to H2O vapour at 300°C were 

calculated using QUASES™ ‘Analyze’; the results are tabulated in Table 3.2.  No 

‘Analyze’ data was reported for the surface exposed to a dose of 1.2 x 109 L, as the 

background could not be modeled.  This indicates that either, very little oxide was formed, 

or that an adsorbed O species is present here.  The overlayer thickness for this sample 

was calculated using the Strohmeier equation.  From Table 3.2, exposures of 3.6 x 109 L 

of H2O vapour at 300°C lead to a determined average oxide thickness of 0.6 nm.  In a 

previous publication by our group, the same dose of O2 molecules at 300°C produced 

films averaging 4.5 nm thick [14].  It is evident that the oxides grown following 

exposures to H2O vapour are much thinner compared to similar doses of O2.  Further 

examination of the ‘Analyze’ results shows that there was very little change in the oxide 

thicknesses at doses of greater than 8.4 x 109 L.  It appears that the oxidation rate has 

reduced significantly between these two exposures, and the surface is becoming 

passivated. 
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Figure 3.6: High-resolution O 1s spectra for exposures of (a) 1.2 x 109 L, (b) 3.6 x 109 
L, (c) 8.4 x 109 L, and (d) 3.0 x 1010 L.  Two O species bound to Ni are proposed: O2-, 
O (def), along with −COH, −CO, and −COO− adsorbates.  The spectrum in (a) is 
noisy due to the small amount of O present. 
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Table 3.2: Calculated film thickness and surface coverage using QUASESTM and 
Strohmeier equation. 

Dose of H2O 
vapour 
(L) 

‘Analyze’ 
oxide 

thickness 
(nm) 

‘Generate’ 
oxide 

thickness 
(nm) 

‘Generate’ 
oxide surface 
coverage (%) 

Strohmeier 
oxide 

thickness 
(nm) 

1.2 x 109a - - - 0.2 
3.6 x 109 0.6 0.6 20 0.5 
3.6 x 109 0.7 0.6 40 0.6 
8.4 x 109 1.2 1.2 75 1.1 
8.4 x 109 1.3 1.3 65 1.2 
3.0 x 1010 1.4 1.4 75 1.2 
3.0 x 1010 1.3 1.3 80 1.4 
a Surface overlayer calculated with the Strohmeier equation. 
 

All Ni surfaces oxidized at 300°C were also subject to analysis using QUASES™ 

‘Generate’ and modeled overlayers of NiO.  Figure 3.7 shows a representative fit for a Ni 

surface exposed to H2O for a dose of 3.0 x 1010 L.  The best fit was obtained using the 

‘island active substrate’ depth profile for the Ni metal reference spectrum and the ‘buried 

layer’ depth profile for the NiO reference spectrum.  Here there is a very good overlap 

between the reference and experimental spectra within the modeling KE range 940 eV – 

1060 eV.  The peak centred near 1033 eV is assigned to Ni 2s photoelectrons in the Ni 

metal and NiO reference spectra, as well as in the experimental spectrum.  A peak found 

near 965 eV on both the NiO reference and experimental spectra is the result of a Na 

impurity.  All of the oxidized surfaces were modeled using these same parameters, and 

representative depth profiles of the cross-sections of the surface regions following 

exposures of 3.6 x 109, 8.4 x 109, and 3.0 x 1010 L are shown in Figure 3.8.  The 

‘Generate’ analysis suggests that oxidation proceeds through island growth across the 

surface with the formation of localized NiO clusters.  The advantage to using the 

‘Generate’ program is that it allows for a more detailed modeling of the near surface.   
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Figure 3.7: QUASES™ ‘Generate’ fit for a Ni metal surface exposed to H2O vapour 
for a dose of 3.0 x 1010 L.  The experimental spectrum was fit using reference spectra 
acquired from a clean Ni metal surface and polycrystalline NiO powder.  The surface 
was modeled using the ‘island active’ profile for the Ni metal component and the 
‘buried layer’ profile for the NiO powder.  The peaks located near 1033 eV and 965 
eV are assigned to Ni 2s and Na 1s photoelectrons respectively. 
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Figure 3.8: Depth profiles through the near surface areas of Ni metal samples exposed 
to H2O vapour for (a) 3.6 x 109 L, (b) 8.4 x 109 L, and (c) 3.0 x 1010 L.  There is one 
distinct oxide phase identified: NiO and the ‘Generate’ analysis in all cases indicated 
island oxide growth. 

 

While both ‘Analyze’ and ‘Generate’ can be used to accurately model non-uniform 

overlayers the latter program also yields compositional information.  ‘Generate’ uses 

reference spectra collected from samples with known composition to map the in-depth 

concentration profile of atoms in a surface [10-12].  The results show that with increasing 

vapour exposure the oxide islands cover more of the analyzed area.  Following doses of 

8.4 x 109 and 3.0 x 1010 L average surface coverages of 70 and 80 % were determined.  

Comparison of both the QUASES™ ‘Analyze’ and ‘Generate’ results to the Strohmeier 

calculated values show very close agreement of film thickness.  All QUASES™ 

‘Generate’ data is shown in Table 3.2. 

The shallow SIMS depth profile collected from a surface exposed to D2O for 

approximately 1.2 x 109 L is shown in Figure 3.9.  The point labelled (A) represents the 

oxide/bulk metal interface that was reached after about 100 s of sputtering as the signals 
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from each secondary ion fragments has become constant.  The D fragment is clearly 

associated with a species at or near the outer surface, and the signal diminishes sharply 

with depth into the surface.  In the case of the Ni-D2O reaction, it appears that the D is 

confined to the outer atomic layers. 

 

 
 

Figure 3.9: ToF-SIMS depth profile of a polycrystalline Ni metal surface exposed to 
approximately 1.2 x 109 L of D2O vapour in the temperature range of 300-400°C.  The 
negative secondary ions monitored were D-, 16O-, NiO-, 58Ni-, and 12C-. 

 

 The oxide thicknesses measured by QUASES™ were plotted against dose using 

the three kinetic models [31-34] parabolic (R2 = 0.99), direct logarithmic (R2 = 0.98), and 

inverse logarithmic (R2 = 0.80).  The logarithmic model seems more sensible in view of 

the evidence for Ni3+ hole formation.  The thickness measured for the highest H2O dose 

does not fit the same mechanistic regime; from this dose it appears that the surface has 
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curves for Ni exposed to O2 at 300°C [14] and H2O at 300°C (see Figure 3.10).  For the 

O2 exposures the reaction was found to follow a parabolic relationship with dose and the 

rate of growth for the O2 reaction is four times that for the initial stages for the H2O 

vapour reaction.  Second, there is no evidence for termination of reactivity for the O2 

reaction (at least within this dose range), while this is clearly evident for the H2O reaction 

after the formation of a thin oxide film.  Finally, the H2O reaction only begins to cause 

detectable oxide growth after a very large dose. 

 

 
 
Figure 3.10: Comparison of oxide growth curves for Ni metal reacted with O2 [35] 
and H2O.  The oxide thicknesses in each case are plotted versus dose1/2. 
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BE window shown here.  Fitting of the Ni 2p envelope indicates that very little oxidized 

Dose
1/2

 (x 10
3
)

0 20 40 60 80 100 120 140 160 180

O
x

id
e 

T
h

ic
k

n
es

s 
(n

m
)

0.0

1.0

2.0

3.0

4.0

5.0

O2

H2O



81 
 

 
 

Ni is present.  The corresponding O 1s spectrum has a peak at 531.1 eV, but in this case 

there is no equivalent amount of oxidized Ni.  We therefore assign this to an oxidic 

species adsorbed on the metal, prior to its place exchange and incorporation as an oxide.  

The existence of an O (ads) is unlikely: our previous study of Ni oxidation with O2 

showed that this species is highly reactive, with oxide nucleation occurring after 

relatively small doses [14].  Thus, the oxidic species is likely to be an OH (ads).  Its 

presence suggests that its rate of conversion to an oxide is much slower at this 

temperature compared to 300°C as no detectable oxide has formed following this dose. 

A comparison of the H2O water reaction processes on clean Fe [7] and Ni surface 

under high flux is shown in Figure 3.12.  Although the temperature used for the Fe 

reaction (150oC) differed from that used for Ni, the effects of temperature on the oxide 

thickness versus dose are not important on the scale shown.  The most important 

conclusion is that the time taken to begin nucleation and growth of oxide on Ni is much  

 

 
 
Figure 3.11: High-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected following a 
H2O vapour exposure of 3.0 x 109 L at 25oC.  There is no evidence to suggest any Ni2+ 
or Ni3+ has formed.  The O 1s scan does show the presence of four O species:  OH 
(ads), −COH, −CO, and −COO−.  The start of the Ni 2p1/2 line is visible at high BE. 
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 longer than for Fe.  In the cases of both Fe and Ni oxidized under high flux conditions, 

the recombination and desorption reactions compete successfully with place exchange for 

most reactant species on the surface.  The lack of spectral evidence for the presence of 

any H2O (ads) species on these surfaces suggests quick dissociation of this reactant upon 

interaction with Ni metal at both 25oC and 300°C.  On the basis of these observations we 

propose that the H2O quickly dissociates into OH (ads) and H (ads) species.  However, 

the initial formation of a thin oxide film was found to occur much slower as compared to 

the similar exposures of O2 to Ni where the reactive intermediate was shown to be O (ads) 

[14] (see Figure 3.10).  The rate-determining step for this Ni-H2O reaction is thought to 

be the slow place exchange of an OH (ads) with Ni metal and subsequent loss of H.  

Some of this H may become trapped in the oxide vacancies (Ni holes) and retard the 

migration of such vacancies, thus slowing the oxide growth even further.  Analysis of the 

depth profile collected with the ToF SIMS did show the presence of some H at the 

surface.  A similar explanation was also used to explain the reduction in oxidation rate of 

Fe surfaces following exposure to H2O vapour [7-9]. 

Examples showing the stability of OH (ads) species on transition metal surfaces 

are available in the literature [6,36-38].  Andersson et al. have studied the dissociation of 

H2O (ads) on single crystal (110) Cu surfaces following low doses of H2O vapour (< 3.0 

x 107 L) [36-37].  They showed using XPS that within the temperature range of 150oC 

and 250oC the only O species present was that of an OH (ads), while between 0oC and 

150oC both H2O (ads) and OH (ads) were present.  A similar result was also reported by 

Schiros et al. on single crystal (111) Pt surfaces exposed to low doses of H2O vapour at 

temperatures below 0oC [38]. 
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Figure 3.12: Comparison of the rates of oxidation of polycrystalline Ni metal surfaces 
exposed to H2O vapour at 300°C with the oxidation of polycrystalline Fe surfaces 
dosed with H2O at 150oC [39].  The rate of Ni oxidation is found to be much slower 
when compared to that of Fe. 

 

 In the case of the Ni-H2O reactions carried out at 300°C described above there 

was no spectral evidence to support the presence of any OH (ads) species on the metal 

surfaces (see Figure 3.6).  These surfaces were subjected to much larger doses (≥ 1.2 109 

L) than the Cu and Pt single crystals [36-38].  It is therefore possible that any OH  

(ads) species that may have been present has reacted to form an oxide.  The O 1s 

spectrum (see Figure 3.11(b)) collected from a Ni surface exposed to H2O vapour at 25oC 

did show the presence of OH (ads) at this temperature.  However, unlike with the cases of 

Cu and Pt a peak resulting from H2O (ads) was not detected.  Heras et al. have shown that 

H2O (ads) readily undergoes desorption from Ni metal and Ni oxidized surfaces even at 

low temperatures [4-5]. 
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The termination of this reaction was found to occur following the formation of 

very thin films.  We propose that the decomposition of OH (ads) cannot be sustained in 

the absence of a metallic surface.  Therefore after the metal phase becomes effectively 

unavailable to an OH (ads) reactant, the reaction is terminated and the surface is 

passivated.  This could correspond to the 1-1.4 nm thick film of NiO observed here.  This 

conclusion is supported by the work of Heras et al. in which they showed that H2O (ads) 

would decompose on Ni metal, but not on oxidized or passivated surfaces [4-5].  This 

result could have implications for Ni surfaces in high temperature steam conditions.  

Under reducing conditions, where no O is present, the surface layer would be expected to 

be composed of a very thin film of oxide that does not grow with extended exposure.  

The rate of reaction of Fe and H2O is much faster when compared to that of Ni metal.  In 

the case of the Fe reaction Fe(OH)2 and FeOOH species were found to be stabilized on 

the surface [7-8].  Although it is believed that small amounts of OH (ads) were found on 

Ni, the analogous Ni(OH)2 and NiOOH species were not present.  Such species may act 

to increase the rate of reaction with H2O on Fe, by increasing the number of possible 

reaction pathways. 

3.4 Conclusions 

The initiation and subsequent rate of oxidation of polycrystalline Ni by H2O 

vapour is slower than with O2 gas and is limited to a few surface atomic layers under the 

conditions studied.  What oxidation occurs is the result of a reaction of OH (ads) with 

metallic Ni to form NiO and H, some of which is incorporated in the film.  The reaction 

terminates after all metallic sites are covered.  The rate at which H2O is converted to 

oxide is many orders of magnitude slower on Ni than it is on Fe under similar conditions. 
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Chapter 4 X-ray photoelectron spectroscopy studies of reactions on chromium 

metal and chromium oxide surfaces 

4.1 Introduction 

An understanding of the reactions that occur on Cr surfaces is important as the 

element is added to many materials to increase their corrosion resistance.  At 

temperatures below 400°C thin Cr2O3 film growth on metallic Cr has been shown to 

follow a Cabrera-Mott model [1-6], where oxidation is driven by an electric field created 

by electrons tunnelling through the oxide film from the Cr metal substrate.  Cations 

and/or anions are mobile in this electric field and move through defect sites and grain 

boundaries, resulting in the formation of thin oxide films [1-5].  It has been shown that 

Cr2O3 is primarily a p-type oxide where cations are most mobile, however some anion 

migration has also been identified [1-6]. 

This paper presents an XPS study of Cr metal surfaces following reactions with 

O2 gas, H2O vapour, and in an aqueous solution.  This work was done to provide a more 

complete base for the subsequent study of surfaces of a Ni-Cr (20%) alloy subjected to 

aqueous corrosion at controlled electrochemical potentials and temperatures.  XPS is 

useful for such studies as it provides both compositional and chemical state information 

over an information depth of ∼ 5 nm − a thickness encompassing both the metal substrate 

and the surface oxides.  The XPS spectra of Cr oxides are rich in additional structure 

from multiplet splitting; previous papers have provided significant details on these 

spectral structures [7-11], but additional information regarding both Cr2O3 and Cr(OH)3 

spectral features and elemental intensity ratios have been obtained in this work.  Using 

this information, surfaces of polycrystalline Cr metal following gas phase reactions with 
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O2 or H2O at 300°C could be shown to contain a sub-stoichiometric Cr2O3
 (Cr2+δO3-δ) 

component.  By contrast, during aqueous oxidation of a NiCr alloy, only Cr2O3 and 

Cr(OH)3 contributions were detected. 

4.2 Experimental 

 All XPS analysis was carried out using a Kratos Axis Ultra spectrometer employing 

a monochromatic Al Kα (15 mA, 14 kV) X-ray source.  The work function and the 

dispersion of the instrument were calibrated to give metallic Au 4f7/2 and Cu 2p3/2 signals 

of 83.95 eV and 932.63 eV respectively.  All XPS analysis employed the hybrid-focusing 

lens, a scan time of 180 s, and an analysis area of 700 x 300 µm.  Differential surface 

charging on insulating samples was minimized using the Kratos charge neutralizer 

system with a filament current between 1.7-1.8 A and a charge balance of 2.8 V.  Survey 

spectra were collected at a pass energy of 160 eV with a 0.7 eV energy step over a 

binding energy (BE) range of 1100-0 eV.  Analyses of the Cr 2p, O 1s and C 1s 

envelopes were carried out at a pass energy of 20 eV, an energy step size of 0.05 eV,  

over energy ranges of 595-565 eV (30-70 sweeps), 540-520 eV (5-15 sweeps), and 295-

275 eV (10-20 sweeps) respectively.  Pressures near 5 x 10-7 Pa were observed in the 

analytical chamber during surface analysis. 

 A polycrystalline Cr2O3 powder was obtained from Sigma Aldrich having 99.9 % 

purity.  Polycrystalline Cr2O3 aggregates (∼ 2-3 mm in size) and polycrystalline Cr metal 

pieces (1-25 mm in size) were obtained from Alfa Aesar having purity levels of 99.6 % 

and 99.9 % respectively.  A NiCr rod was obtained from ACI Alloys Incorporated.  

Samples of a Cr2O3 powder were pressed into a double-sided, non-conducting 
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polyethylene polymer prior to XPS analysis to minimize the chance of differential surface 

charging.  The Cr2O3 aggregates were fractured under vacuum in a chamber having a 

base pressure of 1 x 10-6 Pa and then heated in the same chamber for 3 h (plus 30 min 

ramp time) at 550°C.  Samples of Cr metal were prepared for gas phase oxidation by 

polishing to a mirror finish using 0.05 µm γ-Al2O3 paste followed by sonication in 

methanol for 20 min.  Following sonication, the specimens were introduced to the XPS 

system (1 x 10-6 Pa) for surface cleaning.  Surfaces were sputtered for 15 min using a 4 

kV Ar+ ion beam having an emission current of 15 mA followed by annealing at 600°C 

for 30 min.  The respective amounts of O and C present following ion etching were found 

to be less than 5 at.% by XPS.  This amount of contamination could not be removed with 

additional sputtering/annealing cycles. 

 In situ oxidation of Cr metal samples was carried out in an adjacent chamber having 

a base pressure of 7 x 10-5 Pa.  Metallic surfaces were exposed to high purity O2 (99.99 

%) gas for doses of 6.0 x 107 and 2.4 x 108 Langmuir (L) at 300oC and 130 Pa.  

Additional samples were exposed to H2O vapour for doses of 3.0 x 108 L at 300°C and 

130 Pa.  Similar experiments studying the reactivity of Fe and Ni with both O2 gas and 

H2O vapour have been completed in this chamber [12-15].   

 A metal disk (∼ 3 mm thick) was cut from the polycrystalline NiCr rod and prepared 

by polishing to a mirror finish using 0.05 µm γ-Al2O3 paste followed by sonication in 

methanol for 20 min.  The sample was oxidized electrochemically at 150°C in an 

autoclave for 72 h in 0.001 M (NH4)2SO4 adjusted to a pH of 5 with H2SO4.  The 

potential was held constant at 0 V versus a 0.1 M saturated Ag/AgCl reference electrode. 
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All XPS spectra were analyzed using CasaXPS Version 2.3.14 [16].  The 

background for all spectra was subtracted using a Shirley baseline [16].  The at.% of each 

element present was determined from XPS survey spectra (see Table 4.1).  The  

total amount of Cr present on each surface was calculated using the area of the Cr 2p3/2 

peak only.  In each case the relative sensitivity factor (RSF) [16] for the Cr 2p envelope 

(2.427) was adjusted to a value of 1.618 as the 2p3/2 region contains 2/3 of the total area 

of the Cr 2p peak.  The same correction factor was previously employed by this group to 

study the oxidation of polycrystalline Ni metal surfaces with H2O vapour [15].  This area 

correction was applied because a definitive end to the M 2p3/2 (M = Cr or Ni) region was 

not evident from sample to sample, while a very distinct separation between the 2p3/2 and 

2p1/2 peaks was observed on all survey spectra.  The RSF values for the O 1s and C 1s 

spectra were 0.780 and 0.278 respectively.  Fitting of the high-resolution spectra was 

completed using components having mixed Gaussian-Lorentzian character.  The Cr 2p3/2 

envelopes were best fit using Gaussian (40%)-Lorentzian (60%) line shapes, which are 

denoted as GL(60) in CasaXPS.  The O 1s and C 1s regions were best fit with 

components having GL(50) and GL(30) profiles respectively.  To compare the different 

Cr, O, and C species present the total atomic concentrations (see Table 4.1) were 

corrected using the peak area ratios obtained from the fitting of the respective high-

resolution spectra (see Tables 4.2-4.4).   

All specimens studied as a part of this work were found to contain significant 

amounts of adventitious C (see Table 4.1).  A representative C 1s spectrum collected 

from the Cr2O3-2 powder sample is shown in Figure 4.1.  All C 1s spectra were 

dominated by a strong hydrocarbon (C−C,C−H) signal, which was used for spectral  
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Table 4.1: XPS surface composition in at.% of Cr metal and oxide samples.  

Sample/Treatment 
Composition (at.%) 

Cr O C Other 
Cr2O3-1 (powder pressed into 
a polyethylene tape) 

23.3 47.9 28.8  

Cr2O3-2 (powder pressed into 
a polyethylene tape) 

22.4 48.2 28.6 Na 0.8 

Cr2O3-3 (fractured aggregate, 
heated 550°C, 3 h) 

22.4 45.0 22.5 
Ca 0.6, Cl 0.5, Mg 1.1, Na 5.3, 
Si 2.7 

Cr2O3-4 (fractured aggregate, 
heated 550°C, 3 h) 

22.9 46.8 19.8 
Ca 1.4, Cl 0.6, Mg 0.7, Na 4.8, 
Si 3.0 

Cr(OH)3⋅xH2O (powder 
pressed into a polyethylene 
tape) 

6.4 29.4 63.7 Ca 0.5 

Cr metal (polished, Ar+ 
sputtered, 15 min, annealed, 
600°C, 30 min) 

92.1 3.7 1.9 Ar 2.3 

Cr metal-1 + O2, 300°C,  
1 Torr, 6.0 x 107 L 

34.6 43.0 20.7 Ar 1.3, N 0.3 

Cr metal-2 + O2, 300°C,  
1 Torr, 2.4 x 108 L  

32.6 46.3 20.0 Ar 1.1 

Cr metal-3 + H2O, 300°C,  
1 Torr, 3.0 x 107 L 

42.9 29.1 26.5 Ar 1.5 

Cr metal-4 + H2O, 300°C,  
1 Torr, 3.0 x 107 L 

46.5 29.9 22.2 Ar 1.5 

NiCr metal + pH 5, 
(NH4)2SO4, 150°C, 72 h 

4.4 45.4 33.2 Cl 1.5, Ni 12.3, N 0.7, S 2.6 

     
 

calibration of insulating samples and corrected to a BE of 284.8 ± 0.1 eV.  Additional 

spectral intensity assigned to alcohol/ether (−COH, −COC−, O=C(O−C*)), carbonyl 

(−C=O), and ester (O=CO−) functionalities were also observed at respective BEs of 

286.2 ± 0.1 eV, 287.7 ± 0.1 eV, and 288.6 ± 0.2 eV [17].  A small peak was found at 

289.6 ± 0.2 eV on all of the oxidized metallic Cr samples and attributed to a carbonate 

(−CO3
2-) species.  A previous publication by this group had assigned the peak at 286.2 ± 

0.1 eV solely to a −COH group [15].  For the above peak assignments to be valid a 

minimum area ratio of 1:1 was required between the components centered at 286.2 ± 0.1 
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eV and 288.6 ± 0.2 eV.  In cases where the intensity of the lower BE peak was found to 

be greater than the peak at 288.6 ± 0.2 eV the additional spectral intensity was assumed 

to be split equally between C atoms bound as −COH and −COC−.  The organic 

contribution to the O 1s spectra was estimated by first calculating the surface normalized 

C intensities.  From these intensities the corresponding normalized O concentrations were 

obtained using the expected O/C ratios for the individual functional groups (i.e. 1:1 for 

−C=O).  The normalized O concentrations were then converted to the respective O 1s 

peak areas.  This procedure is summarized in Table 4.2. 

The CasaXPS program was also used for spectral subtractions.  To simplify the 

analysis of the oxidized metal surfaces, the metal contribution was removed.  A similar 

technique was previously employed by this group to study the oxidation of Ni metal [14-

15,18]. 

 
 

 
 
Figure 4.1: A representative high-resolution C 1s spectrum collected from a sample of 
polycrystalline Cr2O3 powder. 

 
  

Binding Energy (eV)

282284286288290292

In
te

n
si

ty

200

400

600

800

1000

1200

1400

1600

1800

C−C,C−H

−COH,−COC−

O=C(O−C*)

O=CO−

−C=O



94 
 

 
 

 

 T
ab

le
 4

.2
: S

um
m

ar
y 

of
 th

e 
or

ga
ni

c 
C

 1
s 

pe
ak

 a
re

as
 a

nd
 c

al
cu

la
te

d 
co

nt
ri

bu
tio

ns
 to

 th
e 

co
rr

es
po

nd
in

g 
O

 1
s 

sp
ec

tr
a.

 
C

al
cu

la
te

d 
co

nt
ri

bu
tio

ns
 f

ro
m

 O
 to

 th
e 

O
 1

s 
sp

ec
tr

a 

−
C

O
32-

 

O
 1

s 
(%

)      
3.

5 
4.

5 
2.

1 
3.

0  
* 

C
 a

to
m

 g
iv

in
g 

ri
se

 to
 th

e 
C

 1
s 

si
gn

al
. 

a 
N

or
m

al
iz

ed
 s

ur
fa

ce
 C

 c
on

ce
nt

ra
tio

n 
fo

r 
th

e 
O

=C
(O

−
C

* ) 
gr

ou
p.

 
b  C

om
bi

ne
d 

no
rm

al
iz

ed
 s

ur
fa

ce
 c

on
ce

nt
ra

tio
n 

fo
r 

th
e 

as
su

m
ed

 1
:1

 m
ix

tu
re

 o
f 

−
C

O
H

/−
C

O
C

−
 s

pe
ci

es
. 

c  T
he

 n
or

m
al

iz
ed

 s
ur

fa
ce

 O
 c

ou
ld

 b
e 

ca
lc

ul
at

ed
 u

si
ng

 e
ith

er
 th

e 
O

=C
(O

−
C

* ) 
or

 O
=C

O
−

 v
al

ue
s 

fr
om

 th
e 

C
 1

s 
an

al
ys

es
. 

d  T
he

 n
or

m
al

iz
ed

 s
ur

fa
ce

 O
 c

on
ce

nt
ra

tio
n 

fo
r 

th
e 

as
su

m
ed

 1
:1

 m
ix

tu
re

 o
f 

−
C

O
H

/−
C

O
C

−
 s

pe
ci

es
 w

as
 e

st
im

at
ed

 u
si

ng
 a

n 
O

/C
 r

at
io

 
of

 2
:3

. 

at
. %

 

     
1.

5 
2.

1 
0.

6 
0.

9  

−
C

O
H

/ 
−

C
O

C
−

 

O
 1

s 
(%

) 

6.
5 

3.
3 

0.
2 

0.
4 

3.
4     

2.
4 

at
. %

 

3.
1 

1.
6 

0.
1 

0.
2 

1.
0     

1.
1 

−
C

=O
 

O
 1

s 
(%

) 

0.
4 

0.
8 

0.
9 

0.
6 

0.
3 

4.
0 

3.
9 

2.
4 

3.
0 

0.
7 

at
. %

 

0.
2 

0.
4 

0.
4 

0.
3 

0.
1 

1.
7 

1.
8 

0.
7 

0.
9 

0.
3 

O
=C

O
−

 

O
 1

s 
(%

) 

3.
8 

5.
0 

2.
2 

0.
9 

23
.8

 
5.

1 
5.

6 
9.

6 
8.

7 
1.

3 

at
. %

 

1.
8 

2.
4 

1.
0 

0.
4 

7.
0 

2.
2 

2.
6 

2.
8 

2.
6 

0.
6 

 

T
ot

al
 O

 
1s

 
(a

t. 
%

) 

47
.9

 
48

.2
 

45
.0

 
46

.8
 

29
.4

 
43

.0
 

46
.3

 
29

.1
 

29
.9

 
45

.4
 

             

C
on

tr
ib

ut
io

ns
 f

ro
m

 C
 to

 th
e 

C
 1

s 
 s

pe
ct

ra
 −

C
O

32-
 

at
. %

 

     
0.

5 
0.

7 
0.

2 
0.

3  

C
 1

s 
(%

)      
2.

5 
3.

7 
0.

8 
1.

5  

O
=C

O
−

 

at
. %

 

0.
9 

1.
2 

0.
5 

0.
2 

3.
5 

1.
1 

1.
3 

1.
4 

1.
3 

0.
3 

C
 1

s 
(%

) 

3.
1 

4.
2 

2.
1 

1.
2 

5.
5 

5.
1 

6.
3 

5.
1 

6.
0 

0.
9 

−
C

=O
 

at
.%

 

0.
2 

0.
4 

0.
4 

0.
3 

0.
1 

1.
7 

1.
8 

0.
7 

0.
9 

0.
3 

C
 1

s 
(%

) 

0.
8 

1.
4 

1.
8 

1.
3 

0.
2 

8.
1 

9.
1 

2.
5 

4.
1 

0.
8 

−
C

O
H

/−
C

O
C

−
/ 

O
=C

(O
−

C
* ) 

b at
.%

 

4.
6 

2.
4 

0.
2 

0.
3 

1.
5     

1.
7 

a at
. %

 

0.
9 

1.
2 

0.
5 

0.
2 

3.
5 

1.
1 

1.
3 

1.
4 

1.
3 

0.
3 

C
 1

s 
(%

) 

19
.2

 
12

.6
 

3.
2 

2.
5 

7.
9 

5.
1 

6.
3 

5.
1 

6.
0 

6.
1 

 

T
ot

al
 

C
 1

s 
(a

t.%
) 

28
.8

 
28

.6
 

22
.5

 
19

.8
 

63
.7

 
20

.7
 

20
.0

 
26

.5
 

22
.2

 
33

.2
 

  

Sa
m

pl
e 

C
r 2

O
3-

1 
C

r 2
O

3-
2 

C
r 2

O
3-

3 
C

r 2
O

3-
4 

C
r(

O
H

) 3
 

C
r 

m
et

al
-1

 
C

r 
m

et
al

-2
 

C
r 

m
et

al
-3

 
C

r 
m

et
al

-4
 

N
iC

r 
m

et
al

 



95 
 

 
 

4.3  Results and Discussion 

4.3.1 Spectral refinements for Cr2O3 

Two samples of a polycrystalline Cr2O3 powder were analyzed with XPS and a 

representative high-resolution Cr 2p3/2 spectrum is shown in Figure 4.2(a).  The spectra 

collected from both samples were fit with 5 peaks representing the multiplet splitting of 

the Cr3+ cations following photoionization (see Table 4.3).  The fits produced using this 

approach agree well with the 2p3/2 line shape calculated for a Cr3+ free ion by Gupta and 

Sen [7-8,11].  Two polycrystalline Cr2O3 aggregates were fractured and heated (550oC) in 

vacuo and the freshly fractured surfaces were analyzed by XPS.  The Cr 2p3/2 fitting 

results were found to be very similar to those for the polycrystalline Cr2O3 powder (see 

Table 4.3).  Heating of the aggregates resulted in a narrowing of the 5 multiplet splitting 

components relative to what was observed for the polycrystalline Cr2O3 powder samples 

(see Table 4.3).  As well, a small component near 574 eV [11] was also required to fit the 

envelope.  A fitted representative Cr 2p3/2 spectrum is shown in Figure 4.3(a).  The 

observed difference in peak widths is attributed to the formation of an oxide surface that 

is primarily oriented in the (0001) direction following heating at 550°C.  Previous LEED 

studies have shown that annealing of polycrystalline Cr2O3 surfaces near this temperature 

leads to a crystal reorganization to form the low surface energy (0001) plane [19-20]. 

The O 1s spectra collected for all polycrystalline Cr2O3 samples were fit with an 

O2- component at 530.2 ± 0.2 eV, along with additional broad peaks at BEs ranging from 

531.2-533.2 eV (see Table 4.4).  Example spectra are presented in Figures 4.2(b) and 

4.3(b).  As was shown in a previous publication, some of the intensity of the high BE 

peaks can be attributed to the presence of organic species associated with adventitious C 

[15].  The contribution of these organic species to the O 1s spectra have been estimated 
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Figure 4.2: The high-resolution (a) Cr 2p3/2 and (b) O 1s spectra for a polycrystalline 
Cr2O3 powder. 
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Figure 4.3: The high-resolution (a) Cr 2p3/2 and (b) O 1s spectra of a vacuum 
fractured Cr2O3 aggregate following annealing at 550°C for 3 h. 
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and the results are presented in Table 4.4.  Additional contributions from adsorbed O 

and/or OH surface species cannot be ruled out.  Small amounts of Ca, Mg, Na, and Si 

(see Table 4.1) were also detected on the aggregate samples during compositional 

analysis and some of the intensity in the O 1s peaks may arise from the presence of the 

oxides and/or hydroxides of these species.  The O/Cr ratios for the polycrystalline powder 

samples were calculated using the normalized surface intensities of the O2- and Cr3+ 

components and were determined to be 1.5 (see Table 4.5).  This result indicates that the 

presence of significant amounts of surface Cr(OH)3 is unlikely as the calculated O/Cr 

ratios are identical to the expected value of 1.5 for pure Cr2O3.  A similar method was 

used to determine the O/Ni ratios in a previous publication [15].   A slight increase in the 

O/Cr ratio was observed on the heated polycrystalline aggregate samples (see Table 4.5) 

relative to pure Cr2O3.  This result may be attributed to the presence of Ca, Mg, and Na 

oxide impurities, which have O2- BE shifts similar to that of Cr2O3 [21-23].  As with the 

Cr2O3 powder samples, this result suggests that little Cr(OH)3 is present on the aggregate 

surfaces. 

The Cr 2p3/2 spectra collected from the polycrystalline powder samples were re-fit 

using two overlapping sets of the 5 multiplet splitting peaks obtained from the analysis of 

sample Cr2O3-3 (see Table 4.3).  A representative Cr 2p3/2 spectrum is shown in Figure 

4.4, in which the centroids of the 5 peaks for the two Cr2O3 components are offset by 0.3 

eV.  Analysis of the Cr 2p3/2 spectrum of the second polycrystalline powder sample 

yielded a separation of 0.4 eV between the centroids of the two overlapping components.  

This small observed shift is attributed to the differences in BE between the Cr3+ atoms 

orientated in the (0001) plane (black lines) and those in the other major crystallographic  
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 Table 4.5: O/Cr ratios calculated from the normalized surface concentrations. 
 Normalized surface concentration (at.%)  
Sample O2- or OH- Cr metal Oxidized Cr O/Cr 
Cr2O3-1 33.9  23.3 1.5 
Cr2O3-2 33.6  22.4 1.5 
Cr2O3-3  36.8  22.4 1.6 
Cr2O3-4 37.1  22.9 1.6 
Cr(OH)3⋅xH2O 
   oxide 
   ahydroxide 

1.3 
17.6 

 
0.9 
5.5 

1.5 
3.2 

Cr metal-1 31.1 16.4 18.2 1.7 
Cr metal-2 34.4 12.3 20.3 1.7 
Cr metal-3 18.7 31.9 11.0 1.7 
Cr metal-4 18.3 35.8 10.7 1.7 
a The hydroxide surface concentration was calculated using the organic subtracted OH- 
peak area from Table 4.4. 
 

 
      

 

 
 
Figure 4.4: The high-resolution Cr 2p3/2 spectrum of a polycrystalline Cr2O3 powder 
fit with two sets of overlapping multiplet splitting peaks representing Cr3+ atoms in 
the (0001) plane (black lines) and all other crystallographic orientations (grey lines). 
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orientations (grey lines) [24].  The spectrum for a polycrystalline powder would be 

expected to be somewhat broadened by the presence of the oxide in orientations each 

with its own particular BE; and this could be one of several reasons for the broadening 

observed in the 2p spectra of many metal oxides.  Although spectral broadening due to 

differential surface charging cannot be completely ruled out, any charging effects are 

thought to be small due to the use of a charge neutralizer during XPS analysis and the 

fact that the samples were pressed into a non-conducting polyethylene tape.  Thus, this 

work has served to better define the Cr 2p3/2 and O 1s line shapes and positions for 

differing orientations of Cr2O3, as well as show that an O/Cr ratio for the appropriate 

peaks mirrors that for the known stoichiometry. 

4.3.2 Spectral refinements for Cr(OH)3 

The XPS spectra collected from a hydrated Cr(OH)3·xH2O powder presented in an 

earlier publication (see Figure 4 in reference 11) has been reanalyzed here.  In the 

original analysis it was determined that a small Cr2O3 impurity was present [11].  

Refitting of the O 1s spectrum (see Figure 4.5(a)) showed a small O2- component at 529.7 

eV, a large peak representing the overlapping signal from substitutional OH- and 

adsorbed organic species at 531.6 eV, and a third peak attributed to H2O of hydration at 

533.5 eVa (see Table 4.4).  From the O 1s analysis it was determined that 4.5 % of the 

total O present was in the O2- state (see Table 4.4).  Using the O/Cr ratio for Cr2O3 (1.5), 

the corresponding Cr3+ contribution to the Cr 2p3/2 spectrum was estimated to be 13.7 % 

and was modeled using the fits obtained from analysis of the polycrystalline powder  

                                                 
a The O 1s peak was initially attributed to H2O of hydration based on the previous assignment of Biesinger 
et al. in reference [11].  Subsequent reanalysis of the O 1s spectrum following publication of this work 
indicated that all of the spectral intensity in this region was the result of C contamination (see Chapter 5).  
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Figure 4.5: The high-resolution (a) O 1s and (b) Cr 2p3/2 spectrum for Cr(OH)3·xH2O.  
The Cr 2p3/2 spectrum was fit with contributions from both Cr2O3 (black lines) and 
Cr(OH)3 (grey lines).  The high-resolution spectrum for pure Cr(OH)3 was 
reconstructed using the combined intensities of the obtained 5 multiplet splitting 
peaks and is shown in (c).  The original Cr 2p3/2 spectrum was presented previously 
by Biesinger et al. [11]. 
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sample Cr2O3-2 (see Table 4.3).  After constraining the area of the Cr2O3 component to 

account for 13.7 % of the total Cr 2p3/2 spectrum, the remaining intensity representing 

pure Cr(OH)3 was fit with 5 multiplet splitting peaks having identical FWHM values (see 

Table 4.3).  Figure 4.5(b) shows the Cr 2p3/2 spectrum fit with both Cr2O3 (black lines) 

and Cr(OH)3 (grey lines) components.  The resultant pure spectrum for Cr(OH)3 is 

presented in Figure 4.5(c).  An O/Cr ratio of 3.2 was obtained when the surface 

normalized substitutional OH- component from the O 1s spectrum was compared to the 

surface corrected Cr(OH)3 contribution determined from the fitting of the Cr 2p3/2 

spectrum.  This result is close to the expected value of 3 for pure Cr(OH)3 and suggests 

that the hydroxide and oxide components have been cleanly separated using this method.  

It is important to note that the total OH- surface concentration was determined by 

subtracting the contribution from the adsorbed organic species from the total area of the 

peak located at 531.6 eV in the O 1s spectrum (see Table 4.4). 

4.3.3 Reactions of metallic Cr with O2 and H2O 

Clean polycrystalline Cr metal surfaces were exposed to ultra pure O2 gas for 

doses of 6.0 x 107 and 2.4 x 108 L at 300°C and a pressure of 130 Pa.  Two additional 

metal samples were exposed to a 3.0 x 108 L dose of H2O vapour under the same 

temperature and pressure conditions.  Representative Cr 2p3/2 spectra produced by 

reactions with O2 gas for a dose of 2.4 x 108 L and H2O vapour for a dose of 3.0 x 108 L 

are shown in Figure 4.6(a-b).  A strong metal signal at 573.6 ± 0.1 eV was observed on 

all surfaces indicating the formation of thin oxide films.  Fitting of the Cr 2p3/2 spectra 

shown in Figure 4.6(a-b) was undertaken to separate the metallic contributions from 

those of the oxide.  The metal portion of each spectrum was fit using the metal  
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Figure 4.6: The high-resolution Cr 2p3/2 spectra collected from metal surfaces 
following doses of (a) 2.4 x 108 L of O2 gas and (b) 3.0 x 108 L of H2O vapour at 
300°C and 130 Pa.  The O 1s spectra for the doses of (c) 2.4 x 108 L of O2 gas and (d) 
3.0 x 108 L of H2O vapour are also shown.  The metal component was removed from 
each Cr 2p3/2 spectrum and the resultant subtracted spectra for doses of (e) 2.4 x 108 L 
of O2 gas and (f) 3.0 x 108 L of H2O vapour are also presented.  The subtracted spectra 
show the possible presence of a hypo-stoichiometric Cr2O3 oxide. 
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components presented in Table 4.3.  The remaining spectral intensity was then assigned 

to the oxidic component.  The corresponding O 1s spectra (see Figure 4.6(c-d)) were fit 

with an O2- component at 530.1 ± 0.1 eV and a peak attributed to adsorbed surface 

species at 531.7 ± 0.2 eV (see Table 4.2).  The O/Cr ratios were calculated using the 

corrected O2- and non-metallic Cr surface intensities and found to be 1.7 for all samples 

(see Table 4.5).  This result suggests that these films are deficient in Cr3+ and is supported 

by the low temperature oxidation mechanism first presented by Cabrera and Mott for p-

type transition metal oxides [1-5].  In the case of Cr metal, the oxidation reaction 

involves the formation of Cr3+ vacancies at the oxide/gas interface.  Over time there is an 

inward migration of these vacancies towards the metal substrate in an electric field setup 

by electrons tunnelling through the oxide film.  At the same time metallic Cr atoms are 

oxidized at the metal/oxide interface and travel through these vacancy sites as well as 

grain boundaries to the oxide/gas interface, where they react with either O2 or H2O 

promoting further film growth [1-5] 

To better observe the structure of the oxidized Cr species, the metal peak was 

removed and the resultant subtracted spectra are shown in Figure 4.6(e-f).  After spectral 

subtraction the oxide components were cleanly separated.  These spectra were then fit 

with the line shape obtained previously for the polycrystalline Cr2O3 powder (Cr2O3-2 

from Table 4.3).  Most of the envelope was well fitted with the line shape for Cr2O3, 

however additional contributions to the reaction spectra were clearly detected at the low 

BE side of the Cr2O3 envelopes.  We attribute this to a hypo-stoichiometric Cr2O3 

(Cr2+δO3-δ) component that is likely formed during the initial stages of the reaction.  To 

our knowledge this species has not been observed previously using XPS; its presence is  
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somewhat comparable to the formation of Ni3+ during initial oxidation of Ni metal [14-

15].  The exact nature of this Cr species is not identified here as there was no model 

structure available.  However, in a previous study on the oxidation of Cr metal, it was 

suggested that film growth proceeded through the formation of Cr3+ and O2- vacancies 

[6,25].  Both of these vacancies are said to carry a negative charge and to maintain charge 

balance, Cr2+ cations are created and are situated in the interstitial sites of the Cr2O3 film 

[6,25].  The subtracted Cr 2p3/2 spectra collected from the H2O dosed surfaces showed the 

largest contributions from the hypo-stoichiometric component relative to the regular 

Cr2O3.  This is probably the result of the thin nature of these films, as the sub-

stoichiometric component would comprise a larger portion of the oxide.  However, it is 

also possible that incorporation of other species such as H, a product of the dissociation 

of H2O, into some of the Cr3+ vacancies may lead to increased formation of this hypo-

stoichiometric film.  The presence of H in cation vacancy sites has previously been 

suggested to retard film growth on both Ni and Fe metal surfaces following reaction with 

H2O vapour [13,15,26].  Some contributions are also observed in the subtracted spectra 

around 580 eV that may be attributed to the formation of Cr cations in higher oxidation 

states.  It is unlikely that the peak broadening observed in the subtracted spectra (Figure 

4.6(e-f)) is due to differential charging, given the proximity of the metal substrate. 

The high BE peak found near 531.7 ± 0.2 eV in the O 1s spectra has a similar 

chemical shift to that of OH- (see Table 4.4) however, the presence of significant levels 

of Cr(OH)3 on any of the oxidized surfaces is unlikely on the basis of the observed O/Cr 

ratios.  From the analysis of the accompanying C 1s spectra it was determined that a 

significant amount of the intensity of the high BE O 1s peak results from the presence of 
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adsorbed organic species (see Tables 4.2 and 4.4).  It is believed that the remaining 

intensity would result from the presence of adsorbed O and/or OH species, which are 

possible intermediates in the oxidation reaction [5]. 

4.3.4 Aqueous reaction of metallic NiCr 

Figure 4.7(a) contains the Cr 2p3/2 high-resolution spectra collected from a Ni-Cr  

alloy electrochemically oxidized at 150oC for a 72 h period at a pH of 5.  The spectrum 

was fit with contributions from the polycrystalline Cr2O3 (black lines, Cr2O3-2) and 

Cr(OH)3 (grey lines) powders presented in Table 4.3, and a good fit of the envelope was 

observed.  A small O2- peak in the O 1s spectrum at 529.6 eV was observed and verified 

the presence of Cr2O3 (see Figure 4.7(c)).  None of the O2- signal could be attributed to 

NiO, as the analysis of the Ni 2p3/2 spectrum (see Figure 4.7(b)) showed all oxidized Ni 

species were present as Ni(OH)2.  The Ni 2p spectrum was fit using the components for 

Ni(OH)2 presented in a previous publication [18].  There was no spectral evidence to 

suggest that a sub-stoichiometric Cr species formed under these oxidation conditions. 

4.4 Conclusions 

The Cr 2p3/2 spectra collected from samples of polycrystalline Cr2O3 powder were 

found to exhibit a multiplet structure very similar to that predicted by Gupta and Sen for 

the free Cr3+ ion.   The narrowest Cr 2p3/2 spectra were obtained following annealing of 

fractured surfaces to 550oC.  Heating of the samples is believed to result in conversion of 

polycrystalline surface structures to a single (0001) orientation having a slightly different 

BE than that for the polycrystalline surface.  A small separation in BE was observed 

between the Cr3+ atoms oriented in the (0001) direction relative to those found in the  
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Figure 4.7: The high-resolution (a) Cr 2p3/2 spectrum from a NiCr alloy surface 
containing a mixture of Cr2O3 (black lines) and Cr(OH)3 (grey lines).  The 
corresponding (b) Ni 2p3/2 and (c) O 1s spectra are also shown. 
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other major crystallographic arrangements.  Additionally, a possible line shape for the Cr 

2p3/2 spectrum for Cr(OH)3 was modeled using synthetic components from a sample 

containing contributions from both Cr2O3 and Cr(OH)3. 

Analysis of the Cr 2p3/2 spectra collected from metallic Cr surfaces exposed to 

both O2 gas and H2O vapour showed the formation of thin Cr3+ deficient Cr2O3 films with 

a contribution from a hypo-stoichiometric component (Cr2+δO3-δ).  The concentration of 

this Cr species was found to be greater on the surfaces exposed to H2O vapour.  No 

Cr(OH)3 appears to form following exposure to H2O vapour.  A different result was 

observed following the aqueous oxidation of a Ni-Cr (20%) alloy, with contributions 

from both Cr2O3 and Cr(OH)3 observed in the Cr 2p3/2 spectrum.  There was no spectral 

evidence to suggest the formation of a hypo-stoichiometric Cr species. 
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Chapter 5 Use of oxygen/nickel ratios in the XPS characterization of oxide 

phases on nickel metal and nickel alloy surfaces 

5.1 Introduction 

X-ray photoelectron spectroscopy has extensively been used to study the 

oxidation and corrosion products formed on surfaces of Ni metal and its alloys [1-17]; the 

technique has provided chemical information about the oxides produced that is generally 

not available elsewhere.  The information depth available (~ 5nm) is sufficient to allow 

oxide structures and growth rates to be followed to a considerable length.  While XPS 

chemical shifts have been useful in separating oxidic phases from the base alloy, clear 

identification of specific structures has been lacking because of complex Ni 2p line 

shapes and a large number of contributing sources to the O 1s line shape [13-17].  In the 

past, our laboratory has produced evidence for unique Ni 2p3/2 and O 1s spectra for 

polycrystalline NiO, β-Ni(OH)2, and γ-NiOOH [1,4,18] and have used this information to 

follow oxide growth structures on Ni metal during reaction with O2 gas [3] and H2O 

vapour [2].  Over the course of this work, it was found that most of the O/Ni atomic ratios, 

corrected for cross-section, energy and contributions from contaminants, appeared to 

provide a reliable measure of the actual atomic ratios.  Such measurements, if accurate, 

could certainly provide additional information on the nature of the surface structures.  For 

this reason, we have made additional O/Ni measurements of new- and previously-

acquired spectra of NiO [2], β-Ni(OH)2 [2], γ-NiOOH [18], and NiCr2O4 [19] and have 

used these reference results to determine the ratios for oxide structures on Ni metal and 

NiCr alloy surfaces that had undergone electrochemical oxidation.  The O/Ni 
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measurements on the unknown electrochemically treated surfaces correspond well with 

analyses of the standard O 1s and Ni 2p3/2 spectral line shapes. 

5.2 Experimental 

All XPS analyses were carried out with a Kratos Axis Ultra spectrometer using a 

monochromatic Al Kα (15 mA, 14 kV) X-ray source.  The work function and the 

dispersion of the instrument were calibrated to give metallic Au 4f7/2 and Cu 2p3/2 signals 

of 83.95 eV and 932.63 eV respectively.  Differential surface charging was minimized 

using the Kratos charge neutralizer system with a filament current set between 1.7-1.9 A, 

and a charge balance ranging from 2.4-3.1 V.  All XPS spectra were collected using the 

hybrid-focusing lens, a scan time of 180 s, and an analysis area of 700 µm x 300 µm.  

The survey spectra were obtained at a pass energy of 160 eV, a 0.7 eV energy step, over a 

binding energy (BE) range of 1100-0 eV.  Analyses of the Ni 2p, Cr 2p, O 1s, and C 1s 

envelopes were carried out at pass energies of 10/20 eV, an energy step size of 0.05 eV,  

at energy ranges of 895-848 eV (30-40 sweeps), 595-570 (30 sweeps), 540-520 eV (15-

20 sweeps), and 295-275 eV (10-20 sweeps) respectively.  The base pressure of the 

analytical chamber during sample analysis was near 5 x 10-7 Pa. 

Powder samples of polycrystalline NiO (99.998% pure, Puratronic) and β-

Ni(OH)2 (61% Ni) were obtained from Alfa Aesar (Ward Hill, MA, USA).  The NiO 

powder was received in a sealed container and two samples were introduced to the 

spectrometer through an Ar filled glove box.  Two additional NiO samples were exposed 

to air prior to X-ray analysis.  The purity of the NiO powder was confirmed using both X-

ray Diffraction (XRD) and Energy Dispersive X-ray analysis (EDX), while the purity of 
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the β-Ni(OH)2 powder was confirmed solely by EDX [4].  The γ-NiOOH sample was 

originally obtained from Inco Limited and its characterization has been previously 

reported [18].  The β-Ni(OH)2 and γ-NiOOH powders were both loaded into the 

spectrometer from the air.  The NiCr2O4 powder (90% pure) was obtained from Alfa 

Aesar and was exposed to the air prior to X-ray analysis [19].  All powder samples were 

either mounted onto a double-sided non-conductive polyethylene polymer or pressed into 

indium foil prior to X-ray exposure to further minimize spectral broadening due to 

charging.  A polycrystalline Ni metal disk approximately 3.4 mm thick was cut from a 

metal rod (99.995% pure) purchased from Alfa Aesar.  A similar sized disc of NiCr alloy 

manufactured by ACI Alloys Inc. (San Jose CA USA) was also studied.  Both metallic 

samples were mechanically polished to a mirror finish using 0.05 µm γ-Al2O3 paste, 

sonicated in methanol for 20 min, and cathodically cleaned for 1 h at a constant potential 

of -1.5 V versus a 0.1 M Ag/AgCl reference electrode.  Following surface reduction the 

metal disks were then subjected to aqueous corrosion for 3 h at a constant potential of 1.5 

V versus the same reference electrode in a sealed autoclave at temperatures of 150°C for 

Ni metal and 25°C for the NiCr alloy.  The electrolyte used was a 1 x10-4 M LiOH 

solution (pH= 10 at 25˚C) prepared in deionized H2O. 

CasaXPS Version 2.3.15 was used to analyze all XPS spectra collected as part of 

this work [20].  The background for all survey and high-resolution spectra was removed 

using a standard Shirley baseline [20].  The elemental concentration in atomic % (at.%) 

for all samples was determined from the analysis of XPS survey spectra using Wagner 

relative sensitivity factors (RSFs) specifically modified for analyzing data obtained from 

a Kratos Axis Ultra spectrometer [20-22].  The Ni atomic concentrations presented in 
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Table 5.1 were calculated using the area of Ni 2p3/2 region only.  Previous publications by 

this group have used the same data analysis methods [2,3,23].  Analysis of the Ni 2p3/2 

and Cr 2p3/2 spectra were completed using the fits previously published for 

polycrystalline NiO, β-Ni(OH)2, γ-NiOOH, Cr2O3, Cr(OH)3⋅xH2O and NiCr2O4 [1,4,18-

19,23].  Gaussian-Lorentzian line shapes of 50% (GL(50)) were found to be best for 

fitting the O 1s spectra, while the C 1s envelopes were best fitted with a 30% Lorentzian 

(GL(30)) contribution in the mixture. 

All samples studied as a part of this work were determined to contain small 

amounts of adventitious C.  Analyses of the high-resolution C 1s spectra showed a strong 

hydrocarbon line (C−C, C−H), which was used for spectral calibration and corrected to a 

BE of 284.8 ± 0.1 eV.  Additional contributions from alcohol/ether (−COH, −COC−, 

O=C(O−C*), carbonyl (−C=O), and ester (O=CO−) organic functional groups were also 

observed at average BEs of 286.1 ± 0.2 eV, 287.8 ± 0.2 eV, and 288.7 ± 0.2 eV 

respectively.  The (*) denotes the atom giving rise to the signal.  Contamination of the O 

1s line shape from O-containing adventitious C was corrected as described in earlier 

publications and was modelled using five peaks representing O*=CO− (531.7 ± 0.2 eV), 

−C=O (532.0 ± 0.2 eV), −COC− (532.2 ± 0.2 eV), −COH (532.5 ± 0.2 eV), and O=CO*− 

(532.9 ± 0.2 eV) O species [2,23-24]. 

The relative atomic concentrations for the different Ni, Cr, O, and C species were 

determined using methods described in previous publications [2,23].  The error in the 

resultant O/M (M = Ni or Cr) ratios was estimated to be 10% (2 standard deviations).  

The CasaXPS software also allows for the normalized atomic ratios to be calculated 

directly from the high-resolution spectra using the “Standard Comps Report” button 
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found under the “Report Spectra” tab in the “Quantification Window” [20].  However, 

during the course of this work O/Ni ratios calculated using this method were found to 

deviate significantly from what was stoichiometrically expected.  In a previous 

publication by this group the O/Cr ratios for a number of Cr oxides were calculated.  

When these ratios were modelled using the “Standard Comps Report” function the same 

O/Cr ratios were observed.  It appears that this method works for systems containing Cr 

and O because the two peaks used for analysis (Cr 2p3/2 and O 1s) are only separated in 

kinetic energy (KE) by approximately 50 eV, while the difference between the Ni 2p3/2 

and O 1s peaks is greater than 300 eV.  As a result any calculation of atomic 

concentrations for Ni should be completed using the survey spectra (pass energy 160 eV) 

and not the high-resolution spectra. 

5.3 Results and Discussion 

5.3.1 Polycrystalline NiO, ββββ-Ni(OH)2, γγγγ-NiOOH, and NiCr2O4 samples 

Representative high-resolution Ni 2p3/2 and O 1s spectra for NiO, β-Ni(OH)2, γ-

NiOOH, and NiCr2O4 are shown in Figures 5.1-5.4.  All Ni 2p3/2 and Cr 2p3/2 envelopes 

were modelled using the fits tabulated in references [1,4,18-19,23].  The M 2p3/2 spectra 

of these compounds have been well characterized previously and were included solely as 

a reference for the corresponding O 1s spectra.  For each O 1s spectrum, it was necessary 

to determine if each spectral component was associated intimately with the oxide 

structure or was associated with an ancillary phase such as organic contamination, or 

interstitial H2O molecules.   

Representative high-resolution Ni 2p3/2 and O 1s spectra for polycrystalline NiO 

powder are shown in Figure 5.1.  The O 1s spectra for all NiO samples contained the well 
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recognized lattice oxide peak (O2-) with centroids that could be fitted to 529.3 eV or 

529.4 eV depending on the sample (see Table 5.1).  In addition, a higher BE peak was 

observed at either 531.1 eV or 530.9 eV; this has been previously attributed by ourselves 

[2] and others [5-8] to oxygen atoms adjacent to vacancies and thus deemed to be 

‘defective oxygen” (O def).  Such an assignment is unique to NiO in all the oxides 

studied; it may result from a particularly disordered structure during nucleation.  The 

summed intensities of these peaks were used in the compilation of the O/Ni ratios for 

NiO shown in Table 5.2.   All additional intensity in the O 1s spectra for NiO could be 

attributed to organic components present; thus no additional contributions from 

interstitial H2O was found in any of the NiO examples studied (see below).  Table 5.2 

shows that, for NiO, the O/Ni ratios obtained are close to 1.0, within experimental error. 

 

 
 
Figure 5.1: Fitted high-resolution (a) Ni 2p3/2 and (b) O 1s spectra from a 
polycrystalline NiO powder loaded into the spectrometer through an Ar filled glove 
box.  The Ni 2p3/2 spectrum was fit using the empirical peak fit for NiO tabulated in 
reference [4].  The O 1s spectrum has been fit with contributions from O2- and O def 
species.  The remaining spectral intensity was assigned to organic contamination. 
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Figure 5.2(a-d) contains the Ni 2p3/2 and O 1s spectra collected from two samples 

of the β-Ni(OH)2 powder.  Fitting of the respective O 1s spectra showed a strong peak 

representing bound hydroxide groups (OH-) centred at either 530.8 eV or 530.9 eV 

depending on the sample (see Table 5.1) along with contributions from organic 

contamination at higher BEs.  The O/Ni ratios were calculated and values of 2.0 were 

observed (see Table 5.2).  To completely fit the O 1s spectrum shown in Figure 5.2(d) an 

additional component at 531.5 eV was also required.  The relative atomic contribution 

from this additional peak was not included in the atomic ratio calculations shown in 

Table 5.2 and this result indicated that this species was not chemically bound to any Ni2+ 

cations.  We suggest that this species might result from interstitially positioned H2O 

molecules within the layered brucite-like β-Ni(OH)2 structure [25].  Three additional β-

Ni(OH)2 powder samples were analyzed and the O/Ni ratios were found to range from 

1.5-1.6.  These may represent a structure that is undergoing degradation through loss of 

OH-.  The BE of the OH- groups in this structure was found to be statistically higher 

(531.1 ± 0.1 eV) than in the hydroxides with the measured 2:1 O/Ni ratio (see Table 5.1).  

Representative high-resolution Ni 2p3/2 and O 1s spectra for a OH- deficient β-Ni(OH)2 

powder are shown in Figure 5.2(e-f). 

The Ni 2p3/2 and O 1s spectra collected from the γ-NiOOH powder are presented 

in Figure 5.3.  The O 1s spectrum was fitted with an O2- component at 529.5 eV, an OH- 

peak at 531.2 eV, along with contributions from adsorbed organic species (see Table 5.1).  

An O/Ni ratio of 1.9 was obtained when the combined intensities of the OH- and O2- 

components were compared to the total Ni3+ concentration (see Table 5.2).  Although this  
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Figure 5.2: Fitted high-resolution Ni 2p3/2 and O 1s spectra collected from three β-
Ni(OH)2 samples.  The spectra illustrate the Ni 2p3/2 and O 1s line shapes for (a) and 
(b) stoichiometric β-Ni(OH)2, (c) and (d) stoichiometric β-Ni(OH)2 containing 
interstitial H2O (H2O (int)) within the brucite lattice, and (e) and (f) OH- deficient β-
Ni(OH)2.  The Ni 2p3/2 spectra were fit using the empirical peak fit for β-Ni(OH)2 
tabulated in reference [4]. 
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Figure 5.3: Fitted high-resolution (a) Ni 2p3/2 and (b) O 1s spectra for γ-NiOOH 
powder.  The Ni 2p3/2 spectrum was modeled using a peak fit originally presented in 
reference [18].  The O 1s spectrum shows contributions from O2- and OH- species 
along with additional intensity assigned to organic contamination at higher BE.  The 
expected 1:1 O2-:OH- peak area ratio is not observed here and suggests that the γ-
NiOOH sample has started to decompose. 

 

ratio is close to the expected value of 2, the 1:1 O2-/OH- ratio is not observed here.  This 

suggests that the γ-NiOOH sample had started to decompose. 

Figure 5.4 contains representative Ni 2p3/2, Cr 2p3/2 and O 1s spectra collected 

from a powder sample of NiCr2O4.  The O 1s spectra for both NiCr2O4 powders showed a 

strong component at either 529.9 eV or 530.0 eV attributed to lattice O2-, a smaller peak 

located at 531.2 eV, and small contributions from organic material at higher BEs (see 

Table 5.1).  The normalized Ni/Cr, O/Ni, and O/Cr ratios were found to be close to 2.0, 

4.0, and 2.0 respectively (see Table 5.2).  Thus the peaks at 529.9 eV and 530.0 eV 

represent all lattice O2- sites within the inverse spinel structure and the small peak at 

531.2 eV may be associated to the presence of interstitial H2O molecules. 
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Figure 5.4: Fitted high-resolution (a) Ni 2p3/2, (b) Cr 2p3/2 and (c) O 1s spectra for a 
powder sample of NiCr2O4.  The high-resolution Ni 2p3/2 and Cr 2p3/2 spectra are 
shown with the fits presented in references [1 and 19].  The O 1s spectrum shows the 
presence of lattice O2- species along with small amounts of organic contamination.  
An additional peak was also required to completely fit the envelope and was assigned 
to H2O (int). 
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Table 5.2:  Calculated O/M ratios using the normalized O, Ni, and Cr atomic 
concentrations in at.%. 
 M 2p3/2  O 1s   

Sample 
Ni or Cr 
species at.% 

 
O2- 

at.% 
O def 
at.% 

OH- 
at.% 

 
O/M 

NiO-1 

Ni2+ 

38  28 11   1.0a 
NiO-2 37  29 9.7   1.1a 
NiO-3 38  30 8.6   1.0a 
NiO-4 37  30 7.6   1.0a 
         
Ni(OH)2-1 

Ni2+ 

20    40  2.0 
Ni(OH)2-2 29    57  2.0 
Ni(OH)2-3 36    56  1.6 
Ni(OH)2-4 34    50  1.5 
Ni(OH)2-5 33    51  1.5 
         
γ-NiOOH Ni3+ 20  16  22  1.9b 
         
NiCr2O4-1         
   Ni Ni2+ 10  

40 
   4.0 

   Cr Cr3+ 21     1.9 
NiCr2O4-2         
   Ni Ni2+ 11  

44 
   4.0 

   Cr Cr3+ 23     1.9 
         
Ni metal         
  Ni metal Ni0 1.3       
   NiO 

Ni2+ 
8.8  9.0    1.0c 

   Ni(OH)2 10    20  2.0 
         
NiCr 
metal 

        

   Ni metal Ni0 0.9       
   NiO 

Ni2+ 
1.6  1.6    1.0c 

   Ni(OH)2 5.0    10  2.0 
   Cr metal Cr0 0.5       
   Cr2O3 Cr3+ 

1.8  2.7    1.5 
   Cr(OH)3 4.1    13  3.2 
   Cr6+ Cr6+ 0.4  1.2    3.0 
a The O/Ni ratio was calculated using the combined atomic concentrations of the O2- 
and O def species. 
b The O/Ni ratio was calculated using the combined atomic concentration of the O2- 
and OH- species. 
c The O/Ni ratio was calculated using the atomic concentration of the O2- peak only.  
Based on the observed ratio there appeared to be no evidence to suggest that an O def 
species had formed. 
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5.3.2 Aqueous reaction of metallic Ni and NiCr 

The concept of using both peak shape and oxide ratio to identify and to estimate 

the relative proportions of mixed oxide systems, has been applied to some spectra 

produced during electrochemical oxidation of both polycrystalline Ni and NiCr alloy 

surfaces during simulation of solution conditions in PWR secondary coolant systems.  

Metallic Ni and NiCr alloy disks were subjected to 3 h aqueous exposures in a 1 x 10-4 M 

LiOH solution (pH = 10 at 25°C), at a constant potential of 1.5 V versus a 0.1 M 

Ag/AgCl reference electrode, and temperatures of 150°C (Ni metal) and 25°C (NiCr 

alloy) in a sealed autoclave.  Following the aqueous reactions the metallic samples were 

removed from the autoclave and exposed to air prior to surface analysis.  Modeling of the 

Ni 2p3/2 and Cr 2p3/2 spectra involved using different combinations of the fits presented in 

references [1,4,18-19,23] for metallic polycrystalline Ni, powdered polycrystalline NiO, 

β-Ni(OH)2, γ-NiOOH,  NiCr2O4, metallic Cr, powdered polycrystalline Cr2O3, 

Cr(OH)3⋅xH2O, and CrO3.  Using the M 2p3/2 fitting results coupled with the expected 

O/M atomic ratios the corresponding O 1s peak areas for the O2- and OH- species were 

constrained.  Contributions from any organic contaminants were estimated from the 

analysis of the C 1s high-resolution spectra and these intensities were then applied to the 

O 1s fit.  The remaining spectral intensity was then attributed to the presence of 

interstitial H2O molecules.  From the XPS survey scans collected from both the Ni metal 

and NiCr alloy surfaces following aqueous oxidation a number of small impurities were 

also observed.  The O 1s contribution of any possible oxide and or hydroxides associated 

with these species were assumed to be negligible and not included in the fit. 
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Figure 5.5 shows the Ni 2p3/2 and O 1s spectra collected for the polycrystalline Ni 

metal surface.  The Ni 2p3/2 spectrum was rigorously fitted using contributions from Ni 

metal (6%), NiO (44%), and β-Ni(OH)2 (50%), while the analysis of the O 1s spectrum 

showed contributions from lattice O2- at 529.2 eV, lattice OH- at 531.1 eV and interstitial 

H2O at 531.7 eV (see Table 5.1).  The normalized O/Ni ratios calculated for the 

respective NiO and β-Ni(OH)2 components were 1.0 and 2.0  (see Table 5.2).  Thus, in 

this oxide/hydroxide composite there was no evidence for the O vacancy structure found 

for thin films of essentially single phase NiO [2,3].  While some higher oxidation states 

of Ni (i.e. in NiOOH) are predicted thermodynamically [26], no evidence for these was 

found: no Ni3+ line shape contributions are found and the O/Ni ratios are consistent with 

nearly equivalent concentrations of NiO and β-Ni(OH)2. 

 
 
 

 
 
Figure 5.5: Fitted high-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected from a 
polycrystalline Ni metal disk subjected to aqueous oxidation.   The Ni 2p3/2 spectrum 
showed contributions from metallic Ni, NiO and β-Ni(OH)2.  Fitting of the O 1s 
spectrum showed corresponding contributions from NiO, β-Ni(OH)2, H2O (int), and 
organic contamination. 
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Figure 5.6(a-c) contains the high-resolution spectra collected from a NiCr surface 

following aqueous oxidation.  The Ni 2p3/2 spectrum showed contributions from Ni metal 

(12%), NiO (21%) and β-Ni(OH)2 (67%), while contributions from metallic Cr (8%) 

Cr2O3 (26%), Cr(OH)3 (61%), and a fourth component attributed to a Cr6+ species (5%) 

were observed in the Cr 2p3/2 spectrum (see Table 5.1).  Analysis of the O 1s spectrum 

showed signals at 529.3 eV (NiO), 529.5 eV (Cr2O3), 530.0 eV (Cr6+-containing oxide), 

531.2 eV (β-Ni(OH)2), and 531.3 eV (Cr(OH)3).  The corresponding normalized O/M 

ratios for the NiO, Cr2O3, β-Ni(OH)2, and Cr(OH)3 components were calculated to be 1.0, 

1.5, 2.0, and 3.0 respectively, while the O/Cr ratio for the Cr6+-containing oxide was 

found to be 3.0 (see Table 5.2).  There was no evidence to support the formation of either 

NiOOH and or NiCr2O4 films on this surface.  Two additional peaks at 530.2 and 531.8 

eV were also required to fit the envelope.  The higher BE species was attributed to 

interstitial H2O associated with β-Ni(OH)2, while the lower BE species is believed to 

result from interstitial H2O molecules associated with Cr(OH)3;  according to our 

reassessment of O 1s spectral data for  Cr(OH)3⋅xH2O originally shown in reference [23].  

The normalized O/Cr atomic ratios for the Cr2O3 and Cr(OH)3 components were 

calculated to be 1.5 and 3.0 respectively.  The re-fitted O 1s spectrum for Cr(OH) 3⋅xH2O 

is shown in Figure 5.6(d). 

5.4 Conclusions 

The corrected O/Ni atom ratios were determined for powder samples of 

polycrystalline NiO, β-Ni(OH)2, γ-NiOOH, and NiCr2O4 and were shown to correspond 

well to the expected atom ratios for these oxides.  For some particular samples of β- 
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Figure 5.6: Fitted high-resolution (a) Ni 2p3/2, (b) Cr 2p3/2, and (c) O 1s spectra 
collected from a NiCr disk subjected to aqueous oxidation.  The Ni 2p3/2 spectrum 
showed contributions from metallic Ni, NiO and β-Ni(OH)2.  The Cr 2p3/2 spectrum 
was best fit with contributions from metallic Cr, Cr2O3, Cr(OH)3, and a Cr6+-containing 
oxide.  Fitting of the O 1s spectrum showed corresponding contributions from NiO, 
Cr2O3, a Cr6+-containing oxide, β-Ni(OH)2, and Cr(OH)3.  Two additional components 
representing H2O (int) species associated with both β-Ni(OH)2 and Cr(OH)3 were also 
observed.  The remainder of the O 1s intensity was determined to result from organic 
contamination. 
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Ni(OH)2  and γ-NiOOH, the O/Ni ratios suggested that the sample was decomposing. The 

O/Ni and O/Cr ratios were then used to confirm the assignments of mixed oxide phases 

that formed on Ni metal and NiCr alloy surfaces during electrochemical oxidation. 
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Chapter 6 X-ray photoelectron study of the oxides formed on nickel metal and 

nickel-chromium 20% alloy surfaces under reducing and oxidizing 

potentials in basic, neutral and acidic solutions 

6.1 Introduction 

The corrosion resistant nature of Ni based alloys has led to the widespread use of 

these materials in high pressure and temperature environments such as those found in 

turbines, jet engines, and steam generator (SG) tubing in pressurized water reactors 

(PWR) [1].  Alloy 600a and Alloy 690b have been used in the latter application and their 

performance has been monitored by many techniques including those that measure the 

microstructural changes associated with alloy degradation.  XPS has been a key 

investigative technique used to analyze the near surfaces of the alloys that have been 

exposed to real or simulated service conditions.  XPS provides unique information on the 

thickness, composition and chemical state of the corrosion-formed deposits and films that 

result from degradative processes in the reactor coolant heat transport circuits [2-13].  

This paper describes XPS studies of Ni metal and NiCr alloy samples that were exposed 

to SG conditions where the pH and/or oxidation potential of the simulated coolant were 

changed.  Earlier publications by this group have shown that XPS can be used to analyze 

complicated line shapes observed for the mixed oxide/hydroxide films formed on Ni and 

Cr surfaces [14-19].  The relative changes with potential and pH on surface composition 

and chemistry contribute to a better understanding of surface condition of SG tubing 

during service, particularly in the context of mathematical models that predict the 

                                                 
aThe approximate elemental composition of Alloy 600 in wt.%: Ni 72% minimum, Cr 14-17%, Fe 6-10%, 
balance C, Cu, Mn, S, Si and Ti. 
bThe elemental composition of Alloy 690 is: Ni 58% minimum, Cr 27-31%, Fe 7-11%, balance C, Cu, Mn, 
S, and Si. 
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chemical species based on thermodynamic data [20-22].  To complement XPS, the 

distribution of Ni and Cr species within the oxide films on selected NiCr samples were 

also monitored using ToF SIMS.  This is the first time that the surface chemistry of these 

alloys has been explored as a function of both solution pH and oxidation potential. 

6.2 Experimental 

Polycrystalline Ni discs 3.4 mm thick were cut from a 12 mm diameter metal rod 

obtained from Alfa Aesar (99.995% pure).  Samples of the same size were cut from a 

polycrystalline NiCr rod fabricated by ACI Alloys Inc.  A small thread was drilled into 

one side of all metallic and alloy samples to allow the coupons to be suspended in various 

aqueous solutions via metal rods in a sealed autoclave.  The specific experimental setup 

for all aqueous exposures is described below.  Following drilling of the threads the 

second face of the Ni metal and NiCr alloy samples were polished to a mirror finish using 

0.05 µm γ-Al2O3 paste.  The freshly polished surfaces were then sonicated in methanol 

for 20 min. 

The Ni metal and NiCr discs were exposed to aqueous oxidation in a sealed 

autoclave in aqueous solutions, all set to desired pH values at room temperature (pH25°C).   

Solutions included 1 x 10-4 M LiOH (reagent grade ≥ 98%, Sigma Aldrich) adjusted to 

pH 25°C  = 10.1 (basic); 0.1 M (NH4)2SO4 (purity ≥ 99%, BDH Inc.) adjusted with LiOH 

to pH 25°C  = 7 (neutral), and 0.1 M (NH4)2SO4 corrected to a pH25°C  = 4 (acidic) using 

H2SO4.  Each electrolyte was prepared using deionized H2O (resistivity 18 MΩ) and 

isolated from the walls of the autoclave by a Teflon liner.  The pH of each solution was 

measured (at 25°C) using an Orion model 720 pH meter.  During solution preparation, to 
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achieve desired neutral and acidic conditions, small amounts of 0.1 M LiOH or 0.1 M 

H2SO4 were added slowly to the appropriate electrolytes until the desired pH was reached.  

Ultra-pure Ar gas was bubbled through all solutions for 20 min prior to sealing the 

autoclave to minimize the amount of dissolved O2 gas present.  All samples were 

suspended in the respective electrolyte solutions using an Alloy-22c rod (Haynes).  A 

piece of Alloy-22 was also used as a counter electrode, as this predominantly NiCr inert 

material has been demonstrated to be effective in the pressure vessel apparatus [23-24].  

After the electrolytes were deaerated the autoclave was sealed and an overpressure of 

approximately 276 kPa of Ar gas was applied. 

All Ni metal and NiCr alloy samples were oxidized in a sealed autoclave to keep 

the dissolved O2 concentration to a minimum.  For the experiments carried out at 150°C, 

a ramp time of 6 h was required to reach a stable temperature.  The experimental setup 

was such that the pH of each solution could not be measured once the pressure vessel had 

been sealed.  The temperature corrected pH (pH150°C) values for all solutions were 

estimated using the following relationships: 

pH150°C, basic (>7) = pH25°C + pKw150°C - pKw25°C 6.1 

pH150°C, neutral (~7) = 1/2pKw150°C 6.2 

pH150°C, acidic (<7) ≈ pH25°C 6.3 

where Kw and Kwt are the ion products of pure H2O at 25° and 150°C [25].  The pKw25°C 

and pKw150°C values used for pure H2O at temperatures of 25° and 150°C were 14 and 

11.7 respectively [26].   

                                                 
c The elemental composition of Alloy 22 in wt.%: Ni 56% maximum, Cr 22%, Mo 13%, Fe 3%, W 3%, Co 
2.5%, balance C, Mn, S, and Si. 
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 Prior to surface oxidation all metallic Ni and NiCr samples were cathodically 

cleaned for 1 h at a constant applied potential of -1.5 V versus a 0.1 M Ag/AgCl (in KCl 

solution) reference electrode.  The design of the pressure vessel had the Ni/NiCr samples 

positioned approximately 31 mm from the reference electrode.  Other authors have 

conducted experiments at similar temperatures using the same pressure vessel design [23-

24].  Oxidation reactions were carried out at temperatures of 25° and 150°C for periods 

of 3, 24 or 48 h at controlled electrochemical applied potentials of 0.0 V (mildly 

oxidizing),  1.5 V or 1.6 V (highly oxidizing) versus the same Ag/AgCl reference 

electrode in one of the three electrolyte solutions.  Surfaces oxidized at 25°C were 

immediately removed from the autoclave and transported in air to the XPS for surface 

analysis.  The samples oxidized at 150°C were allowed to cool between 3–6 h prior to 

removal and transport to the XPS.  To apply electrical potentials, a Solartron 1287 

potentiostat was used, using Corrware software [27]. 

 All surfaces studied as a part of this work were analyzed using a Kratos Axis 

Ultra spectrometer employing monochromatic Al Kα (15 mA, 14 kV) X-rays.  The 

spectrometer work function and instrument dispersion were calibrated using the metallic 

Au 4f7/2 (83.95 eV) and Cu 2p3/2 (932.63 eV) signals.  The base pressure of the analytical 

chamber during sample analysis was below 5 x 10-7 Pa.  All XPS spectra were collected 

using the hybrid-focusing lens, a scan time of 180 s, and an analysis area of 700 µm x 

300 µm.  The survey spectra were obtained at a pass energy of 160 eV, a 0.7 eV energy 

step, over a binding energy (BE) range of 1100 eV − 0 eV.  Analyses of the Ni 2p, Cr 2p, 

O 1s, and C 1s envelopes were carried out at pass energies of 20 eV, an energy step size 
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of 0.05 eV,  at energy ranges of 895 eV − 848 eV (30−40 sweeps), 595−570 (30 sweeps), 

540 eV − 520 eV (15−20 sweeps), and 295 eV − 275 eV (10−20 sweeps) respectively. 

 All XPS spectra were analyzed using CasaXPS Version 2.3.15 [28].  The 

backgrounds from both the survey and high-resolution scans were removed using a 

Shirley baseline [20].  All elemental concentrations were calculated using the relative 

sensitivity factors (RSFs) specific to the Kratos Axis Ultra spectrometer [28].  The 

elemental concentrations in at.% for the Ni and Cr species were calculated using the Ni 

2p3/2 and Cr 2p3/2 regions from XPS survey spectra (see Tables 6.1 and 6.2).  Other 

publications by this group have used this same method for determining the atomic 

concentrations for these elements [15,18-19]. 

 Rigorous fitting of the high-resolution Ni 2p3/2 and Cr 2p3/2 spectra was 

undertaken to determine the composition of the oxidized surfaces.  The metal (M) 2p3/2 

line shapes for polycrystalline Ni metal and well characterized powder samples of NiO, 

β-Ni(OH)2, γ-NiOOH, Cr2O3, Cr(OH)3⋅xH2O, CrO3, and NiCr2O4 have been previously 

studied by this group [14-19].  Various combinations of these line shapes were used to 

model the Ni 2p3/2 and Cr 2p3/2 spectra collected from each oxidized surface; the 

combination that best reproduced the shapes of the respective envelopes was determined 

and applied to all the fits presented in this study.  The line shapes for the metallic Ni and 

Cr species in the NiCr alloy were determined by fitting the M 2p3/2 spectra collected from 

a sputter cleaned (15 min, 4 kV Ar+ beam) and annealed (30 min, 600°C) sample.  The Ni 

and Cr atomic concentrations for the ion-etched and annealed sample, along with the 

associated fitting parameters, are presented in Table 6.2.  The resulting high-resolution 

spectra are presented in Figure 6.1.  
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Figure 6.1: The high-resolution (a) Ni 2p3/2 and (b) Cr 2p3/2 spectra collected from a 
polished and sputter cleaned polycrystalline NiCr surface.  Parts of the metal Ni 2p1/2 
and Cr 2p1/2 lines are observed at higher BEs. 
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Table 6.1: High-resolution Ni 2p3/2 peak fitting results and normalized atomic 
concentrations (in at.%) for the Ni metal samples. 

 
Total 

Ni Ni metal NiO Ni(OH)2 
Sample (at.%) (%) (at.%) (%) (at.%) (%) (at.%) 
Ni-1 (1 h, -1.5 V, 25°C, 
pH25°C = 10.1)a 

14 36 5.0 25 3.5 39 5.5 

Ni-2 (48 h, 0.0 V, 25°C, 
pH25°C = 10.1) 

15 5 0.9 21 3.2 74 11 

Ni-3 (3 h, 0.0 V, 150°C, 
pH150°C = 7.8)b 

16   11 1.8 89 14 

Ni-4 (3 h, 1.5 V, 150°C, 
pH150°C = 7.8)b 

20 6 1.2 44 8.8 50 10 
a A small Cr impurity of 1.6 at.% was detected on the surface following the surface 
reduction.  Fitting of the Cr 2p3/2 envelope showed that all Cr species were bound in 
Cr(OH)3.  
b The pH150°C was calculated using Equation 6.1. 
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Table 6.2: High-resolution Ni 2p3/2 and Cr 2p3/2 peak fitting results and normalized atomic 
concentrations (in at.%) for the NiCr alloy samples. 

 
Total 

Ni 
Ni 

metal NiO Ni(OH)2 
Sample (at.%) (%) (at.%) (%) (at.%) (%) (at.%) 
NiCr-1 (clean metal)a 67 100 67     
NiCr-2 (48 h, 0.0 V, 25°C, 
pH25°C = 10.1) 

18 5 0.9 4 0.7 91 16 

NiCr-3 (3 h, 0.0 V, 150°C, 
pH150°C = 7.8)b 

4.0   4 0.2 96 3.8 

NiCr-4 (24 h, 0.0 V, 150°C, 
pH150°C = 7.8)b 

10   5 0.5 95 9.5 

NiCr-5 (48 h, 0.0 V, 150°C, 
pH150°C = 7.8)b 

8.2   4 0.3 96 7.9 

NiCr-6 (3 h, 0.0 V, 150°C, 
pH150°C = 5.8)c 

9.5   3 0.3 97 9.2 

NiCr-7 (24 h, 0.0 V, 150°C, 
pH150°C = 5.8)c 12   5 0.6 95 11 

NiCr-8 (3 h, 0.0 V, 150°C, 
pH150°C = 4.1)d 3.2 79 2.5 12 0.4 9 0.3 

NiCr-9 (24 h, 0.0 V, 150°C, 
pH150°C = 4.1)d 2.3 63 1.4 12 0.3 25 0.6 

NiCr-10 (48 h, 1.5 V, 150°C, 
pH150°C = 7.8)b 8.0 2 0.2 28 2.2 70 5.6 

NiCr-11 (3 h, 1.5 V, 3 h 0.0 
V 150°C, pH150°C = 7.8)b 

14   23 3.2 77 11 

 Total Cr Cr metal Cr2O3 Cr(OH)3 Cr6+ 
Sample (at.%) (%) (at.%) (%) (at.%) (%) (at.%) (%) (at.%) 
NiCr-1e 15 100 15       
NiCr-2 1.7 18 0.3 44 0.7 38 0.6   
NiCr-3 0.7   25 0.2 75 0.5   
NiCr-4          
NiCr-5  1.3   28 0.4 72 0.9   
NiCr-6 3.0   21 0.6 70 2.1 9 0.3 
NiCr-7 3.3   25 0.8 69 2.3 6 0.2 
NiCr-8 1.2 44 0.5 21 0.3 35 0.4   
NiCr-9 5.1 18 0.9 17 0.9 65 3.3   
NiCr-10 6.4   8 0.5 92 5.9   
NiCr-11 11   27 3.0 70 7.7   
a The Ni 2p3/2 peak fitting parameters: Peak 1 – 84%, LA(1.1,2.2,10), FWHM = 0.91 eV, at 
852.6 eV: Peak 2 – 4%, GL(30), FWHM = 2.80 eV, at 856.5 eV: Peak 3 – 12%, GL(30), 
FWHM = 2.80 eV, at 859.2 
b The pH150°C was calculated using Equation  6.1. 
c The pH150°C was calculated using Equation  6.2. 
d The pH150°C was calculated using Equation  6.3. 
e The Cr 2p3/2 peak fitting parameters: Peak 1 – 93%, LA(2.1,5.2,10), FWHM = 1.48 at 
574.0 eV, Peak 2 – 7%, GL(30), FWHM = 2.78 eV, at 576.4 eV  
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The atomic concentrations for the different Ni and Cr species (i.e. β-Ni(OH)2 and 

Cr2O3) were calculated using the peak fitting results for the Ni 2p3/2 and Cr 2p3/2 spectra 

and the total Ni and Cr atomic concentrations detected in the survey scan (see Tables 6.1 

and 6.2).  The corresponding contributions to the O 1s spectra were derived by combining 

these calculated values with the expected O/Ni and O/Cr ratios for the different Ni and Cr 

oxide and hydroxide species (i.e. 2:1 O:Ni for β-Ni(OH)2).   All O 1s envelopes were 

modelled using peaks having 50% Gaussian – 50% Lorentzian line shapes denoted as 

GL(50) in CasaXPS. 

 All surfaces contained varying amounts of adventitious C.  The C 1s envelopes 

were analyzed using components having GL(30) character (spectra not shown).  Fitting 

of the C 1s spectra showed the presence of a strong hydrocarbon line (C−C, C−H) which 

was charge corrected to a BE of 284.8 ± 0.1 eV and used to calibrate all high-resolution 

spectra.  The presence of additional organic components were observed at BEs of 286.2 ± 

0.1 eV, 287.8 ± 0.2 eV and 288.7 ± 0.2 eV and attributed to alcohol/ether (−COH, 

−COC−, O=C(O−C*), carbonyl (−C=O), and ester (O=CO−) functional groups, 

respectively [29].  The (*) indicates the atom giving rise to the photoelectron signal.  The 

resultant O 1s contributions were modelled using peaks at 531.7 ± 0.3 eV, 532.0 ± 0.3 eV, 

532.3 ± 0.2 eV, 532.5 ± 0.2 eV, and 532.8 ± 0.3 eV representing the O*=CO−, −C=O, 

−COC−, −COH, and O=CO*− species respectively.  The same peak fitting methods have 

been applied in previous publications [15,18,19]. 

The thickness of the oxide films grown on the Ni metal surfaces were calculated 

using the mixed oxide/hydroxide formula presented by Biesinger et al. [16].  This model 

assumes the formation of a uniformly mixed oxide/hydroxide layer and was derived from 
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the overlayer models developed by Carlson [30] and Strohmeier [31].  The overlayer 

modeling could only be applied to the Ni surfaces where metallic signals were detected in 

the Ni 2p3/2 envelopes.  The inelastic mean free paths (IMFPs) for metallic Ni, NiO and 

β-Ni(OH)2 were calculated to be 1.1, 1.3 and 1.6 nm respectively using the NIST 

Electron Inelastic Mean Free Path Database (Version 1.1) [32]. 

 Three alloy samples were subjected to surface analysis using an ION-TOF 

(GmbH) ToF SIMS IV single-reflections mass spectrometer.  Shallow depth profiles into 

the oxide surfaces were collected using the dual beam mode, monitoring the negative 

secondary ions.  The analysis beam was a 25 kV pulsed Bi3+ ion with a 0.5 pA target 

current rastered over a 200 µm x 200 µm area.  A 3 kV Cs+ sputter beam having a target 

current of 10 nA was rastered over a 500 µm x 500 µm area.  The Bi3+ analysis regions 

were centred within the Cs+ sputter crater to avoid edge effects.  Two separate areas of 

each sample were analyzed and the profiles were terminated once the oxide/metal 

interfaces were reached.  The ToF SIMS results were analyzed using the IONSPEC 

program [33]. 

6.3 Results and Discussion 

6.3.1 Surface analysis using XPS 

The composition of the films grown on oxidized Ni metal and NiCr alloy surfaces 

were modelled through fitting of the respective Ni 2p3/2, Cr 2p3/2 (where present) and O 

1s high-resolution spectra.  All Ni 2p3/2 spectra collected as part of this work were fit with 

contributions from β-Ni(OH)2 and NiO.  In addition, contributions from metallic Ni were 

also observed on some of the surfaces studied.  The relative amount of each component in 

the Ni 2p3/2 spectra varied with the reaction conditions and exposure times.  Summaries 
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of the Ni 2p3/2 peak fitting results for both the polycrystalline Ni metal and NiCr alloy 

samples are presented in Tables 6.1 and 6.2 respectively.  The corresponding O 1s peak 

intensities for β-Ni(OH)2 (531.1 ± 0.1 eV) and NiO (529.1 ± 0.2 eV) were constrained 

using the Ni 2p3/2 fitting results (see Tables 6.1 and 6.2) and the expected O/Ni atomic 

ratios of 2 and 1 for the respective oxides [15,19].  For the NiCr surfaces, fitting of the Cr 

2p3/2 spectra showed the formation of mixed Cr2O3 and Cr(OH)3 films.  Low levels of 

Cr6+ were also observed on all alloy surfaces oxidized at neutral pH.  In addition, metallic 

Cr contributions were observed on some alloy surfaces, and were found to coincide with 

the presence of metallic Ni.  The complete Cr 2p3/2 fitting results are summarized in 

Table 6.2.  The corresponding intensities for Cr2O3 (529.6 ± 0.2 eV), Cr(OH)3 (531.4 ± 

0.1 eV) and, where present, Cr6+ oxide (530.0 ± 0.2 eV) were also applied to the O 1s 

peak fits using O/Cr ratios of 1.5, 3 and 3 [18,19].  This applied ratio of 3 for the Cr6+ 

species produced the best O 1s fits and implied that a CrO3-like oxide was present on 

these surfaces.  However, Cr6+-containing species have been shown to decompose readily 

during X-ray analysis [34].  Therefore, the actual O/Cr ratios could be greater than the 

experimentally detected values and some HCrO4
- or CrO4

2- containing species, which are 

predicted to be thermodynamically stable under the applied experimental conditions 

[20,22], may be present on these surfaces.  In some cases the atomic concentrations for 

the different oxidized Ni and Cr species approached the detection limit of XPS (see 

Tables 6.1 and 6.2).  Higher error is associated with the O 1s peak assignments for these 

components.  The remainder of the O 1s envelopes were then fit for contributions from 

organic contamination as well as for interstitial H2O molecules associated with both β-

Ni(OH)2 (531.7 ± 0.1 eV) and Cr(OH)3 (530.3 ± 0.1 eV) [15,18,19]. 
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6.3.2 Surface reaction products under strongly reducing conditions in a basic 

environment at 25°C 

Figure 6.2 shows the high-resolution Ni 2p3/2 and O 1s spectra collected from a 

polycrystalline Ni metal sample (Ni-1) exposed to a strongly reducing applied potential 

(Eapp) of –1.5 V vs. an Ag/AgCl electrode at 25°C in a basic solution (pH25°C = 10.1) for 1 

h.  Exposure to these conditions produced a thin oxide film composed of both β-Ni(OH)2 

and NiO (see Table 6.1 and Figure 6.2).  The thickness of this oxide, assuming an even 

coverage, was determined to be 2.2 nm using the formula of Biesinger et al. [16].  The 

presence of β-Ni(OH)2 in this study suggests that the growth of this oxide component is 

the result of back precipitation from solution: β-Ni(OH)2 is not found to be formed by a 

solid state reaction of Ni with H2O vapour at these temperatures [15].  A small Cr(OH)3 

impurity (Cr 2p3/2 spectrum not shown) was also detected on this surface.  For  

 
 

 
 
Figure 6.2: The high-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected following 1 
h of surface cleaning of sample Ni-1 at 25°C at a reducing Eapp = − 1.5 V in a basic 
solution vs. a Ag/AgCl reference electrode (pH25°C = 10.1). 
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 completeness the intensity for Cr(OH)3 along with a corresponding contribution from 

interstitial H2O were included in the O 1s fit.  Under these highly reducing conditions, no 

oxide should have formed on the Ni surface according to the Pourbaix diagram for Ni 

[21].  However, this thin oxide may be indicative of incomplete reduction of the surface 

during the reducing conditions, or its rapid reformation during the period where the 

potential was switched off and the electrode was removed from the solution.  Regardless 

of its origin, this result suggests that we are unable to completely remove oxides in 

preparation for XPS analysis, using strictly electrochemical methods. 

 

6.3.3 Surface reaction products under mildly oxidizing conditions in basic 

environments at 25°C 

Metallic Ni (Ni-2) and NiCr alloy (NiCr-2) surfaces were exposed to mildly 

oxidizing conditions of Eapp= 0.0V vs. an Ag/AgCl electrode at 25°C in basic solution 

(pH25°C = 10.1) for 48 h.  From a comparative surface analysis of these materials in 

Figure 6.3 and Tables 6.1 and 6.2, the oxides were of similar thickness and were greater 

than under the reducing condition (2.2 nm).  The thickness of the oxide formed on sample 

Ni-2 was determined to be 5.5 nm using the mixed oxide/hydroxide formula [16].  The 

presence of the Cr in the alloy seems to have little influence on the oxide produced.  Most 

of the corrosion product was of the β-Ni(OH)2 form, particularly in the case of the NiCr 

alloy.  The Ni species comprised most of the corrosion product: a reflection of the fact 

that Ni metal in the alloy is predicted in the Pourbaix diagram to be more soluble than Cr 

under these conditions [21-22], and more prone to formation via dissolution/precipitation. 
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Figure 6.3: The high-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected for a Ni metal 
surface following aqueous oxidation at 25°C in a basic solution (pH25°C = 10.1) for 48 h 
at a slightly oxidizing potential Eapp = 0.0 V vs. a Ag/AgCl reference electrode.  The 
high-resolution (c) Ni 2p3/2, (d) Cr 2p3/2 and (e) O 1s spectra for a NiCr surface oxidized 
for 48 h under the same temperature, solution and potential conditions. 
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6.3.4  Surface reaction products under mildly oxidizing conditions in basic 

environments at 150°C 

In this test, an autoclave temperature of 150°C was used with a simulated coolant 

whose pH150°C was calculated to be 7.8, much lower than its room temperature value of 

10.1.  Figure 6.4 shows the representative high-resolution spectra for Ni metal (Ni-3) and 

NiCr samples (NiCr-3) exposed for 3 h periods at constant Eapp of 0.0 V vs. the Ag/AgCl 

electrode.  The oxide thicknesses in these cases exceeded the information depth available 

in the XPS experiment (~ 6 nm).  The corrosion product composition was primarily β-

Ni(OH)2, even on the NiCr surface.  Other NiCr alloy samples (NiCr-4 and NiCr-5) were 

exposed for periods of 24 h and 48h respectively (spectra not shown); the near-surface 

compositions were virtually identical to the shorter exposure (see Tables 6.1 and 6.2).  

The distribution of oxidized Ni and Cr was monitored using ToF SIMS on the alloy 

surface oxidized for 24 h in basic solution.  A 200 µm x 200 µm area showing the 

detected intensities of the NiO2
- and CrO2

- negative ion fragments along with the 

corresponding depth profile are presented in Figure 6.5(a-b).  The bright yellow 

colouration represents areas where the most intense signals were detected, while the 

black regions indicate locations were no signal was observed.  These results show a 

mostly uniform distribution of Ni and Cr across the 200 µm x 200 µm analysis area (see 

Figure 6.5(a)) with an enrichment of oxidized Ni species at the very near surface (see 

Figure 6.5(b)).  Thus, consistently at basic pH and 150˚C Ni dissolution and precipitation 

is the dominant corrosion process. 
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Figure 6.4: The high-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected for a Ni metal 
surface following aqueous oxidation at 150°C in a basic solution (pH150°C = 7.8) for 3 h 
at a slightly oxidizing Eapp = 0.0 V vs. a Ag/AgCl reference electrode.  The high-
resolution (c) Ni 2p3/2, (d) Cr 2p3/2 and (e) O 1s spectra for a NiCr surface oxidized for 3 
h under the same temperature, solution pH and potential conditions. 

Cr2O3

Cr(OH)3

Binding Energy (eV)
850855860865870

In
te

ns
ity

Binding Energy (eV)
572574576578580582584

In
te

ns
ity

Binding Energy (eV)
526528530532534536

In
te

ns
ity

c) NiCr alloy – Ni 2p3/2 d) NiCr alloy  – Cr 2p3/2 e) NiCr alloy – O 1s

Binding Energy (eV)
850855860865870

In
te

ns
ity

Binding Energy (eV)
526528530532534536

In
te

ns
ity

a) Ni metal  – Ni 2p3/2 b) Ni metal  – O 1s

H2O int

Organics

NiO
Ni(OH)2



145 
 

 
 

  

 
 
Figure 6.5: The ToF SIMS images mapping the Ni and Cr distribution across a 200 
µm x 200 µm area and corresponding depth profiles collected from the NiCr surfaces 
oxidized for 24 h at 150°C at a mildly oxidizing Eapp = 0.0 V vs. a Ag/AgCl reference 
electrode.  (a) top view, and (b) depth profile in basic solution, pH150°C = 7.8; (c) top 
view, and (d) depth profile in neutral solution, pH150°C = 5.8; and (e) top view, and (f) 
depth profile in acidic solution, pH150°C = 4.1.  The yellow areas represent the regions 
of highest Ni or Cr concentrations, while the black areas indicate the positions where 
no signal was detected.  The solution/oxide (X1) and oxide/alloy (X2) interfaces are 
also marked on the depth profiles. 
 

NiO2
- CrO2

-

b) Depth profile, pH150°C = 7.8

NiO2
- CrO2

-

a) Top view, 24 h, pH150°C = 7.8

50 µm-

c) Top view, pH150°C = 5.8

50 µm -

CrO2
-NiO2

-

d) Depth profile, pH150°C = 5.8 

NiO2
- CrO2

-

f) Depth profile, pH150°C = 4.1 

NiO2
- CrO2

-

e) Top view, pH150°C = 4.1

50 µm-

X1

X2

X1

X2

X1

X2
NiO2

- CrO2
-



146 
 

 
 

6.3.5 Possible conductivity issues in the basic solutions 

The basic aqueous solutions used in this work were chosen to emulate, as closely 

as possible, those existing under possible SG chemistry conditions (i.e. alkaline with pH 

= 10) [12-13].  Accordingly, they were prepared with somewhat low ionic strengths (1 x 

10-4 M), as this feature allowed us to maximize the probability that oxides would not 

contain impurities (i.e. supporting electrolyte, buffers, etc), and would most closely 

resemble those formed during SG operation [12-13].  However, the trade-off with this 

selection is that it leads to a possible increase to ohmic potential losses between working 

and reference electrodes, owing to higher solution resistance.  As a result, for the basic 

conditions, we were unable to preselect an exact potential to apply at the electrode 

surface.  This requirement introduces a measure of variability in directly comparing the 

oxide films grown in the different solutions, since the actual potential at the solution 

metal interface will differ from the applied potential, but more importantly, among 

different temperatures, potentials and solutions used in the experiments. 

6.3.6 Surface reaction products under mildly oxidizing conditions in neutral 

environments at 150°C 

Using the above temperature and oxidizing conditions, the pH150°C in the 

simulated coolant was changed to 5.8 (neutral) at temperature (150°C) for exposure times 

of 3 h (NiCr-6) and 24 h (NiCr-7).  Under these solution conditions higher ionic strengths 

(e.g. > 0.1 M) were used and as a result potential losses due to poor ionic conductivity are 

believed to be negligible.  The near surface corrosion products formed on these samples 

had significantly higher concentrations of Cr than at pH150°C = 7.8, mostly as Cr(OH)3 

(see Tables 6.1and 6.2).  As was observed in basic solution the primary Ni containing 
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corrosion product was β-Ni(OH)2.  The high-resolution spectra collected following the 3 

h reaction are shown in Figure 6.6.  The presence of a Cr6+-containing species under 

these conditions confirms that the dissolution processes involved both metallic Ni and Cr 

as predicted thermodynamically via the Pourbaix diagram [20-22].   Furthermore, both 

dissolved species formed back precipitates as corrosion products on these surfaces.  

Analysis of the alloy sample oxidized for 24 h using ToF SIMS showed regions enriched 

with Cr over the rastered area (see Figure 6.5(c)), while there was no clear separation 

between the Ni and Cr components with depth (see Figure 6.5(d)).  The enrichment in Cr 

may have resulted from a decrease in the local pH (acidic) in these areas creating an 

environment in which Ni2+ species were stable in solution [20-22].  These areas could 

also represent regions of higher reactivity such as grain boundaries or defect sites, at 

which Cr oxidation may be more active. 

 

 
 
Figure 6.6: The high-resolution (a) Ni 2p3/2, (b) Cr 2p3/2 and (c) O 1s spectra collected 
for a NiCr alloy sample following 3 h of aqueous oxidation at 150°C under a slightly 
oxidizing Eapp = 0.0 V vs. a Ag/AgCl reference electrode in a neutral solution (pH150°C = 
5.8). 
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6.3.7 Surface reaction products under mildly oxidizing conditions in acidic 

environments at 150°C 

Representative high-resolution spectra showing the change in surface condition 

following a 3 h and a 24 h exposure at Eapp = 0.0V and 150°C in acidic solutions (pH150°C 

= 4.1) are shown in Figure 6.7.  After a 3 h period (NiCr-8) the oxide film was largely 

dissolved and the thin oxide remnant was composed of almost equal amounts of oxidized 

Ni and Cr (see Table 6.2).  The metal substrate compositions reflected a dissolution 

process that still favoured Ni, however oxide formation was much slower than the 

analogous reactions in either basic or neutral solutions at 150°C.  Following the 24 h 

exposure (NiCr-9) a decrease in the metal intensities was observed in both M 2p3/2 

spectra and suggested a slowing of the dissolution processes of both Ni and Cr.  The 

corrosion product produced on this surface was largely Cr(OH)3 with only a small 

contribution from β-Ni(OH)2. 

Analysis of the SIMS data collected from this surface showed areas with little to 

no oxidized Ni or Cr (see Figure 6.5(e)).  Additionally, a clear separation of the oxidized 

Ni and Cr species was not observed in the corresponding depth profiles (see Figure 

6.5(f)).  Therefore, over the longer reaction period, the increased stability of Ni2+ species 

in solution resulted in the limited back deposition of β-Ni(OH)2 and led to the formation 

of a Cr(OH)3-rich thin oxide film [20-22].  The observation of patchiness of the film may 

also imply that the current was localizing within some regions of the electrode, where the 

Cr3+ species was not located, and that continuing dissolution occurred in other, bare 

regions.   
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Figure 6.7:  The high-resolution (a) Ni 2p3/2, (b) Cr 2p3/2 and (c) O 1s spectra collected 
for NiCr alloy samples following 3 h of aqueous oxidation at 150°C under a slightly 
oxidizing Eapp = 0.0 V vs. a Ag/AgCl reference electrode in acidic solution (pH150°C = 
4.1).  The high-resolution (d) Ni 2p3/2, (e) Cr 2p3/2 and (f) O 1s spectra for a NiCr surface 
oxidized for 24 h under the same temperature, solution pH and potential conditions. 
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6.3.8 Surface reaction products under highly oxidizing conditions in basic 

environments at 150°C 

A very high oxidation potential of 1.6 V vs. an Ag/AgCl electrode was applied to 

a metallic Ni (Ni-4) and a NiCr alloy specimen (NiCr-10) in basic solutions (pH150°C = 

7.8).  Figure 6.8 shows the high-resolution spectra collected after a 3 h exposure for the 

Ni metal sample and a 48 h reaction for the NiCr sample.  Several differences can be seen 

between these results and those run under mildly oxidizing conditions (see Tables 6.1 and 

6.2 and Figure 6.3).  The oxide films grown under high oxidizing potentials were thinner, 

compared to their counterparts grown at milder conditions at this temperature (a thickness 

of 4.8 nm was calculated for the Ni-4 sample [16]).  As well, the oxide grown at high 

potential on the alloy contained much higher concentrations of Cr, most of which was 

Cr(OH)3.  Thus, there is more rapid and complete dissolution of the metallic Cr phase 

compared to the mildly oxidizing conditions.  Finally, the ratio of NiO/β-Ni(OH)2 in each 

corrosion product was substantially higher than in the samples produced under milder 

oxidizing conditions.  The higher potentials may be accelerating the dehydration of the 

film; in any case, it is a parameter that might be useful to diagnose the past chemical 

history of a corrosion product film. 

The dissolution of both Ni and Cr phases are predicted in the Pourbaix diagrams 

for these materials at highly oxidizing potentials of 1.5 or 1.6 V at 150°C [20-22].  

However, because of uncertainty in the actual oxidation potential achieved in our 

experiments a comparison of applied and predicted results is not very useful in this case.  

Further, the Ni Pourbaix diagrams predicted the formation of both Ni3+ and Ni4+ species  
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Figure 6.8:  The high-resolution (a) Ni 2p3/2 and (b) O 1s spectra collected for a Ni metal 
surface following aqueous oxidation for 3 h at 150°C in basic solution (pH150°C = 7.8) at 
a highly oxidizing potential of 1.5 V vs. a Ag/AgCl reference electrode.  The high-
resolution (c) Ni 2p3/2, (d) Cr 2p3/2 and (e) O 1s spectra for a NiCr surface oxidized for 
48 h under the same temperature, solution pH and potential conditions. 
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at these potentials [21,22].  None were observed in this work, perhaps because of the non 

achievement of the desired potential or perhaps because they are not formed in any case. 

6.3.9 Surface reaction products under highly oxidizing conditions followed by 

exposure to more mildly oxidizing potential in a basic environment at 150°C 

An alloy sample (NiCr-11) was oxidized at 150°C in a basic solution (pH150°C = 

7.8) for 3 h at a highly oxidizing potential of Eapp = 1.5 V vs. a Ag/AgCl electrode 

followed by 3 h at a milder potential of Eapp = 0.0 V vs. the same electrode.  The reaction 

produced a Ni-containing corrosion product having a similar NiO:β-Ni(OH)2 ratio to the 

alloy sample exposed to a constant highly oxidizing potential of Eapp = 1.6 V for 48 h at 

the same temperature (see Tables 6.1and 6.2).  An increase in the Cr2O3:Cr(OH)3 ratio 

was also observed following the 6 h reaction compared to the 48 h oxidation at the 

constant highly oxidizing potential.  The presence of a small amount of Cr6+ on this 

surface after the 6 h exposure indicated that some Cr dissolution had occurred.  These 

results showed that the effects of the highly oxidizing condition were not removed 

following a return to more mildly oxidizing potentials. 

6.4 Conclusions 

Exposure of Ni metal and NiCr alloy surfaces to highly reducing or mildly 

oxidizing conditions in basic solutions resulted in the preferential growth of a β-Ni(OH)2 

film at either 25° and 150°C.  This oxidative process was believed to occur via the 

dissolution of metallic Ni followed by the deposition of β-Ni(OH)2; with the thickest 

films being observed following reactions at the elevated temperature.  The presence of β-

Ni(OH)2, Cr(OH)3 and Cr6+ on the NiCr surfaces subjected to mildly oxidizing conditions 
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in neutral solutions at 150°C suggested the dissolution of both metallic Ni and Cr, 

followed by back precipitation of the corresponding corrosion products was responsible 

for oxide formation under these conditions.  Very thin Cr-rich films containing varying 

amounts of Cr(OH)3 were observed following alloy exposures to mildly oxidizing 

potentials in acidic solutions at 150°C.  This indicated a dissolution/deposition 

mechanism for Cr oxidation in acidic solution.  Small amounts of β-Ni(OH)2 were also 

observed on these specimens suggesting that deposition of a Ni corrosion product had 

occurred, even under these pH conditions.     

The films formed at 150°C under highly oxidizing potentials on both a Ni metal 

and NiCr alloy surface in basic solutions were found to be thinner and contained higher 

levels of NiO compared to the analogous reactions carried out at slightly oxidizing 

potentials.  The higher NiO content of these films was attributed to an accelerated 

dehydration of the β-Ni(OH)2 phase.  In the case of the alloy surface an increase in the 

Cr(OH)3 content was also observed following reaction at the higher potential and was 

ascribed to a more rapid and complete dissolution of the metallic Cr phase compared to 

the mildly oxidizing conditions.  Finally, exposure to a highly oxidizing potential 

followed by a return to less oxidizing conditions had little effect on the composition of 

the corrosion products produced. 
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Chapter 7 Summary and Conclusions 

7.1 General Summary 

In Chapter 2 the composition and structure of the oxides formed on 

polycrystalline Ni metal surfaces following exposure to low pressures of ultra pure O2 

gas at both 25°C and 300°C were studied using XPS and ToF SIMS.  Several Ni surfaces 

were subjected to doses of O2 gas in the range of 107 – 109 Langmuirs (L) and changes in 

film composition with both time and temperature were monitored. 

Reactions of polycrystalline and single crystal (100) Ni metal surfaces with O2 

gas produced thin films composed predominantly of NiO (Ni2+-containing) at both 25°C 

and 300°C .  Smaller contributions from a Ni3+-containing oxide were also observed in 

the Ni 2p3/2 spectra for all samples oxidized at 25°C, as well as following the shortest 

exposures at 300°C.  This Ni3+ component was only observed at the very near surface and 

thought to be created during the initial stages of the reaction.  Contributions from Ni3+ 

were not observed after the longest exposures at 300°C suggesting this species did not 

play as large a role in film growth over these periods at this temperature. 

Using QUASES™-based algorithms [1-2] it was determined that oxide formation 

at both 25°C and 300°C proceeded via island growth on a nanometric scale.  The thickest 

films were observed following the longest reactions at 300˚C.  Modeling of the reaction 

kinetics showed a parabolic pathway at the elevated temperature, while a direct 

logarithmic mechanism was observed under ambient conditions. 

The oxide growth rate on polycrystalline Ni surfaces was found to be almost four 

times faster than the analogous reaction on a single crystal (100) sample; attributed to the 

presence of grain boundaries on the polycrystalline specimens.  There was no evidence to 
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indicate differential oxide growth based on grain orientation had occurred at 300°C using 

micro-XPS analysis, while some grain-specific oxidation was detected at 25°C using a 

combination of XPS and ToF SIMS imaging.  Additionally, exposure of polycrystalline 

samples to multiple sputtering/annealing cycles produced highly twinned surfaces, thus 

reducing the number of high-angle boundaries available for cation transport, leading to a 

significant reduction in observed rate of oxide formation. 

Chapter 3 presented an XPS and ToF SIMS study of the oxidation of 

polycrystalline Ni metal surfaces exposed to low pressures of H2O vapour for doses in the 

range of 109 – 1010 L at 25°C and 300°C.  The changes in film composition and structure 

as a function of dose and temperature were monitored and a possible mechanism for 

oxide formation was proposed. 

Analyses of the Ni 2p3/2 spectra collected from Ni metal surfaces exposed to H2O 

vapour at 300°C showed the formation of thin defective NiO films containing varying 

amounts of Ni2+ and Ni3+.  Peaks corresponding to lattice O2- (bound to Ni2+) and O (def) 

atoms (bound to Ni3+) were assigned in the accompanying O 1s spectra.  Contributions 

from organic contamination determined from the analysis of the C 1s spectra were also 

included in the fitting of the O 1s envelopes.  As a result, there was no spectral evidence 

to support the presence of H2O (ads) or OH (ads) on any of the oxidized Ni surfaces at 

300°C. 

In Chapter 2 the O (def) component was attributed to O (ads) atoms, but was 

reassigned here as the same species was observed in the O 1s spectra for a number of 

well characterized NiO powder samples.  When the combined atomic concentrations of 

the O2- and O (def) components were compared to the normalized Ni2+ intensities for the 
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powder samples O/Ni ratios of close to 1 were obtained.  Similar ratios were obtained 

when the normalized concentrations of the O2- and O (def) components were compared to 

the Ni2+ and Ni3+ intensities obtained for the Ni surfaces exposed to H2O vapour.  These 

results suggested that the oxides formed following exposures to H2O vapour at 300°C 

were similar in structure to the powder NiO specimens.  A re-examination of the data 

collected from the Ni surfaces exposed to extended doses of O2 gas using the O 1s peak 

assignments presented in Appendix A also produced O/Ni ratios of close to 1.  Other 

authors have presented similar assignments for defective NiO species as well [3-7].  

Additional comments on the XPS spectra collected for powder NiO samples were 

discussed in Chapter 5. 

Analysis using QUASES™ showed oxidation proceeded through island oxide 

growth following reaction to H2O vapour at 300°C.  The films formed on these surfaces 

were found to be much thinner when compared to similar doses of O2.  Modeling of the 

reaction kinetics showed that oxide growth following exposure to H2O vapour was best 

described by a direct logarithmic mechanism.  Conversely, a parabolic relationship with 

dose was observed for metal reactions with O2 gas at 300°C.  The initial nucleation of 

oxide was also found to occur almost four times slower after exposure to the vapour 

when compared to the onset of oxide growth following doses of the pure O2 gas at 300°C. 

The reaction of a Ni metal sample with H2O vapour following a dose in the range 

of 109 L at 25°C showed no detectable amounts of oxide formation.  As was observed 

following reaction at 300°C there was no O 1s spectral evidence to support the presence 

of H2O (ads) following vapour exposure at this temperature.  However, a small amount of 

OH (ads) species was detected on this surface. 
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Using the results obtained from both the 25° and 300°C exposures the following 

reaction mechanism was proposed.  Reactant H2O molecules quickly decomposed into 

OH (ads) and H (ads) on metallic Ni surfaces at both 25° and 300°C.  This was followed 

by the slow place exchange of OH (ads) with metallic Ni and subsequent loss of H.  This 

process is believed to be the rate determining step.  Some of the H produced at the 

surface may become trapped in Ni vacancies and retard the migration of such vacancies, 

slowing the oxidation rate even further.  The presence of H (using high-purity deuterium) 

was verified in the near surface region of a thin oxide formed following exposure to H2O 

vapour at 300°C using ToF SIMS.  Finally, the OH (ads) is only stabilized on metallic Ni 

and once these sites became unavailable for reactant H2O molecules the reaction was 

terminated. 

To this point the reactions on Ni metal surfaces following exposure to gas phase 

O2 and H2O vapour had been extensively studied.  In Chapter 4 several Cr-O systems 

were investigated yielding additional interpretations of the Cr 2p3/2 line shapes for both 

Cr2O3 and Cr(OH)3, as well as providing more details for the oxidation mechanisms 

occurring on Cr metal surfaces exposed to either O2 gas or H2O vapour. 

The Cr 2p3/2 spectra collected for samples of a polycrystalline Cr2O3 powder were 

found to be very similar to the Gupta and Sen predicted line shape for the free Cr3+ [8-9].  

The narrowest Cr 2p3/2 multiplet structures were obtained following annealing of vacuum 

fractured Cr2O3 aggregate specimens to 550°C.  Other authors have shown that heating 

polycrystalline Cr2O3 surfaces near the temperatures applied here resulted in a conversion 

the crystal structure to the low energy (0001) orientation [10-11].  Similar reorganizations 

are believed to have occurred on the fractured and annealed surfaces analyzed here.  The 
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broadening of the Cr 2p3/2 spectra collected for the polycrystalline samples was proposed  

to be the result of a small difference in BE between the Cr3+ atoms situated in the (0001) 

orientation and those oriented in the other major crystallographic directions. 

Comparison of the atomic concentrations for the lattice O2- and Cr3+ components 

for all Cr2O3 samples produced O/Cr ratios between 1.5 and 1.6.  Based on these results 

there was no evidence to suggest the presence of a O (def) species as was observed for 

NiO.  Similarly, the observed O/Cr ratios indicated that significant amounts of Cr(OH)3 

were not present on the polycrystalline Cr2O3 specimens and therefore were not 

responsible for the observed signal broadening of these samples.  Additionally, the Cr 

2p3/2 line shape and O/Cr ratio derived for a polycrystalline powder sample was used to 

remove the Cr2O3 contribution from the Cr 2p3/2 spectrum collected for a powder sample 

containing both Cr2O3 and Cr(OH)3.  From the remaining spectral intensity a possible Cr 

2p3/2 line shape for Cr(OH)3 was modeled. 

Reactions of Cr metal surfaces with either gas phase O2 or H2O vapour at 300°C 

produced thin Cr3+ deficient films composed primarily of Cr2O3 along with varying 

contributions from a hypo-stoichiometric Cr component.  The absence of model spectra 

did not allow for the exact chemical nature of this sub-stoichiometric oxide to be 

identified here.  It is believed that this species was formed during the initial stages of 

oxidation and is analogous to the creation of Ni3+ on metallic Ni surfaces.  In addition, 

the exposure of Cr metal surfaces to doses of H2O vapour did not produce any evidence 

for the formation of Cr(OH)3.  In contrast, reaction of a NiCr alloy surface in an aqueous 

environment resulted in the growth of an oxide film containing contributions from both 
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Cr2O3 and Cr(OH)3.  There was no evidence to support the formation of a hypo-

stoichiometric Cr oxide under these conditions.  

The XPS spectra of a number of powder samples of NiO, β-Ni(OH)2, γ-NiOOH 

and NiCr2O4 were examined in Chapter 5.  The Ni and Cr 2p3/2 spectra for these 

compounds were extensively studied previously [12-14].  This work focused on 

separating the different O 1s intensities for lattice O2-, O (def) and OH- species from other 

surface components such as interstitially situated H2O molecules and adsorbed organic 

contaminants.  The atomic O/Ni ratios were calculated for all Ni-containing oxides using 

the corrected O 1s intensities for the lattice components only and were found to 

correspond well with the expected values for the respective compounds.   

All NiO samples studied showed contributions for both lattice O2- and O (def) 

species in the O 1s spectra; NiO was the only compound found to exhibit this defective 

structure.  Inspection of the O/Ni ratios calculated for certain β-Ni(OH)2 powders as well 

as for the γ-NiOOH compound indicated some sample decomposition had occurred.  In 

addition contributions from interstitially positioned H2O molecules were observed in the 

O 1s spectra for one β-Ni(OH)2 and both NiCr2O4 samples.  The O/Ni ratios obtained for 

these powder samples were then used to verify the Ni 2p3/2 assignments of mixed oxide 

phases formed on Ni metal and NiCr alloy surfaces following aqueous exposures in basic 

solutions at highly oxidizing potentials. 

Chapter 6 presented an XPS and ToF SIMS study of the oxidation of Ni metal and 

NiCr surfaces in aqueous solutions at controlled electrochemical potentials and 

temperatures of 25° and 150°C.  The aqueous environments were chosen to emulate 

possible solution conditions in the SG tubing of pressurized water reactors. 
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Oxide formation on metallic Ni and alloy surfaces in basic solutions under highly 

reducing or mildly oxidizing potentials was found to occur via the dissolution of Ni metal 

followed by the back deposition of β-Ni(OH)2 at both 25° and 150°C.  The presence of Cr 

in the alloy appeared to have little effect on the oxide produced, particularly at 25°C.  

Dissolution of Ni and Cr metal species followed by the deposition of β-Ni(OH)2 and 

Cr(OH)3 was determined to be responsible for film growth on NiCr samples exposed to 

neutral solutions under mildly oxidizing potentials at 150°C.  In acidic solutions a much 

slower rate of oxide formation was observed.  Under these conditions both metallic Ni 

and Cr species were dissolving, however the increased solubility of the Ni2+ corrosion 

product at acidic pH [15-16] limited the amount of β-Ni(OH)2 deposited, leading to the 

growth of a Cr(OH)3-rich film with increasing exposure time. 

7.2 Impact of work 

The work outlined in this thesis has shown that “defective” oxide films are formed 

on polycrystalline Ni and Cr metal surfaces during the initial stages of reaction with 

either O2 gas or H2O vapour.  These “defect” structures were particularly prevalent 

following gas/vapour doses of up to 1010 L.  The results presented in this thesis show that 

XPS provides an extremely reliable and effective means of examining the changes in 

oxide film chemistry following the formation of the first 0-15 monolayers of oxide on 

both polycrystalline Ni and Cr metal surfaces. 

As discussed in the Introduction the surface sensitivity of XPS makes this 

technique the perfect tool to analyze the thin films formed on polycrystalline Ni metal 

surfaces following exposure to O2 gas and H2O vapour.  The thickest oxides studied here 

were on the range of 4.5 nm.  Using QUASES-based algorithms it was determined that 
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oxide formation following exposure to O2 gas and H2O vapour resulted in “island” oxide 

growth on a nanometric scale (see Chapters 2 and 3).  Attempts were made to verify the 

QUASES results, however the thin nature (< 5 nm) as well as the nanometer 

dimensions of the oxide “islands” formed did not allow for any structural information to 

be obtained using other surface sensitive techniques such as Scanning Electron 

Microscopy (SEM) and ToF SIMS.  Typically, SEM cannot provide usable images of 

surfaces having films thinner than approximately 10 nm, due to the IMFPs of the excited 

secondary electrons.  ToF SIMS is another extremely surface sensitive technique able to 

provide topographical and limited compositional information in the form of depth 

profiles and secondary ion images.  However, the films formed following exposure to O2 

gas and H2O vapour were composed primarily of NiO, with small contributions from a 

Ni3+-containing oxide.  Even though ToF SIMS has a much lower detection limit than 

XPS it cannot provide accurate chemical state analysis.  ToF SIMS imaging can resolve 

surface structures separated by distances of 1-2 µm.  Imaging of an oxidized 

polycrystalline Ni metal surface exposed to O2 gas following a 6.0 x 108 L dose of O2 at 

25ºC did not show any “island” oxide growth.  Thus it appears the most accurate way to 

monitor thin film growth is with XPS and modeling routines such as QUASES. 

Evidence for the presence of a “defective” Ni3+-containing oxide in the films 

formed on polycrystalline Ni metal surfaces was observed following reaction with O2 gas 

at 25ºC, after shorter exposures (1.0 x 107 – 2.4 x108 L) at 300ºC, as well as on all 

surfaces dosed with H2O vapour at 300ºC (see Chapters 2 and 3).  In all cases the Ni 2p3/2 

spectra were dominated by intense metallic Ni signals, which were removed using 

spectral subtraction.  The resultant line shapes and peak positions of the metal subtracted 
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Ni 2p3/2 spectra were found to be very similar to that of NiO, however the characteristic 

doublet structure of NiO was obscured by the presence of an additional Ni species near 

856 eV.  Subsequent removal of the NiO contribution produced spectra having mainline 

peak shapes and positions similar to that of NiOOH, a Ni3+-containing compound.  The 

intensity of the “defective” oxide component was found to diminish with increasing O2 

exposure at 300ºC.  It is believed that some Ni3+ is still present following these longer 

doses at the elevated temperature, however because significantly more non-defective NiO 

(Ni2+-containing) was formed, the signal from Ni3+ could not be resolved (i.e. below the 

detection limit of 0.1 – 0.3 at.%).  In addition, the observed decrease in the Ni3+/Ni2+ ratio 

also indicated a change in the oxidation mechanism (i.e. logarithmic to parabolic growth) 

had occurred sometime between the 2.4 x 108 and 1.2 x 109 L of exposure at 300ºC. 

Spectral subtraction techniques were also used to show that “defective” oxide 

films were formed following the exposure of polycrystalline Cr metal surfaces to either 

O2 gas or H2O vapour (see Chapter 4).  Removal of the metallic Cr signal from all Cr 

2p3/2 envelopes produced subtracted spectra having line shapes and positions similar to 

that of powder polycrystalline Cr2O3.  In all cases the line shapes of the oxidized Cr 

components were broadened at lower BEs and this was ascribed to the formation of a 

hypo-stoichiometric oxide.  The exact nature of this “defective” oxide could not be 

determined as part of this work as a suitable reference spectrum was not available.  

However it was clear that the observed broadening could not be attributed to the 

formation of Cr(OH)3 or to differential surface charging.  The presence of Cr(OH)3 was 

eliminated as the observed BE shift for the “defective” component was found to be well 

below that expected for Cr3+ species bound to OH-.  Spectral broadening resulting from 
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differential charging was also discounted based on the thin nature of the films formed and 

the proximity of the metal substrate.  In addition, if surface charging was an issue similar 

broadening of the respective O 1s and C 1s spectral lines would also be expected, 

however no such phenomenon was observed. 

The work presented in this thesis also exploited the elemental and chemical state 

sensitivities of XPS to analyze the chemistry of the oxides formed on both polycrystalline 

Ni and Cr metal surfaces through rigorous modeling of the O 1s and M 2p3/2 line shapes 

(see Chapters 2-5).  Of particular interest was differentiating between the O 1s peak 

intensities attributed to O species bound within a regular oxide, hydroxide and/or 

oxyhydroxide crystal from those adsorbed on the surface.  The validity of the O 1s peak 

assignments were verified by comparing the O/M atomic ratios calculated for all oxidized 

surfaces with the ratios obtained for well characterized polycrystalline Ni- and Cr- 

containing oxide, hydroxide and oxyhydroxide powder samples. 

The mechanism for polycrystalline Ni metal oxidation following exposure to 

doses of H2O vapour was studied using O/Ni atomic ratios at 300ºC and a pressure of 1 

Torr (see Chapter 3).  The rate of the Ni-H2O reaction was found to be much slower than 

the Ni-O2 system under the same temperature and pressure conditions (see Chapter 2).  

The difference in the reaction rates was attributed to the formation of an OH (ads) 

intermediate following H2O exposures, while the reaction of Ni with O2 proceeded 

through an O (ads) surface species.  In addition, it appeared that H2O desorption was 

competing with H2O dissociation reactions on the oxidized Ni metal surfaces. 

The line shapes and positions of the oxidized portions of all Ni 2p3/2 and O 1s 

spectra collected from polycrystalline Ni surfaces exposed to H2O vapour indicated that 
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the films formed were composed primarily of NiO, with smaller contributions from 

“defective” oxide components.  The O/Ni ratios were calculated using the combined 

atomic concentrations of two O 1s components attributed to O2- and O (def) species near 

529.4 eV and 531.0 eV respectively.  The remainder of the O 1s intensities for the 

oxidized surfaces were completely fit with contributions from organic contamination.  

Based on the observed O/Ni atomic ratios it was determined that significant levels of OH 

(ads) and H2O (ads) species were not present on polycrystalline Ni metal surfaces 

exposed to H2O vapour at 300ºC.  Fitting of the O 1s spectrum collected following a 3.0 x 

109 L dose at 25ºC however, did indicate that a small amount of OH (ads) was formed 

under these conditions.    These results suggested that OH (ads) is not well stabilized on 

oxidized Ni surfaces at 300ºC nor is it as reactive as the analogous O (ads) intermediate 

species formed during reaction of Ni metal surfaces with O2 gas at either 25ºC or 300ºC.  

The latter conclusion is based on the fact that films in the range of 1 nm were formed on 

polycrystalline Ni metal surfaces exposed to doses of 3.0 x 109 L of O2 gas at 25ºC.  The 

presence of OH (ads) even after a 3.0 x 109 L exposure at 25ºC also indicated that the loss 

of H is a slow process and is the rate determining step of the Ni-H2O reaction.  The 

absence of any Ni(OH)2 formation also suggested that loss of H occurred prior to 

incorporation of O into the oxide lattice.  The lack of evidence for H2O suggests that 

desorption reactions are competing with dissociation at both 25ºC and 300ºC. 

Atomic O/Cr ratios were also used to follow the reaction of polycrystalline Cr 

metal surfaces with both O2 gas and H2O vapour at 300ºC and 1 Torr.  Fitting of the Cr 

2p3/2 and O 1s spectra showed that Cr deficient oxide films composed primarily of Cr2O3 

with smaller contributions from a hypo-stoichiometric component were formed.  An 
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additional O species was observed near 531.7 eV in the O 1s spectra collected from all 

oxidized Cr surfaces exposed to O2 gas and H2O vapour.  Based on the calculated O/Cr 

atomic ratios this O component did not represent a “defective” species (as seen for NiO), 

nor did it arise from the formation of Cr(OH)3.  From these results it appeared that 

adsorbed intermediate O species are stabilized on oxidized Cr surfaces even at 300ºC.  At 

this time it is unclear if this O 1s component represents O (ads), OH (ads) or interstitial 

H2O.  However, the mere presence of intermediate species may explain why the films 

formed on polycrystalline Cr metal surfaces exposed to H2O vapour were found to be 

much thicker than those grown on polycrystalline Ni metal samples exposed to similar 

doses of vapour.   

In contrast to the gas phase exposures of O2 and H2O discussed above the 

oxidation of polycrystalline Ni metal and NiCr alloy surfaces in aqueous media produced 

corrosion products composed primarily of Ni(OH)2, with only small contributions from 

NiO detected under most conditions.  Using O/Ni ratios it was determined that the 

“defective” oxide structures associated with NiO formation following the gas phase 

oxidation of polycrystalline Ni metal surfaces were not observed following aqueous 

reactions on either the pure metal or the alloy.  This suggested that NiO formation had 

occurred via the dehydration of Ni(OH)2.  Analysis of the oxidized Cr portions (where 

present) of the films formed on the alloy surfaces indicated that both Cr(OH)3 and Cr2O3 

were present.  Again, the lack of evidence for a Cr deficient oxide component suggested 

that Cr2O3 formation occurred through the dehydration of Cr(OH)3.  It also appeared that 

interstitial H2O molecules associated with both Ni(OH)2 and Cr(OH)3 were present on all 

surfaces. 
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In this work a number of XPS derived O/M atomic ratios were calculated for a 

collection of well characterized Ni- and Cr-containing oxide, hydroxide and oxyhyroxide 

powders (see Chapters 3 and 5).  The ratios obtained from this work were then used to 

model the near surface compositions of the thin films formed on polycrystalline Ni, Cr 

and NiCr (20%) alloy surfaces.  By applying these ratios to our surface analysis we were 

able to separate the contributions from overlapping oxidation products and adsorbed 

intermediate species formed on metallic Ni, Cr and NiCr alloy surfaces (see Chapters 3-6 

and Appendix A).  The use of O/Ni ratios was particularly important in monitoring the 

mechanism of oxide formation on Ni metal surfaces exposed to H2O vapour.  The 

analysis of a number of NiO powders showed that a “defective” O species was present in 

the O 1s spectra near 531.0 eV.  This higher BE species was found to be unique to NiO.  

Initially the “defective” component was attributed solely to O atoms adjacent to a Ni 

vacancy (or bound to Ni3+).  However, this assignment would require O/Ni ratios of more 

than 1 to be observed as the powder samples would be highly Ni deficient.  More recently 

it is believed that this higher BE component arises from the incorporation of H into the 

structure in the form of a hydride.  A similar assignment was suggested previously by 

Norton et al [3].  This latter designation is more reasonable based on the observed O/Ni 

ratios of close to 1 for the NiO powder samples (see Chapter 5).  In the case of the 

oxidized Ni surfaces some of the signal observed near 531.0 eV would also be attributed 

to O bound to Ni3+.  Possible “defective” Ni(OH)2 structures were also inferred on the 

basis of O/Ni ratios.  For “regular” Ni(OH)2 atomic ratios of close to 2 were observed, 

while ratios of close to 1.5 were calculated for the “defective” hydroxide samples.  The 

mechanism of decomposition was not explored here, however the O 1s BE of the “regular” 
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OH- peak was found to be almost 0.3 eV below that observed for the “defective” 

hydroxide.  Unlike what was observed for NiO, it appears that interstitial H2O molecules 

may be stabilized on Ni(OH)2 surfaces. 

The atomic ratios obtained for the Ni- and Cr-containing powder samples studied 

here are believed to be very accurate based on the sample purities.  The respective NiO 

and “regular” Ni(OH)2 ratios of 1 and 2 were verified using EDX.  It is also believed that 

these ratios can be used to accurately evaluate the composition of mixed oxide films 

formed on metallic Ni, Cr and NiCr (20%) surfaces.  However, the validity of these ratios 

may break down when nearing the detection limit of XPS (0.1 – 0.3 at.%).  If a particular 

oxidic component is only present in trace amounts its photoelectron signal could be 

partially obscured by that of another, species on the surface.  This leads to a higher error 

in assigning intensity for the former component, thus increasing the error in the atomic 

ratios.  Additional sources of error in the atomic ratios may occur in systems where one 

oxide component is buried beneath another near the photoelectron escape depth limit 

(∼3λ, see Equation 1.5).  This effect would be most amplified if the M (2p, 3p, 3d etc.) 

and O 1s photoelectrons are separated in KE by several hundreds of eVs.  For example, if 

the IMFP value for the O 1s photoelectrons was longer than that of the M for a particular 

oxide, there is a limiting depth beyond which only the O 1s photoelectrons would be 

detected.  Hence, if an overlayer was present with a thickness equal to or greater than this 

limiting depth, the O/M ratios would be skewed for the underlying oxide.  This example 

would only arise in a very small portion of samples analyzed and should be considered as 

a limiting case.  In general, having a buried layer system would not affect the accuracy of 

the atomic ratios as the RSF values derived for the M and O 1s components are meant to 



170 
 

 
 

account for signal attenuation based on differences in the respective IMFP values.  

Finally, it is unclear at this time if the presence of additional components (i.e. additional 

alloying elements) will affect the accuracy of the atomic ratios.  As the number of 

contributing components increases the assignment of different chemical species in the O 

1s spectrum becomes more challenging.  It is our hope that others will be able to use 

atomic ratios to analyze three component alloy systems like NiCrFe alloys 600 and 690.  

This work in itself could produce another Ph.D. worthy thesis. 

7.3 Future work 

In this work XPS was used to monitor the oxidation of polycrystalline Ni metal 

surfaces following exposure to O2 gas for doses ranging from 6.0 x 107 – 6.0 x 1010 L at a 

pressure of 1 Torr and temperatures of 25ºC and 300ºC.  Under these reaction conditions 

limiting oxide thicknesses were not observed at either temperature.  If this project were to 

be continued extended doses should be carried out at both 25ºC and 300ºC to determine if 

a limiting thickness would be reached.  The use of a different surface analytical technique 

may be required to monitor the oxide films produced on polycrystalline Ni metal surfaces 

following larger doses of O2 gas at 300ºC, as the thickest films observed in this work 

were approaching the limit of XPS analysis (∼ 5 nm). 

Using QUASES analytical routines it was determined that oxide growth on 

polycrystalline Ni metal surfaces following exposure to O2 gas and H2O vapour occurred 

via “island” growth on a nanometric scale.  The size and distributions of these “islands” 

of oxide could not be confirmed using SEM or ToF SIMS.  Future experiments should 

include surface analysis using other surface sensitive techniques such as Low Energy 

Electron Diffraction (LEED) to monitor the “defective” nature of the oxide films formed 
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and Transmission Electron Microscopy (TEM) to try and verify the presence of 

nanometre sized oxide “islands”.  However, the major limitation in studying these thin 

films is isolating the sample from atmospheric conditions.  The XPS system used in this 

work was designed so that gas phase exposures could be carried out in an attached 

chamber followed by transfer of the sample under vacuum to the analysis chamber.  To 

accurately study the thin films formed similar in-situ experimental setups must be applied 

to avoid additional oxide formation upon exposure to atmospheric or low vacuum 

conditions. 

In addition, significant levels of a Ni3+-containing (“defective”) oxide component 

were also observed in the films formed on polycrystalline Ni metal surfaces subjected to 

reaction with O2 gas at 25ºC.  The change in Ni3+ concentration should also be monitored 

following extended O2 exposures at this temperature. 

The reaction of polycrystalline Ni metal surfaces with H2O vapour was also 

studied using XPS following doses ranging from 1.2 x 109 – 3.0 x 1010 L at a pressure of 

1 Torr and a temperature of 300ºC.  From oxide thickness measurements obtained in this 

work it appeared that a limiting oxide thickness was approached sometime after a dose of 

3.0 x 1010 L.  Any future work involving the Ni-H2O system should include exposures 

beyond 3.0 x 1010 L to determine if the reaction is in fact terminated, or if it continues, 

possibly at a different rate, due to a change in oxidation mechanism.  As was observed for 

most of the O2 exposures, the oxides formed on the polycrystalline Ni metal surfaces 

dosed with H2O vapour at 300ºC were composed primarily of NiO, however small 

contributions from Ni3+ were also detected.  The Ni3+ content of the films formed 

following extended H2O exposures should also be monitored.  Additional ToF SIMS 
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experiments should be completed to determine the distribution of H (if any) within the 

oxides formed following doses beyond 1.2 x 109 L.   Finally, the reaction of a 

polycrystalline Ni metal surface with H2O vapour following a dose of 3.0 x 109 L at 1 

Torr and a temperature of 25ºC was also examined.  In this case there were no detectable 

levels of oxide formed.  Surfaces of polycrystalline Ni metal should be exposed to 

extended doses of H2O at 25ºC in order to determine the length of time required for oxide 

nucleation to occur, as well as to determine if the films formed under these conditions are 

similar in composition to those grown at 300ºC.  It is possible that both Ni(OH)2 and/or 

NiOOH may form at the lower temperature. 

The oxidation products formed on polycrystalline Cr metal surfaces were also 

examined with XPS following doses of O2 gas and H2O vapour ranging from 6.0 x 107 – 

2.4 x 108 L at a pressure of 1 Torr and a temperature of 300ºC.  In all cases the bulk of 

the oxide formed was found to be Cr2O3, however it was also determined that a 

“defective” hypo-stoichiometric oxide component was also present.  The contribution 

from this “defective” component was also found to be much larger following exposure to 

H2O vapour than when compared to similar doses of O2 gas.  Unfortunately, 

identification of this hypo-stoichiometric oxide was not determined here.  Any future 

studies concerning the Cr-O2 or Cr-H2O systems should focus on identifying this 

“defective” oxide component, as well as try to determine if the presence of H within the 

oxide leads to an increased formation of this hypo-stoichiometric oxide.  In addition, 

several other polycrystalline Cr metal samples should be exposed to O2 gas and H2O 

vapour over larger dosing ranges and the changes in the distribution of oxidized Cr 
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species and oxide thicknesses as a function of exposure should be examined using 

QUASES. 

The corrosion products formed on polycrystalline Ni metal and NiCr (20%) alloy 

surfaces were investigated using XPS.  All XPS analysis involved rigorous modeling of 

the M 2p3/2 and O 1s spectra using O/M atomic ratios obtained from the fitting of the 

spectra collected from well characterized Ni- and Cr-containing oxides, hydroxides and 

oxyhydroxides.  Using the O/M ratio method it was determined that the oxides formed on 

the Ni metal and NiCr alloy surfaces following aqueous exposures differed significantly 

from those grown on pure polycrystalline Ni and Cr metal surfaces exposed to gas phase 

O2 and H2O.  Any future work in this area should include the exposure of the NiCr (20%) 

alloy to both O2 and H2O gas at both 300ºC and 25ºC and the films formed should be 

compared to those grown on the pure metals.  This work is meant to form a base for the 

analysis of more complex Ni-alloy systems exposed to either gas phase or aqueous 

reaction conditions.  It is also hoped that the data analytical techniques developed here 

can be applied to the study of the oxidation products formed on other transition metals 

(i.e. Fe, Mn, W, Ti) used in commercially available alloys. 
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Appendix A Calculation of O/Ni ratios using the combined intensities of the O
2-

 

and O (def) species for the Ni metal surfaces exposed to O2 gas  

Table A.1: The Ni and O surface concentrations in at.% for Ni metal surfaces 
exposed to doses of O2 gas. 
Reactant 
gas and 
temperature 
(oC) 

Dose of 
O2 gas 

(L) 

Oxidized Ni on 
surface 
(at.%) 

O2- and O 
(def) present 

(at.%) 
O/Ni 
Ratio 

Oxide 
thickness 

(nm) 
      
      
O2/25 6.0 x 108 2 2 1 0.2 
 6.0 x 108 0.9 3 3 0.1 
 6.0 x 108 4 5 1.2 0.2 
 1.5 x 109 4 8 2 0.4 
 1.5 x 109 13 22 1.7 0.8 
 3.0 x 109 10 17 1.7 0.7 
 3.0 x 109 17 22 1.3 0.9 
 3.0 x 109 21 25 1.2 1.1 
 6.0 x 109 18 24 1.3 1.3 
 6.0 x 109 10 19 1.9 0.9 
      
O2/300 6.0 x 107 21 12 1.1 1.2 
 6.0 x 107 7 10 1.4 0.6 
 6.0 x 107 24 28 1.2 1.4 
 6.0 x 107 25 28 1.1 1.5 
 2.4 x 108 25 27 1.1 1.5 
 2.4 x 108 19 20 1.1 1.0 
 2.4 x 108 22 28 1.3 1.3 
 2.4 x 108 33 29 0.89 1.8 
 1.2 x 109 37 37 1.0 3.1 
 3.6x 109 49 40 0.81 4.7 
 3.6 x 109 43 41 0.95 4.2 
 3.6 x 109 44 39 0.89 4.6 
The spectra for the O2 exposed surfaces were originally collected and presented 
in Chapter 2.  In this chapter the O (def) peak had been interpreted solely as O 
(ads). 
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Appendix C Copyright release form from Elsevier for the publication in Journal of 
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Appendix D Copyright release form from Elsevier for the publication in Journal of 

Electron Spectroscopy and Related Phenomena 184 (2011) 29 
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