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Abstract

This thesis focuses on the investigation of the reliability of turbulence measurements

by radars when the spectral-width method is used. This method employs the spec-

tral widths observed by radar (experimental spectral width) to determine turbulence.

However, the experimental width can be a�ected by non-turbulent e�ects, including

radar geometry. Therefore, the spectral width due to non-turbulent e�ects (the-

oretical spectral width) must be removed from the experimental width. This can

occasionally lead to negative values of turbulence.

It is our aim (1) to study the e�ects of both experimental and theoretical spectral

widths on the accuracy of turbulence measurements, (2) to study the validity of �neg-

ative� values of turbulence, and (3) to compare radar-estimated values of turbulence

with in-situ measurements.

This is performed by studying the factors that can contribute to errors in estima-

tion of spectral widths, including mean wind speed, wind shear, anisotropy and length

of data. In addition to that, radar-estimated turbulence is compared to turbulence

measured by high-resolution research and commercial aircraft.

Signi�cant �ndings include:

1. The statistical �uctuations of mean wind speed and its impact on estimation of

the theoretical spectral width is the most important factor in producing errors

in turbulence measurements.

2. The choice of spectrum �tting algorithm and length of data is very important

in producing experimental spectral widths.

3. In order to estimate theoretical widths more accurately, a formula is developed

by comparing models that calculate the theoretical spectral width.

4. It is found that both negative and positive values of turbulence need to be

included in turbulence analysis. However, if the percentage of negatives exceeds

35%, the measurements are not reliable.

5. Turbulence data measured by radar agrees well with high-resolution aircraft

data for weak turbulence. However, in-situ aircraft measurements show a higher

probability of strong turbulence than hourly radar data.

6. The theoretical spectral width is small compared to the experimental one for

strong turbulence. By discarding the theoretical spectral widths in turbulence

iii



calculations, we can measure near-instantaneous values of turbulence rather

than hourly averages. Therefore, we can improve the agreement between the

aircraft-estimated and radar-estimated turbulence for strong values of turbu-

lence.

Key words: Turbulence, Radar, Spectral-width method, Reliability
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Chapter 1

Background, Theory and

Instrumentation

Turbulence is one of the characteristic properties of atmospheric �ow. The importance

of turbulence has been recognized by scientists since near the end of 19th century.

In 1883, Reynolds identi�ed two di�erent types of �uid �ow, namely laminar (non

turbulent) and turbulent by experimenting on �ow in long straight pipes. He also

concluded that transition from laminar to turbulent �ow depends on the average

velocity of the �uid, radius of the pipe and the viscosity of the �uid (Sutton, 1960).

The mixing and di�usion characteristics of turbulence in the atmosphere moti-

vated many meteorologists. Taylor (1922) developed a di�usion theory which was

the foundation of many studies on atmospheric dispersion. In fact, it is now under-

stood that turbulence plays an important role in a large number of processes in the

atmosphere, including (among others) transport of pollutants and dissipation of fog.

Most early studies of atmospheric turbulence and di�usion took place in the atmo-

spheric boundary layer. Studies of the upper levels were really only developed during

world-war II, when interest developed in relation to aircraft safety. Turbulence in the

upper levels was found to be patchy, with frequent regions of non-turbulent �ow inter-

spersed with occasionally intense bursts. Such intense localized regions of turbulence

were termed "Clear Air Turbulence", or CAT.

In 1941, Kolmogorov studied the statistical characteristics of turbulence and in-

troduced one of the most advanced theories in turbulence. His studies showed that in

3-D turbulence, energy continuously passes from the large to smaller scale motions.

Hence it can be concluded that turbulence may be driven by larger-scale motions.

Therefore, it is important to take turbulence into account when designing aircraft

and forecasting weather. Turbulence is also a key parameter in air pollution dispersion
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models. These models help to estimate or predict the concentration of air pollutants

or toxins emitted from various sources.

1.1 De�nition and Properties of Turbulence

Turbulence is de�ned as a three dimensional, rotational, dissipative, intermittent, non

linear and di�usive motion (Vinnichenko et al., 1973). A turbulent �ow is a result

of the growth of small disturbances which are no longer damped by the �ow. These

disturbances grow by extracting energy from the primary �ow.

In the atmosphere, large scale motions can be examined through the Navier-Stokes

equation (Holton, 1992) :

DU

Dt
= −2Ω×U− 1

ρ
∇p+ g + Fr, (1.1)

where U is the velocity vector, Ω the angular velocity of earth's rotation , ρ the

density, p the pressure, g the gravitational acceleration, and Fr the viscous force.

The velocity vector U, and the operator ∇, may be written as:

U = iu + jv + kw, (1.2)

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (1.3)

In which u, v and w are the wind velocity components and i, j and k are unit

vectors and can be taken to be directed eastward, northward and upward respectively.

Furthermore, the term in the left side of the Equation (1.1) can be written as:

DU

Dt
=
∂U

∂t
+ U .∇U , (1.4)

where ∂U
∂t

is the local rate of change of wind velocity and U.∇U is the advective term

and is due to local change of velocity due to air motion.

In turbulent �ow, the measured parameter �uctuates in time. In order that the

velocity measurements be representative of turbulent �ow, we de�ne the instantaneous

velocity as:

U = U + U′, (1.5)

where U and U′ are the time-averaged value and �uctuating part of the velocity
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respectively.

Now we substitute Equation (1.5) into Equation (1.1). It should be noted that

small �uctuations in density associated with turbulence have been neglected. A scale

analysis also showed that gravity and viscosity forces are small compared to gradient

pressure and Coriolis forces for many types of �ow, so we will largely neglect them in

our calculation. The results of substituting and averaging for horizontal motion (e.g

eastward) is given by (for other components of motion see Holton, 1992):

Du

Dt
− fco v = −1

ρ

∂p̄

∂x
−
[
∂

∂x

(
ρu′u′

)
+

∂

∂y

(
ρu′v′

)
+

∂

∂z

(
ρu′w′

)]
, (1.6)

where fco is the Coriolis parameter and related to latitude Φ, through: fco = 2Ω sin(Φ).

Clearly disturbances in the �ow have added new terms to the mean Navier-Stokes

equation. The new terms in the bracket on the right side of Equation (1.6), which

depend on the turbulent �uctuations, are called Reynolds stress terms. Reynolds

stress terms are non-linear and represent the momentum �uxes. For example, the

ρu′w′ term in Equation (1.6) describes the vertical �ux of horizontal momentum.

Similarly, w′θ′p represents the vertical turbulent heat �ux in which θp is the potential

temperature or simply the temperature that a parcel of dry air at pressure, p and

temperature, T would have if it were expanded or compressed adiabatically to a

standard pressure, ps. The potential temperature is given by:

θp = T

(
ps
p

)R/Cp

, (1.7)

where R is the gas constant and Cp the speci�c heat capacity at constant pressure.

The non-linearity of turbulent equations such as Equation (1.6) makes them di�-

cult for mathematicians to �nd exact solutions, however it is necessary for description

of turbulent �ow. Non-linear terms bring together air parcels with di�erent veloc-

ities. This produces strong gradients in which perturbation may grow and air�ow

becomes turbulent. As a result of mixing, strong �uxes of momentum and energy will

be created which modify large-scale motions.

Rotation is another important characteristic of a turbulent �ow. In a �ow, vor-

ticity is a measure of rotation and is highly correlated to disturbances. Vorticity is

related to the velocity, U, through the following equation (Holton, 1992):

ω = ∇×U, (1.8)

where ω is the vorticity and perpendicular to the �ow direction.
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In turbulent motion, the strong velocity gradients in all directions generates vor-

tices which are called eddies. Eddies carry turbulent kinetic energy and they have

a wide range of scales. For example in the atmosphere, they can be hundreds of

kilometers in diameter to scales of a few centimeters.

One point needs to be made here. Eddies with scales of hundreds of kilometers

are associated with 2-D turbulence in which energy is moved from smaller scales to

larger scales. The opposite happens in 3-D turbulence where instead energy transfers

from larger eddies of scales of a few kilometers to smaller ones. It is also assumed

that eddies act in a manner similar to molecular di�usion so that the �ux of a given

�eld is proportional to the local gradient of the mean. In this case, we can de�ne the

di�usion coe�cient through the following equations (Holton, 1992):

u′w′ = −km
(
∂u

∂z

)
, (1.9)

θ′pw
′ = −kh

(
∂θp
∂z

)
, (1.10)

where km is the eddy viscosity coe�cient and kh is the eddy di�usivity of heat. It

should be noted that unlike the molecular viscosity coe�cient, eddy viscosities depend

on the �ow condition rather than the physical properties of the �uid.

The cascade of kinetic energy from larger eddies to smaller ones and the conversion

of kinetic energy to heat by viscosity in the smallest eddies is a de�ning feature of 3-D

turbulence. Kolmogorov (1941) described turbulent motion as an unstable �ow with

perturbations which generate �turbulent eddies of �rst order�. These produce irregular

displacements with velocities which are less than the mean �ow. These eddies are also

unstable and they produce �second order eddies� with smaller characteristic sizes and

velocities. The process of reduction in size of turbulent eddies will continue until the

e�ect of viscosity on very small eddies (due to the large associated shear) becomes

dominant and energy will be dissipated to heat (Vinnichenko et al., 1973).

1.2 Causes of Turbulence in the Atmosphere

The main causes of turbulence in the atmosphere are due to di�erences in the large

scale temperature and velocity �elds. Atmospheric processes which produce these

di�erences are itemized below:

• Uneven heating of various parts of the earth surface which leads to development
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of thermal convection circulations. As solar radiation heats the earth's surface,

the temperature in the lower layer of the atmosphere increases and convection

starts. The motion of air parcel is unstable since in rising, the parcel �nds itself

warmer than its surroundings and continue to rise. Because the rising parcel

exchanges heat with cooler air around it, at some point, it becomes denser.

However, it can not descend through the rising air, so it moves horizontally

for some distance and begins to descend. This is called convection circulation.

Such �ows are the primary cause of turbulence in the boundary layer of the

atmosphere. This form of turbulence is usually associated with large eddies of

approximately a few kilometers in size (Ahrens, 2000).

• Surface friction slows down the wind in the lowest layers of the atmosphere

causing the air to turn over in turbulent eddies. It also generates large vertical

wind gradients.

• Deformation of �ow by barriers and obstacles on the earth surface produces

wavy disturbances and rotary motions. Obstructions such as buildings, trees,

mountains etc., disrupt smooth wind �ow into eddies in the downstream of the

�ow. Higher wind speeds and rougher surfaces produce stronger turbulence.

One of the most hazardous types of turbulence is produced by lee waves and ro-

tors on the lee side of the mountains. When air is forced to �ow over a mountain

under stable conditions, air parcels are displaced from their equilibrium levels

and undergo buoyancy oscillations as they move downstream of the mountain.

Vertical currents within these oscillation are sometimes very strong and can

produce vortices called rotors when they are combined with surface friction.

Rotors can cause severe turbulence beneath mountain waves (Holton, 1992).

• Convergence and interaction of air masses with di�erent characteristics which

generates temperature and velocity di�erences near atmospheric fronts. Tran-

sition of air from one air mass to another one along the frontal boundaries

produces turbulence.

• Growth of vertically propagating gravity waves formed in stable layers in the

troposphere and stratosphere. Atmospheric gravity waves can only exist when

the atmosphere is stably strati�ed so that an air parcel displaced vertically will

undergo buoyancy oscillations. As these waves move upward, their amplitudes

increase. When the wave amplitude reaches the critical level (i.e. where the

phase speed of the wave equals the component of the mean wind in the propa-
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gation direction of the wave), it breaks into turbulence, causing large amounts

of wave energy to be transferred to turbulent kinetic energy (Nappo, 2002).

• Jet-stream turbulence is produced by both strong vertical and horizontal wind

shear close to and within the jet-stream. Jet-streams are fast �owing air cur-

rents in the atmosphere which are thousands of kilometers long, a few hundred

kilometers wide and only a few kilometers thick. Wind speeds in the central

core of a jet-stream often exceed 100 knots and occasionally reach 200 knots.

The main jet-streams are located near the tropopause, however they can occur

at higher or lower altitudes (Ahrens, 2000).

These processes can act individually or simultaneously to produce convective or shear

turbulence of di�ering intensity in the atmosphere. Regions of convective turbulence

are generally visible by the presence of cumulus type clouds and can be avoided by

aircraft. However, shear turbulence is often optically invisible, so it is called clear

air turbulence (CAT). Mountain waves, gravity waves and jet-streams are the most

important causes of CAT.

1.3 Transition from Non-turbulent to Turbulent Mo-

tion

Flow that is not turbulent is called laminar �ow. Turbulent �ow can be produced

by the growth of perturbations in a laminar �ow. Although there is no complete

theorem that describes the laminar-turbulent transition, study of the Reynolds and

Richardson numbers can be useful in this manner.

The Reynolds number (Re) is de�ned as a ratio of inertial force to viscosity force.

If we only consider the dimensions, we have (Vinnichenko et al., 1973):

Re = |U.∇U

υ∇2U
| ∼ VcLc

υ
, (1.11)

where U is the velocity, υ the kinematic viscosity of the �ow, Vc the characteristic

velocity of the �ow and Lc the characteristic scale of the �ow. It has often been

observed that turbulent �ows arise from laminar �ows as Re increases. In fact inertial

forces act to bring together volumes of �uid that are separate from each other and

have di�erent velocities. This produces wind shear which plays an important role

in producing turbulence. In contrast, viscosity forces smooth out the variations in

velocities. At low values of Re, when viscosity forces are dominant, the �ow is laminar.
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As Re increases, the e�ect of the viscosity force decreases and velocity �uctuations

will be formed. This leads to a turbulent �ow. However, it is di�cult to de�ne an

appropriate �ow scale due to scale variability of �ows associated with di�erent types

of motions (i.e. gravity waves, turbulence, etc.) in the atmosphere.

Therefore, in the atmosphere, measuring the Richardson number is more useful.

The relative importance of static stability and dynamics instability in producing

turbulence is expressed by the Richardson number (Ri) through (Vinnichenko et al.,

1973):

Ri =
g

θp

dθp
dz(
dU
dz

)2 , (1.12)

where dU
dz

is the vertical gradient of the mean wind velocity, g the gravity acceleration

and θp the potential temperature. Theoretical and laboratory research suggest that

laminar �ow becomes turbulent when Ri is smaller than a critical value. Although

there is some debate on the correct critical value, it seems that the value of 0.25 is

a good approximation in the atmosphere. Note that the Richardson number is only

an indicator of the presence of turbulence and says nothing about the intensity of

turbulence (Stull, 1988).

1.4 Turbulent Energy Dissipation Rate

Turbulence is associated with the formation of eddies. The 3-D turbulent eddies have

a wide range of scales from a few kilometers to a few centimeters. In 1941, Kolmogorov

introduced one of the most important theories in turbulence. Kolmogorov proposed

that the turbulent energy spectrum has three parts: an energy-containing subrange,

an inertial subrange and a dissipation subrange. Most of the energy is in the energy-

containing subrange and there is a continuous transfer of energy from the large scale

eddies in the energy-containing subrange to smaller eddies in the inertial subrange

(Panofsky and Dutton, 1984). In the dissipation subrange, eddies are small enough

that viscosity becomes dominant due to the presence of large small-scale wind shears.

It is also assumed that turbulence is isotropic in the inertial subrange which suggests

that properties of turbulence are independent of direction in this range (Wyngaard,

2010). In the inertial subrange, the rate of transfer of kinetic energy per unit of mass

is independent of scale. Therefore, the rate at which kinetic energy is transferred

from one scale to smaller ones must be equal to the turbulent energy dissipation rate,
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Figure 1.1: Diagram of energy spectrum, E(k) as a function of wave number k; in the
upper atmosphere, the spectrum increases at small k due to the presence of gravity
waves, whereas in the boundary layer, the spectrum decreases at small k.

ε or the rate at which turbulent kinetic energy is dissipated to heat by viscosity. The

scale at which dissipation begins is called the inner scale. This scale is related to the

so-called Kolmogorov microscale, µ, and it is related to energy dissipation rate, ε,

and the kinematic viscosity, υ, through the following equation:

µ =

(
υ3

ε

) 1
4

. (1.13)

Figure 1.1 shows the typical turbulent energy spectrum for a �ow in the atmosphere.

The energy-containing subrange of the spectrum and the region of large scale eddies

is associated with smaller wave number, k. The inertial subrange in which dissipation

of energy is very small indicated by the word �turbulence spectrum� in the graph. The

dissipation subrange (not shown in the Figure 1.1) is associated with larger k and the

spectrum falls sharply for scales less than the inner scale due to energy dissipation

within this region.

According to the Kolmogorov theory, the inertial subrange is isotropic. Therefore

the velocity depends on wave number, k and ε at this range. Dimensional analysis

(Kolmogorov, 1941) shows that the full three-dimensional energy spectrum of turbu-

lent motion, F (k) is given by:
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F (k) = Aε2/3k−11/3. (1.14)

This function is due to all three velocity components and it can be visualized as a

solid sphere which has highest energy density at the center, and decreasing energy

density as |k| increases. This function is isotropic and it is often integrated over a

shell of radius k. The resultant function, S (k) represents the total energy in the shell

and is written as (see Appendix A):

S(k) = A0ε
2/3k−5/3. (1.15)

Constants A and A0 are 0.12 and 1.53 respectively (Hocking, 1999).

Coincidentally, the same spectral form as Equation (1.15) also holds for one di-

mensional spectra. However, the constant A0 can not be used and should be replaced

by a proper constant (Hocking, 1999) for the spectrum along and perpendicular to

the direction of traverse through the �ow. One should note that there are di�erent

types of spectra and it is important to distinguish these spectra (see Appendix B).

1.5 Turbulence Measurements and Applications

In the past few decades, many studies have been performed for a clearer understanding

of turbulence, and this has led to development of various techniques which can be

used to estimate turbulence in the atmosphere. The purpose of the review in this

section is to present a summary of major studies in turbulence measurements.

The two main techniques that have been used to measure turbulence are in-situ

(i.e. instrumented balloons, rockets and aircraft) and radar techniques. However,

di�erent approaches (i.e. spectral analysis, structure function, etc.) were taken to

estimate and study turbulence.

Rees et al. (1972) used rocket techniques to measure the intensity of turbulence

in the upper atmosphere (∼ 90 km altitude). The turbulent energy dissipation rate,

ε, which also de�nes the intensity of turbulence, was estimated from the rate of

expansion of the rocket trail. This method is mostly used to measure turbulence in

the upper atmosphere which is hard to reach by other in-situ techniques.

High-resolution vertical pro�les of wind speed, pressure, humidity and tempera-

ture in the lower and middle atmosphere measured by instrumented balloons with

sensors have been used in studies of small-scale structures in the atmosphere. Barat

(1982) deduced the kinetic energy of turbulence, ε, from spectral analysis (and also by
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structure function analysis) of wind velocity. His observations showed that turbulence

is intermittent. He also suggested that breaking of gravity waves into turbulence plays

an important role in stratospheric mixing. However, estimation of ε may be biased by

wind shear (change of wind speed with height) in balloons or aircraft measurements

(Barat and Bertin, 1984). Meillier et al. (2008) investigated the possibility that

gravity waves are the cause of turbulence patches in the nocturnal boundary layer

of the atmosphere. More detailed analysis of boundary layer turbulence by balloons

(Balsley, 2006) showed that the top of the boundary layer can be estimated in terms

of a signi�cant decrease in ε.

While spectral analysis is the method that atmospheric scientists mainly use to

deduce turbulence from in-situ measurements, the direct estimation of turbulence by

measuring the Thorpe length (Luce et al., 2002; Gavrilov et al., 2005; Kantha and

Hocking, 2011) which is based on the reordering of temperature pro�les, has been

used as an alternative method.

Radars have become important tools in studying the dynamics and �ne-structure

of the atmosphere. Many turbulence studies have been undertaken using radars (Gage

et al., 1980; Balsley and Gage, 1980; VanZandt et al., 1978; Hocking and Mu 1997;

Nastrom and Eaton, 2002). The half-width of the radar spectrum contains useful

information on turbulence, and the spectral-width method uses this information to

estimate ε. Hocking (1983) investigated the spectral �contamination� (i.e. e�ect of

beam-width, pulse length and wind shear) of radar backscatter from turbulent patches

and developed a formula for estimation and removal of these contaminations (due to

non-turbulent e�ects). A more comprehensive form of this formula was introduced in

2003 by the same author. Nastrom (1997) developed another formula for calculation

of non-turbulent e�ects. The spectrum-width method occasionally produces negative

turbulent energy dissipation rate, ε ( Nastrom and Eaton, 1997; Jacoby-Koaly et al.,

2002; Narayana Rao et al., 2001) and this needs to be examined further. This will be

an important focus of this thesis.

Aircraft measurements have been one of the most reliable sources of information

on turbulence (Taylor, 1972; Fairall et al., 1980; Cornman et al., 1995). However,

many authors use aircraft measurements to verify radar measurements. Comparisons

between radar-retrieved ε and aircraft measurements, by Jacoby-Koaly et al. (2002)

and Shaw and Lemone (2003), showed that there was a modest correlation between

the two techniques. However, the measurements were made using radars with a broad

beam, and the results are of questionable validity. Furthermore, it was found that on

average, radar overestimates ε in the case of strong shear (Meischner et al., 2002).
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In addition to ε, the refractivity structure function, C2
n is another useful parameter

for studying turbulence. C2
n is a measure of the �uctuations of refractive index in the

atmosphere. Numerous studies have been done on measurements of C2
n and estimation

of ε from C2
n (Hocking, 1985; Hocking et al., 1986; Hocking, 1999).

In all approaches, it was assumed that turbulence is isotropic. However, it is

possible that turbulence is anisotropic. Hence, the e�ect of anisotropy needs to be

calculated and considered (Hooper and Thomas, 1995; Hocking and Hazma, 1996;

Hocking and Rottger 2001; Nastrom and Tsuda, 2001, Hocking and Hocking, 2007).

Studies of the climatology of turbulence are also very important. Seasonal and

diurnal variations of turbulence parameters such as energy dissipation rate, refrac-

tivity structure function and turbulence di�usivity were studied (Fukao et al., 1994;

Nastrom and Eaton, 1997; Narayana Rao et al., 2001). Such studies are essential for

an accurate evaluation of weather forecast models (Frehlich and Sharman, 2010).

1.6 Instrumentation and Methods

Turbulence is characterized by irregular random motions of eddies. For so-called

�three-dimensional� turbulence, the larger eddies can have length scales of about 103

m, while the length scales of the smallest eddies are about 10−3 m, although exact

values vary with height. Clearly, the spatial and temporal separations of eddies in

a turbulent motion can be very small and it is often unresolved to observations.

Although all measurement techniques attempt to determine turbulence at su�cient

resolution, accurate estimation of turbulence is still very challenging.

Turbulence measurements can be carried out using radars and in-situ instrumen-

tation such as balloons, rockets and aircraft. In this chapter, we will concentrate

on radar and aircraft techniques and the methods which can be used to estimate

the turbulent energy dissipation rate. The advantage of aircraft techniques is that

they often provide us with higher resolution data. However, radars can record data

continuously and for long periods of time. The obvious di�erence between radar and

aircraft techniques is that while the instrumented aircraft has to �y directly through

turbulent �ow to measure turbulence, the radar is located on the ground and mea-

sures turbulence by receiving the re�ection of a radar signal from turbulent patches

in the atmosphere.
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1.6.1 Radar Techniques

Radar stands for Radio Detection And Ranging. Radars were developed to detect and

determine the range of aircraft using radio techniques, but they became a powerful

tool in monitoring weather. They also have been used successfully to measure wind

and turbulence in the atmosphere. Radars have a wide range of variability, depending

on their application. Radars which operate in the frequency range 3-30 GHz and

observe precipitation are called weather radars, but also can be called �precipitation

radar� and even �Doppler radar�. The radars generally have beams which point quasi-

horizontally. In this thesis, we will use the term �Doppler radar� to describe any radar

which has Doppler techniques, not just weather radar. Radars which are designed

to directly observe backscatter produced by �uctuations of atmospheric refractive

index are called atmospheric radars. These types of radars use HF (3-30 MHz), VHF

(30-300 MHz) or UHF (300 MHz- 3 GHz) frequency bands and have a large vertical

coverage.

The measurement techniques are similar in principle for both atmospheric and

weather radars. In both cases, radio waves are radiated into the atmosphere by the

radar transmitter and information will be extracted through the analysis of re�ected

radio waves from the target. However, the most important features which make

atmospheric radars di�erent from weather radars are the choice of frequency and

methods of data analysis.

Wind pro�lers are atmospheric radars, designed to operate at 50-1000 MHz with

vertical and non-vertical radar beams. Although wind measurement is the primary

capability of wind pro�lers, they have several other measurement capabilities. Wind

pro�lers can be used to measure turbulence in the atmosphere. They are also impor-

tant tools in study of gravity waves, fronts and jet-streams. The advantage of using

a wind pro�ler is that pro�les of wind velocity and turbulence parameters can be

measured more frequently compared to other techniques (i.e. balloons, aircraft and

rockets).

1.6.2 Range and Range Resolution

Measurement of the distance to a target, or ranging, is one of the important char-

acteristics of a radar. Ranging is made by measuring the time delay of the echo

signal from the target with respect to the transmitted signal. This is one of the basic

principles of radar operation.

In the lower and middle atmosphere, the speed of radio waves is approximately



13

equal to the speed of light, c. If a short pulse is transmitted and the backscattered

signal from the object at R0 can be detected at time delay t, and the range, R0, can

be estimated through (e.g. Sato, 1989):

R0 =
ct

2
, (1.16)

where t is the of round trip between transmission and reception.

Radio waves are usually transmitted in short pulses of length 4t. The received

echo from such a pulse also has a time duration of 4t. Therefore, the range resolution
can be explained as if the target has a �nite length of 4R:

4R =
c4t

2
. (1.17)

The range resolution can be improved by reducing 4t. However, by reducing 4t,
wider �lters are needed, since the noise contaminating the signal increases.

1.6.3 Radar Equation

In order to design a radar, it is important to know how strong the backscattered

signal is. The relation between the transmitted and received power in a radar is

determined through the radar equation. If we assume that power, pt, is fed to a

monostatic antenna (i.e. the transmitter and receiver are located together as one

piece of equipment), the received power, pr, from a hard target can be expressed as

(Sato, 1989):

pr =
ptA

2eR
4πλ2R4

0

σc, (1.18)

where A is the e�ective area of antenna, eR the loss factor which represents the

attenuation of the received signal due to the antenna, transmission line, connects

etc., λ the radar wavelength, R0 the distance of the target from the antenna, and σc

the cross section of the target illuminated by the radar beam.

For distributed targets, the total received power, pr, is the sum of the echo power,

pt, scattered from individual targets. In this case, the radar equation for a bistatic

antenna (i.e. the transmitter and receiver are separate) is given by (Hocking, 1985):

pr =
pteReTGTAR

4πR2
0

σv
V

ln 2
, (1.19)

where GT is the transmitter gain (ability of the antenna to increase power in a certain
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direction), AR the e�ective area of the receiver and eT the e�ciency of transfer of

power from the transmitter to the transmitting antenna, eR the e�ciency of transfer

of signal from the antenna to the receiver, σv the power backscatterd per unit solid

angle, per unit incident power density, and per unit volume and V is the volume

illuminated by the radar beam.

1.6.4 Scattering Mechanism

Irregularities in the refractive index of the atmosphere cause radio waves to scatter.

The refractive index of the atmosphere, n, can be written as (Gage, 1990):

n− 1 =
3.73× 10−1e

T 2 +
77.6× 10−6p

T
− Ne

2Nc

, (1.20)

where p (millibar) is the atmospheric pressure, e (millibar) the partial pressure of

water vapor, T (Kelvin) the absolute temperature, Ne (m
−3) the number density of

electrons, and Nc (m
−3)= 1.24×10−2f 2 (MHz2) the critical plasma density for the

frequency f. The contribution of each term to the refractive index is not the same

for di�erent regions of the atmosphere. The atmosphere is often divided into the four

regions of troposphere, stratosphere, mesosphere and thermosphere (from 80-120 km;

not shown in Figure 1.2) according to the temperature structure (see Figure 1.2). The

�rst term in the right side of the Equation (1.20) is due to water vapor and dominates

in the lower troposphere. The second term contains the contribution due to dry air

and tends to be dominant in the upper troposphere and stratosphere. The third term

depends on the density of electrons and becomes important above 70 km.

Variations in atmospheric properties, such as temperature, pressure and water

vapor, produce inhomogeneity in the refractive index which scatters the radio wave.

The majority of scattering is due to small scale variations of the refractive index,

which are caused by small scale �uctuations of temperature, pressure, water vapor,

etc (Doviak and Zrnic, 1984).

Inhomogeneities can be due to turbulence, but may also occur due to other pro-

cesses which can lead to horizontally strati�ed re�ectors. Fresnel scatter, or specular

re�ection, is another mechanism responsible for partial re�ections in a radar beam

from sharp vertical changes in refractive index which are horizontally extended. These

re�ecting layers are generally caused by horizontally strati�ed temperature disconti-

nuities in the atmosphere. The process is also called partial re�ection, because only a

small fraction of the signal power is re�ected. Fresnel re�ection is aspect sensitive (i.e.

the backscattered signal power for a vertically directed beam is signi�cantly greater
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Figure 1.2: Vertical pro�les of temperature (left) and pressure (right) in the atmo-
sphere (from Doviak and Zrnic, 1984).

than o�-vertical beam at the same altitude), since re�ected echoes due to this process

are much stronger with a vertical radar beam (Gage, 1990).

1.6.5 Doppler Radar

It was discovered by Christian Doppler that the shift in frequency caused by moving

sources of sound was proportional to the speed of the source. This e�ect is called

Doppler shift. The same e�ect occurs when sound waves are re�ected from a moving

target.

Doppler radars use the Doppler shift to detect motion. They not only measure the

power received from a target, but they also measure the rate of motion of the target

toward or away from the radar. When a target moves toward a radar, the frequency

of backscattered signal is increased. When the target is moving away from the radar,

the frequency is decreased. The radar then compares the received signal with the

frequency of transmitted signal and measures the shift, giving the radial speed of the

target.

Doppler radars primarily detect the echo that returns directly along the radar

beam, therefore they can only measure the component of the motion along the radial

axis. This component is called the radial velocity, ur and is related to the Doppler
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shift frequency, fd through the following equation (Sato, 1989):

fd =
2f

c
ur, (1.21)

where f is the frequency of radar.

A typical value of fd for the radar frequency of 50 MHz and radial velocity of 10

m/s is about 3 Hz. The typical bandwidth of transmitted pulses is 100 kHz-1 MHz.

In addition to the Doppler shift, Doppler radars also measure phase shift. In this

method, the phase di�erence of the time series of echos from consecutive transmitted

signal separated by the period of Tp is calculated. Then the radial velocity can be

estimated through the relation (Sato, 1989):

4Φ =
4πfTp

c
ur, (1.22)

where 4Φ is the phase shift.

1.6.5.1 The Doppler Beam Swinging Method

Doppler radar can only measure the projection of the wind velocity vector along the

radial direction of the radar beam. The Doppler Beam Swing (DBS) determines

horizontal and vertical wind speeds by steering the radar beam and measuring radial

velocity in di�erent directions.

Figure 1.3 shows the principle of the DBS method. The radial projections of

horizontal and vertical wind velocities, up and wp are measured at two zenith angles

of α and -α. Therefore, the horizontal velocity, u and vertical velocity w are given

by (Rottger, 1989):

up =
V1 − V2
2 sinα

, (1.23)

wp =
V1 + V2
2 cosα

, (1.24)

where Vi = up + wp and indices 1 and 2 are indicators of beam directions at zenith

angles of α and -α. It should be noted that this method assumes a uniform velocity

�eld above the radar. Hence, it is important to choose the zenith angle properly.

Sometimes the method is simpli�ed further by using w = 0.



17

x or y

z up

w wp

u

α-α

Figure 1.3: Schematical diagram of the Doppler Beam Swing (DBS) method. In this
�gure, α and −α are zenith angles.

1.6.6 Signal to Noise Ratio

Noise appears as random variations in the echo signal received by the radar. Noise is

caused by internal sources (e.g. electronic components of radar) and external sources

(e.g. thermal radiation in nature, man-made interference, etc.). The noise power, pn,

can be estimated by (Keeler and Passarelli, 1990):

pn = kTsBs, (1.25)

where k is the Boltzman constant, Ts the temperature of the system and Bs the total

bandwidth of the system, and where the term Ts derives from internal noise, receiver

noise, sky noise, and man-made noise. Therefore, the system noise is de�ned by the

antenna design, radar location, and frequency bandwidth.

Signal to noise ratio (SNR) is a measure of signal strength relative to background

noise. SNR is de�ned as:

SNR =
pr
pn
, (1.26)

where pr is the received signal power given by Equation (1.19) and pn is the measured

noise power de�ned by Equation (1.25). The SNR can be improved by increasing the

pulse length, however this reduces the range resolution.
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Figure 1.4: Contribution of aircraft and meteors to a radar signal. The lower graph
shows the whole spectrum while the upper shows only the central ±4 Hz of the
spectrum (from Hocking, 1997).

1.6.7 Radar System Description

Three main radars are used in this study: radars at Walsingham, Harrow and Negro

Creek, all in Ontario, Canada. Typical parameters are given for the Walsingham radar

in Table 1.1, but many of the features, such as peak power, measurement mode, duty

cycle, height resolution, numbers of beams and ranges covered, are common to all

radars. The radars are separated by typically 200 km.

The �rst step in data analysis is to remove meteors and aircraft noise in the

time domain. Meteors occur in the signal because the radars often use a re�ection

frequency in excess of 3000 Hz, so meteors at typical ranges of 200 km are often

range-aliased and can appear at heights of 1-15 km. Aircraft and meteors amplitudes

increase in a short period of time, and therefore can be removed by a search algorithm

which searches for strong falling signals (see Figure 1.4). Then a polynomial �t is

applied to the raw data to remove e�ects of very specular, slowly fading echoes.

The next step is to produce a spectrum and to search for spectral peaks. In

particular, it is important to notice the aliasing frequency used. Data are typically

recorded at 1000-3000 Hz, depending on the radar operation mode, but coherent
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Title Value

Location Walsingham: 42.637◦N;80.573◦W
Operating frequency 44.5 MHz
One way half-power
half-beamwidth

2.3◦

Total area of antenna �eld 4000 m2 (partially �lled)
Mean power 3200 W

Peak power output 40 kW
Gain 25 dB

Wind measurement mode Doppler
Pulse length 500 or 1000 m

Mean power aperture product 1.6× 107 Wm2

Duty cycle 5-10 %
Height resolution 0.5-1 km
Number of beams 5(Vert.+10.9◦o�-vert. to

N,S,E,W)
Range ( o�-vertical beam) 0.4-14 km
Range (vertical beam) 0.4-14 km

Digitizer aliasing frequency > 100 Hz

Table 1.1: The Walsingham radar parameters

integration is only performed over typically 16 data points, so the frequency range

in the spectral domain is of the order of 30 to 100 Hz. This has many advantages

in regard to rejection of interference and dealing with noise. For example, aircraft

peaks are easily removed from the signal, since they generally have large velocities and

therefore are shifted out to the higher frequency regions of the spectrum, which are

of no interest for atmospheric work. After producing a spectrum, a suitable spectral

peak is chosen and a Gaussian �t is applied in this region of the spectrum. The

spectral o�set, peak value and spectral width are determined and used to estimate

the radial velocity and turbulence (Figure 1.4).

The most important di�erences occur in the antenna con�guration and subsequent

beam widths. Figure 1.5 shows the main two designs used by the radars. The design

used at Walsingham is shown in Figure 1.5(a), and can be seen to be a large cross-

structure. It will be referred to as a �type-I� design. The layout used at Harrow and

Negro Creek is shown in Figure 1.5(b), and is more compact; it is referred to as a

type-II radar.

Due to the larger cross structure, the Walsingham radar has a narrower main beam

than the other radars, though it has larger sidelobes (sidelobes surround the main

beam and contain very low power densities). The Negro Creek radar has a spacing of
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Figure 1.5: Layout of the antennas in the arrays discussed. (a) shows a type-I radar,
and (b) shows a type-II radar. Antennas are clustered in groups of 4 (quartets)
with separations of a half-wavelength between antennas. Quartets are positioned so
that they are 1.5 wavelengths diagonally centre-to-centre. In each case there are 128
antennas.

Radar
parameters

Walsingham Harrow Negro Creek

Location 42.637◦N;
80.573◦W

42.039◦N;
82.892◦W

44.632◦N;
80.859◦W

Operating
frequency

44.50 MHz 40.68 MHz 48.92 MHz

One-way half-
beamwidth

2.3◦ 2.75◦ 3.30◦

Two-way half-
beamwidth

1.63◦ 1.95◦ 2.34◦

Table 1.2: Radar parameters
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only 1.25 wavelengths diagonally between quartets (in contrast to the more common

spacing of 1.5 wavelengths diagonally for this radar-type), and so has a broader main

beam than any of the other radars. Harrow has an intermediate beam width (see

Table 1.2). The radar beams are steered to 4 azimuthal directions sequentially and

then vertical. One complete cycle takes typically 5 minutes.

1.6.8 Methods

There are two main methods that can be used to estimate turbulence from radar

measurements: the refractivity structure function method and spectral-width method.

The �rst method estimates the refractive index structure constant, C2
n, which is a

measure of the refractive index �uctuations induced by turbulence. When C2
n is

measured, it is then converted to ε, but the conversion makes several assumptions.

The second method (spectral-width method) estimates more directly turbulent energy

dissipation, ε, which is a measure of the intensity of turbulence in the atmosphere.

The latter method is the method of our interest in this study, however we will review

both methods.

1.6.8.1 Refractivity Structure Function Method

The backscatter of radio wave from the turbulent patches is caused by the inhomo-

geneities in the refractive index produced by turbulence. Refractive index structure

constant, C2
n, is a measure of variability of refractive index in the atmosphere and is

given by (Hocking and Mu 1997):

C2
n = 66.4

prZ
2λ1/3

ptAe2Rαt (0.5Lt)
, (1.27)

where pr is the received power, pt the transmitted power, Z the distance to the

scatterers from the radar, λ the radar wavelength, A the radar e�ective area, eR the

loss factor which describes power losses in the cables, transmitter and receiver of the

radar, αt a factor that describes how the true gain of the radar beam is di�erent from

the ideal directivity (αt is generally close to 1), and Lt the transmitted pulse length.

It should be noted that C2
n is not a measure of intensity of turbulence. However it

is possible to convert C2
n to the turbulent energy dissipation rate, ε, which is a better

estimator of the strength of turbulence. The relationship between C2
n and ε is given

through (Gage et al., 1980 ; Hocking and Mu, 1997):



22

ε =

(
γC2

n

ω2
B

F 1/3
M−2

)3/2

, (1.28)

where γ ≈ (0.7)−1, F is the fraction of the radar volume �lled by turbulence, ωB the

Brunt-Vaisala frequency and M the potential refractive index gradient.

The Brunt-Vaisala frequency is the frequency at which an air parcel oscillates in

the atmosphere and is given by (Holton, 1992):

ω2
B = g

∂ ln θp
∂z

(1.29)

where g is the gravity acceleration, θp the potential temperature and z the height.

The potential refractive index gradient, M depends on the variation of potential

temperature, θp and humidity, q as a function of height and is given by (Vanzandt et

al., 1978):

M = −77.6× 10−6
p

T

(
∂ ln θp
∂z

)
×
[
1 +

15500 q

T

(
1− 1

2

∂ ln q/∂ ln z

∂ ln θ/∂ ln z

)]
, (1.30)

where p is the pressure in millibars and T the absolute temperature. Note that the

humidity term in the bracket is dominant in the lower troposphere (below 10 km).

Measurements of energy dissipation rate using refractivity structure function method

requires measuring temperature, pressure and humidity (usually determined by bal-

loons) which makes the technique more complicated.

1.6.8.2 Spectral-Width Method

Patches of turbulence in the atmosphere contain irregularities which produce signal

backscatter. For VHF radar, the spatial scale of l = λ/2 (the so-called Bragg scale)

determines the backscattering from isotropic turbulence; that is the radar detects

velocity spectra associated with eddies with the range scale of half the radar wave-

length (l ∼ 3 m) up to the volume thickness (500 m) sampled by radar. Therefore,

the VHF radar can measure turbulence of scale sizes that approximately covers the

entire inertial subrange. It should be noted that the irregularities in the turbulent

patches may be anisotropic, but are often considered as isotropic. If it is assumed that

radar observes the entire inertial subrange which obeys Kolmogorov theory, then the

relationship between the standard deviation of the radial velocity, σt, and turbulent

energy dissipation rate, ε, can be written as (Hocking, 1999):
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σ2
t ∝
ˆ kv

kB

ε2/3k−5/3dk, (1.31)

where, k is the wavenumber of the spectrum, and kv and kB are the highest and

lowest wavenumbers of the inertial subrange respectively.

Using Equation (1.31), we can extract ε through (Hocking, 1999):

ε ≈ CωBσ
2
t , (1.32)

where C is a constant and ωB the Brunt-Vaisala frequency. We will discuss the above

equation and estimation of σ2
t in more detail shortly.

Time series of data � typically 20-40 seconds in duration � are collected and

then spectrally analyzed. The resulting spectra are recorded, and their spectral widths

determined. Determination of the spectral width is a key step. It is possible to �nd

the variance of the signal using weighted moments, but a more rigorous procedure

is to use spectral �tting. Use of weighted moments is prone to error, since removal

of the e�ect of noise is di�cult. In such determinations, it is necessary to �nd the

quantity
´ (

f − f
)2
P (f) df , where f is the frequency, f is the mean frequency,

and P is the power spectrum. If the power spectrum is non-zero across the whole

frequency domain due to noise, and the noise is not properly removed, the above

integral changes. Furthermore, if there are other interfering spectral components,

such as those due to aircraft, meteors (aliased), radio interference, precipitation, etc.,

they will a�ect the determination of the spectral variance.

In our case, a Gaussian function is �tted to the spectrum, and a least-squares chi-

square parameter, χ2 is determined, as described by Bevington (1969), but adapted for

real numbers. Then χ2 can be calculated through χ2 =
∑ (observed value-expected value)2

expected value
,

where in our case, the observed value is the measured spectrum and the expected

value is the �tted Gaussian spectrum. The estimated χ2 is compared to a critical

value, χ2
c .

Spectra which are bimodal, or have other non-atmospheric components such as

aircraft and radio interference, are rejected, in preference to giving bad estimates.

Use of a wide aliasing frequency, as discussed above, also helps produce better quality

spectra. The Gaussian function used is of the form A0 exp−(f − f0)2/2σ2
f + D0. A0

is the amplitude, f0 is the o�set of the peak, σf is the standard deviation of the

spectrum in Hz, and D0 is an o�set which varies according to the noise level of the

spectrum. Increased noise increases the value of D0 and also ampli�es the variability

of the spectral values relative to the Gaussian reference. Large levels of noise results in
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Figure 1.6: Di�erent causes of beam broadening in radar (from Hocking, 1983).

large values of D0 and increased χ2 values. Spectra that have a modi�ed chi-squared

parameter that exceeds a speci�ed limit χ2
c are rejected. This includes rejection of

spectra contaminated by interference.

Because of our use of this �tting procedure, the e�ects of poor signal to noise ratio

(SNR) are reduced - spectra for which the signal is noisy simply do not pass these

initial tests and are not included in further analysis. Hence studies of SNR need not

be a major focus of this work. Our �tting procedure also ensures that we do not

accept spectra which are bimodal or show other strange characteristics.

Once an experimentally determined spectral width has been found, the next step is

to �nd a so-called �non-turbulent� (or �beam-broadened� or �beam-shear-broadened�)

contribution, so that the turbulence contribution can be calculated. Figure 1.6 illus-

trates the non-turbulent e�ect schematically. It can be seen from this �gure that scat-

terers in di�erent parts of the polar diagram of the radar produce di�erent Doppler

shifts, resulting in a broad spectrum. Figure 1.6(b) also shows the shear broadening

e�ect, where changes in horizontal wind speed with height also produce Doppler shifts

which broaden (or in some cases narrow) the spectrum. Spectral broadening due to

vertical oscillations of scatterers is shown in Figure 1.6(c).

The details of the determination of the non-turbulent contribution will be dis-

cussed shortly, but for now we note that the turbulence contribution (the spectral

half-power half-width that would be recorded if the beam-broadening contributions

did not exist) is given by the following formula:

f 2
turb = f 2

e − f 2
nt, (1.33)

where f 2
turb, f

2
e and f 2

nt are the squares of the spectral half-power half-width due to

turbulence, experimental measurements and non-turbulent e�ects respectively. Some-
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times, this is written in the form:

σ2
t = σ2

e − σ2, (1.34)

where σ2
t is the variance of the radial velocity �uctuations (which can generally be

considered as approximately the variance of the vertical velocity �uctuations), σ2
e the

experimentally determined spectral variance, and σ2 the variance expected due to

beam-broadened e�ects. Note that the latter term has no subscript. The term σ2

relates to f 2
nt through the relation σ2 =

(
λ
2

)2 f2nt

2 ln 2
.

The relation between the energy dissipation rate and fturb is given by Equation

(1.32) and can be written as (Hocking, 1983; Hocking, 1999):

ε = Cσ2
tωB = C

(
λ

2

)2(
f 2
turb

2 ln 2

)
ωB, (1.35)

where λ is the radar wavelength and ωB the Brunt-Vaisala frequency which is given by

Equation (1.29). Hocking (1983) gave C = 0.49, but assumed that the radar measured

the longitudinal velocity, and guessed about the relative contributions of turbulence

and larger scale contributions to the spectrum. A more thorough analysis in Hocking

(1999) recognizes that the radar measures the transverse component, giving C = 0.27.

We will therefore use this value for C. An alternative expression for ε is therefore:

ε = 1.7σ2
t /TB (1.36)

We will use this expression for our analysis. Here, TB is the Brunt-Vaisala period. To

begin, we will use the climatological values for TB. The climatological value of ωB is

approximately 0.01 Hz (TB = 10 min) in the troposphere and 0.02 Hz (TB = 5 min)

in the stratosphere. We will discuss about this in more detail in Chapter 4, and we

will present the values of ωB estimated for various conditions at our radar sites.

If it is assumed that only beam broadening contributes to the width due to non-

turbulent e�ects, then the beam-broadened spectral width, is approximately given by

(Hocking, 1985):

f 2
nt = (1.0)

(
2

λ

)2

Θ2
1/2u

2
0, (1.37)

where u0 is the total wind speed (assumed uniform with height in this simple equa-

tion), λ the radar wavelength and Θ2
1/2 the half-power half-width of the e�ective

(two-way) radar beam. However, even at that time, Hocking did not recommend

simple use of this formula, which was meant as a guide � a more thorough calculation
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that recognized that the wind varied across the pulse length was recommended.

Nastrom (1997) looked speci�cally at the e�ects of a shear in the wind, and gave

the following analytical expression for determination of the non-turbulent spectral

variance:

σ2 ≈ v2

3
u20 cos2 α− 2v2

3
sin2 α

(
u0
∂u

∂z
R0 cosα

)
(1.38)

+
v2

24
(3 + cos 4α− 4 cos 2α)

(
∂u

∂z

)2

R2
0

+

(
v2

3
cos 4α + sin2 α cos2 α

)(
∂u

∂z

)2
(∆R)2

12
,

where v is the one-way half-power half-width, α the zenith tilt angle, u0 the wind

speed, ∂u
∂z

the vertical shear of horizontal wind speed, R0 the range, and ∆R the

range resolution. The �rst term is only due to beam-broadening and the last term

is only due to shear-broadening. The terms in the middle are due to both beam and

shear-broadening. Hocking (1983) used a numerical model which uses the full wind

pro�le to estimate the beam-shear-broadening, which was further expanded upon in

Hocking (2003). The scattered power received in the velocity range u to u + du, at

range R0, is given by:

S (u,R0) du =

ˆ
P (α, φ)

[
σs/r

2 ∗ g (r)
]
dΩ. (1.39)

Here, the integral is between minimum and maximum possible values of φ. S(u,R0)

is the received spectrum, P the combined transmitter and receiver polar diagram

for the radar which is a function of zenith angle, α and the azimuth angle, φ. σs

is the backscattering cross-section per unit volume (not to be confused with the

spectral variances) and g(r) de�nes the pulse shape as a function of range, r. The

symbol �*� represents a convolution ( The convolution of f (r) and g (r) is de�ned

by: f (r) ∗ g (r) =
´ +∞
−∞ f (x) g (r − x) dx). R0 is the lag in the convolution, and

corresponds to the range at which S is detected by the radar. dΩ is de�ned by the

following equation (Hocking, 1983):

dΩ = (tanα) du dφ/ cos (φ− φ0) , (1.40)

where φ0 is the direction of horizontal wind. Therefore, the spectral width can be

estimated for any given range, wind speed and direction. In order to consider the
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vertical wind gradient, the layer of interest is divided to small sub-layers with constant

wind speed and direction. The sum of the all the spectra due to the full wind pro�le

gives the theoretical spectrum expected due to non-turbulent e�ects. With our radars,

this integral has been parametrized with look-up tables in such a way that it can run

in real time, and this will be further described in Chapter 3. There are di�erences

between the algorithms discussed above for determining the instrumental spectral

width, and we will examine these di�erences in the next chapter.

1.6.9 In-situ Techniques

High-resolution measurements of turbulence are possible using in-situ techniques.

The essential characteristic of these techniques is that measuring instruments like

anemometers, soundings and accelerometers are mounted on special structures such

as towers, balloons and aircraft. In the case of towers, the measurements are absolute

in a coordinate system �xed to earth, in contrast to aircraft or sounding balloons in

which the instrument is moving with respect to ground. Measurements by towers are

generally limited to heights close to the surface. Sounding balloons can be used to

measure turbulence into the middle atmosphere (∼ 40 km), however the displacement

of the balloons needs to be determined by radar from the ground or GPS. A great per-

centage of in-situ measurements are obtained by aircraft. These aircraft are equipped

with meteorological instruments that record thermal and dynamics characteristics of

the atmosphere over a wide range of altitudes. We will employ such methods later

in this thesis. Therefore, in the following subsections, we will discuss about aircraft

methods of measuring turbulence in the atmosphere.

1.6.10 Aircraft Techniques

In order to measure turbulence, some research and commercial aircraft are instru-

mented with Integrated Navigation System (INS), which is a navigation system. INS

uses a computer and motion sensors, such as accelerometers, to estimate the position

and acceleration of the aircraft in the atmosphere. In order to �nd the linear accel-

eration of the system, navigation systems are also equipped with an accelerometer,

which estimates the acceleration in the inertial reference frame �xed to the system.

Therefore, the acceleration is measured relative to the moving system. The initial

position of the aircraft is provided by another source such as GPS and after that

the system updates its position and velocity by integrating information received from

motion sensors. The advantage of this technique is that it needs no external refer-
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ences to determine its position or velocity once it has been initialized. However, the

disadvantage of these systems is that any small errors in the measurements of position

or acceleration are accumulated by integration and increase with time.

It is also possible to measure the position and velocity of aircraft using satellite

navigation systems such as GPS systems. This information can be used as backup or

can be combined properly to INS information to reduce the errors. The accuracy of

GPS measurements does not depend on the duration of operation. However, a serious

problem with this system is the possibility of signal outages caused, for example, by

antenna shading (Kaniewski, 2006).

The INS/GPS system measure the velocity of the aircraft relative to the ground.

However, the goal is to determine the velocity of the air motion with respect to the

ground. The true wind velocity can be derived from the vector di�erence between

the air velocity relative to the aircraft and the aircraft velocity relative to the ground.

The aircraft is equipped with pressure transducers which measure the total pressure

and static pressure. The total pressure is made up of dynamic pressure and static

pressure. The static pressure is always present whether the aircraft is moving or

at rest. The dynamic pressure is due to air motion and is only present when the

aircraft is moving. Therefore, by subtracting the static pressure from total pressure,

the dynamic pressure and subsequently the velocity of air motion will be determined.

1.6.11 Methods

Extracts of the turbulent energy dissipation rate, ε, from in-situ measurements is pos-

sible using statistical methods, such as spectra analysis (Quintarelli, 1993), structure

function (Barat and Bertin 1983; Meischner 2001), autocorrelation and true airspeed-

based approaches. The latter has been developed by the National Center for Atmo-

spheric Research (Cornman, 1995) in order to measure ε from commercial aircraft

measurements. In this study, we will use structure function and true airspeed-based

methods to the measure energy dissipation rates from Twin Otter and commercial

aircraft data respectively.

1.6.11.1 Structure Function

Kolmogorov theory (see section 1.4) assumes that the turbulence is statistically similar

at di�erent scales in the inertial subrange and therefore, turbulence is isotropic at this

range. This means that turbulent parameters such as velocity are independent of the

turbulence scale. This helps us to de�ne the structure function method. There are



29

several structure functions, but the main ones are given as (e.g. Hocking, 1999):

D‖(r) = | u‖(x+ r)− u‖(x) |2, (1.41)

D⊥(r) = | u⊥(x+ r)− u⊥(x) |2, (1.42)

where it is assumed that we travel in a straight line in the turbulent medium and

take measurements along the way. Measurements along the direction of motion are

referred to �parallel� and measurements perpendicular to this direction are called

�perpendicular�. In Equations (1.41) and (1.42), u is the velocity, r the displacement

and indices ‖ and ⊥ represent the parallel and perpendicular components relative to

the probe trajectory respectively.

For the inertial subrange, the relationships between the structure functions and

energy dissipation rate, ε, are given by:

D‖ = Cdr
2/3ε2/3 (1.43)

D⊥ =
4

3
Cdr

2/3ε2/3 (1.44)

where Cd is close to 2.0 (Caughey et al., 1978). It should be noted that sometimes the

three-dimensional form of the structure function is used. In that case, the total struc-

ture function can be written as Dtot = D‖ + 2D⊥, since there are two perpendicular

and one parallel components.

The structure function method will be applied to wind data measured by Twin

Otter aircraft in order to estimate the turbulent energy dissipation rate, ε (Chapter

5). The aircraft is instrumented to measure three components of wind speed over a

frequency range from 0 to 10 Hz. One should note that it is not possible to have a

frequency of zero, however, the frequency can be very small (corresponding to very

long periods).

Furthermore, aircraft software employs complementary �ltering routines such as

the Kalman �lter to improve the accuracy of measurements. In order to use Kalman

�ltering to remove noise from a signal, the measurements must be done in a linear

system. In such systems, there is a linear relationship between measured values and

the true values that need to be estimated. Many physical processes, such as a moving

aircraft or vehicle, can be approximated as a linear model. A very simple form of the

Kalman equation is given by (Simon 2001):
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yk = Ckxk + zk, (1.45)

The vector xk contains all the information about the present state of the system, zk

represents the noise, Ck a matrix and yk are the measured values. We can use yk

to estimate xk values. However, yk is contaminated by noise. Using the Kalman

algorithm, it is possible to estimate xk by making the assumption that the average

of the state estimate is equal to the average of true values and the fact that we need

an estimator that results in the smallest possible error variance.

1.6.11.2 True Airspeed-Based

True airspeed, Vt, is de�ned as the di�erence between the aircraft velocity (with

respect to the ground), Va, and the wind velocity, Vw. Therefore, we can write:

Vt =
[
(Va − Vw)2x + (Va − Vw)2y + (Va − Vw)2z

]1/2
, (1.46)

where x, y and z refer to parallel and perpendicular components of the velocity. Since

the x component (parallel to aircraft trajectory) of the inertial velocity (with respect

to the ground) is often much larger than other terms, Equation (1.46) can be written

approximately as:

Vt ≈ (Va − Vw)x

[
1 +

1

2

(Va − Vw)2y + (Va − Vw)2z

(Va − Vw)2x

]
. (1.47)

The second term, in the square bracket, is typically much less than one. Therefore,

the true airspeed is closely equivalent to the longitudinal component of the wind

velocity, thus reducing to the following:

Vt ≈ (Va − Vw)x . (1.48)

Now, if we consider the �uctuations of the true airspeed, V ′t , we can write:

V ′t ≈
(
Va − V a

)
x
−
(
Vw − V w

)
x
. (1.49)

where Va and Vw are the mean values of Va and Vw respectively. If it is further

assumed that �uctuations of aircraft speed are much less than �uctuations of wind

velocity, then:

V ′t ≈
(
V w

)
x
− (Vw)x = − (V ′w)x . (1.50)
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Given the above assumption, the turbulent energy dissipation rate, ε can be estimated

through the following equation (Cornman, 1995):

φu (kx) =
18Aε2/3k

−5/3
0

55

[
1 +

(
kx
k0

)2
]−5/6

, (1.51)

where φu is the von Karman spectrum, A a constant, kx the wavenumber along the

motion (x axis) and k0 is related to the gamma function, Γ and the longitudinal

integral length scale, Lu through:

k0 =
Γ
(
5
6

)√
π

Γ
(
1
3

)
Lu

. (1.52)

In order to calculate ε values to a higher accuracy, a quality control test is per-

formed on the data. A running-window median test is applied to the data. The

window length is chosen to have enough points for statistical estimations and it is

short enough to include changes in the data reasonably well. For each new set of

data, the window is moved forward one step. Then the Z parameter is calculated

through:

Z =
y − ym

max [yu − yl,min-range]
, (1.53)

where y is the data point, ym the median, yu and yl are the upper and lower percentile

(i.e. 80 and 40) values of data over the window respectively. The variable �min-range�

is chosen to prevent small variations in data. In the last step, the histogram of Z

values is produced and outliers are determined and removed from the data.

Each ε estimate is calculated over 10 seconds. This is updated for every new set

of data (e.g., 4 or 8 Hz). Then time series of ε values are generated for statistical

estimations, and the mean and peak values of ε are reported every minute. In order

to save communication costs, the turbulent energy dissipation rate is only reported if

it exceeds a pre-determined value (e.g., �moderate� or �light-to-moderate�).

1.7 Objective of this Thesis

The main objective of this thesis is the study of the major factors that can a�ect

turbulent energy dissipation rate measurements using wind pro�ler radars and to

develop ways to improve these measurements. We will apply the spectral width

method to extract turbulence from the measured radar backscattered signal. The use
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of this method is challenging, since weak turbulence or any errors can lead to negative

apparent values of turbulence strengths.

Therefore, it is important to address and examine all the factors that can cause

negative values of turbulence and to better estimate the errors associated with the

procedure. This would allow a more reliable estimate of turbulence to be made by

radar.

In order to achieve our goal, we have used radars at Walsingham, Harrow and

Negro Creek, which are part of the O-QNet radar network. The radars measure both

wind speed and turbulence in the lower atmosphere over the 1-10 km altitude range.

Details about the radars and other methods of turbulence measurement are given in

Chapter 1 of this thesis.

In Chapter 2, the data to be used are presented, and samples are given. These

examples include negative values. Mean energy dissipation rates, both with and

without negative values included, are displayed. Possible reasons for the negative

values and major contributors to production of negative values of turbulence are

introduced. We compare the earlier models and derive a formula which estimates

turbulence more accurately. Applications of these formulations are demonstrated

with real data. This chapter is an expanded version of a paper which has already

been published (Dehghan and Hocking, 2011).

In order to determine turbulence, the Brunt-Vaisala frequency needs to be esti-

mated. This is presented in Chapter 3, where the daily and monthly variations of the

Brunt-Vaisala frequency in the lower atmosphere and mainly in the troposphere are

also included.

In Chapter 4, our calculations of turbulence by radar are compared to turbulence

values deduced from high-resolution aircraft measurements. The aircraft data include

measurements by Twin Otter aircraft (provided by Environment Canada) around the

upper boundary layer of the atmosphere, and data measured by commercial aircraft

over the 1-10 km altitude range. In regard to the Twin Otter data, we have raw data

sampled at a resolution of 10 Hz, and so can apply structure function procedures to

estimate the strength of the turbulence. This method is applied to both longitudinal

and transverse components of wind velocity measured by aircraft and compared to

radar measurements. With regard to the commercial aircraft data (provided by the

National Center for Atmospheric Research), we were not supplied with raw point-by-

point velocity measurements, but rather were given estimates of the energy dissipation

rates directly, which we can then compare to the radar data.

In Chapter 5, we discuss our results and present our conclusions.
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Chapter 2

Instrumental Errors in Spectral-width

Turbulence Measurements by Radars

Measurements of turbulent energy dissipation rates by radar spectral-width proce-

dures requires di�erencing two numbers to produce a di�erence which is small relative

to the two initial numbers. In particular, the square of a so-called �beam-broadening�

component must be subtracted from the square of a measured spectral width. Be-

cause the di�erence is relatively small, it is very sensitive to statistical �uctuations

in each of the initially measured parameters. The method by which the measured

spectral width is determined can impact the accuracy of the measurements, and, in

addition, the beam-broadened component is a�ected by errors in the measured wind,

variability in the mean wind, wind-shear, and aspect-sensitivity of the scatterers. All

these e�ects can impact the measurements of turbulence, and in some cases can even

produce physically unrealistic �negative� values of turbulence strength. In this chap-

ter, we investigate the relative importance of (i) variability of the mean wind within

the averaging period, (ii) digitization errors and the accuracy of determination of

the spectral width, (iii) the particular beam-broadening model employed, and (iv)

anisotropy of the scatterers. Although these terms are often discussed in the litera-

ture, we have quanti�ed their relative importance. The accuracy of determination of

the spectral width is the most important source of error, followed by variability of the

mean wind in the averaging period. In addition to these studies, we also develop a

new formula for accurate determination of the beam-broadened spectral width. This

includes a new term missing from earlier formulations.
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2.1 Sample Data and Negative Turbulent Energy Dis-

sipation Rate

In this section, we show some examples of energy dissipation rates deduced from

radar measurements. In particular, we concentrate on July, 2007, during which a

good range of atmospheric conditions occurred. We also look at negative values for

turbulent energy dissipation rate, ε, in this time frame, and brie�y investigate their

impact. One word of warning needs to be noted. In this study, we used only data

recorded with o�-vertical beams, in order to avoid the e�ects of specular re�ections.

The vertical beam is almost always contaminated by scatterers and re�ectors which

are elongated horizontally, and behave in a manner di�erent to isotropic turbulence,

so we concentrate only on o�-vertical beam data.

2.1.1 Typical Measurements

Figure 2.1 shows the wind speeds and directions for the month of July, 2007 measured

with the radar at the Harrow site. For most of our analysis, we will concentrate on

this data set, since most of the parameters that we need to discuss are well represented

by it. Wind speeds varied between a few m/s to 30 and 40 m/s, giving a broad range

of conditions. Measurements from the Walsingham radar will also be presented for

July 2007, as required. The Negro Creek radar was not operational until late 2008, so

when we need to do comparisons with Negro Creek we will use data from July 2009.

Figure 2.2 shows height-time plots of the strength of the turbulence throughout

the month for a beam pointing to the north-west. The upper graph (denoted �model

N�) shows ε values produced assuming Equations (1.38) and 1.35 while the second

one shows the energy dissipation rates determined using Equations (1.39), (1.40)

and (1.35). The two sets of results are similar in general appearance. The third

graph shows data recorded on a beam pointing to the North-east, orthogonal to the

�rst. Again, the general appearance is similar to the other two, suggesting very little

variation in azimuthal view-direction.

Figure 2.2 also shows the large dynamic range of turbulence in the atmosphere.

Background values are generally of the order of 10−4 W/kg, consistent with Lee et

al., 1988 (who catalogued an extensive group of in-situ measurements of turbulence

strengths), and also with Hocking and Mu (1997). However, superimposed on this

general background are short bursts of turbulence which rise well above 10−3 W/kg

(red and black colors). These are consistent with so-called: �white-caps� bursts of
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Figure 2.1: Plots of wind speed and direction recorded with the Harrow radar for the
month of July, 2007. Vectors pointing to the top of the page represent a northward
(southerly) wind, and vectors pointing to the right indicate an eastward (westerly)
wind. Wind strengths are represented by the length of the vector, with the length of
a vector representing 40 m/s shown at the upper right of the �gure.
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Figure 2.2: Height-time plots of the turbulent kinetic energy dissipation rate for
the Harrow radar in July, 2007. The upper graph (labeled N) was calculated using
Equation (1.38) for the beam-broadening term. The second graph was produced using
a proxy for a fully numerical model (labeled �LS�, for �layer-summing� method). Both
of the upper graphs used data recorded with a beam pointing to the North-West at
10.9◦ from zenith. The lower graph shows data for an orthogonal beam pointed in
the North-East direction, using the proxy for the numerical model.
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strong episodes of turbulence, as described by Fairall et al., (1991), Hocking (1991),

and Hines (1991). Despite the generally positive appearance of this data-set, however,

one problem arises. A signi�cant number of measurements of turbulence strengths

show negative values (not plotted in Figure 2.2). These are physically unrealistic, and

the cause of such values needs to be understood. In previous studies, the existence of

such negative values has been mentioned (e.g. Nastrom and Eaton, 1997; Narayana

Rao et al., 2001), but sometimes the chosen practice is to ignore them (e.g. Jacoby-

Koaly et al., 2002, among others). This may be, or may not be, a valid practice, and

needs to be investigated. Previous studies have discussed the cause of these values

in a general sense, but not quantitatively. Our objective here will be a quantitative

study of some of the more important potential reasons for these negative values.

Figure 2.3 shows the impact of these negative values. The �gure displays vertical

pro�les of monthly averaged values of ε from 2 to 9.5 km for both the Harrow and

Walsingham radars in July 2007 for two distinct cases. In the �rst case, averages are

formed using only positive values of ε , while in the second case the averages include

all measured values of ε, including the negative ones. It can be seen that from 2 km

altitude to around 5-6 km, the two pro�les are similar in magnitude (to within at

least a factor of 2). However, above approximately 6 km, the two di�erent sets of

estimates diverge.

In order to further emphasize this e�ect, Figure 2.4(a) shows the percentage of

negative measurements of ε as a function of height for the Harrow radar for July

20-31, 2007. We have performed these calculations using two di�erent estimates of

the beam-broadened spectrum. One pro�le (labeled N) uses the model of Nastrom

(1997) (Equation (1.38) in this study). The other (labeled LS) uses a parametrization

of the full spectral model developed using Equations (1.39) and (1.40). Below 5 km

altitude, the percentages are approximately between 5 and 20%, but above this height

they rise markedly, reaching 40% at 7-8 km. An exact description of the models N

and LS will be given in section 2.2.

An immediate suspicion arises that the positive vertical gradient of percentages

might be due to an increase in the SNR ratio, since scatter from the higher altitudes

tends to be weaker, as is well known. But as discussed earlier, our use of �tting

spectral procedures, and rejection of unsuitable or noisy spectra, makes this unlikely.

An alternative possibility is that the increase in percentages is due to increasing wind

speeds, since the vertical gradient of wind speed is positive for our data. In order

to test this possibility, the turbulence strengths have been binned according to wind-

speeds. Bins of 0-3, 3-6, 6-9 m/s etc., have been chosen, and then the percentage of



38

-2 0 2 4 6 8 10

x 10
-4

2

3

4

5

6

7

8

9

10

Energy Dissipation Rate (W/kg)

H
ei

gh
t 

(k
m

)

 

 
Walsingham July, 2007

       (a)

-2 0 2 4 6 8 10

x 10
-4

2

3

4

5

6

7

8

9

10

Energy Dissipation Rate (W/kg)

H
ei

gh
t 

(k
m

)

 

 
Harrow July, 2007

(b)

Positive Values

All Values

Zero Line

Positive Values

All Values

Zero Line

 

Figure 2.3: Vertical pro�les of energy dissipation rate for the (a) Walsingham and (b)
Harrow radars for July 2007, using all data (broken lines) and positive values only
(solid lines).
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negatives has been plotted as a function of height for each bin. The results are shown

in Figure 2.4(b), using the �LS� model from Figure 2.4(a).

The individual pro�les no longer show any signi�cant variation with height, and

clearly the percentage of negative values increases with greater wind speeds. Typical

percentages are less than 10% for wind speeds less than 9 m/s, then rise to about

20% for winds of 9-12 m/s, 30% for winds of 12-15 m/s, and then above 15 m/s

the percentages reach and exceed 40%. Other sites show the same e�ect. There is

a slight decrease at 10 km, which may be due to the fact that some of the data at

this height was stratospheric. In Figure 2.4(c), we have binned all the data from

all heights (2-10 km altitude) together, but kept the separate wind-speed bins. The

percentage of negative measurements clearly increases as a function of wind-speed,

and the slope is least for the Walsingham radar (with the narrowest radar beam) and

greatest for the Negro Creek radar (which has the widest beam). (The Negro Creek

radar did not exist in 2007, so we have shown data for July 2009 as a proxy, as well

as September 2008 to verify that the tendency to a larger slope is common to the

Negro Creek radar). It is now necessary to turn to consider possible reasons for this

dependence.

2.1.2 Possible Reasons for Negative Turbulence Strengths

In the previous section, the possibility that the SNR ratio might impact the percentage

of negatives was largely ruled out. This is because of our use of a spectral �tting

procedure. It may not be possible to ignore SNR issues if weighted moments are used

for the determination of spectral widths, but that was not the case here. We now

turn to other possible reasons for the negative turbulence strengths.

One commonly assumed reason for these negative estimates is that the scatterers

are anisotropic, causing an e�ective beam that is narrower than the true beam-width.

If the beam-broadening contribution is calculated on the basis of the beam-width

of the radar, but no account is made for this anisotropy when the beam-broadened

spectrum is calculated, the theoretical spectrum will be too wide, and may exceed

the true spectral width, giving rise to negative values in Equation (1.33). Another

commonly assumed reason relates to the temporal and spatial variability of the mean

wind �eld over the radar. Over time scales of a few tens of minutes, and over spatial

scales of a few kilometers, the wind �eld must vary. If a Doppler system is used to

measure the mean wind �eld, it will be in part confounded by this e�ect. For example,

the wind is measured at two di�erent points in the sky by two di�erent radar beams,
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Figure 2.4: (a) Vertical pro�les of percentage of negative turbulent energy dissipation
rate, for the Harrow radar, 20-31 July, 2007, using models N and LS.(b) Percent of
negative as a function of height after being classi�ed into di�erent bins based on total
wind speed.(c) Plots of the percentage of negative ε values as a function of wind
speed for 3 di�erent radars, summed over altitudes from 2-10 km. Walsingham has a
one-way half-power half-width of 2.3 degrees, Harrow has a value of 2.75 degrees and
Negro Creek 3.3 degrees. Negro Creek had not been built in 2007, so we show July
2009 as a substitute, plus have added September 2008 in order to con�rm that the
Negro Creek radar generally has the largest percent of negatives.
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and the measurements are at physically distinct locations, separated by typically 2-3

km or more. The wind �eld is also sampled at di�erent times in these two beams. By

combining the two radial velocities, a composite �mean wind� is determined, but it

may not be a true re�ection of the real wind � there may never really be such a thing

as a true �mean wind�. The wind calculated is only an approximation of the wind �eld

at that time � albeit generally quite a good one. But if the strength of turbulence

is determined for a particular beam at a particular height and time, yet the mean

wind used for the calculation of the beam-broadened e�ect is an hourly mean, then

there is a good chance that the true beam-broadened spectrum relevant at the time

may have di�ered from the one determined using the assumed wind pro�le. Thus the

beam-broadened spectrum used for turbulence extraction may be wider than the true

one, reducing f 2
turb in Equation (1.33), and possibly making it even negative. It is

also possible that the beam-broadened component may be under-estimated, so that

ε increases. This possibility has been discussed in the literature, but not generally

quanti�ed.

Another possible source of error is in the accuracy of determination of the spectral

variance (or equivalently, the spectral width). This quantity is limited by a variety

of e�ects, including the system resolution. Shorter data samples will have worse

resolution � a 10 second data-set will have a resolution of only 0.1 Hz. Noise may

further worsen the calculation. As discussed earlier, the variance determined by

weighted moments tends to overestimate the true value unless done very carefully.

Another issue that could be important relates to the accuracy of the determination

of the �beam-broadened� component. Although Figure 2.2 suggested that models �N�

and �LS� produced similar results, Figure 2.4(a) showed di�erences in the details,

with the �LS� method showing higher percentages of negative values than model �N�.

In the following sections, we will consider each of these possibilities in turn. The

�rst item for discussion will be the last one discussed, namely the accuracy of the

determination of the �beam-broadened� variance.

2.2 Comparison between Di�erent �Beam-broadening�

Models

Equation (1.38) was developed by Nastrom (1997) as an analytical expression for

calculation of the spectral variance due to a mean wind and a wind shear, as a function

of various radar-related terms. The model made the following assumptions:
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(i) The model is two dimensional, and assumes only an x-z vertical plane.

(ii) The polar diagram is assumed to have sharp edges at ±v, where v is the

one-way half-power width of the beam.

(iii) The polar diagram is assumed to have constant gain within the region

between −v and +v, and changes abruptly to zero gain further from the

beam-centre.

(iv) All calculations are performed with the one-way beam only.

(v) The pulse is assumed to be a square function.

(vi) The returned power is calculated by assuming the pulse is centred at

a �xed range R0, and does not consider that the returned power is a

convolution between the scattering function and the pulse.

(vii) No consideration is made for dependence of backscattered power on range

within the pulse.

(viii) The receiver is assumed to have an in�nite band-width.

(ix) It is assumed that the beam-width is unchanged as the beam moves to

o�-zenith angles.

Figure 2.5(a) shows the assumed situation. Radar scatter at a particular range is

assumed to come from within the darkest shaded section, and from nowhere else.

The distance across the dark area along the beam is the e�ective pulse length, and

the distance perpendicular to the radial direction is proportional to the beam-width.

The beam does not taper o� with zenith angle in the way that a real radar beam

does, and the pulse starts and stops abruptly. This is actually unrealistic, since even

a square pulse will be smoothed by the receiver upon reception, unless the receiver

has an in�nite bandwidth. For help with future discussions, we have also added some

key scales on the diagram; notice in particular the lengths ∆R cosα and ζ, which

represent the vertical projection of the pulse, and the vertical distance from the lower

point of the beam at L to the upper point at U. Both these scales are important in

regard to wind shear, as will be seen in due course. Another somewhat important

scale is the vertical projection of the distance from U to C, which is of the order of√[
(2R0v)2 + (∆R)2

]
. However, this term will be covered by other terms involving

∆R and ζ, and so we consider ζ and ∆R as the main basic vertical length units.
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Figure 2.5: (a) Diagram of the polar diagram assumed for model �N� in the text.
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text for details.
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As noted, many of the assumptions listed above are not valid for a real radar. The

assumptions also result in unrealistic spectra; Figure 2.6 shows the spectrum produced

for a mean wind and wind shear for the Nastrom model, and for a more realistic

beam. The sharp corners on the spectrum produced under the above assumptions

are especially noticeable and not realistic. The smoother spectrum was produced by

the model discussed in regard to Equations (1.39) and (1.40) earlier.

However, by choosing such a simple model, it was possible for the author (Nas-

trom) to achieve an analytical expression for the broadening of the beam due to

non-turbulent e�ects. The advantage is that it highlights the key terms that might

be important in even a three-dimensional model, even if their proportional contribu-

tions might be in error. The simple diagram also helps visualize some of the e�ects.

For example, Figure 2.5(b) highlights the cause of the broadening. The grey lines at

fU and fL represent spectral lines produced by scatterers moving horizontally at the

same speed at the points U and L in Figure 2.5(a). The di�erent frequencies arise due

to the di�erent zenith angles of the two points. When scatterers from throughout the

beam are considered, the spectrum �lls in and has �nite width. If the wind speed at

U is increased, and at L is decreased, as shown in Figure (2.5a), then fU moves to fU'

(due to its increased radial velocity) in Figure 2.5(b), and fL moves to fL', (due to its

decreased radial velocity), and the overall spectrum will narrow. This illustrates the

phenomenon of wind-shear spectral narrowing (e.g. Hocking, 1983; May et al, 1988;

Nastrom et al., 1997).

Nastrom (1997) gives both an �exact� solution and an approximate one. Equation

(1.38) was the �approximate� expression, but in view of the various assumptions which

were made in deriving the �exact� expression, it has no greater claim to accuracy than

the approximation. The approximation contains most of the pertinent terms needed

to describe the spectral beam-broadening e�ect.

Given the various assumptions relating to this model, it should come as no sur-

prise if the true contributions of the various terms were to di�er from the model

representations. An example is the �rst term, which involves division by 3, but all

other calculations of this term by other authors involve division by 4ln2, as will be

seen shortly.

However, in view of the key scales indicated in Figure 2.5, we will modify Equation

(1.38) by using the expression ζ = 2vR0 sinα, as discussed in regard to that �gure.

We will also group the terms ∆R and cosα where possible. We will also use the

(very accurate) approximation that (3 + cos 4α − 4 cos 2α) = 8α4 (easily veri�ed by

expanding the cosine terms as Taylor expansions to the third term), which we will
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write as 8 sin4 α. We also will use the fact that the �rst term inside the �rst set of

brackets in the last part of the equation is negligible, viz.
(
v3

3

)
cos 4α� sin2 α cos2 α.

This can be seen by considering a relatively extreme example. If we assume a value of

v = 3◦, and α = 5◦ (which would normally be ill-advised, since the beam tilt is only

just greater than the beam-width), then
(
v2

3

)
cos4 α = 8.59×10−4, while sin2 α cos2 α

is 8.7 times bigger, or almost an order of magnitude larger. If α is 7◦, the ratio is

18, and for larger tilts and narrower beams, even larger. Considering that this last

additive term is already a small contributor, except for extreme pulse-lengths, then

a sub-contributor which is an order of magnitude smaller than the sin2 α cos2 α term

can readily be ignored. In addition, we must also divide the whole equation through

by cosα, since in a realistic situation the beam broadens inversely proportionally to

cos2 α as it tilts. Hence, adapting Equation (1.38), we now write:

σ2 ≈ v2

3
u20 cosα− v

3
sinα

(
u0
∂u

∂z
ζ

)
+

2 sin2 α

24
cosp α

(
∂u

∂z
ζ

)2

(2.1)

+
(
sin2 α

)
cosq α

(
∂u

∂z

)2
(∆R cosα)2

12
.

Here, p and q are nominally each equal to -1. The terms each involve u0,
du
dz
, ζ and

∆R, so in principle the expression for σ2 should depend on the following terms:
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(i) u20, (ii) u0 [du/dz] ζ, (iii) u0 [du/dz] (∆R cosα) (2.2)

(iv) [du/dz]2 ζ, (v) [du/dz]2 (∆R cosα)2 , (vi) [du/dz]2 ζ (∆R cosα) .

Our intent is to use these terms to develop a new expression for the beam-

broadening term which more accurately matches the 3-D model described by Equa-

tions (1.39) and (1.40). We expect these terms to be the main terms even for a proper

3-D model. Term (i) of (2.2) appears in the �rst term of Equation (2.1), term (ii)

appears in the second term of Equation (2.1), term (iv) appears in the third term

of (2.1), and term (v) appears in the last term of (2.1). The terms (iii) and (vi) do

not appear in the 2-D solution. It may not be surprising that the last term does not

appear, since it involves a cross-term in the two largely independent length scales.

However, we might expect term (iii) to play a role in a 3-D situation.

It is also expected that with a more realistic model, the relative contributions

of the terms may change. Our intent is to develop an analytical expression for a

three-dimensional model, so we will use the same terms as those in Equation (2.1),

but allow each to have a multiplicative constant, with one exception. Term1 is given

as
(
v2

3

)
u0 cosα but most derivations in three-dimensions produce a constant equal

4 ln 2 in place of the constant 3. This was discussed by Nastrom (1997) and various

references therein (Atlas, 1964; Sloss and Atlas, 1968; Atlas et al., 1969; Gossard

et al., 1990). The same is true for the model of Hocking (1983, 1985), who showed

that the beam-broadening term should be fB = 1.0
(
2
λ

)
u0θ1/2, where λ is the radar

wavelength and θ1/2 is the two-way half-power half-width which equals v/
√

2. If

we multiply through by λ/2 to convert to velocity instead of frequency, and divide

through by
√

2 ln 2 to convert the half-power half-width to the standard deviation

(valid for a Gaussian function), and then square, we obtain σ2 = u20v
2/κ, where

κ = 4 ln 2.

We will therefore write that the three-dimensional analytical expression for σ2 is

as follows:

σ2 ≈ v2

κ
u20 cosα− a0

v

κ
sinα

(
u0
∂u

∂z
ζ

)
+ b0

2 sin2 α

8κ
(cosp α)

(
∂u

∂z
ζ

)2

(2.3)

+c0
(
coss α sint α

)
(u0ξ) + d0

(
cos2 α sin2 α

)
(cosq α) ξ2,
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where we have de�ned ζ = [du/dz] ∆R/
√

12 for consistency with Equation (2.1). The

constants a0, b0, c0, p, s, t and q need to be determined. Note the introduction of a

new term involving u0ξ ∝ u0 [du/dz] ∆R which did not exist in Equations (1.38) and

(2.1).

The full 3-D computer model de�ned by Equations (1.39) and (1.40) was then

run for over 3000 combinations of pulse length, beam width, beam tilt, range, wind

speed and wind shear. Pulses used were 200 m, 500 m, 800 m, and 1 km, and beam

tilts were 7◦, 10.9◦ and 15◦. One-way beam widths used were 1.5◦, 2.3◦, 2.5◦, 2.75◦,

and 3.0◦. Ranges used were 5, 10, 15 and 20 km, and wind speeds were 40, 20,

10 and 5 m/s. Wind shears used were -0.01, -0.008, -0.005, -0.002, 0, 0,002, 0.005,

0.008 and 0.01 m/s. In addition, the model had the capability to assume that the

scatterers occurred in discrete layers, rather than being homogeneously distributed

throughout the atmosphere. The layer depth could be varied, but for our calculations

we have used a �xed depth of 1 km, since this is comparable to the buoyancy scale

of turbulence.

The polar diagram assumed took the following form. The power transmitted or

received at zenith angle θ and azimuth φ was given by:

P (θ, φ) = A0 exp
{
−
(
y21 + y22

)
/θ20
}
, (2.4)

where y1 = sin θ sinφ−sinα sinϕ0, y2 = sin θ cosφ−sinα cosϕ0 and θ0 is the two-way

1/e half beam-width. This gives a Gaussian polar diagram peaking at (α, ϕ0), and

broadens proportionally to cosα as the beam tilts from vertical (i.e. as α changes).

(The polar diagram is the 2-D Fourier transform of the aperture function of the

antenna �eld with phase adjustment, and the above expression e�ectively expresses

it in terms of direction cosines, which incorporates a broadening of the beam as it

tilts).

The result of the �tting gave the following values for the variables used: a0 = 0.945,

b0 = 1.50, c0 = 0.03, p=0, s=2, t=2 and q=0. Interestingly, the second terms in

Equations (1.38) (or 2.1 ) and (2.3) actually agree to about 4%. The other terms show

bigger relative di�erences. One modi�cation was required to Equation (2.3), however.

A new term involving u0ξ was introduced in equation (2.3), but extensive studies

showed that the term produced better agreement with the model if the modulus of

the quantity was used. The �nal model formula was:
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σ2 ≈ v2

κ
u20 cosα− a0

v

κ
sinα

(
u0
∂u

∂z
ζ

)
+ b0

2 sin2 α

8κ

(
∂u

∂z
ζ

)2

(2.5)

+c0
(
coss α sint α

)
|u0ξ|+ d0

(
cos2 α sin2 α

)
ξ2,

This equation will be referred to as model �C� (for �current�) in this text, while

Equations (1.38) and (2.1) will be referred to as model �N�. The full integral (Equa-

tion (1.39)), which is used as a reference, will be referred to as the �full model�. If the

di�erence between the variance for the model and the full model is found (absolute

value only), and is divided by the variance from the full model in each case, the mean

displacement is found to be 12.45 % for Model N. If the �rst term of Equation (1.38)

is adjusted to use a division by 4ln2 instead of 3, the error in model N reduces to 6.9

%. For model C, the di�erence reduces to 5.7 %.

Further improvement to model C may be achieved by some modest adjustments

at critical points. The correction term involves incorporation of a set of Gaussian and

hyperbolic tangent corrections, and will be referred to as model �Cc� for �Current-

corrected�. With model Cc (the numerical code is given in Appendix C), the mean

error reduces to 4.1 %, relative to a full model.

Figure 2.7(a) shows a histogram of the di�erences in the models N, C and Cc

compared to the full model. Note that model N is shifted to the left. This o�set

can be removed by replacing the �3� in the �rst term of (1.38) by 4ln2. However, an

additional point of note is the bulge in values at the point X. This bulge also appears

in models C and Cc if the new term involving |u0ξ| is not included. Without this

term, the percentage error for model C increases from 5.7% to 7.3%. The bulge is

mainly associated with large pulse lengths and large wind-shears, and incorporation

of the term involving |u0ξ| is necessary to obtain optimum agreement.

The above discussions have concentrated on use of percentage errors, but in some

ways the absolute errors are more important. The mean displacement of Model N is

-0.06 m2/s2. By contrast, over 90% of all of the values for model Cc are within ±0.05

m2/s2 of the corresponding variance for the numerical integration. The question now

arises as to the importance of an o�set of 0.05 m2/s2. Since ε = 1.7 (σ2
t /TB), if we

take a Brunt-Vaisala period of 600 s, then an o�set in ε of δε can be written as

δε = 0.0028δ (σ2), so an error δ (σ2) = 0.05 corresponds to an error in ε of 1.4× 10−4

W/kg.

We have also adopted one extra algorithm, described by Figure 2.8, which parametrizes

the full model in a di�erent way. Previous analyses with the full model have been used
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Figure 2.7: (a) Histograms of the di�erences in the variance expected due to geometric
e�ects alone ("beam-broadening") for various analytic models, relative to a three-
dimensional numerical calculation. A selection of beam tilts, beam-widths, pulse-
lengths, ranges and wind speeds have been chosen, as described in the text. Model
N refers to Nastrom (1997), and model C refers to the new model developed in
this paper. Model Cc refers to model C with additional adjustments. The mean
displacement of model N is -0.06 m2/s2, while for models C and Cc it is -0.001 and
0.004 m2/s2 respectively. (b) Beam-broadened spectral variances deduced with the
three models for realistic winds, taken from the Harrow radar for July 1-31, 2007.
Note that the shaded areas in �gures (a) and (b) are not for the same model � the
shading is chosen simply to improve the visual contrast between the models.
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to produce model spectra, expressed as Gaussians, for thin layers of the atmosphere.

The widths, o�sets and spectral widths have been expressed analytically as functions

of range, pulse-width, o�set of the layer from the center of the pulse, beam-width,

zenith tilt and so forth, and stored in a subroutine. The �nal spectrum is deter-

mined by evaluating the Gaussian spectra for each layer using these parameters, and

summing the resultant spectra frequency by frequency. This method will be called

the �LS� method (for �Layer-Summation� method). The advantage of this method

is that it allows accurate computation and display of the actual spectra, whereas the

methods N, C and Cc only produce a number for σ2. Spectra can be asymmetric in

the case of strong shears, and it is often useful to see the shapes of the spectra, which

LS can produce. Furthermore, the calculation can deal with any form of wind pro�le,

including ones with more complex pro�les than a simple wind shear. It can deal with

situations in which the wind pro�le shows curvature (none, zero, second, and higher

derivatives), and is better suited to cases for which the wind pro�le shows complex

structure (such as a mixture of rotational and linear wind shears).

Figure 2.7(b) shows the distribution of the theoretical variance σ2 (before inclusion

of turbulence) for all of the wind pro�les recorded with the Harrow radar in July 2007.

The previous models dealt only with wind shears parallel to the beam, but in the real

situation, shears may exist perpendicular to the beam as well. We have dealt with

these in the same way that Nastrom and Tsuda (2001) did. We have determined

the value for σ2 using the wind components parallel to the beam, and then for the

case perpendicular to the beam. For the perpendicular case, we ignore any transverse

wind shears and use only the �rst term in Equations (1.38), (2.1) or (2.5). We have

then added the two terms.

Model LS is included in this case, but not model C, since addition of model C

simply makes the graph harder to read. It produces a histogram similar to models

LS and Cc. The most noticeable di�erence is that model N produces a larger number

of small values of σ2, around 0.06 to 0.08 m2/s2. Hence in the event of turbulence of

the order of 10−4 W/kg, model N may produce errors of the order of a factor of 2 or

so. Hocking and Mu (1997), show that such values are relatively common. On the

other hand, turbulence is a hard parameter to measure, and an error of a factor of 2

might be considered relatively small in the overall picture. The occurrence of smaller

theoretical values of σ2 will also reduce the number of negative occurrences of ε, as

seen in Figure 2.4(a). This does not make it a better model, however.

Despite the potential inherent advantages of the LS model, it does not seem to

provide any real advantage over model Cc in a practical situation, and we will use
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Figure 2.8: Illustration of the integration scheme proposed by Hocking (2003). Only a
one-dimensional pro�le is shown, for simplicity. Spectra are calculated in small, thin
sublayers. Backscattered powers from each sub-layer are shown as a grey-scale. The
spectra, weighted according to backscattered power for each sub-layer, are summed
to produce a �nal spectrum.

the two models interchangeably throughout the rest of this text.

Figure 2.9 shows the results of applying the various models to real data, again

using data from Harrow for July 2007. All data in the height range of 1.5 to 10 km

have been used. Here, the distributions of measured turbulence values are shown for

model Cc and model N, and for 3 di�erent azimuthal beam directions. Results are

all quite similar, and the only noticeable di�erence is a slight tendency for model N

to be shifted to more positive values, as would be expected from the fact that Figure

2.7(b) shows an excess of smaller theoretical non-turbulent spectral widths. There

is no noticeable di�erence between the beams, and the fourth beam shows similar

values (not plotted in order to avoid congestion).

Overall, the agreement between the various models can be considered to be quite

good. It is interesting (and even curious) that model �N� shows good agreement when

the one-way 2-D polar diagram is used to represent the two-way 3-D polar diagram.

Despite the various approximations of the model, though, the agreement of model N

with the full model is generally fair, although it is prone to slightly underestimate

the true non-turbulent width. This may be of some consequence for cases where

turbulence is weak to moderate, but is of little consequence when turbulence is strong.

We do recommend use of the more exact expressions for σ2, but conclude that the
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choice of beam-broadening model used is only a modest contributor to errors in the

percentage of negative turbulence estimates.

2.3 Anisotropic Turbulence

In the spectral width method presented to date, it has been assumed that turbulence

is isotropic. When turbulence is anisotropic, the horizontal wind speed is underesti-

mated by the radar by a factor, R1 (Hocking, 1989), where

R1 =

[
1 +

θ20
θ2s

]
. (2.6)

Here θ0 is the 1/e half-width of the two-way radar beam and θs is the anisotropy

angular factor of the backscatterers (e.g. as de�ned in Hocking 1987, or Hocking,

1988, Appendix A). The half-power half-width of the radar beam also needs to be

corrected by the factor, where:

R2 =

[
1 +

θ20
θ2s

]−1/2
. (2.7)

(also shown in Hocking, 1988, Appendix A).

The parameter θs can be determined by comparing the powers on the vertical and

o�-vertical beams, using the relation (Hooper and Thomas, 1995):

θs = arcsin

√
sin2 θ2 − sin2 θ1
ln [P (θ1)/P (θ2)]

− sin2 θ0 (2.8)

where P (θ1) and P (θ2) are the received backscatter power for two zenith angles of θ1

and θ2, and θ0 is two way half-power half-width of radar beam. Values for θs have

been measured many times in the atmosphere, and generally lie between 3◦ and 15◦

(Hocking et al., 1986). We also measure this parameter routinely with our radars e.g.

see Hocking and Hocking (2007).

It is important to determine the e�ects of θs on our estimates of turbulence. Two

possible scenarios exist in a realistic situation. First, it is possible that the user

does not correct for the wind speed e�ect given by Equation (2.6). This is the most

common case. Second, it is possible that the mean wind is corrected for the wind

speed. In the �rst case, the theoretical beam-broadened width will be too narrow

by an amount given by R1R2, where the �rst term arises because the mean wind

used is too small, and the second arises because the aspect sensitivity term has been
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ignored. The net result is that the theoretically determined spectral width will be too

narrow by an amount
√

(1 + θ20/θ
2
s) and σ

2 will be too small by factor of (1 + θ20/θ
2
s).

Hence determination of ε will result in values that are too large, rather than values

that are too small, so these cannot contribute to the negative values for ε. If, on

the other hand, the mean wind has already been corrected for the anisotropy, then

the only missing term in the determination of the theoretical spectral width is the

anisotropy factor, so in this case σ2 will be too wide by an amount R−22 , or by a

fraction [1 + (v2/θ2s2 ln 2)], since θ0 = Θ1/2/
√

ln 2 , and the two-way half-power half-

width is equal to v/
√

2. This will result in an increase in negative ε. For example, if

θs = 5◦, and v = 2.5◦, the correction is 18%. Although values of θs less than 5◦ occur,

they generally dominate the vertical beam, and not the o�-vertical beams. Hence this

may be considered as an upper limit on the correction term for most radars. This

correction is very similar to the percentage di�erence between model N and the full

numerical model discussed in Figures 2.7(a) and 2.7(b), which was 12.5%. Hence in

such a situation, the e�ect of anisotropy should be at about the same level of that

shown in Figure 2.7(b). This would be a worst-case scenario, and the e�ect rapidly

diminishes for narrower beams.

In our case, we have not corrected for the mean wind, so that aspect sensitiv-

ity should actually increase ε, rather than producing negative values. This should

therefore not be a contributor to our observed negative values.

2.4 The Primary Error Terms

The possible sources of error discussed to date have been only modest contributors.

We now turn to the issues of wind variability and spectral �tting accuracy, as they

turn out to be the most important terms.

2.4.1 E�ect of Variability of the �Mean Wind�

Of the selection of reasons discussed earlier, we are now left with (i) variability of the

mean wind and (ii) errors in estimates of the experimental spectral width. Both are

expected to be important in a qualitative sense, but it is necessary to quantify their

impact.

In Figure 2.4, the percentages of negative values were presented in various forms,

and there was strong evidence that the percentage was a function primarily of the

mean wind (�gure 2.4(b)). In Figure 2.9, we showed the distribution of values for all
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heights and all wind speeds. In Figure 2.10, we show histograms of the distributions of

values for 2 di�erent height regions (1-5 and 5-10 km), two di�erent radars (Harrow

and Walsingham) and for 4 di�erent bands of mean wind speeds (5-10 m/s, 10-15

m/s, 15-20 m/s and 20-25 m/s). The broader nature of the distributions for increased

wind speeds is quite apparent. The standard deviations of each of the distributions

are indicated on the �gures.

In order to help quantify the e�ect, Figure 2.11 shows the standard deviations of

the hourly wind data. The variance in the north-south components, and the east-west

components, were each calculated separately for each hour of the month of July, 2007,

for the Harrow radar, and then the two components were added for each hour. The

square root was then taken, and plotted against the wind speed. The process was

performed for di�erent height bins, but the RMS values did not vary substantially with

height, so we have lumped all heights together and produced Figure 2.11(a). There is

a large cluster of points which is clearly seen, plus some apparent outliers. We apply

substantial quality control to our data, using a Weber-Wuertz-type algorithm at the

minute-by-minute scale, to reject outliers at the earliest stages of analysis (Weber

and Wuertz, 1991). The algorithm compares the observed value, V with the median

of surrounding observations, Vm. If the di�erence (V-Vm) exceeds the critical value,

Vc, then V is an outlier. The critical value in this algorithm is given by (Lambert

and Taylor, 1998):

Vc = max (V1,V2) (2.9)

V1 = 0.2 | V+Vm |

V2 = a.
(
Ah2+Bh+C

)
,

where a, A, B, C are constants and h is the height at which the measurement is done.

In addition, at least 8 points were required per hour before a data point was

plotted on this graph. So these apparent outliers are also real data, and not artifacts,

and arise due to the passage of frontal systems and other events that produce rapid

changes in the large-scale winds, giving rise to large RMS �uctuations. The data have

also been binned according to the mean wind, and the medians and 68th percentile

determined for bins of 5-10, 10-15, 15-20, 20-25 and 25-30 m/s are shown in Figure

(2.11). These are plotted as dark �lled circles and squares (respectively) on the

graphs. An approximate line has been drawn through the medians. Figure 2.11(b)

shows the same type of display for the Walsingham data, but for 5-10 km altitude.
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Figure 2.10: Histograms of the distributions of the turbulent energy dissipation rates
for the Harrow and Walsingham radars for July, 2007. The histograms are separately
produced within each set of graphs for wind-speed bins of 5-10, 10-15, 15-20 and
20-25 m/s. Figures (a) and (b) show distributions for the Harrow radar for 1-5 and
5-10 km altitude respectively, while (c) and (d) show the same for the Walsingham
radar. Standard deviations for each distribution are shown in the boxes to the right.
Mean values are indicated by the vertical arrows, and numerical values for the means
appear in Tables 2.1 and 2.2.
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Figure 2.11: Hourly standard deviations of wind �uctuations plotted as a function of
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plotted as solid circles. The solid squares represent the 68th percentiles for the same
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ρ. Both data sets are for July 2007, and for the heights indicated.
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While the hourly standard deviations do increase with increasing mean wind

speed, the increase is only modest, especially above 20 m/s. In order to further

interpret the data, we need to develop a more complete theory about the errors,

which we do in the next section.

2.4.2 Error due to variability of large-scale wind speed

The main term in the equation for σ2 is the �rst term in Equation (2.5), so for

purposes of error calculations we will concentrate on this term. Then we use

σ2 = (4 ln 2)−1 θ21/2(1)u
2, (2.10)

δ(σ2) = (4 ln 2)−1 θ21/2(1)2uδu, (2.11)

where δ(σ2) is the variation in σ2 (the beam-broadened contribution to the variance),

which we will consider here to be the standard deviation of σ2. Here, u is the large

scale wind speed, and θ1/2(1) is the one-way half-power half-width of the polar diagram.

Since σ2
t = σ2

e − σ2, and ε = 1.7(σ2
t /TB), we may multiply through by 1.7/TB and

take errors of each term, square and add to give (δε)2 = (δε2)
2 + (δε1)

2, where δε2 is

the error in the turbulence strength associated with estimation of the experimental

spectral width, and δε1 is the error associated with the beam-broadened term, as

discussed above, therefore:

δε1 = 1.7 (4 ln 2)−1 T−1B θ21/2(1)2uδu. (2.12)

We will call this the �rst error term, since we have discussed it �rst. For a half-

power one-way half-width of 2.75◦, and assuming a Brunt-Vaisala period (TB) of 10

mins., as for the Harrow radar, gives δε1 = 4.71 × 10−6uδu. For Walsingham, δε1 =

3.29× 10−6uδu. We will discuss application of this formula shortly, but �rst we will

develop an expression for the error associated with determination of the experimental

spectral width, denoted as δε2 above.

2.4.3 Errors in estimation of spectral width

An alternative reason for errors may relate to the accuracy with which the experi-

mental spectral width can be determined. There are various reasons why this width

may be in error. Noise naturally contributes, and its e�ect is worse if the �width� of

the spectrum is determined by using a weighted integral for the variance. A superior
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Height
(km)

Speed
( m/s)

δu
(m/s)

δε1
×10−4

(η = 1)

δε2
×10−4

(η = 1)

δεtotal
×10−4

(η = 1)

δεexperiment
×10−4

∆ε
×10−4

ε
×10−4

1-5 5-10 1.92 0.67 1.3 1.46 2.03 1.41 1.9
10-15 2.25 1.32 2.1 2.48 2.93 1.55 1.8
15-20 2.81 2.35 3.0 3.81 4.47 2.34 1.5

5-10 5-10 1.92 0.67 1.3 1.46 3.22 2.87 2.4
10-15 2.25 1.32 2.1 2.48 3.50 2.47 2.1
15-20 2.86 2.35 3.0 3.81 5.16 3.48 1.6
20-25 3.50 3.7 3.8 5.3 7.40 5.16 1.6

Table 2.1: Table of various parameters associated with the mean and errors involved
with calculation of the strength of turbulence for the Harrow radar. The term δu
refers to the value of the 68th percentile of the RMS �uctuations in the total mean
wind (see Figure 2.11). See the text for the meaning of the terms δε1 and δε2. δεtotal
represents the square-root of the sum of the squares of terms δε1 and δε2. δεexperiment
was taken from Figure 2.10, using the standard deviations provided there. ∆ε is
calculated as

√
(δεexperiment)2 − (δεtotal)2. The �nal column shows the mean values,

also taken from Figure 2.10.

method is spectral �tting, as discussed earlier. Unfortunately, if the spectral width is

over-estimated (as in the case of using weighted spectral moments), the percentage of

negative estimates of will be reduced, giving the misleading appearance of improved

data.

In the case of no noise, the width is still limited by the sampling rate of the data.

The spectral resolution will be proportional to the frequency resolution, which will

be proportional to the inverse of the data length.

For convenience, we will write that the error in the determination of the experi-

mental value of σe, determined by whatever means, is proportional to 1/τ , where τ is

the data-length of the sample. We will begin the derivation in terms of the measured

spectral half-power half-width fh, which has units of Hz, making it compatible with

1/τ . The quantity σe is of course related to fh by σe = (λ/2)fh/
√

2 ln 2, where λ is

the radar wavelength. We will let the error in fh, δfh, be written as η/τ . In the best

case, η will be of the order of unity, but it may be several times higher, especially if

σe is found by weighted moments, or if noise levels are high.

The measured spectral half-power half-width is therefore fh ± δfh, but the quan-
tity that is needed for calculation of ε is f 2

h , and the act of squaring increases

the error for large values of fh (corresponding to large wind speeds) substantially,

since δ(fh)
2 = 2fhδfh = 2fhη/τ . Using σe = (λ/2) fh/

√
2 ln 2 then gives δ(σ2

e) =

(λ/2)2 2fhη/(τ2 ln 2), or
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Height
km

Speed
( m/s)

δu
(m/s)

δε1
×10−4

(η = 1)

δε2
×10−4

(η = 1)

δεtotal
×10−4

(η = 1)

δεexperiment
×10−4

∆ε
×10−4

ε
×10−4

1-5 5-10 2.09 0.52 0.98 1.11 2.60 2.35 2.3
10-15 2.21 0.91 1.63 1.87 2.80 2.08 2.1
15-20 2.38 1.37 2.28 2.66 4.13 3.14 1.7
20-25 2.79 2.07 2.93 3.59 5.28 3.87 0.67

5-10 5-10 1.99 0.48 0.98 1.09 2.53 2.28 2.4
10-15 2.38 0.98 1.63 1.90 3.26 2.65 2.6
15-20 2.72 1.56 2.28 2.76 5.05 4.23 2.4
20-25 3.00 2.22 2.93 3.67 6.95 5.90 2.5

Table 2.2: Table of various parameters associated with the mean and errors involved
with calculation of the strength of turbulence for the Walsingham radar. The term
δu refers to the value of the 68th percentile of the RMS �uctuations in the total mean
wind (see Figure 2.11). See the text for the meaning of the terms δε1 and δε2. δεtotal
represents the square-root of the sum of the squares of terms δε1 and δε2. δεexperiment
was taken from Figure 2.10, using the standard deviations provided there. ∆ε is
calculated as

√
(δεexperiment)2 − (δεtotal)2. The �nal column shows the mean values,

also taken from �gure 2.10.

δ(σ2
e) = λσeη/τ

√
2 ln 2. (2.13)

At this stage σe is the �true� experimental signal standard deviation, but since

this will be similar to the beam-broadened value, we may replace it with σ =√
(4 ln 2)−1θ1/2(1)u. We will also convert to an error in ε by multiplying by 1.7/TB

just as we did in equation (18), to give:

δε2 =
1.7(

2
√

2
)

ln 2

[
θ1/2(1)ληu

τTB

]
. (2.14)

For the Harrow radar, with λ = 300/40.68 = 7.37m , θ1/2(1)= 2.75◦, and τ = 30s, this

gives

δε2 = 1.704× 10−5ηu. (2.15)

For Walsingham the constant is 1.303×10−5.

2.4.4 Speci�c applications of the error formulae

Values for the error terms discussed above, compared to experimental errors, are

shown in Tables 2.1 and 2.2, where we have assumed η=1. In the Harrow case, we
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have assumed identical values for measured variances for 1-5 km and 5-10 km, since

the results at the two di�erent heights were very similar. In Table 2.2, we have treated

the heights independently, but as can be seen the data sets gave very similar variances

and we could have treated these as identical too.

Both error terms are important, and comparable, although the digitization error

tends to dominate. However, this assumes a data-length of 30 s. If a radar uses a data

length of 10 s (as is quite common), the second term increase 3 fold, vastly degrading

the radar performance for measurement of turbulence strengths. If η is greater than

1, as is likely (and especially likely if weighted moments are used), the errors (δε2)

increase even more.

In Tables 2.1 and 2.2, ∆ε is calculated as
√

(δεexperiment)2 − (δεtotal)2. If it is

true that η = 1, then ∆ε represents the true natural variability of the background

turbulence strength. This is likely an upper limit. Alternatively, we could assume

η is an error, in which case the values δεexperiment and δε(2) can be used to place

limits on η. Given that the ratio δεexperiment/δε(2) lies between typically 1.5 and 3,

it suggests η is less than 1.7. The truth is somewhere between 1 and this value,

with the relative contributions to the experimental error being distributed between a

contribution for δε(2) and a true natural variability. Variations in TB can also have

modest contributions to the error.

The mean values of the energy dissipation rates are shown as the last columns

of the tables. Typical values are of the order of 1-3×10−4 W/kg. These values

are quite consistent with extensive in-situ data presented by Lee et al. (1988) and

summarized in Hocking and Mu, (1997). It needs to be highlighted that these are

average background values � turbulence is characterized by rarer but intense bursts

of energy (as shown in Figure 2.2), which makes the distributions asymmetric, and

radars are well suited for studying such events. However, this does not negate our

estimates of the background average levels when such bursts are not present.
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Chapter 3

Climatology of the Brunt-Vaisala

Frequency

The Brunt-Vaisala frequency is the frequency at which a vertically displaced air parcel

will tend to oscillate about its initial position. This requires that the atmosphere is

statically stable (or stably strati�ed). The vertically displaced particle experiences a

vertical acceleration which is given by the following equation (Holton, 1992):

d2

dt2
(δz) = g

δ ln θp
δz

(δz) , (3.1)

where δz is the displacement, g the gravity acceleration, and θp the potential tem-

perature (see Equation (1.7)). Equation (3.1) is the equation of harmonic motion.

Therefore, the frequency of the motion is given by (see Appendix D):

ω2
B = g

d ln θp
dz

, (3.2)

where ωB is the Brunt-Vaisala frequency.

The Brunt-Vaisala frequency is a measure of atmospheric stability. If ω2
B > 0,

the atmosphere is stable, since the acceleration is toward the equilibrium position.

If ω2
B = 0, the atmosphere is neutral and if ω2

B < 0, the atmosphere is unstable,

which means that the air parcel displacement will increase exponentially with height

(Holton, 1992). The Brunt-Vaisala frequency is a key parameter in estimating the

turbulent energy dissipation rate, e (see equation (1.32)). For average tropospheric

conditions, ωB ∼ 0.01 s−1 and it changes to about 0.02 s−1 in the stratosphere (e.g.

Fairall et al., 1991; Kantha and Hocking, 2011). We have used the typical value of

ωB (0.01 s−1) in this work. However, in this chapter we will look at the variations of

ωB during di�erent conditions. Note that we will mostly focus on measurements in
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the troposphere, since it is the primary region of interest.

3.1 Sample Measurements of the Brunt-Vaisala Fre-

quency

Using Equation (3.2), ωB was estimated from radiosonde data which was measured at

the Walsingham and Harrow radar sites. The results are shown in Figures 3.1 and 3.2.

Figure 3.1(a) is the vertical pro�le of ω2
B with the resolution of 40 m at Walsingham

for March 2007. Note that the transition from troposphere to stratosphere is obvious

as ω2
B increases from the typical value of 10−4 Hz2 below 10 km to approximately

4 × 10−4 Hz2 above 10 km. The negative values of ω2
B are indicative of instability

in the atmosphere. It can be seen that most of the time, the atmosphere is stable

(ω2
B > 0). This is because any unstable regions that develop are quickly stabilized by

convective overturning (Holton, 1992). The vertical pro�le of temperature in Figure

3.1(b) shows that temperature is increasing with height from the surface to 2 km

and decreasing from 2 to about 11 km at the rate (lapse rate) of approximately 6◦

C/km. In the atmosphere, if a parcel of air warms (expands) or cools (compresses),

with no interchange of heat with its environment, the process is called adiabatic. The

rate of adiabatic cooling or warming is called adiabatic dry lapse rate, which is about

10◦ C/km for unsaturated air (e.g. Ahrens, 2000). Therefore, because the lapse rate

at Walsingham is smaller than dry adiabatic lapse rate, we can conclude that the

troposphere is statically stable.

Figure 3.2 shows the vertical pro�les of ω2
B and temperature at Harrow in June

2007. The results are similar to the measurement results at Walsingham (Figure 3.1).

However, the percent of negative ω2
B is greater at Harrow. This may be due to the

fact that during summer (June), instability can increase due to convection. Another

possible reason could be the higher resolution of measurements (15 m) in this case.

3.2 Analysis of the Brunt-Vaisala Frequency in the

Troposphere

In this section, we will concentrate on the analysis of ω2
B in the troposphere. Figure

3.3 shows the distribution and vertical pro�le of ω2
B in the troposphere. The data

were measured at Walsingham on March 3, 2007 and have a height resolution of 40 m.

Figure 3.3(a) shows the distribution of ω2
B. Each bin has a width of 10−4 with centers
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Figure 3.1: The vertical pro�les of (a) the Brunt-Vaisala frequency squared, ω2
B and

(b) temperature measured on March 2, 2007 at Walsingham. The resolution is 40 m.
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Figure 3.2: The vertical pro�les of (a) the Brunt-Vaisala frequency squared, ω2
B and

(b) temperature measured on June 26, 2007 at Harrow. The resolution is 15 m.
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at 1×10−4, 2×10−4 Hz2 etc. It can be seen that 47% of the estimated Brunt-Vaisala

frequencies have values of 10−4 Hz2 within ±0.5×10−4 Hz2. The percentage increases

to 80% if we consider ω2
B with values of 10−4±(1.5×10−4) Hz2. The vertical pro�le of

ω2
B in Figure 3.3(b) also shows that the typical value of ω2

B is around 10−4 Hz2 below

10 km. Note that below 2 km, the value of ω2
B increases to a maximum of 1.7× 10−3

Hz2. This may be due to the temperature inversion (increase of temperature with

height in the troposphere) below 2 km, since the atmosphere is very stable during the

inversion. The higher values of ω2
B below 2 km can a�ect the average value of ω2

B.

The average of ω2
B below 10 km is 1.6× 10−4 Hz2. However if do not include values

below 2 km, the average changes to 1.2 × 10−4 Hz2. Figures 3.3(c) and 3.3(d) are

the same as Figures 3.3(a) and 3.3(b), except for the resolution which has changed

to 120 m. This will smooth out the vertical pro�le of ω2
B and slightly changes the

percentage in which ω2
B is within ±0.5 × 10−4 Hz2 to 48%. Figure 3.4 presents the

distribution and vertical pro�le of ω2
B measured on June 23, 2007 at Harrow. The

results are similar to those in Figure 3.3. Note that the resolution (15 m) is higher at

Harrow (Figures 3.4(a) and 3.4(b)). However, the data are smoothed to a resolution

of 120 m in Figures 3.4(c) and 3.4(d). The distributions of ω2
B at Harrow shows that

42% and 80% of data with the resolution of 15 m, and 47% and 84% of data with the

resolution of 120 m are within ±0.5× 10−4 and ±1.5× 10−4 Hz2 respectively.

3.3 Variations of the Brunt-Vaisala Frequency in the

Troposphere

In order to study the climatology of the Brunt-Vaisala frequency, distributions of

the Brunt-Vaisala squared, ω2
B were determined for di�erent days and months during

February, March, June and July 2007 at Walsingham and Harrow. Then, the percent-

ages that ω2
B values are within (1±0.5)×10−4 , (1±1.5)×10−4 and (0.25−4)×10−4

Hz2 were calculated. In addition to that, measurement resolutions, averages and me-

dians were estimated. The results for Walsingham and Harrow are shown in Tables

3.1 and 3.2 respectively. It can be seen that in general, measurements mostly are

within [1± 0.5]× 10−4 Hz2. On average, the mean value and median of ω2
B is about

1.65 × 10−4and 1.26 × 10−4 Hz2 respectively. Therefore, using the value of 10−4 Hz

for ω2
B in our calculation is reasonable.
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Figure 3.3: (a) The distribution and (b) the vertical pro�le of the Brunt-Vaisala
frequency squared, ω2

B measured on March 2, 2007 at Walsingham with a resolution
of 40 m. (c) and (d) the same as (a) and (b), but data have been smoothed to
resolution of 120 m.
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Figure 3.4: (a) The distribution and (b) the vertical pro�le of the Brunt-Vaisala
frequency squared, ω2

B measured on June 26, 2007 at Harrow with a resolution of 15
m. (c) and (d) the same as (a) and (b), but data have been smoothed to resolution
of 120 m.
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ω2
B within

[1±0.5]×
10−4

(Hz2) %

within
[1±1.5]×

10−4

(Hz2) %

within
[0.25− 4]×
10−4 (Hz2)

%

resolution
(m)

mean
×10−4

(Hz2)

median
×10−4

(Hz2)

Feb 25 33 74 73 36 2.01 1.35
Feb 26 40 83 76 30 1.53 1.02
Feb 27 43 78 86 44 1.86 1.25
Feb 28 39 73 82 27 1.98 1.45
Mar 1 30 76 68 28 1.80 1.09
Mar 2 47 80 80 40 1.64 1.14
Mar 3 33 70 72 38 2.24 1.42
Mar 4 38 69 81 44 2.21 1.58

Table 3.1: Statistical studies of ω2
B at Walsingham in February and March 2007, dur-

ing evening hours. Note that the third column assumes an asymmetric distribution.

ω2
B within

[1±0.5]×
10−4

(Hz2) %

within
[1±1.5]×

10−4

(Hz2) %

within
[0.25− 4]×
10−4 (Hz2)

%

resolution
(m)

mean
×10−4

(Hz2)

median
×10−4

(Hz2)

Jun 23 27 66 62 14 1.01 1.23
Jun 26 39 80 70 16 1.30 1.21
Jun 27 20 71 66 26 1.08 1.29
Jun 28 12 76 62 21 1.57 1.57
Jun 29 27 80 59 23 1.86 1.24
Jul 3 24 82 64 25 1.64 0.98
Jul 4 25 78 64 22 1.08 1.06

Table 3.2: Statistical studies of ω2
B at Harrow in June and July 2007, during morning

hours. Note that the third column assumes an asymmetric distribution.

3.4 Conclusion of the Brunt-Vaisala Frequency Study

The estimation of the Brunt-Vaisala frequency, ωB is needed for calculation of the

turbulent energy dissipation rate, ε. ωB is related to ε through ε = CωBσ
2
t , where C is

a constant and σ2
t is the spectral width. We discussed extensively about σ2

t and errors

associated with this parameter in Chapters 2 and 3, and we examined the variation

of ωB in the troposphere in this chapter. In this thesis, we have used ωB = 10−2 Hz

for calculation of ε. It may be seen that our studies in this chapter have shown that

the error due to variation of ωB will be no worse than about a factor of 2 (the fourth

column in Tables 3.1 and 3.2). In terms of other errors associated with ε, a factor of

2 is not considered as large for atmospheric turbulence.
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Chapter 4

Comparisons of Energy Dissipation

Rates Measured by Radar and

Aircraft

In-situ measurements obtained from probes mounted on research and commercial

aircraft can be used to characterize turbulence in the lower and middle atmosphere.

It is the aim of this chapter to compare radar-estimated energy dissipation rates

by comparing them with aircraft measurements. Rather than try and compare the

data on a point-by-point basis, which is notoriously di�cult for turbulence due to

its inherent variability, we collect a large number of data sets and compare the two

techniques in a statistical sense. The structure function method has been used to

extract turbulent energy dissipation rate from wind data measured by Twin Otter

aircraft. In addition, energy dissipation rates, ε measured by commercial aircraft

were estimated during �ight inside the aircraft, and spectral analysis was used to

extract ε from wind speeds. The details of measurement techniques and methods

mentioned above have been given in Chapter 2. In this chapter, we concentrate on

the analysis of aircraft measurements and comparisons of di�erent methods.

4.1 Twin Otter Data Processing

The aircraft measurements were obtained by Twin Otter aircraft during the Border

and Air Quality and Meteorology Study (BAQS-Met) campaign conducted by a col-

laboration of university and government researchers (e.g. He et al., 2011) in June

2007. The aircraft was �own over Harrow in Southwestern Ontario. The three levels
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Flight level Date Altitude
(km)

Duration
(min)

Aircraft
speed
(m/s)

Flight
distance
(km)

703 23-06-2007 1.4 46 68 188
709 26-06-2007 0.5 53 64 205
713a 27-06-2007 0.5 19 64 73

Table 4.1: Summary of level �ight segments of Twin Otter aircraft.

of �ight segments selected for the analysis are summarized in Table 4.1.

In order to estimate the structure function and energy spectrum (see sections

1.6.11.1 and 1.4), the �rst step is to �nd uL, the horizontal velocity component along

the direction of the �ight path (longitudinal), uN the horizontal velocity component

normal to the �ight path (transverse), and w, the vertical velocity.

These relate to the geographic components through the following equations (Frehlich

and Sharman, 2010):

uL = uEast sin Ψ + uNorth cos Ψ, (4.1)

uN = uEast cos Ψ− uNorth sin Ψ,

where uEast and uNorth are the east and north velocity components and Ψ is the

aircraft heading.

In order to estimate the energy dissipation rate, e the second-order structure

functions were calculated from time series of velocity as:

DL (r) = [uL(t+ r/Va)− uL(t)]2, (4.2)

DN (r) = [uN(t+ r/Va)− uN(t)]2,

DW (r) = [uw(t+ r/Va)− uw(t)]2,

where DL, DN and DW are the parallel, normal and vertical components of the

structure function respectively. Va is the aircraft speed and r the separation distance.

Assuming isotropic turbulence, ε can be determined from Equations (1.43) and (1.44).

Figure 4.1 shows the estimated structure functions of three components of wind as

a function of r for the �ight segment of 709. Structure functions were calculated for

approximately 90-second intervals, representing 3000 data points per interval.

In Figure 4.1, there are two regions with linear slopes. The �rst region occurs at
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Figure 4.1: Structure functions from the �ight segment of 709 as a function of sep-
aration distance. The dashed, dotted and solid lines represent the vertical, normal
and longitudinal wind components respectively. The dotted-dashed line shows r2/3.
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scales smaller than 100 m in which the structure functions show power-law exponents

higher than the Kolmogorov 2/3 exponent. This is not due to the short duration of

segments, since we can see this behavior even in longer segments. This is also not

due to viscosity. The viscous range occurs at scales smaller than approximately a few

millimeters. Note that at this range, DL, DN and DW are similar in magnitude and

follow the same shape. However, they deviate at larger scales. This may be due to

the fact that larger scale motions (buoyancy e�ects) tend to suppress vertical motions

(anisotropic turbulence). The plateau shape at larger scale is expected for separation

distances much greater than the largest eddies (Wroblewski et al. 2010) and clearly

shows separation of scales. It can be seen that the plateau occurs at approximately

1500, 1000 and 300 m for DL, DN and DW respectively in Figure 4.1. These values

can be considered as indirect measures of largest scale eddies (buoyancy scales). The

second region with the linear slope occurs at intermediate scales (between 100 m

and buoyancy scale) and has a slope of 2/3 (Kolmogorov 2/3 law). Therefore, we

can assume that this region is associated with isotropic turbulence. We will use this

region for calculating the energy dissipation rate, and justify this assumption further

shortly.

The structure functions in �gure 4.2 show a similar pattern to those in Figure 4.1.

The Kolmogorov region occurs at scales between 100 to 400 m. A notable feature that

can be seen in Figure 4.2 at larger scales is that the slope increases signi�cantly above

the Kolmogorov range. This could be due to the aircraft trajectory e�ect. Lovejoy

et al. (2004) showed that structure functions can be a�ected by aircraft trajectories

at larger scales, since the aircraft no longer smooths out altitude �uctuations. How-

ever, Wroblewski et al. (2010) showed that measurements at sub-kilometer scales are

more likely contaminated by trajectory e�ects. The same authors also suggested that

the deviation from the Kolmogorov scaling exponent could be a transition between

smaller-scale turbulence, adjusting to larger scales. Strong anisotropy can also a�ect

the scaling exponent of 2/3. Another possible reason is bursts of gravity waves into

turbulence which may inject an additional energy to smaller scales (e.g. Yague et al.,

2006) leading to deviation of the structure function slope from the isotropic slope.

An alternative method for estimating energy dissipation rate, ε, employs spectral

analysis. Assuming turbulence is isotropic, e can be determined by the Kolmogorov

-5/3 law given by Equation (1.15). Figure 4.3(a) shows a vertical velocity energy

spectrum and Figure 4.3(b) shows the structure function for the same set of data used

in Figure 4.3(a). The dotted-dashed lines in �gure 4.3(a) and 4.3(b) corresponds to

r−5/3 and r2/3 respectively. Based on Kolmogorov laws, the spectrum of �uctuations
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Figure 4.2: The parallel structure function from the �ight segment of 709 as a function
of separation distance. The vertical dashed lines show the beginning and end of
Kolmogorov slope.
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and structure function should follow the -5/3 and 2/3 slopes respectively for isotropic

turbulent scales. It can be seen from Figure 4.3(a) that the spectrum is inherently

noisier than structure function which makes it di�cult to �nd the isotropic regions. In

addition to this, structure functions can be calculated in a more straight forward way.

They can be applied to any length of data and there is no need to remove the mean

velocity. Another advantage of structure functions is the direct connection between

the `scales' and the result of measurements (Lindborg, 1999) and the fact that it is

easier to �nd the transition from Kolmogorov scaling. Thus, we use the structure

function method for this study. However, the spectrum does show clearly the impact

of noise. As can be seen, the spectrum to the right of the vertical dashed line tends

to �atten, and also there are some clear peaks. These e�ects are due to noise and

instrument impact, concluding that no useful data can be expected at inverse scales

greater than 6×10−2 m−1 (vertical dashed line in Figure 4.3(a)) or physical scales less

than about 16 m. A scale of 16 m is also shown in Figure 4.3(b). From Figure 4.3(b),

a 2/3 law does not settle in until a scale of ∼ 100 m, so even the region between 16

and 100 m seems impacted by noise and instrument e�ects. Therefore, we conclude

that no useful information can be obtained from these in-situ measurements at scales

6100 m. This will be important for our subsequent analysis.

Using Equations (1.43) and (1.44), values of energy dissipation rate were found

using scales > 100 (m). The results are summarized in Figure 4.5. Each estimated

energy dissipation rate, ε, corresponds to 90 seconds of measurements. These short

time estimates can provide us with information on local behavior of turbulence. The

variations seen in time series of ε may be due to the intermittency or bursting nature

of turbulence. Turbulence is intermittent both temporally and spatially in the at-

mosphere and it often occurs in thin layers which are separated by regions of weakly

turbulent or semi-laminar (Hocking, 1999). It can also be seen that in general, ε

values cover a range of order of magnitude between 10−3 and 10−7 W/kg. However,

only values greater than 10−4 W/kg are reliable.

An ε value of 10−4 W/kg is associated with the buoyancy scale, LB (the scale at

which the transition between inertial subrange and buoyancy ranges begins) of about

100 m. This can be estimated through the following equation:

LB ≈ (2π/0.62)ε1/2ω
−3/2
B , (4.3)

where ωB is the Brunt-Vaisala frequency (see Chapter 4 for more detail). As we have

discussed, structure functions are unreliable at scales 6 100 m, so if the buoyancy

scale is less than 100 m, it is impossible to see a Kolmogorov spectrum This is possibly
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Structure functions at 300 Percentage of
structure functions

> 0.2 m2s−2

Percentage of
structure functions
> 0.2 m2s−2 that
have a 2/3 slope

Vertical 27 % 38 %
Longitudinal 33 % 50 %

Normal 32 % 20 %

Table 4.2: The percentage of reliable measurements of energy dissipation rate using
structure function method.

due to noise or in�uence of anisotropy. In the case of anisotropy, eddies have hori-

zontal scales much greater than their vertical scales. Therefore, horizontal scales may

be measured when vertical ones can not. This can a�ect the behavior of structure

function. Hence, we will only consider ε values greater than 10−4 W/kg to avoid the

e�ect of anisotropy and noise.

One should note that the missing data in Figure 4.5 are due to the fact that the

structure functions did not exhibit (e.g. Figure 4.4) the expected r2/3 associated with

the inertial subrange. We noticed that only few percentage of measurements show

the 2/3 scaling exponent.

As an exercise, we calculated the structure function at 300 m for 3 components

of wind and determined the percentage that structure functions are greater than

0.2 m2s−2 (corresponding to the energy dissipation of 10−4 W/kg). This estimation

crudely allows us to only examine cases of large ε (ε > 10−4 ).

We then found the percentage of values for which the structure functions are both

larger than 0.2 m2s−2 and have a 2/3 slope. The results are shown in Table 4.2. It

is seen that typically less than half of the measurable structure functions more than

0.2 m2s−2, exhibit a Kolmogorov spectrum.

4.2 Commercial Aircraft data analysis

The data used for the analysis in this section are measured by Delta airline aircraft

over Detroit. The algorithm used to estimate energy dissipation rate, ε on board was

developed by the National Center for Atmospheric Research (NCAR). The details

of this algorithm are given in Chapter 2. In general, spectral analysis was used to

estimate and report ε values. twelve spectra were produced per minute and ε1/3 was

estimated from each spectrum. In order to save communication costs, ε values were
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Figure 4.3: (a) Energy spectrum of vertical wind as function of wave number (k) for
�ight segment of 713a. The dotted-dashed line shows r−5/3. (b) Structure function
of normal wind as a function of separation (r) for the same data in (a). The dotted-
dashed line shows r2/3. In both �gures, vertical dashed lines represent the noise cut-o�
scale.
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Figure 4.4: Structure function of longitudinal wind as a function of separation (r) for
�ight segment of 713a. The dotted-dashed line shows r2/3.
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Figure 4.5: Time series of the energy dissipation rate, ε, estimated using structure
functions for the �ight segment of (a) 709, (b) 713a and (c) 703.
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binned from 0 to 0.02, 0.02 to 0.04 (W/kg)1/3 etc., and reported to the operational

users. The reported zero values are not necessarily zero, but they are below the

threshold value (e.g., �moderate� or �light to moderate�). Figure 4.6(a) shows the

estimated energy dissipation rates, ε from commercial aircraft as a function of mea-

surement event number rather than time, since there is more than one measurement

per minute and we are mostly interested in the range of measured ε. The graph covers

all heights from 150 m to 12.5 km (see �gure 4.7(a)) for June 2009. Figure 4.6(a)

also reveals that most of the measurements are zero or very small, correspond to

weak turbulence. Occasionally they become very large which corresponds to intense

turbulence. Figure 4.6(b) is the distribution of data used in Figure 4.6(a), however,

zeros are removed. It can be seen that the majority of estimated ε have an order of

magnitude that changes approximately from 10−5 to 10−3 W/kg.

Figure 4.7(b) shows the vertical pro�le of percentages of �zero ε� measured by

aircraft during June, 2009. Note that each measurement corresponds to an average

over 1 km. This means that the percentage at 1 km is the average of zero percentages

from 0.5 to 1.5 km etc. Zeros are associated with very weak or light turbulence and

Figure 4.7(b) shows that the percentage of zeros can exceed 90 %, indicating that

intermittency is a common characteristic of turbulence in the atmosphere which is

caused by sporadic and episodic instabilities (e.g. Mahrt, 1989). In order to com-

pare the aircraft-estimated ε during di�erent periods of 2009 and 2010, we produced

cumulative histograms of ε data for all heights (from 150 m to 12.5 km) using the

probability that the abscissa is exceeded. The results are shown in Figure 4.8. It can

be seen that the probability that the measured ε exceeds 10−6 is 100 % dropping to

approximately 10 % for 10−3 W/kg and to about 1 % for 10−2 W/kg.

4.3 Comparisons of Aircraft and Radar Measure-

ments

In Figure 4.9, we show the cumulative distributions of estimated energy dissipation

rate, e, using commercial aircraft, Twin Otter aircraft and our radar at Harrow. Data

are taken at di�erent times, but all were near Harrow. Note that the least positive

value obtained by radar have an order of 10−8 W/kg and the minimum non-zero values

of e measured by commercial and Twin Otter aircraft have an order of 10−6 and 10−8

W/kg respectively. In order to compare these measurements properly, distributions

in Figure 4.9 have been produced only for ε values of greater than 10−6 W/kg. We
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Figure 4.8: Inverse cumulative distributions of energy dissipation rates measured by
Delta airline during the periods of January-June 2009, October-December 2009 and
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will discuss about the e�ect of zeros and negatives in Figure 4.10.

The commercial aircraft data were measured by Delta airlines at Detroit over a

radius of 60 km from the Harrow radar and it covers a range of altitude between 150

m to 12.5 km. The Twin Otter measurements were performed at Harrow over the 0.5-

1.5 km altitude range. For the purposes of comparisons, we will concentrate on the

period of January-June 2009 since measurements of turbulence by radar are available

for all these months. One should note that the aircraft data are computed during

each minute and 1.5 minutes for commercial and Twin Otter aircraft respectively.

However, the radar data are hourly averages. We need to use hourly averages in

order to provide a mean wind pro�le with su�cient precision so that we can properly

remove beam-broadening e�ects from radar spectral widths.

It can be seen from Figure 4.9 that measurements of energy dissipation rates by

aircraft agree well with the radar measurements for the order of magnitudes of 10−6 to

approximately 10−4 W/kg. However, the probability that the radar measures larger

values of turbulence decreases more rapidly beyond this point. For example the chance

of exceeding ε = 10−3 W/kg is about 1 % for the radar, whereas the chances increase

to about 12 % and 7 % for Delta and Twin Otter aircraft respectively. This is possibly

due to the fact that hourly averages of radar data were used. Therefore, larger values

get averaged out to lower values over the course of an hour. Furthermore, the method

that has been used to estimate ε from radar data can a�ect the results. If the interest

is only in the large values (the largest values can cause severe aircraft damage), we

can use an interesting approach. We can assume that beam-broadening e�ect is zero

since for the largest values of turbulence the e�ect of beam-broadening is minor. This

allows us to use higher percentage of the data, since we do not need to know the

beam-broadened spectral width. We can then show the measured (instantaneous)

spectral widths. This will shift up the radar cumulative distribution (solid line in

Figure 4.9) to the higher percentages (dotted line in Figure 4.9). For example, the

probability that ε exceeds a value of 10−3 W/kg increases to about 7 % compared to

1 % when we removed the beam-broadening e�ects.

Figure 4.10 shows the cumulative distribution of aircraft and radar data when

zero and �negative� values of energy dissipation rates are included. These negative

and zero values are associated with very weak turbulence. However, we are not

aware of the exact values of ε associated with these regions of weak turbulence. This

makes the comparisons di�cult and probably there is not a proper way to do it.

However, we are interested in understanding how weak turbulence would a�ect our

results. Therefore, we assumed that all the negative and zero values and all the values
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Figure 4.9: Inverse cumulative distributions of energy dissipation rates measured by
di�erent techniques. The solid and dotted lines represent measured energy dissipation
rate by the Harrow radar for cases when the beam-broadening e�ects are removed and
it is assumed that the beam-broadening e�ects are zero, respectively. The solid lines
with circle and square marks represent Delta and Twin Otter aircraft, respectively.
The Harrow and Delta data were measured during January-June 2009, and Twin
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Figure 4.10: Inverse cumulative distributions of energy dissipation rates measured by
di�erent techniques. The solid line and lines with circle and square marks represent
the Harrow, Delta and Twin Otter aircraft data including values smaller than 10−6

respectively), negatives and zeros. The Harrow and Delta data were measured during
January-June 2009 and Twin Otter data were measured in June 2007. Note that the
Delta airline data are mostly for 8-10 km, while the Twin Otter data are for 0.5-1.5
km



87

smaller than 10−6 W/kg have an order of magnitude of 10−7 W/kg. This is of course

a crude approximation, but it enables us to display the e�ects of zeros and negatives.

The results in the �gure show that at smaller values of energy dissipation rate, the

probability for Delta aircraft drops to a maximum of 25 % compared to the radar.

Therefore, there is a smaller chance for commercial aircraft to measure ε values below

approximately 10−4 W/kg. This is probably due to the fact that the radar beam and

pulse cover a volume of typically few km across, and 0.5 km deep. Therefore, all

patches of turbulence produce radar signal. On the other hand, the aircraft must

�y through the turbulent patch to make a measurement. The percentage did not

drop for Twin Otter data, possibly because measurements are limited to about 2

hours at lower altitudes (where turbulence is less intermittent) and only few small

values of energy dissipation rate were measured. At values greater than about 10−4

W/kg, the probability that aircraft measure larger values of ε is greater than radar.

Hence, including weak values did not a�ect the distributions at larger values. In

general, the energy dissipation rates in Figures 4.9-4.10 are consistent with �gure 14

of Hocking and Mu (1997) in which the distributions of radar and in-situ data have

been presented.
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Chapter 5

Discussion, Conclusions and

Suggestions for Future Work

5.1 Discussion

This research was focused on studying the factors that a�ect turbulence measure-

ments in the troposphere using radars. The data used were collected with the Wals-

ingham, Harrow, and Negro Creek radars located in Southwestern Ontario. In order

to estimate energy dissipation rate, the spectral-width method was applied to radar

spectra. The spectral-width method utilizes the di�erence between the measured

spectral-width and beam-broadening width (non-turbulent). The main body of this

research can be divided into 4 parts: (1) the study of possible reasons for negative

turbulence strengths as a result of using the spectral-width method; (2) developing

a model for more reliable estimations of beam-broadening widths; (3) calculating of

errors in determination of turbulence; (4) verifying the radar-estimated turbulence

by comparing to high-resolution in-situ measurements.

It is clear from this study that negative values for ε are not only likely, but are ex-

pected and are mainly caused by errors in estimation of experimental and theoretical

(beam-broadening) width. In regard to reducing errors related to experimental width

measurements, several possibilities exist. Clearly, longer data sets are advisable, but

if they become too long, the advantage is o�set by the fact that the turbulent scatter-

ers may physically evolve during the sampling time. A data-length of 30-40 s is about

optimum. It is also possible to reduce the errors by using higher radar frequencies. In

order to reduce the beam-broadening e�ect, it is necessary to reduce δu in Equation

(2.12). This could be achieved if the radar could measure both components of the
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wind at the location of the turbulence simultaneously. With a Doppler system, this

is not feasible, since the beam used to measure one component is physically distinct

from the orthogonal partner(s). In our analysis, we have represented the mean wind

by hourly averaged pro�les. There may be advantageous if the wind measured at

the time of the turbulence measurement were used, but since at least one component

of the wind �eld is measured some distance away, this does not help a lot. If the

beams are tilted at 10.9◦ o�-vertical, then at an altitude of 5 km, each is approx-

imately 1 km from the point immediately above the radar, and the two scattering

regions are separated by at least 1.5 km. Distances double at 10 km altitude. In

this regard, the spaced antenna method may have advantages, since it does measure

both components of the wind at the same point in space, but then the spaced an-

tenna re�ections are often dominated by specular re�ectors, making the results often

unrelated to turbulence.

However, even if shorter averaging times are used for the generation of the back-

ground wind pro�le, the experimental spectral width still seems to be the dominant

source of error, and reducing the theoretical errors (associated with beam-broadening)

without further reducing experimental errors (associated with experimental width)

has little e�ect on the overall error. Both spectral widths depend on the beam width,

so clearly use of narrower beams helps, as is well known (e.g. Hocking, 1986). Judging

from the graphs presented to date, the Negro Creek radar, with a one-way half-power

half-width of 3.3◦, represents something of an upper limit on useful beam widths for

turbulence applications. This is broadly similar to the limit suggested by Hocking

(1985, 1986), who suggested that an individual measurement of turbulence strength

is only statistically reliable with reasonable con�dence if :

σ2 > 0.3Θ2
1/2u

2 (5.1)

where Θ1/2 is the beam two-way half-power half-width and u is the mean wind. That

author also suggested that 3◦ was a reasonable upper limit for the radar half-power

half-width if the radar was to be used to measure the strength of turbulence in the

real atmosphere. Nevertheless, given that turbulence often involves bursts of severe

activity, separated in space and time by much weaker events, even radars with wider

beams can have some useful application in identi�cation and measurement of strong

events.

One important point that arises is that when forming averages or medians, both

positive and negative values of ε need to be included. The positive and negative

parts of the distribution �ow smoothly into each other, and there is no evidence
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that the negative values refer to a di�erent physical process. Indeed our theoretical

calculations suggest that negative values are expected for statistical reasons.

Therefore another point which needs to be discussed is the accuracy involved in

using positive-only estimates of turbulence. For example, some authors have chosen

to ignore negative values, and Figure 2.2 in this work presents positive�only data

(for visualization purposes only). The question arises � how much error occurs if we

ignore the negative values? In Figure 5.1, the ratio of the mean value deduced using

all data (including negatives), divided by the value deduced using positive data only,

is presented as a function of the percentage of negative values. Data from all 3 graphs

show a very similar curve. The dotted lines shows a theoretical calculation on this

ratio, calculated assuming a Gaussian distribution. We have calculated the quantity:

Z =< x > /

[
(1/
√

2π)

ˆ ∞
0

exp(−(x− < x >)2/2)dx

]
(5.2)

which gives the ratio of the overall mean to the mean < x > the quantity calculated

using only positive values, and then calculated:

P = (1/
√

2π)

ˆ 0

−∞
exp(−(x− < x >)2/2)dx (5.3)

which gives the area under the negative part of a Gaussian function with o�set < x >,

and then we have plotted the �rst against the second. The integrand is chosen so

that the total area under the curve from -∞ to ∞ is unity.

A percentage of negatives of about 33 % corresponds to an error in the mean of

a factor of 2, and a factor of 3 in error corresponds to a percentage of just over 40

%. It may seem that these are large values, but turbulence is a phenomenon with a

large dynamic range, and a factor of 2 is not considered a large amount when making

measurements with a radar. So even if the percentage of negatives is 30-40 %, using

averages with positive values only, still gives information of moderate usefulness, so

diagrams like Figure 2.3 are still of use in a qualitative sense. Studies which have

used positive-only data may be useful too, but are unreliable when the percentages

of negatives are in excess of about 35%, and certainly of little to no value when the

percentage exceeds 43 %.

One additional point must be made. The radar naturally selects regions of

strongest backscatter. Hence all our estimates of turbulence strengths are biased

to regions of strong scatter. In the upper atmosphere, turbulence can be quite weak

over much of the space, and spatially inhomogeneous. Strong burst of turbulence

can occur which will be detected by the radar, while regions of relative calm will be
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aircraft safety).
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ignored. There is little that can be done to mitigate this, and this fact needs to be

borne in mind during any interpretation.

We also studied the daily and monthly variations of the Brunt-Vaisala frequency

mainly in the troposphere. The vertical pro�les of the Brunt-Vaisala frequency,

showed that the average value of the Brunt-Vaisala frequency squared, ω2
B is 1.65 ×

10−2 Hz. In addition, the distributions of the Brunt-Vaisala frequency indicated that

it is more likely that the values of ωB = 1 × 10−2 Hz within a factor of 2 in the

troposphere.

Finally, short-time structure functions and spectral analyses were used to estimate

energy dissipation rates from the Twin Otter and commercial aircraft. Analysis of

aircraft data suggested that turbulence is intermittent in the altitude range of 0.5-

10 km, specially above 1.5 km. The aircraft-estimated energy dissipation rates were

compared to radar measurements using cumulative distributions. The comparisons

showed that there is a good agreement between radar and aircraft measurements at

lower values of energy dissipation rate (10−6 − 10−4 W/kg) when the measured zeros

by aircraft and measured negatives the radar were not included (Figure 2.11). Zero

and negative energy dissipation rates are associated with regions of weak turbulence.

When we include zeros and negatives in the cumulative distributions (Figure 4.10),

the probability that commercial aircraft measure small values of energy dissipation

rate drops 25 %. This can be explained by the fact that a radar beam cover a volume

in the atmosphere and receive signals from any small turbulent patches inside the

volume. Including the weak values of turbulence in the distributions did not a�ect

the results for the Twin Otter signi�cantly. At larger values, energy dissipation rates

are averaged out by smaller values when measurements are made by radar. This

explains why at larger values of turbulence, the probability of measurements is higher

for aircraft.

5.2 Conclusions

We have studied measurements of turbulence strengths using 3 di�erent radars, and

compared characteristics. The following conclusions result.

1. While it is well known that narrower beam-widths are preferable for turbulence

measurements, we have been able to make recommendations about the widest

beams suitable for such studies. A one-way half-power half-width for the radar

beam of less than 2.5◦ is highly desirable. Beam one-way half-power half widths

which exceed 3.5◦ are not advised for Doppler-radar turbulence studies.
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2. Negative values of the turbulent energy dissipation rate can occur, and indeed

must occur. These arise due to statistical �uctuations of the mean wind on scales

of minutes to hours, within the averaging interval. The main causes of negative

values of ε are (i) errors in determination of the spectral width and (ii) choice

of the mean wind pro�le used for calculation of the theoretical beam-broadened

width. While these factors have been discussed in the literature previously, we

have been able to develop expressions for quantifying their impact, and have

been able to quantify the e�ect with our radars.

3. The impact of scatterer anisotropy seems to be a secondary concern in estimat-

ing ε.

4. Several formulas and methods were o�ered for determination of the theoretical

spectral width, or equivalently, the variance σ2. While all were generally simi-

lar, the most accurate was a model denoted as Cc. A general computer model

(LS model) is still advised for dealing with cases of large and complicated shear.

However, the model works well in the large percentage of calculations. A pre-

viously advocated model, denoted as model N, is shown to be a reasonable

approximation to the true model, but may underestimate the true variance by

typically 15 %. A new term has been added to the model N which improves its

accuracy.

5. In calculating experimental widths, a �tting algorithm is highly advised, since

calculation of weighted second order moments can lead to overestimates, and

bias the experimental values to more positive values.

6. The daily and monthly analysis indicates that using the typical value of ωB =

1× 10−2 Hz is reasonable.

7. There is a good agreement between radar and aircraft measurements at smaller

values of energy dissipation rate when zero and negative values associated with

very weak turbulence are not included.

8. The probability that aircraft measure larger values of turbulence, agrees rea-

sonably well with radars when instantaneous values of turbulence measured

by radars (using experimental spectral width only, allows us to measure near-

instantaneous values of epsilon rather than hourly averages) are being used.

9. Regions of intense turbulence rarely occur in the atmosphere and appear as a

sudden burst of turbulence followed by regions of weak turbulence.
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5.3 Future Work

Future work may include studying the impact of using more reliable turbulence data in

forecast and climate model results. This is specially important for aviation forecasts.

In regard to application of radars in meteorology, it is interesting to study the

patterns and intensity of wind speed and turbulence during severe weather conditions,

including tornadoes.

It is also interesting to investigate the e�ects of frontal systems on turbulence.

This can be performed by looking at the locations of frontal systems on weather

maps and estimating statistical characteristics of turbulence.

One point of considerable note is that a signi�cant percentage of the spectra

and structure functions measured by aircraft, show non-Kolmogorov behavior. The

reasons for this need to be determined, and issues like the causes of the turbulence

and the stage of development (generation, steady-state and decay) need to be further

investigated.

It will also be useful to study the climatology of turbulence in places with di�erent

climatic conditions.
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Appendix A

Turbulent Energy Dissipation Rate

The turbulent energy dissipation rate, ε can be determined through the following

equation (Holmes et al., 1996):

ε = 2ν < sijsij >=

{
<
∂ui
∂xj

+
∂uj
∂xi

><
∂ui
∂xj

+
∂uj
∂xi

>

}
, (A.1)

where ν is the kinematic viscosity and sij the strain rate. Note that the repeated

indices (i and j) are summed over 1, 2 and 3. One should note that we can not

measure the turbulent energy dissipation rate in the atmosphere using Equation (A.1).

Therefore, we use spectral analysis to estimate ε in the atmosphere.

It is assumed that the turbulent energy per unit wave number at scale k, E (k) is

independent of direction, and dependent only on the scale k and the rate of transfer

ε( or the rate at which energy is dissipated to heat at the very smallest scales) within

the inertial subrange of the energy spectrum. Therefore, the following relationship

between E (k), k and ε can be written (Hocking, 2006):

E (k) ∝ εakb. (A.2)

Dimensional analysis can be used to estimate values of a and b. E (k), ε and k

have units of kinetic energy per unit mass per wave number (L3T−2), kinetic energy

per unit mass per unit time (L2T−3) and L−1 respectively. Hence, Equation (A.2)

can be rewritten as (Hocking, 2006):

L3T−2 ≡ L2a−bT−3a. (A.3)

This gives a=2/3 and b= -5/3. Therefore, the energy dissipation rate (ε) can be

estimated through the following equation (Hocking, 2006):
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E (k) = CEε
2/3k−5/3, (A.4)

where CE is a constant.

The energy dissipation rate can be also estimated using structure functions. Ac-

cording to Kolmogorov theory, the structure function of turbulent regime, D is de-

pendent only on separation r and ε. D, ε and r have units of kinetic energy per unit

mass (L2T−2), kinetic energy per unit mass per unit time (L2T−3) and L respectively.

Hence, the structure function is given by (Hocking, 2006):

D (r) = CDε
srt, (A.5)

where, CD is a constant. Dimensional analysis showed that s=2/3 and t=2/3.
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Appendix B

Spectra Forms for Velocity Measurements

There are di�erent forms of spectra that can be used for turbulence studies. A more

complex form of the spectrum is given by (Batchelor, 1953):

Φij =
E (k)

4πk4
(
k2δij − kikj

)
, (B.1)

which describes the three-dimensional cross-spectrum between the velocity compo-

nents in the � i� direction and the �j� direction, where � i or j = 1� mean the x

direction, �i or j = 2� mean the y direction and � i or j = 3� mean the z direction. In

Equation (B.1), δ is the Kronecker delta, k the wave number (k2 = k21 + k22 + k23) and

E (k), the total energy. E (k) is given by (Hocking, 1999):

E (K) = 1.53ε2/3k−5/3, (B.2)

where ε is the turbulent energy dissipation rate.

For cases of isotropic turbulence, Φij can be integrated over a shell of radius k to

give (Hocking, 1999):

Ψij (k) = 4πk2Φij (k) . (B.3)

E (k) is related to Ψij through the following equation (Hocking, 1999):

E (k) =
1

2
(Ψ11 (k) + Ψ22 (k) + Ψ33 (k)) . (B.4)

The individual Ψij (k) are di�cult to measure experimentally, since a full three-

dimensional description of the turbulent �eld in all three velocity components is

needed. If a probe moves in a straight line through a patch of turbulence, recording

the velocity components parallel to the direction of motion and then the results are

Fourier transformed, the one-dimensional form of the spectrum is obtained through
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(Hocking, 1999):

φp (k1) = α11ε
2/3|k1|−5/3. (B.5)

One should note that φp (k) is not the same as Φ11. While φp (k) is the spectral

density at k1 due to contributions of �waves� of all orientations which cross the x axis,

Φ11 (k) is the spectral density due to �waves� with phase-fronts aligned perpendicular

to the x axis. The spectrum for the velocity perpendicular to the direction of motion

is similar to Equation (B.5), however, the constant α11 will have a di�erent value.
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Appendix C

This Appendix contains a Fortran code that calculates the beam-broadened width.

subroutine bbexpres(alpha,nu,delr,R0,u0,shr,sigm2n)

c Fortran subroutine to take beam tilt, 1-way beam half-power half-width,

c pulse length, range, wind parallel to the beam, and wind shear, and

c produce the squared beam-broadened and shear-altered spectral width

c sigma^2 for the component parallel to the beam

real nu

c some constants

a0 = 0.945

b0=1.500

c0=0.030

d0=0.825

a=3.0

b=500.0

c=250.0

d=1.5

e=0.013

f=800.

g=200.

ca = cos(alpha)

sa = sin(alpha)

t1an=nu*nu/(4.0*alog(2.0))*u0*u0*ca

t2an=-1.0*a0*nu/(4.0*alog(2.0))*sa*

$ (sa*2.0*nu*R0)*shr*u0

t3an=$b0/(8.0*4.0*alog(2.0))*(2.0*sa*sa)*(2.0*R0*nu*sa*shr)*

$ (2.0*R0*nu*sa*shr)

xttt =shr*delr/sqrt(12.0)

term4a = c0*(sa*sa*ca*ca)*(abs(u0)*abs(xttt))
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term4b = d0*(sa*sa*ca*ca)*(xttt*xttt)

sigm2n = t1an+t2an+t3an+term4a+term4b

c Now apply �nal correction.

c limit correction term to prevent it blowing up.

ucrit=8.0

uref=u0

if(u0.ge.0.0.and.u0.lt.ucrit)uref=ucrit

if(u0.lt.0.0.and.u0.gt.(-1.0*ucrit))uref=-ucrit

yshr = shr*20.0/uref

ayshr = abs(yshr)

c ignore correction for small wind shears � more accurate to consider only

c the e�ect of the mean wind..

if(abs(yshr).lt.0.0015)sigm2n=t1an

if(abs(yshr).lt.0.0015)return

c FINAL CORRECTION TERM to produce model Cc.

sigm2n = sigm2n*(1.0+0.025*exp(-((sa-0.19)/0.05)**2))*

$ (1.0+a*sa**d * ( $ 0.75*(exp(-((delr-b)/c)**2)* tanh(ayshr/e) )

$-(0.25*(tanh((delr-f)/g)+1.0)*

$(1.0-tanh((yshr+0.002)/(0.004))))

$ + (11.5*(nu**1.5)*(tanh((delr-280.0)/70.0)-1.0)

$*(tanh((yshr-0.004)/0.004)+1.0))

$ + (2.0*exp(-((delr-600.0)/150.0)**2)*tanh(yshr/0.05))

$ + (0.05*exp(-((delr-500.0)/120.0)**2)

$ *(tanh((-0.004-yshr)/0.001)+1.0)) ) )

return

end
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Appendix D

Brunt-Vaisala Frequency

Adiabatic oscillation of an air parcel in the atmosphere about its equilibrium level

in a stable atmosphere is referred as buoyancy oscillation. The frequency of such

oscillations (Brunt-Vaisala frequency) can be derived by considering an air parcel that

is displaced vertically small distance δz. By Newton's second law (Holton, 1992):

D2

Dt2
(δz) = −g − 1

ρ

∂p0
∂z

, (D.1)

where the �rst term in the right side of the equation is the gravitational acceleration

and the second term is the pressure gradient term. If it is assumed that the envi-

ronment is in hydrostatic balance, ρ0g = −dp0/dz, where ρ0 and p0 are the density
and the pressure of the environment. Therefore, Equation (D.1) can be rewritten as

(Holton, 1992):

D2

Dt2
(δz) = −g(ρ− ρ0)/ρ. (D.2)

Using the ideal gas law (p = ρRT , in which R is the gas constant), and Equation

(1.7), the above equation can be expressed as (Holton, 1992):

D2

Dt2
(δz) = g(1− θp

θ0
), (D.3)

where θp is the potential temperature of the air parcel and θ0 the environmental

value of potential temperature. The acceleration (a (z) = D2

Dt2
(δz)) is zero at the

equilibrium height z0. Using a Taylor's expansion we can write (Holton, 1992):

a (z) = (∂a/∂z)z=z0 (z − z0) . (D.4)

The potential temperature of the air parcel is constant because the parcel adjusts

adiabatically. Therefore, the change in a (z) with height is due to the variation in
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θ0with height. Thus ∂a/∂z = −(θp/θ
2
0)(dθ0/dz); however, at z = z0, θp = θ0, so

this reduces to ∂a/∂z = −(1/θ0)(dθ0/dz). Thus the acceleration is given by (Holton,

1992):

d2z/dt2 = −g [d(ln θ0)/dz] (z − z0). (D.5)

This is the equation for the harmonic motion about the equilibrium at z0 and the

frequency of oscillation is called the Brunt-Vaisala frequency and is given by (Holton,

1992):

ω2
B = g [d(ln θ0)/dz.] (D.6)
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