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ABSTRACT 

 

In the newsvendor problem with pricing, the seller of an inventory of homogeneous items 

attempts to maximize expected profit by setting price(s) and inventory level(s) before 

realizing exact demand for the items.  The first step in solving the problem is to model 

this demand, which in the literature, is most commonly done using additive or 

multiplicative uncertainty, often without justification for either choice.  From here, the 

problem is solved in a variety of ways. 

 

In this document, a model for demand is derived from two basic quantities: size of 

customer base and distribution of reservation prices of the population, where a 

reservation price is the most a customer is willing to pay for an item.  This demand 

model, incorporating price-dependent additive uncertainty, is used as a basis for 

investigating various scenarios of the newsvendor problem with pricing, including: both 

discrete inventory levels and respective normal approximations, deterministic and 

random demand, single and multiple-price strategies, and sales of only primary items or 

primary and secondary items together.   

 

Where possible, analytical results are obtained from the various models.  For example, in 

a two-price model, an expression of the optimal inventory level of items to be made 

available for sale at the higher price is derived.  If analytical results are not available, 

numerical examples provide insights.  For example, for both deterministic and random 

sizes of customer base, graphical analysis suggests that for a single-price strategy, the 



iv 

 

optimal price is the same regardless of size of customer base.  In addition, optimal results 

found using expected profit functions derived here are compared with those optimal 

results found using other methods found in the literature. 

 

Keywords: demand modeling, newsvendor, pricing, inventory. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

In 2010, the five largest airlines in the United States (Delta, American, U.S. Airways, 

Continental and United) received a total of $2.7 billion in revenue from baggage fees 

alone, up from $344 million just three years prior (Bureau of Transportation Statistics, 

U.S. Department of Transportation).  Also in 2010, hotels in the U.S. recorded revenues 

of over $127 billion (Hotel Operating Statistics Study, 2010, STR Global).  These two 

industries, offering products or services that expire (e.g.; a flight on a plane or an evening 

in a hotel) incur costs of making those products or services available for sale.  The 

number of items ultimately sold depends on how many items are made available for sale 

in the first place, and how many customers are willing to buy them.  These two issues 

(uncertain demand and a perishable product) form the basis of the newsvendor problem. 

 

In the basic form of the newsvendor problem, a seller of an inventory of a homogeneous 

product attempts to maximize expected profit by deciding on an inventory quantity Q, 

before knowing exactly how many customers will want to buy an item at an exogenous 

price, P (that is, the seller faces stochastic demand).  For each unit of inventory the seller 

decides to make available for sale, a constant marginal cost of c is incurred ( cP  ), 

regardless of whether or not the item is ultimately sold.  Although the newsvendor 

problem has been expanded to include the possibility of salvage value for unsold items, 

here it is assumed that the items are worthless if not sold at full price.  Denote the number 
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of customers willing to pay price P for an item as random variable )(PX  with 

corresponding cumulative distribution function )()( PXF .  Given these conditions, the 

profit-maximizing quantity, *Q , is determined by the well-known fractile solution: 








 
 

P

cP
FPQ PX

1

)(

* )(  (1.1.1) 

where )(1

)( 

PXF  denotes the inverse cumulative distribution function of demand.  For the 

case where Q is only allowed to take on discrete values, )(* PQ  is the smallest integer 

value of Q that is greater than or equal to the right-hand side of (1.1.1).   

 

In the basic newsvendor problem price is fixed at P, and the only decision variable is 

inventory quantity, Q.  In the newsvendor problem with pricing (NPP), it is assumed that 

the seller also has price-setting ability (as in the case of a monopolist).  Now the seller 

maximizes expected profit over two decision variables: inventory quantity, Q , and 

selling price, P.  Note that setting inventory level Q  and selling price P  does not imply a 

guaranteed revenue of PQ  as in traditional Economics (where the market determines 

exactly how many items, )(PQ , are sold at a give price P ).  Rather, since demand is 

uncertain there is a distribution of possible revenues, and here the seller makes decisions 

based on an expected outcome. 

 

The first challenge in solving the NPP is modeling demand, where “…the demand 

function shows, in equation form, the relationship between the quantity sold of a good or 

service and one or more variables.” (Samuelson and Marks, 2010).  Denote a 
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deterministic demand function (expected demand) as )(P , which often takes on either a 

linear form: 

bPaP )( , (1.1.2) 

where a, b > 0, or an iso-elastic form: 

baPP )( , (1.1.3) 

where a > 0 and b > 1. 

If historical data are available, simple analysis can suggest the appropriate form of )(P . 

 

See Figure 1.1.1 for an example of a linear demand curve (Equation 1.1.2), and Figure 

1.1.2 for an example of an iso-elastic demand curve (Equation 1.1.3). 

 

 

Figure 1.1.1.  Linear Demand Curve (Demand = 100 – 1*Price). 
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Figure 1.1.2.  Iso-Elastic Demand Curve (Demand = 1100*Price
-1.1

). 

 

To these (or other) models of )(P , uncertainty is incorporated, usually expressed in one 

of two forms: multiplicative or additive.  To show this uncertainty, denote )(PX  as total 

demand, which is made up of a deterministic component, )(P , and a stochastic 

component, ε.  In the case of multiplicative uncertainty: 

 )()( PPX  , (1.1.4) 

often where the expected value of ε is one.  In the case of additive uncertainty, 

  )()( PPX  (1.1.5) 

often where the expected value of ε is zero.   

 

Note that in (1.1.4) and (1.1.5), if ε is known the problem becomes deterministic.  For any 

given P, quantity demanded can be determined exactly if the parameters and form of 

)(P  are known.  Note also that in most of the literature, the uncertainty term, ε, is 

typically independent of price, (for an exception, see Young, 1979).  
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Rarely is the decision to use either of (1.1.4) or (1.1.5) given any convincing justification.  

An exception is Agrawal and Seshadri (1999), in which a subjective explanation for why 

additive or multiplicative uncertainty is appropriate in difference situations is provided.  

In addition, the use of (1.1.5) is appropriate for the case of a linear regression model.  

Otherwise, the most common justification for choosing any of Equations 1.1.2 – 1.1.5 is 

for “mathematical tractability.”  In any case, once a demand model has been chosen, 

solving the newsvendor problem with pricing begins in a variety of ways, depending on 

the conditions.  Two examples are Karlin and Carr (1962) and Petruzzi and Dada (1999). 

 

1.2 ORGANIZATION OF THE DISSERTATION 

The dissertation is organized as follows.  Chapter 2 contains a literature reviews on works 

related to consumer choice models and the newsvendor problem with pricing. 

 

Chapter 3 addresses the issue of modeling demand, with a derivation of a probability-

based model and investigation into its properties.  The model is compared with existing 

models from the literature, with respect to forms of uncertainty. 

 

Chapter 4 includes the derivation of a single-price expected profit models using the 

demand model of Chapter 3.  Cases of both deterministic and stochastic customer bases 

are considered, and examples are provided. 

 

The work in Chapter 5 extends the single-price strategy of Chapter 4 to dual-price and n-

price strategies.  These approaches would be useful for a seller who chooses to make 
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homogeneous products available at different prices.  An example is a seller who 

advertises a few items of inventory available at a low price (to draw customers to the 

store), and then makes the remaining inventory available at a higher price.  Discrete 

models and their normal approximations are provided.  Numerical examples are provided 

that compare the optimal solutions found using models derived here with those found 

using models in the literature, that sometimes are derived with incomplete justification. 

 

Chapter 6 contains work that investigates properties of pricing strategies when the seller 

faces small populations, for both deterministic and stochastic customer bases.  

Specifically, it is shown whether multiple-price strategies are ever preferable over single-

price strategies for four specific cases. 

 

Chapter 7 includes the derivation of an expected profit function for a seller who can 

realize revenues from sales of both primary and secondary items.  A sensitivity analysis 

is provided using numerical examples.  Insight is also provided based on functions 

derived in the chapter to explain trends in expected profit and variance. 

 

Chapter 8 contains a summary of the dissertation, and comments on future research. 
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1.3  NOTATION AND ABBREVIATIONS  

Shown here are abbreviations and notation used throughout the dissertation.  Included for 

each entry is the page number at which it first appears. 

 

a  Parameter of a function (p.2).  Also denotes fraction of leftover customers (p. 

120). 

b  Parameter of a function (p.2).   

c  Cost of making one item available for sale (p. 1). 

d  Size of a deterministic customer base (p. 13). 

)(Zf  Probability density function of random variable Z (p.12). 

)(Zh  Probability mass function of random variable Z (p.12). 

n  Number of selling prices and corresponding inventory levels (p.8). 

r  Arbitrary reservation price (p. 13). 

iw  Defining characteristic i of an item available for sale (p. 12). 

w  Vector of defining characteristics of an item available for sale (p. 12). 

z  Possible value of Z (p. 12). 

  

D  Size of random customer base (p. 13). 

E  Expectation (p. 25). 

)(ZF  Cumulative distribution function for random variable Z (p.13). 

)(1 

ZF  Inverse cumulative distribution function for random variable Z (p.1). 

iF  Probability a randomly-selected customer is willing to pay price iP  for an item 
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p.65). 

P  Selling price (p. 1). 

)(Prob  Probability (p. 13). 

Q  Inventory level (p. 1). 

R  Revenue (p. 26). 

RP  Reservation price (p. 12). 

Sold  Number of items sold (p. 26). 

U  Uniform distribution (p. 19). 

X  Number of customers willing to pay price 1P  for an item (p. 1). 

Y  Number of customers willing to pay price 2P  for an item (p. 32). 

iZ  Secondary characteristic i of an item available for sale (p. 12). 

Z  Vector of secondary characteristics of an item available for sale (p. 12). 

  

Z  Uncertainty in random variable Z  (p. 17). 

  Price elasticity of demand (p. 20). 

Z  Expected value of random variable Z  (p. 14). 

Z  Standard deviation of random variable Z  (p. 14). 

2

Z  Variance of random variable Z  (p. 14). 

 

Φ Fraction (p. 130). 

  Profit (p. 25). 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1   THE NEWSVENDOR PROBLEM WITH PRICING 

The first to approach the newsvendor problem with price as a decision variable is Whitin 

(1955), who provides examples of the simultaneous determination of profit-maximizing 

selling price and order quantity.  He considers setting a single selling price in both single 

and multi-period cases, for multiple products and stochastic demand.  In one case, he 

substitutes the economic order quantity into a deterministic demand curve, and uses first 

order conditions to solve for optimal price.  Another example applies a demand 

distribution that is a function of price, and demonstrates how the optimal quantity is 

found where expected marginal revenue equals expected marginal loss.  Optimal price is 

then found where, using the optimal quantity, the difference between total expected 

profits and total expected losses is maximized. 

 

Mills (1959) expands on the problem by more formally addressing the issue of 

uncertainty, treating it as additive and independent of price.  He considers stochastic 

demand, both single and multi-period cases, single pricing (per period) and a single 

product.  He notes that in general, it is not profit-maximizing to set quantity at expected 

sales corresponding to optimal price.  He also makes explicit that with demand 

uncertainty, expected revenue is not price times expected demand, but price times 

expected sales (since realized demand might exceed quantity available for sale).  His 

conclusions relate primarily to how the equilibrium price (the profit-maximizing price 
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under additive demand uncertainty) differs from the profit-maximizing price in the 

riskless case (if demand were known exactly).  First, when marginal cost is constant, the 

equilibrium price is lower than the riskless price.  Second, when marginal cost is rising, 

and either 1) equilibrium quantity is no more than riskless quantity or 2) riskless quantity 

is no more than average demand at equilibrium price, then equilibrium price is no more 

than riskless price.  Finally, when marginal cost is falling, and either 1) equilibrium 

quantity is no less than riskless quantity or 2) riskless quantity is no more than average 

demand at equilibrium price, then equilibrium price is no more than riskless price.   

 

Karlin and Carr (1962) also include demand uncertainty in their models, both additive 

and multiplicative.  They assume stochastic demand for a single product, both single and 

multi-period demands, and a single price set for each period.  Their findings are that with 

multiplicative uncertainty the optimal price is always greater than the optimal riskless 

price, while with additive uncertainty, the optimal price is always less than the optimal 

riskless price.  In either case, the optimal price is determined first and then used in a 

fractile equation to determine optimal quantity.  The authors present these fractile 

equations in forms that include either the inverse cumulative distribution function (c.d.f.) 

of the random variable representing uncertainty or the inverse c.d.f. of quantity 

demanded. 

 

Nevins (1966) uses the works of Mills (1959) and Karlin and Carr (1962) as a basis for 

his simulations to further investigate the divergence of equilibrium price and quantity and 

riskless price and quantity.  He considers stochastic demand, multiple time periods, a 
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single product and a single equilibrium price for each period.  His models are based on 

multiplicative uncertainty, are multi-period, and include various discount rates, marginal 

storage costs and variable costs of production.  He finds that over the long run, 

uncertainty alone does not create a divergence between equilibrium price and riskless 

price.  In order for divergence, either a positive discount rate or storage cost is required.  

In addition, the sensitivity of equilibrium price and quantity to changes in discount rate 

and storage cost depend on the elasticity of demand.  At low elasticities, riskless price 

and quantity are both good approximations for equilibrium price and quantity, even for 

fairly large discount rates and storage costs.  Similar results are found when elasticity 

approached unity.  However, at higher elasticities, the equilibrium inventory level (the 

level toward which inventory is expected to move if the optimal price-quantity policy is 

followed) fall to zero, and this is the necessary condition to note significant divergences 

in equilibrium price and quantity and riskless price and quantity. 

 

To compare how expected profit differs between simultaneous and sequential equilibrium 

price-quantity determination (as when firms make centralized and decentralized 

decisions, respectively), Kunreuther and Richard (1971) use deterministic demand.  They 

consider a single product, multiple periods and a single price.  They find that the more 

inelastic the demand for a product, the more desirable to use the simultaneous procedure.  

In addition, when using the simultaneous procedure and equilibrium price is greater than 

unit cost, an upper bound can be calculated, that determines whether or not the firm will 

order any product. 
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Another multi-period policy is given by Thomas (1974), who produces a list of price-

production pairs for each inventory level in each period.  He considers stochastic demand 

for a single product, and single pricing in each period.  For each period, n, two inventory 

levels are calculated, Sn and sn (analogous to the S, s model) and the optimal order 

quantity and selling price are determined depending on the actual inventory level.  If the 

actual inventory level is greater than or equal to sn, no production order is placed, and the 

price is set at the point on an optimal price line in the price-inventory plane that 

corresponds to the actual inventory level.  For actual levels below sn, inventory is ordered 

up to level Sn, and the price charged is that on the optimal price line corresponding to Sn.  

The policy is tested for optimality using two sets of examples.  The first uses a discrete 

distribution whose mean (only) depended on price.  The second assumes a maximum 

possible demand and a binomial or multinomial demand distribution with the probability 

parameter being a function of price.  In the first set of examples, the policy is optimal for 

15 of 16 cases, and in the second set it is optimal for all 22 cases. 

 

To study the influence of market structure (level of competitiveness) on the newsvendor 

problem, Young (1979) presents demand as    nPPb   , , where  Pb,  and 

 P  are deterministic demand functions (with respect to price) and n is a random 

variable with a known density function, φ(n), standard deviation s, and expected value of 

0.  The competitiveness parameter, b, only applies to the first deterministic demand 

function.  An increase in b means an increase in level of competition.  Young provides an 

optimal policy and shows that if the optimal policy is followed, marginal production cost 

plus average inventory and shortage costs is: 
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a. Less than riskless (no demand uncertainty) marginal revenue if γ(P) 

(coefficient of variation) decreases with price, 

b. More than riskless marginal revenue if γ(P) increases with price, and 

c. Equal to riskless marginal revenue if γ(P) is independent of price. 

In addition, he shows that for any P, an increase in b effects the elasticity of the expected 

demand curve, increases γ(P),  and, provided that inventory and shortage costs are 

significant, increases price and reduces expected sales (even though it increases the 

elasticity of expected demand).  Finally, under certain strict conditions, a change in 

market competitiveness which either 1) increases expected sales or 2) decreases 

profitability, will also increase average inventory and shortage costs (the marginal cost of 

increasing sales exceeds the average cost of sales).  He considers both deterministic and 

stochastic demand, a single product, with single-pricing in a single period. 

 

In Dana (1999), the author investigates Nash equilibrium price dispersion and demand 

uncertainty.  One of the primary goals is to investigate price dispersion both within 

individual firms, and also between firms, under different competitive environments 

(monopoly, oligopoly, etc.).  Dana provides methods for determining optimal pricing and 

inventory strategies that relies heavily on methods commonly found in the Economics 

literature.  He considers stochastic demand for a single product, with multiple-pricing in a 

single period. 

 

In a different approach to the problem, Petruzzi and Dada (1999) maximize profit by 

solving for optimal price and optimal z, where under 1) additive uncertainty, 
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      PyPD , ,  Pyqz   and 2) multiplicative uncertainty,     PyPD , , 

 Pyqz  .  Note that in both cases, the uncertainty,  , is independent of price.  They 

show that in both cases, determining optimal price is straightforward, but optimal 

quantity depends on the c.d.f. of ε.  In addition, they show that if uncertainty is additive, 

optimal price is no higher than under riskless conditions.  If uncertainty is multiplicative, 

optimal price is no lower that under riskless conditions.  Note that these findings are 

consistent with Karlin and Carr (1962).  Petruzzi and Dad consider a single and multiple 

periods, stochastic demand for a single product, and a single price for each period.    

 

In Dana and Petruzzi (2001) the issues of consumer utility and competition are addressed.  

They model demand as a function of both price and inventory level, since consumers’ 

likelihood to visit a firm depends partially on their belief that a product will be available 

when they arrive.  They also consider cases of price being set both by the firm and 

exogenously.  Regardless of who sets the price, a firm that considers the influence of 

inventory level on demand carries more inventory, provides a higher level of service, 

attracts more customers and earns higher profits that one that ignores the inventory 

influence.  The authors also show that in the case in which price is determined 

endogenously, the two-dimensional problem can be reduced to two single-variable 

optimizations that result in the socially efficient stocking factor. 

 

Using the same approach as Petruzzi and Dada (1999), Zhan and Shen (2005) treat the 

problem as a nonlinear system of two variables, as opposed to the usual method of 

reducing it to an optimization over a single variable.  They consider stochastic demand 
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for a single product, and setting a single price for a single period.  They show analytically 

how the number of interior solutions ranges from zero to two, depending on the c.d.f. of ε 

(for the additive uncertainty case) and assuming that P is concave in z and z is concave in 

P.  In addition, the authors provide both iterative and simulation-based algorithms that 

can be used to determine the optimal conditions. 
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CHAPTER 3 

A DEMAND MODEL INCORPORATING 

PRICE-DEPENDENT UNCERTAINTY 

 

3.1    INTRODUCTION 

In most attempts to solve the newsvendor problem with pricing, the first step is to collect 

or assume some information on how customer demand is influenced by price, and 

represent that information in a mathematical form as a demand equation.  Often a 

deterministic demand equation is taken as the basic quantity (assuming some 

distributional properties), with common forms being those shown in (1.1.2) and (1.1.3).  

To the deterministic demand equation, uncertainty is (sometimes) introduced, with 

common forms being those shown in (1.1.4) and (1.1.5).  From here, optimal price and 

inventory quantities are determined. 

 

In this chapter, demand is modeled using via customer behaviour, using information 

about individual customers and size of customer base as the basic quantities.  The result 

is a justified form of a demand equation, whose properties are studied and compared with 

those commonly found in the literature.    

 

3.2   GENERAL MODEL OF DEMAND 

Consider demand as a choice model where each customer in the population has a choice 

– buy or not buy one item that is available for sale.  Here, individual consumer behaviour 

is modelled and aggregated into the demand for the product. 
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The product to be sold will have a number of defining characteristics that will define its 

customer base.  For instance, consider an airline selling seats in different fare classes.  

The customer base willing to buy advanced purchase fares that require a Saturday night 

stay-over will often be different to the customer base who will consider buying first class 

tickets with no restriction, and this group will be different to those who will consider 

purchasing last minute coach fares.  So it can make sense to assume that a product has a 

set of defining characteristics that can be presented by a vector w = (w1, w2, …, wr). 

 

For each vector of characteristics w, let X(w) denote the number of customers who would 

be willing to buy the product at some price.  Now consider a customer who would like to 

buy this product.  The maximum or “reservation” price the customer is willing to pay will 

depend on factors intrinsic to the product and intrinsic to the customer.  For instance, a 

customer will be willing to pay more for a first class ticket than a coach class ticket.  A 

customer’s personal characteristics will also have an influence—for instance, a student 

will be willing to pay less in general than a business person.  Other factors such as 

location, gender, time of year, etc., may have an impact.  Let these characteristics be 

denoted by the vector Z = (Z1, …, Zs).  The vector Z will have a distribution with a 

density function given by fZ(z, w) among the customers willing to buy the product, where 

z is a possible value of the random (vector-valued) variable Z.  Among the substratum of 

customers who would like to buy the product whose characteristics are described by w 

and whose personal characteristics are described by Z, there will be a distribution for the 

maximum price a randomly selected customer is willing to pay.  Let RP(Z, w) denote the 

random variable that gives the reservation price for a customer drawn from this group. 
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Then, the probability that a randomly chosen person from the group who wants to buy the 

product whose characteristics are given by w will have a reservation price less than or 

equal to r is given by:  

    zwz,zZwZ,wZ, Z dfrRPbProrRPbPro )(|)(...)(   . (3.2.1) 

 

The purpose of the above very general description is to show how one might, in practice, 

model consumer behaviour. One can certainly conceive of standard statistical/marketing 

models where one can estimate the distributions for X(w), Z = (Z1, …, Zs), and RP(Z, w). 

A modeller will, in general, have a lot of experience and intuition to bring to bear on 

deciding which factors, for instance, influence a customer’s reservation price. 

 

This dissertation considers only the case of a known product and consequently, the w 

notation is suppressed.  Also note that from (3.2.1), the notation Z can be suppressed 

because of integration over this random variable.  Therefore, assume that the size of the 

customer base interested in the product is provided by the random variable D (or d in the 

case of a deterministic customer base) and that a randomly selected customer has a 

reservation price represented by the random variable RP whose cumulative distribution 

function will be denoted by )(RPF . 

 

Given this framework, demand, the number of customers (assumed to be discrete) willing 

to buy an item at price P, is a random variable, and is denoted X(P).  For a deterministic 

customer base, d, the random demand follows a binomial distribution with probability 

mass function, )()( PXh , given as: 
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      dxPFPF
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d
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The cumulative distribution function, )()( PXF , is: 

 yPXProbxF
x

0y

PX 


)()()( , (3.2.3) 

or 

    yd
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d
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
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


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


 )()(1)(

0

)( . (3.2.4) 

 

Note that the normal approximation to the binomial distribution can be used, with 

parameters, mean, 

 )(1)( PFd RPPX   (3.2.5) 

and variance, 

  ,)()(12

)( PFPFd RPRPPX   (3.2.6) 

provided both parameters are greater than five.  If such is the case, demand can be 

approximated as: 

     )()(1,)(1~)( 2

)()( PFPFdPFdNPX RPRPPXRPPX   , (3.2.7) 

with the corresponding probability density function, )()( PXf , approximated as: 
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
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

 (3.2.8) 

The cumulative distribution function, is approximated as: 

dxxftF PX

t

ox

PX )()( )()( 


 , (3.2.9) 
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or 
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3.3   UNIFORMLY-DISTRIBUTED RESERVATION PRICES IN THE 

GENERAL MODEL OF DEMAND 

An example of expressing demand from the basic quantities given in Section 3.2 can be 

found in Dana (1999).  In this work, a given example suggests (without obvious 

justification) that if the reservation prices of customers follow a uniform distribution, the 

corresponding demand function is linear.  Here, for a demand model with the basic 

quantities of population base (d) and probability of success ( )(1  RPF ), if the reservation 

prices of the customers follow a uniform distribution, the expected demand function is 

linear in P.  

 

Lemma 3.3.1.  For a deterministic customer base, d, and a known cumulative distribution 

function of reservation prices, )(PFRP , if reservation prices follow a uniform distribution, 

the expected demand function is linear in selling price, P. 

 

Proof.  First, recall the expected demand equation given by (3.2.5): 

 )(1)( PFd RPPX  , (3.2.5) 

and consider that if the reservation prices follow a uniform distribution on  21, PP , the 

cumulative distribution function for reservation price, )(PFRP , is given by: 
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12

1)(
PP

PP
PFRP




 . (3.3.1) 

Substituting (3.3.1) into (3.2.5) gives: 



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


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12

1
)( 1

PP

PP
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which can be expanded and rearranged to give: 

P
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d
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
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


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1212

1
)( 1 . (3.3.3) 

 

By inspection, Equation 3.3.3 is linear in P (of the form: mPbPX )( ), with an 

intercept given by: 













12

11
PP

P
db , (3.3.4) 

and a slope given by: 













12 PP

d
m . (3.3.5) 

Q.E.D. 

 

Lemma 3.3.1 justifies a form of a demand equation often found in the literature (linear 

and downward sloping) that is typically implemented because of its ease for 

mathematical manipulation.   
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3.4   ADDITIVE UNCERTAINTY IN THE GENERAL MODEL OF DEMAND 

Approaches to solving the NPP often begin by arbitrarily assuming some form of 

uncertainty (for example, see Equations 1.1.4 and 1.1.5).  Here it is shown that given the 

basic quantities of demand as described in Section 3.2 (size of customer base and 

distribution of reservation prices), the appropriate form of the demand equation is that 

which incorporates additive uncertainty, similar, but not identical to that shown in (1.1.5). 

 

Lemma 3.4.1.  Demand from a deterministic customer base of size d, and a cumulative 

distribution function of reservation prices for the customer base, )(PFRP , can be 

expressed with price-dependent, additive uncertainty, as: 

  )()(1)( )( PPFdPX PXRP  . (3.4.1) 

 

Proof.  First, consider the demand model given by (3.2.7).  Demand, the number of 

people willing to pay P for an item, is random, and can be approximated by the normal 

distribution: 

 2

)()( ,~)( PXPXNPX   (3.4.2) 

with the parameters given by (3.2.5) and (3.2.6).  Substitution into (3.4.2) gives 

     )()(1,)(1~)( 2

)()( PFPFdPFdNPX RPRPPXRPPX    (3.4.3) 

which can be expressed in the form: 

)()()( )()( PPPX PXPX    (3.4.4) 

where )()( PPX  is given by (3.2.5): 

 )(1)( PFd RPPX   (3.2.5) 
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and 

   )()(1,0~)( 2

)()()( )()(
PFPFdNP RPRPPPPX PXPX

   . (3.4.5) 

Thus, the demand model given by (3.4.3) can be expressed as: 

  )()(1)( )( PPFdPX PXRP  , (3.4.1) 

which incorporates additive uncertainty in a form similar to (1.1.5).  Q.E.D. 

 

Note that the uncertainty term in (3.4.5), )()( PPX , is a function of selling price, P.  For 

reasons demonstrated in subsequent sections and chapters, this result is both interesting 

and relevant. Also worth mentioning is that it is rare to find an example in the literature 

of a newsvendor problem with pricing which incorporates a variable form of uncertainty 

in demand (for an example, see Young, 1979). 

 

As was the case with Lemma 3.3.1, Lemma 3.4.1 provides justification for use of a form 

of demand (one incorporating additive uncertainty) often found in the literature with little 

explanation other than “mathematical tractability.” 

 

To demonstrate price-dependent additive uncertainty in demand, )()( PPX  in (3.4.5), two 

examples are presented.  In the first example, the size of the customer base is d = 50, and 

reservation prices follow a normal distribution as  10,50~  RPRPNRP  .  The 

demand distribution indicated by (3.4.3) is used to calculate various expected demands 

and corresponding confidence intervals, which are shown in Figure 3.4.1. 
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Figure 3.4.1.  Expected Demand and Confidence Intervals as Functions of Price for 

d = 50 and  10σ50,μN~RP RPRP  . 

 

 

In a second example, the size of the customer base is d = 50, and reservation prices 

follow a uniform distribution as  1000,U~RP .  The demand distribution indicated by 

(3.4.3) is used to calculate various expected demands and corresponding confidence 

intervals, which are shown in Figure 3.4.2. 
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Figure 3.4.2.  Expected Demand and Confidence Intervals as Functions of Price for 

d = 50 and  1000,U~RP . 

 

 

3.5  ELASTICITY IN THE GENERAL MODEL OF DEMAND 

Here, the price elasticity of demand, denoted )(P , for the general model is given, where 

the definition of elasticity is: 

)(
)(

)( P
PP

P
P 







 . (3.5.1) 

By definition, price elasticity of demand is the percent change in quantity demanded 

resulting from a percent change in price.  The form shown in (3.5.1) arises from applying 

this definition at a point, rather than over a “large” percent.  By convention, the negative 

sign in (3.5.1) is included to make )(P  positive, as in most cases demand curves are 

downward-sloping, resulting in a negative partial derivative above. 
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Lemma 3.5.1.  For a demand equation derived from the basic quantities of size of 

customer base, d, and probability of success,  )(1 PFRP , price elasticity of demand is 

given by: 

 
)(

)(1
)( PF

PPF

P
P RP

RP 




  (3.5.2) 

Proof.  Begin by substituting (3.2.5) into (3.5.1) to give: 

 
 )(1

)(1
)( PFd

PPFd

P
P RP

RP







 . (3.5.3) 

Cancelling like terms gives: 

 
 )(1

)(1
)( PF

PPF

P
P RP

RP







  (3.5.4) 

which becomes: 

 
)(

)(1
)( PF

PPF

P
P RP

RP 




 . (3.5.5) 

Q.E.D.  

 

Lemma 3.5.1 is useful for business practitioners who use elasticity of demand as a tool 

for setting price and inventory level.  While a revenue-maximizing decision maker sets 

these decision variables where elasticity of demand is equal to one, there are cases where 

a decision maker prices in the inelastic region ( 1)(0  P ), even though an increase in 

selling price leads to a decrease in units sold, but an increase in revenue. 
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3.6   VARIANCE IN THE GENERAL MODEL OF DEMAND 

Here, it is shown that the variance demand in the general model is greatest at the median 

value of the reservation prices. 

 

Lemma 3.6.1.  For a demand equation derived from size of customer base and 

distribution of reservation prices, the variance is greatest at the median value of the 

reservation prices. 

 

Proof.  Recall the form of the variance of demand, as given in (3.2.6): 

  )()(1)(2

)( PFPFdP RPRPPX  . (3.2.6) 

 

Begin by taking the first derivative of (3.2.6) with respect to P: 

    




































)()()()(1)(2

)( PF
P

PFPF
P

PFdP
P

RPRPRPRPPX . (3.6.1) 

Rearranging gives: 

  





























)()(2)()(2

)( PF
P

PFPF
P

dP
P

RPRPRPPX . (3.6.2) 

Setting (3.6.2) equal to zero and solving for )(PFRP  gives: 

21)( PFRP  (3.6.3) 

which, by definition, occurs at the median value of RP.  To show that this is a maximum, 

take the second derivative of (3.2.6) with respect to P to get: 

 















































2

2

2

2

2
2

)(2

2

)(2)()(2)()( PF
P

PF
P

PFPF
P

dP
P

RPRPRPRPPX . (3.6.4) 
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Rearranging (3.6.4) and substituting in 21)( PFRP  gives: 

2

2

)(2

2

)(2)( 
















PF

P
dP

P
RPPX  (3.6.5) 

which is negative for all distributions of RP and allowable values of d and P.  Therefore, 

the maximum variance in demand is observed at the median value of RP.  Q.E.D. 

  

Graphical representations of this lemma can be seen in Figures 3.4.1 and 3.4.2, where in 

both figures, the confidence intervals are greatest at the median reservation price of 

50P . 

 

Lemma 3.6.1 is useful for a business practitioner who is concerned with the trade-off 

between risk (variance in demand) and revenue.  For example, a risk-averse decision 

maker can use this lemma to determine an acceptable level of uncertainty in revenues, 

with the understanding that expected revenue itself is reduced. 
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CHAPTER 4 

THE NEWSVENDOR PROBLEM WITH PRICING: A SINGLE-PRICE MODEL 

 

4.1   INTRODUCTION 

This chapter incorporates the demand model with price-dependent uncertainty from 

Chapter 3 into the newsvendor problem with pricing, where the seller of homogeneous 

items decides on a single selling price, P , and the corresponding number of items to be 

made for sale, Q .  The seller must decide on P  and Q  before realizing exact demand, 

which, from Chapter 3, depends upon 1) the number of customers in the population, 

denoted d if known exactly, or D if random, and 2) the distribution of reservation prices 

(how much, at most, individuals are willing to pay for an item) of the customers.  The 

reservation price of each customer, denoted RP, is random with a known cumulative 

distribution function, )(RPF .  It is assumed that customers arrive in random order, and 

each customer’s willingness to buy depends only on the selling price of an item relative 

to that customer’s reservation price.  For each item the seller makes available for sale, a 

marginal cost of c is incurred, regardless of whether or not the item is ultimately sold. 

 

4.2 SINGLE-PRICE EXPECTED PROFIT FUNCTIONS 

In this section, two expected profit functions are derived: one assuming a deterministic 

customer base, and one assuming a stochastic customer base.  For both functions, normal 

approximations to the discrete cases are included.  The section concludes with comments 

on joint optimization of selling price and inventory level. 
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4.2.1  DETERMINISTIC CUSTOMER BASE 

Here, the expected profit, ]),([ QPE  , for a seller who sets only one selling price P, and 

the corresponding order quantity Q, is derived.  The size of the customer base is 

deterministic and denoted d.   For each item the seller makes available for sale, a 

marginal cost of c is incurred, regardless of whether or not the item is ultimately sold.  

Demand is denoted by the random variable )(PX , the number of customers with 

reservation prices at least as high as P, with corresponding probability mass function 

)()( PXh , or in the continuous case, probability density function )()( PXf . 

 

Lemma 4.2.1.  For a deterministic customer base, the expected profit function for the 

seller is given by: 

cQxhQxxhPQPE
d

Qx

PX

Q

x

PX 












 

 1

)(

0

)( )()()],([ , (4.2.1) 

which is approximated by: 

cQdxxfQdxxxfPQPE PX

d

Qx

PX

Q

x















 



)()()],([ )()(

0

. (4.2.2) 

 

Proof.  Consider first, that the revenue realized by the seller depends on the number of 

items sold.   Denoting realized demand as x (i.e.; the realized value of )(PX ), if x is less 

than the number of items made available for sale, the revenue is Px.  If x is greater than 

the number of items made available for sale, the revenue is PQ.  Note that in both 

scenarios, the incurred cost is cQ, as the seller pays for each item made available for sale, 



31 

  

regardless of whether or not it is sold.  From these two possible revenue scenarios, the 

profit function, ),( QP , is given as:  










QxcQPQ

QxcQPx
QP

,

,
),( . (4.2.3) 

 

In the first revenue scenario, all demand is met ( Qx  ), and the expected number of 

items sold is given by: 

,)(]|[
0

)(



Q

x

PX xxhQxSoldE  (4.2.4) 

where )()( PXh  is the probability mass function of demand, as given by (3.2.2): 

      dxPFPF
x

d
xPXProbxh

xd

RP

x

RPPX ...,1,0,)()(1)()()( 










. (3.2.2) 

Expected revenue in this case, ( ]|),([ QxQPRE  ), is found by multiplying (4.2.4) by P 

to give: 

,)(]|),([
0

)(



Q

x

PX xxhPQxQPRE  (4.2.5) 

 

In the second revenue scenario, there is unmet demand ( Qx  ), and the expected number 

of items sold is given by: 





d

Qx

PX xhQQxSoldE
1

)( )(]|[ . (4.2.6) 

Expected revenue in this case ( ]|),([ QxQPRE  , unmet demand) is found by 

multiplying (4.2.6) by P to give: 
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



d

Qx

PX xhPQQxQPRE
1

)( )(]|),([ . (4.2.7) 

 

Summation of (4.2.5) and (4.2.7) gives the expected total revenue: 





d

Qx

PX

Q

x

PX xhPQxxhPQPRE
1

)(

0

)( )()(]),([ , (4.2.8) 

from which the total cost, cQ, is subtracted to give expected total profit: 

cQxhQxxhPQPE
d

Qx

PX

Q

x

PX 












 

 1

)(

0

)( )()(]),([ . (4.2.9) 

 

As a normal approximation to the (4.2.9), the summations in (4.2.9) are replaced with 

integrals, the probability mass function is replaced with the probability density function 

as given by (3.2.8), )()( PXf : 

  
  

  
.

)()(12

)(1
exp

)()(12

1
)(

2

)( 





















PFPFd

PFdx

PFPFd
xf

RPRP

RP

RPRP

PX


 (3.2.8) 

and expected profit is approximated by: 

.)()(]),([ )()(

0

cQdxxfQdxxxfPQPE PX

d

Qx

PX

Q

x















 



 (4.2.10) 

Q.E.D. 

 

4.2.2  RANDOM CUSTOMER BASE 

Here, the expected profit function, ]),([ QPE  , for a seller who sets only one selling 

price P, and the corresponding order quantity Q, is derived.  The size of the customer 

base is random and denoted D, with corresponding probability mass function )(Dh , or in 
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the continuous case, probability density function )(Df .  It is assumed that if Q can take 

on only whole values, the same restriction applies to D.  In the case of allowable values 

of Q including non-integer values, D can take on non-integer values as well.  As in 

Section 4.2.1, demand is given by the random variable )(PX , with corresponding 

probability mass function )()( PXh , or in the continuous case, probability density function 

)()( PXf . 

 

Lemma 4.2.2.  For a random-size customer base, the expected profit function for the 

seller is given by: 

cQdhxhQxxhPQPE D

d

Qx

PX

Q

x

PX

d





























 



)()()()],([
1

)(

0

)( , (4.2.11) 

and is approximated by: 

cQdddfdxxfQdxxxfPQPE DPX

d

Qx

PX

Q

xd















 



)()()()],([ )()(

0

. (4.2.12) 

 

Proof.  Consider first the discrete case where Q and D can only take on whole values.  

Beginning with (4.2.1), the expected profit function for a deterministic customer base: 

cQxhQxxhPQPE
d

Qx

PX

Q

x

PX 












 

 1

)(

0

)( )()()],([ , (4.2.1) 

note that the terms inside the brackets both depend on the size of the customer base, d, 

but the cost term outside the brackets does not.  Therefore, to account for all the possible 

sizes of customer base and their respective probabilities (as given by the probability mass 

function, )(Dh ),  the expected revenue over all possible sizes of customer base is 
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calculated.  This is achieved by fixing a value of D, calculating the corresponding 

expected revenue, multiplying by the probability of observing the fixed value of D, 

repeating for all allowable values of D, and taking the summation of those expected 

revenues.  This expected revenue is expressed as: 
















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









 



)()()()],([
1

)(

0

)( dhxhQxxhPQPRE D

d

Qx

PX

Q

x

PX

d

. (4.2.13) 

Subtracting the cost gives the expected profit, as in (4.2.11): 
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Similarly, in the case of Q and D being allowed to take on non-integer values, the 

continuous form of expected revenue from (4.2.12) is multiplied by the probability 

density function )(Df , and integrated over all allowable values of D to give the expected 

revenue: 
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 (4.2.15) 

from which total cost, cQ, is subtracted to give expected profit: 

cQdddfdxxfQdxxxfPQPE DPX
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. (4.2.16) 

Q.E.D. 
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4.2.3  JOINT PRICE AND INVENTORY LEVEL OPTIMIZATION 

Here, optimization of the single price-quantity pair model is demonstrated using the 

expected profit equation given by (4.2.14).  The decision variables for the seller are 

selling price, P, and quantity of items to be made available for sale, Q.  The number of 

customers who are willing to pay price P for an item is a random variable denoted )(PX . 

 

First, recall the standard solution (optimal inventory level, *Q ) to the newsvendor 

problem, as given by (1.1.1): 








 
 

P

cP
FPQ PX

1

)(

* )(  (1.1.1) 

where )(1

)( 

PXF  denotes the inverse cumulative distribution function of demand.  In the 

case of discrete demand, the optimal inventory level is the smallest value of Q that is 

greater than the right-hand side of (1.1.1). 

 

Using (1.1.1) in the expected profit equation given by (4.2.14), or in the corresponding 

normal approximation form given by (4.2.16), reduces the problem to finding the 

maximum of a one-dimensional function: 

 ))](,([max * PQPE
P

  (4.2.17) 

for which a solution can be found by searching over a grid of possible values. 

 

4.3 EXAMPLES 

Here we provide numerical examples to demonstrate the expected profit functions 

derived in this chapter. 
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Consider first the case of a deterministic customer base of 100d , where 20c and 

]100,0[~ URP .  Using Equation 4.2.1, the expected profits for various sizes of 

inventory level are calculated and shown in Figure 4.3.1. 

 

 

Figure 4.3.1.  Expected Profit as a Function of Price for Various Q when d=100, 

c=20 and RP~U[0, 100]. 

 

Using the same parameters, expected profit is calculated for 43and42,41Q , and 

shown in Figure 4.3.2.  The maximum expected profit of 1493.1 occurs at 9.59* P  and 

42* Q . 
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Figure 4.3.2.  Maximum Expected Profit when d=100, c=20 and RP~U[0, 100]. 

 

Using the same parameters as above, the maximum expected profit is calculated as a 

function of price for various sizes of customer base, d.  The results are shown in Figure 

4.3.3. 
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Figure 4.3.3.  Maximum Expected Profit as a Function of Price for Various d when 

c=20 and RP~U[0, 100]. 

 

Consider now, the cases where the size of the customer base is random as 

],0[~ DmaxUD , where 20c and ]100,0[~ URP .  Using Equation 4.2.11, the 

expected profits for various sizes of inventory level are calculated and shown in Figure 

4.3.4. 
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Figure 4.3.4.  Expected Profit as a Function of Price for Various Q when  

D~U[0, 100], c=20 and RP~U[0, 100]. 

 

Using the same parameters, expected profit is calculated for 2622Q , and shown in 

Figure 4.3.5.  The maximum expected profit of 528.4 occurs at 65* P  and 24* Q . 
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Figure 4.3.5.  Maximum Expected Profit when D~U[0, 100], c=20 and RP~U[0, 100]. 

 

Using the same parameters as above, the maximum expected profit is calculated as a 

function of price for various maximum sizes of customer base, Dmax , where 

],0[~ DmaxUD .  The results are shown in Figure 4.3.6. 
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Figure 4.3.6.  Maximum Expected Profit as a Function of Price for Various Dmax 

when D~U[0, Dmax], c=20 and RP~U[0, 100]. 
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CHAPTER 5 

THE NEWSVENDOR PROBLEM WITH PRICING:  

MULTIPLE-PRICE MODELS 

 

5.1 INTRODUCTION 

Now that we have considered a single-price model, we turn our attention to the 

possibility that the seller of an inventory of homogeneous items may wish to set multiple 

selling prices and restrict the number of items to be made available for sale at each price.  

An example in practice is an electronics retailer who, in an attempt to increase customers 

visiting his store, advertizes that a small number of items are to be sold at a deeply-

discounted price, and after all of those are sold the remainder of the inventory will be 

sold at a regular price. 

 

This chapter incorporates the demand model with price-dependent uncertainty from 

Chapter 3 into the newsvendor problem with pricing (NPP).  The general form of the 

NPP used in this chapter is as follows.  The seller decides on selling prices, nPPP ...,,, 21 , 

where nPPP  ...21 , and the corresponding number of items to be made for sale at 

each of those price levels, nQQQ ...,,, 21 .  The condition of strictly increasing prices may 

be appropriate for a seller of “urgent” items such as airplane tickets, as opposed to non-

urgent items such as newspapers that are easily replaced with an alternative when they 

expire.  The seller must decide on these prices and inventory levels before realizing exact 

demand, which, from Chapter 3, is dependent upon 1) the number of customers in the 

population, denoted d if known exactly, or D if random, and 2) the distribution of 



43 

  

reservation prices (how much, at most, individuals are willing to pay for an item) of the 

customers.  The reservation price of each customer, denoted RP, is random with a known 

cumulative distribution function, )(RPF .  It is assumed that customers arrive in random 

order, and each customer’s willingness to buy depends only on the selling price of an 

item relative to that customer’s reservation price.  For each item the seller makes 

available for sale, a marginal cost of c is incurred, regardless of whether or not the item is 

ultimately sold. 

 

Section 5.2 considers the case of a seller who chooses to set two selling prices with 

corresponding inventory levels.  First, an expected profit function for the case where both 

selling prices and inventory levels are discrete values is derived.  From this, a normal 

approximation is derived, which is used to determine the optimal number of items to be 

made available for sale at the higher price.  This reduces the number of decision variables 

to be optimized to three.  The section finishes with a numerical example that is solved 

using the model presented here.  The solution is compared with one found using a model 

from the literature. 

 

Section 5.3 considers the general case of a seller who chooses n selling prices and 

corresponding inventory levels.  To find the optimal values of the decision variables, a 

dynamic programming solution is presented, and demonstrated with an example. 
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5.2 DUAL-PRICE MODELS 

In this section, the seller sets two selling prices ( 1P  and 2P , 21 PP  ) and corresponding 

inventory levels ( 1Q  and 2Q ).  Two distributions are of importance, and are derived first.  

First, the number of customers willing to pay price 1P  for an item, denoted )( 1PX .  

Second, the number of customers leftover (once all of the items at price 1P  have been 

sold) who are willing to pay price 2P  for an item is denoted ),,(| 211 PQPXY .  Using 

these distributions, an expected profit function is derived.  Following this, normal 

approximations of )( 1PX , ),,(| 211 PQPXY  and the expected profit function are 

presented.  The normal approximation of the expected profit function is used to derive a 

calculation for *

2Q , the optimal number of items to be made available for sale at price 2P .  

The section finishes with a numerical example. 

 

5.2.1  DISTRIBUTION OF )( 1PX  IN THE DISCRETE MODEL 

In the case of the seller selecting two selling prices, 1P  and 2P , and two corresponding 

inventory levels, 1Q  and 2Q , customers purchase low-price items first, since the items are 

homogeneous and no customer will pay the high price for an item if the same item is 

available at the low price.  In this section, the probability mass function of demand for 

low-price items, )( 1PX , denoted )()( 1
PXh , is derived. 

 

Lemma 5.2.1.  For )( 1PX , the number of customers with reservation prices at least as 

high as ,1P  the probability mass function is that of a random variable that follows a 

binomial distribution with parameters d and :)(1 1PFRP  
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      .)()(1)()( 111)( 1

xd

RP

x

RPPX PFPF
x

d
xPXProbxh











  (5.2.1) 

 

Proof.  The number of customers available to possibly purchase a low-price item is the 

entire population d, and can be thought of as the number of independent yes/no 

experiments (each customer either wants to buy one item or does not).  The probability 

that a customer has a reservation price of at least 1P  is )(1 1PFRP , and can be thought of 

as the probability of a success.   Given these two conditions, the number of customers 

who are willing to buy an item at price 1P  is a random variable, )( 1PX , that follows a 

binomial distribution with parameters d and )(1 1PFRP , as in (5.2.1).  Note that this 

result is the same as in the single price-quantity pair model.  Q.E.D. 

 

5.2.2   DISTRIBUTION OF )()( 1211 PX|P,Q,PY  IN THE DISCRETE MODEL 

Once all of the low-price items have been sold, it is possible that there are still some 

leftover customers who were willing to pay 1P  for an item, but were unable to purchase 

one since they were sold out.  Of these leftover customers, some have reservation prices 

high enough that they are willing to pay 2P  for an item.  Denote )(|),,( 1211 PXPQPY  as 

the number of leftover customers willing to buy a high-price item.  Here, the probability 

mass function for the number of leftover customers willing to purchase an item at the 

high price, denoted )()(|),,( 1211
PXPQPYh , is derived. 

 

Lemma 5.2.2.  For )(|),,( 1211 PXPQPY , the number of leftover customers with 

reservation prices at least as high as 2P  after all of the low-price items have been sold, 
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the probability mass function is that of a random variable that follows a binomial 

distribution with parameters   11)( QPX  and    )(1)(1 12 PFPF RPRP  , as given by: 
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y
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RP
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y

Qx
xyh


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
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




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



















 


1

1211 )(1

)(1
1

)(1

)(1
)|(

1

2

1

21

)(|),,( , (5.2.2) 

where x denotes a realized value of )( 1PX  , dxQ 1  and 10 Qxy  . 

 

Proof.  Since the items being sold are homogeneous, all low-price items must be sold 

before any high-price items are sold.  Of the original d customers, )( 1PX  are willing to 

pay 1P  for an item, and  11),(min QPX  purchase one.  This reduces the size of the 

customer base to which high-price items can be sold to   11)( QPX  customers.  Of 

these   11)( QPX  customers, the number with reservation prices at least as high as 2P  is 

a random variable denoted )(|),,( 1211 PXPQPY . 

 

The probability that one of these   11)( QPX  customers will be willing to buy a high-

price item is found using the definition of conditional probability: 

 
    

 
.|

1

21
12

PRPProb

PRPPRPProb
PRPPRPProb




  (5.2.3) 

Since anyone with a reservation price of at least 2P  also has a reservation price of at least 

1P ,     21 PRPPRPProb   is simply  2PRPProb  .  Therefore, (5.2.3) reduces to: 

 
 
 1

2
12 |

PRPProb

PRPProb
PRPPRPProb




  (5.2.4) 

or 
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  .
)(1

)(1
|

1

2
12

PF

PF
PRPPRPProb

RP

RP




  (5.2.5) 

 

Similar to )( 1PX  in Lemma 5.2.1, )(|),,( 1211 PXPQPY  is a random variable that follows 

a binomial distribution.  The parameters of )(|),,( 1211 PXPQPY  are   11)( QPX , the 

number of independent yes/no experiments (the size of the leftover customer base) and 

   )(1)(1 12 PFPF RPRP  , the probability of a success (the probability one of the leftover 

  11)( QPX  customers will have a reservation price at least as high as 2P ) as given by 

(5.2.5).  Q.E.D. 

 

5.2.3   THE DUAL-PRICE DISCRETE MODEL 

In this section, a new model for a seller who is going to maximize expected profit by 

selling an inventory of homogeneous items at two difference prices: 1P  (low price) and 

2P  (high price), where 210 PP  , is presented.  Note that because the items being sold 

are identical, all low-price items have to be sold before any high-price items can be sold 

(no one will pay the high price for an item if the same item is available at the low price).  

Two inventory levels are chosen by the seller: 1Q  (quantity of items to be made available 

for sale at the low price) and 2Q  (quantity of items to be made available for sale at the 

high price).  The seller knows the size of the customer base, d. Denote the number of 

customers willing to purchase a low-price item (i.e.; those with a reservation price at least 

as high as 1P ) as )( 1PX .  Denote the number of leftover customers willing to purchase a 

high-price item (i.e.; those with a reservation price at least as high as 2P , but who 
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couldn’t buy a low-price item because they were sold out) as )(|),,( 1211 PXPQPY   For 

any random variable used here, )(Z , the corresponding probability function is denoted 

)(Zh  or )(Zf  (for discrete and continuous cases, respectively) and the corresponding 

cumulative distribution function is denoted )(ZF .     

 

Lemma 5.2.3.  Expected total profit, )],,,([ 2211 QPQPE Total , for the dual-price discrete 

model is given by: 





1

1

0

)(12211 )()],,,([
Q

x

PXTotal xxhPQPQPE  

(5.2.6) 
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 21 QQc  . 

 

Proof.  The proof of Lemma 5.2.3 begins with the derivation of expected revenue terms 

covering three sets of conditions of )( 1PX : 

1. There are enough customers with reservation prices at least as high as 1P  such that 

the low-price items may sell-out, but with no possibility of unmet demand for 

low-price items ).)(( 11 QPX   

2. There are enough customers with reservation prices at least as high as 1P  such that 

the low-price items will sell-out and high-price items may sell-out, but with no 

possibility of unmet demand for high-price items ).)(1( 2111 QQPXQ   
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3. There are enough customers with reservation prices at least as high as 1P  such that 

the low-price items will sell-out, high-price items may sell-out, and there is the 

possibility of unmet demand for high-price items ).)(1( 121 dPXQQ   

Refer to Figure 5.2.1: 

 

Figure 5.2.1.  Diagram of Regions in Expected Profit Function. 

 

Case 1: Expected Revenue for .)( 11 QPX   

Here, )( 1PX , the number of customers with reservation prices at least as high as 1P , can 

take on values of  1,0 Q .  Since there is no possibility of unmet demand for low-price 

items, there is no possibility of selling high-price items (recall that all low-price items 
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must be sold before any high-price items can be sold).  Therefore, for ,)( 11 QPX   

)(|),,( 1211 PXPQPY  and the expected revenue is independent of ).( 2PY   The result is an 

expected revenue term, )],,([ 111 QPRE  that is simply the low-price multiplied by the 

expected quantity of low-price items sold for :)( 11 QPX   

.)()],([
1

1

0

)(1111 



Q

x

PX xxhPQPRE  (5.2.7) 

 

Case 2: Expected Revenue for .)(1 2111 QQPXQ   

Here, )( 1PX , the number of customers with reservation prices at least as high as 1P , can 

take on values on  211 ,1 QQQ  .  As such, all of the low price items will sell out, some 

of the high-price items may be sold, but there is no possibility of unmet demand for high-

price items.  The result is an expected total revenue term, )],,,,([ 22112 QPQPRE  that is 

made up of the expected revenue from a sell-out of low-price items, :)],,([ 2111,2 QQPRE  

)()],,([ )(

1

112111,2 1

21

1

xhQPQQPRE PX

QQ

Qx






  (5.2.8) 

and expected revenue from high-price items, :)],,,([ 22112,2 QPQPRE  
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
 






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 (5.2.9) 

Note that in (5.2.9), )(|),,( 1211 PXPQPY  can only take on values up to and including 

,1Qx since that is the size of the remaining customer base after all of the low-price 

items have been sold.  For a diagrammatic representation, refer to the region labelled “1” 

in Figure 5.2.1. 
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Adding (5.2.8) and (5.2.9) and rearranging gives )],,,,([ 22112 QPQPRE  an expression for 

the expected revenue for :)(1 2111 QQPXQ    
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 (5.2.10) 

 

Case 3: Expected Revenue for .)(1 121 dPXQQ   

Here, )( 1PX , the number of customers with reservation prices at least as high as 1P , can 

take on values  dQQ ,121  .  As such, all of the low price items will sell out, some of 

the high-price items may be sold, and there is the possibility of unmet demand for high-

price items.  The result is an expected revenue term, )],,,,([ 22113 QPQPRE  that is made 

up from the expected revenue from a sell-out of low-price items, :)],,([ 2111,3 QQPRE  
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
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  (5.2.11) 

and the expected revenue from high-price items, :)],,,([ 22112,3 QPQPRE  

)],,,([ 22112,3 QPQPRE = 

(5.2.12) 
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Adding (5.2.11) and (5.2.12) and rearranging gives )],,,,([ 22113 QPQPRE  an expression 

for the expected revenue for dPXQQ  )(1 121 : 
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 (5.2.13) 

For a diagrammatic representation of the revenues from high-price items, refer to Figure 

5.2.1; the regions labelled “2” (no unmet demand of high-price items, the second term 

inside the brackets of (5.2.13)) and “3” (unmet demand of high-price items, the third term 

inside the brackets of (5.2.13)). 

 

To calculate expected total revenue, )],,,,([ 2211 QPQPRE Total add (5.2.7), (5.2.10) and 

(5.2.13) to give: 
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Finally, as expected total profit, )],,,([ 2211 QPQPE Total , is equal to expected total 

revenue (Equation 4.7.9) less costs, subtract  21 QQc   from (5.2.14) to get (5.2.6).  

Q.E.D. 
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5.2.4 DISTRIBUTION OF )( 1PX  IN THE NORMAL APPROXIMATION 

MODEL 

In this section, the distribution of the number of customer willing to pay price 1P  for an 

item is derived.  Recall from Chapter 3, )( 1PX  is approximated by a normal random 

variable with mean 

 )(1 1)( 1
PFd RPPX   (5.2.15) 

and variance 

  )()(1 11

2

)( 1
PFPFd RPRPPX  , (5.2.16) 

assuming both parameters are greater than five.  Using (5.2.15) and (5.2.16), the 

probability density function for )( 1PX  is approximated by: 
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. (5.2.17) 

 

5.2.5 DISTRIBUTION OF )(|)( 1211 PXP,Q,PY  IN THE NORMAL 

APPROXIMATION MODEL 

For )(|),,( 1211 PXPQPY , the probability density function is approximated by that of a 

normal random variable with mean 
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and variance 
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assuming both parameters are greater than five.  If the assumptions are not met, the exact 

model is used.  Using (5.2.18) and (5.2.19), the corresponding probability density 

function for )(|),,( 1211 PXPQPY is approximated by: 

 

*

)(1

)(1
1

)(1

)(1
2

1
)|(

1

2

1

2
1

)(|),,( 1211






























PF

PF

PF

PF
Qx

xyf

RP

RP

RP

RP

PXPQPY



 

 

 













































































)(1

)(1
1

)(1

)(1
2

)(1

)(1

exp

1

2

1

2
1

2

1

2
1

PF

PF

PF

PF
Qx

PF

PF
Qxy

RP

RP

RP

RP

RP

RP

. 

(5.2.20) 

 

5.2.6 THE DUAL-PRICE NORMAL APPROXIMATION MODEL 

The model from section 5.2.3 requires that inventory levels take on only discrete values.  

To allow for non-discrete values of inventory (e.g.; when the units of measurement are 

for weights or volumes), summations are replaced with integrals and the normal 

approximation to the binomial distribution is used.   A random variable that follows a 

binomial distribution with parameters d (number of independent yes/no experiments) and 

Prob (probability of success) can be approximated by a normally distributed random 

variable with a mean of dProb and a variance of dProb(1-Prob), provided these 

parameters are both greater than five. 

 

The expected profit approximation model, analogous to (5.2.6) is given by: 
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5.2.7 SOLUTION FOR *

2Q  IN THE DUAL-PRICE MODEL 

In this section, a solution for *

2Q , the optimal number of items to be made available for 

sale at a given high price, 2P , is provided.  The result can be used to reduce the number 

of decision variables required to optimize expected profit from four to three. 

 

Lemma 5.2.4.  For the seller who is setting two prices and two corresponding inventory 

levels, the optimal number of items to be made available for sale at price 2P  is given by: 

.
2

21

)(|),,(

*

2 1211 






 
 

P

cP
FQ PXPQPY  (5.2.22) 

 

Proof.  Taking the partial derivative of the expected profit function with respect to ,2Q  

setting equal to zero and solving for ,2Q  gives .*

2Q   Using the Leibniz integral rule, the 

partial derivative of (5.2.21) is: 
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which reduces to: 
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Setting (5.2.24) equal to zero and rearranging gives: 

2

)(|),,( )|(
1211
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21
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c
dydxxyf PXPQPY

Qx

QyQQx










 (5.2.25) 

Note that the left-hand side of (5.2.25) is simply the probability that )(|),,( 1211 PXPQPY  

is greater than .*

2Q   Therefore, (5.2.25) can be rewritten as: 

2

*

2)(|),,( )(1
1211 P

c
QF PXPQPY  . (5.2.26) 

Rearranging (5.2.26) gives: 

2

2*

2)(|),,( )(
1211 P

cP
QF PXPQPY


  (5.2.27) 

or 
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To confirm that using (5.2.28) results in a maximum expected profit, begin by taking the 

second derivative of (5.2.21): 
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Since (5.2.30) is negative for all allowable values of ,2Q (5.2.28) does occur at the 

maximum of (5.2.21).  Q.E.D. 

  

5.2.8 NUMERICAL EXAMPLE WITH A DUAL-PRICE SOLUTION 

This section discusses a dual price-quantity NPP example from the literature (Dana, 

1999), and shows how the approach and solution from the literature are different from 

what is derived above. 

 

The example is as follows.  A seller of homogeneous items decides on selling prices and 

corresponding inventory levels before knowing the exact size of the customer base, and 

how much each customer is willing to pay for an item.  There are two possible sizes of 

customer base, 1001 d and 4002 d , which are equally likely.  Denote the probability 

of the high-demand state being realized as 2dProb , which is 50%.  The maximum amount 
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each customer is willing to pay for an item (reservation price) is random, and follows a 

uniform distribution as RP ~ U[0, Pmax = 100].  In addition, the seller incurs a unit cost of 

c = 20 for each item made available for sale, regardless or whether or not the item 

ultimately sold. 

 

Dana’s solution (presented in full in Appendix A) is based upon the well-known 

monopolist’s pricing strategy of setting marginal revenue equal to marginal cost to find 

the optimal quantity, and then using that quantity in the original demand function to find 

optimal price.  Such is the procedure to find the optimal low price *

1P , and corresponding 

quantity *

1Q , with the demand curve found using the low-demand state 1d .  Next, a 

residual demand curve is found (since the potential customer base for high-price items 

has been reduced by the sale of low-price items) and the process is repeated to find *

2P  

and *

2Q .  For the example given above, Dana’s solution is 60*

1 P , 40*

1 Q , 70*

2 P  

and 90*

2 Q . 

 

To address this example with an expected profit equation derived above, (5.2.6) is used 

as follows.  When the number of customers is 100, 1001  dD  is used with the 

corresponding expected profit occurring 50% of the time.  When the number of 

customers is 400, 4002  dD  is used with the corresponding expected profit occurring 

50% of the time.  Using the definition of expected value, the overall expected profit is 

given by: 

].|[5.0]|[5.0][ 21 dDEdDEE TotalTotalOverall   (5.2.31) 
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where ]|[ DE Total  for each case of D is found using (5.2.6).  

 

For the example given above, the optimal two price-quantity pair that maximizes (5.2.31) 

is found to be 60*

1 P , 42*

1 Q , 70*

2 P  and 87*

2 Q (found using a brute force 

search).  Note the optimal prices found using Dana’s approach and Equation 4.7.1 are the 

same, however the optimal quantities are different.  The difference in maximum expected 

profit found using the two approaches is small (2821 using Dana’s model and 2824 using 

the exact model derived here).  For this specific example, this suggests that the difference 

in underlying approaches (Dana assumes the number of items purchased at a given price 

is deterministic, whereas we assume it to be probabilistic) may not be relevant. 

 

For further comparison, consider the optimal single-price solution found by a search over 

a grid of values using Equation 4.2.14: 65* P , 135* Q , and 2766)],([ ***  QPE .  

In this case the two-price strategy of Section 5.2.3 (maximum expected profit of 2824) 

provides a solution that is superior to the single-price strategy of Section 4.2.2.  

 

5.2.9   THE BANDWAGON EFFECT 

Consider a seller with an inventory of homogeneous items who sets selling price(s) and 

corresponding inventory level(s) before realizing exact demand.  Specifically, consider 

the case of a seller who can choose a certain number of items, 1Q , to be sold at a first 

price, 1P , and a certain number of items, 2Q , to be sold at a second price, 2P .  The seller 

incurs a unit cost of c for each item made available for sale, regardless of whether or not 

the item is ultimately sold.  Assume that once all of the items at price 1P  have been sold, 
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the seller makes it known to the public that 
1Q  items have already been sold and that only 

2Q  items are remaining.  This increases demand such that the new distribution of 

reservation prices, 2RP , is stochastically larger than the original distribution of 

reservation prices, 1RP  (the Bandwagon Effect).  While the seller does not know the 

reservation prices of individual customers, it is assumed that he knows both distributions, 

)(1 RPF  and )(2 RPF .  For other examples of the Bandwagon Effect, see DeSerpa, 1996 

and Becker, 1991. 

 

Here we derive the distributions for the number of customers willing to pay the two 

possible selling prices, and the expected profit function. 

 

5.2.10   DISTRIBUTION OF )( 1PX  

Consider first, the number of customers willing to pay 1P  for one of the initial 1Q  items.  

As in the basic model, denote this number of customers as random variable )( 1PX , 

which follows a binomial distribution with probability mass function: 

      .)()(1)()( 111)( 1

xd

RP

x

RPPX PFPF
x

d
xPXProbxh











  (5.2.32) 

The proof is provided in Lemma 5.2.1. 

 

5.2.11   DISTRIBUTION OF )()( 1211 PX|P,Q,PY  

Once all of the low-price items have been sold, the seller makes it known to the public 

that 1Q  items have already been sold and that only 2Q  items are remaining.  The result is 
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a shift in reservation prices to 
2RP .  It is possible that there are still some leftover 

customers who were willing to pay 1P  for an item, but were unable to purchase one since 

they were sold out.  Of these leftover customers, some have reservation prices high 

enough that they are willing to pay 2P  for an item.  Denote )(|),,( 1211 PXPQPY  as the 

number of leftover customers willing to buy a high-price item.  Here, the probability 

mass function for the number of leftover customers willing to purchase an item at the 

high price, denoted )()(|),,( 1211
PXPQPYh , is derived. 

 

Lemma 5.2.5.  For )(|),,( 1211 PXPQPY , the number of leftover customers with 

reservation prices at least as high as 2P  after all of the low-price items have been sold, 

the probability mass function is that of a random variable that follows a binomial 

distribution with parameters   11)( QPX  and    )(1)(1 1122 PFPF RPRP  , as given by: 

yQx
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11
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)(|),,( , (5.2.33) 

where x denotes a realized value of )( 1PX  , dxQ 1  and 10 Qxy  . 

 

Proof.  Since the items being sold are homogeneous, all low-price items must be sold 

before any high-price items are sold.  Of the original d customers, )( 1PX  are willing to 

pay 1P  for an item, and  11),(min QPX  purchase one.  This reduces the size of the 

customer base to which high-price items can be sold to   11)( QPX  customers.  Of 

these   11)( QPX  customers, the number with reservation prices at least as high as 2P  

is a random variable denoted )(|),,( 1211 PXPQPY . 
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The probability that one of these   11)( QPX  customers will be willing to buy a high-

price item is found using the definition of conditional probability: 

 
    

 
.|

11

2211
1122

PRPProb

PRPPRPProb
PRPPRPProb




  (5.2.34) 

Since anyone with a reservation price of at least 2P  also has a reservation price of at least 

1P ,  2211 PRPPRPProb   is simply  22 PRPProb  .  Therefore, (5.2.3) reduces to: 

 
 
 11

22
1122 |
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


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or 

  .
)(1

)(1
|

11

22
1122

PF

PF
PRPPRPProb

RP

RP




  (5.2.36) 

 

Similar to )( 1PX  in Lemma 5.2.1, )(|),,( 1211 PXPQPY  is a random variable that follows 

a binomial distribution.  The parameters of )(|),,( 1211 PXPQPY  are   11)( QPX , the 

number of independent yes/no experiments (the size of the leftover customer base) and 

   )(1)(1 1122 PFPF RPRP  , the probability of a success (the probability one of the 

leftover   11)( QPX  customers will have a reservation price at least as high as 2P ) as 

given by (5.2.33).  Q.E.D. 

 

5.2.12   THE EXPECTED PROFIT FUNCTION FOR THE BANDWAGON 

EFFECT 

Here we present the expected profit function for the seller. 
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Lemma 5.2.6.  Expected total profit, )],,,([ 2211 QPQPE Total , for the dual-price with 

bandwagon effect model is given by: 





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)(12211 )()],,,([
Q

x

PXTotal xxhPQPQPE  

(5.2.37) 
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The proof of Lemma 5.2.6 is the same as the proof for the expected total profit function 

for the basic dual-price model, provided in Lemma 5.2.3.  The only difference is that the 

probability mass function for the number of leftover customers willing to buy an item at 

price 2P  is given by (5.2.33) instead of (5.2.2).  Q.E.D. 

 

5.2.13   BANDWAGON EFFECT EXAMPLE 

Consider the case of a deterministic customer base of size, 25d , a unit cost to the 

seller of 5c , and an initial reservation price distribution of  25,0~1 URP .  Assume 

that once half of the items are sold (i.e.;   %50/ 211 QQQ ), the bandwagon effect 

changes the distribution of reservation prices such that   ,, 1212 RPQQaRP  where 

  25.1, 21 QQa .   
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The optimal conditions are found using a brute force search with the expected profit 

functions indicated below.  If the seller chooses to set only one selling price and 

inventory level, the optimal conditions of 15* P , and 11* Q  result in an expected 

profit of 7.86)],([ ***  QPE  (found using Equation 4.2.1).  If the seller chooses to set 

two selling prices and corresponding inventory levels, the optimal conditions of 13*

1 P , 

6*

1 Q , 19*

2 P  and 6*

2 Q  resulting in an expected profit of 

5.102)],,,([ *

2

*

2

*

1

*

1

*  QPQPE  (found using Equation 5.2.37), an increase of 

approximately 18%. 

 

5.3   n-PRICE MODEL 

In this section we consider the general case of a seller who sets n selling prices and 

corresponding inventory levels.  First, we provide a dynamic programming approach 

which is used to maximize expected profit.  The approach reduces the search space of the 

problem, giving a more efficient algorithm for finding the optimal solution than a 

traditional dynamic programming approach.  The section is concluded with a numerical 

example. 

 

5.3.1 EXPECTED PROFIT 

Here we present a step-by-step procedure that can be used to maximize the total expected 

profit for the seller.  The following information is required: 
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1. The number of selling prices that will be set, n.  This is also the number of 

corresponding inventory levels that will be set, with at least one item made available 

for sale at each of the n prices. 

2. The size of the customer base, d.  Note that d ≥ n. 

3. The selling prices that the seller can choose from (for example, set by the market), 

Price1, Price2, …, PricePnum (strictly increasing).  Note that Pnum ≥ n. 

4. The cost incurred by the seller to make one unit available for sale, c. 

5. The distribution of reservation prices of the customers, such that for each allowable 

selling price, the probability that a customer will be willing to pay a selling price can 

be determined: ProbPrice1, ProbPrice2, …, ProbPricePNum. 

 

Step 1 – Determine the prices that can possibly be charged at each stage, and the 

allowable sets of those prices.   

 

Since each stage corresponds to one price level and there are n price levels, there are n 

stages.  As the stage number increases, the prices being charged must strictly increase: 

....21 nPPP   (5.3.1) 

 

In the first stage (the stage with the lowest selling price), the lowest possible selling price 

is the lowest selling price that the seller can choose from, Price1.  In the second stage, the 

lowest possible selling price is the lowest selling price that is higher than the lowest 

possible selling price in the first stage.  Therefore, the lowest possible selling price in the 
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second stage is Price2.  In general, the lowest selling price that can possibly be charged in 

the m
th

 stage is Pricem. 

 

In the final stage (the stage with the highest price, stage n), the highest possible selling 

price is the highest selling price that the seller can choose from, PricePnum.  Therefore, the 

range of possible selling prices in the final stage is: 

PNumnn PricePPrice  . (5.3.2) 

 

In the penultimate stage, the highest possible selling price is the highest selling price that 

is lower than the highest possible selling price in the final stage, 1PNumPrice .  Therefore, 

the range of possible selling prices in the penultimate stage is: 

111   PNumnn PricePPrice . (5.3.3) 

 

This procedure can be repeated for all stages, and the range of possible selling prices in 

stage m is observed to be: 

nmPNummm PricePPrice  . (5.3.4) 

 

Step 2 – Determine the inventory levels that can possibly be selected at each stage, and 

the allowable sets of those inventory levels. 

 

For each of the n stages, at least one unit of inventory is made available for sale.  

Therefore, the minimum inventory level for any stage m is one. 
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If the minimum inventory level (one unit) is chosen at every stage other than the last, 

there can be up to d – n + 1 units of inventory made available for sale at the final stage.  

No more than this amount would be chosen, since doing so would result in the total 

number of units being made available for sale exceeding the size of the customer base.  

Therefore, the range of units to be made available for sale in the final stage is: 

11  ndQn . (5.3.5) 

 

Note that this range applies to each stage.  Therefore, for any stage, m: 

11  ndQm , (5.3.6) 

providing 

dQi

n

i


1

. (5.3.7) 

 

Step 3 – For each stage and allowable combination of prices and inventory levels, 

determine the probabilities that a given number of customers is willing to pay the price 

being charged at that stage.  The probability that at stage m there are exactly i customers 

willing to pay price Pm is denoted rm(i). 

 

Step 3a – Calculate the probability distribution for the first stage. 

The number of customers willing to pay the first-stage price 1P , is found using the 

probability mass function of the binomial distribution, where the population size is the 

size of the customer base d (since at the first stage, the entire customer base is available 
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to possibly purchase an item), and the probability of a success (the probability of a 

customer having a reservation price at least as high as 1P ) is Prob1: 

    idi
rob-PProb

i

d
Pir











 1111 1)|( , (5.3.8) 

 

Equation 4.13.8 is used to calculate probabilities for i = 1, 2, …, d, and Prob1 = 

ProbPrice1, ProbPrice2, …, ProbPrice(Pnum+1-n).  (Note that )|( 11 Pir  are not calculated for i = 

0.  This is because there will be no use for such probabilities in the expected profit 

calculations later.) 

 

Step 3b – Calculate the probability distribution for the second stage. 

For the second stage, calculating the probability that exactly j customers (from a 

population size of 2Population ) are remaining and willing to pay P2 begins with the 

binomial probability mass function: 

    jPopulationj
Prob-Prob

j

Population
jr











 2

22

2

2 1)( , (5.3.9) 

where 2Prob  is the probability of a success, which in this case, is the probability that a 

customer has a reservation price at least as high as P2, given that he had a reservation 

price at least as high as P1.  From the definition of conditional probability, this is given 

as: 

P1

P2

Prob

Prob
PPProb ),( 212 . (5.3.10) 
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The size of the population in the second stage, 2Population , depends on how many 

customers are “leftover” from the first stage.  If there were more than Q1 customers 

willing to pay P1 (i.e.; there was unmet demand), there are “leftover” customers who now 

make up the population of customers who might have reservation prices high enough to 

be willing to buy an item at P2.  This means that the size of 2Population  can take on 

values between zero and 1Qd  .  However, to allow for j customers remaining and 

possibly willing to pay P2, the size of 2Population  must be at least j. 

 

For each necessary size of 2Population , the respective probability of such an occurrence 

can is given by one of the previously-calculated values of )|( 11 Pir .  For example, the 

probability of having exactly j leftover customers in the second stage ( jPopulation 2 ) 

is the probability that at the first stage, there were jQ 1  customers willing to pay P1.  

This was previously calculated as )( 111 P|jQr  .  Therefore, the probability that exactly j 

customers are willing to pay P2 at the second stage, given that exactly j customers are 

“leftover” from the first stage is found my multiplying (9) by )( 111 P|jQr  .  To account 

for all possible sizes of 2Population  that allow for j successes in the second stage, all 

allowable forms of (5.3.9) are multiplied by their respective values of )|( 11 Pir , and the 

summation of the products is taken to give: 
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(5.3.11) 

which can be expressed as: 

),,|( 2112 PPQjr  

    1

1

1

),(),()|( 212212

1

1111

0

indexj
jQD

index

PPProbPPProb
j

indexj
PindexjQr 







 





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(5.3.12) 

 

Step 3c – Calculate the probability distribution for the third stage. 

The procedure for calculating the probabilities for the third stage is similar to that for the 

second stage.  For the third stage, calculating the probability that exactly k customers 

(from a population size of 3Population ) are remaining and willing to pay P3 begins with 

the binomial probability mass function: 

    kPopulationk
Prob-Prob

k

Population
kr











 3

33

3

3 1)( , (5.3.13) 

where 3Prob  is the probability of a success, which in this case, is the probability that a 

customer has a reservation price at least as high as P3, given that he had a reservation 

price at least as high as P2.  From the definition of conditional probability, this is given 

as: 
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P2

P3

Prob

Prob
PPProb ),( 323 . (5.3.14) 

 

The size of the population in the second stage, 3Population , depends on how many 

customers are “leftover” from the second stage.  If there were more than Q2 customers 

remaining after the first stage and willing to pay P2 (i.e.; there was unmet demand), there 

are “leftover” customers who now make up the population of customers who might have 

reservation prices high enough to be willing to buy an item at P3.  This means that the 

size of Population3 can take on values between zero and  21 QQd  .  However, to 

allow for k customers remaining and possibly willing to pay P3, the size of 3Population  

must be at least k. 

 

For each necessary size of 3Population , the respective probability of such an occurrence 

can is given by one of the previously-calculated values of )( 2112 P,P,Q|jr .  For example, 

the probability of having exactly k leftover customers in the second stage 

( kPopulation 3 ) is the probability that at the second stage, there were kQ 2  “leftover” 

customers willing to pay P2.  This was previously calculated as )( 21122 P,P,Q|kQr  .  

Therefore, the probability that exactly k customers are willing to pay P3 at the third stage, 

given that exactly k customers are “leftover” from the second stage is found my 

multiplying (5.3.12) by )( 21122 P,P,Q|kQr  .  To account for all possible sizes of 

3Population  that allow for k successes in the third stage, all allowable forms of (5.3.12) 
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are multiplied by their respective values of )( 2112 P,P,Q|jr , and the summation of the 

products is taken to give: 

),,,,|( 321213 PPPQQkr  
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(5.3.15) 

which can be expressed as: 

 

),,|(),,,,|( 211222

0

321213
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(5.3.16) 

 

Step 3d – Calculate the probability distribution for the m
th

 stage. 

From inspection of (5.3.10), (5.3.12), (5.3.13) and (5.3.16), a pattern is seen that leads to 

the general form of the probability that at the m
th

 stage ( nm2 ), exactly t customers 

will be remaining and willing to pay Pm for an item: 
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where 

1)-P(m

Pm
mmm

Prob

Prob
P,PProb  )( 1  (5.3.18) 

and  






 
1

1

1

m

v

vm,Sum QQ . (5.3.19) 

 

Step 4 – Use dynamic programming to determine the maximum expected profit, and the 

corresponding inventory levels and selling prices for each stage. 

 

Step 4a – For every possible state of the final stage, i.e.; every allowable combination of 

inventory levels and selling prices )( 2121 nn P,...,P,P,Q,...,Q,Q , calculate the expected 

profit from the final-stage items.  Doing so required the probabilities that various 

numbers of customers are “leftover” and willing to pay Pn. These probabilities are given 

from (16) with m = n, and are used in the expected profit function as: 

  )(E 2121 nnn P,...,P,P,Q,...,Q,Q  

   n

QD

u

nnnnn cQQuP,...,P,P,Q,...,Q,QurP
n,Sum






1

1

2121 ,min*)|( . 

(5.3.20) 
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Step 4b – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

determine the maximum expected profit and respective inventory level and selling price 

from the sale of final-stage items (as found in Step 4b).  These quantities are denoted 

 ),...,,,,...,,( 121121

*

 nnn PPPQQQE , )( 121121  nn

*

n P,...,P,P,Q,...,Q,QQ  and 

)( 121121  nn

*

n P,...,P,P,Q,...,Q,QP , respectively. 

 

Step 4c – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

calculate the expected profit from the penultimate-stage items.  The form of the expected 

profit function is similar to (5.3.20): 

   )(E 1211211 nnn P,...,P,P,Q,...,Q,Q  

   1

1

112112111

2,

,min*),...,,,,...,,|( 





 


n

Qd

v

nnnnn cQQvPPPQQQvrP
nSum

. 

(5.3.21) 

 

Step 4d – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

determine the expected profit from the sale of penultimate-stage items (as found in Step 

4b) plus the maximum expected profit for the given state from sales of the final-stage 

items (as found in Step 4a).  This is expressed as: 

   )(E 1211211 nn

*

n P,...,P,P,Q,...,Q,Q  

   )(E)(E 1211211211211   nn

*

nnnn P,...,P,P,Q,...,Q,QP,...,P,P,Q,...,Q,Q . 

(5.3.22) 
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Step 4e – Continue with this backward induction procedure until the first stage is 

reached.  At that point, for each combination of allowable 1Q  and 1P , the corresponding 

optimal inventory levels, ,Q*

2 ,*

3Q …, *

nQ , selling prices, ,P*

2 ,*

3P …, *

nP  and expected 

profit,  *

2E  , (notation suppressed) will be known.  By inspection, the combination of 

*

1Q and *

1P are chosen by that which gives the highest value of  *

1E  . 

 

5.3.2  NUMERICAL EXAMPLE OF n-PRICE MODEL 

To demonstrate the steps outlined in Section 5.3.1, the following example is presented: 

1. The number of selling prices is n = 3.  Thus, the solution will include three optimal 

price-inventory level pairs ( *

3

*

3

*

2

*

2

*

1

*

1 ,,,,, QPQPQP ). 

2. The size of the customer base is d = 4. 

3. The selling prices that the seller can choose from are: 

 Price1 = 6,  

 Price2 = 8,   

 Price3 = 10 and  

 Price4 = 12. 

4. The reservation prices of the customers follow a normal distribution with mean of 9 

and a standard deviation of 2.  Therefore, the probabilities that a customer will have a 

reservation price at least as high as each of the four given selling prices are:  

 ProbPrice1 = 0.993,  

 ProbPrice2 = 0.691,  

 ProbPrice3 = 0.309 and  
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 ProbPrice4 = 0.067. 

 

Step 1 – Determine the prices that can possibly be charged at each stage, and the 

allowable sets of those prices.   

 

Using (5.3.4) and the parameters given in the example, the selling prices that can possibly 

be charged at each stage are: 

P1 = 6 or 8, 

P2 = 8 or 10 and 

P3 = 10 or 12. 

 

From (5.3.1), the allowable sets of prices (P1, P2, P3) are (6, 8, 10), (6, 8, 12), (6, 10, 12) 

and (8, 10, 12). 

 

Step 2 – Determine the inventory levels that can possibly be selected at each stage, and 

the allowable sets of those inventory levels. 

 

Using (5.3.6) and the parameters given in the example, the inventory levels that can 

possibly be chosen at each stage are: 

Q1 = 1 or 2, 

Q2 = 1 or 2 and 

Q3 = 1 or 2. 
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From (5.3.7), the allowable sets of inventory levels (Q1, Q2, Q3) are (1, 1, 1), (1, 1, 2), (1, 

2, 1) and (2, 1, 1). 

 

Step 3a – Calculate the probabilities for the first stage. 

Using (5.3.8) and the parameters given in the example, the values of )|( 11 Pir are 

calculated and shown in Table 5.3.1: 

Table 5.3.1. Values of )( 11 P|ir . 

P1 i )( 11 P|ir  

6 1 0.0011 

6 2 0.0233 

6 3 0.2172 

6 4 0.7584 

8 1 0.0812 

8 2 0.2731 

8 3 0.4080 

8 4 0.2286 

 

Step 3b – Calculate the probabilities for the second stage. 

Using (5.3.12) and the parameters given in the example, the values of )( 2112 P,P,Q|jr  are 

calculated and shown in Table 5.3.2. 

 

Step 3c – Calculate the probabilities for the third stage. 

Using (5.3.16) and the parameters given in the example, the values of 

)( 321213 P,P,P,Q,Q|kr  are calculated and shown in Table 5.3.3. 
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Table 5.3.2.  Values of )2112 P,P,Q|jr ( . 

Q1 P1 P2 j 
index1 )2112 P,P,Q|jr (  

0 1 2 

1 6 8 1 0.0173 0.0834 0.1131 0.2138 

1 6 8 2 0.1192 0.3236  0.4428 

1 6 8 3 0.3085   0.3085 

1 6 10 1 0.0077 0.0961 0.3370 0.4409 

1 6 10 2 0.0237 0.1665  0.1902 

1 6 10 3 0.0274   0.0274 

1 8 10 1 0.1219 0.2016 0.0938 0.4173 

1 8 10 2 0.0812 0.0756  0.1569 

1 8 10 3 0.0203   0.0203 

2 6 8 1 0.1609 0.2911  0.4520 

2 6 8 2 0.4164   0.4164 

2 6 10 1 0.0718 0.3357  0.4075 

2 6 10 2 0.0829   0.0829 

2 8 10 1 0.1821 0.1130  0.2950 

2 8 10 2 0.0455   0.0455 

 

Table 5.3.3.  Values of )321213 P,P,P,Q,Q|kr ( . 

Q1 Q2 P1 P2 P3 k 
index2 

)321213 P,P,P,Q,Q|kr (  
0 1 

1 1 6 8 10 1 0.1976 0.1525 0.3501 

1 1 6 8 12 1 0.0428 0.0539 0.0966 

1 1 6 10 12 1 0.0412 0.0093 0.0505 

1 1 6 8 10 2 0.0614  0.0614 

1 1 6 8 12 2 0.0029  0.0029 

1 1 6 10 12 2 0.0013  0.0013 

1 1 8 10 12 1 0.0340 0.0069 0.0409 

1 1 8 10 12 2 0.0010  0.0010 

1 2 6 8 10 1 0.1377  0.1377 

1 2 6 8 12 1 0.0298  0.0298 

1 2 6 10 12 1 0.0059  0.0059 

1 2 8 10 12 1 0.0044  0.0044 

2 1 6 8 10 1 0.1858  0.1858 

2 1 6 8 12 1 0.0402  0.0402 

2 1 6 10 12 1 0.0180  0.0180 

2 1 8 10 12 1 0.0099  0.0099 

 



79 

  

Step 4 – Use dynamic programming to determine the maximum expected profit, and the 

corresponding inventory levels and selling prices for each stage. 

 

Step 4a – For every possible state of the final stage, i.e.; every allowable combination of 

inventory levels and selling prices ),...,,,,...,,( 2121 nn PPPQQQ , calculate the expected 

profit from the final-stage items.   

 

Using (5.3.20) and the parameters given in the example, the values of 

 ),,,,,( 3213213 PPPQQQE   are calculated and shown in Table 5.3.4. 

 

Table 5.3.4.  Values of  )(Π 3213213 P,P,P,Q,Q,QE . 

Q1 Q2 Q3 P1 P2 P3  )(Π 3213213 P,P,P,Q,Q,QE  

1 1 1 6 8 10 3.1147 

1 1 1 6 8 12 0.1942 

1 1 1 6 10 12 -0.3787 

1 1 1 8 10 12 -0.4983 

1 1 2 6 8 10 2.7290 

1 1 2 6 8 12 -0.7712 

1 1 2 6 10 12 -1.3633 

1 1 2 8 10 12 -1.4869 

1 2 1 6 8 10 0.3766 

1 2 1 6 8 12 -0.6423 

1 2 1 6 10 12 -0.9287 

1 2 1 8 10 12 -0.9472 

2 1 1 6 8 10 0.8578 

2 1 1 6 8 12 -0.5172 

2 1 1 6 10 12 -0.7846 

2 1 1 8 10 12 -0.8817 
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Step 4b – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

determine the maximum expected profit and respective inventory level and selling price 

from the sale of final-stage items (as found in Step 4b).   

 

From inspection of Table 5.3.4, the values of  ),,,( 2121

*

3 PPQQE   are determined and 

shown in Table 5.3.5: 

Table 5.3.5.  Values of  )(Π 2121

*

3 P,P,Q,QE . 

Q1 Q2 P1 P2 )( 2121

*

3 P,P,Q,QQ  )( 2121

*

3 P,P,Q,QP   )(Π 2121

*

3 P,P,Q,QE  

1 1 6 8 1 10 3.1147 

1 1 6 10 1 12 -0.3787 

1 1 8 10 1 12 -0.4983 

1 2 6 8 1 10 0.3766 

1 2 6 10 1 12 -0.9287 

1 2 8 10 1 12 -0.9472 

2 1 6 8 1 10 0.8578 

2 1 6 10 1 12 -0.7846 

2 1 8 10 1 12 -0.8817 

 

Step 4c – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

calculate the expected profit from the penultimate-stage items.   

 

Using (5.3.21) and the parameters given in the example, the values of 

 ),,,(Π 21212 PPQQE  are calculated and shown in Table 5.3.6: 
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Table 5.3.6.  Values of  )(Π 21212 P,P,Q,QE . 

Q1 Q2 P1 P2  )(Π 21212 P,P,Q,QE  

1 1 P1 P2 6.7206 

1 1 P1 P3 5.5850 

1 1 P2 P3 4.9451 

1 2 P1 P2 11.7311 

1 2 P1 P3 6.7612 

1 2 P2 P3 5.7167 

2 1 P1 P2 5.9472 

2 1 P1 P3 3.9038 

2 1 P2 P3 2.4055 

 

Step 4d – For every possible state of the penultimate stage, i.e.; every allowable 

combination of inventory levels and selling prices )( 121121  nn P,...,P,P,Q,...,Q,Q , 

determine the expected profit from the sale of penultimate-stage items (as found in Step 

4b) plus the maximum expected profit for the given state from sales of the final-stage 

items (as found in Step 4a).   

 

Using (5.3.22) and the parameters given in the example, the values of 

 ),,,( 2121

*

2 PPQQE   are calculated and shown in Table 5.3.7: 

Table 5.3.7.  Values of  )(Π 21212 P,P,Q,QE * . 

Q1 Q2 P1 P2 )( 21213 P,P,Q,QQ
*  )( 21213 P,P,Q,QP

*   )(Π 21212 P,P,Q,QE *  

1 1 6 8 1 10 9.8354 

1 1 6 10 1 12 5.2062 

1 1 8 10 1 12 4.4468 

1 2 6 8 1 10 12.1077 

1 2 6 10 1 12 5.8324 

1 2 8 10 1 12 4.7695 

2 1 6 8 1 10 5.4300 

2 1 6 10 1 12 3.1192 

2 1 8 10 1 12 1.5238 
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Step 4e – Continue with this backward induction procedure until the first stage is 

reached.  At that point, for each combination of allowable 1Q  and 1P , the corresponding 

optimal inventory levels, ,Q*

2 ,*

3Q …, *

nQ , selling prices, ,P*

2 ,*

3P …, *

nP  and expected 

profit,  *

2E  , (notation suppressed) will be known.   

 

For the parameters given in the example, the dynamic programming process described 

above gives the following the expected profits for each allowable combination of  1Q  and 

1P  for the first stage:  

Table 5.3.8.  Values of  )(Π 3213211

****
P,P,P,Q,Q,QE . 

Q1 P1 
*

Q2
 *

P2
 *

Q3
 *

P3
  )(Π 3213211

****
P,P,P,Q,Q,QE  

1 6 2 8 1 10 17.1075 

1 8 2 10 1 12 11.6970 

2 6 1 8 1 10 16.7982 

2 8 1 10 1 12 14.7288 

 

The optimal solution is determined by inspection of Table 5.3.8, and shown in Table 

5.3.9: 

Table 5.3.9.  Values of  )(Π 321321

*

1

******
P,P,P,Q,Q,QE . 

*
Q1

 *
P1

 *
Q2

 *
P2

 *
Q3

 *
P3

  )(Π 321321

*

1

******
P,P,P,Q,Q,QE  

1 6 2 8 1 10 17.1075 
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CHAPTER 6 

THE NEWSVENDOR PROBLEM WITH PRICING:  

OPTIMALITY RESULTS FOR SMALL POPULATION SIZES 

 

6.1 INTRODUCTION 

In the previous chapter, the example from Dana (1999) with two possible sizes of 

customer base had an optimal solution of two prices and corresponding inventory levels.  

In this chapter we investigate the circumstances under which it is optimal for the seller to 

set a single selling price and corresponding inventory level, as opposed to setting two 

selling prices and corresponding inventory levels.  Two general cases are considered: a 

deterministic size of customer base and a stochastic size of customer base.  For each case, 

two examples are provided.  While certain proofs and derivations are shown in full in this 

chapter, longer, more tedious derivations of the expected profit functions used in the four 

examples are presented in Appendix B. 

   

6.2 OPTIMALITY RESULTS FROM SMALL POPULATION SIZES 

This section includes the derivation of expected profit functions for both the deterministic 

and stochastic cases of size of customer base.  For each case two examples are provided.  

New notation includes the denoting of the probability that a randomly-selected customer 

has a reservation price at least as high as a given selling price iP   as iF . 
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6.2.1   GENERAL FORM OF THE EXPECTED PROFIT FUNCTION FOR A 

DETERMINISTIC CUSTOMER BASE 

In this section, the general form of an expected profit function for a seller who sets n 

inventory levels and corresponding selling prices with a deterministic customer base of 

size d is derived.  Commonly used notation in this section includes the following.  The 

total number of items made available for sale is TotalQ .  Revenue, R, is random and can 

take on values denoted irev , where 1...,,2,1  TotalQi . 

 

Theorem 6.2.1.  The expected profit function for a seller facing a deterministic customer 

base is given by 

TotaliRi

QTotal

i

nn cQrevhrevPPPQQQE  




)()]...,,,,...,,,([
1

1

2121 .
 (6.2.1) 

 

Proof.  Note that the right hand side of (6.2.1) is made up of an expected revenue 

calculation and a total cost calculation.  The proof of Theorem 6.2.1 requires that the 

components of the expected revenue calculation (possible values of revenue and their 

respective probabilities) be determined.   

 

Begin with a deterministic profit function, revenue less total cost, for a seller who sets n 

inventory levels and corresponding selling prices: 

Totalnnnn cQPPPQQQRPPPQQQ  )...,,,,...,,,()...,,,,...,,,( 21212121 . (6.2.2) 
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Given that the reservation prices of the customers are random, the number of items 

actually sold, and therefore revenue, R (notation suppressed for ease of reading), is also 

random.  To determine the distribution of R, consider first the allowable values of R. 

 

Lemma 6.2.1.  For a seller who sets n inventory levels and prices, the possible revenues 

are 



n

i

iiPQPQPQ2PPQ1PPQPQ2P1P0,
1

22112112111111 ...,,...,,,,...,,, . 

 

Proof.  Since the items being sold are homogeneous, all items available at price 1P  must 

be sold before any items available for sale at any of the higher prices will be sold.  As the 

number of items that can be sold at price 1P  is 1...,,2,10 Q, , the possible revenues from 

the sale of these items are 1111 ...,,2,10 PQPP, .  After all of the items at price 1P  have been 

sold, items at price 2P  may be sold.  Since the number of items that can be sold at price 

2P  is 2...,,2,10 Q, , the possible revenues from the sale of these items are 

2222 ...,,2,10 PQPP, .  The possible revenues that can be realized from the sale of items at 

prices 1P  and 2P  are 22112112111111 ...,,2,1,...,,2,10 PQPQPPQPPQPQPP,  .  By 

inspection, the possible revenues if there are n inventory levels and corresponding prices 

are 



n

i

iiPQPQPQPPQPPQPQPP,
1

22112112111111 ...,,...,,2,1,...,,2,10 .  Q.E.D. 

 

Since the reservation prices of the customers are random, demand for items is random, 

meaning the number of items sold is random, between zero and  dQmin Total, .  Assuming 

that the seller knows d with certainty, no more than one item for each customer will be 
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made available for sale, since no more than d items can be sold.  Therefore, inventory 

levels will be chosen such that dQTotal  , which means   TotalTotal QdQmin , .  Denote 

the possible values of revenue that can be realized by the seller, that is, the possible 

values of R, as irev , where 1...,,2,1  TotalQi , dQTotal  , and 

121 ...  QTotalrevrevrev . 

 

Now that the allowable values of R are known, the remaining information needed to 

know the distribution of R are the probabilities of realizing each allowable value of R.  

The probability of realizing a given possible revenue, irev , depends on both item 

availability and on willingness for a customer to pay for an item.  Given that customers 

have random reservation prices, their willingness to pay given selling prices is also 

random. The distribution of this willingness to pay is given by a joint probability mass 

function, which indicates the joint probabilities of customers’ reservation prices falling 

within certain ranges of prices. 

 

Lemma 6.2.2.  The joint probability mass function indicating the probabilities of the 

reservation prices of customers falling within  given ranges of prices, denoted “ ianger ,” 

i=1, 2, …, d,  is given by: 

)()...,,,(
1

21...,,2,1 ii

d

i

ddRPRPRP angerRPProbrangerangerangeh 


. (6.2.3) 

 

Proof.  Consider first a customer with a reservation price so low, such that no revenue 

can be realized, that is, the customer’s reservation price is lower than 1P .  Denote this 
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range of prices as 1Range , where the probability of a customer’s reservation price falling 

in this range is: 

1111 1)()()( FPFRangeRPProbPRPProb RP  . (6.2.4) 

 

Next, consider a customer’s reservation price that is such that a revenue of 1P  can be 

realized from an item priced on ),[ 21 PP , that is, the customer’s reservation price is  

21 PRPP  .  Denote this range of prices as 2Range , where the probability of a 

customer’s reservation price falling in this range is: 

)()( 221 RangeRPProbPRPPProb   

  2121 )(1)(1 FFPFPF RPRP  . 

(6.2.5) 

 

Next, consider a customer’s reservation price that is such that a revenue of 2P  can be 

realized from an item priced on ),[ 32 PP , that is, the customer’s reservation price is  

32 PRPP  .  Denote this range of prices as 3Range , where the probability of a 

reservation price falling in this range is: 

)()( 332 RangeRPProbPRPPProb   

  3232 )(1)(1 FFPFPF RPRP  . 

(6.2.6) 

 

From inspection of (6.2.5) and (6.2.6), for a customer’s reservation price that is such that 

a revenue of 1mP  can be realized from an item priced on ),[ 1 mm PP  , denoted mRange , the 

probability of a reservation price falling in this range is: 
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)()( 1 mmm RangeRPProbPRPPProb   

  nmFFPFPF mmmRPmRP ...,,3,2,)(1)(1 11   . 

(6.2.7) 

For the special case of a customer having a reservation price at least as high as the 

highest selling price )( RPPn  , denote ),[ nP  as 1nRange , and the probability of a 

reservation price falling in this range, is: 

nnRPnn FPFRangeRPProbRPPProb   )(1)()( 1 . (6.2.8) 

 

For the first customer in the population, the probability mass function that provides the 

probability that this customer has a reservation price within a certain range is given as: 

12111111 ...,,,),()(  nRP angeRangeRangeRangerangerRPProbrangeh . (6.2.9) 

 

For the second customer in the population, the probability mass function that provides the 

probability that this customer has a reservation price within a certain range is given as: 

12122222 ...,,,),()(  nRP angeRangeRangeRangerangerRPProbrangeh . (6.2.10) 

 

In general, for the m
th

 customer in the population, the probability mass function that 

provides the probability that this customer has a reservation price within a certain range is 

given as: 

121 ...,,,),()(  nmmmmRPm angeRangeRangeRangerangerRPProbrangeh  

and dm ...,,2,1 .  

(6.2.11) 
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Under the assumption that customers behave independently, that is, one customer’s 

reservation price does not depend on any other customer’s reservation price, the joint 

probability of customers having a given combination of reservation prices in certain 

ranges is simply the product of the individual probabilities of reservation prices falling in 

certain ranges.  Therefore, the joint probability mass function is: 

)...,,,( 21...,,2,1 ddRPRPRP rangerangerangeh  

)(*...*)(*)( 2211 dd angerRPProbangerRPProbangerRPProb  , 

(6.2.12) 

which can be expressed as (6.2.3).  Q.E.D. 

 

The final step in determining the components of the expected revenue calculation is using 

the joint probability mass function of customers’ reservation prices (Equation 6.2.3) to 

determine a probability mass function that provides the probabilities of realizing each 

possible value of R.  Denote this probability mass function as )( iR revh , which is defined 

as: 

)...,,,,...,,,|()( 2121 nniiR PPPQQQrevRProbrevh  .
 (6.2.13) 

The values of )( iR revh  are determined by inspection of the joint p.m.f of customers’ 

willingness to pay, )...,,,( 21...,,2,1 ddRPRPRP rangerangerangeh , and the values of the 

inventory levels and corresponding prices decided by the seller 

)...,,,,...,,,( 2121 nn PPPQQQ . 

 



90 

  

Using the definition of expected value, the expected revenue term on the right hand side 

of (6.2.1) results when using the probability mass function given in (6.2.13) and the 

allowable values of R as found using Lemma 6.2.1.  Expected revenue is given as: 

)()]...,,,,...,,,([
1

1

2121 iRi

QTotal

i

nn revhrevPPPQQQRE 




 .
 (6.2.14) 

 

The final step in the proof of Theorem 6.2.1 is subtraction of total cost from expected 

revenue to give expected profit, where total cost is the number of items made available 

for sale, TotalQ , multiplied by the unit cost, c.  This gives (5.2.1), and completes the proof.  

Q.E.D. 

 

6.2.2  DETERMINISTIC CUSTOMER BASE EXAMPLE 1, 2d , 

In this section, the expected profit model derived in Section 6.2.1 is used to determine, 

for a deterministic customer base of 2d , an optimal pricing strategy.  The expected 

profits from two single-price strategies (items are made available for sale at only one 

price) are compared with the expected profit a dual-price strategy (two inventory and 

corresponding price decisions are made) to determine which of these two strategies is 

optimal.  The calculations for this example are provided in Appendix B, with important 

results summarized and discussed below. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 2TotalQ , since the number of items made available for sale will 

never be more than the number of customers.  These inventory combinations are shown 
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in Table 6.2.1.  Note that iQ  is the number of units of inventory to be made available for 

sale at price iP , i = 1, 2. 

 

Table 6.2.1.  Inventory Combinations for Example 1 

 
1Q  

0 1 2 

2Q  

0 Case 1 Case 2 Case 3 

1 Case 4 Case 5  

2 Case 6   

 

While Case 1 is included in Table 6.2.1 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

The objective of this example is to determine if one of the strategies (single-price or dual-

price) is always superior to the other for a customer base of size 2d . 

 

Theorem 6.2.2.  For a seller facing a deterministic customer base of size 2d , a single-

price strategy is optimal. 

 

Proof.  The proof of Theorem 6.2.2 is achieved in two steps.  First, it is shown that a 

dual-price strategy is always sub-optimal unless a strict condition is met.  Second, it is 

shown that if this condition is met, there exists at least one, single-price strategy that 

gives an expected profit that is the same as the expected profit for the dual-price strategy.  

The first step is the proof of Lemma 6.2.3. 
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Lemma 6.2.3.  For a seller facing a deterministic customer base of size 2d , a dual-

price strategy is always sub-optimal unless 1122 FPFP  .  

 

Proof.  The proof of Lemma 6.2.3 requires a comparison of the expected profit functions 

of the cases shown in Table 6.2.1.  These expected profit functions, derived using the 

method outlined in Section 6.2.1, are as follows: 

  cFFPE Case  1112 2][ . (6.2.15) 

cFPE Case 22][ 113  . (6.2.16) 

  cFFPE Case  2224 2][ . (6.2.17) 

  cFFPFFPE Case 22][ 2121115  . (6.2.18) 

cFPE Case 22][ 226  . (6.2.19) 

 

For the dual-price strategy (Case 5) to be optimal, it must simultaneously give a higher 

expected profit than all of the available single-inventory and price strategies (Cases 2, 3, 

4 and 6).  Shown below are comparisons of the expected profit function for Case 5 with 

the expected profit functions of two of the single-price strategies. 

 

For Case 5 ( 1,1 21  QQ ) to be superior to Case 3 ( 0,2 21  QQ ), 

][][ 35 CaseCase EE  . (6.2.20) 

Substitution of (6.2.16) and (6.2.18) into (6.2.20) gives: 

  cFPcFFPFFP 2222 11212111  . (6.2.21) 
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Rearranging (6.2.21) gives: 

1122 FPFP  . (6.2.22) 

 

For Case 5 ( 1,1 21  QQ ) to be superior to Case 6 ( 2,0 21  QQ ), 

][][ 65 CaseCase EE  . (6.2.23) 

Substitution of (6.2.18) and (6.2.19) into (6.2.23) gives: 

  cFPcFFPFFP 2222 22212111  . (6.2.24) 

Rearranging (6.2.24) gives: 

1122 FPFP  . (6.2.25) 

 

The non-trivial condition that satisfies both (6.2.22) and (6.2.25) is 

1122 FPFP  . (6.2.26) 

 

Because (6.2.26) must be true for the expected profit from the dual-price model (Case 5, 

where 1,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 3, where 0,2 21  QQ , and Case 6, where 2,0 21  QQ ), the dual-

price strategy is always sub-optimal unless 1122 FPFP  .  Q.E.D. 

 

The second step in the proof of Theorem 6.2.2 is to show that under the optimality 

condition found in Lemma 6.2.3, there exists a single-price strategy that has at least the 

same expected profit as the dual-price strategy.  This is shown in the proof of Lemma 

6.2.4. 
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Lemma 6.2.4.  For a seller facing a deterministic customer base of size 2d , if 

1122 FPFP  ,  there exists a single-price strategy with an expected profit at least as high 

as the expected profit of the dual-price strategy. 

 

Proof.  The proof of Lemma 6.2.4 begins with the substitution of (6.2.26) into the 

expected profit functions for Cases 2 – 6: 

  cFFPE Case  1112 2][ , (6.2.27) 

cFPE Case 22][ 113  , (6.2.28) 

  cFFPE Case  2114 2][ , (6.2.29) 

cFPE Case 22][ 115  , and (6.2.30) 

cFPE Case 22][ 116  . (6.2.31) 

 

By inspection, the right hand sides of (6.2.28), (6.2.30) and (6.2.31) are equivalent.  

Therefore, under the condition that 1122 FPFP  , there are two single-price strategies 

(Case 3, where 0,2 21  QQ , and Case 6, where 2,0 21  QQ ), with expected profits at 

least as high as the expected profit of the dual-price strategy (Case 5, where 

1,1 21  QQ ).  Q.E.D.   

 

The non-trivial condition under which a dual-price strategy (Case 5, where 1,1 21  QQ ) 

simultaneously gives at least the same expected profit as two of the single-price strategies 

(Case 3, where 0,2 21  QQ , and Case 6, where 2,0 21  QQ ), is 1122 FPFP  .  Under 
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this condition, these two single-price strategies give the same expected profit as the dual-

price strategy.  Therefore, on the assumption that simplicity is preferred, ceteris paribus, 

a single-price strategy is optimal.  Q.E.D. 

 

6.2.3 DETERMINISTIC CUSTOMER BASE EXAMPLE 2, d = 3 

In this section, the expected profit model derived in Section 6.2.1 is used to determine, 

for a deterministic customer base of 3, an optimal pricing strategy.  Specifically, the 

expected profits from single-price strategies (items are made available for sale at only 

one price) are compared with the expected profit of dual-price strategies (two inventory 

and corresponding price decisions are made) to determine which of these strategies is 

optimal.  The calculations for this example are provided in Appendix B, with important 

results summarized and discussed below. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 3TotalQ , since the seller will never make more items available for 

sale than the number of customers.  These inventory combinations are shown and named 

in Table 6.2.2.  Note that iQ  is the number of units of inventory to be made available for 

sale at price iP , i = 1, 2. 

 

Table 6.2.2.  Inventory Combinations for Example 2. 

 
1Q  

0 1 2 3 

2Q  

0 Case 1 Case 2 Case 3 Case 4 

1 Case 5 Case 6 Case 7  

2 Case 8 Case 9   

3 Case 10    
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While Case 1 is included in Table 6.2.2 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

The objective of this example is to determine if one of the strategies (single-price or dual-

price) is optimal for a customer base of size 3d . 

 

Theorem 6.2.3.  For a seller facing a deterministic customer base of size 3d , a single-

price strategy is optimal. 

 

Proof.  The proof of Theorem 6.2.3 is achieved in two steps.  First, it is shown that a 

dual-price strategy is always sub-optimal unless a strict condition is met.  Second, it is 

shown that if this condition is met, there exists at least one, single-price strategy that 

gives an expected profit that is the same as the expected profit for the dual-price strategy.  

The first step is the proof of Lemma 6.2.5. 

 

Lemma 6.2.5.  For a seller facing a deterministic customer base of size 3d , a dual-

price strategy is always sub-optimal unless 1122 FPFP  .  

 

Proof.  The proof of Lemma 6.2.5 requires comparison of the expected profit functions 

of the cases shown in Table 6.2.2.  These expected profit functions, derived using the 

method outlined in Section 6.2.1, are as follows: 
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  cFFFPE Case 
2

11112 33][ . 
(6.2.32) 

  cFFPE Case 23][
2

1113  . 
(6.2.33) 

cFPE Case 33][ 114  . (6.2.34) 

  cFFFPE Case 
2

22225 33][ . 
(6.2.35) 

    cFFFFFPFFFPE Case 2333][ 21

2

1122

2

11116  . 
(6.2.36) 

  cFFPFFPE Case 33][ 2

2

12

2

1117  . 
(6.2.37) 

  cFFPE Case 23][
2

2228  . 
(6.2.38) 

    cFFFPFFFPE Case 3333][
2

1122

2

11119  . 
(6.2.39) 

cFPE Case 33][ 2210  . (6.2.40) 

 

For a dual-price strategy (Case 6, 7 or 9) to be optimal, it must simultaneously give a 

higher expected profit than all of the available single-price strategies (Cases 2, 3, 4, 5, 8 

and 10).  Shown below are comparisons of the expected profit from the dual-price 

strategies with the expected profit functions of selected single-price strategies. 

 

The first comparisons are between the dual-price strategy of Case 6 and the single-price 

strategies of Cases 3 and 8. 

 

For Case 6 ( 1,1 21  QQ ) to be superior to Case 3 ( 0,2 21  QQ ), 

][][ 36 CaseCase EE  . (6.2.41) 
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Substitution of (6.2.33) and (6.2.36) into (6.2.41) gives: 

      cFFPcFFFFFPFFFP 232333
2

11121

2

1122

2

1111  . (6.2.42) 

Rearranging and simplifying (6.2.42) gives: 

    212211122 23 FFFPFFPFP  . (6.2.43) 

Note that since 21 FF  , the right-hand side of (6.2.43) is non-negative.  Since the second 

term on the left-hand side is strictly positive, the condition which satisfies (6.2.43) is 

1122 FPFP  . (6.2.44) 

 

For Case 6 ( 1,1 21  QQ ) to be superior to Case 8 ( 2,0 21  QQ ), 

][][ 86 CaseCase EE  . (6.2.45) 

Substitution of (6.2.36) and (6.2.38) into (6.2.45) and gives: 

      cFFPcFFFFFPFFFP 232333
2

22221

2

1122

2

1111  . (6.2.46) 

Rearranging (6.2.46) gives: 

    21

2

22

2

111122 33 FFFPFFFPFP  . (6.2.47) 

Note that since 21 FF  , the right-hand side of (6.2.47) is non-negative.  As the second 

term on the left-hand side of (6.2.47) is non-positive, the condition which satisfies 

(6.2.47) is 

1122 FPFP  . (6.2.48) 

 

The non-trivial condition that satisfies both (6.2.44) and (6.2.48) is 

1122 FPFP  . (6.2.49) 
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Because (6.2.49) must be true for the expected profit from the dual-price model (Case 6, 

where 1,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 3, where 0,2 21  QQ , and Case 8, where 2,0 21  QQ ), this dual-

price strategy is always sub-optimal unless 1122 FPFP  . 

 

The next comparisons are between the dual-price strategy of Case 7 and the single-price 

strategies of Cases 4 and 10. 

 

For Case 7 ( 1,2 21  QQ ) to be superior to Case 4 ( 0,3 21  QQ ), 

][][ 47 CaseCase EE  . (6.2.50) 

Substitution of (6.2.34) and (6.2.37) into (6.2.50) gives: 

  cFPcFFPFFP 3333 112

2

12

2

111  . (6.2.51) 

Expanding and rearranging (6.2.51) gives: 

  01122

2

1  FPFPF . (6.2.52) 

Since 
2

1F is non-negative, this requires that 

1122 FPFP  . (6.2.53) 

 

For Case 7 ( 1,2 21  QQ ) to be superior to Case 10 ( 3,0 21  QQ ), 

][][ 107 CaseCase EE  . (6.2.54) 

Substitution of (6.2.37) and (6.2.40) into (6.2.54) gives: 

  cFPcFFPFFP 3333 222

2

12

2

111  . (6.2.55) 
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Expanding and rearranging (6.2.55) gives: 

   03
2

11122  FFPFP . (6.2.56) 

Since the second term in brackets in (6.2.56) is strictly negative, this requires 

1122 FPFP  . (6.2.57) 

 

The non-trivial condition that satisfies both (6.2.53) and (6.2.57) is 

1122 FPFP  . (6.2.58) 

 

Because (6.2.58) must be true for the expected profit from the dual-price model (Case 7, 

where 1,2 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 4, where 0,3 21  QQ , and Case 10, where 3,0 21  QQ ), this 

dual-price strategy is always sub-optimal unless 1122 FPFP  .   

 

The final comparisons are between the dual-price strategy of Case 9 and the single-price 

strategies of Cases 4 and 10. 

 

For Case 9 ( 2,1 21  QQ ) to be superior to Case 4 ( 0,3 21  QQ ), 

][][ 49 CaseCase EE  . (6.2.59) 

Substitution of (6.2.34) and (6.2.39) into (6.2.59) gives: 

    cFPcFFFPFFFP 333333 11

2

1122

2

1111  . (6.2.60) 

Expanding and rearranging (6.2.60) gives: 
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   03
2

111122  FFFPFP . (6.2.61) 

Since the second term is non-negative, this requires that 

1122 FPFP  . (6.2.62) 

 

For Case 9 ( 2,1 21  QQ ) to be superior to Case 10 ( 3,0 21  QQ ), 

][][ 109 CaseCase EE  . (6.2.63) 

Substitution of (6.2.39) and (6.2.40) into (6.2.63) gives: 

    cFPcFFFPFFFP 333333 22

2

1122

2

1111  . (6.2.64) 

Expanding and rearranging (6.2.64) gives: 

   033
2

111122  FFFPFP . (6.2.65) 

Since the second term in brackets in (6.2.65) is strictly negative, this requires that 

1122 FPFP  . (6.2.66) 

 

The non-trivial condition that satisfies both (6.2.62) and (6.2.66) is 

1122 FPFP  . (6.2.67) 

 

Because (6.2.67) must be true for the expected profit from the dual-price model (Case 9, 

where 2,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 4, where 0,3 21  QQ , and Case 10, where 3,0 21  QQ ), this 

dual-price strategy is always sub-optimal unless 1122 FPFP  .   
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For each of the three dual-price models (Cases 6, 7 and 9) to have an expected profit at 

least as high as the expected profit from two of the selected single-price models (Cases 3, 

4, 8 and 10), the necessary condition is 1122 FPFP  , otherwise the dual-price models are 

sub-optimal.  Q.E.D. 

 

The second step in the proof of Theorem 6.2.3 is to show that under the optimality 

condition found in Lemma 6.2.3, at least one, single-price strategy has the same expected 

profit as the dual-price strategy.  This is shown in the proof of Lemma 6.2.6. 

 

Lemma 6.2.6.  For a seller facing a deterministic customer base of size 3d , if 

1122 FPFP  , then there exist single-price strategies with expected profits at least as high 

as the expected profit of each dual-price strategy. 

 

Proof.  The proof of Lemma 6.2.6 begins with the substitution of 1122 FPFP   into the 

expected profit functions for Cases 2 – 10 giving: 

  cFFFPE Case 
2

11112 33][ , (6.2.68) 

  cFFPE Case 23][
2

1113  , (6.2.69) 

cFPE Case 33][ 114  , (6.2.70) 

  cFFFPE Case 
2

22115 33][ , (6.2.71) 

  cFFFPE Case 23][ 21116  , (6.2.72) 

cFPE Case 33][ 117  , (6.2.73) 
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  cFFPE Case 23][
2

2118  , (6.2.74) 

cFPE Case 33][ 119  , and (6.2.75) 

cFPE Case 33][ 1110  . (6.2.76) 

 

Consider first, the expected profit functions for the dual-price strategy of Case 6 and the 

single-price strategy of Case 8 (compare Equations 46 and 48).  Since 12 FF  , the 

expected profit from this single-price strategy will be at least as high as the expected 

profit of this dual-price strategy.  

 

Second, note that the expected profit functions for Cases 7 and 9 (dual-price strategies) 

are identical to the expected profit functions for Cases 4 and 10 (single-price strategies).    

 

Therefore, under the condition that 1122 FPFP  , there exist single-price strategies that 

give the expected profits at least as high as each of the dual-price strategies.  Q.E.D. 

 

There exists a necessary condition, 1122 FPFP  , under which each dual-price strategy 

simultaneously gives at least the same expected profit as all of the single-price strategies.  

Under this condition, there exist single-price strategies with expected profits at least as 

high as the expected profits of each of the dual-price strategies.  On the assumption that 

simplicity is preferred, ceteris paribus, a single-price strategy is optimal.  Q.E.D. 
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6.2.4 GENERAL FORM OF THE EXPECTED PROFIT FUNCTION FOR A 

RANDOM CUSTOMER BASE 

In this section, the general form of an expected profit function for a seller who sets n 

inventory levels and corresponding selling prices with a stochastic customer base (two 

possible sizes) is derived.   

 

Theorem 6.2.4.  The expected total profit function for a seller facing a stochastic 

customer base of possible sizes 1d  and 2d with probabilities 1dProb , and 11 dProb , 

respectively, is given by: 

 )]...,,,.,...,,,([ 2121 nnTotal PPPQQQE

 

)]|...,,,,...,,,([* 121211 dPPPQQQEobPr nnd 

 

  )]|...,,,,...,,,([*1 221211 dPPPQQQEobPr nnd  . 

(6.2.77) 

 

Proof.  Theorem 6.2.4 is proved by use of the definition of expected value where there 

are only two possible outcomes.  The two possible values in this theorem are expected 

profits, each conditional upon the size of its respective customer base.  These values are 

multiplied by their respective probabilities of occurring, and added together to give 

expected profit.  Q.E.D. 

 

6.2.5 RANDOM CUSTOMER BASE EXAMPLE 1, 11d , 22d  

In this section, the expected profit model derived in Section 6.2.4 is used to determine an 

optimal pricing strategy for a seller facing a stochastic customer base, where there are 

two possible sizes of customer base, 11 d  with probability 1dProb  and 22 d  with 
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probability 11 dProb .  The expected profits from two single-price strategies (items are 

made available for sale at only one price) are compared with the expected profit a dual-

price strategy (two inventory and corresponding price decisions are made) to determine 

which of these two strategies is optimal.  The calculations for this example are provided 

in Appendix B, with important results summarized and discussed below. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 2TotalQ .  While it is true that a second item will never be sold if 

the size of the customer base is one, the possibility of selling the second item if the 

customer base is two might make it worthwhile to make a second item available for sale, 

therefore this option is considered.  The possible inventory combinations are shown in 

Table 6.2.3.  Note that iQ  is the number of units of inventory to be made available for 

sale at price iP , i = 1, 2. 

 

Table 6.2.3.  Inventory Combinations for Example 3. 

 
1Q  

0 1 2 

2Q  

0 Case 1 Case 2 Case 3 

1 Case 4 Case 5  

2 Case 6   

 

While Case 1 is included in Table 6.2.3 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 
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The objective of this example is to determine if one of the strategies (single-price or dual-

price) is optimal for a seller facing a stochastic customer base with the parameters listed 

above. 

 

Theorem 6.2.5.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 22 d  with probability 11 dProb , a single- price strategy is optimal. 

 

The proof of Theorem 6.2.5 is achieved in two steps.  First, it is shown that a dual-price 

strategy is always sub-optimal unless a strict condition is met.  Second, it is shown that if 

this condition is met, there exists at least one, single-price strategy that gives an expected 

profit that is the same as the expected profit for the dual-price strategy.  The first step is 

the proof of Lemma 6.2.7. 

 

Lemma 6.2.7.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 22 d  with probability 11 dProb , a dual-price strategy is always sub-

optimal unless 1122 FPFP  .  

 

Proof.  The proof of Lemma 6.2.7 requires a comparison of the expected profit functions 

of the cases shown in Table 6.2.3.  These expected profit functions, derived using the 

method outlined in Section 6.2.4, are as follows: 

    cProbFPProbFPE ddCase  1

2

111112 12][ . 
(6.2.78) 

  cProbFPE dCase 22][ 1113  . (6.2.79) 
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    cProbFPProbFPE ddCase  1

2

221224 12][ . 
(6.2.80) 

      cProbFFPProbFPProbFPE dddCase 2112][ 12121

2

111115  . 
(6.2.81) 

  cProbFPE dCase 22][ 1226  . (6.2.82) 

 

For the dual-price strategy (Case 5) to be optimal, it must simultaneously give a higher 

expected profit than all of the available single-inventory and price strategies (Cases 2, 3, 

4 and 6).  Shown below are comparisons of the expected profit function for Case 5 with 

the expected profit functions of two of the single-price strategies. 

 

For Case 5 ( 1,1 21  QQ ) to be superior to Case 3 ( 0,2 21  QQ ), 

][][ 35 CaseCase EE  . (6.2.83) 

Substitution of (6.2.79) and (6.2.81) into (6.2.83) gives: 

      cProbFFPProbFPProbFP ddd 2112 12121

2

11111 
 

  cProbFP d 22 111  . 

(6.2.84) 

Rearranging and reducing (6.2.84) gives: 

   01 111221  dProbFPFPF . (6.2.85) 

Since 1F  and 
11 dProb
 
are both non-negative, for (6.2.85) to hold, 1122 FPFP   must 

also be non-negative, or 

1122 FPFP  . (6.2.86) 

 

For Case 5 ( 1,1 21  QQ ) to be superior to Case 6 ( 2,0 21  QQ ), 
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][][ 65 CaseCase EE  . (6.2.87) 

Substitution of (6.2.81) and (6.2.82) into (6.2.87) gives: 

      cProbFFPProbFPProbFP ddd 2112 12121

2

11111 
 

  cProbFP d 22 122  . 

(6.2.88) 

Rearranging and reducing (6.2.88) gives: 

     11122111221 21 dd ProbFPFPProbFPFPF  . (6.2.89) 

Since  

   111 21 dd ProbProbF  , (6.2.90) 

for (6.2.89) to be true, 1122 FPFP   must be non-positive, or 

1122 FPFP  . (6.2.91) 

 

The non-trivial condition that satisfies both (6.2.86) and (6.2.91) is 

1122 FPFP  . (6.2.92) 

 

Because (6.2.92) must be true for the expected profit from the dual-price model (Case 5, 

where 1,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 3, where 0,2 21  QQ , and Case 6, where 2,0 21  QQ ), the dual-

price strategy is always sub-optimal unless 1122 FPFP  .  Q.E.D. 

 

The second step in the proof of Theorem 6.2.5 is to show that under the optimality 

condition found in Lemma 6.2.3, there exists a single-price strategy that has at least the 
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same expected profit as the dual-price strategy.  This is shown in the proof of Lemma 

6.2.8. 

 

Lemma 6.2.8.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 22 d  with probability 11 dProb , and if 1122 FPFP  , there exists a single-

price strategy with an expected profit at least as high as the expected profit of the dual-

price strategy. 

 

Proof.  The proof of Lemma 6.2.8 begins with the substitution of (6.2.92) into the 

expected profit functions for Cases 2 – 6: 

    cProbFPProbFPE ddCase  1

2

111112 12][ . (6.2.93) 

  cProbFPE dCase 22][ 1113  . (6.2.94) 

    cProbFFPProbFPE ddCase  12111114 12][ . (6.2.95) 

  cProbFPE dCase 22][ 1115  . (6.2.96) 

  cProbFPE dCase 22][ 1116  . (6.2.97) 

 

By inspection, the right hand sides of Equations 56, 58 and 59 are equivalent.  Therefore, 

under the condition that 1122 FPFP  , there are two single-price strategies (Case 3, where 

0,2 21  QQ , and Case 6, where 2,0 21  QQ ), with expected profits at least as high as 

the expected profit of the dual-price strategy (Case 5, where 1,1 21  QQ ).  Q.E.D. 
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The non-trivial condition under which a dual-price strategy (Case 5, where 1,1 21  QQ ) 

simultaneously gives at least the same expected profit as two of the single-price strategies 

(Case 3, where 0,2 21  QQ , and Case 6, where 2,0 21  QQ ), is 1122 FPFP  .  Under 

this condition, these two single-price strategies give the same expected profit as the dual-

price strategy.  Therefore, on the assumption that simplicity is preferred, ceteris paribus, 

a single-price strategy is optimal.  Q.E.D. 

 

6.2.6 RANDOM CUSTOMER BASE EXAMPLE 2, 11d , 32d  

In this section, the expected profit model derived in Section 6.2.4 is used to determine an 

optimal pricing strategy for a seller facing a stochastic customer base, where there are 

two possible sizes of customer base, 11 d  with probability 1dProb  and 32 d  with 

probability 11 dProb .  The expected profits from two single-price strategies (items are 

made available for sale at only one price) are compared with the expected profit a dual-

price strategy (two inventory and corresponding price decisions are made) to determine 

which of these two strategies is optimal.  The calculations for this example are provided 

in Appendix B, with important results summarized and discussed below. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 3TotalQ .  While it is true that a second or third item will never be 

sold if the size of the customer base is one, the possibility of selling the additional items 

if the customer base is three might make it worthwhile to make these items available for 

sale, therefore these inventory options are considered.  The possible inventory 
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combinations are shown in Table 6.2.4.  Note that iQ  is the number of units of inventory 

to be made available for sale at price iP , i = 1, 2. 

 

Table 6.2.4.  Inventory Combinations for Example 4. 

 
1Q  

0 1 2 3 

2Q  

0 Case 1 Case 2 Case 3 Case 4 

1 Case 5 Case 6 Case 7  

2 Case 8 Case 9   

3 Case 10    

 

While Case 1 is included in Table 6.2.4 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

The objective of this example is to determine if one of the strategies (single-price or dual-

price) is optimal for a seller facing a stochastic customer base with the parameters listed 

above. 

 

Theorem 6.2.6.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 32 d  with probability 11 dProb , a single- price strategy is optimal. 

 

The proof of Theorem 6.2.6 is achieved in two steps.  First, it is shown that a dual-price 

strategy is always sub-optimal unless a strict condition is met.  Second, it is shown that if 

this condition is met, there exists at least one, single-price strategy that gives an expected 

profit that is the same as the expected profit for the dual-price strategy.  The first step is 

the proof of Lemma 6.2.9. 
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Lemma 6.2.9.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 32 d  with probability 11 dProb , a dual-price strategy is always sub-

optimal unless 1122 FPFP  .  

 

Proof.  The proof of Lemma 6.2.9 requires a comparison of the expected profit functions 

of the cases shown in Table 6.2.4.  These expected profit functions, derived using the 

method outlined in Section 6.2.4, are as follows: 

    cFFProbProbFPE ddCase 
2

1111112 3123][ . (6.2.98) 

   cProbFProbFPE ddCase 2123][ 1

2

11113  . 
(6.2.99) 

  cProbFPE dCase 323][ 1114  . (6.2.100) 

    cFFProbProbFPE ddCase 
2

2211225 3123][ . 
(6.2.101) 

   2

11111226 31][ FFProbFPFPE dCase   

    cProbFFPProbFP dd 2123 1

2

212111  . 

(6.2.102) 

      cProbFPProbFFPFPE ddCase 3231][ 1111

2

111227  . 
(6.2.103) 

   cProbFProbFPE ddCase 2123][ 1

2

21228  . 
(6.2.104) 

      cProbFPFFProbFPFPE ddCase 32331][ 111

2

11111229  . 
(6.2.105) 

  cProbFPE dCase 323][ 12210  . (6.2.106) 

 

For a dual-price strategy (Case 6, 7 or 9) to be optimal, it must simultaneously have a 

higher expected profit than all of the available single-inventory and price strategies 
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(Cases 2, 3, 4, 5, 8 and 10).  Shown below are comparisons of the expected profit 

functions of the dual-price strategies with the expected profit functions of selected single-

price strategies. 

 

The first comparisons are between the dual-price strategy of Case 6 and the single-price 

strategies of Cases 3 and 8. 

 

For Case 6 ( 1,1 21  QQ ) to be superior to Case 3 ( 0,2 21  QQ ), 

][][ 36 CaseCase EE  . (6.2.107) 

Substitution of (6.2.100) and (6.2.102) into (6.2.107) gives: 

   2

1111122 31 FFProbFPFP d   

    cProbFFPProbFP dd 2123 1

2

212111   

     cProbFProbFP dd 2123 1

2

1111  . 

(6.2.108) 

Rearranging (6.2.108) gives: 

       112212111122 113 dd ProbFFFFPProbFFPFP   

  032 1

2

11  FFP . 

(6.2.109) 

In (6.2.109), 12 FF   is negative, making the second term on the left hand side non-

positive.  Also, 32 1 F  is negative, making the third term on the left hand side non-

positive.  Since these two terms are non-positive, for (6.2.109) to be true, the first term on 

the left hand side must be non-negative.  This requires that 1122 FPFP   be non-negative, 

or 
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1122 FPFP  . (6.2.110) 

 

For Case 6 ( 1,1 21  QQ ) to be superior to Case 8 ( 2,0 21  QQ ),  

][][ 86 CaseCase EE  . (6.2.111) 

Substitution of (6.2.102) and (6.2.104) into (6.2.111) and rearranging gives: 

        21

2

221

2

1111122 2331 FFFPProbFFProbFPFP dd  . (6.2.112) 

Note that the right-hand side of (6.2.112) is non-negative.  To begin the process of 

determining if the same (or opposite) can be said for the left-hand side, denote the second 

bracketed term on the left-hand side of (6.2.112) as  

    1

2

11111 2331)|( ddd ProbFFProbProbFy  . 
(6.2.113) 

Taking the first order conditions of (6.2.113) gives: 

   0231)|( 1111

1





FProbProbFy

F
dd . 

(6.2.114) 

Solving (6.2.114) gives a stationary point at 2/3
*

1 F .  To determine if this is a 

maximum or a minimum, consider the second partial derivative of (6.2.113): 

 1112

1

2

12)|( dd ProbProbFy
F





 

(6.2.115) 

which is negative for 10 1  dProb .  Therefore, )|( 11 dProbFy  is a maximum at 

2/3
*

1 F .  Substitution into )|( 11 dProbFy  gives: 

 
4

3
)|( 1

1

*

1
d

d

Prob
ProbFy




,
 

(6.2.116) 

which is negative for 10 1  dProb . 
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Since )|( 11 dProbFy  is strictly negative and the right hand side of (6.2.112) is non-

negative, this requires that 

1122 FPFP  . (6.2.117) 

 

The non-trivial condition that satisfies both (6.2.110) and (6.2.117) is 

1122 FPFP  . (6.2.118) 

 

Because (6.2.118) must be true for the expected profit from the dual-price model (Case 6, 

where 1,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 3, where 0,2 21  QQ , and Case 8, where 2,0 21  QQ ), this dual-

price strategy is always sub-optimal unless 1122 FPFP  . 

 

The next comparisons are between the dual-price strategy of Case 7 and the single-price 

strategies of Cases 4 and 10. 

 

For Case 7 ( 1,2 21  QQ ) to be superior to Case 4 ( 0,3 21  QQ ), 

][][ 47 CaseCase EE  . (6.2.119) 

Substitution of (6.2.100) and (6.2.103) into (6.2.119) gives: 

        cProbFPcProbFPProbFFPFP ddd 3233231 1111111

2

11122  . (6.2.120) 

Expanding and rearranging (6.2.120) gives: 

   01 11122

2

1  dProbFPFPF . (6.2.121) 
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For (6.2.121) to be true, 1122 FPFP   must be non-negative, or 

1122 FPFP  . (6.2.122) 

 

For Case 7 ( 1,2 21  QQ ) to be superior to Case 10 ( 3,0 21  QQ ), 

][][ 107 CaseCase EE  . (6.2.123) 

Substitution of (6.2.103) and (6.2.106) into (6.2.123) gives: 

        cProbFPcProbFPProbFFPFP ddd 3233231 1221111

2

11122  . (6.2.124) 

Expanding and rearranging (6.2.124) gives: 

     0321 11

2

11122  dd ProbProbFFPFP . (6.2.125) 

Since the second term in brackets in (6.2.125) is non-positive, this requires that 

1122 FPFP   be non-positive, or 

1122 FPFP  . (6.2.126) 

 

The non-trivial condition that satisfies both (6.2.122) and (6.2.126) is 

1122 FPFP  . (6.2.127) 

 

Because (6.2.127) must be true for the expected profit from the dual-price model (Case 7, 

where 1,2 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 4, where 0,3 21  QQ , and Case 10, where 3,0 21  QQ ), this 

dual-price strategy is always sub-optimal unless 1122 FPFP  . 
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The final comparisons are between the dual-price strategy of Case 9 and the single-price 

strategies of Cases 4 and 10. 

 

For Case 9 ( 2,1 21  QQ ) to be superior to Case 4 ( 0,3 21  QQ ), 

][][ 49 CaseCase EE  . (6.2.128) 

Substitution of (6.2.100) and (6.2.105) into (6.2.128) gives: 

      cProbFPFFProbFPFP dd 32331 111

2

1111122   

  cProbFP d 323 111  . 

(6.2.129) 

Expanding and rearranging (6.2.129) gives: 

    031
2

1111122  FFProbFPFP d . (6.2.130) 

Since 
2

113 FF  is non-negative, for (6.2.130) to be true, 1122 FPFP   must also be non-

negative, or 

1122 FPFP  . (6.2.131) 

 

For Case 9 ( 2,1 21  QQ ) to be superior to Case 10 ( 3,0 21  QQ ), 

][][ 109 CaseCase EE  . (6.2.132) 

Substitution of (6.2.105) and (6.2.106) into (6.2.132) gives: 

      cProbFPFFProbFPFP dd 32331 111

2

1111122   

  cProbFP d 323 122  . 

(6.2.133) 

Rearranging (6.2.133) gives: 
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       02331 1

2

1111122  dd ProbFFProbFPFP . (6.2.134) 

Note that     1

2

111 2331 dd ProbFFProb   is strictly negative as proven above, 

therefore, 1122 FPFP   must be non-positive, or 

1122 FPFP  . (6.2.135) 

 

The non-trivial condition that satisfies both (6.2.131) and (6.2.135) is 

1122 FPFP  . (6.2.136) 

 

Because (6.2.136) must be true for the expected profit from the dual-price model (Case 9, 

where 2,1 21  QQ ) to be at least as high as the expected profits from two of the single-

price models (Case 4, where 0,3 21  QQ , and Case 10, where 3,0 21  QQ ), this 

dual-price strategy is always sub-optimal unless 1122 FPFP  .   

 

For each of the three dual-price models (Cases 6, 7 and 9) to have an expected profit at 

least as high as the expected profit from two of the selected single-price models (Cases 3, 

4, 8 and 10), the necessary condition is 1122 FPFP  , otherwise the dual-price models are 

sub-optimal.  Q.E.D. 

 

The second step in the proof of Theorem 6.2.6 is to show that under the optimality 

condition found in Lemma 6.2.3, at least one, single-price strategy has the same expected 

profit as each dual-price strategy.  This is shown in the proof of Lemma 6.2.10. 
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Lemma 6.2.10.  If there are two possible sizes of customer base, 11 d  with probability 

1dProb , and 32 d  with probability 11 dProb , and if 1122 FPFP  , then there exist 

single-price strategies with expected profits at least as high as the expected profit of each 

dual-price strategy. 

 

Proof.  The proof of Lemma 6.2.10 begins with the substitution of 1122 FPFP   into the 

expected profit functions for Cases 2 – 10 giving: 

     cProbFProbFProbFPE dddCase  1

2

1111112 11323][ , (6.2.137) 

   cProbFProbFPE ddCase 2123][ 1

2

11113  , (6.2.138) 

  cProbFPE dCase 323][ 1114  , (6.2.139) 

     cProbFProbFProbFPE dddCase  1

2

2121115 11323][ , (6.2.140) 

   cProbFFProbFPE ddCase 2123][ 1211116  , (6.2.141) 

  cProbFPE dCase 323][ 1117  , (6.2.142) 

   cProbFProbFPE ddCase 2123][ 1

2

21118  , (6.2.143) 

  cProbFPE dCase 323][ 1119  , and (6.2.144) 

  cProbFPE dCase 323][ 11110  . (6.2.145) 

 

Consider the expected profit functions for the dual-price strategy of Case 6 and the 

single-price strategy of Case 8 (compare Equations 52 and 54).  Since 12 FF  , the 
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expected profit from this single-price strategy will be at least as high as the expected 

profit of this dual-price strategy.  

 

Now, note that the expected profit functions for Cases 7 and 9 (dual-price strategies) are 

identical to the expected profit functions for Cases 4 and 10 (single-price strategies).    

 

Therefore, under the condition that 1122 FPFP  , there exist single-price strategies that 

give the expected profits at least as high as each of the dual-price strategies.  Q.E.D. 

 

There exists a necessary condition, 1122 FPFP  , under which each dual-price strategy 

simultaneously gives at least the same expected profit as all of the single-price strategies.  

Under this condition, there exist single-price strategies with expected profits at least as 

high as the expected profits of each of the dual-price strategies.  On the assumption that 

simplicity is preferred, ceteris paribus, a single-price strategy is optimal.  Q.E.D. 

 

In this chapter, four sets of expected profit functions were derived to determine if a dual-

price strategy is of more benefit to a seller than single-price strategies for small 

populations.  In all four cases (two involving deterministic customer bases and two 

involving random customer bases), the optimal strategy is to use only a single price and 

corresponding inventory level to maximize expected profit.  Future work is to include 

determining if the results of this chapter hold for larger population sizes, and if so, how 

can this be reconciled with the results of the previous chapter that indicate multiple-

pricing strategies are sometimes optimal. 
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CHAPTER 7 

THE NEWSVENDOR PROBLEM WITH PRICING  

AND SECONDARY REVENUES 

 

7.1  INTRODUCTION 

In the newsvendor problem with pricing models presented Chapters 5 and 6, revenues 

were only realized by the sale of one kind of item.  In this chapter, we consider the case 

where the seller of an inventory of homogeneous items (primary items) has the 

opportunity to earn secondary revenues from the customers, provided they have already 

purchased a primary item.  Here, the seller decides on a single selling price P and 

corresponding inventory level Q for primary items, before knowing exact demand 

(denoted )(PX  as in previous chapters), which is determined by size of customer base d, 

and random reservation price, RP.  The work in this chapter builds upon the demand 

model of Chapter 3.  If a customer has a reservation price at least as high as P and a 

primary item is available, the customer will pay P for a primary item, and provide an 

additional amount of profit on secondary items, S.  It is assumed that S is a random 

variable, with a distribution known to the seller, and is treated not as a number of units 

sold, but as a dollar amount of profit from a single customer.  The seller incurs a cost of c 

for each primary item made available for sale, regardless of whether the item is 

ultimately sold or not.  As practical examples, consider the sale of warrantees on new 

electronics, or luggage handling fees on airline tickets.  For other examples on the NPP 

and secondary revenues, see Fort (2004), Marburger (1997) and Rosen and Rosenfield 

(1997). 



122 

  

In this chapter, the profit function for a seller described above is derived.  Then, the 

corresponding expected profit and variance functions are derived, and used with three 

examples to illustrate the sensitivity of total profit to changes in different variables. 

 

7.2 PROFIT FUNCTION – RANDOM SECONDARY REVENUE 

First we derive an expression for the seller’s total profit when secondary profits can be 

realized after a customer has purchased a primary item. 

 

Lemma 7.2.1.  The total profit for a seller who receives profit from the sale of secondary 

items in addition to the revenues from the sale of primary items is: 















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







QxcQsPQ

QxcQsPx

QP Q

i

i

x

i

i
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,

,

),(

1

1 . (7.2.1) 

where x  denotes the realized value of )(PX , and is  is the realized value of S  for 

customer i, who has already purchased a primary item. 

 

Proof.  The total profit for the seller is made up of profit from the sale of primary items 

and profit from the sale of secondary items.  Consider first the profit obtained from the 

sale of primary items.  Denoting realized demand as x (i.e.; the realized value of )(PX ), 

if x is less than the number of items made available for sale, the revenue is Px.  If x is 

greater than the number of items made available for sale, the revenue is PQ.  Note that in 

both scenarios, the incurred cost is cQ, as the seller pays for each item made available for 
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sale, regardless of whether or not it is sold.  From these two possible revenue scenarios, 

the profit from the sale of primary items is:  










QxcQPQ

QxcQPx
QPPri

,

,
),( . (7.2.2) 

 

The profit from the sale of secondary items is the total of all of these profits earned from 

individual customers who have already purchased a primary item (  )(,(min PXQ ).  The 

profit earned from each individual customer is random, and the total profit from 

secondary revenues is: 


























Qxs

Qxs

Q

i

i

x

i

i

Sec

,

,

1

1 . (7.2.3) 

As total profit is made up of the revenue from the sale of primary items (less inventory 

costs) in addition to the profit from the sale of secondary items, combining (7.2.2) and 

(7.2.3) gives (7.2.1).  Q.E.D. 

 

7.3 EXPECTED PROFIT FUNCTION – RANDOM SECONDARY REVENUE 

Next, we derive and expression for expected profit for the seller described in the 

introduction. 

 

Lemma 7.3.1.  The expected total profit for a seller who receives profit from the sale of 

secondary items in addition to the revenues from the sale of primary items is: 

  cQSEPZEQPE Total  ][][)],([ 1 , (7.3.1) 
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where 1Z  denotes the number of primary items that are sold. 

 

Proof.  Begin with the total profit function given in (7.2.1): 


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and rewrite as 

 
 

cQsPXQPQP
PXQ

i

iTotal  


)(,(min

1

)(,min),( . (7.3.2) 

Suppress the notation for ease of reading, and denote  XQ,min  as random variable 1Z , 

and 
 




XQ

i

is
,min

1

 as random variable 2Z .  Rewriting (7.3.2) gives: 

cQZPZTotal  21 . (7.3.3) 

Take the expectation of both sides: 

][][ 21 cQZPZEE Total  . (7.3.4) 

Since the expectation of a sum is the sum of expectations,  

][][][][ 21 cQEZEPZEE Total  . (7.3.5) 

Taking the constant P  out of the first term gives: 

][][][][ 21 cQEZEZPEE Total  . (7.3.6) 

As 2Z  is the sum of realized values of a random variable S , the total number of which is 

also random, use Wald’s Equation to express the second term on the right-hand side as: 

][][][ 12 SEZEZE  . (7.3.7) 
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Substitution of (7.3.7) into (7.3.6) gives: 

][][][][][ 11 cQESEZEZPEE Total  . 
(7.3.8) 

The last term on the right-hand side is the expectation of a constant which is just the 

constant itself, therefore: 

cQSEZEZPEE Total  ][][][][ 11 . (7.3.9) 

Rearranging gives (7.3.1).  Q.E.D. 

 

7.4 VARIANCE – RANDOM SECONDARY REVENUE 

Next, we derive an expression for the variance in total profit for the seller described in 

the introduction. 

 

Lemma 7.4.1.  The variance in total profit for a seller who receives profit from the sale of 

secondary items in addition to the revenues from the sale of primary items is: 

       1

2

1 ][][),( ZVarPSEZESVarQPVar Total  , (7.4.1) 

where 1Z  denotes the number of primary items that are sold. 

 

Proof.  Begin with the total profit function given in (7.2.1): 
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Rewrite (7.2.1) as 

 
 

cQsPXQPQP
PXQ

i

iTotal  


)(,min

1

)(,min),( . (7.4.2) 
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The notation is suppressed for ease of reading.  Since secondary profits are realized every 

time a primary item is purchased (and revenue of P  is realized), (7.4.2) can be written 

as: 

 

  cQsPQP i

XQ

i

Total  


,min

1

),( . (7.4.3) 

Denote  XQ,min  as 1Z . Taking the variance of both sides of (7.4.3) gives: 

    









 


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Z

i
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1

. (7.4.4) 

Note that the total cost, cQ , is a constant.  Therefore, 
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From the Law of Total Variance,  

       1

2

1

1

][][
1

ZVarPSEZEPSVarsPVar i

Z

i
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



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




. (7.4.6) 

Since P  is a constant, (7.4.6) becomes 

       1

2

1 ][][ ZVarPSEZESVarVar Total  , (7.4.7) 

as in (7.4.1).  Q.E.D. 

 

7.5 NUMERICAL EXAMPLES – RANDOM SECONDARY REVENUE 

To demonstrate the sensitivity of profit on certain variables in the model, four numerical 

examples are provided.  In each example, the values of the variables needed to calculate 

profit (as in Equation 7.2.1) are held constant, with the exception of the values of one of 

the variables.  For a given set of values, demand (the number of customers willing to pay 

price P for a primary item) as well as total profit from secondary items are randomly 
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generated and used to calculate profit.  The process is repeated 100 000 times for each set 

of values, and the results are plotted as a probability function (p.f.) to show the relative 

frequency of different total profits being observed.  Each figure includes at least four 

probability functions for comparison, with each probability function corresponding to a 

different value of a given variable. 

 

The general set of conditions, which applies to each example unless otherwise stated, is 

as follows.  The size of the customer base is deterministic, 50d .  The cost of making 

each primary item available for sale is deterministic, 10c .  The maximum amount that 

a randomly-selected customer is willing to pay for an item is random and follows a 

normal distribution as )10,50(~  RPRPNRP  .  The profit received from a customer 

who has already purchased a primary item is random and follows a normal distribution as 

)10,50(~  SSNS  .  The number of primary items made available for sale by the 

seller is 40Q .  The selling price of a primary item is 50P . 

 

7.5.1 SENSITIVITY TO CHANGES IN EXPECTED RESERVATION PRICE 

The first example demonstrates the sensitivity of total profit to changes in expected 

reservation price.  The results of the simulation are plotted in Figure 7.5.1.  Here, four 

probability functions demonstrate the effect of different expected reservation prices on 

total profit.  The probability functions are generated using various expected values of 

reservation price (30, 40, 50 and 60).  Two characteristics of the functions are worth 

noting: relative location and shape.   

 



128 

  

 

Figure 7.5.1.  Sensitivity of Total Profit to Changes in Expected Reservation Price. 

 

To understand Figure 7.5.1, consider first how changing expected reservation price might 

affect total profit, as given by (7.2.1): 
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As expected reservation price increases, so does the likelihood of selling more primary 

items (and gaining secondary profits as well).  Referring to (7.2.1), this means that 



129 

  

realized demand for items increases, and either more of the available items are sold (x 

increases up to, and including Q), or they are all sold with unmet demand ( Qx  ).  

Therefore, it is not surprising to see the probability functions shift to the right as expected 

reservation price increases. 

 

By inspection, as expected reservation price increases, so too does expected profit.  This 

can also be explained analytically, using the expression for expected profit: 

  cQSEPZEQPE Total  ][][)],([ 1 , (7.3.1) 

Here, 1Z  denotes the number of items sold, which increases as demand increases (up to 

the point of no remaining inventory). 

 

Finally, consider how variance in total profit changes as reservation price increases.  

Refer to the expression for variance from Section 7.4: 

       1

2

1 ][][),( ZVarPSEZESVarQPVar Total  , (7.4.1) 

Although it appears from (7.4.1) that variance should increase continually as more 

customers are willing to buy an item, if expected reservation price increases too much, 

demand will exceed supply too often, and stock-outs will occur often, actually decreasing 

variance in the number of items sold.  This phenomenon is seen in the p.f. for an expected 

reservation price of 60. 

 

7.5.2 SENSITIVITY TO CHANGES IN EXPECTED SECONDARY PROFIT 

The second example demonstrates the sensitivity of total profit to changes in expected 

secondary profits.  The results of the simulation are plotted in Figure 7.5.2. 



130 

  

 

Figure 7.5.2.  Sensitivity of Total Profit to Changes in Expected Secondary Profit. 

 

Here, the parameters are those listed as the general conditions, with expected secondary 

profit taking on values of 30, 40, 50, 60 and 70 per customer.   The effect of different 

secondary profits is not nearly as large as those seen in Example 1.  While increasing the 

expected secondary profit does shift the profit function in the positive direction, the 

overall effect of increased expected profit is small, with an increased variance.  Again, 

these phenomena can be explained using the expressions derived earlier. 
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First, consider first how changing expected secondary profit might affect total profit, as 

given by (7.2.1): 
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Regardless of how many primary items are sold, if the realized values of S increase 

( ...,, 21 ss ,) so too will total profit, ceteris paribus. 

 

By inspection of Figure 7.5.2, as expected secondary profit increases, so too does 

expected total profit.  This can also be explained analytically, using the expression for 

expected profit: 

  cQSEPZEQPE Total  ][][)],([ 1 , (7.3.1) 

Here, expected total profit increases linearly with expected secondary profit, up to the 

point where no more customers can purchase a primary item (and therefore contribute 

secondary profit to the seller). 

 

Finally, consider how variance in total profit changes as expected secondary profit 

increases.  Refer to the expression for variance from Section 7.4: 

       1

2

1 ][][),( ZVarPSEZESVarQPVar Total  , (7.4.1) 

The increased variance in total profit seen in Figure 7.5.2 is explained by the ][ PSE   

term on the right-hand side of (7.4.1).  As expected secondary profit increases, so too do 

both sides of (7.4.1). 
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7.5.3 SENSITIVITY TO CHANGES IN SELLING PRICE 

The third example demonstrates the sensitivity of total profit to changes in selling prices.  

The results of the simulation are plotted in Figure 7.5.3. 

 

 

Figure 7.5.3.  Sensitivity of Total Profit to Changes in Selling Price. 

 

In Figure 7.5.3, five functions demonstrate the effect of different selling prices on profit.  

Here, the parameters are those listed as the general conditions, with selling price P taking 

on values of 30, 40, 50, 60 and 70.   In this specific example, at a low selling price (P = 
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30), profits are high, as many customers are willing to pay P = 40 for a ticket.  The result 

is not only high revenues from ticket sales, but as a result more customers available to 

purchase secondary items.  At a high selling price (P = 60), profits are low, as fewer 

customers are willing to pay P = 60 for a ticket.  The result is not only low revenues from 

ticket sales, but as a result fewer customers available to purchase secondary items. 

 

While an increase in price leads appears to lead to an obvious increase in total profit,  
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at some point demand will suffer and an increase in P will not be enough to offset the 

corresponding decrease in )(PX .  Similar reasoning applies to the differences in 

expected profit, as is evident by inspection of Figure (7.5.3). 

 

Consider finally, the differences in variance in expected profit, as in 

       1

2

1 ][][),( ZVarPSEZESVarQPVar Total  , (7.4.1) 

With increases in selling price, the ][ PSE   term on the right-hand side of (7.4.1) will 

increase variance in total profit.  However, if primary items are priced such that either no 

one is willing to buy one, or conversely, everyone is, there is no variance in sales 

(  1ZVar  approaches zero), and the variance in total profit is due to variance in secondary 

profits.   
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7.6 THE NEWSVENDOR PROBLEM WITH PRICING AND SECONDARY 

REVENUES – DETERMINISTIC SECONDARY REVENUE 

We now consider the case of a seller with an inventory of homogeneous, primary items, 

who also makes available optional secondary items to those who have already purchased 

a primary item.  As an example, consider an electronics retailer who offers warrantees at 

an additional price.  The seller sets the selling price of the primary item and inventory 

level, 1P  and Q , respectively.  In addition, the seller sets the selling price of a secondary 

item, 2P , before realizing exact demand.  No inventory decision or constraint on 

secondary items is required.   The population of customers can be broken into two groups 

as follows.  A certain fraction of the customers are only interested in purchasing a 

primary item (“Group 1”) and have a reservation price distribution of )(1 RPF .  Denote the 

fraction of customers in the population who want only a primary item as  .  The 

remainder of the customers are interested in purchasing the primary item only if they can 

purchase a secondary item as well (“Group 2”), and have a reservation price distribution 

of )(2 RPF .    If a customer in Group 1 has a reservation price at least high as 1P , he will 

want to purchase an item.  If a customer in Group 2 has a reservation price at least as high 

as 21 PP  , he will want to purchase both a primary and secondary item. 

 

7.6.1 EXPECTED PROFIT 

Here we derive an expected profit function for the seller described above, and conclude 

with an example.  Consider first, expected revenue when there is no unmet demand. 
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Lemma 7.6.1.  If Qx   customers have reservation prices at least as high as 1P , and y 

customers are in Group 1, the expected revenue from Group 1 is 1yP  and the expected 

revenue from Group 2 is    













)(1

)(1

12

212
21

PF

PPF
yxPP

RP

RP . 

 

Proof.  Consider first, the expected revenue from Group 1.  Since there is no unmet 

demand, everyone in this group (y) buys a primary item, giving a revenue of 1yP .   

 

If y customers are in Group 1, that leaves a total of yx  customers in Group 2.  Of 

these, the number of customers from Group 2 who are able to afford both a primary and 

secondary item is random, between 0 and yx , and follows a binomial distribution with 

parameters yx  and 
)(1

)(1

12

212

PF

PPF

RP

RP




.  Given this, the expected number of customers in 

who will buy both a primary and secondary item is   













)(1
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212
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PPF
yx

RP

RP .  

Multiplying by the corresponding revenue from each customer, 21 PP  , completes the 

proof.   Q.E.D. 

 

Lemma 7.6.2.  If Qx   customers have reservation prices at least as high as 1P , the 

expected revenue from Group 1 is 1Px  and the expected revenue from Group 2 is 

   



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Proof.  From Lemma 7.6.1, the revenue from y customers in Group 1 is 1yP .  For a 

population of size x, the number of customers who will buy a primary item takes on 

values between zero and x, and follows a binomial distribution with parameters x and  .  

Therefore, the expected revenue from Group 1, )]|([ 1 xPRevE G1 , is given by:    

  yxy
x

y

G1
y

x
yPxPRevE









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


 1)]|([ 1

0

1

 

(7.6.1) 

Factoring 1P  leaves the expected value of a random variable that follows a binomial 

distribution with parameters x and  .  Therefore, the expected revenue from Group 1 is 

1Px . 

 

From Lemma 7.6.1, the expected revenue from y customers in Group 2 is 

   



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RP .  For a population of size x, the number of customers 

who will buy both a primary item takes on values between zero and x, and follows a 

binomial distribution with parameters x and  .  Therefore, the expected revenue from 

Group 2, )]|,([ 21 xPPRevE G2 , is given by:    
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(7.6.2) 

Expanding gives: 
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(7.6.3) 
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The first summation is the sum of all probabilities from a random variable that follows a 

binomial distribution, therefore (7.6.2) becomes  
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(7.6.4) 

The second term is the expected value of a random variable that follows a binomial 

distribution with parameters x and  .  Therefore (7.6.3) becomes: 
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(7.6.5) 

Collecting like terms and rearranging (7.6.5) gives: 
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which completes the proof.  Q.E.D. 

 

Lemma 7.6.3.  If Qx   customers have reservation prices at least as high as 1P , there 

are y customers in Group 1, there are z customers in Group 2 who have reservation 

prices at least as high as 21 PP  , and there is no unmet demand ( Qzy  ), the expected 

revenue is given by  211 PPzyP   . 
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Proof.  Since there is no unmet demand, every customer in Group 1 (y) will spend 1P  

each, and every customer in Group 2 with a reservation price at least as high as 21 PP   

(z) will spend 21 PP  .  Q.E.D. 

 

Lemma 7.6.4.  If Qx   customers have reservation prices at least as high as 1P , there 

are y customers in Group 1, there are z customers in Group 2 who have reservation 

prices at least as high as 21 PP  , and there is unmet demand  ( Qzy  ), expected 

revenue is given by 











zy

z
QPQP 21  . 

 

Proof.  Since there will be unmet demand, the total number of customers who make 

purchases will be Q , out of a total of zy  .  Denote the number of customers from 

Group 2 who make a purchase as j, giving a revenue of  21 PPj  .  This leaves jQ  

customers from Group 1 who make a purchase, giving a revenue of  jQP 1 .  The 

expected revenue is given by:  
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Expansion of (7.6.7) gives: 
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(7.6.8) 
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Since the first summation in (7.6.8) is a sum of probabilities over all possible values of j, 

(7.6.8) can be written as: 
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. (7.6.9) 

The remaining summation gives the expected value of a random variable that follows a 

hypergeometric distribution with parameters yz,  and Q .  Therefore, (7.6.9) can be 

written as 

zy

z
QPQP


 21  (7.6.10) 

which completes the proof.  Q.E.D. 

 

Denote  ProbdxBin ,,  as a probability taken from a binomial distribution calculated as: 

    xdx
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Lemma 7.6.5.  If Qx   customers have reservation prices at least as high as 1P , and 

there are y customers in Group 1, then the expected revenue is given by: 
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when Qy   and 
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Proof.  The result of Lemma 7.6.5 is obtained using the definition of an expected value.  

When Qy  , and z can take on values between zero and yQ , then there is no 

possibility of unmet demand in Group 2.  The possible revenues are from Lemma 7.6.3 

  211 PPzyP  .  The size of the population from which z customers can make 

purchases is the size of Group 2 ( yx ), and the probability that someone from this 

group is willing to pay 21 PP   is given by the conditional probability 
)(1

)(1

12

212

PF

PPF

RP

RP




.  

Using these parameters gives the first term.  When Qy  , and there is possibility of 

unmet demand in Group 2, z can take on values between 1 yQ  and yx  .  The 

possible revenues are from Lemma 7.6.4 (
zy

z
QPQP


 21 ).  Using these parameters 

gives the second term.  Finally, when Qy  , and there may or may not be unmet demand 

in Group 2, z can take on values between zero and yx  .  The possible revenues are from 

Lemma 7.6.4 (
zy

z
QPQP


 21 ).  Using these parameters gives the final term.  Q.E.D. 

 

Now consider the revenue when x customers have reservation prices at least as high as 

.1P  

 



141 

  

Lemma 7.6.6.  If Qx   customers have reservation prices at least as high as 1P , the 

expected revenue is given by: 
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Proof.  From Lemma 7.6.5, the expected revenue when Qy   is used in the expected 

revenue calculation above, with y taking on values between zero and Q , The size of the 

population from which y customers can make purchases is x,  and the probability that 

someone from this population is interested in purchasing only a primary item is  .  

Using these parameters gives the first two terms.  Also from Lemma 7.6.5, the expected 

revenue when Qy   is used in the expected revenue calculation above, with y taking on 

values between zero and 1Q  and x.  Using these parameters gives the final term. 

Q.E.D. 

 

Finally, consider the expected profit for the seller. 

 

Theorem 7.6.1.  The expected profit for the seller when Q  items are made available for 

sale and the prices for primary and secondary items are 1P  and 2P   respectively, is given 

by: 
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(7.6.11) 

 

Proof.  Lemma 7.6.2 provides the expected revenue when Qx  .  Here, x can take on 

values between zero and Q .  The size of the population from which x customers can 

make purchases is d.  The probability that someone from Group 1 will have a reservation 

price at least as high as 1P  is )(1 11 PFRP .  The probability that someone from Group 2 

will have a reservation price at least as high as 1P  is )(1 12 PFRP .  Therefore, the 

expected probability that a randomly-selected customer will have a reservation price at 

least as high as 1P  is     )(11)(1 1211 PFPF RPRP  .  Using the definition of 

expected value and these parameters gives the first term.  Lemma 7.6.6 provides the 

expected revenue when Qx  .  Here, x can take on values between 1Q  and d .  Using 
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the definition of expected value and these parameters gives the next three expected 

revenue terms.  Subtracting the total cost to the seller, cQ , completes the proof.  Q.E.D. 

 

7.6.2 NUMERICAL EXAMPLE 

Here we provide an example to demonstrate the problem.  Consider a customer base of 

size 10d , where customers either have a reservation price distribution of 

]7,0[~1 URP , with probability 5.0 , or a reservation price distribution of 

]10,0[~2 URP ,  with probability 5.01  .  The seller incurs a unit cost of 1c  for 

every primary item made available for sale.  By searching over a grid of allowable 

values, the maximum expected profit for various Totals (calculated as 21 PP  ) are 

determined using (7.6.11) and shown in Figure 7.6.1. 

 



144 

  

 

Figure 7.6.1.  Maximum Expected Profit as a Function of Selling Price, 1P . 

 

By inspection, the optimal Maximum Expected Profit of 14.2 is at Total=5, where 41 P  

and 12 P . 
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

 

8.1 CONCLUSIONS AND FUTURE RESEARCH 

In Chapter 3, we have considered a realistic model of consumer buying behavior for 

homogeneous items.  Our assumptions are that demand can be modeled using size of 

customer base and distribution of reservation prices of the customers (the most a 

customer is willing to pay for a single item).  Based on this, we have shown that an 

additive model with price-dependent uncertainty is appropriate, and the linear model is 

appropriate only under very restrictive conditions.  We provided forms of the elasticity in 

the general model of demand, and showed that maximum variance in the general model 

of demand occurs when the selling price is the median of the reservation prices.  The 

expression for elasticity provided in this chapter would be useful for the business 

practitioner who prices his product according to price elasticity of demand (often targeted 

at unity).   

 

In Chapter 4, we used the general model of demand from Chapter 3 to derive expected 

profit functions when the seller uses a single-price strategy, for both deterministic and 

random sizes of customer bases.  Numerical examples were provided. 

 

In Chapter 5, we used the general model of demand from Chapter 3 to derive expected 

profit functions when the sellers uses a multiple-price strategy, with a laddered structure 

of prices.  We provided models for deterministic and random sizes of customer bases, for 
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both discrete and continuous cases.  From the dual-price model, we derived an expression 

for the optimal inventory level of items to be made available for sale at the higher price.  

We also expanded the dual-price model to include the Bandwagon Effect, and provided a 

numerical example.  We show how optimal solutions can be found analytically in cases 

where the seller makes relatively few price (and corresponding inventory level) decisions, 

but as the number of decisions increases, the difficulty in finding optimal solutions can 

become prohibitive.  To address this, we provide a dynamic programming model that can 

be used to find optimal solutions.  Even in these larger cases, restricting the number of 

possibilities for allowable inventory and prices makes finding optimal solutions easier.  

Future work related to this chapter includes expanding on the work done on the 

Bandwagon Effect, to see if analytical results similar to those found using the dual-price 

model can be obtained.  The results of this chapter, especially those on the topic of the 

Bandwagon Effect, would be useful for a seller of tickets to performance events (e.g.; 

sports or theatre), where “demand creates demand.” 

 

In Chapter 6, we consider the case of a seller facing small sizes of customer base (both 

deterministic and random).  Expected profit functions are derived to determine under 

which circumstances, if any, we can show that a multiple-price strategy is superior to a 

single-price strategy.  A first attempt at finding analytical optimal results demonstrated 

that regardless of whether or not the size of the customer base is known exactly, the seller 

is best off setting a single selling price and corresponding inventory level.  Future work in 

this area includes determining whether or not the conclusions from this chapter are 

applicable for larger population sizes, and if not, why not. 
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In Chapter 7, we provided a model for a seller who receives secondary profits from 

customers who have already purchased a primary item.  We derived expected profit and 

variance expressions and used numerical examples to show how they could be used to 

provide insight into the random total profit that the seller could expect.  Numerical 

examples were used to demonstrate the sensitivity of expected profit to changes in 

expected reservation price, expected secondary profit and selling price.  Here, we 

assumed that the secondary revenues from the customers was simply a random quantity 

with a known distribution.  To expand the problem, we also considered the case where a 

fraction of the customers are interested in only a primary product (with a known 

reservation price distribution) and the remaining customers are interested in a purchasing 

a primary item only if they can afford a secondary item as well (each with different 

reservation price distributions).  We derive an expected profit function for this case, and 

provide a numerical example.  Future work in this area includes deriving analytical 

results for both forms of the newsvendor problem with pricing and secondary revenues.  

Again, a seller of tickets to a performance event would find the results of this chapter 

useful for maximizing expected total profit. 
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APPENDIX A 

SOLUTION TO EXAMPLE FROM DANA (1999) 

 

This appendix provides the method used in Dana (1999) to solve the example discussed 

in Section 4.3. 

 

The example is as follows.  A seller of homogeneous items decides on selling prices and 

corresponding inventory levels before knowing the exact size of the customer base, and 

how much each customer is willing to pay for an item.  There are two possible sizes of 

customer base, 1001 d  and 4002 d , which are equally likely.  Denote the probability 

of the high-demand state being realized as 2dProb , which is 50%.  The maximum amount 

each customer is willing to pay for an item (reservation price) is random, and follows a 

uniform distribution as RP ~ U[0, Pmax = 100].  In addition, the seller incurs a unit cost of 

c = 20 for each item made available for sale, regardless of whether or not the item 

ultimately sold.  In demonstrating the solution by Dana (p. 639), subscript “1” (“2”) 

indicates the low (high) price and corresponding inventory level.   

 

The first step is to determine *

1P  and *

1Q .  This is done by setting marginal revenue equal 

to marginal cost for the low-demand state to find *

1Q , and then using that inventory level 

in the low-demand state demand curve to find *

1P .   
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Begin by deriving the demand equation for the low-demand state (D = d1 = 100).  For 

reservation prices that follow a uniform distribution, the demand equation is downward 

sloping and linear in 1P , as given by: 

1
1

111 )( P
P

d
dPQ

max

 . (A1) 

Rewriting (A1) as the inverse demand function gives: 

1

1

11 )( Q
d

P
PQP max

max  . (A2) 

Multiplying (A2) by 1Q  gives the revenue curve for the low-demand state: 









 1

1

11111 )( Q
d

P
PQQPQR max

max  (A3) 

Taking the first derivative of (A3) with respect to 1Q  gives: 

































1

1

1

1

1

1

Q
d

P
PQ

Q
R

Q

max
max  (A4) 

which is the marginal revenue equation for the low-demand state, 1RM : 

1

1

1

2
Q

d

P
PRM max

max  . (A5) 

Setting the right hand side of (A5) equal to the marginal cost of making an item available 

for sale, c, provides an equation for finding the optimal number of items to be made 

available at the low price, *

1Q : 

cQ
d

P
P max

max  *

1

1

2
. (A6) 

Solving (A6) for *

1Q  gives the optimal quantity of items to be made available for sale at 

price 1P : 
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 cP
P

d
Q max

max


2

1*

1
 (A7) 

Using the information given in the example in (A7) gives: 

  4020100
)100(2

100*

1 Q . (A8) 

 

Optimal price *

1P  is found by substituting the right hand side of (A8) into the original 

demand equation (A2): 

 







 cP

P

d

d

P
PP max

max

max
max

2

1

1

*

1  (A9) 

Simplifying and rearranging (A9) gives: 

2

*

1

cP
P max   (A10) 

Using (A10) and the values of the parameters given in the example gives: 

60
2

20100*

1 


P . (A11) 

 

Note that for the solution 60*

1 P  and 40*

1 Q , there are no “leftover” customers if the 

demand state is 1001 d .  That is, if the selling price is set at 60 and there are 100 

customers in the population, the expected demand is 40 since 

  40
0100

060
1100)(1 *

11 











 PFd RP , which is the solution for *

1Q .  Therefore, in the 

low-demand state, everyone who is expected to be willing to pay for an item is able to 

purchase one.   
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However, in the high-demand state ( 4002 d ), the expected number of customers willing 

to pay 60 is   160
0100

060
1400)(1 *

12 











 PFd RP

, which means there will be 

12040160   “leftover” customers remaining who were willing to pay at least 60.  To 

provide items for this residual population, an additional number of items are made 

available for sale at another price.  The optimal number of items, *

2Q , and the price at 

which to sell them, *

2P , are found using a procedure similar to that which was used to 

find *

1P  and *

1Q .  The significant difference here, is that a residual demand equation must 

be used, as some of the original 4002 d  customers have already purchased an item at 

price *

1P , leaving behind a fraction of customers who were willing to pay *

1P  for an item, 

but could not buy one as they had all been sold.   Denote that fraction of “leftover” 

customers as a, which in the example is calculated as 75.0160/120  . 

 

Begin with the demand equation for the high-demand state (D = d2 = 400), assuming that 

the entire customer base is still available to purchase an item.  For reservation prices that 

follow a uniform distribution, the demand equation, )( 2,2 PQ Full , is downward sloping and 

linear in 2P , as given by: 

2
2

22,2 )( P
P

d
dPQ

max

Full  . (A12) 

The residual demand equation, )( 22 PQ , is found by multiplying the high-demand state 

demand equation by the fraction of “leftover” customers: 

)()( 2,222 PaQPQ Full . (A13) 

Substituting (A12) into (A13) gives the explicit form of the residual demand equation: 
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







 2

2
222 )( P

P

d
daPQ

max

. (A14) 

Rewriting (A14) as the inverse residual demand equation, )( 22 QP , gives: 

2

2

22 )( Q
ad

P
PQP max

max  . (A15) 

To find the residual revenue equation for the high-demand state, 2R , multiply (A15) by 

2Q  to give: 









 2

2

22222 )( Q
ad

P
PQQPQR max
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Taking the first derivative of (A16) with respect to 2Q  gives: 



















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
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









2

2

2

2

2

2

Q
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P
PQ

Q
R
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max  (A17) 

which is the residual marginal revenue equation for the high-demand state, 2RM :  

2

2

2

2
Q

ad

P
PRM max

max  . (A18) 

However, recall that the probability of realizing the high-demand state is 2dProb , which 

means that the expected residual marginal revenue is only (A18) multiplied by 2dProb .  

Therefore, the expression used to find *

2Q  is:  

cQ
ad

P
PProb max

maxD 







 *

2

2

2
2

 (A19) 

Solving (A19) for *

2Q  gives the equation to calculate the optimal number of items to be 

made available for sale at second price: 
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









2

2*

2
2 d

max

max Prob

c
P

P

ad
Q . (A20) 

Using the values given in the example in (A20) gives: 

90
5.0

20
100

)100(2

)400(75.0*

2 







Q . (A21) 

 

The optimal second price to charge, *

2P , is found by substituting the right hand side of 

(A20) into the residual demand equation (A15) to give: 

























2

2

2

*

2
2 d
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max

max
max

Prob

c
P

P

ad

ad

P
PP  (A22) 

Simplifying (A22) gives: 

2

2*

2
d

max
Prob

c
P

P



  
(A23) 

Substituting the values given in the example into (A23) gives the optimal second selling 

price as: 

70
2

5.0

20
100

*

2 



P . 
(A24) 
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APPENDIX B 

DERIVATIONS OF EXPECTED PROFIT FUNCTIONS 

 

B1 DETERMINISTIC CUSTOMER BASE WITH 2d  

This section contains the derivations of the expected profit functions for a seller facing a 

deterministic customer base of d = 2. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 2TotalQ . These inventory combinations are shown in Table B1.1.  

Note that iQ  is the number of units of inventory to be made available for sale at price iP , 

i = 1, 2. 

 

Table B1.1.  Inventory Combinations for Example 1 

 
1Q  

0 1 2 

2Q  

0 Case 1 Case 2 Case 3 

1 Case 4 Case 5  

2 Case 6   

 

While Case 1 is included in Table B1.1 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

As there are two customers in the population, the probabilities to be used in (6.2.3) are 

joint probabilities, calculated for various combinations of reservation prices relative to 

the selling prices.  The joint probabilities are given in Table B1.2.  Recall that iF  denotes 
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)(1 iRP PF , the probability that a randomly-chosen customer has a reservation price at 

least as high as price iP . 

 

Table B1.2.  Joint Probabilities for Example 1 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP    211 F    2111 FFF     211 FF  

221 PRPP     2111 FFF    221 FF    212 FFF   

22 RPP     211 FF   212 FFF   
2

2F  

For ease of reference, the joint probabilities in Table B1.2 are denoted as indicated in 

Table B1.3. 

 

Table B1.3.  Notation for Joint Probabilities for 2d . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1r  
2r  3r  

221 PRPP   4r  5r  6r  

22 RPP   7r  8r  9r  

 

Shown below are the expected profit calculations for the various combinations of 

inventory decisions shown in Table B1.1.   

 

For Case 2, 0,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Table B1.4. 
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Table B1.4.  Possible Revenues for Example 1, Case 2. 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  
1P  

221 PRPP   1P  
1P  

1P  

22 RPP   1P  
1P  

1P  

 

Multiplying the joint probabilities from Table B1.3 by their respective revenues in Table 

B1.4, taking the summation of the products and subtracting the total cost gives the 

expected profit for Case 2: 

  crrrrrrrrPrE Case 10][ 98765432112  . (B1.1) 

Substitution of the joint probabilities from Table B1.2 into (B1.1) and simplifying gives: 

  cFFPE Case  1112 2][ . (B1.2) 

 

For Case 3, 0,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Table B1.5. 

 

Table B1.5.  Possible Revenues for Example 1, Case 3. 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  
12P  

12P  

22 RPP   1P  
12P  

12P  

 

Multiplying the joint probabilities from Table B1.3 by their respective revenues in Table 

B1.5, taking the summation of the products and subtracting the total cost gives the 

expected profit for Case 3: 
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    crrrrPrrrrPrE Case 220][ 986517432113  . (B1.3) 

Substitution of the joint probabilities from Table B1.2 into (B1.3) and simplifying gives: 

cFPE Case 22][ 113  . (B1.4) 

 

For Case 4, 1,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Table B1.6. 

 

Table B1.6.  Possible Revenues for Example 1, Case 4. 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  
2P  

2P  

 

Multiplying the joint probabilities from Table B1.3 by their respective revenues in Table 

B1.6, taking the summation of the products and subtracting the total cost gives the 

expected profit for Case 4: 

    crrrrrPrrrrE Case 10][ 98763254214  . (B1.5) 

Substitution of the joint probabilities from Table B1.2 into (B1.5) and simplifying gives: 

  cFFPE Case  2224 2][ . (B1.6) 

 

For Case 5, 1,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Table B1.7. 
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Table B1.7.  Possible Revenues for Example 1, Case 5. 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  
1P  

221 PRPP   1P  
1P  

1P  

22 RPP   1P  
21 PP   

21 PP   

 

Multiplying the joint probabilities from Table B1.3 by their respective revenues in Table 

B1.7, taking the summation of the products and subtracting the total cost gives the 

expected profit for Case 5: 

     crrPPrrrrrrPrE Case 20][ 9821765432115  . (B1.7) 

Substitution of the joint probabilities from Table B1.2 into (B1.7) and simplifying gives: 

  cFFPFFPE Case 22][ 2121115  . (B1.8) 

 

For Case 6, 2,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Table B1.8. 

 

Table B1.8.  Possible Revenues for Example 1, Case 6. 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  
2P  

22P  

 

Multiplying the joint probabilities from Table B1.3 by their respective revenues in Table 

B1.8, taking the summation of the products and subtracting the total cost gives the 

expected profit for Case 6: 
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    crPrrrrPrrrrE Case 220][ 928763254216  . (B1.9) 

Substitution of the joint probabilities from Table B1.2 into (B1.9) and simplifying gives: 

cFPE Case 22][ 226  . (B1.10) 

 

B2 DETERMINISTIC CUSTOMER BASE WITH 3d  

This section contains the derivations of the expected profit functions for a seller facing a 

deterministic customer base of d = 3. 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 3TotalQ . These inventory combinations are shown in Table B2.1.  

Note that iQ  is the number of units of inventory to be made available for sale at price iP , 

i = 1, 2. 

 

Table B2.1.  Inventory Combinations for Example 2 

 
1Q  

0 1 2 3 

2Q  

0 Case 1 Case 2 Case 3 Case 4 

1 Case 5 Case 6 Case 7  

2 Case 8 Case 9   

3 Case 10    

 

While Case 1 is included in Table B2.1 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 
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As there are two customers in the population, the probabilities to be used in (6.2.3) are 

joint probabilities, calculated for various combinations of reservation prices relative to 

the selling prices.  The joint probabilities are given in Tables B2.2a – B2.2c.  Recall that 

iF  denotes )(1 iRP PF , the probability that a randomly-chosen customer has a 

reservation price at least as high as price 
iP . 

 

Table B2.2a.  Joint Probabilities for Example 2, 13 PRP  .  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP    311 F     21

2

11 FFF     2

2

11 FF  

221 PRPP      21

2

11 FFF      1

2

21 1 FFF     1212 1 FFFF   

22 RPP     2

2

11 FF    1212 1 FFFF    1

2

2 1 FF   

 

Table B2.2b.  Joint Probabilities for Example 2, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP      21

2

11 FFF     2111 FFF      22111 FFFF   

221 PRPP     22111 FFF    321 FF    2212 FFF   

22 RPP      22111 FFFF    2212 FFF    21

2

2 FFF   

 

Table B2.2c.  Joint Probabilities for Example 2, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP     2

2

11 FF     22111 FFFF     2

211 FF  

221 PRPP      22111 FFFF     2

2

21 FFF    21

2

2 FFF   

22 RPP     2

211 FF   21

2

2 FFF   
3

2F  
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For ease of reference, the joint probabilities in Table B2.2 are denoted as indicated in 

Tables  B2.3a – B2.3c. 

Table B2.3a.  Notation for Joint Probabilities for Example 2, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1r  
2r  3r  

221 PRPP   4r  5r  
6r  

22 RPP   7r  
8r  

9r  

 

Table B2.3b.  Notation for Joint Probabilities for Example 2, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   10r  
11r  

12r  

221 PRPP   13r  
14r  15r  

22 RPP   16r  
17r  

18r  

 

Table B2.3c.  Notation for Joint Probabilities for Example 2, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   19r  
20r  

21r  

221 PRPP   22r  23r  
24r  

22 RPP   25r  
26r  

27r  

 

Shown below are the expected profit calculations for the various combinations of 

inventory decisions shown in Table B2.1.   

 

For Case 2, 0,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.4a – B2.4c. 
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Table B2.4a.  Possible Revenues for Example 2, Case 2, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Table B2.4b.  Possible Revenues for Example 2, Case 2, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Table B2.4c.  Possible Revenues for Example 2, Case 2, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.4a – B2.4c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 2: 

  crPrE Case 110][ 1112  . (B2.1) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.1) and 

simplifying gives: 

  cFFFPE Case 
2

11112 33][ . (B2.2) 
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For Case 3, 0,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.5a – B2.5c. 

 

Table B2.5a.  Possible Revenues for Example 2, Case 3, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Table B2.5b.  Possible Revenues for Example 2, Case 3, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Table B2.5c.  Possible Revenues for Example 2, Case 3, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.5a – B2.5c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 3: 

 19107432113 0][ rrrrrrPrE Case 
 

   crrrrrrrP 212 1910743211  . 

(B2.3) 
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Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.3) and 

simplifying gives: 

  cFFPE Case 23][
2

1113  . (B2.4) 

 

For Case 4, 0,3 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.6a – B2.6c. 

 

Table B2.6a.  Possible Revenues for Example 2, Case 4, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Table B2.6b.  Possible Revenues for Example 2, Case 4, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  13P  13P  

22 RPP   12P  13P  13P  

 

Table B2.6c.  Possible Revenues for Example 2, Case 4, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  13P  13P  

22 RPP   12P  13P  13P  
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Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.6a – B2.6c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 4: 

 19107432114 0][ rrrrrrPrE Case   

 2522212016131211986512 rrrrrrrrrrrrP   

  crrrrrrrrP 33 27262423181715141  . 

 

(B2.5) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.5) and 

simplifying gives: 

cFPE Case 33][ 114  . (B2.6) 

 

For Case 5, 1,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.7a – B2.7c. 

 

Table B2.7a.  Possible Revenues for Example 2, Case 5, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  2P  

 

Table B2.7b.  Possible Revenues for Example 2, Case 5, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  2P  
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Table B2.7c.  Possible Revenues for Example 2, Case 5, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  2P  

221 PRPP   2P  2P  2P  

22 RPP   2P  2P  2P  

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.7a – B2.7c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 5: 

 1413111054215 0][ rrrrrrrrE Case   

   crrrrrrrrP 11 1413111054212  . 

(B2.7) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.7) and 

simplifying gives: 

  cFFFPE Case 
2

22225 33][ . (B2.8) 

 

For Case 6, 1,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.8a – B2.8c. 

 

Table B2.8a.  Possible Revenues for Example 2, Case 6, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  21 PP   21 PP   
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Table B2.8b.  Possible Revenues for Example 2, Case 6, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  21 PP   21 PP   

 

Table B2.8c.  Possible Revenues for Example 2, Case 6, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  21 PP   21 PP   

221 PRPP   21 PP   21 PP   21 PP   

22 RPP   21 PP   21 PP   21 PP   

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.8a – B2.8c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 6: 

 1916151413121110765432116 0][ rrrrrrrrrrrrrrPrE Case   

   crrrrrrrrrrrrPP 2272625242322212018179821  . 

(B2.9) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.9) and 

simplifying gives: 

    cFFFFFPFFFPE Case 2333][ 21

2

1122

2

11116  . (B2.10) 

 

For Case 7, 1,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.9a – B2.9c. 
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Table B2.9a.  Possible Revenues for Example 2, Case 7, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Table B2.9b.  Possible Revenues for Example 2, Case 7, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Table B2.9c.  Possible Revenues for Example 2, Case 7, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   12P  12P  12P  

221 PRPP   12P  212 PP   212 PP   

22 RPP   12P  212 PP   212 PP   

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.9a – B2.9c, taking the summation of the products and subtracting 

the total cost gives the expected profit for Case 7: 

 19107432117 0][ rrrrrrPrE Case   

 252221201817161514131211986512 rrrrrrrrrrrrrrrrP   

   crrrrPP 32 2726242321  . 

(B2.11) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.11) and 

simplifying gives: 
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  cFFPFFPE Case 33][ 2

2

12

2

1117  . (B2.12) 

 

For Case 8, 2,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.10a – B2.10c. 

 

Table B2.10a.  Possible Revenues for Example 2, Case 8, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B2.10b.  Possible Revenues for Example 2, Case 8, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B2.10c.  Possible Revenues for Example 2, Case 8, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  22P  

221 PRPP   2P  2P  22P  

22 RPP   22P  22P  22P  

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.10a – B2.10c, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 8: 
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 1413111054218 0][ rrrrrrrrE Case   

 232220191716151287632 rrrrrrrrrrrrP   

  crrrrrrrP 22 27262524211892  . 

(B2.13) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.13) and 

simplifying gives: 

  cFFPE Case 23][
2

2228  . (B2.14) 

 

For Case 9, 2,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B2.11a – B2.11c. 

 

Table B2.11a.  Possible Revenues for Example 2, Case 9, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  21 PP   

22 RPP   1P  1P  21 PP   

 

Table B2.11b.  Possible Revenues for Example 2, Case 9, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  21 PP   

22 RPP   1P  1P  21 PP   
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Table B2.11c.  Possible Revenues for Example 2, Case 9, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  21 PP   21 PP   

221 PRPP   21 PP   21 PP   21 2PP   

22 RPP   21 PP   21 PP   21 2PP   

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.11a – B2.11c, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 9: 

19 0][ rE Case   

 1917161514131211108754321 rrrrrrrrrrrrrrrP   

  26252322212018159621 rrrrrrrrrrPP   

   crrPP 32 272421  . 

(B2.15) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.15) and 

simplifying gives: 

    cFFFPFFFPE Case 3333][
2

1122

2

11119  . (B2.16) 

 

For Case 10, 3,0 21  QQ .  For this inventory decision, the possible revenues that can 

be realized are shown in Tables B2.12a – B2.12c. 

Table B2.12a.  Possible Revenues for Example 2, Case 10, 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 



172 

  

Table B2.12b.  Possible Revenues for Example 2, Case 10, 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B2.12c.  Possible Revenues for Example 2, Case 10, 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  22P  

221 PRPP   2P  2P  22P  

22 RPP   22P  22P  23P  

 

Multiplying the joint probabilities from Tables B2.3a – B2.3c by their respective 

revenues in Tables B2.12a – B2.12c, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 10: 

 14131110542110 0][ rrrrrrrrE Case   

 232220191716151287632 rrrrrrrrrrrrP   

  crPrrrrrrP 332 272262524211892  . 

 

(B2.17) 

Substitution of the joint probabilities from Tables B2.2a – B2.2c into (B2.17) and 

simplifying gives: 

cFPE Case 33][ 2210  . (B2.18) 
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B3 STOCHASTIC CUSTOMER BASE WITH 11d  AND 22d  

This section contains the derivations of the expected profit functions for a seller facing a 

stochastic customer base of 11 d  with probability 1dProb  and 22 d  with probability 

11 dProb . 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 2TotalQ . These inventory combinations are shown in Table B3.1.  

Note that iQ  is the number of units of inventory to be made available for sale at price iP , 

i = 1, 2. 

 

Table B3.1.  Inventory Combinations for Example 3 

 
1Q  

0 1 2 

2Q  

0 Case 1 Case 2 Case 3 

1 Case 4 Case 5  

2 Case 6   

 

While Case 1 is included in Table B3.1 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

Since there can be either one or two customers in the population, two sets of probabilities 

are needed for the expected profit calculations given in Chapter 7.  These (joint) 

probabilities are calculated for various combinations of reservation prices relative to the 

selling prices.  The probabilities for the case of a single customer are presented in Table 
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B3.2a, with corresponding notation presented in Table B3.2b.   Recall that iF  denotes 

)(1 iRP PF , the probability that a randomly-chosen customer has a reservation price at 

least as high as price iP . 

Table B3.2a.  Probabilities for Example 3 for 11d . 

Range  11 PRP   211 PRPP   12 RPP   

Probability 
11 F  21 FF   2F  

 

Table B3.2b.  Notation for Probabilities for Example 3 for 11d . 

Range  11 PRP   221 PRPP   22 RPP   

Probability 1q  2q  3q  

 

The joint probabilities for the case of a two customers are presented in Table B3.3a, with 

corresponding notation presented in Table B3.3b.    

Table B3.3a.  Joint Probabilities for Example 3 for 22d . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP    211 F    2111 FFF     211 FF  

221 PRPP     2111 FFF    221 FF    212 FFF   

22 RPP     211 FF   212 FFF   
2

2F  

 

Table B3.3b.  Notation for Joint Probabilities for Example 3 for 22d . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1r  2r  3r  

221 PRPP   4r  5r  6r  

22 RPP   7r  8r  9r  

 

Shown below are the expected profit calculations for the various combinations of 

inventory decisions (Cases) shown in Table B3.1.   
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For Case 2, 0,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B3.4a and B3.4b. 

 

Table B3.4a.  Possible Revenues for Example 3, Case 2, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B3.4b.  Possible Revenues for Example 3, Case 2, 22d  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Multiplying the (joint) probabilities from Tables B3.2b and B3.3b by their respective 

revenues in Tables B3.4a and B3.4b, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 2: 

  321112 0][ qqPqProbE dCase   

     crrrrrrrrPrProbd 101 98765432111  . 

(B3.1) 

Substitution of the (joint) probabilities from Tables B3.2a and B3.3a into (B3.1) and 

simplifying gives: 

    cProbFPProbFPE ddCase  1

2

111112 12][ . (B3.2) 

 

For Case 3, 0,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B3.5a and B3.5b. 
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Table B3.5a.  Possible Revenues for Example 3, Case 3, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B3.5b.  Possible Revenues for Example 3, Case 3, 22d  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Multiplying the (joint) probabilities from Tables B3.2b and B3.3b by their respective 

revenues in Tables B3.5a and B3.5b, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 3: 

  321113 0][ qqPqProbE dCase   

       crrrrPrrrrPrProbd 2201 986517432111  . 

(B3.3) 

Substitution of the (joint) probabilities from Tables B3.2a and B3.3a into (B3.3) and 

simplifying gives: 

  cProbFPE dCase 22][ 1113  . (B3.4) 

 

For Case 4, 1,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B3.6a and B3.6b. 

Table B3.6a.  Possible Revenues for Example 3 for Case 4, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 0 2P  
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Table B3.6b.  Possible Revenues for Example 3 for Case 4, 22d  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  2P  

 

Multiplying the (joint) probabilities from Tables B3.2b and B3.3b by their respective 

revenues in Tables B3.6a and B3.6b, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 4: 

  312114 0][ qPqqProbE dCase   

       crrrrrPrrrrProbd 201 98763254211  . 

(B3.5) 

Substitution of the (joint) probabilities from Tables B3.2a and B3.3a into (B3.5) and 

simplifying gives: 

    cProbFPProbFPE ddCase  1

2

221224 12][ . (B3.6) 

 

For Case 5, 1,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B3.7a and B3.7b. 

Table B3.7a.  Possible Revenues for Example 3 for Case 5, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B3.7b.  Possible Revenues for Example 3 for Case 5, 22d  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  21 PP   21 PP   



178 

  

 

Multiplying the (joint) probabilities from Tables B3.2b and B3.3b by their respective 

revenues in Tables B3.7a and B3.7b, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 5: 

  321115 0][ qqPqProbE dCase 
 

        crrPPrrrrrrPrProbd 201 9821765432111  .
 

(B3.7) 

Substitution of the (joint) probabilities from Tables B3.2a and B3.3a into (B3.7) and 

simplifying gives: 

      cProbFFPProbFPProbFPE dddCase 2112][ 12121

2

111115  . (B3.8) 

 

For Case 6, 2,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B3.8a and B3.8b. 

Table B3.8a.  Possible Revenues for Example 3 for Case 6, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 0 2P  

 

Table B3.8b.  Possible Revenues for Example 3 for Case 6, 22d  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 
2P  

22 RPP   2P  2P  22P  

 

Multiplying the (joint) probabilities from Tables B3.2b and B3.3b by their respective 

revenues in Tables B3.8a and B3.8b, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 6: 
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  312116 0][ qPqqProbE dCase   

       crPrrrrPrrrrProbd 2201 928763254211  . 

(B3.9) 

Substitution of the (joint) probabilities from Tables B3.2a and B3.3a into (B3.9) and 

simplifying gives: 

  cProbFPE dCase 22][ 1226  . (B3.10) 

 

B4 STOCHASTIC CUSTOMER BASE WITH 11d  AND 32d  

This section contains the derivations of the expected profit functions for a seller facing a 

stochastic customer base of 11 d  with probability 1dProb  and 32 d  with probability 

11 dProb . 

 

In this example, the seller chooses from a set of inventory and corresponding price 

combinations where 3TotalQ . These inventory combinations are shown in Table B4.1.  

Note that iQ  is the number of units of inventory to be made available for sale at price iP , 

i = 1, 2. 

 

Table B4.1.  Inventory Combinations for Example 4. 

 
1Q  

0 1 2 3 

2Q  

0 Case 1 Case 2 Case 3 Case 4 

1 Case 5 Case 6 Case 7  

2 Case 8 Case 9   

3 Case 10    
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While Case 1 is included in Table B4.1 for completeness, the decision to make no items 

available for sale results in a trivial expected profit of zero, and is not considered for the 

remainder of the example. 

 

Since there can be either one or three customers in the population, two sets of 

probabilities are needed for the expected profit calculations given in Chapter 7.  These 

(joint) probabilities are calculated for various combinations of reservation prices relative 

to the selling prices.  The probabilities for the case of a single customer are presented in 

Table B4.2a, with corresponding notation presented in Table B4.2b.   Recall that iF  

denotes )(1 iRP PF , the probability that a randomly-chosen customer has a reservation 

price at least as high as price iP . 

Table B4.2a.  Probabilities for Example 4 for Example 4 11d . 

Range  11 PRP   211 PRPP   12 RPP   

Probability 
11 F  21 FF   2F  

 

Table B4.2b.  Notation for Probabilities for Example 4 for 11d . 

Range  11 PRP   221 PRPP   22 RPP   

Probability 1q  2q  3q  

 

The (joint) probabilities for the case of a three customers are presented in Tables B4.3a – 

B4.3c, with corresponding notation presented in Tables B4.4a – B4.4c.    
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Table B4.3a.  Joint Probabilities for Example 4 for 13 PRP  .  

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP    311 F     21

2

11 FFF     2

2

11 FF  

221 PRPP      21

2

11 FFF      1

2

21 1 FFF     1212 1 FFFF   

22 RPP     2

2

11 FF    1212 1 FFFF    1

2

2 1 FF   

 

Table B4.3b.  Joint Probabilities for Example 4 for 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP      21

2

11 FFF     2111 FFF      22111 FFFF   

221 PRPP     22111 FFF    321 FF    2212 FFF   

22 RPP      22111 FFFF    2212 FFF    21

2

2 FFF   

 

Table B4.3c.  Joint Probabilities for Example 4 for 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 

2 

12 PRP     2

2

11 FF     22111 FFFF     2

211 FF  

221 PRPP      22111 FFFF     2

2

21 FFF    21

2

2 FFF   

22 RPP     2

211 FF   21

2

2 FFF   
3

2F  

 

Table B4.4a.  Notation for Joint Probabilities for Example 4 for 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1r  2r  3r  

221 PRPP   4r  5r  6r  

22 RPP   7r  8r  9r  
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Table B4.4b.  Notation for Joint Probabilities for Example 4 for 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   10r  
11r  12r  

221 PRPP   13r  
14r  15r  

22 RPP   16r  17r  18r  

 

Table B4.4c.  Notation for Joint Probabilities for Example 4 for 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   19r  20r  
21r  

221 PRPP   22r  23r  
24r  

22 RPP   25r  26r  27r  

 

Shown below are the expected profit calculations for the various combinations of 

inventory decisions shown in Table B4.1.   

 

For Case 2, 0,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.4a – B4.4d. 

Table B4.5a.  Possible Revenues for Example 4, Case 2, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.5b.  Possible Revenues for Example 4, Case 2, 32d ,  13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  
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Table B4.5c.  Possible Revenues for Example 4, Case 2,  32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Table B4.5d.  Possible Revenues for Example 4, Case 2, 32d ,  32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  1P  1P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.5a – B4.5d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 2: 

        crPrProbqqPqProbE ddCase 11010][ 1111321112  . (B4.1) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.1) 

and simplifying gives: 

    cFFProbProbFPE ddCase 
2

1111112 3123][ . (B4.2) 

 

For Case 3, 0,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.6a – B4.6d. 

 

 

 

 

 

 



184 

  

Table B4.6a.  Possible Revenues for Example 4, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.6b.  Possible Revenues for Example 4,  32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Table B4.6c.  Possible Revenues for Example 4, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Table B4.6d.  Possible Revenues for Example 4, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.6a – B4.6c, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 3: 

  321113 0][ qqPqProbE dCase 
 

    19107432111 01 rrrrrrPrProbd   

(B4.3) 
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      crrrrrrrPProbd 2121 19107432111  . 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.3) 

and simplifying gives: 

   cProbFProbFPE ddCase 2123][ 1

2

11113  . (B4.4) 

 

For Case 4, 0,3 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.7a – B4.7d. 

Table B4.7a.  Possible Revenues for Example 4 for Case 4, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.7b.  Possible Revenues for Example 4 for Case 4, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  

 

Table B4.7c.  Possible Revenues for Example 4 for Case 4, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  13P  13P  

22 RPP   12P  13P  13P  
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Table B4.7d.  Possible Revenues for Example 4 for Case 4, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  13P  13P  

22 RPP   12P  13P  13P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.7a – B4.7d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 4: 

  321114 0][ qqPqProbE dCase 
 

    19107432111 01 rrrrrrPrProbd   

    2522212016131211986511 21 rrrrrrrrrrrrPProbd   

     crrrrrrrrPProbd 331 272624231817151411  . 

(B4.5) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.5) 

and simplifying gives: 

  cProbFPE dCase 323][ 1114  . (B4.6) 

 

For Case 5, 1,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.8a – B4.8d. 

Table B4.8a.  Possible Revenues for Example 4 for Case 5, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 0 2P  
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Table B4.8b.  Possible Revenues for Example 4 for Case 5, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  2P  

 

Table B4.8c.  Possible Revenues for Example 4 for Case 5, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  2P  

 

Table B4.8d.  Possible Revenues for Example 4 for Case 5, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  2P  

221 PRPP   2P  2P  2P  

22 RPP   2P  2P  2P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.8a – B4.8d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 5: 

  312115 0][ qPqqProbE dCase 
 

    1413111054211 01 rrrrrrrrProbd   

      crrrrrrrrPProbd  14131110542121 11 . 

(B4.7) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.7) 

and simplifying gives: 
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    cFFProbProbFPE ddCase 
2

2211225 3123][ . (B4.8) 

 

For Case 6, 1,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.9a – B4.9d. 

Table B4.9a.  Possible Revenues for Example 4 for Case 6, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.9b.  Possible Revenues for Example 4 for Case 6, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  21 PP   21 PP   

 

Table B4.9c.  Possible Revenues for Example 4 for Case 6, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  1P  

22 RPP   1P  21 PP   21 PP   

 

Table B4.9d.  Possible Revenues for Example 4 for Case 6, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  21 PP   21 PP   

221 PRPP   21 PP   21 PP   21 PP   

22 RPP   21 PP   21 PP   21 PP   
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Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.9a – B4.9d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 6: 

  321116 0][ qqPqProbE dCase 
 

    1916151413121110765432111 rrrrrrrrrrrrrrPProbd   

   27262524232221201817982111 rrrrrrrrrrrrPPProbd   

c2 . 

(B4.9) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.9) 

and simplifying gives: 

   2

11111226 31][ FFProbFPFPE dCase   

    cProbFFPProbFP dd 2123 1

2

212111  . 

(B4.10) 

 

For Case 7, 1,2 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.10a – B4.10d. 

Table B4.10a.  Possible Revenues for Example 4 for Case 7, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.10b.  Possible Revenues for Example 4 for Case 7, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  12P  12P  

22 RPP   1P  12P  12P  
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Table B4.10c.  Possible Revenues for Example 4 for Case 7, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  12P  12P  

221 PRPP   12P  12P  12P  

22 RPP   12P  12P  12P  

 

Table B4.10d.  Possible Revenues for Example 4 for Case 7, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   12P  12P  12P  

221 PRPP   12P  212 PP   212 PP   

22 RPP   12P  212 PP   212 PP   

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.10a – B4.10d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 7: 

  321117 0][ qqPqProbE dCase 
 

   
    19107432111 01 rrrrrrPrProbd   

     272624231910743211 121 rrrrrrrrrrPProbd 
 

     crrrrPPProbd 321 27262423211  . 

(B4.11) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.11) 

and simplifying gives: 

      cProbFPProbFFPFPE ddCase 3231][ 1111

2

111227  . (B4.12) 

 

For Case 8, 2,0 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.11a – B4.11d. 
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Table B4.11a.  Possible Revenues for Example 4 for Case 8, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 0 2P  

 

Table B4.11b.  Possible Revenues for Example 4 for Case 8, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B4.11c.  Possible Revenues for Example 4 for Case 8, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B4.11d.  Possible Revenues for Example 4 for Case 8, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  22P  

221 PRPP   2P  2P  22P  

22 RPP   22P  22P  22P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.11a – B4.11d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 8: 

 

 



192 

  

  312118 0][ qPqqProbE dCase 
 

    151413111054211 01 rrrrrrrrrProbd   

     2322201917161512876321 11 rrrrrrrrrrrrPProbd   

     crrrrrrrPProbd 221 272625242118921  . 

(B4.13) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.13) 

and simplifying gives: 

   cProbFProbFPE ddCase 2123][ 1

2

21228  . (B4.14) 

 

For Case 9, 2,1 21  QQ .  For this inventory decision, the possible revenues that can be 

realized are shown in Tables B4.12a – B4.12d. 

Table B4.12a.  Possible Revenues for Example 4 for Case 9, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 1P  1P  

 

Table B4.12b.  Possible Revenues for Example 4 for Case 9, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 1P  1P  

221 PRPP   1P  1P  21 PP   

22 RPP   1P  1P  21 PP   

 

Table B4.12c.  Possible Revenues for Example 4 for Case 9, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  1P  1P  

221 PRPP   1P  1P  21 PP   

22 RPP   1P  1P  21 PP   
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Table B4.12d.  Possible Revenues for Example 4 for Case 9, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   1P  21 PP   21 PP   

221 PRPP   21 PP   21 PP   21 2PP   

22 RPP   21 PP   21 PP   21 2PP   

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.12a – B4.12d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 9: 

  321119 0][ qqPqProbE dCase 
 

    191716141312111075432111 rrrrrrrrrrrrrPProbd   

   26252322212018159862111 rrrrrrrrrrrPPProbd   

    crrPPProbd 321 2726211  . 

(B4.15) 

Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.15) 

and simplifying gives: 

      cProbFPFFProbFPFPE ddCase 32331][ 111

2

11111229  . (B4.16) 

 

For Case 10, 3,0 21  QQ .  For this inventory decision, the possible revenues that can 

be realized are shown in Tables B4.13a – B4.13d. 

Table B4.13a.  Possible Revenues for Example 4 for Case 10, 11d  

Range  11 PRP   221 PRPP   22 RPP   

Revenue 0 0 2P  
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Table B4.13b.  Possible Revenues for Example 4 for Case 10, 32d , 13 PRP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B4.13c.  Possible Revenues for Example 4 for Case 10, 32d , 231 PRPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   0 0 2P  

221 PRPP   0 0 2P  

22 RPP   2P  2P  22P  

 

Table B4.13d.  Possible Revenues for Example 4 for Case 10, 32d , 32 RPP  . 

 Customer 1 

11 PRP   211 PRPP   12 RPP   

Customer 2 

12 PRP   2P  2P  22P  

221 PRPP   2P  2P  22P  

22 RPP   22P  22P  23P  

 

Multiplying the (joint) probabilities from Tables B4.2b and B4.4a - B4.4c by their 

respective revenues in Tables B4.13a – B4.13d, taking the summation of the products and 

subtracting the total cost gives the expected profit for Case 10: 

  3121110 0][ qPqqProbE dCase 
 

    1413111054211 01 rrrrrrrrProbd   

     2322201917161512876321 11 rrrrrrrrrrrrPProbd   

     crPrrrrrrPProbd 3321 2722625242118921  . 

(B4.17) 
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Substitution of the (joint) probabilities from Tables B4.2a and B4.3a - B4.3c into (B4.17) 

and simplifying gives: 

  cProbFPE dCase 323][ 12210  . (B4.18) 
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