
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-15-2011 12:00 AM

Advances in Graph-Cut Optimization: Multi-Surface Models, Label Advances in Graph-Cut Optimization: Multi-Surface Models, Label

Costs, and Hierarchical Costs Costs, and Hierarchical Costs

Andrew T. Delong, University of Western Ontario

Supervisor: Yuri Boykov, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Andrew T. Delong 2011

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Discrete Mathematics and Combinatorics

Commons, Other Statistics and Probability Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Delong, Andrew T., "Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and
Hierarchical Costs" (2011). Electronic Thesis and Dissertation Repository. 298.
https://ir.lib.uwo.ca/etd/298

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/298?utm_source=ir.lib.uwo.ca%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ADVANCES IN GRAPH-CUT OPTIMIZATION: MULTI-SURFACE
MODELS, LABEL COSTS, AND HIERARCHICAL COSTS

(Spine title: Advances in Graph-Cut Optimization)
(Thesis format: Monograph)

by

Andrew Delong

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Andrew Thomas Delong 2011

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

. .
Dr. Yuri Boykov

Examiners:

. .
Dr. Roberto Solis-Oba

. .
Dr. Éric Schost

. .
Dr. Hristo S. Sendov

. .
Dr. Brendan J. Frey

The thesis by

Andrew Thomas Delong

entitled:

Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and
Hierarchical Costs

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

.
Date

. .
Chair of Thesis Examination Board

ii

Abstract

Computer vision is full of problems that are elegantly expressed in terms of mathematical
optimization, or energy minimization. This is particularly true of “low-level” inference prob-
lems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points
from images. Energies let us state each problem as a clear, precise objective function. Min-
imizing the correct energy would, hypothetically, yield a good solution to the corresponding
problem. Unfortunately, even for low-level problems we are confronted by energies that are
computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion
of computer vision research is dedicated to proposing better energies and better algorithms for
energies. This dissertation presents work along the same line, specifically new energies and
algorithms based on graph cuts.

We present three distinct contributions. First we consider biomedical segmentation where
the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels,
airways, bone tissue). We show that this common yet difficult scenario can be modeled as an
energy over multiple interacting surfaces, and can be globally optimized by a single graph cut.
Second, we introduce multi-label energies with label costs and provide algorithms to minimize
them. We show how label costs are useful for clustering and robust estimation problems in
vision. Third, we characterize a class of energies with hierarchical costs and propose a novel
hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are
natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context,
simultaneous estimation of motions and homographies, or detecting hierarchies of patterns.

Keywords: Energy minimization, graph cuts, discrete optimization, metric labeling, min-
imum description length, segmentation, biomedical imaging, robust estimation, multi-view
reconstruction.

iii

Co-Authorship Statement

Chapters 1 and 2 are my own original work in summarizing the relevant background.
Chapter 3 was a collaborative effort with my advisor, Yuri Boykov. He recognized that

the high-level ideas of Li et al. [102] could be applied in a more straight-forward manner. We
then developed the technical ideas together. I went on to create the examples, the code, some
extensions, and ultimately wrote the bulk of our paper [36].

Chapter 4 is about “label costs” and was a close collaboration with Anton Osokin, Hossam
Isack, and Yuri Boykov. The homography detection and motion estimation applications were
based on earlier work by Hossam Isack and Yuri Boykov on energy-based methods for multi-
model fitting [68, 70]. I proposed the main technical idea that allows “label costs” and “label
subset costs” to be optimized by the α-expansion algorithm. I then researched the related work
on facility location and relevant high-order potentials; I am primary author of all related text. I
programmed the C++/MATLAB library on which our work was based, starting from Olga Vek-
sler’s public α-expansion code. I collaborated with Anton Osokin on the approximation bound,
and I designed the worst-case examples. Hossam Isack performed all the motion estimation
and homography detection experiments specifically for this project; he and Yuri Boykov are
primary authors of Section 4.7. Anton Osokin and Yuri Boykov are the primary authors of
Sections 4.5.1 and 4.6.2—I merely helped to refine the presentation.

Chapter 5 is about energies with “hierarchical costs” and was developed for a pattern
recognition project with Lena Gorelick, Olga Veksler, and Yuri Boykov. I proposed the hierar-
chical fusion algorithm, gave a formal characterizations of “hierarchical costs,” and developed
all the proofs as they appear here. Theorem 5.15 uses ideas from a proof that Olga Veksler
developed for a special case. I worked with Lena Gorelick on a prototype implementation of
hierarchical fusion. Though we performed some experiments using this approach, they are part
of a very complex application-oriented work [59] that is not part of this dissertation.

iv

Dedication

To my loving parents,
who took a chance all those years ago.

And in memory of Kyle.

v

Acknowledgements

I owe so much to my advisor, Yuri Boykov, and to my informal co-advisor, Olga Veksler.
Yuri has had an extraordinary (extraordinarious!) influence on my interests, my work ethic,
my sense of humour, and my opportunities in life. I’m lucky to have an advisor who works
out of genuine curiosity and a passion for research, and who knows how to have a measure of
fun in doing it. It is hard to find words to thank Olga for all the ways she has helped me, both
remembered and forgotten. I will never forget the time and genuine care that Yuri and Olga
invested in me as mentors, and as friends. I think, through them, I gained a better sense for
what is important, and what is not. Wherever I go next it will not be the same. Spasibo.

I want to thank the many friends I made in the UWO vision group these last few years. I
remember how surprised and happy I was to find out that Lena Gorelick was joining our group.
Working with her has been great for me—lots of cool ideas bouncing around—and having fun
with Lena and her husband Shachar has been even better. The last couple of years I’ve also
enjoyed talking to Frank Schmidt each day, and learning how to express my complex feelings
for Sarah Palin: a mix of pity, attraction, and Schadenfreude (Shaden = damage, Freude = joy).
I particularly miss the time when Victor Lempitsky was visiting our group, and I am very lucky
to have the hospitality and friendship that he and his wife (Victor’s-Olga) have shown me. I
likewise miss the time that Olivier Juan was here, and wish he and his wife Charlotte the best
in their new life as parents. Other fun and interesting visitors I’ve gotten to know include Carl
Olsson and Anton Osokin. It was also a great pleasure to know June (have fun at Google!) and
Hossam (have fun with Yuri!). Good luck to the Iranian club, Paria, Taha and Vida. Thanks
also Mark Brophy for rare indulgences into politics and philosophy.

I also enjoyed the warm hospitality of Daniel Cremers, his wife Lena, and their adorable
daughter while I stayed in Germany—thank you. I’d like to thank Jing Yuan and his family for
their hospitality as well.

When first I arrived in London it was not the best of times for me, until I met great friends
like Mike & Jasna, Santoni-san, Dan Siemon, Micah, Gaston & Alex, Franzi & Carsten, Ryan
looks-hot-as-a-woman Demopoulos, Beth, Nathan, Angela, Shayne, Freddie and many others
along the way. We had lots of fun, especially in 240, and it’s been bitter sweet to see everyone
graduate and move on or get buried under their work.

I appreciate the advice and hard work of my thesis committee, professors Brendan Frey,
Hristo Sendov, Éric Schost, and especially Roberto Solis-Oba who was meticulous and served
on both my PhD and MSc committees. Also thanks to Cheryl for helping me out all those years
and to Janice for laughing at my self-conscious jokes.

Last I want to thank my parents for being honest, hard-working, curious people. They make
having integrity seem effortless. I’ve never figured out how they do that.

Graduate school has been a wonderful time, and a difficult time, in my life—but I would
not trade these years for anything. I have been so fortunate, to have know all these persons,
and to have had such freedom. I’ll try to hold on to that thought for a while.

vi

Contents

Certificate of Examination ii

Abstract iii

Co-Authorship Statement iv

Acknowlegements vi

List of Figures ix

List of Algorithms xi

List of Tables xii

1 Energy Minimization in Vision 1
1.1 Labeling Problems . 1
1.2 Labeling Problems as Energy Minimization 4
1.3 Energy Minimization: Algorithms and Special Cases 6

1.3.1 Tree-structured neighbour sets . 6
1.3.2 Binary energies with coherence . 7
1.3.3 Table of special cases and algorithms 8

1.4 Chapter Outlines . 10

2 Review: Energies and Algorithms 11
2.1 Binary Energies Reducible to a Graph Cut . 11

2.1.1 The s-t min-cut problem . 12
2.1.2 Reduction of second-order energies 12
2.1.3 Which energies can be reduced to graph cut? (submodularity) 14

2.2 Local Search for Multi-Label Energies . 15
2.2.1 αβ-swap for semi-metrics . 16
2.2.2 α-expansion for metrics . 18
2.2.3 Approximation bounds of α-expansion 20

3 Global Optimization of Multi-Surface Interactions 22
3.1 Overview and Related work . 22
3.2 Our Multi-Region Framework . 25

vii

3.2.1 Multi-region energy . 25
3.2.2 Geometric interactions . 27
3.2.3 Regional data terms . 29

3.3 Applications . 30
3.3.1 Medical segmentation . 30
3.3.2 Scene layout estimation . 30

3.4 Discussion . 34
3.5 Conclusions and Future Work . 38

4 Energies with Label Costs 39
4.1 Some Useful Regularizers . 39
4.2 Related work . 42
4.3 Fast Algorithms to Minimize Label Costs . 43

4.3.1 α-expansion with label costs . 43
4.3.2 αβ-swap with label costs . 46
4.3.3 Approximation guarantees of α-expansion 47
4.3.4 Local label costs . 50
4.3.5 Energies with only per-label costs . 51

4.4 Working With a Continuum of Labels . 54
4.5 Relationship to EM and K-means . 59

4.5.1 Standard approaches to finite mixtures 60
4.5.2 Using label costs for finite mixtures 62
4.5.3 Label costs as information criterion 63
4.5.4 Experimental results for GMM estimation 63
4.5.5 Experimental results for geometric model fitting 65

4.6 Applications and Experimental Setup . 68
4.6.1 Geometric multi-model fitting . 68

Simple synthetic examples (lines, circles, etc.) 68
Homography estimation . 71
Rigid motion estimation . 71

4.6.2 Image segmentation . 71
4.7 Empirical Performance of Algorithms . 74
4.8 Discussion . 79

5 Energies with Hierarchical Costs 81
5.1 Hierarchical Metrics (h-metrics) . 83
5.2 Hierarchical Potts (h-Potts) . 85
5.3 Hierarchical Fusion with Smooth Costs . 88
5.4 Approximation Bound of h-Fusion (without label costs) 91
5.5 Hierarchical Fusion with Label Costs . 96
5.6 Discussion . 106

Bibliography 109

Curriculum Vitae 121
viii

List of Figures

1.1 Example labeling problems: model fitting, semi-supervised learning, and im-
age/mesh segmentation. 2

1.2 Illustration of coherent (or ‘smooth’) labelings. 3
1.3 Semi-supervised learning as a labeling problem with coherence. 4
1.4 Dynamic programming example on a chain and on a tree. 7

2.1 Example s-t min cut problem instance. 12
2.2 Examples of possible αβ-swap moves. 17
2.3 Examples of possible α-expansion moves. 19

3.1 Bone segmentation from MRI data: a motivating example for multi-surface
segmentation. 23

3.2 Illustration of the multi-surface segmentation method of Li et al. 24
3.3 How method of Li et al. can be reduced to a single graph cut. 25
3.4 Standard binary segmentation model versus our multi-region model. 26
3.5 Graph construction for ‘containment’ interaction. 27
3.6 User-assisted segmentation of knee joint. 31
3.7 User-assisted cardiac segmentation. 31
3.8 Automatic kidney segmentation. 32
3.9 Example of the scene layout estimation application. 33
3.10 Interaction graph for scene layout. 33
3.11 Experimental results for scene layout. 35
3.12 Illustration of how interaction causes local minima for αβ-swap, and makes

α-expansion inapplicable. 36
3.13 Applying ‘QPBO’ to handle non-submodular interactions. 37

4.1 Motion segmentation with smooth costs and label costs. 40
4.2 Homography detection with smooth costs and label costs. 40
4.3 Unsupervised segmentation with smooth costs and label costs. 41
4.4 Directed graph construction to encode label cost inside α-expansion step. . . . 45
4.5 Undirected graph construction to encode label cost inside α-expansion step. . . 45
4.6 Illustration of PEARL with label costs on 2D multi-line fitting. 55
4.7 Energy-vs-time plot showing progress of PEARL algorithm on line fitting. 57
4.8 Energy-vs-time plot showing progress of PEARL algorithm on image segmen-

tation. 58

ix

4.9 Behaviour of K-means versus weighted K-means. 62
4.10 Table of synthetic Gaussian mixture-model results comparing standard EM al-

gorithm, standard K-means algorithm, PEARL, and EM with Dirchlet prior. . . . 64
4.11 Hard cases for K-means and for the EM algorithm. 66
4.12 Similarities between PEARL with label costs and EM with Dirichlet prior. 67
4.13 Demonstration of line interval-fitting via PEARL with label costs. 70
4.14 Circle-fitting using PEARL with label costs. 70
4.15 Unsupervised image segmentation results. 72
4.16 Illustration of how low energies correspond to good homography detection re-

sults. 75
4.17 Comparison of discrete algorithm variants on homography detection. 76
4.18 Comparison of discrete algorithms on rigid motion estimation. 78

5.1 The structure of an h-metric smooth cost matrix. 85
5.2 The structure of an h-Potts smooth cost matrix. 86
5.3 Example of fusing two labelings. 88
5.4 Depiction of hierarchical fusion algorithm on a tree. 89
5.5 Example of h-fusion bound coefficient c for various trees and h-metrics. 92
5.6 Conceptual depiction of hierarchical label costs for multi-class model fitting. . . 97
5.7 Conceptual depiction of label costs for fitting hierarchies of geometric models. . 107

x

List of Algorithms

1 The general LOCALSEARCH procedure . 15
2 The αβ-SWAP algorithm. 18
3 The α-EXPANSION algorithm. 19

4 The GREEDYUFL algorithm for uncapacitated facility location. 52
5 The PEARL algorithm for robust multi-model estimation. 54

6 The h-FUSION algorithm (recursive) . 90
7 The SETUPFUSION procedure without label costs 90
8 The SETUPFUSION procedure with label costs 100

xi

List of Tables

1.1 Special cases of the MAP-MRF energy, with exact/approximate algorithms for
each case, and lists of typical applications. 9

xii

Chapter 1

Energy Minimization in Vision

Broadly speaking, this dissertation is about energy minimization in computer vision. In com-
puter vision an energy is simply a mathematical objective function that we wish to extremize.
For example, the energy E(x) = (x − 5)2 + (x − 3)2 has a minimum value of 2 at x∗ = 4.
The specific use of the word ‘energy’ suggests an objective function that has its origins in sta-
tistical physics—typically an unconstrained objective function where variables ‘interact’—but
this connotation is not essential to our work. Rather, the important thing to understand is that
a huge number of problems in vision are inference problems where the most likely explana-
tion for the data can be found by minimizing a corresponding energy. For example, if we
assume 5 and 3 are samples from a normal distribution, then the x∗ that minimizes E(x) is a
maximum-likelihood estimate of the distribution’s mean parameter.

Of course, the inference problems in vision tend to be very complex and involve hundreds
or even millions of inter-dependent variables. Some energies precisely model the desired in-
ference problem, while others are merely a coarse approximation. Some energies are easy to
optimize (e.g. convex functions) while others are known to be NP-hard. Once an accurate
energy and a satisfying algorithm are both available, the associated inference problem is es-
sentially solved. Researchers can then either improve the model or move on to other, more
difficult problems.

Many of the most important developments in computer vision began with a proposal for
a better energy, a better algorithm for an energy, or a combination of both. Good examples
are [110, 132, 24, 83]. This dissertation is a small contribution in the same vein: we describe
new energies that have useful interpretations, along with algorithms that are both effective in
theory and fast in practice. We specifically focus on discrete labeling problems of the kind
described in the following section.

1.1 Labeling Problems
A labeling problem is, roughly speaking, the task of assigning an explanatory ‘label’ to each
element in a set of observations. Many classical clustering problems are also labeling problems
because each data point is assigned a cluster label. To describe a labeling problem one needs
a set of observations (the data) and a set of possible explanations (the labels). A discrete

1

2 CHAPTER 1. ENERGY MINIMIZATION IN VISION

cloud of points

tissue

soft

bone

hard

bone

line outliers

faces of 3D meshimage pixelspartially-labeled data

learned labels labeled parts

Figure 1.1: Example labeling problems. Given some input data, the goal is to assign an explanatory
label to each input element. For example, if the data are 2D points then we may wish to classify them
according to geometric models (points belonging to the same line). If the data comes partially-labeled,
we can infer the remaining labels as in semi-supervised learning. (yinyang from [42], horse from [76].)

labeling problem associates one discrete variable with each datum, and the goal is to find
the best overall assignment to these variables (a ‘labeling’) according to some criteria. In
computer vision, the observations can be things like pixels in an image, salient points within
an image, depth measurements from a range-scanner, or intensity measurements from CT/MRI.
The labels are typically either semantic (car, pedestrian, street) or related to scene geometry
(depth, orientation, shape, texture). Figure 1.1 depicts a few such possibilities.

We use the following notation for labeling problems throughout the dissertation. The set
P indexes the observations, and the label set L indexes the explanations. The set of discrete
variables is {fp}p∈P where each fp is allowed to take one value from the set L. A discrete
labeling is the complete map f : P → L that assigns to each element p ∈ P a corresponding
label fp. For example, if P = {p, q} and L = {ℓ1, ℓ2, ℓ3}, then labeling f = (ℓ3, ℓ1) says that
fp = ℓ3 and fq = ℓ1. If we instead let P index the pixels of a 100×100 image and there are two
labels L = {object, background}, then this is a standard “binary segmentation” scenario with
210,000 possible labelings. In general we have |L||P| possible labelings (configurations of f),
and we prefer one labeling over another based on some application-specific criteria.

Data-driven criteria In computer vision we try to make sense of the input data. This means
that every labeling problem must be formulated so that the data influences the outcome. For
example, if our 100× 100 image is an X-ray and a particular pixel p ∈ P is brightly coloured,
then our labeling problem should prefer a labeling with fp = bone over one with fp = tissue.
If the image were of an outdoor scene instead, then we would expect blue pixels to prefer
labels like sky or water and green pixels to prefer labels like grass or leaves. This is the most
rudimentary kind of data-driven criterion possible, where each discrete variable fp derives its
preferences based solely on the data at observation p. By now it is common to derive these
preferences from machine-learning techniques, but the output is fundamentally the same.

1.1. LABELING PROBLEMS 3

image bad labeling good labeling“smooth”

“noisy”

Figure 1.2: Suppose we want to isolate a bright object on a dark background. The simplest approach is
to choose a labeling based on data-driven pixel preferences, i.e. bright pixels choose object, dark pixels
choose background. However, the resulting contour will often be complex and noisy (left). When we
know a priori that the object’s shape should have a smooth, ’blobby’ contour (cars, people, buildings)
then we should prefer a labeling that satisfies this assumption (right). Each pixel in a smooth labeling
is highly correlated with its nearest neighbours in the spatial grid, e.g. the magnified regions contain 15
transitions versus only 5 transitions.

Regularization criteria Some labelings are more likely to be correct a priori. When we
explicitly prefer some kinds of labelings over others, irrespective of the data, these criteria
are called regularizers. The most prominent example in computer vision is a preference for
spatially coherent labelings. The idea is that, for most computer vision problems, coherent
(“smooth”) labelings are much more likely to be a correct explanation of the data than are
incoherent (“noisy”) labelings. For example, consider the binary image labelings below.

smooth / coherent semi-coherent incoherent / noisy

(car? bed? heart?) (tree? rivers? arteries?) (random noise? snow?)

We know from experience that objects in photographs and in medical data correspond to coher-
ent labelings more often than not; the truth of this claim varies from application to application,
but in computer vision it has become a rule of thumb. It holds true because data in computer
vision tends to be highly correlated in space. For example if p, q ∈ P are adjacent pixels in an
X-ray image then one can expect fp = bone ⇔ fq = bone with high probability, regardless of
the data. The same cannot be said if p and q are very far apart in the image, because such pixels
are not directly correlated in practice. It turns out that such a priori assumptions, or priors, are
very important—often crucial—in many vision applications [54, 103].

Figure 1.2 shows a real image and two possible binary segmentations. The noisy labeling
is based on individual pixel preferences, whereas in the smooth labeling some pixels sacri-
ficed their individual preference so that the spatial coherence criterion is better satisfied. The

4 CHAPTER 1. ENERGY MINIMIZATION IN VISION

partially-labeled data computed neighbours N optimal clustering

Figure 1.3: Given a set of points, some of which are labeled, semi-supervised learning asks us to choose
the most probable label for each unlabeled point. Above we see 4 pre-labeled points (2 white, 2 black).
To cluster the points, Blum & Chawla [17] compute a neighbour graph (e.g. nearest-neighbour, De-
launay triangulation) and then find a labeling that is smooth with respect to that connectivity. In other
words, constrained clustering problems can be solved using the same criterion as for image segmenta-
tion [42].

close-up of the pixel grid also suggests a way to make the notion of smoothness more precise:
smoothness implies fewer label transitions between neighbouring variables. This characteri-
zation of smoothness is standard in computer vision and we formalize it in the next section.
Figure 1.3 explains how this same smoothness criterion can be used in semi-supervised learn-
ing [17, 140, 167]—an important labeling problem that, on the surface, seems entirely different
from segmentation [42].

1.2 Labeling Problems as Energy Minimization

We now express some standard data-driven and regularization criteria as concrete energy
terms. An energy term is an expression, dependent on labeling f , that is added linearly in
the energy. Breaking an energy into terms means expressing it in the form

E(f) = term1(f) + term2(f) + . . .

Each energy term basically votes on how much it likes labeling f or some subset of its variables.
If a particular term evaluates to a small numerical value, then this means f reasonably satisfies
the corresponding criterion. Minimizing E(f) thus finds a compromise among all the labeling
criteria in the energy.

For example, suppose we have P = {p, q, r} and two possible labels L = {ℓ1, ℓ2}. If we
say Dp(ℓ) is the cost of assigning fp = ℓ based on the data, then we insert expression Dp(fp)

as a term in the energy. Assume our energy contains only the data terms shown below, where
the table gives individual assignment costs based on the data.

E(f) = Dp(fp) +Dq(fq) +Dr(fr)
0 6 0

10 5 5

data costs

ℓ
1

ℓ
2

p q r

The minimum value for this binary energy is achieved at f ∗ = (ℓ1, ℓ2, ℓ1) with E(f ∗) =

5. Clearly such an energy is trivial to minimize in Θ(|P||L|) time since each term Dp(fp)

1.2. LABELING PROBLEMS AS ENERGY MINIMIZATION 5

can be minimized independently. (Minimizing such an energy is equivalent to “thresholding”
techniques from the early days of image processing.)

Now suppose we wish to incorporate the prior knowledge that some of the observations are
directly correlated with each other; specifically we want p correlated with q and q correlated
with r. We can incorporate this ‘coupling’ of variables by adding energy terms that explicitly
encourage fp = fq and fq = fr. We refer to these as smooth terms and denote them by V .

E(f) = Dp(fp) +Dq(fq) +Dr(fr) + V (fp, fq) + V (fq, fr)

In the simplest case we use the delta function V (ℓ, ℓ′) = δ(ℓ ̸= ℓ′) where δ is 1 if its condition
is true, and 0 otherwise. The old optimum of f = (ℓ1, ℓ2, ℓ1) now evaluates to E(f) = 7,
whereas the new optimum f ∗ = (ℓ1, ℓ1, ℓ1) evaluates to E(f ∗) = 6. The smooth terms encour-
aged the labeling to be coherent (consistent) so that fluctuations caused by noisy data costs are
smoothed out. Note that the the optimal label assignments can no longer be solved indepen-
dently, and must somehow be minimized jointly. It is not entirely obvious how to minimize
such energies in general. For problems with thousands of inter-dependent variables we will
need fast, specialized algorithms to compute f ∗, or at least an approximation thereof.

Let N denote the pairs of observations we know a priori to be correlated, for example in
our 3-variable problem we used N = {{p, q}, {q, r}}. We refer to N as the neighbour set
throughout. Common neighbour sets in vision are depicted as graph edges below.

4-connected grid 8-connected grid non-uniform, distance-based

Further assume that each unordered pair pq ∈ N interacts using its own smooth term where,
for example, Vpq might be a different strength than Vqr. We can write this class of energies as

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

Vpq(fp, fq). (1.1)

In the last decades, energies of the form (1.1) have proven indispensable for many problems
in computer vision. They were first proposed for inference problems associated with Markov
random fields (MRFs), a powerful class of statistical models in physics and pattern recogni-
tion [54, 103]. Despite the modeling power of MRFs, they saw limited use in computer vision
until practical algorithms were finally introduced much later [23, 24].

As of this writing, energy (1.1) is the starting point for dozens of specialized formulations
in vision [159, 80], machine learning [17], and even bioinformatics [161, 149, 131]. Minimiz-
ing (1.1) is known as the MAP-MRF problem [103, 158], owing to its statistical interpretation
and ubiquity. This dissertation proposes useful generalizations of (1.1). For example, Chapter 4
introduces energies of the form

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

Vpq(fp, fq) + |L(f)| (1.2)

6 CHAPTER 1. ENERGY MINIMIZATION IN VISION

where L(f) ⊆ L is the set of labels used by f . That is, we penalize the number of unique
labels appearing in the solution. We also provide effective algorithms to minimize a more
general class of energies, of which (1.2) is a special case.

1.3 Energy Minimization: Algorithms and Special Cases

Some energy minimization problems can be solved in polynomial-time, whereas many are
known to be NP-complete or NP-hard and must be approximated (at best). Energy (1.1) is
NP-hard to minimize in general [24] but there are many special cases to consider, some per-
mitting specialized algorithms that run in polynomial time. We noted that energies of the form
E(f) =

∑
p∈P Dp(fp) are trivial to minimize in Θ(|P||L|) time. As one considers energies of

increasing generality, the array of corresponding algorithms grows more diverse and sophisti-
cated. Chapter 2 reviews algorithms relevant to this dissertation, but it helps to understand the
situation more broadly. Here we give a high-level overview of important special cases of (1.1),
their difficulty, and some applicable minimization techniques. There are two main factors to
consider: structural restrictions (special neighbour sets N), or functional restrictions (special
cost functions Dp and Vpq). We review the some basic and well-known examples of each kind.

1.3.1 Tree-structured neighbour sets

A simple but useful structural restriction is a neighbour set N that defines an acyclic graph, i.e.
N defines a chain, a tree, or a forest structure.

cycles no cycles

Any energy of the form (1.1) with no cycles can be minimized in Θ(|P||L|2) time via dy-
namic programming (DP) [12, 28] or, equivalently, message-passing algorithms [115, 162].
A 4-connected grid graph clearly has cycles, so image segmentation does not fall within this
special case, but there are many tree-structured inference problems in computer vision [53,
44, 150] and in inference more broadly such as hidden Markov models (HMMs) [120] and
graphical models [74].

The reason dynamic programming works in this case is because we can express a minimum
of E(f) recursively so as to take advantage of overlapping subproblems. The simplest case is
a chain, where we can order the variables as f0, . . . , fn so that N = {(p − 1, p)}np=1. Now,
consider those terms of E involving only variables fp, . . . , fn; we let E[p, ℓ] be the minimal
possible sum of those terms when we force fp = ℓ. Clearly E[ℓ, n] = Dn(ℓ) and, because N
forms a chain, for any p < n the value E[p, ℓ] can be expressed recursively as

E[p, ℓ] = Dp(ℓ) + min
ℓ′

(
Vp,p+1(ℓ, ℓ

′) + E[p+ 1, ℓ′]
)
. (1.3)

1.3. ENERGY MINIMIZATION: ALGORITHMS AND SPECIAL CASES 7

2 1 3 1
0 3 0 5
5 0 1 1

Dp(·) 5 4 4 1
3 5 2 5
7 2 2 1

E[ℓ,p]

1 2 30

2 2 6 1
0 3 4 5
5 1 3 1

r
1 0 12

data cost table DP on a chain DP on tree rooted at r

E[ℓ,p]

Figure 1.4: A 3-label energy of the form (1.1). Dp(·) is defined by the table at left, and V (ℓ, ℓ′) penalizes
any ℓ ̸= ℓ′ by cost 1. If we order the four variables from left to right, dynamic programming (DP) will
compute columns E[·, p] from right-to-left (center). For arbitrary root r DP will compute, for example,
columns E[·, p] at right. A red arrow [q, ℓ′] → [p, ℓ] indicates that E[q, ℓ′] was directly used to compute
E[p, ℓ] within (1.3) and (1.4).

The optimal energy is then E(f ∗) = minℓE[0, ℓ] and can be found by tabulating E[p, ℓ],
starting at p = n and applying (1.3) to work backwards. Figure 1.4 (center) shows a numerical
example of dynamic programming on a chain-structured neighbour set N .

Dynamic programming extends easily from chains to trees. Simply designate an arbitrary
node to be the root r ∈ P and, for each node p ∈ P , let I(p) denote its children with respect to
that rooted tree. We now let E[p, ℓ] be the minimal possible sum of all energy terms involving
only descendants of p when we force fp = ℓ. We can then write E[p, ℓ] more generally as

E[p, ℓ] = Dp(ℓ) +
∑

q∈I(p)

(
min
ℓ′
Vp,q(ℓ, ℓ

′) + E[q, ℓ′]
)
. (1.4)

The optimal energy is now E(f ∗) = minℓE[r, ℓ] and can be found by tabulating E[p, ℓ], start-
ing at the leaves of the tree and applying (1.4) as needed to work from the ‘furthest’ nodes
inwards to the root. Figure 1.4 (right) repeats our numerical example for what is essentially
a tree (root r has degree > 1). Notice that in both cases the optimal value is E(f ∗) = 3

and we can recover labeling f ∗ = (ℓ2, ℓ3, ℓ3, ℓ3) by simply remembering the red arrows when
computing each E[p, ℓ] and tracing back our steps.

A cycle in the neighbour set means that such recursive expressions cannot work—a cycle
creates a dependency that cannot be ‘unwrapped’ symbolically. Recently it was shown that
neighbour sets defining outer-planar graphs can also be minimized efficiently [11]. Outer-
planar graphs include trees as a special case, but they are still very far from general graphs; for
example, the 4-connected grid is a basic planar graph used in many vision problems, but it is
not outer-planar.

1.3.2 Binary energies with coherence

We describe a special case of energy (1.1) that has, in the last decade, exploded in popularity.
If the energy is binary (|L| = 2), and the smoothness terms encourage coherence (as opposed
to explicitly discouraging it), then the energy can be minimized in polynomial time. We can
see what this means, visually, by contrasting the characteristics of the two labelings below.

8 CHAPTER 1. ENERGY MINIMIZATION IN VISION

can explicitly encourage this cannot explicitly encourage this

In other words, if we want to solve the problem in polynomial time, we can encourage smooth
labelings, we can be indifferent to smoothness (N = {}), but we cannot actively discourage
smoothness. In terms of our energy (1.1), encouraging coherence means each Vpq(fp, fq) term
should assign lower cost to configurations with fp = fq than to configurations with fp ̸= fq.
Encouraging incoherent labelings, i.e. preferring fp ̸= fq, makes minimization NP-hard! The
precise mathematical property that makes the former problems tractable is called submodular-
ity, and is reviewed in Chapter 2.

This special case was first studied in combinatorial optimization [116, 32], in image restora-
tion [62], and was finally popularized in computer vision through the early works of Boykov
et al. [19, 20, 21, 22]. Note that cycles in N are permitted in this special case. By con-
straining Vpq we gain flexibility in N while still minimizing the energy in polynomial time.
So how is this minimization carried out in practice? We obviously cannot use dynamic pro-
gramming, so what is the algorithm? It turns out that this class of binary energies can be
reformulated as a standard s-t minimum cut problem for which efficient algorithms have long
existed [47, 41, 58, 114] and are still being developed for problems in vision [22, 35, 135].
A wide array of energy-minimization techniques now use s-t min-cut as the core subproblem;
such techniques are referred to as graph cut methods. The algorithms in this dissertation are
all based on graph cuts, and Chapter 2 reviews the relevant prior art in some detail.

1.3.3 Table of special cases and algorithms

Minimizing energy (1.1), also called the MAP-MRF problem, is known to be NP-hard to solve
exactly [133, 24]. In fact, without any assumptions at all, MAP-MRF cannot be meaning-
fully approximated in polynomial time [1, 73]. The problem remains NP-hard to approximate
within a constant factor for all but the most severe assumptions, such as V being “metric”
(Section 2.2.2) or that |L| ≤ 3; even in this case the problem remains max-SNP-hard [31]. Ta-
ble 1.1 provides a high-level overview of a number of tractable special cases, as well as some
approximation algorithms that can be applied in the general case. Note that exact optimization
is not always necessary. In fact Szeliski et al. [139] observed that, for many applications, the
energy value of the human-selected solution is often higher than the globally optimal solution
to our energy! In other words, seeking a global optimum is not always worth the computational
effort, especially if our energy does not accurately model the problem.

Note that Table 1.1 is about energy (1.1) only, and that many generalizations of this energy
to “high-order terms” have been proposed, e.g. [159, 80, 38]. The known approximation ratios
for minimizing such energies are typically worse than for the pairwise case [60] or in many
cases not even understood.

1.3. ENERGY MINIMIZATION: ALGORITHMS AND SPECIAL CASES 9

Table 1.1: Some special cases of energy (1.1) that result in minimization problems of varying difficulty.
This table is incomplete and is intended to give a sense for the kinds of special cases that may make
minimization easier. Not all of the “approximate methods” are approximation algorithms in the strict
sense, e.g. [115, 83, 85, 158] provide no a priori approximation bounds whatsoever.

special case algorithms notes / applications

E
X

A
C

T
M

E
T

H
O

D
S

N acyclic graph
dyn. programming [28, 44],
message passing [115, 90, 162]

template matching [53, 44],
HMMs [120], stereo [150];
decomposition methods[157,
83]

V submodular, |L|=2 graph cut [20, 87]

segmentation [20], machine
learning [17], multi-view re-
construction [88, 154, 99],
move-making algorithms[24]

V convex transform [71] + graph cut

V permuted submodular transform [127] + graph cut

D convex, V convex parametric graph cut [65, 86] denoising / image restoration

D special, N planar planar min-cut [108, 128]
D single source/sink; shape
matching, segmentation

D = 0, N=planar, |L|=2 max-weight matching [129]

N perfect graph
transform [72, 48] + message
passing

N outerplanar graph junction tree [11] decomposition methods[11]

A
PP

R
O

X
IM

A
T

E
M

E
T

H
O

D
S

V metric
α-expansion [24] and exten-
sions [4], LP rounding [78], r-
HST metrics [92]

approximation bounds;
stereo, segmentation, model-
fitting [70]

V semi-metric
αβ-swap [24], r-HST met-
rics [92]

approximation bound [92]

V truncated convex range moves [151, 93] approximation bound

|L|=2
QPBO [18, 85], QPBO-I [124],
bipartite multi-cut [122]

approximation bound [122]
∝ log(#non-submodular
terms); QPBO gives partial
labelings

arbitrary energy

mess. passing [115, 56, 142],
decomposition methods [83]
dual decomposition [89, 11],
max-sum diffusion [158],
local search [75], . . .

NP-hard to approximate by
constant factor [133, 1]

10 CHAPTER 1. ENERGY MINIMIZATION IN VISION

1.4 Chapter Outlines
The remainder of this dissertation can be summarized as follows.

Chapter 2 reviews graph cut methods that are essential to the development of this disser-
tation. This includes the binary graph cut reduction, submodular functions, and the iterative
move-making algorithms “α-expansion” and “αβ-swap.” The review of graph cuts and sub-
modularity is essential to this entire dissertation, and the iterative algorithms are the heart of
Chapters 4 and 5.

Chapter 3 presents a segmentation technique based on a special “multi-surface” graph cut
construction. Our binary construction induces a multi-label segmentation where the interfaces
between regions (boundaries/surfaces) have preferred distances from one another. Specifically,
our construction has the following properties:

1. regions can have nesting constraints (e.g. soft bone must be surrounded by hard bone),
2. surfaces can have preferred distances (e.g. hard bone should be ≥ 5mm thick), and
3. the globally optimal multi-region segmentation can be computed by a single graph cut.

The content is based directly on my joint publication with Yuri Boykov at the 2009 Interna-
tional Conference on Computer Vision (ICCV) [36].

Chapter 4 extends the classic MAP-MRF energy to include “label costs” as a regularizer.
In their simplest form, label costs penalize the number of unique labels used to explain the
observations. In other words, why use 6 labels to explain the data if 5 will do just as well. In
general we define a new class of energies with label subset costs and extend the α-expansion
and αβ-swap algorithms to handle this regularizer. We also characterize the effect on algo-
rithm’s optimality guarantees with a tight bound, and establish connections to related problems
in operations research and in computer vision. This work was initially published in the 2010
Conference on Computer Vision and Pattern Recognition (CVPR) [38] and subsequently ex-
panded in the International Journal of Computer Vision (IJCV) [39].

Chapter 5 defines a new characteristic of energies, as having hierarchical costs, and de-
scribes a novel hierarchical fusion algorithm to minimize such energies. This fusion algo-
rithm is a strict generalization of α-expansion yet provides significantly tighter approximation
bounds in many useful cases. Hierarchical costs are natural for modeling an array of difficult
problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and
homographies, or detecting hierarchies of patterns. This work was submitted to the Interna-
tional Journal of Computer Vision (IJCV) as [37].

Chapter 2

Review: Energies and Algorithms

This chapter reviews well-known concepts upon which subsequent chapters are developed.
All contributions in this dissertation are based on graph cuts and on related move-making
algorithms.

Section 2.1 explains the basic idea of reducing a binary energy minimization problem to
that of computing an s-t min-cut [62, 20, 87]; this reduction is the starting point for Chapter 3.
Section 2.2 explains the popular move-making algorithms “α-expansion” and “αβ-swap” for
minimizing multi-label energies [24]. These algorithms find local minima of NP-hard energies
by constructing a particular sequence of graph cut subproblems. These move-making algo-
rithms are essential to Chapters 4 and 5.

2.1 Binary Energies Reducible to a Graph Cut

The special case of “binary energies with coherence” (Section 1.3.2) has proven extremely
valuable in computer vision because

a) it is a good model for a wide variety of binary labeling problems,
b) it is a powerful subproblem for local search in labeling problems (Section 2.2), and
c) there exist fast minimization algorithms for large-scale problems.

The key insight that lets us solve problems efficiently is reducing the binary energy mini-
mization problem to the well-known s-t min-cut problem. Furthermore, empirical tests have
shown [22, 57] that the fastest method to compute the an s-t min-cut is to solve the dual s-t
maximum flow problem using specialized algorithms. The s-t min-cut and s-t max-flow prob-
lems have long been studied in operations research, and it took many insights by different
individuals before reduction from binary energy minimization became well-known in com-
puter vision. This reduction combines early work on the duality between min-cut and max-
flow [47, 130], work on submodular functions [32, 52, 87], pseudo-boolean functions [18],
and MAP-MRF formulations in computer vision [62, 20]. Efficient s-t max-flow algorithms
include [58, 22, 35, 135], but we will not discuss min-cut / max-flow duality in detail. Instead
we explain s-t min-cut and assume it is sufficiently instructive. Readers interested in max-flow
may consult [130] for discussion of how it relates to min-cut.

11

12 CHAPTER 2. REVIEW: ENERGIES AND ALGORITHMS

s

p q

4 1

1

3

t
32

3

a directed graph w({s,p,q}) = 5

32

1

3

w({s,p}) = 6

2
3

4

1

w({s,q}) = 8

3

4 1

w({s}) = 5

Figure 2.1: A simple s-t min-cut problem with six weighted arcs. There are four possible s-t cuts:
S = {s, p, q}, {s, p}, {s, q}, or {s}. Since two of the cuts have minimal cost w(S) = 5 the optimum
solution is not unique. General s-t min-cut problems can contain thousands or millions of vertices.

2.1.1 The s-t min-cut problem

To understand the binary energy → s-t min-cut reduction, one must first understand the basics
of the s-t min-cut problem. Defining an instance of s-t min-cut is very simple. We require a
directed graph G = (V ,A), a cost w(u, v) ≥ 0 for arc each (u, v) ∈ A, and two designated
terminals s, t ∈ V . The aim of s-t min-cut is to remove the cheapest subset of arcs so that
there is no path from s to t in the graph. Rather than define a ‘cut’ directly in terms of arcs, the
selected arcs are implied by definition based on vertices.

Definition 2.1. A subset S ⊆ V such that s ∈ S and t /∈ S is called an s-t cut. The cost w(S)
of an s-t cut S is defined as

w(S) def
=

∑
(u,v)∈A
u∈S,v/∈S

w(u, v)

In other words, the cost of an s-t cut S is the total cost of arcs leaving set S. Figure 2.1 shows
a small min-cut problem instance.

The s-t min-cut problem is to find the s-t cut S∗ of minimal total cost. An optimal cut can
be computed in polynomial time by a number of classical s-t maximum flow algorithms [41,
58] but, in computer vision, more specialized algorithms are typically used, in particular the
method of Boykov & Kolmogorov [22] and recent extensions, e.g. [82, 57]. The specialized
algorithms are fast enough that, in practice, a non-negligible fraction of running time goes
towards merely constructing the initial graph structure inside the computer.

2.1.2 Reduction of second-order energies

We now review how to transform the binary energy minimization problem into an s-t min-cut
problem from Section 2.1.1. We will use the notation x = (x1, . . . , xn) to denote an n-variable
labeling for binary energy E(x). Begin with a straight-forward observation.

Observation 2.2. In a digraph with V = {s, t, v1, . . . , vn} there are 2n possible s-t cuts.
There is thus a one-to-one correspondence between cuts and configurations of binary vector
x ∈ {0, 1}n.

2.1. BINARY ENERGIES REDUCIBLE TO A GRAPH CUT 13

In this dissertation we arbitrarily define correspondence vi ∈ S ⇔ xi = 0. Let Sx denote
the cut corresponding to binary vector x. If we construct a digraph such that w(Sx) = E(x)

for all configurations then we reduce minimizing E(x) to the s-t min-cut problem.

Example 2.3. Consider the binary energy function below with P = {p, q} and L = {0, 1}.

E(xp, xq) = Dp(xq) +Dq(xq) + V (xp, xq) 2 3

4 1

D

0

1

p q

0 3

1 0

V

0

1

0 1

We can also define this energy by enumerating all its possible values

E(0, 0) = 2 + 3 + 0 = 5

E(0, 1) = 2 + 1 + 3 = 6

E(1, 0) = 4 + 3 + 1 = 8

E(1, 1) = 4 + 1 + 0 = 5

Verify by inspection that minimizing E(xp, xq) over xp, xq ∈ {0, 1} is equivalent to the s-t
min-cut problem shown in Figure 2.1.

After looking at energy E from Example 2.3 it is informative to consider the following,
equivalent binary energy:

E ′(xp, xq) = 4+Dp(xq) +Dq(xq) + V (xp, xq) 0 1

1 0

D

0

1

p q

0 2

2 0

V

0

1

0 1

Clearly E(xp, xq) = E ′(xp, xq) for all xp, xq ∈ {0, 1}. One can view E ′ as a reparameteriza-
tion of energy E where 4 is an additive constant and therefore irrelevant to the minimization
problem itself. We can alter the s-t min-cut problem from Figure 2.1 to correspond directly to
the reparameterization E ′ using the graph below.

s

p q

1

2

2
4 +

t
1

2

The examples so far involved only two variables p and q. However, since the energy terms
are added linearly, by the additivity property of this reduction [87] we can reduce each en-
ergy term one-by-one, and simply superimpose all the arcs. This is particularly trivial for the
standard MAP-MRF energy (1.1) because it is of the second-order, i.e. each individual Dp(·)
and Vpq(·, ·) term is a function of at most two variables (of ‘degree’ at most two). A complete
sequence of steps for reducing each Dp and Vpq term was given in [87].

14 CHAPTER 2. REVIEW: ENERGIES AND ALGORITHMS

2.1.3 Which energies can be reduced to graph cut? (submodularity)

There is an important question regarding the binary energy → s-t min-cut reduction. The
MAP-MRF energy (1.1) is NP-hard to minimize even in the binary case [133], and yet we
know from example that reduction to s-t min-cut is sometimes feasible. Clearly there must be
some property that distinguishes ‘easy’ binary energies from hard ones. It is thus natural to
ask: precisely which binary energy functions are reducible to a graph cut?

In Section 1.3.2 we claimed, vaguely, that a binary energy must “encourage coherence”
in order to be tractable. Notice in Example 2.3 that positive arc weights w(p, q) and w(q, p)
encourage p and q to belong to the same side of the cut, i.e. configurations with xp = xq are
cheaper than configurations with xp ̸= xq. If these arc weights were negative, they would have
the opposite effect. However, in the s-t min-cut problem, the arc weights cannot be negative
due to the assumption that w(u, v) ≥ 0. If we were to omit this restriction from the definition
of s-t min-cut, it would be NP-complete via reduction to/from the MAX-CUT problem!

Again, a binary energy is representable by s-t cuts if there exists a digraph withw(u, v) ≥ 0

such that w(Sx) = E(x) for each x. By the additivity property [87] we need only ask whether
each individual Dp(·) term and individual Vpq(·, ·) term can be represented by weighted arcs.

Each Dp(·) is trivial to represent by breaking it into the two cases shown below:

s

p
w(p, t) = D (0)−D (1)

Dp(1) +

if Dp(0) ≥ Dp(1) :

t

w(p, t) = Dp(0)−Dp(1)

s

p

w(s, p) = Dp(1)−Dp(0)

Dp(0) +

if Dp(0) ≤ Dp(1) :

t

Though Dp(1) might be negative, if Dp(0) ≥ Dp(1) then we treat it as an additive constant
and so the arc weight w(p, t) is guaranteed to be non-negative. Likewise for the opposite
case. Since we can represent arbitrary Dp(·) in the digraph, then these terms do not affect the
‘hardness’ of the binary energy—there will always exist a reduction for such terms.

Much more interesting are the second-order terms Vpq(·, ·), or simply V for brevity. Each
term is defined by the four constants V (0, 0), V (0, 1), V (1, 0), and V (1, 1). For a digraph to
represent V and be a valid s-t min-cut problem instance, the arc weights w(u, v) must satisfy
the following linear constraints:

K + w({s, p, q}) = V (0, 0)

K + w({s, p}) = V (0, 1)

K + w({s, q}) = V (1, 0)

K + w({s}) = V (1, 1)

w(u, v) ≥ 0 ∀ (u, v) ∈ A

(2.1)

where K ∈ R is needed to account for any additive constant irrelevant to the minimization.
The question “which V are representable as an s-t cut?” can now be stated as “for which V is
system (2.1) feasible in K and w?” We can answer this question either by careful proof [87] or

2.2. LOCAL SEARCH FOR MULTI-LABEL ENERGIES 15

by automatic quantifier elimination [34] (eliminate ∃K, ∃w) using a symbolic algebra package.
Either way, we find system (2.1) is feasible in K and w if and only if V satisfies

V (0, 0) + V (1, 1) ≤ V (0, 1) + V (1, 0). (2.2)

Theorem 2.4 ([87]). A second-order potential Vpq(·, ·) is representable as an s-t cut if and
only if it satisfies inequality (2.2).

In other words, the average cost of taking different labels must be at least the average cost of
taking the same label. If a binary energy E satisfies (2.2) for every Vpq term, then E(x) is said
to be submodular or a submodular function.

Theorem 2.5 ([32, 87]). Minimizing a second-order binary energy E is reducible to an s-t
min-cut if and only if E(x) is a submodular function.

This result completely characterizes the class of second-order binary energies reducible
to a graph cut, and therefore answers our original question. If an energy is submodular, it is
fundamentally easier to minimize, much as convex functions are. In fact submodular functions
are often referred to as “a discrete analog of convex functions” and are actively studied in
mathematical optimization [52, 156], machine learning [8], and computer vision [87, 49, 113].

2.2 Local Search for Multi-Label Energies
An energy is considered ‘multi-label’ if its label set has cardinality |L| ≥ 3. The s-t cut reduc-
tion in Section 2.1 is inherently binary because there are two terminals s and t. So then, how
can we minimize a multi-label energy? For some special Vpq it is possible to reduce the min-
imization problem to a multi-terminal min-cut [24] and simply apply a known algorithm [33].
However, it turns out that one can do much better, in general, by designing special local search
algorithms for direct energy minimization, also called move-making algorithms in the computer
vision literature. There are many strong approaches besides local search, e.g. LP-relaxation or
message passing algorithms, but they are outside the scope of this dissertation; see Table 1.1
on page 9 for an overview.

Local search is the most basic kind of iterative improvement. Given a current solution f̂ ,
we are permitted to move to a better solution f if it belongs to some set of neighbouring1

solutions M(f̂). The set of labelings M(f̂) can be thought of as the available moves from f̂ .
The high-level local search algorithm is given below.

LOCALSEARCH(E,M)

1 f̂ := arbitrary labeling
2 while exists f ∈ M(f̂) such that E(f) < E(f̂)

3 f̂ := f

4 return f̂

1Two labelings are ‘neighbours’ if they are similar according to M; note that this use of the word ‘neighbour’
has nothing to do with neighbouring variables defined by N .

16 CHAPTER 2. REVIEW: ENERGIES AND ALGORITHMS

The key to effective local search is a good class of moves M. If M is too broad, then
finding the best move f can become NP-hard. If M is too restrictive, then f̂ will get stuck at
poor local minima. For example, the simplest class of moves is to allow one variable to change
at a time,

M(f̂) = { f : fP\{p} = f̂P\{p} for some p ∈ P }. (2.3)

The quality of each move can be evaluated by scanning each f̂p over all labels while holding
the other variables fixed.

The simple search neighbourhood (2.3) corresponds to the classic iterated conditional
modes (ICM) [103, 13] algorithm for energy minimization. The ICM algorithm is essentially
coordinate descent for the MAP-MRF problem, with one variable allowed to vary while the
remaining variables stay fixed. ICM is wholly inadequate for the kind of energies we are inter-
ested in. To see why, consider a 3-variable, 3-label energy defined by the parameters below.

2 2 2

1 1 1

0 0 0

D p q r

p q r

N

ℓ
1

ℓ
2

ℓ
3

0 1 2

1 0 1

2 1 0

V

ℓ
1

ℓ
2

ℓ
3

ℓ
1
ℓ
2
ℓ
3

The globally optimal labeling is clearly f ∗ = (ℓ3, ℓ3, ℓ3) with E(f ∗) = 0. However, if our
initial labeling is f̂ = (ℓ1, ℓ1, ℓ1) then the possible moves are

M(f̂) =
{
(ℓ1, ℓ1, ℓ1),

(ℓ2, ℓ1, ℓ1), (ℓ1, ℓ2, ℓ1), (ℓ1, ℓ1, ℓ2),

(ℓ3, ℓ1, ℓ1), (ℓ1, ℓ3, ℓ1), (ℓ1, ℓ1, ℓ3)
} (2.4)

Evaluating the energy on each of these moves gives E = 6, 7, 7, 7, 8, 8, 8 respectively, and so
E(f̂) = 6 is a local minimum with respect to this class of moves. Even if we expand the move
space M to change two variables at a time, no neighbouring solution in M(f̂) has energy
lower than 6 and so f̂ would still be a local minimum.

ICM-style local moves are straight-forward, but require polynomial time to explore only a
polynomial number of alternative labelings. It turns out that for some important special cases
one can do better—much better in fact. By careful choice of move space M one can explore
an exponential number of alternative labelings in only polynomial time. Such local search
algorithms are called very-large search neighbourhood (VLSN) techniques [2].

We explain two VLSN techniques where the local moves are computed by a graph cut: the
αβ-swap algorithm and the α-expansion algorithm [24]. The αβ-swap algorithm is applicable
to a slightly wider class of energies but the α-expansion algorithm, when applicable, is more
effective both in theory [24] and in practice [139].

2.2.1 αβ-swap for semi-metrics
The αβ-swap algorithm [24] performs local search on multi-label energies. Given current
labeling f̂ , the idea of a swap move is as follows. Choose any two labels α, β ∈ L and allow
all variables with f̂p ∈ {α, β} to simultaneously choose a new label in {α, β}. Figure 2.2
shows some examples of swap moves. Intuitively, each variable currently labeled either α or β

2.2. LOCAL SEARCH FOR MULTI-LABEL ENERGIES 17

βα

γ

current labeling f̂

βα

γ

an αβ -swap other αβ -swap a γβ-swap

β

α
γ

α
βα

γ

Figure 2.2: Examples swap moves, all with respect to the current 2D labeling f̂ is shown at left. An
αβ-swap move is made from binary choices: each fp involved can only choose either α or β.

is allowed to either keep its current label or ‘swap’ to the other label. If there are k variables
with a current label in {α, β}, then there are 2k possible αβ-swap moves available.

We can define the full search neighbourhood of αβ-swap as the set of all possible swap
moves with respect to current labeling f̂ :

M(f̂) =
∪

α,β∈L

Mαβ(f̂) where Mαβ(f̂) =
{
f : fp ̸= f̂p ⇒ fp, f̂p ∈ {α, β}

}
. (2.5)

The local search algorithm using swap moves can still get stuck at a local minimum, but the
move space M is exponential in size (a VLSN).

If a swap move f ∈ M(f̂) such that E(f) < E(f̂) exists, then we must find it in poly-
nomial time. Fortunately, for any particular α, β ∈ L an optimal αβ-swap can be computed
efficiently by a single binary graph cut. This reduction is straight-forward because an αβ-swap
move is fundamentally binary: each variable can only choose either α or β. This binary energy
will take the standard form

E ′(x) =
∑
p∈P

D′
p(xp) +

∑
pq∈N

V ′
pq(xp, xq) (2.6)

where each configuration x corresponds to an αβ-swap move f via the relation

fp =

{
α if xp = 0

β otherwise.

The specific costs for data terms D′
p and smooth terms V ′

pq are determined by the Dp and Vpq
of the original multi-label energy E(f). Specifically, we set

D′
p(0) := Dp(α) V ′

pq(0, 0) := Vpq(α, α)

D′
p(1) := Dp(β) V ′

pq(0, 1) := Vpq(α, β)

V ′
pq(1, 0) := Vpq(β, α)

V ′
pq(1, 1) := Vpq(β, β)

(2.7)

Minimizing E ′(x) implicitly solves the problem argminf∈Mαβ(f̂)E(f), thereby finding the
best move from among an exponential number of possibilities. The αβ-swap algorithm is
generally implemented using the pseudocode below.

18 CHAPTER 2. REVIEW: ENERGIES AND ALGORITHMS

αβ-SWAP(E) — local search using αβ-swap moves

1 f̂ := arbitrary labeling
2 repeat
3 for each α, β ∈ L
4 f := argminf∈Mαβ(f̂)E(f)

5 if E(f) < E(f̂)

6 f̂ := f

7 until converged // stop if energy cannot decrease for any {α, β}
8 return f̂

The key step of αβ-swap is minimizing binary energy E ′ efficiently (line 4). This subprob-
lem can be reduced to a single s-t min-cut if and only if E ′ is submodular (Section 2.1.3).
For a second-order swap term V ′

pq to be submodular, the multi-label term Vpq must satisfy a
corresponding condition:

V ′
pq(0, 0) + V ′

pq(1, 1) ≤ V ′
pq(0, 1) + V ′

pq(1, 0)

=⇒ Vpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) + Vpq(β, α) (2.8)

By Theorem 2.5 we have the following consequence.

Corollary 2.6. The αβ-swap algorithm is applicable for the MAP-MRF energy (1.1) if and
only if each second-order term V (·, ·) satisfies

V (α, α) + V (β, β) ≤ V (α, β) + V (β, α) ∀α, β ∈ L (2.9)

The original paper that introduced αβ-swap defined semi-metrics as an intuitive yet suffi-
cient condition for the algorithm to be applicable [24].

Definition 2.7 ([24]). A second-order term V (·, ·) is said to be a semi-metric if it satisfies

V (α, α) = 0

V (α, β) = V (β, α) ≥ 0 ∀α, β ∈ L

If V is a semi-metric then clearly it satisfies (2.9) and the αβ-swap algorithm is applicable.

2.2.2 α-expansion for metrics
The α-expansion algorithm [24] performs local search using a different class of moves than
the αβ-swap algorithm. Given a current labeling f̂ , an α-expansion move gives each variable
the following choice: either keep the current assignment f̂p, or switch to a particular label α.
All variables make this choice simultaneously, so there are an exponential number of possible
moves with respect to any particular α. Figure 2.3 illustrates some possible expansion moves.
The name ‘α-expansion’ suggests that the label α can grow or ‘expand’ its territory in the
current labeling, but cannot contract.

If we can find the best move efficiently, then we again have a powerful VLSN technique.
In fact, it turns out that α-expansion is more effective than αβ-swap both in theory [24] and in

2.2. LOCAL SEARCH FOR MULTI-LABEL ENERGIES 19

βα

γ

current labeling f̂

βα

γ

βα

γ
α

β
α

γ

an α-expansion other α-expansion a γ-expansion

Figure 2.3: Example expansion moves, all with respect to the current 2D labeling f̂ is shown at left. An
α-expansion move is made from binary choices: α can either ‘expand’ to pixel p, or leave f̂p as is.

practice [139]. The α-expansion algorithm is the basis for technical contributions in Chapters
4 and 5 of this dissertation.

We can define the full search neighbourhood of α-expansion as the set of all possible ex-
pansion moves with respect to current labeling f̂ :

M(f̂) =
∪
α∈L

Mα(f̂) where Mα(f̂) =
{
f : fp ̸= f̂p ⇒ fp = α

}
. (2.10)

In one sense the move space Mα seems more restrictive than that of swap moves Mαβ , but in
another sense it is more powerful. For an α-expansion move, all variables with label f̂p ̸= α

can change their labels, whereas an αβ-swap move can only change the variables with current
f̂p ∈ {α, β}. Surprisingly, local search with expansion moves will find a labeling f̂ within
a constant factor from the globally optimal labeling f ∗ [24]. Section 2.2.3 explains these
approximation guarantees, and Chapters 4 and 5 extend the bound to even harder energies. The
α-expansion algorithm is generally implemented as shown below.

α-EXPANSION(E) — local search using α-expansion moves

1 f̂ := arbitrary labeling
2 repeat
3 for each α ∈ L
4 f := argminf∈Mα(f̂)E(f)

5 if E(f) < E(f̂)

6 f̂ := f

7 until converged
8 return f̂

For a particular label α ∈ L, we need an efficient way to find the α-expansion move
f ∈ Mα(f̂) with minimal E(f) on line 4. Expansion moves are fundamentally binary so we
can encode a move f by a binary vector x as

fp =

{
f̂p if xp = 0

α otherwise.

We can construct a binary energyE ′ of the form (2.6) but with data termsD′
p and smooth terms

V ′
pq now defined according to expansion moves:

20 CHAPTER 2. REVIEW: ENERGIES AND ALGORITHMS

D′
p(0) := Dp(f̂p) V ′

pq(0, 0) := Vpq(f̂p, f̂q)

D′
p(1) := Dp(α) V ′

pq(0, 1) := Vpq(f̂p, α)

V ′
pq(1, 0) := Vpq(α, f̂q)

V ′
pq(1, 1) := Vpq(α, α)

(2.11)

where Dp and Vpq are the terms of the original multi-label energy E(f).
We know that minimizing E ′ is efficient if E ′(x) is a submodular function, so finally we

must ask for which multi-label energies does (2.11) result in submodular E ′? Using the defi-
nition of second-order submodular functions we have

V ′
pq(0, 0) + V ′

pq(1, 1) ≤ V ′
pq(0, 1) + V ′

pq(1, 0)

=⇒ Vpq(f̂p, f̂q) + Vpq(α, α) ≤ Vpq(f̂p, α) + Vpq(α, f̂q) (2.12)

By Theorem 2.5 we have the following consequence.

Corollary 2.8. The α-expansion algorithm is applicable to the MAP-MRF energy (1.1) if and
only if each second-order term V (·, ·) satisfies

V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α) ∀α, β, γ ∈ L (2.13)

Again, the original paper that introduced the algorithm defined metrics as a simpler yet
sufficient condition for α-expansion to be applicable [24].

Definition 2.9 ([24]). A second-order term V (·, ·) is said to be a metric if it is a semi-metric
and additionally satisfies

V (β, γ) ≤ V (α, γ) + V (β, α) ∀α, β, γ ∈ L

If V is a metric then clearly it satisfies (2.13) and the α-expansion algorithm is applicable.

2.2.3 Approximation bounds of α-expansion

A surprising result from the original α-expansion paper [24] is that local search with expansion
moves will terminate at a solution that is guaranteed to have a low energy, and is therefore
‘approximately’ optimal in a theoretical sense. Good approximation guarantees are highly
valued because we know a priori that, no matter where we begin our search, we will arrive at a
solution that is in some sense reasonable. For NP-hard minimization problems this is the best
we can expect in theory and in practice.

Understanding the approximation bound of α-expansion will be helpful for reading Chap-
ters 4 and 5 of this dissertation. Without loss of generality, we assume all second-order terms
Vpq are the same cost function denoted simply by V . The quality of the approximation guaran-
tee depends on the range of costs in terms V , and so the bound is parameterized accordingly.
The following theorem holds for any energy with Dp(·) ≥ 0 and metric Vpq(·, ·) ≥ 0.

2.2. LOCAL SEARCH FOR MULTI-LABEL ENERGIES 21

Theorem 2.10 ([24]). If f ∗ is a global minimum of the MAP-MRF energy (1.1), and f̂ is a
local minimum w.r.t. expansion moves, then

E(f̂) ≤ 2cE(f ∗) where c =
maxα ̸=β∈L V (α, β)

minγ ̸=ζ∈L V (γ, ζ)
(2.14)

In other words, α-expansion is a 2c-approximation algorithm where c ≥ 1 depends on
the ratio of largest to smallest costs in V . Below are some 5-label examples of second-order
potentials V , shown in matrix form, that are commonly used in vision.

Potts [119] linear truncated linear
0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

0 1 2 2 2

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

2 2 2 1 0

c = 1 c = 4 c = 2

Underneath we see the coefficient c corresponding to each case. The simplest potential (Potts)
simply penalizes fp ̸= fq equally, and gives the best approximation bound. When the range
of values is large, e.g. for “linear” smooth costs, the bound (2.14) gets worse. Chapter 5
introduces a new algorithm that can beat this bound for a wide class of second-order potentials.

Chapter 3

Global Optimization of Multi-Surface
Interactions

Many objects contain spatially distinct regions, each with a unique colour/texture model. Mix-
ture models ignore the spatial distribution of colours within an object, and thus cannot distin-
guish between coherent parts versus randomly distributed colours. We show how to encode
geometric interactions between distinct region+boundary models, such as regions being inte-
rior/exterior to each other along with preferred distances between their boundaries. This is
similar to the work of Li, Wu, Chen & Sonka [102], except in our construction we do not need
“domain unwrapping” nor do we have topological limits on shapes.

With a single graph cut, our method extracts only those multi-region objects that satisfy
such a combined model. We show applications in medical segmentation and scene layout
estimation. This chapter is based directly on my joint publication with Yuri Boykov at the
2009 International Conference on Computer Vision (ICCV) [36]. The work has since been
used as the basis for state-of-the-art cardiac segmentation tool [148] and extended with new
optimization techniques.

3.1 Overview and Related work

State-of-the-art segmentation methods benefit from an appearance model of the object’s inte-
rior and its boundary. Such methods include active contours, level sets, graph cuts, and random
walker. With binary segmentation, the object’s entire appearance must be incorporated into
a single mixed model. Most real-world objects are better described by a combination of re-
gions with distinct appearance models, and attempts to use multi-label segmentation reflect
this, e.g. [61, 125]. Our new multi-region segmentation framework maintains a separate re-
gion+boundary model for each part of an object, and allows these parts to interact spatially.

Figure 3.1 shows the most basic type of object that we can deal with effectively, and sug-
gests the main advantage we have over standard binary or Pott’s-like models.

Our work is a few short steps from a number of existing techniques either from a conceptual
or technical point of view. For example, what we call a multi-region model is ultimately a

22

3.1. OVERVIEW AND RELATED WORK 23

multi-label model, though we add simple yet important geometric constraints and then optimize
with a single graph cut1. To help make our contribution clear, we begin by situating our work
relative to other methods.

Pictorial structures We briefly juxtapose our work with the well-known pictorial struc-
tures [44], not because our work is directly related, but because we address an analogous
problem for objects of a completely different sort. Like [44], our models guarantee optimality
only under certain conditions. The table below contrasts our works.

pictorial struct. [44] this work

shape of each part fixed template arbitrary region

spatial prior relative part positions boundary distances

optimization dynamic programming single graph cut

optimum guaranteed if tree connectivity if no “frustrated cycles”

Here “arbitrary region” means that each region does not itself have a specific preferred
shape. Such part models can be good, or very bad, depending on the application. One can
think of this work as introducing basic distance priors between shapes in a globally optimal
way, though incorporating shape priors [155] themselves could be powerful.

Multi-label segmentation Our multi-region models are, generally speaking, a type of multi-
label model. One superficial distinction is that an n-region model potentially has 2n corre-
sponding labels. The reason will be apparent from our graph construction, and we discuss a
related idea called log transformation [121] toward the end of the chapter.

Our first contribution, stated in terms of multi-label models, is to introduce priors on the
distance between pairs of discontinuities (or “region boundaries” as we call them). This is
achieved by certain long-range interactions between pixels, and stands in contrast to Pott’s or
random walk models, applied for example in [125] and [61] respectively.

Second, multi-label models often require approximate methods such as α-expansion [24].
We strive for an intuitive characterization of the conditions under which our models can be
optimized by a single graph cut. A fully general characterization of when multi-label global

1Our ideas may also apply in other optimization settings, e.g. [5, 118].

Figure 3.1: Our simplest motivating example. Standard binary [20, 123] and multi-label [24, 125]
models fail because object/background colours are hard to separate. In the absence of user localization,
above at center is the best result we can expect from such models. Now we can design multi-region
models with geometric interactions to segment such objects more robustly in a single graph cut.

24 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

θ

r

r

θ

segment unwrapped image

Figure 3.2: To segment an image, Li et al. [102] must work within a band that already follows the
object’s rough shape by estimating from a center-line/point. They then ‘unwrap’ the band into polar
coordinates because their construction (Figure 3.3) requires it.

optima are guaranteed [127] does not have a meaningful interpretation for specific problems.
Elegant interpretations do exist for special cases however, such as Ishikawa’s convex charac-
terization [71]. Rather than testing multi-label models against abstract criteria [121, 127], we
describe one way to design easy-to-optimize models in an intuitive piecewise manner.

Optimal polar surfaces Li, Wu, Chen & Sonka [102] proposed a multi-surface segmentation
technique that inspired our work. The main drawback of their method is that it is hard to use on
anything except cylindrical objects; topological changes, bifurcations, or even strong curvature
all require careful pre-segmentation. Figure 3.2 shows the underlying problem: their need for
a polar representation of the image domain from which they can unwrap and optimize only
along columns.

They start by assuming that a center-point (center-line) of an object in 2D (3D) is given.
After casting outward rays and unwrapping them to obtain a polar representation of the image,
they can segment multiple nested surfaces along the resulting columns. They model the seg-
mentation as a closure set problem on a special graph, but our Figure 3.3 suggests an equivalent
s-t min cut construction for the simplest case. They can encode a minimum and maximum dis-
tance constraint between consecutive surfaces. This all assumes that each surface intersects
each ray at only one location. Their construction should also allow for soft spring-like forces,
although they do not state this.

Our graph construction sidesteps the unwrapping issue entirely. We do not need center-
lines, have no topological constraints, and do not suffer from geometric distortion introduced
by unwrapping. Briefly, our construction represents a multi-region object by a directed graph
comprising an unordered set of layers, with one layer per region. Each layer has one vertex per
image pixel2. Each layer by itself is just an independent binary graph cut problem familiar in
binary segmentation [20]. We introduce inter-layer arcs in the graph that give effects analogous
to [102] yet are easier to implement and useful in more general settings.

The chapter is organized as follows. Section 3.2 introduces our multi-region segmenta-
tion framework, describing our energy, geometric interaction terms, and our regional terms.

2This assumption serves to make our notation more bearable. In general, the layers may represent an image at
different resolution, matching the scale at which the corresponding part’s features appear in the data.

3.2. OUR MULTI-REGION FRAMEWORK 25

Section 3.3 demonstrates two applications: medical segmentation and scene layout estima-
tion. Certain combinations of geometric interactions cannot be optimized by graph cuts, and
Section 3.4 discusses ways to handle these cases. Section 3.5 concludes and suggests further
applications.

3.2 Our Multi-Region Framework

We begin by describing three intuitive geometric interactions in their simplest form:

Containment. Region B must be inside region A, perhaps with repulsion force between
boundaries.

Exclusion. Regions A and B cannot overlap at any pixel, perhaps with repulsion force be-
tween boundaries.

Attraction. Penalize the area A− B, exterior to B, by some cost α > 0 per unit area. Thus
A will prefer not to grow too far beyond the boundary of B.

As suggested above, we can introduce a distance prior between region boundaries in the
form of a hard or soft margin. The prior is enforced in the graph construction by an inter-layer
neighbourhood at each pixel p. The local weight and shape for this neighbourhood can vary at
each pixel. Figure 3.4 shows how these interactions combine to add discriminative power to
object models in segmentation.

3.2.1 Multi-region energy

We define P to be the set of pixel indices and L to be the set of region indices. Our binary
variables are x ∈ BL×P which we index as xip over pixels p ∈ P and over regions i ∈ L. The
set L is not ordered. For now we interpret xip = 1 to mean that pixel p is interior to region i.
The notation xp denotes a vector of all variables that correspond to pixel p, one for each of the

4x4

image

t

s

single-

surface

graph

t

vs.

∞

s

two-

surface

graph

Figure 3.3: LEFT: s-t min cut construction corresponding to [102]; any cut must separate top row from
bottom row. RIGHT: Basic idea from [102]. Each column separates top from bottom at two distinct
locations, one forced to be strictly above the other.

26 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

Object

L
ik
e
li
h
o
o
d

Colour

L
ik
e
li
h
o
o
d

vs.
Bg

AB

Colour

AB

+

distance prior

Bg

Figure 3.4: LEFT: Mixed colour model corresponding to Figure 3.1. The vertical axis indicates how
likely we are to observe a colour for the given class (Bg/Object). RIGHT: Two-region model corre-
sponding to the final result in Figure 3.1. Trabecular bone (B) is forced to be inside a band of compact
bone (A) of some estimated thickness.

|L| regions. If xp = 0 then pixel p is considered “background.” The notation xi refers to all
variables of a particular region i ∈ L.

To express our multi-region energy, we start with two familiar components: data terms and
regularization terms. Each pixel p has associated function Dp that defines a cost for every
combination of regions. Each region i is regularized independently in a standard way by a
collection of smoothness terms V i defined as

V i(xi) =
∑

pq∈N i

V i
pq(x

i
p, x

i
q) (3.1)

where each neighbourhood N i typically defines nearest-neighbour grid connectivity.
Ideally each data cost Dp(xp) could be arbitrary but, because Dp is a function of |L| binary

variables, graph cuts requires that Dp be submodular [87]. Ramifications of this are discussed
in Section 3.2.3. Each V i plays the same surface-regularization role as in standard binary
segmentation. For the case |L|=1 our Dp and V i obviously describe a standard binary energy,
solvable by graph cut [20].

When L indexes multiple regions, we can add a new category of energy terms to encode
inter-region interactions. Our multi-region energy takes the overall form

E(x) =
∑
p∈P

Dp(xp) +
∑
i∈L

V i(xi) +

interaction terms︷ ︸︸ ︷∑
i,j∈L
i̸=j

W ij(xi, xj). (3.2)

where each W ij encodes all geometric interactions between regions i and j.
To understand how our interaction terms W ij are indexed over both region pairs (i, j) and

pixel pairs (p, q), it helps to consider Figure 3.5 along with the definition for one particular pair
of regions

W ij(xi, xj) =
∑

pq∈N ij

W ij
pq(x

i
p, x

j
q). (3.3)

The inter-region neighbourhood N ij is the set of all pixels pairs (p, q) at which region i is
assigned some geometric interaction with region j. We allow (p, p) ∈ N ij because they refer
to separate variables, unlike in N i. Note thatW ii and V i would describe the same set of energy
terms, but the conceptual distinction is just as important as the distinction between Vpp and Dp.

3.2. OUR MULTI-REGION FRAMEWORK 27

∞ α

pj

i
N ij

∞ α
i

p

cut
B

A

Figure 3.5: LEFT: Graph construction for region layers i, j ∈ L showing a subset of inter-region
connectivity N ij . The ∞-cost arcs, shown emanating only from xjp, enforce a 1-pixel margin between
region boundaries. RIGHT: The α-cost arcs attract the outer boundary by penalizing only the area A−B.

Section 3.2.2 details the energy terms and corresponding graph construction for our con-
tainment, exclusion, and attraction interactions. Section 3.2.3 then discusses limitations of our
higher-order data terms.

3.2.2 Geometric interactions

We now describe how our geometric interactions can be implemented with a single graph cut.
The basic “i contains j” interaction is simplest, so we start there. All we do is introduce a term
W ij

pp(0, 1) = ∞ at every pixel p ∈ P . Those familiar with graph constructions may prefer to
think of it as an ∞-cost arc from vertex xjp to xip, thus prohibiting any cut that labels them 1 and
0 respectively. More generally we can add similar terms W ij

pq for p ̸= q. For example, to add
a hard uniform margin to our containment constraint, we set W ij

pq(0, 1) = ∞ for all q within
some radius of p.

The tables below list energy terms corresponding to our three main interactions.

i contains j

xip xjq W ij
pq

0 0 0
0 1 ∞
1 0 0
1 1 0

i excludes j

xip xjq W ij
pq

0 0 0
0 1 0
1 0 0
1 1 ∞

i attracts j

xip xjp W ij
pp

0 0 0
0 1 0
1 0 α

1 1 0

α > 0 (3.4)

Figure 3.5 shows the graph construction corresponding to the containment and attraction
interactions. A soft containment cost W ij

pq(0, 1) > 0 for p ̸= q creates a spring-like repulsion
force between the inner and outer boundaries. Note that our distinction between “containment”
and “attraction” is largely artificial since they are the same type of constraint but with opposite
orientation.

The exclusion interaction is more difficult because it cannot be optimized by graph cuts
until we perform a simple transformation. The reason is because graph cuts can only optimize
certain submodular functions (see Section 2.1.3 for review). As shown in [87], a second-order
energyE(x) over binary x is submodular if and only if it can be expressed as a sum of pairwise

28 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

functions
E(x) =

∑
i

Ei(xi) +
∑
i,j

Eij(xi, xj) (3.5)

where each second-order term satisfies

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0). (3.6)

Our containment and attraction interactions are submodular, but for our exclusion terms W ij

in (3.4) clearly the reverse inequality holds, so exclusion is supermodular. Because exclusion
is everywhere supermodular, we can flip the meaning of layer j’s variables so that xjp = 0

designates the region’s interior. Our exclusion terms W ij(xi, x̄j) thus become submodular, so
long as we can flip the variables.

The idea of flipping variable meanings among supermodular terms is not a new idea. It
lies at the heart of roof-duality methods in quadratic pseudo-boolean optimization (QPBO)
[18, 85, 124]. These methods are more sophisticated than graph cuts, consuming more time
and memory, so we prefer not to rely on them unless necessary (Section 3.4).

Let us now explore the overall geometric interactions permitted by combining the three
basic ones in (3.4). To aid the discussion, we introduce graphical depictions of each interaction
between two objects i and j.

i j
contains

(submodular)

i j
excludes

(supermodular)

i j
attracts

(submodular)

We can allow more sophisticated interactions, such as a hierarchy of nested regions or re-
gions excluded from one another. The example below models two mutually exclusive regions,
each with an interior part. A black circle indicates that the region’s label is complemented in
order for the overall problem to remain submodular.

object interaction

contains

excludes

⇒
contains

(3.7)

There are many useful interactions that we cannot model with graph cuts. The example
below describes two mutually exclusive regions, both contained within another region.

non-submodular

object interaction

contains

excludes

⇒

contains

object interactionexcludes (3.8)

The above configuration cannot be trivially converted to a submodular energy. It introduces
what is called a frustrated cycle among the overall pairwise energy terms. A cycle is called

3.2. OUR MULTI-REGION FRAMEWORK 29

frustrated if it contains an odd number of non-submodular terms (see P3,P4 in [124]). This
means that with graph cuts we can only model interactions that are bipartite with respect to
exclusion, and submodular interactions cannot be added between layers that use opposite 0/1

labels. If we step outside these constraints then global optima are no longer guaranteed, but
approximations such as QPBO-I [124] or αβ-swap [24] may still be effective. (Section 3.4
explains why α-expansion often cannot be applied.)

3.2.3 Regional data terms

We begin by showing how the likelihoods in Figure 3.4 are used to drive the segmentation in
Figure 3.1. We have L = {A,B} so each data term Dp defines up to 4 costs. Given image
data I with individual pixel intensities Ip, each function Dp is naturally described by the table
below.

xAp xBp Dp

0 0 − log Pr(Bg|Ip)
0 1 K

1 0 − log Pr(A|Ip)
1 1 − log Pr(B|Ip)

(3.9)

The unspecified cost K brings us to an important point. The cost K is not driven by the image
data itself, because the “A contains B” object model prohibits this configuration. For this par-
ticular model, each Dp(xp) is added alongside pairwise term WAB

pp having cost WAB
pp (0, 1) =

∞. The three likelihoods (3.9) can therefore be arbitrary for this object model, without con-
cern for K or for submodularity. Submodularity of our overall energy (3.2) thus depends on a
combination of data terms and interaction terms.

Suppose however that there were no geometric constraints between two layers i and j. The
data terms Dp(xp) must then be submodular (or supermodular if the label for j is flipped). To
understand what this means intuitively, consider two regions i and j that represent subtractive
colours.

i j

1 0 1 1 0 10 0 cyan
yellowgreen

I

(3.10)

Here, submodularity requires that each data term satisfy

Dp(0, 0) +Dp(1, 1) ≤ Dp(0, 1) +Dp(1, 0). (3.11)

One symmetric way to satisfy (3.11) is to say, for example, that Dp for a cyan pixel Ip does not
simply encourage region i, but also discourages region j by an equal amount.

For models with strong geometric interactions, such as containment and exclusion, these
constraints on Dp are usually satisfied for reasons suggested by (3.9).

Higher-order data terms A data term Dp may model three or more regions with dependent
data costs, but graph cuts can only encode pairwise energy terms directly. Any function of three

30 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

or more variables can be transformed into a combination of pairwise and unary terms in polyno-
mial time [18]. Transforming a submodular 3rd-order term preserves submodularity among the
resulting pairwise terms [87]. For a 4th-order term or higher there are submodularity-preserving
transformations only for certain cases [49, 156]. To solve the resulting pairwise problem with a
single graph cut, one must truncate the non-submodular data terms to approximate the desired
energy. (None of our medical examples needed truncation.) An alternative is to use QPBO
[18] and its extensions [124] directly on the non-submodular energy.

3.3 Applications
We choose two problems that we hope demonstrate the diverse applications of our framework.
Section 3.3.1 shows how our multi-region energy (3.2) helps to model many objects in medi-
cal image segmentation. Section 3.3.2 proposes a novel way to regularize basic scene layout
estimation using Hoiem-style3 data terms [66].

3.3.1 Medical segmentation

Medical image segmentation is a domain full of multi-part objects that are hard to detect with
rigid part-models such as [44]. This is why so many state-of-the-art algorithms [5, 20, 61, 102]
rely on region+boundary models over arbitrary shapes using mainly length/area priors. Of
these techniques, only the recent work of Li, Wu, Chen & Sonka [102] attempts to globally
optimize priors on the distance between multiple surfaces. As shown in Figures 3.2 and 3.3,
they rely on accurate center-line estimation (a difficult problem in itself) and cannot handle
complex topologies.

Figures 3.1, 3.6, 3.7 and 3.8 show experimental results of our multi-region framework using
class-specific models (bone, knee, heart, kidney). The heart result was computed using QPBO-
I, and the rest were computed in a single graph cut. Our early experiments are all 2D but
they extend to N-D in a straight-forward manner. Using the Boykov-Kolmogorov max-flow
algorithm [22] our running times are longer than binary graph cut in roughly linear proportion
to the number of vertices and arcs added to the graph.

3.3.2 Scene layout estimation

Given a photograph of a scene, we wish to break the image into rough geometric labels “bot-
tom” (B), “top” (T), “left wall” (L), ”right wall” (R) and “front-facing” (F). This application
is described by Hoiem et al. [66], and we actually use data terms based on their local geometric
class estimators. See Figure 3.9 for an example result. Instead of using α-expansion to find
a local minimum of a Pott’s energy, we design a set of interactions between class regions that
can be optimized by a single graph cut.

In our setup, we let regions L = {B,L, T,R} and treat F as background. Ideally we want
every pixel p ∈ P to be assigned a unique region, but adding this constraint introduces frus-

3We thank Derek Hoiem so, so much for making code [66] available.

3.3. APPLICATIONS 31

Figure 3.6: User-driven segmentation of knee joint, measuring thickness of cartilage. Above uses the 4-
part submodular interaction portrayed in (3.7), and was computed by a single graph cut. Given the some
pixels manually classified by the user (dark regions), bone and cartilage are segmented automatically
using a combination of image gradients and anisotropic distance prior (margin) between surfaces. A
two-part model, using these same user input for either tibia or femur, gives poor results.

Figure 3.7: User-driven heart segmentation using the non-submodular interaction portrayed in (3.8),
solved by QPBO-I. The user first marks a part of the right ventricle (a), but the sampled colour model
is attracted to both ventricles. The user then marks the left ventricle as a separate region (b). The outer
wall is segmented automatically by compromising between image gradients and distance prior (margin).
This model cannot be handled by Li et al. [102], and was the starting point for the cardiac segmentation
model of Ulén et al. [148].

32 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

Figure 3.8: Kidney segmentation (a) is very difficult to automate due to low contrast and complex topol-
ogy. Binary graph cuts simply cannot get reasonable results without heavy user interaction, and even
multi-label methods need some form of localization [125, 61]. In (b–c) we model the kidney as medulla
surrounded by a slightly brighter cortex of minimum thickness. On this challenging example our method
is very sensitive to colour/geometric parameters, e.g. (b), but has discriminative power to extract only
the correct object (c) without any localization. We also show an alternate 3-region object model (d) that
eliminates the unwanted margin between medulla and collection cavity (dark/bright interior). This kind
of topology would be impossible to segment using Li et al. [102] due to the unwrapping requirement.

3.3. APPLICATIONS 33

Figure 3.9: Scene layout estimation. Given a scene (a) we first generate data terms from local surface
class confidences given by Hoiem et al. [66]. The maximum likelihood solution is shown in (b). With a
single graph cut, our multi-region framework regularizes noise/gaps in the data (c) while keeping most
important geometric classes (B,L, T,R, F) mutually exclusive throughout the image.

trated cycles (Section 3.2.2). We propose the subset of interactions and data terms portrayed in
Figure 3.10.

To encourage the “box” layout seen in Figure 3.10 we borrow an idea from [105] and bias
region B against cutting underneath itself using length terms V B, and likewise for orienta-
tions L, T,R. Unlike [105] we do this with a soft penalty so that strong local data terms can
override the prior, such as the front-facing sign in Figure 3.9c.

We still have two unwanted configurations BT and LR that have no corresponding like-
lihood. To discourage these labels we want to maximize corresponding Dp, but higher-order

L

T

R

B

F

our ‘objects’

excludes

L

R

T

B

their interactions

BLTR Dp(·)
1 0 1 0 Dp(F)

0 0 1 0 Dp(B)

1 1 1 0 Dp(L)

1 0 0 0 Dp(T)

1 0 1 1 Dp(R)

0 0 0 0 Dp(BT)

1 1 1 1 Dp(LR)

Figure 3.10: Our scene object interactions and corresponding higher-order data terms. Two unwanted
labels are due to limitations imposed by frustrated cycles (Section 3.2.2). The configurations not listed
have cost ≥ ∞ due to the four exclusion constraints above.

34 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

submodularity requires

Dp(BT) ≤ Dp(B) +Dp(T)−Dp(F), and
Dp(LR) ≤ Dp(L) +Dp(R)−Dp(F).

(3.12)

We truncate these terms to retain submodularity, potentially allowing either B to overlap T , or
L to overlap R. Experimental results are shown in Figure 3.11.

Note that even if we did prohibit labels BT and LR, we would not be minimizing a Pott’s
energy. Instead, the equivalent multi-label formulation has labels L = {l∅, l1, . . . , ln} where
we designate l∅ the null label, corresponding to region F in our scene layout formulation. In
this type of multi-label model, all pixel label pairs fp, fq ̸= l∅ have

Vpq(fp, fq) = Vpq(fp, l∅) + Vpq(l∅, fq). (3.13)

Because this model always penalizes (li, lj) transitions more than (li, l∅) transitions, over-
smoothing creates gaps between li and lj in regions with weak data, unlike [66, 105].

3.4 Discussion

Given one of our multi-region models, one could apply αβ-swap to the corresponding multi-
label energy. Unfortunately this provides no optimality guarantees, and Figure 3.12 suggests
how our distance priors create local minima for αβ-swap. Often the α-expansion algorithm
cannot even be applied because the equivalent multi-label energy is not a metric [24] and
would create non-submodular terms at the expansion step. Specifically, let Vpq(fp, fq) denote
the pairwise cost corresponding to Figure 3.12. The costs here do not satisfy the triangle
inequality because

Vpq(B, ∅) � Vpq(B,A)+Vpq(A, ∅). (3.14)

The Pott’s-like model suggested by (3.13) is a metric, however, and can be optimized effec-
tively with α-expansion. On the few scene layout examples we tried, α-expansion either found
or came close to the global optimum.

Multi-label constructions Recall that our set of regions L is not ordered in any way. We are
thus not building a ‘layer cake’ construction typical of discrete and continuous total-variation
methods in multi-label optimization [71, 117, 118]. A special case of our multi-region energy
(3.2) does coincide with a particular Ishikawa construction [71]. To construct a total-variation
(Vpq ∝ |fp − fq|) Ishikawa graph for n labels, order n− 1 regions as L = {1, . . . , n− 1} and
introduce hard “i contains i+ 1” constraints between subsequent layers.

Also recall that an n-region model represents up to 2n corresponding labels, which is the
ultimate objective of the log transformation [121]. They start with an energy over discrete
variables xi ∈ {1 . . .m} and try to represent each xi using as close to log2m binary variables
as possible. Their approach is much more general because they start from a multi-label energy
and test it against a criterion for transformation to submodular binary encoding. The criterion
itself is clear but it is not always obvious how to satisfy it when designing an energy for a
particular application. In contrast, we start with binary variables and build up our multi-region

3.4. DISCUSSION 35

Figure 3.11: Scene layout results using our proposed interactions in Section 3.3.2, showing estimates
for indoor (a) and outdoor (b–d) scenes. Smoothness parameters were tuned for each image. Diagonal
shading on the Flatiron image (d) indicates that scene classes L and R overlap. This may happen when
certain data terms conflict because our graph cut construction cannot simultaneously prohibit all classes
from overlapping. Section 3.4 discusses ways to resolve this. See Figure 3.9b for an example of the data
terms that drive this segmentation.

36 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

B

∞

A

∞ ∞ ∞

1 1

11

5 5 5

0 0

00

0

0

∞

∞

00

costs

B

A

∅

∅ ∅ ∅

∅A

labeling

∅

B ∅∅ B

A A

Figure 3.12: Example of how our interaction terms cause αβ-swap to get stuck in local minima. The
graph and Dp encode a 4-pixel segmentation with “A contains B” constraint. Diagonal arcs encourage
a 1-pixel margin between boundaries of B and A. Our s-t min cut construction finds global optimum
f∗=(B,B,A, ∅) with E(f∗)=0, but the corresponding 3-label energy is hard for αβ-swap to optimize.
The labeling f̂=(∅, ∅, ∅, ∅) is already a local minimum regardless of which labels are swapped (right).

models from intuitive pairwise interactions. We show that there are applications where such
models are useful, without the need for an explicit transformation from multi-label.

Constructions along ‘rays’ On page 25 we described a related construction by Li, Wu,
Chen & Sonka [102] that optimizes along columns sampled from the image domain. Notice
that because their columns are known a priori they can encode both a min and max distance
prior, whereas our framework assumes rays are not known and can only encode a min distance4.
Thus there is an advantage to their method when a good pre-segmentation is available.

On the subject of paper [102], we mention two connections between their work and existing
works in vision. First, it is standard to convert their closure set problem into an equivalent s-t
min cut, and we note that the corresponding min cut graph in their single-surface case happens
to be a particular Ishikawa construction [71]. Their innovation can be thought of as building
parallel Ishikawa constructions that influence one another. Second, there is a binary segmen-
tation paper [152] that takes similar advantage of rays embedded in the image domain. Rather
than unwrap the image domain and introduce geometric distortion of length/area, Veksler dis-
cretizes the rays and embeds them directly in the neighbourhood of a grid graph. One could
implement multi-surface priors like Li et al. by extending Veksler’s grid framework instead.

QPBO and approximations There are many multi-region models that are useful yet contain
frustrated cycles. Even the simple 3-region interaction portrayed in (3.8) and the scene layout
application are two examples where the ideal set of interactions cannot be optimized with a
single graph cut. We can still formulate the (potentially NP-hard) energy and apply global
methods like QPBO-P [18] or a reasonably fast approximation like QPBO-I [124]. QPBO-I
can give good results on examples like Figures 3.7 and 3.11d, in only 1–5 subsequent ‘improve’
attempts. Figure 3.13 shows how QPBO-I succeeded in resolving the violated constraints from
on the ‘flatiron’ image.

4In our framework, it is actually possible to create a spring-like attraction force between boundaries of i

and j via opposing “i attracts j” and “j attracts i” interactions of large radius. However, the strength of this
attraction is unfortunately coupled with surface regularization strength, leading to unwanted oversmoothing for
most applications.

3.4. DISCUSSION 37

Figure 3.13: LEFT: Failure case from Figure 3.11d. RIGHT: Solution by QPBO-I where unwanted class
labels BT , LR are prohibited.

Local search with multi-label moves Given a model that contains frustrated cycles among
region layers, it may also be possible to design move-making algorithms that operate on subsets
of regions, rather than relying on QPBO. This is in the spirit of “range-moves” [93, 151] where
at each iteration we choose a large subset of interactions that can be trivially converted to
submodular. Care must be taken to ensure that the energy of the labeling never increases, but
large moves can be developed in this way. For example, we have verified that we can implement
the vertical/horizontal moves in [105] using a simple “T excludes B” construction with special
Dp and V i based on the current labeling.

More generally we can minimize a multi-label energy E(f) by defining a move space for
the local search algorithm in Section 2.2. The main novelty over range-moves [151] will be (1)
the geometric interpretation of long-range interactions and (2) our attempt to flip the meaning
of binary variables to eliminate non-submodular interactions, resulting in a larger move space.
Let us define the region subsets upon which submodular moves can be made:

S = {L ⊆ L : L is free of frustrated cycles and no

superset of L is free of frustrated cycles }.

The set of all possible moves with respect to current labeling f̂ can be defined as

M(f̂) =
∪
L∈S

ML(f̂) where ML(f̂) =
{
f : fp ̸= f̂p ⇒ fp, f̂p ∈ L

}
. (3.15)

Each set of regions L ∈ S has no frustrated cycles among its interactions. This means
we can always find a binary ‘flipping’ such that there is a one-to-one correspondence between
elements of L = {ℓ1, . . . , ℓk} and feasible binary assignments xp = (x1p, . . . , x

k
p) where k =

|L|. The flipping allows interaction terms W ij
pq are submodular, and so we can compute an

optimal move on subset L in a single graph cut using the constructions found throughout this
chapter.

38 CHAPTER 3. GLOBAL OPTIMIZATION OF MULTI-SURFACE INTERACTIONS

3.5 Conclusions and Future Work
With our multi-region framework, not only can more difficult objects now be segmented, but
designing tractable models is also quite easy. The main ideas were to keep a separate appear-
ance model for each spatially distinct region, and to allow geometric priors between region
boundaries. Along the way, we discussed many parallels between the works of Li et al. [102],
Ishikawa [71] and Veksler [152], and we hope these comments were helpful. Our experiments
suggest that more robust medical segmentation tools could be designed around these ideas.

There are many other applications that can potential be revisited with these ideas in mind.
Particularly promising are a more sophisticated concept of shape priors [50, 155] and topo-
logical constraints [153], but also ratio minimization [84], EM-style algorithms like Grab-
Cuts [123], and combining pictorial structures with segmentation [44, 81]. Complex objects
can be modeled by a hierarchy of nested regions that interact, with each region potentially
driven by different data.

Finally, we note that there has been much past success in transferring ideas from discrete
optimization into continuous settings, e.g. [118, 112]. We hypothesize that some of the ideas
discussed in this chapter may also apply in continuous settings.

Chapter 4

Energies with Label Costs

In a labeling problem we are given a set of observations P (pixels, features, data points) and
a finite set of labels L (categories, geometric models, disparities). The goal is to assign each
observation p ∈ P a label fp ∈ L such that the joint labeling f minimizes some objective
function E(f).

In computer vision and machine learning the available data is usually ambiguous, unreli-
able, or simply insufficient as to make direct inference possible. To explain such data we must
incorporate biases and assumptions into our models, ideally a form of high-level reasoning or,
more commonly, low-level regularization such as those discussed in Chapter 1. However, even
low-level regularizers (biases) often make the corresponding inference problem NP-hard. Our
work is about how to effectively optimize energies with two such regularizers: a preference
for fewer unique labels in the solution (label costs), and a preference for spatial smoothness
(smooth costs). Figures 4.1, 4.2, and 4.3 suggest how these criteria cooperate to give clean
results.

The work in this chapter was initially published in the 2010 Conference on Computer Vision
and Pattern Recognition (CVPR) [38] and subsequently expanded in the International Journal
of Computer Vision (IJCV) [39].

4.1 Some Useful Regularizers

Regularization combining smoothness and label costs has a long history in vision going back
to well known papers by Leclerc [98], Zhu & Yuille [166], and many others. Until recently,
however, label costs could not be optimized by the powerful combinatorial algorithms popular
in computer vision. The main contributions of our work (originally reported in [38]) are as
follows. We are first to describe a general label cost functional (⋆) that depends on a specific
subset of used labels, rather than on a number of labels. Moreover, we propose several com-
binatorial optimization algorithms with guaranteed optimality bounds for minimizing energies
combining data costs, smooth costs, and label costs.

Label costs Start by considering a basic (unregularized) energy E(f) =
∑

pDp(fp), where
optimal fp can be determined trivially by minimizing over independent ‘data costs’. Suppose,
however, that we wish to explain the observations using as few unique labels as necessary. We

39

40 CHAPTER 4. ENERGIES WITH LABEL COSTS

(a)

(b) (c)

Figure 4.1: Motion segmentation on the 1RT2RCR sequence [145]. Energy (4.1) finds 3 dominant
motions (a) but labels many points incorrectly. Energy (4.2) gives coherent segmentations (b) but finds
redundant motions. Our energy combines the best of both (c).

(a)

(b) (c)

Figure 4.2: Planar homography detection on VGG (Oxford) Merton College 1 image (right view). En-
ergy (4.1) finds reasonable parameters for only the strongest 3 models shown in (a), and still assigns
a few incorrect labels. Energy (4.2) finds reasonable clusters (b) but fits 9 models, some of which are
redundant (nearly co-planar). Our energy (⋆) finds both good parameters and labels (c) for 7 models.

4.1. SOME USEFUL REGULARIZERS 41

(a)

(b) (c)

Figure 4.3: Unsupervised segmentation using histogram models. Energy (4.1) clusters in colour
space, so segments (a) are incoherent. Energy (4.2) clusters over pixels and must either over-segment
or over-smooth (b), just as in [164]. Our energy (⋆) balances these criteria (c) and corresponds to
Zhu & Yuille [166] for segmentation.

can introduce label costs into E(f) to penalize each unique label that appears in f :

E(f) =
∑
p∈P

Dp(fp) +
∑
l∈L

H(l)·δl(f) (4.1)

where H(l) is the non-negative label cost of label l, and δl(·) is the corresponding indicator
function

δl(f)
def
=

{
1 ∃p : fp = l

0 otherwise.

Again, energy (4.1) balances the individual preferences of variables (the data costs) against
the global preference to have rely on fewer unique labels (the label costs). It turns out that this
formulation is equivalent to the well-studied uncapacitated facility location (UFL) problem,
which we review in Section 4.3.5. For example, in computer vision, Li [101] recently posed
multi-body motion estimation in terms of UFL. For multi-model fitting, each label corresponds
to a candidate model and label costs penalize overly-complex models, preferring to explain the
data with fewer, cheaper labels (see Figure 4.1a).

Smooth costs Spatial smoothness is a standard regularizer in computer vision. The idea here
is that groups of observations are often known a priori to be positively correlated, and should
thus be encouraged to have similar labels. Neighbouring image pixels are a classic example of
this. Such pairwise priors can be expressed by the energy

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

Vpq(fp, fq) (4.2)

42 CHAPTER 4. ENERGIES WITH LABEL COSTS

where each Vpq penalizes fp ̸= fq in some manner. If each Vpq defines a metric, then mini-
mizing (4.2) is known as the metric labeling problem [24, 78] and can be optimized effectively
with the α-expansion algorithm.

This regularizer prefers spatially coherent segmentations, but has no incentive to combine
non-adjacent segments and thus a tendency to suggest redundant labels in multi-model fitting
(see Figure 4.1b). Still, spatial smoothness priors are important for a wide array of vision
applications.

Our combined energy We propose a discrete energy that essentially combines the UFL and
metric labeling problems.

E(f) =

data cost︷ ︸︸ ︷∑
p∈P

Dp(fp) +

smooth cost︷ ︸︸ ︷∑
pq∈N

Vpq(fp, fq) +

label cost︷ ︸︸ ︷∑
L⊆L

H(L)·δL(f) (⋆)

where the indicator function δL(·) is now defined on label subset L as

δL(f)
def
=

{
1 ∃p : fp ∈ L

0 otherwise.

Our energy actually generalizes label costs to label subset costs H(L), where we use notation
for per-label costs H(l) to mean H({l}) throughout. Energy (⋆) balances two demonstrably
important regularizers, as suggested by Figure 4.1c. Figures 4.2 and 4.3 show other vision
applications where our combined label cost energy makes sense.

4.2 Related work
A number of recent publications have relied on label costs in some form. For example, in [38]
we proposed our subset costs in (⋆) as a form of co-occurrence cost in object recognition. This
application was thoroughly and independently developed by Ladický et al. [94], also within an
α-expansion framework but with a heuristic extension; see Section 4.8 for discussion. Others
have independently proposed label cost energies for specific applications. For example, we
learned from personal correspondence that John Winn developed an extension of α-expansion
to instance cost potentials in 2004 that only appeared as part of a supervised part-based object
recognition framework [67], though his approach to deriving an algorithm is quite different
from ours1. Special case energy (4.1) corresponds to objective functions studied in vision by
Torr [144] and in a number of independent later works for specific applications [101, 97, 9].
Our combined energy (⋆) has recently been extended to convex continuous total variation (TV)
formulations [163].

Label costs can be viewed as a special case of other global interactions recently studied
in vision, for example by Werner [159] and Woodford et al. [160]. Werner proposed a cut-
ting plane algorithm to make certain high-order potentials tractable in an LP relaxation frame-
work. The algorithm is very slow but much more general, and he demonstrates global class

1In [67] the algorithm is briefly described on page 6 and mixes binary and multi-label variables in a way such
that we are unsure of the exact method of implementation/proof, but the goal is clearly analogous to a special case
of our extended α-expansion for energy (⋆).

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 43

size constraints for enforcing simple marginal statistics in image segmentation. Our potential
H(l) · δl(f) corresponds to a soft constraint that the number of variables taking label l be zero;
this cost is concave w.r.t. the number of variables taking l. Woodford et al. optimize energies
involving marginal statistics and they call these Marginal Probability Fields (MPFs). They fo-
cus on a number of hard cases with convex costs and propose specialized (but slow) algorithms
based on dual decomposition.

This chapter studies label costs from a general perspective, including discussion of multiple
algorithms, optimality bounds, extensions, and fast special cases. Our work on these algorithms
was inspired by an array of generic model-fitting applications in vision that benefit from label
costs: geometric model fitting [144], rigid motion estimation [101, 145], MDL-based seg-
mentation [166], finite mixture models [15]. This chapter presents a number of synthetic and
real examples illustrating generic applications for the label costs and evaluating the proposed
optimization techniques.

Chapter outline Section 4.3 presents our extension to α-expansion and corresponding opti-
mality bounds. We also analyze fast UFL heuristics for a special case of (⋆) without smooth
costs. Section 4.4 describes a multi-model fitting algorithm based on our energy, and Sec-
tion 4.5 discusses connections to standard expectation maximization (EM) and K-means al-
gorithms. Section 4.6 details our experiments illustrating generic applications in vision. Sec-
tion 4.7 empirically compares a number of alternative combinatorial optimization algorithms
applicable to label cost energies. Besides the extended version of α-expansion designed specif-
ically for energy (⋆), we tested a number of alternative methods based on standard α-expansion
[24] for (4.2) with additional heuristics addressing the label costs term. Section 4.8 discusses
applications of high-order label costs, more related works, and possible extensions.

4.3 Fast Algorithms to Minimize Label Costs
Our main technical contribution is to extend the well-known α-expansion algorithm [24] to
incorporate label costs at each expansion (Section 4.3.1) and prove new optimality guarantees
(Section 4.3.3). Section 4.3.5 reviews known results for the ‘easy’ case (4.1) with only data
and per-label costs.

4.3.1 α-expansion with label costs

Minimizing the multi-label energy (⋆) is NP-hard in general for |L| ≥ 3. The α-expansion
algorithm [24] maintains a current labeling f ′ and iteratively ‘moves’ to a better one until no
improvements can be made. At each iteration, some label α ∈ L is chosen and variables fp
are simultaneously given a binary choice to either stay as fp = f ′

p or switch to fp = α.
This key step (line 4 below) is called expansion because label α is given a chance to grow
arbitrarily. If each Vpq is a metric [24], the best possible expansion move can be computed
efficiently by a single graph cut. We now describe the binary expansion step in sufficient detail
for understanding label costs. For a more complete description of the α-expansion algorithm,
see Section 2.2.

44 CHAPTER 4. ENERGIES WITH LABEL COSTS

Let labeling f = (f1, . . . , fn) and let fα denote a feasible α-expansion w.r.t. current label-
ing f ′. Using subset of variables Pα = {p ∈ P : f ′

p ̸= α}, the possible labelings fα can be
expressed one-to-one with binary indicator variables x = (xp)Pα using relation

xp = 0 ⇐⇒ fα
p = f ′

p

xp = 1 ⇐⇒ fα
p = α ∀p ∈ Pα.

(4.3)

Let Eα(x) denote the binary energy that encodes all possible α-expansion moves (4.3) relative
to f ′. The α-expansion algorithm computes an optimum x∗ for Eα and thereby fα, by solving
a single s-t min cut problem.

As an illustrative example, suppose multi-label energy E(f) is such that the optimal ex-
pansion with respect to labeling f ′ is fα:

f ′ = γ γ ββαβ → γ ββαα α = fα

1 1 1 0 0 0 = x∗ (4.4)

where 1 means x2 is fixed to 1. Here only f1 and f3 changed to label α while the rest preferred
to keep their labels. The α-expansion algorithm iterates the above binary step until finally
x∗
p = 0 wherever f ′

p ̸= α for all possible α ∈ L.

Encoding label costs The energy in example (4.4) was such that f5 and f6 preferred to stay
as label β rather than switch to α. Suppose we introduce a costH(β) > 0 that is added to E(f)
if and only if there exists some fp = β. The binary energy for an expansion move must encode
a potential reward of H(β) for replacing all f ′

p = β with label α. If H(β) is large enough, the
optimal expansion move for our small example would affect f5 and f6:

f ′ = γ γαβ γ γαβ
1

γ ββγ ββ
5 6

→ γαα α α α = fα

1 1 1 0 1 1 = x∗ (4.5)

Our main algorithmic contribution is a way to encode such label costs into the expansion step
and thereby encourage solutions that use fewer labels.

EnergyEα(x), when expressed as a multilinear polynomial, is a sum of linear and quadratic
terms over x. For the specific example (4.5), we can encode cost H(β) in Eα by simply adding
H(β) −H(β)x1x5x6 to the binary energy. Because this specific term is cubic and H(β) ≥ 0,
it can be optimized by a single graph cut using the construction in [87].

To encode general label costs for arbitrary L ⊆ L and f ′, we must optimize the modified
expansion energy

Eα
h(x) = Eα(x) +

∑
L⊆L

L∩L′ ̸=∅

(
H(L)−H(L)

∏
p∈PL

xp

)
+ Cα(x) (4.6)

where set L′ contains the unique labels in the current labeling f ′, and set PL = { p : f ′
p ∈ L}.

Term Cα simply accounts for the case when α /∈ L′ and so the introduction of label α must
itself be penalized; this term is discussed shortly, but for now we focus on the ‘reward’ terms
in (4.6).

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 45

x x x
k1 2

s

x

h

h

x x
k

y

t

1 2

0
h
2h

h
*

h

Figure 4.4: LEFT: Graph construction that encodes h− hx1x2· · ·xk when we define xp = 1 ⇔ p ∈ T

where T is the sink side of the cut. RIGHT: In a minimal s-t cut, the subgraph contributes cost either 0
(all xp = 1) or h (otherwise). A cost greater than h (e.g.∗) cannot be minimal because setting y = 0

cuts only one arc.

1

2
h

y

s 1

2
hk−h

−
1

2
hk+h
(const)

1

2
h

2

x x x

t

1 2 k

(const)

0

h

*h

h

h

Figure 4.5: The alternate undirected graph construction corresponding to Figure 4.4 may be easier to
understand. The weights are found by reparameterizing (4.8) such that x̄y and xȳ terms receive identical
coefficients. Cut ∗ is not minimal with respect to auxiliary variable y.

Each product term in (4.6) adds a higher-order clique PL beyond the standard α-expansion
energyEα(x). Freedman and Drineas [49] generalized the graph construction of [87] to handle
terms c

∏
pxp of arbitrary degree when c ≤ 0. This means we can transform each product seen

in (4.6) into a sum of quadratic and linear terms that graph cuts can still optimize globally. The
transformation for a particular label subset L ⊆ L with |PL| ≥ 3 is

−H(L)
∏
p∈PL

xp = H(L) · min
yL∈{0,1}

[
(|PL|−1)yL −

∑
p∈PL

xpyL

]
(4.7)

where yL is an auxiliary variable that must be optimized alongside x whenever H(L) > 0.
Since each xpyL term has non-positive coefficient, the corresponding binary energy is submod-
ular [18] and can be minimized by a single graph cut (Section 2.1).

To encode the potential (4.7) into an s-t min-cut graph construction, we reparameterize
the right-hand side such that each quadratic monomial has exactly one complemented variable
(e.g. xȳ) and non-negative coefficient (arc weight). The particular reparameterization we use
is

−H(L) +H(L)ȳL +
∑
p∈PL

H(L) · x̄pyL (4.8)

where x̄ = 1− x. Figure 4.4 shows the subgraph corresponding to (4.8) after cancelling the

46 CHAPTER 4. ENERGIES WITH LABEL COSTS

constant −H(L) using (4.7).
Subgraphs of this type have been used in vision before, most notably the P n Potts potentials

of Kohli et al. [79]. Our indicator potentials δL(·) are different in that, at the binary step (4.6),
each clique PL is determined dynamically from the current labeling f ′ and is not expressed as
such in the original energy (⋆). A P n Potts potential can be represented by a combination of
label subset costs but not the other way around. The idea is to apply ‘regional’ subset costs
derived from the coefficients of the P n Potts potential. Section 4.8 describes this transformation
in detail.

A final detail for α-expansion is the case when label α was not present in the current
labeling f ′. The corrective term Cα in (4.6) incorporates the label costs for α itself:

Cα(x) =
∑

L⊆L\L′

α∈L

(
H(L)−H(L)

∏
p∈P

x̄p

)
. (4.9)

The binary energy should only pay the label costs where α ∈ L if label α was introduced
during the expansion move. If we find that x∗ = 0 then we know that (a) label α did not appear
in f ′ and (b) it was also not worth introducing α in the expansion move, so fα = f ′. The
term (4.9) can be encoded by a subgraph analogous to Figure 4.4, but the following is more
efficient: first compute optimal x∗ for (4.6) without considering Cα, then explicitly add it to
Eα

h(x
∗) if x∗ ̸= 0, and reject the expansion if the energy would increase.

4.3.2 αβ-swap with label costs
For the αβ-swap algorithm we denote the binary energy for any particular αβ-swap byEαβ(x).
The terms in this energy are slightly different from Eα used in α-expansion, but we can also
extend αβ-swap to incorporate label costs by adding similar high-order terms to Eαβ . For a
complete description of the αβ-swap algorithm, see Section 2.2.

Let f ′ denote the current labeling and let fαβ denote a feasible αβ-swap move with respect
to f ′. The set of pixels that can swap their labels is Pαβ = {p ∈ P : f ′

p ∈ {α, β}}. The possible
swap moves fαβ correspond one-to-one with binary indicator variables x = (xp)p∈Pαβ

as

xp = 0 ⇐⇒ fαβ
p = α

xp = 1 ⇐⇒ fαβ
p = β ∀p ∈ Pαβ.

Let L′
αβ = L′ \ {α, β}, which is the set of labels used in f ′ by pixels not involved in the

swap. Then the binary expansion energy with label costs can be written as

Eαβ
h (x) = Eαβ(x) +

∑
L⊆L\L′

αβ

α∈L,β /∈L

(
H(L)−H(L)

∏
p∈Pαβ

xp

)
+
∑

L⊆L\L′
αβ

α/∈L,β∈L

(
H(L)−H(L)

∏
p∈Pαβ

x̄p

)
(4.10)

However, label costs can be trivially incorporated into αβ-swap by a test-and-reject ap-
proach similar to the way Cα(x) was handled for α-expansion. First attempt a standard swap
move by minimizing Eαβ(x) to compute x∗. Then compare Eαβ

h (x∗) to the energy values
Eαβ

h (0) and Eαβ
h (1), i.e. when the swap is all-α or all-β respectively. Finally, apply the move

with minimum energy.

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 47

4.3.3 Approximation guarantees of α-expansion
In what follows we assume that energy (⋆) is configured2 so that Dp ≥ 0, Vpq is a metric [24],
and thus E(f) ≥ 0.

Theorem 4.1. If f ∗ is a global minimum of energy (⋆) and f̂ is a local minimum w.r.t. α-
expansion then

E(f̂) ≤ (2c+ c′)E(f ∗) +
∑
L⊂L

H(L) (4.11)

where c =max
pq∈N

(
maxα ̸=β∈L Vpq(α,β)

minγ ̸=ζ∈L Vpq(γ,ζ)

)
, c′ = max

L⊂L
H(L)>0

|L| − 1.

Proof of Theorem 4.1. The proof idea follows Theorem 6.1 of [24]. Let us fix some α ∈ L and
define

Pα
def
=
{
p ∈ P : f ∗

p = α
}
. (4.12)

We can produce a labeling fα within one α-expansion move from f̂ as follows:

fα
p =

{
α if p ∈ Pα

f̂p otherwise.
(4.13)

Since f̂ is a local optimum w.r.t. expansion moves we have

E(f̂) ≤ E(fα). (4.14)

Let E(·)|S denote a restriction of the summands of energy (⋆) to only the following terms:

E(f)|S =
∑
p∈S

Dp(fp) +
∑
pq∈S

Vpq(fp, fq).

We separate the unary and pairwise terms of E(f) via interior, exterior, and boundary sets with
respect to pixels Pα:

Iα = Pα ∪ { pq ∈ N : p, q ∈ Pα }
Oα = P \ Pα ∪ { pq ∈ N : p, q ̸∈ Pα }
Bα = { pq ∈ N : p ∈ Pα, q ̸∈ Pα } .

The following facts now hold:

E(fα)|Iα = E(f ∗)|Iα (4.15)

E(fα)|Oα
= E(f̂)|Oα

(4.16)

E(fα)|Bα
≤ cE(f ∗)|Bα

. (4.17)

Inequality (4.17) follows from the fact that V (fα
p , f

α
q) ≤ cV (f ∗

p , f
∗
q) for any pq ∈ Bα.

2Adding an arbitrary constant to Dp(·) or Vpq(·, ·) does not affect the optimal labeling, so finite costs can
always be made non-negative.

48 CHAPTER 4. ENERGIES WITH LABEL COSTS

Let EH denote the label cost terms of energy E. Using (4.15), (4.16) and (4.17) we can
rewrite (4.14) as

E(f̂)|Iα + E(f̂)|Bα
+ EH(f̂) (4.18)

≤ E(fα)|Iα + E(fα)|Bα
+ EH(f

α) (4.19)

≤ E(f ∗)|Iα + cE(f ∗)|Bα
+ EH(f

α) (4.20)

Depending on f̂ we can bound EH(f
α) by

EH(f
α) ≤ EH(f̂) +

∑
L⊆L\L̂
α∈L

H(L) (4.21)

where set L̂ contains only the unique labels in f̂ .
To bound the total energy we sum expressions (4.18) and (4.20) over all labels α ∈ L∗ to

arrive at the following:∑
α∈L∗

(
E(f̂)|Iα+ E(f̂)|Bα

)
≤
∑
α∈L∗

(
E(f ∗)|Iα+cE(f

∗)|Bα

)
+
∑

L⊆L\L̂

H(L)·|L∩L∗|. (4.22)

Observe that, for every pq ∈ B =
∪

α∈LBα, the term Vpq(f̂p, f̂q) appears twice on the left
side of (4.22), once for α = f ∗

p and once for α = f ∗
q . Similarly every V (f ∗

p , f
∗
q) appears 2c

times on the right side of (4.22). Therefore equation (4.22) can be rewritten as

E(f̂) ≤ E(f ∗) + (2c− 1)EV (f
∗)− E(f̂)|B (4.23)

+ EH(f̂)−EH(f
∗) +

∑
L⊆L\L̂

H(L)·|L∩L∗|.

We have now derived an a posteriori bound (4.23) with respect to any particular f̂ and f ∗.
Observe that the second line of (4.23) involving label costs is equal to∑

L⊆L\L∗

L∩L̂≠∅

H(L) +
∑

L⊆L\L̂
L∩L∗̸=∅

H(L)·(|L∩L∗| − 1) . (4.24)

The right-hand sum includes label costs that f ∗ pays but that f̂ does not. Expression (4.24) can
be bounded by

≤
∑

L⊆L\L∗

L∩L̂≠∅

H(L) + c′ ·
∑

L⊆L\L̂
L∩L∗̸=∅

H(L), where c′ = max
L⊂L

H(L)>0

|L| − 1 (4.25)

≤
∑

L⊆L\L∗
H(L) + c′EH(f

∗) (4.26)

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 49

where c′ is understood to be zero if all H(L) = 0. Combining (4.23) with (4.26) and using the
fact that c′EH(f

∗) ≥ 0 we can simplify the bound as

E(f̂) ≤ E(f ∗) + (2c−1)EV (f
∗) + c′EH(f

∗) +
∑

L⊆L\L∗
H(L) (4.27)

≤ (2c+ c′)E(f ∗) +
∑
L⊂L

H(L). (4.28)

Assuming Dp ≥ 0 we have a priori bound (4.28). �
These bounds suggest the following properties in practice:

• if label costs are modest we inherit an approximation guarantee comparable to α-expansion,

• if label costs are arbitrarily large the bound is poor, and

• if the optimal solution includes label costs defined over large subsets then the bound
worsens.

Poor local minima are caused by the fact that α-expansion allows only one label to expand at a
time. Performing expansions in greedy order (rather than arbitrary order) may help empirically,
but a hardness result of Feige [43] still applies to our problem (discussed in Section 4.3.5).

For discussion, we note that (4.11) follows from a more general a posteriori bound (4.27)
that does not assume Dp ≥ 0. Bound (4.27) holds for all f̂ and f ∗, so the approximation
error is determined by the minimum of the three additive terms above over all global optima
f ∗. The additive bound (4.27) is informative in a way that the familiar multiplicative bound
E(f̂) ≤ 2cE(f ∗) for α-expansion is not. To see why, consider that the multiplicative bound
for α-expansion is only tight when the total data cost ED(f

∗) = 0, and does not even hold for
ED(f

∗)< 0. Yet, biasing the data costs with some D′
p(·) :=Dp(·)+ ϵp for arbitrary constant ϵp

affects neither the global optima nor the optimal expansion moves. The α-expansion algorithm
is indifferent to ϵp, and this property distinguishes it from the isolation heuristic algorithm for
multi-terminal cuts [33]. The isolation heuristic is applicable to metric labeling when Vpq are
Potts interactions, also has multiplicative bound of 2, but can compute arbitrarily bad solutions
to multi-label problems depending on ϵp. The comparative robustness of α-expansion is not
reflected in the multiplicative bound.

Worst-case examples The simplified bound (4.11) describes the worst-case performance in
special cases, but bound (4.27) is tight more generally. The table below describes a worst-case
problem instance with P = {p, q} and L = {α, β, γ}. We also assume a label cost H(γ) ≥ 0

and a Potts potential that penalizes fp ̸= fq with weight w > 0.

0

γ
β

α

hγ

∞ 0

∞

w w

p qdata costs

label cost

f̂ = (γ, γ)

f∗= (α, β)
(4.29)

This example has global optimum E(f ∗) = w and so the local minimum E(f̂) = 2w +H(γ)

is tight with respect to (4.11). Note that by adding positive ϵp to each Dp(·) our additive
bound (4.27) remains tight, unlike the multiplicative bound.

50 CHAPTER 4. ENERGIES WITH LABEL COSTS

More generally we can design bad local minima from the following n-variable problem
structure. Let a, b, h ≥ 0 be constants such that a = h + w where w is still the weight of
all Potts potentials. Let N = {{1, 2}, {3, 4}, . . .} be the neighbour set for Potts potentials.
The data costs and label costs in the table below have optimal labeling f ∗ = {1, . . . , n}, yet
labeling f̂ = {n+1, n+1, n+2, n+2, . . .} is a local minimum w.r.t. expansion moves. (A
blank entry signifies Dp = ∞)

0

0

0

0

0

0

n labels

n variables

h

data costs

E(f∗) = h+ 1

2
nw

label subset costs

0

a a

a a

a a

b

E(f̂) = na+
∑
bb

b
(4.30)

We verify that f̂ is generally tight for bound (4.27) as follows

E(f̂) = na+
∑
b = nh+ nw +

∑
b

= E(f ∗) + 1
2
nw + (n− 1)h+

∑
b (4.31)

= E(f ∗) + EV (f
∗) + c′EH(f

∗) +
∑
b.

The above is tight for (4.11) when h = 0 and nearly tight when w = 0 aside for one double-
counted label cost h. This example demonstrates how high-order label costs in the optimal
labeling can worsen the approximation.

4.3.4 Local label costs

We can generalize the concept of label costs by making them spatially localized. The label cost
term in energy (⋆) could be expressed more generally as∑

P⊆P

∑
L⊆L

HP (L)·δL(fP) (4.32)

where δL(fP) is 1 if there exists p ∈ P such that fp ∈ L, and otherwise 0. Our basic energy (⋆)
is a special case that assumes HP (L)= 0 for all non-global cliques P (P . Note that the fast
test-and-reject approaches mentioned in Sections 4.3.1 and 4.3.2 are no longer feasible for this
more general case.

Such potentials amount to local label cost terms. Local label costs and subset costs are
useful together when labels belong to known categories with specific location priors, such as
“pay a fixed penalty if any label from {sky,cloud,sun} appears in the bottom of an image.”
Local label costs are also crucial for the hierarchical fusion algorithm introduced in Chapter 5.

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 51

4.3.5 Energies with only per-label costs
In the absence of smooth costs and high-order label costs (i.e. Vpq = 0 and H(L) > 0 ⇒ |L| =
1) our energy reduces to a special case (4.1) known in operations research as the uncapacitated
facility location (UFL) problem. The UFL problem assigns a facility (a label) to each client
(a variable) such that the cost to clients is balanced against the cost of ‘opening’ facilities to
serve them. Letting L be the set of facilities and P the set of clients, the standard integer
programming formulation for UFL [30] is

min
∑
p∈P

(∑
l∈L

dplxpl

)
+
∑
l∈L

hlyl (4.33)

s.t.
∑
l∈L

xpl = 1 ∀p ∈ P , (4.34)

xpl ≤ yl ∀p ∈ P , l ∈ L, (4.35)

xpl, yl ∈ {0, 1},

where dpl is the cost of assigning client p to facility l, and hl ≥ 0 is the cost of opening
facility l. Through equality (4.34), each solution to UFL corresponds to a labeling f via the
assignment xpl = 1 ⇔ fp = l. Since (4.35) implies yl = δl(f) at any minimum of (4.33),
setting Dp(l) = dpl makes UFL equivalent to minimization problem (4.1).

In vision, the UFL problem has recently been applied to motion segmentation by Li [101]
and by Lazic et al. [97]. Each facility represents a potential rigid motion, and each client is a
correspondence that must be assigned to one motion. The goal is then to choose a good subset
of motions, much like Figure 4.1a. Li optimizes the integer program corresponding to UFL
by linear programming (LP) relaxation, then rounds fractional facility variables to {0,1} in
a straight-forward manner. Because general LP solvers are slow, this approach affords rela-
tively few candidate models in practice. Li implements four application-specific heuristics to
aggressively prune out candidate models before building an LP problem instance. Lazic et al.
optimize the same energy using message-passing algorithms [97, 96]. More recently, Bari-
nova et al. [9] used UFL to model a class of object-detection problems and used the same
greedy algorithm as our concurrent work [38].

The general3 UFL problem is NP-hard by simple reduction from SET-COVER. A hardness
result for approximating SET-COVER by Feige [43] implies that UFL cannot be approximated
better than (1 − ϵ) ln |P| for ϵ > 0 in polynomial time unless the complexity class NP is
only slightly super-polynomial, i.e. NP ⊆ DTIME[nO(log logn)]. This leads to the following
observation about our bound for α-expansion in Section 4.3.3.

Observation 4.2. Feige’s hardness result [43] is evidence that no ϵ-approximation algorithm
can exist for our general energy (⋆), even when only per-label costs are used. In this sense,
label costs are harder to optimize than are smooth costs.

Kuehn & Hamburger [91] proposed a natural greedy algorithm where facilities are opened
one at a time. Cornuejols et al. [29] showed that the greedy algorithm provides a constant-
factor approximation bound, but only with respect to the gap between best and worst solu-
tions; this bound is not informative when the range of costs involved are prohibitively large.

52 CHAPTER 4. ENERGIES WITH LABEL COSTS

Hochbaum [64] later proposed a set-greedy algorithm that achieves a ln |P|-approximation re-
gardless of the costs involved, which is optimal in the sense outlined by Feige. Hochbaum
also showed that neither greedy nor set-greedy is strictly better than the other, and that the best
choice depends on the problem instances at hand. We present the original greedy algorithm
rather than the set-greedy algorithm.

We note that Hochbaum’s algorithm is straight-forward but of a very different nature than
α-expansion. It is interesting to ask whether there exists an algorithm that generalizes the
approximation guarantees of both her set-greedy algorithm and of α-expansion for our general
energy. We leave this for future work.

Greedy UFL In terms of our multi-label energy (4.1), the greedy UFL algorithm starts from
an empty set of labels and greedily introduces one label at a time until no subsequent label
would allow the overall cost to decrease. Once a label l is introduced, its cost H(l) is assumed
to be paid for regardless of subsequent steps. To express the greedy algorithm we introduce a
function of label subsets Z(S) where S ⊆ L. The problem of minimizing E(f) in (4.1) can
then be rewritten as

min
f
E(f) = min

S⊆L
Z(S) (4.36)

where Z(S) =
∑
p∈P

min
l∈S

Dp(l) +
∑
l∈S

H(l) (4.37)

and Z({}) is defined to be +∞. The overall algorithm is described in pseudo-code below.

GREEDYUFL [91, 30]

1 S := {}
2 while exists l /∈ S such that Z(S ∪ {l}) < Z(S)

3 j := argminl /∈S Z(S ∪ {l})− Z(S)

4 S := S ∪ {j}

The greedy algorithm runs in O(|L|2|P|) time for label set L and variable set P . Our C++
library implements GREEDYUFL and it is 5–20 times faster than α-expansion for energies
of the form (4.1) while yielding similar results. Besides this classic heuristic, other greedy
moves have been proposed for UFL such as the greedy-interchange and dynamic programming
heuristics (see [29, 30] for a review).

Babayev [7] and Frieze [51] noted in 1974 that the set function Z(S) is supermodular as a
minimization problem. We state can state this formally by the following observation

Theorem 4.3 ([7, 51]). The greedy UFL set function Z(S) is supermodular, i.e. it satisfies

Z(S ∪ {j, k})− Z(S ∪ {k}) ≥ Z(S ∪ {j})− Z(S). (4.38)

Proof. Simply expand the left and right sides of equation (4.38) based on the definition of

3Metric-UFL is a special case that can be approximated to within a constant factor [134]. In our work we
assume arbitrary costs Dp(·). Unfortunately, some papers refer to metric-UFL simply as UFL.

4.3. FAST ALGORITHMS TO MINIMIZE LABEL COSTS 53

Z(S) and we have

Z(S ∪ {j})− Z(S) =
∑
p∈P

min{0, Dp(j)−min
l∈S

Dp(l)} + H(j) (4.39)

≤
∑
p∈P

min{0, Dp(j)− min
l∈S∪{k}

Dp(l)} + H(j) (4.40)

= Z(S ∪ {j, k})− Z(S ∪ {k}) (4.41)

Inequality (4.40) holds because clearly minl∈S Dp(l) ≥ minl∈S∪{k}Dp(l). �

The greedy bound for UFL by Cornuejols et al. [29] then follows from a general bound
on minimizing supermodular functions by Nemhauser et al. [111]. Note that introducing a
new label j /∈ S in step 3 does not consider the potential reward for eliminating labels from
S once j is made available. This is in contrast to a j-expansion move with label costs, where
introducing j may be beneficial because existing labels could be eliminated despite Z(S∪{j})
not reflecting this in the classical algorithm. The 2-variable problem instance below illustrates
this difference for some constants a > 1, b > 0. GREEDYUFL finds an arbitrarily poor energy
of (2 + a)b whereas α-expansion with label costs finds an energy of 3b regardless of initial
labeling.

0 ∞

∞ 0

2b b ab

b

2b
α-expansion f̂= (α, β)γ

β

α

p q

greedy f̂= (α, γ)

data costs label costs

(4.42)

Our subset costs H(L) suggest a generalization of the classic UFL problem to add facility
subset costs. Each subset cost represents a shared setup cost for opening particular set of
facilities, after which the individual facilities can be opened with their own costs H(l) for
l ∈ L. We call the new problem UFL with subset costs (UFL-S) and, in the language of energy
minimization, we can express this as minimizing the energy

E(f) =
∑
p∈P

Dp(fp) +
∑
L⊆L

H(L)·δL(f) (4.43)

The greedy algorithm can be adapted to this generalized UFL problem by redefining Z(S) in
the obvious way

Z(S) =
∑
p∈P

min
l∈S

Dp(l) +
∑
L⊆L

L∩S ̸=∅

H(L). (4.44)

However, the following theorem shows that the new Z(S) corresponding to (4.37) is no longer
supermodular and so the approximation results of Cornuejols et al. no longer apply.

Theorem 4.4. The greedy UFL set function Z(S) for facility subset costs is neither supermod-
ular nor submodular.

54 CHAPTER 4. ENERGIES WITH LABEL COSTS

Proof. Similar to Observation 4.3 we now have

Z(S ∪ {j})− Z(S) =
∑
p∈P

min{0, Dp(j)−min
l∈S

Dp(l)} +
∑

L⊆L\S
j∈L

H(L) (4.45)

Z(S ∪ {j, k})− Z(S ∪ {k}) =
∑
p∈P

min{0, Dp(j)− min
l∈S∪{k}

Dp(l)} +
∑

L⊆L\(S∪{k})
j∈L

H(L) (4.46)

Since the set {L | {j} ⊆ L ⊆ L \ (S ∪ {k})} in (4.45) is a subset of {L | {j} ⊆ L ⊆ L \ S}
in (4.46), the sum of label costs H(L) in (4.45) can exceed the sum of label costs included
in (4.46) and so we cannot say that Z(S ∪ {j, k}) − Z(S ∪ {k}) ≥ Z(S ∪ {j}) − Z(S) in
general. It follows that the greedy set function Z(S) is neither submodular nor supermodular
for the generalized UFL-S problem. �

Finally, the greedy algorithm may be enhanced by applying the tabu search meta-heuristic
to the UFL problem [136]. Empirical results in [136] show that tabu search finds global optima
for many examples in the UFL literature at a reasonable increase in running time.

4.4 Working With a Continuum of Labels

Our experimental Section 4.6 focuses on multi-model fitting problems, which are the most
natural applications of energy (⋆). The goal is to estimate parameters for an unknown number of
models supported by noisy data with outliers. As was first argued in [69], energies like (⋆) are
powerful criteria for multi-model fitting in general. However, there is a technical hurdle with
using combinatorial algorithms for model fitting. In such applications each label represents a
specific model, including its parameter values, and the set of all labels L is a continuum. In line
fitting, for example, L = R2. Practically speaking, however, the combinatorial algorithms from
Section 4.3 require a finite set L of labels (models). Below we review a technique to effectively
explore the continuum of model parameters by working with a finite subset of models at any
given iteration t.

PEARL algorithm [69]

1 propose initial models L0 (e.g. via random samples from data)
2 run α-expansion to compute optimal labeling f w.r.t. Lt

3 re-learn model parameters to get Lt+1; t := t+1; goto 2

PEARL was the first to use regularization energies and EM-style iterative optimization for
geometric multi-model fitting. Other geometric model fitting works have used separate ele-
ments such as RANSAC-style random sampling [144, 101] or EM-style iteration [14], but none
have combined them in a single optimization framework. The experiments in [69] show that
their energy-based formulation beats many state-of-the-art algorithms in this area. In other set-
tings (segmentation, stereo) these elements have been combined in various application-specific
ways [166, 14, 123, 164].

4.4. WORKING WITH A CONTINUUM OF LABELS 55

ground truth raw data proposals

(50% outliers)

1st iteration 5th iteration convergence

(6 models) (6 models) (5 models)

Figure 4.6: Re-estimation helps to align models over time. Above shows 900 raw data points with 50%
generated from 5 line intervals. Random sampling proposes a list of candidate lines (we show 20 out of
100). The 1st segmentation and re-estimation corresponds to Li [101], but only the yellow line and gray
line were correctly aligned. The decreasing energies in Figure 4.7 correspond to better alignments like
the subsequent iterations above. If a model loses enough inliers during this process, it is dropped due to
label cost (dark blue line).

56 CHAPTER 4. ENERGIES WITH LABEL COSTS

Our work contributes better algorithms for the expansion step of PEARL (step 2), proposes a
more general form of label costs in energy (⋆), describes fast methods for the special case with-
out the spatial smoothness term, and discusses a broader class of multi-model fitting problems
in vision.

Review of PEARL for (⋆) For simplicity, we will discuss PEARL in the context of geometric
model fitting, as in [69]. Figure 4.6 illustrates the algorithm’s progression. Step 1 of PEARL is to
propose an initial set of models L0. Each proposal can be generated by randomly sampling the
smallest subset of data points needed to define a geometric model, exactly as in RANSAC [46].
A larger set of proposals L0 is more likely to contain models that approximate the true ones.
Of course, L0 will contain many incorrect models as well, but optimizing energy (⋆) over L0

(step 2) will automatically select a small subset of labels from among the best models in L0, see
iteration 1 in Figure 4.6. In this example we used only the label cost regularizer in (⋆) ignoring
the spatial smoothness term, and data fidelity Dp(l) represented an orthogonal distance from
point p to line l, see Section 4.6.1. We also fit one additional outlier model ϕ with Dp(ϕ) =

const.
The initial set of selected models can be further improved as follows. From here on, we

represent model assignments by two sets of variables: segmentation variables {fp} that for each
data point p specifies the index of a model from the finite set L0, and parameter variables {θl}
that specify model parameters currently associated with each model index. Then, energy (⋆) is
equivalent to

E(f ; θ) =
∑
p∈P

Dp(fp, θfp) +
∑
pq∈N

Vpq(fp, fq, θfp , θfq) +
∑
L⊆L

H(L, θL)·δL(f). (⋆′)

For simplicity, assume that the smoothness terms in (⋆′) are Potts interaction potentials [24] and
the third term represents simple per-label costs as in (4.1). Then, specific model parameters θl
assigned to a cluster of points Pl = {p|fp= l} only affect the first term in (⋆′), which is a sum
of unary potentials. In most cases, it is easy to compute a parameter value θ̂l that locally or
even globally minimizes

∑
p∈Pl

Dp(l, θl). The re-estimated parameters {θ̂l} correspond to an
improved set of labels L1 that reduces energy (⋆′) for fixed segmentation f (step 3).

Now one can re-compute segmentation f by applying the algorithms in Section 4.3 to en-
ergy (⋆) over a new set of labels L1 (step 2 again). PEARL’s re-segmentation and re-estimation
steps 2-3 reduce the energy. Iterating these steps generates a sequence of re-estimated models
L0,L1,L2, ... converging to a better local minima of energy (⋆). In our experiments, conver-
gence is typically achieved in 5–20 iterations. In most cases, iterating improves the solution
significantly beyond the initial result, see Figure 4.6.

Figure 4.7 shows effectiveness of re-estimation. Starting with only 250 samples (blue plot),
re-estimation converges to better solutions than those computed from 1400 samples without re-
estimation (a first thick dot on the violet plot). For this example, the algorithm needs at least
250 random samples to be stable, but more than 700 samples is redundant. Figure 4.8 shows an
analogous plot for color-model fitting in unsupervised image segmentation, see Section 4.6.2.
Recall that Li [101] does not re-estimate beyond the first iteration. His solutions correspond
to thick dots at the begging of each plot in Figure 4.7. This approach would heavily rely on

4.4. WORKING WITH A CONTINUUM OF LABELS 57

Line−fitting problem 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Expected (Average) Energy

0 0.2 0.4 0.6 0.8 1 1.2 Time (s)

E
ne

rg
y

Sampling and Re−estimation Performance
(raw data, 15 runs each)

50 samples
250 samples
700 samples
1400 samples

Figure 4.7: Energy (⋆′) over time for a line-fitting example (1000 points, 40% outliers, 6 ground truth
models). Only label cost regularization was used. Re-estimation reduces energy faster and from fewer
samples. The first point (•) in each series is taken after exactly one segmentation/re-estimation, and thus
suggests the speed of Li [101] using a fast greedy algorithm instead of LP relaxation.

58 CHAPTER 4. ENERGIES WITH LABEL COSTS

Segmentation problem 0 5 10 15 20

Expected (Average) Energy

0 5 10 15 Time (s)

E
ne

rg
y

Sampling and Re−estimation Performance
(raw data, 10 runs each)

5 samples
15 samples
30 samples
60 samples

Figure 4.8: Energy (⋆′) over time for image segmentation (222×183 pixels). Smooth cost and label cost
were regularized together. The models are 256-dimensional greylevel histograms. See Section 4.6.2 for
experimental details.

4.5. RELATIONSHIP TO EM AND K-MEANS 59

brute-force random sampling to find solutions of the same quality that we can find with only
250 samples.

Proposal heuristics Re-estimation is a natural way to propose better models from existing
ones because it applies to any family of models for which a maximum-likelihood estimator
can be found. For example, the results in Figures 4.13 and 4.14 were both computed with
re-estimation alone.

Re-estimation is by no means the only way to propose new models. Another general heuris-
tic is to fit a new model to the inliers of two existing models, and then add this new model to
the candidate list; this ‘merge’ heuristic [147] gives energy (⋆′) an opportunity to jump out of
local minima when computing optimal f . The algorithm in [69] finds lower energy solutions
when new ’merge’ proposals are added (compare α-SM and α-BM curves in our Section 4.7).

The most effective proposal techniques actually tend to be class-specific and make use
of the current solution. A simple example for line fitting is to compute a ‘merge’ proposal
only for pairs of lines that are nearly collinear. Li [101] uses a number of “guided sampling”
heuristics specific to motion estimation, but they are only used for the initial proposals. In
general, proposal heuristics can make our algorithms in Section 4.3 more robust but this is not
the point of our work, so all our results use basic re-estimation only.

4.5 Relationship to EM and K-means

The main goal of this section is to relate our model fitting algorithm to the standard expectation
maximization (EM) and K-means algorithms. Our discussion will focus on Gaussian mixture
models (GMM), but we will also consider a geometric example of fitting multiple lines to noisy
data points with outliers. To keep things simple for GMM, we use only data terms and label
cost terms, even though our full energy (⋆′) was designed to handle smoothness priors as well.

A number of interesting observations about our model fitting approach can be made:

– K-means minimizes a special case of our energy (⋆′),

– like K-means, we make hard assignments of models to data points (unlike EM), and

– our energy automatically removes unnecessary models from the initial set of proposals
(unlike K-means).

Sections 4.5.1–4.5.3 elaborate on these points. Sections 4.5.4 and 4.5.5 show experimental
results to help understand the relationship to EM and K-means. Note that our experiments
are meant to be illustrative. In particular, we do not suggest that we have a state-of-the-art
algorithm for GMM.

The main practical conclusion of this section is that hard assignment works at least as
well as soft assignment when models have (nearly) non-overlapping spatial support. We
claim that many multi-model fitting applications in computer vision satisfy this property, see
Figures 4.1, 4.2, and 4.3. Note that in contrast to K-means or EM algorithm our method can
also use spatial smoothness prior that is often needed in vision. In this section, however, we

60 CHAPTER 4. ENERGIES WITH LABEL COSTS

focus on a special case of (⋆′) ignoring the smoothness term mainly to discuss the relationships
with the classical multi-model fitting methods.

4.5.1 Standard approaches to finite mixtures
Let some finite set of observed points X = {xp | p ∈ P} be a mixture of independent samples
taken from different probability distributions. These distributions are described by probability
density functions Pr(x | θl) with distinct parameters from a set θ = {θl | l ∈ L}, where L is a
finite set of distribution indices (labels). A set of hidden (unobserved) variables f = {fp∈L |
p∈P} represent indices of specific distributions that generated each data point. The probability
of sampling from each distribution is defined by a set of mixing parameters ω = {ωl | l ∈ L}
such that

Pr(fp = l) := ωl,
∑
l∈L

ωl = 1, ωl ≥ 0.

It can be shown that data points inX sampled in this manner correspond to the standard mixture
model density [15]

Pr(x | θ, ω) =
∑
l∈L

ωl ·Pr(x | θl).

The problem of estimating a mixture model is to estimate parameters θ and mixing coef-
ficients ω. We will mainly focus on estimating GMM, i.e. mixtures of normal distributions
Pr(x | θl) = N (x | µl,Σl) where model parameters θl = {µl,Σl} are the mean and covariance
matrix.

Objective functions for EM The classical EM algorithm [15, 40] finds maximum likeli-
hood (ML) estimators for GMM. The ML objective is to find parameters θ and weights ω that
maximize the likelihood function

Pr(X | θ, ω) =
∏
p∈P

(∑
l∈L

ωl ·Pr(xp | θl)

)
. (4.47)

As an internal algorithmic step, EM also computes responsibilities Pr(fp = l | xp, θ, ω) to
estimate which mixture components could have generated each data point.

The EM algorithm can be generalized [15] to compute maximum a posteriori (MAP) es-
timates of θ and ω maximizing the posterior Pr(θ, ω | X) ∝ Pr(X | θ, ω) Pr(θ) Pr(ω). For
example, a common MAP objective is

Pr(θ, ω |X) ∝
∏
p∈P

(∑
l∈L

ωl ·Pr(xp | θl)

)
·
∏
l∈L

ωα−1
l (4.48)

which combines the ML objective (4.47) with a uniform prior on θ and Dirichlet prior on
weights ω

Pr(ω) = Dir(ω |α) ∝
∏
l∈L

ωα−1
l , α > 0. (4.49)

The Dirichlet prior is a uniform distribution for α = 1 but for α < 1 it prefers to estimate ω
such that most ωl are close to zero. A smaller choice of α creates a stronger sparsity effect

4.5. RELATIONSHIP TO EM AND K-MEANS 61

on ω, and so α is called a sparsity parameter. In theory, this prior should encourage mixture
models where most components are close to zero. According to [45] and in our own experience
(see Figure 4.12), negative values of α are often necessary in practice to effectively remove
redundant models. However, the Dirichlet prior is not a proper (integrable) distribution for
α ≤ 0.

Objective functions forK-means StandardK-means can also be seen as an ML approach to
estimating mixture models. The elliptical4 K-means algorithm [137] maximizes the following
likelihood on the same probability space

Pr(X | f, θ) =
∏
p∈P

Pr
(
xp | θfp

)
. (4.50)

In contrast to EM, this approach directly computes labeling f = {fp | p ∈ P} rather than
responsibilities, while mixing coefficients ωl are implicitly estimated as percentages of points
with fp = l. It is often said that K-means performs hard assignment of models to data points,
whereas EM performs soft assignment leaving room for uncertainty in the labeling f .

It is possible to derive a version of K-means that explicitly estimates mixing weights ω.
Assuming that fp are independent, one gets the following prior on the labeling

Pr(f |ω) =
∏
p∈P

Pr(fp |ω) =
∏
p∈P

ωfp. (4.51)

Combining this prior with likelihood (4.50) and assuming non-informative (uniform) priors for
ω and θ, Bayes rule then gives posterior distribution

Pr(f, θ, ω |X) ∝
∏
p∈P

ωfp·Pr(xp | θfp). (4.52)

Values of f, θ, ω maximizing this distribution are MAP estimates of these parameters. Like the
standard K-means algorithm, one can maximize (4.52) by iterating two steps: first optimize
over f for fixed θ, ω and then (independently) optimize over ω and θ for fixed f . We refer to
this algorithm as weighted (elliptical) K-means.

Discussion of priors Instead of a uniform prior on ω used in (4.52) one can add any infor-
mative prior for mixture weights. For example, the Dirichlet prior (4.49) gives posterior

Pr(f, θ, ω |X) ∝
∏
p∈P

ωfp·Pr(xp | θfp) ·
∏
l∈L

ωα−1
l . (4.53)

For α < 1 this posterior encourages sparsity of weights ω. Objectives (4.50) and (4.52) can be
derived from (4.53) for other values of α. Setting α = 1 gives the uniform prior on ω and (4.53)
reduces to the weighted K-means posterior (4.52). Setting α very large (α → ∞) encourages
equal weights ωl =

1
K

and so (4.53) reduces to the standard K-means likelihood (4.50). Fig-
ure 4.9 shows how this difference can affect solutions. Standard K-means’ bias to equal-size
components is another way to understand its sensitivity to the choice of K.

However, our label costs are more closely related to a sparsity prior known as the spike-
and-slab distribution [109]. See [39] for a detailed discussion of this relationship.

4The elliptical version of K-means explicitly estimates a covariance matrix Σ so that each set of parameters
is θl = {µl,Σl}.

62 CHAPTER 4. ENERGIES WITH LABEL COSTS

1 2 1 2

elliptical K-means; see (4.50), (4.54) weighted elliptical K-means; see (4.52), (4.55)

Figure 4.9: Mixture of two Gaussians where most data points were generated from the first compo-
nent (ω1>ω2). Standard K-means prefers equal cluster sizes because it assumes ω1 = ω2, whereas
weighted K-means has no such bias.

4.5.2 Using label costs for finite mixtures
The standard K-means directly minimizes the negative-log of the likelihood function (4.50),
giving energy

E(f ; θ) = −
∑
p∈P

log Pr(xp | θfp). (4.54)

Similarly, the weighted K-means algorithm minimizes the negative-log of the posterior distri-
bution (4.52)

E(f ; θ, ω) = −
∑
p∈P

log
(
ωfp·Pr(xp | θfp)

)
. (4.55)

Both of these K-means energies are expressible as data terms Dp in our energy (⋆′).
Note that posterior energy (4.55) is derived from the i.i.d. assumption (4.51) on assignment

variables fp. This assumption holds when the sampling process does not have any coherence
or constraints (e.g. occlusions). In some examples, however, variables fp may be dependent.
For example, pairwise interactions could be easily incorporated into a prior for f yielding a
posterior energy with the first and second terms in (⋆′). Such a prior may be also useful for
its regularization effect. In the context of GMM estimation, however, it makes more sense
to regularize using some sparsity prior such as step-and-slab [109]. It can be shown that the
global minima of the energy

E(f ; θ, ω) = −
∑
p∈P

log
(
ωfp·Pr(xp | θfp)

)
+
∑
l∈L

H(l)·δl(f) (4.56)

correspond to MAP solutions under the step-and-slap sparsity prior; see [39] for details.
Note that the K-means algorithm for (4.54) is very sensitive to initialization even if the

right number of models K is given, see Figure 4.11. If the number of given initial models K
is too large, the algorithm will over-fit these K models to data, see Figure 4.10e. The extra
label cost term in energy (4.56) removes many problems associated with fixed K. We initialize
our method with a relatively large number of randomly sampled models and minimization of
(4.56) leads to a solution with a small number of good models, see Figure 4.6.

4.5. RELATIONSHIP TO EM AND K-MEANS 63

4.5.3 Label costs as information criterion

Regularizers are useful energy terms because they can help to avoid over-fitting. In statistical
model selection, various information criteria have been proposed to fulfil a similar role. In-
formation criteria penalize overly-complex models, preferring to explain the data with fewer,
simpler models (Occam’s razor [107]).

For example, consider the well-known Akaike information criterion (AIC) [3]:

min
Θ

−2 log Pr(X |Θ) + 2|Θ| (4.57)

where Θ is a model, Pr(X | Θ) is a likelihood function and |Θ| is the number of parameters
in Θ that can vary. This criterion was also discussed by Torr [144] and Li [101] in the context
of motion estimation.

Another well-known example is the Bayesian information criterion (BIC) [26, 107]:

min
Θ

−2 log Pr(X |Θ) + |Θ|·log |P| (4.58)

where |P| is the number of observations. The BIC suggests that label costs should be scaled
in logarithmic proportion to the number of data points or, in practice, to the estimated number
of observations per model. In contrast, AIC over-fits as we add more observations from the
true models. See [26] for an intuitive discussion and derivation of BIC in general, particularly
Sections 6.3–6.4, and see Torr’s work [144] for insights specific to vision.

4.5.4 Experimental results for GMM estimation

Figure 4.10 juxtaposes representative GMM estimation results by basic EM (4.47), EM with
Dirichlet prior (4.48), elliptical K-means (4.54,4.55), and our approach to label cost energy
(4.56). For simplicity, Figure 4.10 represents EM’s “soft assignment” at each point p using
only one color corresponding to the model with the highest responsibility. The results for
K-means and energy (4.56) show colors corresponding to their “hard assignments”.

Implementation of (weighted) elliptical K-means maximizing (4.54,4.55) is fairly straight-
forward. Since (4.48) automatically controls sparsity of the solution, we can initialize this
version of EM with a large number of randomly sampled models. As discussed in [45], this
makes EM robust to initialization and helps to avoid local minima.

Energy (4.56) represents a combination of the first and the third terms in (⋆′). To minimize
(4.56) we iterate PEARL (Section 4.4) in combination with the greedy optimization method
(Section 4.3.5) for each expansion step. Similarly to [45] and to our EM approach for (4.48),
optimization of (4.56) via PEARL avoids local minima when initialized with a large set of
randomly sampled models.

The second column in Figure 4.10 shows the results typical for both standard (4.54) and
weighted K-means (4.55). The two methods worked similarly on all tests in Figure 4.10 be-
cause all models there have approximately the same number of inliers. Such examples can not
reveal the bias of standard K-means to equalizing mixing weights (see Figure 4.9).

64 CHAPTER 4. ENERGIES WITH LABEL COSTS

EM algorithm Elliptical K-means PEARL w/ energy (4.56) EM w/ Dirichlet (4.48)

(a
)n

o
ov

er
la

p

5 initial models 5 initial models 50 initial models 50 initial models

(b
)o

ut
lie

rs

6 initial models 6 initial models 50 initial models 50 initial models

(c
)o

ve
rl

ap
+o

ut
lie

rs

3 initial models 3 initial models 50 initial models 50 initial models

(d
)m

or
e

ov
er

la
p

4 initial models 4 initial models 50 initial models 50 initial models

(e
)e

xt
ra

m
od

el
s

7 initial models 7 initial models 50 initial models 50 initial models

Figure 4.10: Each row shows how GMM algorithms behave on a particular example. This table is for
illustrative purposes, and is not meant to be a state-of-the-art comparison. (a) If models do not overlap
then all algorithms work. (b) Most algorithms can handle uniform outliers by fitting an extra model.
(c) EM finds overlapping models thanks to soft assignment; hard assignment has bias towards isolated
models. (d) Basic EM (4.47) may easily get stuck in local minima with only a little more ambiguity in
the data. But, EM with sparsity prior (4.48) can avoid such minima by choosing solution from a large set
of model samples. Bad solution by PEARL in this case of heavy spatial overlap between the models is
due to “hard assignments”. (e) Basic EM and K-means usually fail when given too many initial models,
whereas PEARL with label cost energy (4.56) and EM with Dirichlet-based posterior (4.48) keep the
minimum number of models explaining the data. See Section 4.5.4 for discussion.

4.5. RELATIONSHIP TO EM AND K-MEANS 65

One important conclusion from Figure 4.10 is that energy (4.56) works well on all examples
(a,b,e) where the models do not have significant spatial overlap. This case is very common in
computer vision problems where models occlude each other rather than intersect.

IfK-means and basic EM (4.47) were initialized with a correct number of models, they also
worked very well for spatially non-overlapping models (a,b), however, EM was more sensitive
to outliers in (b). If basic EM and K-means are initialized with a wrong number of models (e)
they overfit these models to data, while Dirichlet-based posterior (4.48) and label cost energy
(4.56) keep the minimal number of necessary models.

In general, EM handled intersecting models in (c) better than K-means and our method
with (4.56). Arguably, soft assignments of models to data points help EM to deal with such
overlapping models. More severe cases of model mixing in (d) were problematic for basic EM
with a fixed number of models (4.47) due to local minima. However, EM for Dirichlet-based
posterior (4.48) could avoid such local minima by selecting good models from a large initial
sample.

In general, our approach with (4.56) and EM with (4.48) benefit from larger number of ini-
tial proposals which increases the chances that correct models are found. The 2 right columns
in Figure 4.10 show the minimum number of initial randomly sampled models (proposals) that
these algorithms needed to robustly generate good results.

4.5.5 Experimental results for geometric model fitting
Figures 4.11 and 4.12 show representative multi-line fitting results by basic EM (4.47), EM
with Dirichlet prior (4.48), elliptical K-means (4.54,4.55), and our approach to label cost en-
ergy (4.56). As before, we represent EM’s “soft assignment” at each point using only the color
of the model with the highest responsibility. The results for K-means and energy (4.56) show
colors of their “hard assignments”.

The data set for experiments in Figures 4.11-4.12 consists of 300 inliers for 5 lines and 180
outliers. Each line model θ= {a, b, c, σ} includes noise variance σ. Log-likelihood Dp(l) =

− logPr(xp|θl) for a given data point xp and line θl assumes Gaussian orthogonal error and is
given in (4.59). We also fit one uniform outlier model ϕ with likelihood Pr(xp|ϕ) = const > 0

where const was manually tuned. Some additional general details about the experimental set-
up for line fitting can be found in Section 4.6.1. Optimization of functionals (4.47), (4.48),
(4.54), (4.55), and (4.56) via EM, K-means, and PEARL is implemented as in the previous
section.

Figure 4.11 demonstrates that the standard K-means for (4.54), (4.55), and basic EM algo-
rithm for (4.47) are very sensitive to local optima. Figure 4.12a shows that such local minima
are avoided by optimization algorithms that select a few good lines from a large pool of initial
models using sparsity control: label costs in (4.56) or Dirichlet prior in (4.48). The number of
models generated by (4.56) and (4.48) is controlled by parameters h and α, see Figures 4.12b
and 4.12c.

Our main conclusion from Section 4.5 is that “hard assignments” have no particular disad-
vantages in cases where spatial overlap between the observed models constitutes only a small
portion of their support. In image analysis problems (e.g. Figures 4.1, 4.2, and 4.3) models

66 CHAPTER 4. ENERGIES WITH LABEL COSTS

Elliptical K-means (4.54) or (4.55) Standard EM for (4.47)

(a
)s

ee
d

1

E = 910 − log L = 819

(b
)s

ee
d

2

E = 912 − log L = 862

(c
)s

ee
d

3

E = 965 − log L = 905

Figure 4.11: Standard K-means and EM with a fixed number of models get stuck in local minima. The
data points include (in total) 300 inliers for 5 lines and 180 outliers. Here we assumed that the correct
number of models is known and estimated K = 5 lines and one outlier model. Solutions in (a)-(c)
correspond to different initializations with 5 randomly sampled lines. The ground truth configuration
has energy E = 797 in (4.55) and log-likelihood − log L = 721 in (4.47).

4.5. RELATIONSHIP TO EM AND K-MEANS 67

PEARL w/ energy (4.56) EM w/ Dirichlet prior (4.48)

(a
)o

pt
im

al
sp

ar
si

ty

hl = 50 α = −4

(b
)w

ea
k

sp
ar

si
ty

hl = 10 α = 10−6

(c
)s

tr
on

g
sp

ar
si

ty

hl = 100 α = −9

Figure 4.12: Label costs in (4.56) or sparsity prior in (4.48) significantly improve the results on the data
from Figure 4.11. Now a small number of models near ground truth (a) can be automatically computed
from a large pool of random initial models, as in Figure 4.6. In contrast to Figure 4.11, the results are
stable for different initializations as long as the set of initial randomly sampled lines is large enough
(e.g. 500 lines). Parameters h and α control sparsity of the results (a-c).

68 CHAPTER 4. ENERGIES WITH LABEL COSTS

often correspond to separate objects with distinct spatial support. Objects normally “occlude”
each other rather than “intersect”. Thus, “hard assignments” should be appropriate for many
multi-model fitting problems in computer vision. In contrast to standard “soft assignment”
methods like EM, besides sparsity prior (label costs) our general approach to model fitting
can also integrate a spatial smoothness prior - the second term in (⋆′) that was ignored in this
section. Figures 4.1, 4.2, and 4.3 show that this combination of regularizers is useful in vision.

4.6 Applications and Experimental Setup

The experimental setup is essentially the same for each application: generate proposals via ran-
dom sampling, compute initial data costs Dp, and run the iterative algorithm from Section 4.4.
The only changing components are the application-specificDp and regularization settings. Sec-
tion 4.6.1 outlines the setup for basic geometric models: lines, circles, homographies, motion.
Section 4.6.2 describes the unsupervised image segmentation setup.

4.6.1 Geometric multi-model fitting

Here each label l ∈ L represents an instance from a specific class of geometric model (lines,
homographies), and eachDp(l) is computed by some class-specific measure of geometric error.
The strength of per-label costs and smooth costs were tuned for each application.

Outliers All our experiments handle outliers in a standard way: we introduce a special outlier
label ϕ withH(ϕ) = 0 andDp(ϕ) = const > 0 manually tuned. This corresponds to a uniform
distribution of outliers over the domain.

Simple synthetic examples (lines, circles, etc.)

Throughout this chapter we used many illustrative examples of multi-line fitting. Below we
detail the corresponding set-up and discuss some additional synthetic tests with simple geo-
metric models. Our energy (⋆′) was motivated by applications in vision that involve images
(Sections 4.6.1–4.6.2; also compression, see [39]), but synthetic examples with simple models
help to understand our energy, our algorithm, and their relation to standard methods.

Line fitting Data points are sampled i.i.d. from a ground truth set of line segments (e.g.
Figure 4.6), under reasonably similar noise; outliers are sampled uniformly. Since the data
is i.i.d. we set Vpq = 0 in (⋆′) and use the greedy algorithm from Section 4.3.5. We also
use fixed per-label costs as in (4.56). Keeping per-label costs independent of θ simplifies the
re-estimation of θ itself.

Figure 4.6 is a typical example of our line-fitting experiments with outliers. In 2D each
line model l has parameters θl= {a, b, c, σ} where ax + by + c = 0 defines the line and σ2 is
the variance of data; here a, b, c have been scaled such that a2 + b2 = 1. Each proposal line
is generated by selecting two random points from P , fitting a, b, c accordingly, and selecting a
random initial σ based on a prior. The data cost for a 2D point xp = (xx

p, x
y
p) is computed w.r.t.

4.6. APPLICATIONS AND EXPERIMENTAL SETUP 69

orthogonal distance

Dp(l) = − log
(

1√
2πσ

exp
(
− (axx

p+bx
y
p+c)2

2σ2

))
. (4.59)

Besides the greedy algorithm for (⋆′) without smoothness, we also tested α-expansion for
high-order label cost potentials (Section 4.3.1). Not surprisingly, the greedy algorithm was by
far the best algorithm when smooth costs are not involved. Greedy gives similar energies to
α-expansion but is 5–20 times faster.

Figure 4.7 shows the trend in running time as the number of random initial proposals is
increased. For 1000 data points and 700 samples, convergence took .7–1.2 seconds with 50%
of execution time going towards computing data costs (4.59) and performing re-estimation.

Note that (4.59) does not correspond to a well-defined probability density function. The
density for unbounded lines cannot be normalized, so lines do not spread their density over
a coherent span. Still, in line-fitting it is common to fit full lines to data that was actually
generated from line intervals, e.g. [69, 168]. The advantage of full lines is that they are a
lower-dimensional family of models, but when lines are fit to data generated from intervals this
is a model mis-specification, causing discrepancy between the energy being optimized versus
the optimal solution from a generative viewpoint. Surprisingly, [69] showed that there are
examples where introducing spatial coherence (Vpq > 0) for i.i.d. line interval data can actually
improve the results significantly. We hypothesize that, in this case, spatial coherence can be
trained discriminatively to counter the discrepancy caused by fitting unbounded lines to line
interval data.

Line interval fitting Figure 4.13 shows three interval-fitting results, all on the same data.
Each solution was computed from a different (random) set of 1500 initial proposals. Line
intervals require many more proposals than for lines because intervals are higher-dimensional
models. Each result in Figure 4.13 took 2–4 seconds to converge, with 90% of the execution
time going towards computing data costs and performing re-estimation (in MATLAB).

We model an interval from point a to point b as an infinite mixture of isotropic Gaussians
N (µ, σ2) for each µ interpolating a and b. The probability of a data point appearing at posi-
tion x is thus

Pr(x | a, b, σ2) =

∫ 1

0

N
(
x | (1−t)a+ tb, σ2

)
dt. (4.60)

In two dimensions, the above integral evaluates to

1
4πσ2∥a−b∥ · exp

(
−
(

xx(by−ax)−xy(bx−ay)+aybx−axby
√
2σ∥a−b∥

)2)
·
(
erf
(

(x−b)·(a−b)√
2σ∥a−b∥

)
− erf

(
(x−a)·(a−b)√

2σ∥a−b∥

))
(4.61)

where x = (xx, xy) is and erf(·) is the error function.
Given a set Xl={xp : fp= l} of inliers for label l, we find maximum-likelihood estimators

θl = {a, b, σ} by numerically minimizing the negative-log likelihood

E(Xl; a, b, σ) = −
∑
p

log Pr(xp | a, b, σ2). (4.62)

70 CHAPTER 4. ENERGIES WITH LABEL COSTS

seed=100 seed=101 seed=102

Figure 4.13: We can also fit line intervals to the raw data in Figure 4.6. The three results above were
each computed from a different set L of random initial proposals. See Section 4.6.1 for details.

Figure 4.14: For multi-model fitting, each label can represent a specific model from any family (Gaus-
sians, lines, circles...). Above shows circle-fitting by minimizing geometric error of points.

4.6. APPLICATIONS AND EXPERIMENTAL SETUP 71

Circle fitting Figure 4.14 shows a typical circle-fitting result. Our circle parameters are
center-point a, radius r, and variance σ2. We model a circle itself as an infinite mixture of
isotropic Gaussians along the circumference. Proposals are generated by randomly sampling
three points, fitting a circle, and selecting random σ based on some prior. We find ML estima-
tors numerically, much like for line intervals.

Homography estimation

Energy (⋆′) can be used to automatically detect multiple homographies in uncalibrated wide-
base stereo image pairs. Our setup follows [69], so we give only a brief outline.

The input comprises two (static) images related by a fundamental matrix. We first detect
SIFT features [106] and do exhaustive matching as a preprocessing step; these matches are our
observations. The models being estimated are homographies, and each proposal is generated
by sampling four potential feature matches. Data costs measure the symmetric transfer error
(STE) [63] of a match w.r.t. each candidate homography. Our set of neighbors pq ∈ N is
determined by a Delaunay triangulation of feature positions in the first image. Re-estimation is
done by minimizing the STE of the current inliers via Levenberg-Marquardt [63]. Figures 4.2c
and 4.16 show representative results.

Rigid motion estimation

The general setup follows [69, 101] and is essentially the same as for homography estimation,
except now each model is a fundamental matrix F = [K ′ t]×K

′RK−1 corresponding to a rigid
body motion (R, t) and intrinsic parameters K [63].

Again, SIFT matches work as data points. Initial proposals are generated by randomly
sampling eight matching pairs. Fundamental matrices [63] are computed by minimizing the
non-linear SSD error using Levenberg-Marquardt. Data costs measure the squared Sampson’s
distance [63] of a match with respect to each candidate fundamental matrix. Figures 4.1(c) and
4.18 show representative results.

4.6.2 Image segmentation
Our goal is to automatically partition an image into some small number of regular segments
with consistent appearance. In contrast to superpixels, our segments can be of any size and
need not be contiguous. We propose to label the image using the following form of energy (⋆′)

E(f,M) =
∑
l∈L

∑
p:fp=l

− logP (Ip |Ml)︸ ︷︷ ︸
segment appearance

+ λ
∑
pq∈N

[fp ̸= fq]︸ ︷︷ ︸
segments’ boundaries

+
∑
l∈L

H(l)·δl(f)︸ ︷︷ ︸
segments’ labels

(4.63)

where parameter Ml describes probability distribution associated with label l. For example, if
values Ip are image intensities/colors5 then vector Ml could represent an intensity histogram or
parameters of some family of distributions.

5In general, Ip could represent any feature at pixel p, e.g. texture.

72 CHAPTER 4. ENERGIES WITH LABEL COSTS

Figure 4.15: Unsupervised segmentation by clustering simultaneously over pixels and color space us-
ing Gaussian Mixtures (color images) and non-parametric histograms (gray-scale images). Notice we
find coarser clustering on baseball than Zabih & Kolmogorov [164] without over-smoothing. For seg-
mentation, our energy is closer to Zhu & Yuille [166] but our algorithm is more powerful than region-
competition.

4.6. APPLICATIONS AND EXPERIMENTAL SETUP 73

In what sense does segmentation energy (4.63) correspond to the goals proclaimed at the
beginning of the previous paragraph? The third term sums penalties hl for each label (model
Ml) used in the image. This directly encourages a small number of segments. The second term
is a standard expression for regularity of segment boundaries.

Information theory helps to show how the first term in (4.63) yields segments with consis-
tent appearance. Indeed, following Kraft-McMillan theorem [107], any probability distribu-
tion P (I | M) corresponds to some coding scheme for storing image intensities. Moreover,
− logP (Ip |M) is the number of bits required to represent any given intensity Ip using coding
scheme P (I |M). Therefore, ∑

p∈S

− logP (Ip |M)

is the number of bits required to describe the appearance of any segment S ⊂ P using coding
scheme M . When optimizing over distribution M , the expression above yields the shortest
possible description of segment S, that is

|S| ·H(I | S) = inf
M

∑
p∈S

− logP (Ip |M)

where H(I|S) is the entropy of intensities in segment S. Thus, optimization over all distribu-
tion models M makes the first term of energy (4.63) equal∑

l∈L

|Sl| ·H(I | Sl)

where Sl = {p : fp = l} is a segment with label l. This quantity can be further optimized
over segmentation (labeling) f . It achieves its minimum for any segmentation with constant
intensity segments where H(I|S) = 0. Such segments can be connected or disconnected. The
size of the segments is also irrelevant. For example, single pixel segments are optimal for the
quantity above. Alternatively, segments could be connected components of the same intensity
pixels. More generally, low values of the quantity above correspond to segments with low
variability of intensity, that is, segments with consistent or homogeneous appearance.

In our segmentation experiments based on energy (4.63) the appearance models Ml are
256-dimensional histograms for greyscale images, and Gaussian mixtures in RGB space for
color images. Initial proposals for models Ml were generated by sampling small patches of
the image, just like in [166, 164]. Similarly to [166, 164] we iterated segmentation and model
re-estimation steps to optimize our energy over f andM . We did not use segmentation-specific
heuristics such as merging or splitting the histograms. Figure 4.8 shows running-time perfor-
mance of our coordinate descent approach using α-expansions to optimize (4.63) over f , as in
Section 4.3.

Our results in Figures 4.3 and 4.15 show how energy (4.63) balances regularity and homo-
geneity of segments. It is particularly instructional to compare image segmentation results in
Figure 4.3(b)-(c). The result in (b) uses only spatial regularization as in energy (4.2), see [164].
This approach over-smoothes the segments even when the weight of the regularization term is
too small to merge all “zebra” parts. The label costs term in (4.63) allows to obtain “zebra” (c)

74 CHAPTER 4. ENERGIES WITH LABEL COSTS

without over-smoothing. In this case we do not depend on the spatial regularization to merge
all “zebra” parts and smoothing weight λ can be significantly reduced.

The label costs term in (4.63) could be used to obtain segments with certain preferred ap-
pearance by assigning penalties hl depending on Ml. Also note that a general version of our
label costs term in (⋆) uses subsets of labels. This allows interesting new ideas for segmenta-
tion, as recently demonstrated in [94] in the context of object recognition.

It should be emphasized that we are not first to suggest energies with label costs for segmen-
tation. A large amount of related work on image segmentation is based on minimum description
length (MDL) principle [107] which provides information theoretic foundation for regulariza-
tion energies like (4.63). The MDL principle was first proposed for unsupervised segmentation
by Leclerc [98]. As further detailed in [39], the specific technical realization of the MDL prin-
ciple in [98] is distinct from ours. Leclerc derives energies somewhat different from (4.63) and
optimizes them using continuation technique similar to graduated nonconvexity [16]. Further
more, to simplify optimization [98] makes approximations, e.g. (2), that effectively ignore the
label costs term.

Zhu & Yuille [166] used a continuous image segmentation energy inspired by MDL ideas of
Leclerc. Specific formulation in [166] is much closer to ours and their functional is a continu-
ous analogue of (4.63). They developed a region competition algorithm based on local contour
evolution and explicit merging of adjacent regions to address the label cost term. A subsequent
algorithm by Brox & Weickert [25] uses level sets to recursively partition the domain until it
no longer pays to add regions (labels). Ben-Ayed & Mitiche [6] use multi-level sets to optimize
an MDL-like region merging prior. Our work is first to demonstrate applications of powerful
α-expansion approach to MDL-based image segmentation using energy (4.63).

4.7 Empirical Performance of Algorithms

This section presents an empirical comparison for several algorithmic variants to minimizing
energy (⋆′) where both smooth costs and label costs are present. In particular, we compare al-
gorithms from Section 4.3 and several algorithms originally designed for spatial regularization
functional (4.2) which can be applied to (⋆′) using some merging heuristics as in [69]. Our
goal is to compare running times and energy values obtained on real examples in the context
of geometric model fitting described in Section 4.6.1.

Figure 4.16 illustrates our first homography fitting example (see Section 4.6.1). The curves
in (d) show how the energy (⋆′) decreases in 50 different tests running PEARL with the ex-
tended α-expansion algorithm from Section 4.3. Each test depends on some initial set of ran-
domly sampled models. The algorithm can converge to different solutions illustrated in Figure
4.16a,b,c. Better results as in (a) correspond to solutions with lower energy values, and worse
results as in (c) correspond to poor energy values. The black curve in Figure 4.17 is the aver-
age of 50 curves in Figure 4.16d. This section uses such average curves to compare different
combinatorial algorithms for minimizing label cost energies. In addition to homography fitting
results in Figure 4.17, we also use two rigid motion estimation examples (see Section 4.6.1) to
compare similarly obtained average performance curves in Figure 4.18.

4.7. EMPIRICAL PERFORMANCE OF ALGORITHMS 75

(a) trial A at convergence (best) (b) trial B at convergence (intermediate)

0 5 10 15 20 25 30 35
2

2.5

3

3.5

4

4.5

5
x 10

4

Time

E
n
e
rg

y

A
B
C

(c) trial C at convergence (worst) (d) energy plots for 50 different trials

Figure 4.16: Homography fitting example (“Stairs”). Different runs of the algorithm (PEARL with
α++) in (d) converge to solutions with different energy values depending on a specific initial collection
of randomly sampled models. As shown in (a-c), lower energy solutions correspond to better practical
results.

76 CHAPTER 4. ENERGIES WITH LABEL COSTS

0 5 10 15 20 25 30 35
3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

Time (sec)

E
n
e

rg
y

α++

α+

α−SM

α−BM

αβ+

Figure 4.17: Homography fitting example (“Stairs”) for different algorithms minimizing energy (⋆):
α++ and α+ are two versions of extended α-expansion from Section 4.3; αβ+ is a straightforward
modification of the standard αβ-swap [24]; α-SM and α-BM are standard α-expansions with different
merging heuristics [69]. The plots show values of energy (⋆′) obtained after each iteration of segmen-
tation and re-estimation, see Section 4.4. As in PEARL [69], the labels are initialized by randomly
sampling 1000 models. Each plot above is obtained by averaging energy curves for 50 different initial-
izations as in Figure 4.16d.

4.7. EMPIRICAL PERFORMANCE OF ALGORITHMS 77

Now we briefly review combinatorial algorithms compared in this section. In contrast to
other tested methods, the extended α-expansion algorithm from Section 4.3 directly addresses
label costs in (⋆) without any extra heuristics. We test two versions of the algorithm: α+ (basic)
consistently iterates expansion steps over all labels, and α++ (adaptive) removes labels corre-
sponding to empty expansions until the “last” iteration validating local minima with respect to
all labels. Both versions have the same optimality guarantees (see Section 4.3). Our empirical
results in Figures 4.17 and 4.18 suggest that α+ and α++ find solutions with comparable energy
values. The adaptive method α++ converges faster.

Other tested methods are based on standard algorithms for energy (4.2) adapted to label
cost in (⋆) using some heuristics. For example, [69] uses basic α-expansion [24] for the first
two terms in (⋆) and adds a separate merging step to account for the label costs. Each merging
step tries to replace some pair of labels A and B in the current solution with one label C. Two
segments A = {p : fp = A} and B = {p : fp = B} are merged if and only if assigning some
label C to combined segment A ∪ B lowers overall energy (⋆). Note that merging decreases
the second and the third terms in (⋆) but it can increase the first (data) term. Iterating standard
α-expansions with merging steps is guaranteed to decrease energy (⋆) after each iteration. Note
that separate merging steps for minimizing MDL-based functionals like (⋆) were also used in
[98, 166] in the context of continuation methods and variational approaches.

We tested two merging heuristics [69]: α-SM (simple merge) tries to merge two segments
using C = A or C = B, and α-BM (best merge) tries the optimal label C for two current
segments A = {p : fp = A} and B = {p : fp = B}

C∗ = argmin
C

∑
p∈A∪B

Dp(C).

Due to extra optimization procedure α-BM is slower than α-SM but it generates lower energy
values, see Figures 4.17 and 4.18.

We also note that the standard αβ-swap algorithm [24] was originally designed for smooth-
ness energy (⋆) but can be easily extended to label cost energy (⋆). At each step the swap
algorithm works with two fixed labels A and B and a region A∪B. Only two trivial outcomes
of a swap move change the label costs: when all nodes in A∪ B are assigned either label A or
B. The standard swap method does not account for the label cost term in (⋆). Yet, it is easy
to compare the outcome of an optimal αβ-swap move with two trivial solutions and choose
one with the lowest value of energy (⋆). We use symbol αβ+ to refer to this algorithm and its
empirical results in Figure 4.17.

While discrete energy (⋆) could be addressed by many combinatorial optimization tech-
niques (e.g. [54, 98, 83]) or their modifications, our empirical evaluation is focused on graph
cut methods that we consider more promising due to optimality guarantees associated with
them. The experiments in Figure 4.17 show that α++, an adaptive version of extended α-
expansion in Section 4.3, generated better quality solutions faster than other methods. Stan-
dard α-expansion with a “best merge” heuristic α-BM [69] obtained better energy values in
Figure 4.18 but it was also much slower. Comparing α-BM with α-SM (“simple merge” ver-
sion of the same algorithm) suggests that α-BM benefits from adaptive new model proposals.
In fact, α-BM is the only method in our tests that used adaptively generated new proposals

78 CHAPTER 4. ENERGIES WITH LABEL COSTS

22 24 26 28 30 32 34 36
700

800

900

1000

1100

1200

1300

Time (sec)

E
n

e
rg

y

α++

α+

α−SM

α−BM

(a) rigid motion example 1

20 25 30 35 40 45 50 55 60
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Time (sec)

E
n

e
rg

y

α++

α+

α−SM

α−BM

(b) rigid motion example 2

representative results at convergence

Figure 4.18: Rigid motion estimation examples (Vidal’s data set [145]) comparing different algorithms
minimizing energy (⋆): α++, α+, α-SM, α-BM. Algorithm αβ+ generated solutions with similar
energy values but it was much slower than the other methods. Thus, we chose not to show its energy
curves for the rigid motion estimation examples above.

4.8. DISCUSSION 79

in addition to basic model re-estimation. Note that rigid motion models in Figure 4.18 have
higher dimensionality than (planar) homographies in Figures 4.16–4.17. Generating label pro-
posals adaptively could be a practical mechanism improving exploration of larger label spaces
of higher-dimensions.

Our general practical observation is that often all tested algorithms α++, α+, αβ+, α-SM,
α-BM generate comparable results. In most cases, however, it is easier to use α++ as it is
fast, robust, and does not rely on extra merging heuristics. In higher dimensional model-fitting
problems the combination of PEARL and α++ may further benefit from additional application-
specific mechanisms adaptively generating new model proposals.

4.8 Discussion

The potential applications of our algorithm are nearly as broad as for α-expansion. Our new
algorithm can be applied whenever observations are known a priori to be positively correlated,
for example in space or in time, whereas classical mixture model algorithms (Section 4.5) are
largely designed for i.i.d. data.

Our C++ code and MATLAB wrapper are available at http://vision.csd.uwo.ca/code/.
Besides minimizing general energy (⋆) with α-expansion, the code is further optimized in two
important special cases:

1. when the energy reduces to (4.1) the solution is computed by the greedy UFL algorithm
(Section 4.3.5), and

2. when only a small fraction of labels are feasible for any given data point (e.g. geometric
models; labels localized to a patch) we support “sparse data costs” to dramatically speed
up computation.6

Our new α-expansion code optionally uses a simple strategy to invest expansions mainly on
‘successful’ labels. This is often faster, but can be slower, so we suggest selecting an expansion
scheme (adaptive vs. standard cycle) empirically for each application.

Our energy is quite general but this can be a disadvantage in terms of speed. The α-expansion
step runs in polynomial time for fixed number of positive H(L) terms, but higher-order la-
bel costs should be used sparingly. Even the set of per-label costs {H(l)}l∈L slows down
α-expansion by 40–60%, but this is still relatively fast for such difficult energies [139]. This
slowdown may be because the Boykov-Kolmogorov maxflow algorithm [22] relies on heuris-
tics that do not work well for large cliques, i.e. subgraphs of the kind in Figure 4.4. Even if
faster algorithms can be developed, our implementation can test the merit of various energies
before one invests time in specialized algorithms.

Category costs Our high-order label costs (on subsets of labels) seem to be novel, both in
vision and in terms of the UFL problem, and can be thought of as a type of co-occurrence po-
tential first proposed in [38]. A natural application is to group labels in a hierarchy of categories

6Sparse data costs were not used in our experiments.

80 CHAPTER 4. ENERGIES WITH LABEL COSTS

and assign a category cost to each. This encourages labelings to use fewer categories or, equiv-
alently, to avoid mixing labels from different categories (e.g. kitchen, office, street, beach)
unless the local evidence is strong enough. With respect to object recognition/segmentation
with co-occurrence, similar costs were independently developed by Ladický et al. [94]. We
foresee applications of high-order label costs in motion and homography estimation.

Relation to Ladický et al. [94] The application in [94] is object recognition with co-
occurrance statistics. They are motivated by the principle of parsimony: if several segmen-
tations explain the image equally well, then the one that requires the fewest object labels
should be preferred. They develop an extension to α-expansion that is equivalent to our earlier
work [38], but they also consider energies outside the class of co-occurrence potentials that we
defined, i.e. beyond independent costs for each subset of labels costs. However, their class
of energies is not submodular with respect to expansion and so they apply a heuristic with no
guarantee of finding an optimal expansion move for energies outside the class of energies that
we defined.

Relation to P n Potts [79] The P n Potts potential ψP (fP) is defined on clique P ⊆ P as

ψP (fP)
def
=

{
γα if fp= α ∀p ∈ P

γmax otherwise

where γα ≤ γmax for all α ∈ L. This potential encodes a label-specific reward γmax−γα for
clique P taking label α in its entirety, and acts either as simple high-order regularization (all
γα = const) or as a form of high-order data cost (label-specific γα).

Let ᾱ denote the set of all labels except α, i.e. the set L \ {α}. A regional label subset cost
over clique P can encode the P n Potts potential in energy (⋆) as follows:

1. Set cost HP (ᾱ) := γmax − γα for each α ∈ L.

2. Add constant (1−|L|)γmax +
∑

αγα to the energy.

Each regional label cost HP (ᾱ) is non-negative by definition of ψP (·), thus a P n Potts potential
can be expressed as a sum of high-order label costs.

The P n Potts potential and its robust generalization [80] were designed to encourage con-
sistent labelings over specific regions in an image. A special case of our potentials is very
closely related to the robust variant: a basic per-label potential H(l) · δl(f) can be expressed
as a specific (concave) Robust P n Potts potential. Besides significant conceptual and motiva-
tional differences, the main technical difference is that our construction makes no reference to
a “dominant label.” By constructing a two-label Robust P n Potts potential at each dynamic
clique PL in our binary expansion step, we can encode an arbitrary concave penalty on the
number of variables taking labels from a specific subset of labels. This generalizes our high-
order potentials δL(·) if needed.

Learning label costs We studied label costs in an unsupervised setting where parameters are
chosen based on information criteria or tuned manually. It is important to note that energy (⋆)
and the α-expansion-based inference algorithm can be used in supervised settings as well. The
label cost terms are included in energy (⋆) linearly and can thus be learned by max-margin
methods [143, 146]. This approach was recently used for CRF learning, e.g. [141].

Chapter 5

Energies with Hierarchical Costs

We present new theoretical results for an interesting class of energies that is closely related
to that of Chapter 4. The key result is that by considering energies with a ‘hierarchical’ cost
structure we can propose a new algorithm we call hierarchical fusion (h-fusion) that has bet-
ter approximation guarantees than the classical α-expansion algorithm. It turns out that such
energies can elegantly model problems in computer vision such as detecting multiple objects,
motions, homographies, or repetitive patterns in image data. The improved theoretical guaran-
tees are important because, in practice, α-expansion can easily get stuck in poor local minima
for this useful class of energies.

We begin with a class of functionals E(f) similar to the general form used in Chapter 4

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

wpq ·V (fp, fq) +
∑
L⊆L

H(L)·δL(f) (5.1)

where L is the set of labels, weight wpq ≥ 0 scales the strength of V at edge pq, and f :P →L
is a labeling. To describe an energy of the form (5.1) as having hierarchical costs we start by
adding some tree structure defined over the label set. The root of the tree we denote by r, the
leaves of the tree are the actual labels L, and the remaining internal nodes (if any) belong to
what we call the set of pseudo-labels S . We express the tree structure by a child-to-parent map
π :L∪S →S∪{r}, i.e. for any node i ∈ L∪S its parent node is given by π(i). The functional
E(f) is still defined over labelings f : P →L, but now there is some hierarchical grouping of
these labels as illustrated by the example below.

Example 5.1. A hierarchical grouping of six labels (left) into groups S = {1, 2} where, for
example, π(ℓ4) = 2 and π(2) = r. At right is a possible labeling f : P → L, and a coarser-
level segmentation derived from grouping labels in f according to the tree.

labels L

pseudo-labels S

ℓ
1

ℓ
2

ℓ
3

ℓ
4 ℓ

5
ℓ
6

1 2

r
root

ℓ
3

ℓ
2

ℓ
1

ℓ
3

ℓ
6

ℓ
5

1

1

2
→
π

actual labeling f pseudo-labeling π ◦f

81

82 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

Merely declaring the labels to be ‘grouped’ does not in itself change the energy E(f),
nor does is the α-expansion algorithm influenced by such label hierarchies. However, we will
describe energies for which a ‘good’ tree can be defined so that our h-fusion algorithm is
provably better than α-expansion. The methods we present are such that if we choose a flat
tree (S = {}) then all the results in this chapter reduce to those of Chapter 4 as a special case.

There are many problems for which the labels naturally form groups. In operations re-
search, hierarchical variants of facility location problems have been studied [126, 138]. In
computer vision, a recent trend is the use of context to resolve ambiguities in object recogni-
tion, e.g. [27, 94, 165]. The idea is that certain groups of labels are self-consistent because
they appear in the same context, e.g. the cup, keyboard, desk labels all belong to the “office”
context, while sink, microwave, oven labels all belong to the “kitchen” context. Or, in computer
graphics, one may instead wish to automatically classify the faces of a 3D mesh into semantic
parts for the benefit of artists and animators [76]. The part labels (e.g. arm, leg, tail, head,
body) are naturally grouped by their context (humanoid, quadruped, chair). The illustration
below helps to understand these two applications: object recognition on the left, mesh labeling
on the right. Neither problem is fundamentally different from the other from an optimization
point of view.

keyboard

coffee
desk

car

street

building

“office” context “street” context “horse” mesh “human” mesh

The present chapter is essentially divided into two parts: smooth costs (Sections 5.1–5.4)
and label costs (Section 5.5). The first four sections build concepts in hierarchical smooth costs
only, omitting any mention of label costs for simplicity. The final section revisits the problem
and introduces new definitions, theorems and pseudocode to handle hierarchical label costs.
Section 5.1 defines a class of smooth cost potentials V (·, ·) that we call hierarchical metric
(h-metric) potentials, while Section 5.2 discusses a simpler class we call hierarchical Potts
(h-Potts) potentials. Section 5.3 then describes the steps of our h-fusion algorithm and shows
that h-metrics fully characterize the class of smooth costs for which h-fusion is applicable.
Section 5.4 derives approximation guarantees for h-fusion with respect to different choices of
tree structure, and gives worst-case examples to show that our bounds are sufficiently tight.
Section 5.5 introduces the class of hierarchical and tree-structured label costs, and generalizes
our h-fusion algorithm and approximation bounds to incorporate such costs.

Related work The most similar work to ours, by far, is a recent paper by Kumar & Koller [92].
They use the concept of r-hierarchically well-separated tree metrics (r-HST metrics) [10] to ar-
rive at an algorithm that is essentially the same as the h-fusion that we introduce in this chapter.
They only consider smooth costs (no label costs) but their analysis is quite different, providing
a number of very nice results on approximating arbitrary metrics (not just r-HST metrics). Our
work was developed independently and, though our treatment of smooth costs is different and
useful, our analysis of label costs is the most novel contribution at this point in time.

5.1. HIERARCHICAL METRICS (h-METRICS) 83

The main idea of an r-HST metric is as follows. Assume we are given a tree with distances
d(i, j) defined on each edge from child i to parent j. Further assume that we know the child-
parent distance gets cheaper by a factor of r as we descend the tree, i.e. d(i,j)

d(k,i)
≥ r for some

constant r > 1. The total distance between two leaf nodes α and β is the cumulative sum of
edge distances along the path from α to β in the tree. If the ‘costs’ of a pairwise potential
V (α, β) correspond to such a distance function for all α, β, then V is said to be an r-HST

metric.
Our concept of an h-metric is expressed directly in terms of constraints on V (·, ·), not on

edges or distances traversed in the tree. Furthermore, it is easy to find h-metrics for which
there is no equivalent r-HST metric representation, but every r-HST metric is an h-metric. So,
r-HST metrics are a special case of h-metrics.

5.1 Hierarchical Metrics (h-metrics)
From now until the beginning of Section 5.5 we concern ourselves with energies of the form

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

wpq ·V (fp, fq). (5.2)

That is, we focus on energies with no label costs. This will help us to focus on the analysis of
smooth costs and to present an initial version of the h-fusion algorithm that is much simpler.

We first introduce notation that is useful throughout the chapter when discussing trees. The
following definitions are all with respect to some child-to-parent map π : L ∪ S → S ∪ {r}
and the tree that it defines. We use πn(i) to denote n applications of the parent function, as in
π(· · · π(i)).

Definition 5.2. The set of children of node j is denoted by

I(j) = { i : π(i) = j }

Definition 5.3. The set of all nodes in the subtree rooted at j is denoted by

subtree(j) = { i : πn(i) = j for some n ≥ 0 }

Definition 5.4. The set of labels (leaves) belonging to the subtree of node i is

Li = { ℓ ∈ L : ℓ ∈ subtree(i) }

Definition 5.5. The lowest common ancestor (lca) of nodes i, i′ is

lca(i, i′) = j such that j = πn(i) = πm(i′) for minimal n,m.

With these definitions in mind, consider what it means to apply the tree structure shown in
Example 5.1 over the labels. A hierarchical grouping of labels ℓ ∈ L induces a grouping of the
smooth cost values inside each V (ℓ, ℓ′) potential. Looking at the tree structure in Example 5.1

84 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

we can say that labels ℓ1 and ℓ2 are in the same group whereas ℓ1 and ℓ4 are from different
groups; thus V (ℓ1, ℓ2) can be interpreted as a “within-group cost” and V (ℓ1, ℓ4) as a “between-
group cost.” The elements of V ’s smooth cost matrix are thus broken up into ‘within-group’
and ‘between-group’ entries. A simple example is given below, where the different regions of
the |L| × |L| matrix are delineated by black lines and we assume V (α, α) = 0.

0

0

0

0

0

0

ℓ
1
ℓ
2
ℓ
3
ℓ
4
ℓ
5
ℓ
6

ℓ
1

ℓ
2

ℓ
3

ℓ
4

ℓ
5

ℓ
6

“between-group costs”

“within-group costs”
ℓ
1

ℓ
2

ℓ
3

ℓ
4 ℓ

5
ℓ
6

Note that the costs in each block need not be constant, though we consider this case in Sec-
tion 5.2.

What follows next is the key definition of this section. Later in Section 5.3 we will show
that, if a smooth cost potential V satisfies the constraint below with respect to some tree struc-
ture, the corresponding energy can be approximately minimized by our h-fusion algorithm. In
fact we show that the characterization below is sufficient and necessary to be optimized by
h-fusion.

Definition 5.6. We say that pair (V, π) forms an h-metric potential if π defines an irreducible1

tree and for every node i ∈ L ∪ S we have

V (α1, α2) + V (β, γ) ≤ V (α1, γ) + V (β, α2) ∀α1, α2 ∈ Li, β, γ ∈ Lπ(i) \ Li (5.3)

Note that for the special case of a ‘flat’ tree where S = {} then each set Li in (5.3)
contains only a single label {i} and each Lπ(i) = L. In that case we have α1 = α2 = i

and β, γ ∈ L \ {i}, so the h-metric constraint reduces to the classic metric constraint for
α-expansion of V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α) given in [24].

Though the definition of an h-metric is important, the constraints involved can be more
complex than for standard α-expansion. Figure 5.1 shows a concrete example of an h-metric
(V, π) and suggests a way to visualize constraints (5.3) as a pattern in the matrix. However, we
can express a condition that is simpler and yet sufficient for a pair (V, π) to form an h-metric.
First we define two quantities that will be useful in subsequent proofs.

Definition 5.7. Given a smooth cost potential V and tree structure defined by child-to-parent
map π we define quantities V max

i and V min
i for each i ∈ L ∪ S

V max
i = max

α,β∈Li

V (α, β) V min
i = min

γ,ζ∈Li
lca(γ,ζ)=i

V (γ, ζ).

1A tree is irreducible if all its internal nodes have at least two children, i.e. there are no ‘redundant’ parent
nodes and so Lπ(i) \ Li is never an empty set.

5.2. HIERARCHICAL POTTS (h-POTTS) 85

0 1 2 3 3 3
1 0 1 3 3 3
2 1 0 3 3 3
3 3 3 0 2 4
3 3 3 2 0 2
3 3 3 4 2 0

ℓ
1
ℓ
2
ℓ
3
ℓ
4 ℓ5 ℓ6

ℓ
1

ℓ
2

ℓ
3

ℓ
4

ℓ
5

ℓ
6

0 1 2 4 4 4
1 0 1 4 4 4
2 1 0 4 4 4
4 4 4 0 2 4
4 4 4 2 0 2
4 4 4 4 2 0

ℓ
1
ℓ
2
ℓ
3
ℓ
4 ℓ5 ℓ6

ℓ
1

ℓ
2

ℓ
3

ℓ
4

ℓ
5

ℓ
6

α
2

α
1

β

γ

0 3

3 4

(a) example matrix (b) example constraint configurations (c) alternate matrix

α
2

α
1

β

γ

2 3

3 4

⇒

Figure 5.1: Smooth cost matrix (a) is a concrete example of an h-metric when entries are grouped
according to the tree structure π from Example 5.1. A valid h-metric must satisfy all constraints of the
form (5.3), and (b) shows two such constraints satisfied: 0+4 ≤ 3+3 is indeed true, and 2+4 ≤ 3+3

as well. Standard α-expansion requires the former constraint, while only h-fusion on a tree such as
π requires the latter constraint. The smooth cost matrix (c) can be easily checked as h-metric via
Lemma 5.8, whereas (a) fails Lemma 5.8 yet is still an h-metric according to the full Definition 5.6.

In other words, V max
i is the maximum cost for any pair of labels in the subtree of node i,

and V min
i is the minimum cost for two labels from different subtrees descended from i. For

example, in Figure 5.1(a) one can see that the first parent node s1 has V min
s1

= 1 and V max
s1

= 2.
Similarly, for the root node r, this example has V min

r = 3 and V max
r = 4.

Lemma 5.8. The following condition is sufficient for (V, π) to form an h-metric potential:

V max
j − V min

j ≤ V min
j − V max

i ∀ i ∈ I(j) (5.4)

Proof. We must show that if (5.4) holds then so does (5.3). Since we know for any α1, α2 ∈ Li

and β, γ ∈ Lπ(i) \ Li it follows that lca(α1, γ) = lca(β, α2) = π(i). By minimizing over all
such possible cases, each term on the right-hand side of (5.3) can be bounded from below by
V min
π(i) = V min

j . Likewise, the two terms on the left-hand side of (5.3) can be bounded from
above by V max

i and V max
j respectively. We therefore have that V max

i + V max
j ≤ 2V min

j implies
inequality (5.3). Rearranging terms completes the proof. �

Again, inequality (5.4) is sufficient but not necessary for (V, π) to be an h-metric, as shown
by comparing Figures 5.1(a) and 5.1(c). Roughly speaking, Lemma 5.8 suggests two things:
that if the within-group costs (V max

i) are cheaper than the between-group costs (V min
j) then

(V, π) is more likely to form an h-metric, and that if the range of between-group costs is large
then the maximal within-group costs should be cheaper by a corresponding amount.

5.2 Hierarchical Potts (h-Potts)

The Potts potential is now standard for energy-based models computer vision, even though it
was originally proposed in statistical mechanics by R. B. Potts [119]. A pairwise Potts potential
is of the form V (α, β) = w · δ(α ̸= β) where δ is 1 if the condition is true, 0 otherwise, and w
is the cost that must be paid for α ̸= β. In computer vision the Potts potential is typically used

86 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

0 w
1

w
5

w
1

0

0

w
5

0 w2 w
4w

2 0

w
4

0 w3
w
3 0

5

1

2 3

4

⇔
α

β γ

α

β

γ

Figure 5.2: The smooth cost matrix for an h-Potts potential (left) comprises a number of regions with
constant cost. The structure of these regions is determined by the tree structure π. In this example,
V (α, β) = w5 and V (β, γ) = w4. The tree structure imposes a nested hierarchy of Potts potentials,
where the cost paid depends on the ‘level’ at which the discontinuity occurs.

in energies of the form

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

wpq · δ(fp ̸= fq) (5.5)

where weight wpq ≥ 0 scales the attraction strength between variables p and q. The larger the
weight, the stronger the preference for choosing fp = fq in the optimal labeling. Apart from
preferring fp = fq the Potts potential is agnostic about the remaining possibilities, i.e. the same
cost wpq is paid for all cases fp ̸= fq.

We now introduce a natural class of smooth costs that we call hierarchical Potts (h-Potts)
potentials. A pairwise h-Potts potential is defined by a pair (V, π) where the cost V (α, β)

depends only on the lowest common ancestor of the labels α and β.

Definition 5.9. We say that pair (V, π) forms an h-Potts potential if π is irreducible and V is
defined by a set of constants {wi}i∈L∪S∪{r} such that

V (α, β) = wlca(α,β) ∀α, β ∈ L (5.6)

where wℓ = 0 for all ℓ ∈ L.

Figure 5.2 shows the piecewise-constant structure of an h-Potts potential (V, π) for a par-
ticular tree. Just as for h-metrics, the most natural application of h-Potts potentials is when
labels are somehow grouped. Indeed, any h-Potts potential that satisfies constraints (5.3) is
also an h-metric potential, but for h-Potts we can express the constraints in a simpler manner.
It is this simplicity, along with the ubiquity of Potts in computer vision, that makes h-Potts
worth characterizing separately from h-metrics.

First, we characterize the circumstances under which standard α-expansion is applicable
to an h-Potts potential (V, π). This establishes the full class of possible h-Potts potentials as a
subclass of metrics as defined in Chapter 2. Recall that a pairwise potential V can be optimized
by α-expansion if and only if it satisfies the metric constraint, restated here:

V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α) ∀α, β, γ ∈ L. (5.7)

5.2. HIERARCHICAL POTTS (h-POTTS) 87

Theorem 5.10. An h-Potts potential (V, π) is metric on L if and only if

wi ≤ 2wj ∀ i ∈ subtree(j). (5.8)

Proof. In the case of an h-Potts potential, the metric constraint is equivalent to

0 + wlca(β,γ) ≤ wlca(α,γ) + wlca(β,α) ∀α, β, γ ∈ L (5.9)

Because π defines a tree structure, for every α, β, γ there exists i, j ∈ S∪{r} such that, without
loss of generality,

j = lca(α, γ) = lca(β, α), and

i = lca(β, γ) such that i ∈ subtree(j).
(5.10)

We can assume this arrangement because (α, β, γ) form what is sometimes called a rooted
triple and there can only be up to two unique lowest common ancestors among them. We
assume ancestor i is in the sub-tree rooted at ancestor j, and possibly equal to j. For any
particular (α, β, γ) and corresponding (i, j) inequality (5.9) is equivalent to wi ≤ 2wj . Since
π defines an irreducible tree, for each (i, j) there must exist corresponding sub-labels (α, β, γ)
for which (5.9) holds. It follows that wi ≤ 2wj holds for all pairs (i, j) where i ∈ subtree(j)

and completes the proof of (5.8). �

The above result is useful when we (a) know that labels are grouped in some manner, and (b)
wish to learn the ideal potentials from training data. Hierarchical Potts allows us to learn only
a few coefficients {wi} rather than a full set of |L|2 smooth cost entries, while Theorem 5.10
gives us simple constraints for optimizing with α-expansion.

However, an h-Potts potential being a metric does not necessarily imply that it is an h-metric,
which is necessary in order to apply our improved h-fusion algorithm. The following theorem
gives a simple, sufficient condition for h-Potts potentials to be optimized by h-fusion. It says
that, so long as discontinuity costs never decrease as we ascend the tree, then the energy can
be optimized by h-fusion.

Theorem 5.11. The following condition is sufficient for an h-Potts potential (V, π) to form an
h-metric:

wi ≤ wj ∀ i ∈ subtree(j). (5.11)

Proof. For an h-Potts potential we have V min
j = wj for any node j. For an h-Potts potential

that satisfies (5.11) we have in addition that V max
j = maxi∈subtree(j)wi = wj . Inequality (5.4)

then becomes wj −wj ≤ wj −wi which is equivalent to wi ≤ wj . Since by assumption (5.11)
this holds for all i ∈ subtree(j) then clearly it holds for all i ∈ I(j) and so by Lemma 5.8 any
such h-Potts potential is also an h-metric. �

88 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

ℓ
1

ℓ
2

ℓ
3

ℓ
4 ℓ

5
ℓ
6

1 2

ℓ
3

ℓ
2

ℓ
1

ℓ
3

ℓ
6

ℓ
5

ℓ
3

ℓ
2

ℓ
1

ℓ
6

ℓ
5

f̂1 f̂2 f̂1example fusions of and f̂
2

ℓ
3

ℓ
6

ℓ
5

labeling labeling

Figure 5.3: Given two complete labelings f̂1 and f̂2 shown above, here with f̂1
p ∈ {ℓ1, ℓ2, ℓ3} and

f̂2
p ∈ {ℓ4, ℓ5, ℓ6}, there are many ways to fuse or ‘stitch’ them together. A fusion is a new labeling f

where each fp ∈ {f̂1
p , f̂

2
p } (examples at right). Here we are fusing only two labelings, but in general

any number of labelings may be combined via iteration.

5.3 Hierarchical Fusion with Smooth Costs
We now explain the steps of our hierarchical fusion (h-fusion) algorithm, a better alternative
to standard α-expansion. Roughly speaking, the α-expansion procedure (Section 2.2.2) min-
imizes a multi-label energy by solving a sequence of special binary energies. The main idea
of h-fusion is to create a sequence of special multi-label energies, each of which is solved by
running α-expansion as a subroutine. These intermediate multi-label energies are designed to
‘stitch’ or to ‘fuse’ a particular set of existing labelings that were computed earlier, in a bottom-
up fashion. As we will show in Section 5.4, our h-fusion procedure turns out to provide better
optimality guarantees than α-expansion for energies with ‘hierarchical’ cost structure.

We call our algorithm h-fusion because our key multi-label energy at each step can be
interpreted as performing fusion moves. The concept of a fusion move was introduced by
Lempitsky et al. [100] as a powerful way to minimize energies E(f) of the form (5.2). The
main idea is that, given a two candidate labelings f̂ 1 and f̂ 2, a lower-energy labeling can be
found by ‘fusing’ the best parts of each into a composite labeling. Figure 5.3 illustrates how
new labelings are generated this way in our hierarchy. The key insight of [100] is that all
fusion moves are of the form xf̂ 1 + x̄f̂ 2 where x is a vector of binary variables, and that the
best fusion move can be computed by minimizing an energy Efuse(x) = E(xf̂ 1 + (1− x)f̂ 2).
Such a binary energy can also be expressed as

Efuse(x) =
∑
p∈P

D′
p(xp) +

∑
pq∈N

V ′
pq(xp, xq) (5.12)

whereD′
p(x) = Dp(xf̂

1
p +x̄f̂

2
p) and2 V ′

pq(x, y) = wpq·V (xf̂ 1
p +x̄f̂

2
p , yf̂

1
q + ȳf̂

2
q). In other words,

each binary xp selects between f̂ 1
p and f̂ 2

p . Note that this is extremely similar to the binary
energy at the heart of α-expansion. Indeed, an “expansion move on label α” can now be thought
of as a fusion move where f̂ 1 is the current labeling and we simply set f̂ 2 = (α, α, . . .), i.e. a
constant labeling. Lempitsky et al. even propose using fusion moves as a way to parallelize
α-expansion by dividing the labels according to the number of CPUs.

However, the paper by Lempitsky et al. [100] assumes that the candidate labelings can
be arbitrary and therefore the binary energy (5.12) is non-submodular in practice (see Chap-
ter 2 for review). This makes each fusion step potentially NP-hard and so it cannot be solved

2Note that here wpq is just the weight of edge pq and should not be confused with an h-Potts coefficient wi.

5.3. HIERARCHICAL FUSION WITH SMOOTH COSTS 89

initial fusion problems intermediate fusion problem final fusion problem

Figure 5.4: The hierarchical fusion process for a particular tree. The first sub-problems combine groups
of actual labels (leaves) in a pure α-expansion procedure (left). The remaining sub-problems involve
fusing the existing labelings in a bottom-up fashion throughout the tree (center) until finally the root la-
beling has been computed from its children (right). Each sub-problem is solved by invoking α-expansion
on a special multi-label fusion energy that is based on the labelings involved.

by a graph cut, unlike for α-expansion. They therefore resort to a heuristic method known
as QPBO [85, 124] which has no guarantee of finding a complete solution. In other words,
the generality of their formulation precludes any approximation guarantees for the larger algo-
rithm.

In contrast, we introduce h-fusion algorithm that uses an energy-driven criterion (good
choice of tree structure) to determine a sequence of multi-label fusion energies. Furthermore,
we introduced the concept of an h-metric to explicitly characterize the conditions for which
h-fusion is guaranteed to have submodular binary moves. Submodularity allows the globally
optimal fusion move to be computed by a single graph cut, just as for α-expansion. This will
allow us in Section 5.4 to prove approximation guarantees for h-fusion that generalize—and
improve upon—the well-known guarantees of α-expansion. Furthermore, we explain how to
incorporate label costs into the fusion steps; to the best of our knowledge, we are the first to
incorporate such high-order energy potentials into a fusion-based algorithm.

Our h-fusion algorithm is a simple recursive procedure that builds the final labeling in
bottom-up fashion. There is one multi-label energy to solve for each internal node j ∈ S ∪
{r} in the tree, and each of these “fusion energies” is solved (up to a local minimum) by
running α-expansion. The local minima computed at one level of the tree are subsequently
fused at the next-higher level of the tree until the root labeling has been computed. Figure 5.4
shows the order of sub-problems on a simple tree structure. The pseudocode for our recursive
h-FUSION(E, π, j) procedure is given below, where E = (D, V) is the original multi-label
energy to be optimized, π defines the label hierarchy, and j is the tree node whose labeling is
to be computed. The h-fusion process is initiated by calling h-FUSION(E, π, r) where r is the
root of the label hierarchy.

90 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

h-FUSION(E, π, j)

1 if j ∈ L
2 return (j, j, . . .) // j is an actual label, so return constant labeling
3 for i ∈ I(j)
4 f̂ i := h-FUSION(E, π, i) // compute child labelings (parallel loop)
5 Ej := SETUPFUSION(E, π, j)

6 ĝ := α-EXPANSION(Ej) // compute map ĝ :P →I(j) that fuses the f̂ i

7 f̂ j
p := f̂

ĝp
p ∀ p ∈ P // convert child indices to raw label indices L

8 return f̂ j

SETUPFUSION(E, π, j) without label costs

1 D′
p(i) := Dp(f̂

i
p) ∀ p ∈ P, i ∈ I(j) // configure α-expansion to index I(j)

2 V ′
pq(i, i

′) := wpq ·V (f̂ i
p, f̂

i′
q) ∀ pq ∈ N , i, i′ ∈ I(j)

3 return E′ = (D′, V ′)

In h-fusion, the main subproblem (line 6) calls α-expansion to fuse a set of labelings
{f̂ i}i∈I(j). In this scenario α-expansion is selecting a child index from ĝp ∈ I(j) for each
pixel—it does not select from actual labels L until the recursion reaches the bottom of the tree
(Figure 5.4, left). This temporary child-index map ĝ must therefore be converted into an actual
labeling f̂ j associated with tree node j (line 7).

The h-fusion process must terminate because there are |S ∪ {r}| calls to α-expansion. The
α-expansion algorithm is guaranteed to reduce the energy at each internal step and therefore
terminates at a local minimum in finite time [24]. In practice, α-expansion is the basis of
some of the fastest optimization algorithms for these kinds of energies [139, 4]. There is every
reason to expect h-fusion to terminate as fast as standard α-expansion, if not faster. First, the
total number of nodes at each level of the tree shrinks by at least a factor of two (often much
more) as we ascend the hierarchy, so the total number of α-expansion invocations is O(|L|)
and each invocation is a much smaller problem than running raw α-expansion. Second, since
the label hierarchy has a tree structure, the for-loop (line 4) can be executed in parallel. This
allows for a number of simultaneous instances of α-expansion, each fusing a different subset
of nodes, ensuring full utilization of CPU resources on modern multi-core systems3.

We now arrive at a key result that precisely characterizes the class of smooth costs that
h-fusion can handle.

Theorem 5.12. The h-fusion algorithm is applicable for smooth cost potential V using label
hierarchy π if and only if (V, π) forms an h-metric.

3However, parallel max-flow/min-cut algorithms such as [35, 135, 104] are still of importance, even in our
scenario. In a shared-memory architecture, if each thread frequently reads/writes to memory outside its cache
(large working-set size) then bus contention inhibits parallelism. Each thread in a parallel max-flow algorithm has
a smaller working-set size than do many threads each with their own full graph to handle. One should therefore
consider a balanced approach when experimenting with parallel graph cut techniques.

5.4. APPROXIMATION BOUND OF h-FUSION (WITHOUT LABEL COSTS) 91

Proof. As discussed in [24, 87], a metric V can be optimized by α-expansion if and only if it
satisfies

V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α) ∀α ∈ L, β, γ ∈ L \ {α} (5.13)

The above constraint is usually stated as holding for arbitrary α, β, γ ∈ L, rather than only
for β, γ ∈ L \ {α}. Although this distinction does not matter for α-expansion, it matters for
h-fusion and so we explicitly start from (5.13).

In the h-fusion case, each local fusion metric V ′
pq on line 2 of SETUPFUSION must satisfy

this constraint and so α-expansion can fuse a collection of labelings {f̂ i}i∈I(j) if and only if

V (f̂ i
p, f̂

i
q) + V (f̂ i′

p , f̂
i′′

q) ≤ V (f̂ i
p, f̂

i′′

q) + V (f̂ i′

p , f̂
i
q) ∀ i ∈ I(j), i′, i′′∈ I(j) \ {i} (5.14)

Note that f̂ i
p and f̂ i

q could each be any label in Li and are not necessarily identical, unlike the
α-expansion case. The constraints on the original metric V for h-fusion will therefore be more
restrictive than for α-expansion. Since inequality (5.14) must hold for all possible labelings
f̂ i, f̂ i′ , and f̂ i′′ then it is equivalent to

V (α1, α2) + V (β, γ) ≤ V (α1, γ) + V (β, α2) ∀α1, α2 ∈ Li, β, γ ∈ Lj \ Li (5.15)

Since j = π(i) then inequalities (5.15) are identical to (5.3), completing the proof. �

Note that for any metric V we can choose a flat tree structure, i.e. π(ℓ) = r for all ℓ ∈
L, so that (V, π) forms an h-metric. Applying h-fusion in this degenerate case is identical
to the standard α-expansion algorithm, so h-fusion inherits at least one basic approximation
guarantee. However, for many potentials V a different choice of tree structure yields a better
approximation guarantee for our h-fusion algorithm, as we shall prove in Section 5.4.

5.4 Approximation Bound of h-Fusion (without label costs)
Our goal is to derive an optimality bound, and approximation guarantee, analogous to the ones
for standard α-expansion derived in [24] and in Chapter 4. Like α-expansion’s bound, the
quality of our new bound is energy-dependent, and therefore instructs us on a case-by-case
basis as to how much confidence we should place in the algorithm. Our improved bound
generalizes that of α-expansion but is more complex to express. We begin by defining some
quantities that are useful for understanding the nature of h-fusion.

Definition 5.13. Given an h-metric (V, π) we define the additional quantities

bj = aj + max
i∈I(j)

bi c = max
j∈S∪{r}

bj
dj

where we use shorthand aj = V max
j and dj = V min

j (see Definition 5.7).

The quantity c is most important because we will use it to bound the worst-case approxi-
mation error of the h-fusion algorithm.

92 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

0 1
8

1
0
0

8

0 1
3

1 0

3
0 1
1 0

V1

value of c for each
pair (V,π) shown

V2 V3

πa πb πc

πb

πa

πc

V1 V2 V3

0 1

3
1
0
0

3

0
0
0 1
1 0

0

30
0

3

0
0
0
0

12/8

9/3

8/13/3

9/3

6/3 4/3

3/1

7/3

example metrics V with tree π that achieves minimal c

(minimal c circled)

Figure 5.5: The top row shows three example smooth cost matrices. The first is a standard (flat) Potts
potential with penalty V1(ℓ, ℓ

′) = 3 for any ℓ ̸= ℓ′ and so c = 1 for a flat tree πa. Metrics V2 and V3 have
varying penalties and so a flat tree yields c = 5 and c = 8 respectively. However, by applying h-fusion
on tree structures πb and πc respectively (bottom row), we can achieve better c for these particular
metrics. The table at right shows other values of c and demonstrates that the choice of tree is very
important for achieving a good bound.

Observation 5.14. If π defines a ‘flat’ tree, i.e. S = {} and so all π(ℓ) = r, then constant c in
Definition 5.13 reduces to the same constant used in the well-known α-expansion bound:

c =
maxα,β∈L V (α, β)

minγ ̸=ζ∈L V (γ, ζ)

As we will show, the main benefit of h-fusion is that, when the ratio c above is large for
standard α-expansion, choosing a non-flat tree structure π can result in a much smaller constant
and thereby a better approximation guarantee than attainable through α-expansion alone. The
easiest way to understand how V and π affect bound c is by looking at a few numeric examples.
Figure 5.5 examines specific values of c for various pairs of smooth cost matrices V and tree
structures π. These examples suggests that for each V one wishes to optimize there exists an
optimal choice of π to give the best approximation guarantee. Since for every metric V we can
use a flat tree, then there always exists a tree for which h-fusion’s guarantees are as good or
better than those of α-expansion.

We now state the formal property of h-fusion that makes it an improvement over standard
α-expansion, namely a better approximation guarantee when V affords an h-metric (V, π) with
small coefficient c as suggested by Figure 5.5. In what follows we assume that energy (5.2) is
configured so that Dp ≥ 0, V is a metric [24], and thus E(f) ≥ 0.

Theorem 5.15. If f ∗ is a global minimum of energy (5.1) where all H(L) = 0, and f̂ is a local
minimum of h-fusion on a tree structure π, then

E(f̂) ≤ 2cE(f ∗) (5.16)

where constant c is determined by V and π as in Definition 5.13.

Proof. Without loss of generality we assume that all weights are wpq = 1. Consider any local
minimum f̂ j computed by h-fusion at internal node j ∈ S ∪ {r}, and let us choose some child

5.4. APPROXIMATION BOUND OF h-FUSION (WITHOUT LABEL COSTS) 93

node i ∈ I(j). We first define a useful set of pixels with respect to a global optimum f ∗ as

Pi
def
= { p : f ∗

p ∈ Li }.

This set contains all pixels assigned a label within subtree i, and so for any other child i′ ̸= i

we know that Pi ∩ Pi′ = ∅.
We can produce a labeling f̂ j⊗i within one h-fusion move from local minimum f̂ j as fol-

lows:

f̂ j⊗i
p

def
=

{
f̂ i
p if p ∈ Pi

f̂ j
p otherwise.

Since each f̂ j is known to be a local optimum w.r.t. expansion moves for each i ∈ I(j) we
know that

E(f̂ j) ≤ E(f̂ j⊗i). (5.17)

The general strategy to use (5.17) for different i to build an inequality that is ultimately of the
form E(f̂ j) ≤ E(f ∗)+error. This will be achieved by breaking the energy terms in E into
parts in such a way that a recursive inequality can be established. The recursive inequality will
then be expanded until all terms can be bounded relative to E(f ∗).

LetE(·)|A denote a restriction of the summands of energy (5.2) to only the following terms:

E(f)|A
def
=
∑
p∈A

Dp(fp) +
∑
pq∈A

V (fp, fq).

We separate the unary and pairwise terms of E(f) via interior, exterior, and boundary sets with
respect to pixels Pi:

Ai = Pi ∪ { pq ∈ N : p, q ∈ Pi }
Ai = P \ Pi ∪ { pq ∈ N : p, q ̸∈ Pi }
∂Ai = { pq ∈ N : p ∈ Pi, q ̸∈ Pi }.

The following facts now hold:

E(f̂ j⊗i)|Ai
= E(f̂ i)|Ai

(5.18)

E(f̂ j⊗i)|Ai
= E(f̂ j)|Ai

. (5.19)

Using (5.18) and (5.19) we can cancel out all the Ai terms and rewrite (5.17) as

E(f̂ j)|Ai∪∂Ai
≤ E(f̂ i)|Ai

+ E(f̂ j⊗i)|∂Ai
(5.20)

For each i ∈ I(j) inequality (5.20) contains a subset of all the energy terms in E(f̂ j)|Aj

pertaining to pixels Pi. Let I∗ = {i ∈ I(j) : Pi ̸= ∅} be the set of children whose sub-trees
contain a label used by f ∗. If we sum inequality (5.20) over all i ∈ I∗, the left-hand side will
contain all the terms in E(f̂ j)|Aj

(and more). Adding up all the left-hand sides we have∑
i∈I∗

E(f̂ j)|Ai∪∂Ai
= E(f̂ j)|Aj∪∂Aj

+
∑
i∈I∗

E(f̂ j)|∂Ai\∂Aj
≥ E(f̂ j)|Aj

. (5.21)

94 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

Using (5.21) and likewise adding up the right-hand sides of (5.20) we have

E(f̂ j)|Aj
≤
∑
i∈I∗

E(f̂ i)|Ai
+ E(f̂ j⊗i)|∂Ai

(5.22)

=
∑
i∈I∗

E(f̂ i)|Ai
+ E(f̂ j⊗i)|∂Ai∩∂Aj

+ E(f̂ j⊗i)|∂Ai\∂Aj
(5.23)

=
∑
i∈I∗

E(f̂ i)|Ai
+
∑

pq∈∂Ai∩∂Aj

V (f̂ i
p, f̂

j
q) +

∑
pq∈∂Ai\∂Aj

V (f̂ i
p, f̂

j
q) (5.24)

The first important observation about (5.24) is that each term E(f̂ i)|Aj
on the right-hand

side can be substituted by recursively applying the inequality itself. We can recursively sub-
stitute, branching further and further down the tree, until the path finally stops at a leaf ℓ ∈ L
giving us base case E(f̂ ℓ)|Aℓ

=
∑

p∈Pℓ
Dp(f

∗
p). The sets {Pℓ}ℓ∈L must be disjoint and their

union is Pj so expression (5.24), when fully expanded, becomes

=
∑
p∈Aj

Dp(f
∗
p) + pairwise terms of the form V (f̂ i

p, f̂
π(i)
q). (5.25)

The second observation about (5.24) is that each edge pq on an outer boundary ∂Ai ∩ ∂Aj

appears once in the sum over I∗ whereas each edge on an interior boundary ∂Ai \∂Aj appears
twice: once for p ∈ Ai and once for some q ∈ Ai′ . Example 5.16, located after this proof,
attempts to visualize this double-counting of pairwise terms. By careful accounting we collect
all the V (f̂ i

p, f̂
π(i)
q) terms generated by the recursive substitution and express (5.24) as4

=
∑
p∈Aj

Dp(f
∗
p) +

∑
pq∈Aj

 ∑
i∈J (f∗

p ;f
∗
q)

V (f̂ i
p, f̂

π(i)
q) +

∑
i∈J (f∗

q ;f
∗
p)

V (f̂π(i)
p , f̂ i

q)

 (5.26)

where we define J (ℓ; ℓ′) to be the set of nodes along the path from a label ℓ ∈ L up to, but not
including, the lowest common ancestor of ℓ and ℓ′, namely

J (ℓ; ℓ′) =
{
ℓ, π(ℓ), . . . , πn−1(ℓ)

}
where πn(ℓ) = lca(ℓ, ℓ′).

All that remains is to bound each V (f̂ i
p, f̂

π(i)
q) in terms of V (f ∗

p , f
∗
q) using the factors

ai, bi, di described in Definition 5.13. For a particular edge pq shown in (5.26) we must have
each V (f̂ i

p, f̂
π(i)
q) ≤ aπ(i) and so their sum is∑

i∈J (f∗
p ;f

∗
q)

V (f̂ i
p, f̂

π(i)
q) ≤ aπ(f∗

p) + · · ·+ alca(f∗
p ,f

∗
q) ≤ blca(f∗

p ,f
∗
q). (5.27)

We also know that V (f ∗
p , f

∗
q) ≥ dlca(f∗

p ,f
∗
q) so we can use ratio

blca(f∗p ,f∗q)

dlca(f∗p ,f∗q)
to bound the approxi-

mation error at each edge pq appearing in (5.26), giving upper-bound

≤
∑
p∈Aj

Dp(f
∗
p) +

∑
pq∈Aj

(
2

blca(f∗p ,f∗q)

dlca(f∗p ,f∗q)
V (f ∗

p , f
∗
q)

)
. (5.28)

4Due to our assumption that V (ℓ, ℓ) = 0 we can simply sum over all pq ∈ Aj instead of only where f∗
p ̸= f∗

q .

5.4. APPROXIMATION BOUND OF h-FUSION (WITHOUT LABEL COSTS) 95

If j is the root of the tree, then {p ∈ Aj} = P and {pq ∈ Aj} = N . Using the fact that any
ratio bi

di
is bounded from above by quantity c (Definition 5.13) we arrive at

≤
∑
p∈P

Dp(f
∗
p) + 2c

∑
pq∈N

V (f ∗
p , f

∗
q) (5.29)

= E(f ∗) + (2c− 1)
∑
pq∈N

V (f ∗
p , f

∗
q) (5.30)

≤ 2cE(f ∗). (5.31)

This completes the proof that E(f̂) ≤ 2cE(f ∗) where f̂ is the labeling generated at the root of
the tree. �

Theorem 5.15 is important because it helps us to better understand the energy-dependent
qualities that make h-fusion a strong algorithm. Again, the key coefficient is c and one can
look at Figure 5.5 to see numerical values of c on a few examples. To better understand the
idea of the proof itself, we provide the following example.

Example 5.16. The following is meant to help understand how the proof of Theorem 5.15
works. An example h-Potts potential (V, π) is shown below, at left, for a 5-label energy. Sup-
pose that we ran h-fusion on a small 5 × 5 pixel grid P with simple nearest-neighbour edges
N , and the result was local minimum f̂ 7 shown below (computed by fusing f̂ 6 and labels 4, 5).
If the global optimum is f ∗ shown at right, then clearly there is some approximation error.

0 w
6

w
7

w
6

0
0

w
7

0
0

V(ℓ, ℓ′) f̂ 7

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

f∗

1 1 1 4 4

1 1 1 4 4

1 1 1 4 4

2 2 2 4 4

2 2 2 4 4

f̂ 6

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 3 3 3 31 2 3

4 5

6

7

⇔

The key step is to understand how recursive application of (5.24) can transform f̂ 7 into f ∗

while accumulating a bounded amount of error. Below (at left) we see each pq ∈ ∂A6 in the
labeling f̂ 7⊗6 can be bounded above by V max

7 = w7. Going deeper in the recursion (center) we
see that each edge pq ∈ ∂A1 in f̂ 6⊗1 can likewise be bounded by V max

6 = w6. Each such edge
appears again when the other side is recursively descended, e.g. as part of ∂A4 (at right).

1 1 1 3 3

1 1 1 3 3

1 1 1 3 3

3 3 3 3 3

3 3 3 3 3

f̂ 7⊗6 f̂ 6⊗1

3 3 3 5 5

3 3 3 5 5

3 3 3 5 5

3 3 3 5 5

3 3 3 5 5A6

A1

V (f̂ 6p , f̂
7

q) ≤ w7 V (f̂ 1p , f̂
6

q) ≤ w6

f̂ 7⊗4

5 5 5 4 4

5 5 5 4 4

5 5 5 4 4

5 5 5 4 4

5 5 5 4 4 A4

V (f̂ 7p , ℓ4) ≤ w7

3 3 3 3 33 3 3 5 5A6 5 5 5 4 4 A4

Now consider a worst-case example for h-fusion, where the local minima {f̂ i} are poor
approximations all the way up the hierarchy. We will use this example to show that there are
problem instances for which the optimality bound of Theorem 5.15 is tight.

96 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

Example 5.17. Consider an energy with labels ℓ1, . . . , ℓ7 and only two variables P = {p, q}.
We use h-Potts potential (V, π) shown below, at left. The h-fusion algorithm will first compute
some labelings f̂ 1, f̂ 2 and then compute f̂ 3 as the solution. However, if the data costs Dp(·)
and Dq(·) are of the form shown below, at right, then h-fusion can propagate approximation
errors up the hierarchy. Specifically, A ≤ w1, B ≤ A+ w2, and K is a large constant.

V(ℓ, ℓ′)

0 w
1

0 w
2

w
1

0
0 w

1

0
w
2

w
1

0
0

ℓ
1 ℓ

2 ℓ
3

ℓ
7

⇔

0 2K
K K

A A+K
2K 0
K K

A+K A

B B

data costs

ℓ
1

ℓ
2

ℓ
3

ℓ
4

ℓ
5

ℓ
6

ℓ
7

p q

1 2

3

ℓ
4 ℓ

5 ℓ
6

f̂1 = (ℓ3, ℓ3)

f̂ 2 = (ℓ6, ℓ6)

f̂ 3 = (ℓ7, ℓ7)

possible h-fusion process

To clarify, f̂ 1 = (ℓ3, ℓ3) is a local minimum for α-expansion on the first three labels if A ≤ w1

because neither f̂ 1
p nor f̂ 1

q wish to change to ℓ1 or ℓ2 respectively. Likewise from f̂ 2. The data
costs are designed to incur the same problem when labelings f̂ 1, f̂ 2 and label ℓ7 are fused to
generate f̂ 7, i.e. that (ℓ7, ℓ7) is a local minimum if B ≤ A+ w2.

In Example 5.17 we can see that E(f̂ 3) = 2B which we can assume to be 2(w1+w2) in the
worst case. It follows by inspection that f ∗ = (ℓ1, ℓ4) is the optimal labeling and E(f ∗) = w2.
We therefore have an approximation error of 2w1+w2

w2
which is equal to twice the constant c from

Definition 5.13. The tree structure from Example 5.17 can be extended to arbitrary height k in
a pattern that causes approximation error of 2w1+w2+···wk

wk
= 2c at the root labeling. This leads

to an important observation about Theorem 5.15.

Observation 5.18. Example 5.17 demonstrates a class of worst-case energies for which the
approximation bound in Theorem 5.15 is tight.

5.5 Hierarchical Fusion with Label Costs
By now we have characterized the class of hierarchical smooth costs (h-metrics) that can be
optimized by our h-fusion algorithm. We now turn our attention to another important kind
of energy term: label costs. Chapter 4 already demonstrated how label costs are useful in
computer vision, especially in conjunction with smooth costs. In particular, the “category
costs” mentioned in Section 4.8 are a kind of label subset cost that are useful for modeling a
number of inference problems.

However, a major conclusion from that chapter (Theorem 4.1) was that the α-expansion
algorithm has poor optimality guarantees for in the case of label subset costs. If the energy
contains a cost H(L) assigned to label subset L ⊆ L, then the worst-case the approximation
error can multiply by a factor of |L|. The worst-case example on page 50 shows precisely
how local minima occur when |L| is large. In fact our entire h-fusion algorithm was originally
motivated by the need to handle label costs that were problematic for α-expansion. We will
show that, when label subset costs are involved (|L| > 1), our h-fusion algorithm significantly
improves upon the theoretical error bounds of α-expansion, i.e. upon Theorem 4.1.

5.5. HIERARCHICAL FUSION WITH LABEL COSTS 97

(a) use lines only (b) use circles only (c) use lines & circles

1 2

tree structure

lines circles

Figure 5.6: Result (a) is a straight-forward example of line-fitting via the PEARL procedure used in
Chapter 4. The same procedure can be used for circle-fitting (b). When fitting a mixture of lines
and circles (c) the random proposals naturally form two groups we can call 1 and 2. Adding costs
H(L1),H(L2) > 0 causes the energy to prefer solutions that explain the data using only one of the two
groups (unless the data strongly justifies both categories, i.e. category costs from Section 4.8).

It is natural to ask, “in what sense are label subset costs ‘hierarchical’?” The answer is that
the subsets themselves may be nested in a way that corresponds to a hierarchy. In the simplest
scenario, assume we have in mind a specific label hierarchy π with labels L and pseudo-labels
S . Associated with each tree node i ∈ L ∪ S is a one-time cost H(Li) for using any label
in its corresponding subtree5. Figure 5.6 shows a toy application of this sort, where we want
basic per-label costs as well as group costs. In these simple scenarios, label costs are ‘nested’
in the sense that the sets {Li}i∈I(j) are disjoint and their union forms Lj . Such subsets form a
hierarchy of label costs that precisely mirrors the tree structure of π. We will make the concept
of hierarchical label costs more precise in Definitions 5.21 and 5.24.

We are now ready to generalize our h-fusion algorithm so that it can handle both h-metric
smooth costs and hierarchical label costs. There are four main steps in this section:

1. understand how label costs affect the multi-label fusion energy,
2. determine what class of label costs can be optimized by h-fusion,
3. extend the pseudocode for SETUPFUSION from Section 5.3, and
4. generalize our approximation bound for h-fusion from Section 5.4.

Ultimately we must extend the pseudocode for SETUPFUSION so that, when the fusion energy
E ′ is configured, all relevant label costs in the original energy E are accounted for. The neces-
sary changes and limitations can be understood from the following examples. (It may help to
review local label costs HP (·) from Section 4.3.4.)

Example 5.19. Suppose we have the label hierarchy shown below, at left, along with two child
labelings f̂ 1 and f̂ 2. We wish to compute the final labeling f̂ 3.

ℓ
1

ℓ
2

1 2

ℓ
3

ℓ
2ℓ

1

f̂1 f̂2labeling labeling

ℓ
4

ℓ
3

ℓ
4

3

5Recall Li = {ℓ ∈ L : ℓ ∈ subtree(i)} is the set of labels (leaves) within the subtree of node i (Definition 5.4).

98 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

Assume label costs H(L) > 0 for label subsets L ∈ {{ℓ1}, {ℓ2}, {ℓ3}, {ℓ4}, {ℓ1, ℓ2}, {ℓ3, ℓ4}}.
When computing f̂ 3, the multi-label fusion energy E3 must correctly account for all H(L) in
the original energy. This is accomplished by using the following label cost terms to E3, four of
which are local to specific pixel subsets:

H ′(1) := H({ℓ1, ℓ2})

H ′(2) := H({ℓ3, ℓ4})

H ′

B∪C(1) := H(ℓ1)

H ′

A∪D(1) := H(ℓ2)

H ′

A∪B(2) := H(ℓ3)

H ′

C∪D(2) := H(ℓ4)

B
C

D

A

subsets of pixels for E3

The local label costs H ′
P (I) above are needed to ensure that the true label costs are correctly

encoded. For example, the fusion labeling below at left should pay all label costs exceptH(ℓ3),
whereas the fusion labeling at right should pay all costs except H(ℓ2).

ℓ
1

ℓ
2

ℓ
4

ℓ
1

ℓ
3

ℓ
4

1 2 ⇒

f̂3possible f̂3possible

1
2 ⇒

The key observation of Example 5.19 is that many of the global label costs in the original
energy become local label costs in the corresponding fusion energy. This occurs because, for
any labeling f̂ i being fused, a particular label ℓ ∈ Li need only occupy a small portion of f̂ i.
The label cost H(ℓ) should only be paid if index i is chosen for at least one of those specific
pixels—the remaining pixels cannot introduce label ℓ. The same is generally true for a label
subset cost H(L) for some L ⊆ L, except the situation becomes more complex and there are
potential problems. As the next example will show, it is possible that for some L the label cost
H(L) of the original energy cannot be converted to local label costs in the fusion energy. This
has implications for the kinds of energies we can optimize with h-fusion.

Example 5.20. Suppose we have the same label hierarchy as Example 5.19, but this time we
have the child labelings f̂ 1 and f̂ 2 shown below.

ℓ
1

ℓ
2

1 2
ℓ
3

ℓ
2

ℓ
1

f̂1 f̂2labeling labeling

ℓ
4

ℓ
3

ℓ
4

3

B

C
A

subsets of pixels for E3

Assume the original energy contains a label subset cost H({ℓ1, ℓ4}) > 0. This cost should
be paid in fusion energy E3 if any pixel in A is assigned pseudo-label 1 or any pixel in B is
assigned pseudo-label 2. Because each region is ‘activated’ by a different label in the fusion
energy, this kind of potential is not the kind of label cost we have dealt with thus far.

5.5. HIERARCHICAL FUSION WITH LABEL COSTS 99

Example 5.20 begs the question: even though H({ℓ1, ℓ4}) cannot be encoded by a label
cost in the fusion energy, can it be encoded anyway and still be optimized by α-expansion?
The answer is no, because the resulting energy potential is not submodular (Section 2.1.3) with
respect to expansion moves. This can be seen in Example 5.20 by the fact that, if we let E(i, i′)
denote the label cost of assigning index i to pixels A and index i′ to pixels B, then

E(1, 1) + E(2, 2) = 2H({ℓ1, ℓ4}) > H({ℓ1, ℓ4}) = E(1, 2) + E(2, 1). (5.32)

The above inequality means that a label cost H({ℓ1, ℓ4}) > 0 in the original energy can cause
a supermodular potential in the fusion energy, and thus expansion moves are not applicable.
In fact because this example has only two labels, we can conclude that the αβ-swap algorithm
is also inapplicable inside the h-fusion step. Therefore, we must be careful that our h-fusion
algorithm is used only when situations resembling Example 5.20 are impossible. That is why
we introduced the concept of hierarchical label costs (Definition 5.24), and the simpler special
case of tree-structured label costs (Definition 5.21) below.

Definition 5.21. Given a tree structure π we say that (H, π) forms “tree-structured label costs”
if H(L) > 0 ⇒ L ∈ {Li}i∈L∪S .

An energy E(f) has tree-structured label costs if, with respect to some tree, the energy can
be written as

E(f) =
∑
p∈P

Dp(fp) +
∑
pq∈N

wpq ·V (fp, fq) +
∑

i∈L∪S

H(Li)· δLi
(f). (5.33)

To motivate the above definition, we immediately state an approximation result concerning
such energies.

Theorem 5.22. Suppose f ∗ is a global minimum of an energy with h-metric (V, π) and tree-
structured label costs (H, π). If f̂ is a local minimum of h-fusion, then

E(f̂) ≤ 2cE(f ∗) +
∑

i∈L∪S

H(Li) (5.34)

where constant c is determined by V and π (Definition 5.13).

The multiplicative coefficient of 2c in Theorem 5.22 is a substantial improvement over the
analogous coefficient (2c + c′) for standard α-expansion (Theorem 4.1 on page 47). Recall
that coefficient c′ = maxH(L)>0 |L| − 1 and so, for an energy with tree-structured label costs,
c′ = maxi∈I(r) |Li| − 1 where r is the root of the tree. This coefficient can be very large and so
α-expansion’s optimality guarantees are poor in this case. Our h-fusion algorithm eliminates
the factor of c′ entirely and gives the best known approximation bounds for these kinds of
hierarchical energies.

Instead of proving bound (5.34) directly, we will show that it follows from a more general
theorem. Our h-fusion algorithm can actually handle a wider class of label costs that are still
‘hierarchical’ but not necessarily tree-structured.

100 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

Definition 5.23. Given a tree structure π, its “hierarchical label subsets” is the set

H =
{
L : (L ∩ Li = ∅ ∨ L ⊂ Li ∨ L ⊇ Li) ∀ i ∈ S ∪ {r}

}
(5.35)

An equivalent definition is to say that a subset L ⊆ L belongs to H if and only if L = ∪i∈ILi

for some (possibly empty) set of sibling nodes I in the tree. For example, let us assume
L = {ℓ1, . . . , ℓ6} and the label hierarchy contains three simple groups S = {7, 8, 9} with
L7 = {ℓ1, ℓ2},L8 = {ℓ3, ℓ4},L9 = {ℓ5, ℓ6}. The hierarchical subsets are

H =
{
{},{ℓ1}, {ℓ2}, {ℓ3}, {ℓ4}, {ℓ5}, {ℓ6},

{ℓ1, ℓ2}, {ℓ3, ℓ4}, {ℓ5, ℓ6},
{ℓ1, ℓ2, ℓ3, ℓ4}, {ℓ1, ℓ2, ℓ5, ℓ6}, {ℓ3, ℓ4, ℓ5, ℓ6}
{ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6}

}
.

(5.36)

The sets of cardinality four in (5.36) are not tree-structured label costs, but they are hierarchical
in a sense that we can optimize. Note that sets like {ℓ2, ℓ3} and {ℓ1, ℓ2, ℓ3} are not in H because
they cannot be generated from a union of siblings in the particular hierarchy chosen.

Definition 5.24. Given a tree structure π we say that (H, π) form “hierarchical label costs” if
H(L) > 0 ⇒ L ∈ H.

As we shall see, if an energy E(f) has hierarchical label costs with respect to some tree,
then E(f) can be minimized by h-fusion on that tree. On the other hand, if the label costs are
not hierarchical (e.g. arbitrary subsets L ⊆ L) then there are cases where h-fusion can only be
applied with a ‘flat’ tree and is therefore equivalent to standard α-expansion.

Observation 5.25. Tree-structured label costs are a sub-class of hierarchical label costs. This
follows from the fact that {Li}i∈L∪S ⊆ H for any tree structure, as can be seen by collecting
only those elements of (5.35) for which |I| = 1.

We are finally ready to generalize the pseudocode for SETUPFUSION (Section 5.3) to han-
dle label costs. Keep in mind that the particular steps on lines 4–6 are intended to be a correct
encoding only for hierarchical label costs, and would not always be correct for arbitrary L ⊆ L.

SETUPFUSION(E, π, j) with label costs

1 D′
p(i) := Dp(f̂

i
p) ∀ p ∈ P, i ∈ I(j)

2 V ′
pq(i, i

′) := wpq ·V (f̂ i
p, f̂

i′
q) ∀ pq ∈ N , i, i′ ∈ I(j)

3 for each L ∈ H such that H(L) > 0

4 I := { i ∈ I(j) : L ∩ Li ̸= ∅ } // indices of labelings containing L

5 P := { p ∈ P : ∃f̂ i
p ∈ L, i ∈ I } // pixels where some labeling is in L

6 H ′
P (I) := H(L) // convert H(L) into regional label cost for E′

7 end
8 return E′ = (D′, V ′,H ′)

Note that on line 3 that for any L ⊇ Lj the corresponding I is the full set of indices I(j), so
these label costs are always paid for the subproblem at node j; we can optionally omit these
label costs, and the fusion energy at node j will still be correct up to an additive constant.

5.5. HIERARCHICAL FUSION WITH LABEL COSTS 101

Theorem 5.26. The h-fusion algorithm is correct with hierarchical label costs.

Proof. We must prove that the multi-label fusion energy E ′ created by SETUPFUSION is con-
sistent with the original energy E. Let g :P →I(j) be the labeling of E ′ that indexes the local
minima {f̂ i}, and let f(g) be the corresponding labeling of E defined by fp(gp) = f̂

gp
p . We

must confirm that E ′(g) = E(f(g)) for all possible configurations of g.
The correctness of D′ and V ′ are self-evident. Given a particular label subset L with

H(L) > 0, the correctness of H ′ reduces to showing that δL(f(g)) = δI(gP) where indices I
and pixels P are as defined on lines 4 and 5. In other words, we must have

∃f̂ gp
p ∈ L, p ∈ P if and only if ∃gp ∈ I, p ∈ P (5.37)

where we know that f̂ gp
p ∈ Lgp . Because we assume hierarchical label costs (Definition 5.23),

each L belongs to one of four cases.

1. If L ∩ Li = ∅ for all i ∈ I(j), then we know that any f̂ gp
p /∈ L. Therefore setting I = ∅

ensures δL(f(g)) = δ∅(gP) = 0 which is correct.
2. If L ⊂ Li for some i ∈ I(j), then I = {i} and P = {p : f̂ i

p ∈ L}. Clearly if gp ̸= i

then f̂ gp
p /∈ L and so f(g) contains a label in L if and only if gp = i for some p ∈ P .

Therefore δL(f(g)) = δi(gP) holds in this case.
3. If Li ⊆ L ⊂ Lj for some i ∈ I(j), then clearly P = P . By the hierarchical label costs

assumption we must also have L = ∪i∈ILi, and so δL(f(g)) = δI(g) holds in this case.
4. If L ⊇ Lj then H(L) can be added to the energy as a constant or simply ignored.

�

Looking at the proof of Theorem 5.26 we can see that the special structure of hierarchical
label costs is especially needed for the third case. If it were possible to have a subset L ⊃ Li

that could not be written as a union of i’s siblings, then problematic cases like Example 5.20
would be possible. The resulting fusion energy could not be minimized by α-expansion be-
cause the internal binary steps would be non-submodular and potentially NP-hard.

To understand the kind of situation where h-fusion is clearly a good idea, consider the
problem instance in the example below. It is modeled after the simplest application of label
subset costs, such as the scenario in Figure 5.6.

Example 5.27. Suppose we have variables P = {p1, . . . , pn} and labels L = {ℓ1, . . . , ℓ2n}.
The labels are grouped into L1 and L2 as shown at left, and the data costs Dp(·) are shown in
a table where a > 0. We assume label costs H(L1) = H(L2) = h for some constant h > 0,
and assume no smooth costs at all.

1 2

ℓ
1

ℓn ℓn+1 ℓ2n

a a

a a

0 ∞

∞ 0

data costs p
1

pn
ℓ
1

ℓn
ℓn+1

ℓ2n

h

h

label costs

f̂ = (ℓ1 , . . . , ℓ1)

f∗ = (ℓn+1, . . . , ℓ2n)

for α-expansion

3

102 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

So long as a ≤ h the α-expansion algorithm will consider f̂ shown above to be a local min-
imum. Since E(f̂) = na ≤ nh and E(f ∗) = h, the approximation error for α-expansion is
linear in n. The h-fusion algorithm will compute intermediate labelings f̂ 1 = f̂ and f̂ 2 = f ∗,
then fuse them to return f̂ 3 = f ∗ as the (globally optimal) final result.

We now focus our attention to the issue of theoretical approximation bounds. Example 5.27
showed a simple case with tree-structured label costs where h-fusion is a clear improvement
over α-expansion. It turns out that the cardinality of I on line 4 of SETUPFUSION is an impor-
tant quantity in the approximation bound for h-fusion. In general, the smaller the quantity |I|
when I ⊂ I(j), the better the approximation guarantees. We define a more general version of
constant c′ to incorporate this quantity, so that we may use it to express the bounds of h-fusion
in our main Theorem 5.30.

Definition 5.28. We let c′ denote the maximum cardinality of any index set I (SETUPFUSION,
line 4) that is a strict subset of I(j), minus 1. That is, the constant

c′ = max
H(L)>0

|I(L)| − 1 where I(L) = I ⊂ I(j) for some j such that
∪
i∈I

Li = L

For example, suppose we again have L = {ℓ1, . . . , ℓ6} and label groups L7 = {ℓ1, ℓ2},L8 =

{ℓ3, ℓ4},L9 = {ℓ5, ℓ6} used to generate (5.36). If our only label cost H(L) > 0 were on subset
L = {ℓ5, ℓ6} then because I(L) = {9} we are left with coefficient c′ = 0. If instead we
have a label cost on any subset L ∈ {{ℓ1, ℓ2, ℓ3, ℓ4}, {ℓ1, ℓ2, ℓ5, ℓ6}, {ℓ3, ℓ4, ℓ5, ℓ6}} we have
in each case I(L) ∈ {{7, 8}, {7, 9}, {8, 9}} yielding coefficient c′ = 1. As we shall see, the
approximation bounds of h-fusion are much stronger for energies where c′ is small.

Observation 5.29. For a ‘flat’ tree structure π, the coefficient c′ reduces to maxH(L)>0 |L| − 1

which is exactly the coefficient used in the approximation bound of standard α-expansion.

We can now state a generalized approximation bound for h-fusion when

Theorem 5.30. Suppose f ∗ is a global minimum of an energy with h-metric (V, π) and hierar-
chical label costs (H, π). If f̂ is a local minimum of h-fusion, then

E(f̂) ≤ (2c+ c′)E(f ∗) +
∑
L∈H

H(L) (5.38)

where c (Definition 5.13) and c′ (Definition 5.28) are constants.

Proof. We generalize the proof of Theorem 5.15. Again, without loss of generality assume
uniform weights wpq = 1. With respect to nodes i, j where i ∈ I(j), we repeat the following
definitions verbatim. First, pixel set Pi based on optimal labeling f ∗

Pi
def
= { p : f ∗

p ∈ Li }.

Then, a fusion move f̂ j⊗i based on two local minima f̂ j and f̂ i

f̂ j⊗i
p

def
=

{
f̂ i
p if p ∈ Pi

f̂ j
p otherwise.

5.5. HIERARCHICAL FUSION WITH LABEL COSTS 103

The restriction of energy (5.1) to a subset of energy terms A

E(f)|A
def
=
∑
p∈A

Dp(fp) +
∑
pq∈A

V (fp, fq).

Finally, a partition of all energy terms into the following sets

Ai = Pi ∪ { pq ∈ N : p, q ∈ Pi }
Ai = P \ Pi ∪ { pq ∈ N : p, q ̸∈ Pi }
∂Ai = { pq ∈ N : p ∈ Pi, q ̸∈ Pi }.

Recall that the main strategy of the proof is to start from local minimum f̂ j and recursively
transform it into f ∗ via a set of expansion moves (fusion moves). Each move contributes an
‘error’ of sorts, but we can bound the total error by careful use of the following fact: each
labeling f̂ j is a local minimum w.r.t. expansion moves, and so for all i ∈ I(j) we must have

E(f̂ j) ≤ E(f̂ j⊗i). (5.39)

The new element in this proof is the possibility of label costs in the energy E. Let EH(f)

denote the total label cost incurred by a labeling f , i.e. the sum of label cost terms. We can
bound the label cost EH(f̂

j⊗i) of our fused labeling by

EH(f̂
j⊗i) ≤ EH(f̂

j) +
∑

L⊆L\L̂j

L∩L̂i ̸=∅

H(L) (5.40)

where L̂j and L̂i are the sets of unique labels appearing in f̂ j and f̂ i respectively.
Looking at the key inequality (5.39), recall from Theorem 5.15 that we can break the energy

terms on each side into parts based on sets Ai,Ai, and ∂Ai. Because E(f̂ j⊗i)|Ai
= E(f̂ j)|Ai

these terms cancel out, and we can substitute E(f̂ j⊗i)|Ai
= E(f̂ i)|Ai

. Along with bound (5.40)
and canceling the EH(f̂

j) terms we can now rewrite (5.39) as

E(f̂ j)|Ai∪∂Ai
≤ E(f̂ i)|Ai

+ E(f̂ j⊗i)|∂Ai
+

∑
L⊆L\L̂j

L∩L̂i ̸=∅

H(L) (5.41)

Again, let I∗ = {i ∈ I(j) : Pi ̸= ∅} be the set of child nodes that contain a label
used by f ∗ in their subtree. We sum inequality (5.41) over all i ∈ I∗ to arrive at a recursive
expression, this time incorporating errors incurred by label costs. The key observation is that
a particular label cost H(L) appears once on the right-hand side for each element in the set
I∗
L = {i ∈ I∗ : L ∩ L̂i ̸= ∅}. The sum of inequalities (5.41) thus implies

E(f̂ j)|Aj
≤

(∑
i∈I∗

E(f̂ i)|Ai
+ E(f̂ j⊗i)|∂Ai

)
+

∑
L⊆L\L̂j

H(L) · |I∗
L| (5.42)

104 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

where the quantity in parentheses is identical to that of Theorem 5.15. The above inequality
can be recursively expanded for each E(f̂ i)|Ai

until the recursion stops at a label used by f ∗.
We already know that, after recursive substitution, the quantity in parentheses is bounded by∑

p∈P

Dp(f
∗
p) + 2c

∑
pq∈N

V (f ∗
p , f

∗
q)

However, we must now argue for a bound on the total label cost accumulated by recursive
application of (5.42). The central question is whether a particular subsetL that appears in (5.42)
with |I∗

L| > 0 for node j can appear again when we recursively substitute the children i ∈ I∗.
If the answer were ‘yes’ then each label cost H(L) could appear more than |I∗

L| total times by
the end of recursive expansion, leading to a worse bound. Fortunately, Lemma 5.31 proves that
this is not the case; each L appearing in the sum for j and child i (5.41) can never reappear in
the sums for i or its children.

If we let H∗ denote the set of all subsets L generated by recursive substitution of (5.42), we
can thereby write

E(f̂ j)|Aj
≤
∑
p∈P

Dp(f
∗
p) + 2c

∑
pq∈N

V (f ∗
p , f

∗
q) +

∑
L∈H∗

H(L) · |I∗
L| (5.43)

From now on we assume j is the root of the tree structure, and so f̂ j = f̂ , i.e. the final
labeling output by h-fusion. Note that the left-hand side of (5.43) is still E(f̂ j)|Aj

which
does not include the label costs incurred by f̂ j . By adding EH(f̂

j) to both sides we have
E(f̂ j)|Aj

+ EH(f̂
j) = E(f̂) on the left side, giving a new inequality below.

E(f̂) ≤
∑
p∈P

Dp(f
∗
p) + 2c

∑
pq∈N

V (f ∗
p , f

∗
q) + EH(f̂) +

∑
L∈H∗

H(L) · |I∗
L| (5.44)

= E(f ∗) + (2c− 1)
∑
pq∈N

V (f ∗
p , f

∗
q) + EH(f̂)− EH(f

∗) +
∑
L∈H∗

H(L) · |I∗
L| (5.45)

All that is left is to re-group the summands in the last three terms (the label cost terms) in a
way that proves our theorem. First we rewrite the three sums more explicitly, using L̂ and L∗

to denote the unique labels used by f̂ = f̂ j and f ∗ respectively.∑
L∈H

L∩L̸̂=∅

H(L) −
∑
L∈H

L∩L∗̸=∅

H(L) +
∑
L∈H∗

H(L) · |I∗
L|

=
∑
L∈H

L∩L∗=∅
L∩L̸̂=∅

H(L) −
∑
L∈H

L∩L∗̸=∅
L∩L̂=∅

H(L) +
∑
L∈H∗

H(L) · |I∗
L| (5.46)

First note that if |I∗
L| > 1 then this means L ⊃ Li for some Li ∩ L∗ ̸= ∅ and so L ∩ L∗ ̸= ∅

also. We can break the last sum in (5.46) into two parts based on whether L ∩ L∗ ̸= ∅.

=
∑
L∈H

L∩L∗=∅
L∩L̸̂=∅

H(L) +
∑
L∈H∗

L∩L∗=∅

H(L) −
∑
L∈H

L∩L∗̸=∅
L∩L̂=∅

H(L) +
∑
L∈H∗

L∩L∗̸=∅

H(L) · |I∗
L| (5.47)

5.5. HIERARCHICAL FUSION WITH LABEL COSTS 105

We can also show that L ∈ H∗ ⇒ L ∩ L̂ = ∅ as follows. If L ∈ H∗ then there must be
some node i such that L ∩ L̂i = ∅ and L ⊂ Li. We know from (5.60) in Lemma 5.31 that
L̂∩Li ⊆ L̂i, so this implies ∅ = L∩L̂i ⊇ L∩ (L̂∩Li) = L∩L̂. This means the two leftmost
sums of (5.47) have disjoint L and can be bounded by simply

∑
L∈HH(L). It furthermore

implies that, for every L appearing in the rightmost sum of (5.47), the same L must appear in
the negative sum. Putting these together we have upper bound on label costs

≤
∑
L∈H

H(L) +
∑
L∈H∗

L∩L∗̸=∅

H(L) · (|I∗
L| − 1) (5.48)

≤
∑
L∈H

H(L) + c′ ·
∑
L∈H∗

L∩L∗̸=∅

H(L) (5.49)

≤
∑
L∈H

H(L) + c′EH(f
∗) (5.50)

We can therefore revise bound (5.45) to

E(f̂) ≤ E(f ∗) + (2c− 1)
∑
pq∈N

V (f ∗
p , f

∗
q) + c′EH(f

∗) +
∑
L∈H

H(L) (5.51)

≤ E(f ∗) + (2c− 1)E(f ∗) + c′E(f ∗) +
∑
L∈H

H(L) (5.52)

≤ (2c+ c′)E(f ∗) +
∑
L∈H

H(L) (5.53)

Thus completing the proof. �
Lemma 5.31. If label subset L appears in the summand of (5.41) for node j and child i, then
L does not appear in the summands of (5.41) for any k ∈ subtree(i).

Proof. To be clear, let us restate the claim more formally. Let Hj⊗i denote all subsets L
appearing in the label cost summands of (5.41) when applied to node j and child i, i.e.

Hj⊗i def
= {L : L ∩ L̂j = ∅, L ∩ L̂i ̸= ∅ } (5.54)

We must prove that L ∈ Hj⊗i ⇒ L /∈ Hk⊗l for any k ∈ subtree(i) and l ∈ I(k).
First note that for each L ∈ Hj⊗i we have

L ∩ L̂j = ∅ ⇒ L + Lj (5.55)

L ∩ L̂i ̸= ∅ ⇒ L ∩ Li ̸= ∅ (5.56)

By the hierarchical label cost assumption (Definition 5.23) we can use (5.55) and (5.56) to
conclude that L ∈ Hj⊗i ⇒ L ⊂ Lj .

Now consider the set Hj⊗i ∩ Hk⊗l. By the definition (5.54) an element L of this joint set
must satisfy at least the following conditions:

L ∩ L̂i ̸= ∅ (5.57)

L ∩ L̂k = ∅ (5.58)

L ⊂ Lk. (5.59)

106 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

However, no subset L can satisfy all three conditions, as we now show. In the h-fusion algo-
rithm, if f̂ i contains a label ℓ ∈ Lk, then f̂k must contain ℓ as well—after all, there is no other
way that a label in Lk could have propagated up to f̂ i. This relation can be restated as

L̂i ∩ Lk ⊆ L̂k ∀ k ∈ subtree(i) (5.60)

Starting from (5.57) we can say

L ∩ L̂i ̸= ∅
⇒ L ∩ (L̂i ∩ Lk) ̸= ∅ by (5.59)

⇒ L ∩ (L̂k) ̸= ∅ by (5.60)

which contradicts requirement (5.58). Thus Hj⊗i ∩ Hk⊗l = ∅ for all k ∈ subtree(i) and our
proof is complete. �

Theorem 5.30 is a general result for hierarchical label costs (Definition 5.24), but recall
that tree-structured label costs (Definition 5.21) are a simple special case. We can now prove
Theorem 5.22 simply by proving that constant c′ = 0 for tree-structured label costs.

Proof of Theorem 5.22. Start with the definition of c′ (Definition 5.28), i.e. given some hierar-
chical label costs (H, π)

c′ = max
H(L)>0

|I(L)| − 1 where I(L) = I ⊂ I(j) for some j such that
∪
i∈I

Li = L

It is sufficient to show that if (H, π) forms tree-structured label costs then |I(Li)| = 1 for all
nodes i ∈ L ∪ S . Clearly we must have I(Li) = {i} because ∅ ⊂ Li ⊂ Lj and the Li are
disjoint sets; no Li can be written as the union of other siblings. Therefore |I(L)| = 1 for all
L such that H(L) > 0. �

5.6 Discussion
The main results of this chapter are a characterization of hierarchical costs (h-metrics and
hierarchical subsets), the h-fusion algorithm itself, and a significant improvement on the ap-
proximation bound of α-expansion. These results are theoretical, but we foresee a number of
applications for such energies.

Applications of hierarchical costs Computer vision is full of problems for which hierar-
chical costs are natural. The most obvious is using hierarchical context (e.g. [27]) for image
segmentation, where in theory we could group the labels into some appropriate context as de-
picted at the outset of this chapter. This is a very rudimentary form of context but can be
integrated with segmentation via an energy with hierarchical V and H terms.

In vision it is also common to assign labels that have geometric meaning, such as depths
(e.g. [24, 95]), homographies or motions (e.g. [14, 70]). For example, Isack and Boykov [70]
start with a set of observations (points, matches, etc.) and use random sampling to generate

5.6. DISCUSSION 107

pay-per-line pay-per-familypoint cloud + outliers

outlier label

Figure 5.7: A visual depiction of how hierarchical line fitting might work with label costs. Each label
corresponds to a possible line, and the points want to be labeled by a line that passes nearby. A label
cost H(ℓ) discourages a line from being used unless there are enough points—otherwise the points take
the outlier label (constant penalty per point). However, if we group lines into families of orientation, we
could add group costs H({ℓk, . . .}) and encourage solutions that use a few families of parallel lines.

hundreds of candidate geometric models, much the way RANSAC does [46]. They formulate
the model fitting problem as a labeling problem where each label represents a candidate model.
They find a labeling that corresponds to a good configurations of models, and do this by min-
imizing an energy. However, there are many situations where geometric models fall into a
natural hierarchy. Figure 5.7 is a hypothetical example to illustrate this point. Analogous hi-
erarchical relationships exist between, for example, a fundamental matrix (a rigid motion) and
the family of homographies (families of correspondences) compatible with that fundamental
matrix [63].

Furthermore, hierarchical costs can be useful for detecting patterns, for compression, and
for learning a database of inter-dependent patches from images [59].

Generalizing facility location In the optimization and operations research communities,
uncapacitated facility location (UFL) is a well-studied problem [134]. The UFL problem as-
signs a ‘facility’ to serve each client such that the cost to clients is balanced against the cost
of ‘opening’ facilities. UFL is connected to our energy because if we let L denote the facili-
ties and P denote the clients then every problem instance can be expressed as minimizing an
energy of the form

E(f) = D(f) +
∑
ℓ∈L

H(ℓ)δℓ(f). (5.61)

In vision, the UFL problem has recently been applied to motion segmentation by Li [101] and
by Lazic et al. [97].

There exist variants of UFL that allow for a hierarchy of facilities, e.g. [138, 126]. This gen-
eralization allows for more realistic modeling of complex interdependencies between facilities
themselves. Some of these works derive constant-factor approximation bounds for hierarchical
facility location, e.g. [77], but all such works assume metric client costs where the costs Dp(·)
are computed as distances from a particular center. Without this assumption, Feige’s hard-

108 CHAPTER 5. ENERGIES WITH HIERARCHICAL COSTS

ness result still holds. Strategies for optimizing hierarchical UFL include linear programming
relaxation, primal-dual algorithms and, very recently, message passing algorithms [55].

We can encode a kind of hierarchical facility cost with our framework as follows. Suppose
facilities ℓ1 and ℓ2 require the services of facility ℓ3, which costs 50 to open. A label cost
H({ℓ1, ℓ2, ℓ3}) := 50 correctly accounts for the shared dependency of ℓ1 and ℓ2 on ℓ3. If we
furthermore have a facility ℓ4 that depends on both ℓ3 and some facility ℓ5 (cost 80), then our
label costs should instead be H({ℓ1, ℓ2, ℓ3, ℓ4}) := 50 and H({ℓ4, ℓ5}) := 80.

Furthermore, our h-fusion algorithm can handle smooth costs V , which to the best of our
knowledge are novel for UFL. In the UFL setting, V (fp, fq) can encode an explicit preference
that clients p and q be serviced by the same facility. When clients are social, there are many
scenarios where such a preference makes sense. When client costsD are metric (e.g. Euclidean
distance) then this preference is implicitly encoded in D. However, when the client costs are
not metric, such as clients connected by an irregular network despite being physically close,
then our smooth costs V may be useful for modeling such problems.

Improving our bound Recall that minimizing label costs is NP-hard by reduction from
SET-COVER. Due to a hardness result by Feige [43], we know that a ln |P|-approximation is
the best possible SET-COVER in polynomial-time. However, Hochbaum [64] gave a simple
greedy algorithm for SET-COVER and proved that it yields precisely a ln |P|-approximation,
the best possible according to Feige. If label costs are arbitrary in (5.61), then α-expansion’s
bound is also arbitrarily bad. So, there is a huge gap between what α-expansion can achieve
on (5.61) versus what Hochbaum’s greedy algorithm can guarantee. For hierarchical label costs
alone, it is possible to use Hochbaum’s algorithm as a subroutine within h-fusion (rather than
using α-expansion). One may ask if h-fusion would inherit better approximation guarantees
in that case. When smooth costs V are incorporated, it is not clear how Hochbaum’s approach
could be usefully applied, yet such a “best of both worlds” solution would be valuable.

Bibliography

[1] Ashraf M. Abdelbar and Sandra M. Hedetniemi. Approximating MAPs for belief net-
works is NP-hard and other theorems. Artificial Intelligence, 102(1):21–38, 1998.

[2] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abraham P. Punnen. A survey
of very large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1–3):75–202, 2002.

[3] Hirotugu Akaike. A new look at statistical model identification. IEEE Transactions on
Automatic Control, 19:716–723, 1974.

[4] Karteek Alahari, Pushmeet Kohli, and Philip H.S. Torr. Dynamic Hybrid Algorithms for
MAP Inference in Discrete MRFs. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 32:1846–1857, 2010.

[5] Ben Appleton and Hugues Talbot. Globally Minimal Surfaces by Continuous Maximal
Flows. IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI),
28(1):106–118, 2006.

[6] Ismail Ben Ayed and Amar Mitiche. A Region Merging Prior for Variational Level
Set Image Segmentation. IEEE Transactions on Image Processing (TIP), 17(12):2301–
2311, 2008.

[7] Dj. A. Babayev. Comments on the note of Frieze. Mathematical Programming,
7(1):249–252, December 1974.

[8] Francis Bach. Structured Sparsity-Inducing Norms through Submodular Functions. In
Advances in Neural Information Processing Systems (NIPS), 2010.

[9] Olga Barinova, Victor Lempitsky, and Pushmeet Kohli. On the Detection of Multiple
Object Instances using Hough Transforms. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2010.

[10] Yair Bartal. On approximating arbitrary metrics by tree metrics. In ACM Symposium on
Theorey of Computing (STOC), 1998.

[11] Dhruv Batra, A. C. Gallagher, Devi Parikh, and Tsuhan Chen. Beyond trees: MRF
inference via outer-planar decomposition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010.

109

110 BIBLIOGRAPHY

[12] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[13] Julian Besag. On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statis-
tical Society B, 48(3):259–302, 1986.

[14] Stan Birchfield and Carlo Tomasi. Multiway cut for stereo and motion with slanted
surfaces. In International Conference on Computer Vision (ICCV), 1999.

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, August
2006.

[16] Andrew Blake and Andrew Zisserman. Visual Reconstruction. MIT Press, Cambridge,
MA, 1987.

[17] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph
mincuts. In International Conference on Machine Learning (ICML), June 2001.

[18] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete Applied
Mathematics, 123(1–3):155–225, 2002.

[19] Yuri Boykov and Marie-Pierre Jolly. Interactive Organ Segmentation Using Graph Cuts.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS
1935, October 2000.

[20] Yuri Boykov and Marie-Pierre Jolly. Interactive Graph Cuts for Optimal Boundary and
Region Segmentation of Objects in N-D Images. In International Conference on Com-
puter Vision (ICCV), 2001.

[21] Yuri Boykov and Vladimir Kolmogorov. Computing Geodesics and Minimal Surfaces
via Graph Cuts. In International Conference on Computer Vision (ICCV), 2003.

[22] Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on
Pattern Recognition and Machine Intelligence (TPAMI), 29(9):1124–1137, 2004.

[23] Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov Random Fields with Efficient
Approximations. In IEEE Computer Vision and Pattern Recognition (CVPR), June 1998.

[24] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimization
via Graph Cuts. IEEE Transactions on Pattern Recognition and Machine Intelligence
(TPAMI), 23(11):1222–1239, 2001.

[25] Thomas Brox and Joachim Weickert. Level set based segmentation of multiple objects.
In Pattern Recognition, volume 3175 of LNCS, pages 415–423, 2004.

[26] Kenneth P. Burnham and David R. Anderson. Model Selection and Multimodel Infer-
ence. Springer, 2002.

BIBLIOGRAPHY 111

[27] Myung Jin Choi, Joseph J. Lim, Antonio Torralba, and Alan S. Willsky. Exploiting
Hierarchical Context on a Large Database of Object Categories. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2010.

[28] Thomas H. Cormen, Charles E. Leiserson, Robert L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2001.

[29] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of Bank Accounts to
Optimize Float: An Analytic Study of Exact and Approximate Algorithms. Management
Science, 23(8):789–810, 1977.

[30] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. The Uncapacitated Facility Location
Problem. Technical Report 605, Operations Research, Cornell University, August 1983.

[31] William Cunningham and Lawrence Tang. Optimal 3-Terminal Cuts and Linear Pro-
gramming. In Integer Programming and Combinatorial Optimization, volume 1610 of
LNCS, pages 114–125. 1999.

[32] William H. Cunningham. Minimum cuts, modular functions, and matroid polyhedra.
Networks, 15:205–215, 1985.

[33] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The Complexity of Multiterminal Cuts. SIAM Journal on Computing, 23(4):864–894,
1994.

[34] Andrew Delong. Quantifier elimination as investigative tool for proofs: Application to
graph cuts. CS829 project, University of Western Ontario, April 2007.

[35] Andrew Delong and Yuri Boykov. A Scalable Graph-Cut Algorithm for N-D Grids. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008.

[36] Andrew Delong and Yuri Boykov. Globally Optimal Segmentation of Multi-Region
Objects. In International Conference on Computer Vision (ICCV), October 2009.

[37] Andrew Delong, Lena Gorelick, Olga Veksler, and Yuri Boykov. Minimizing Energies
with Hierarchical Costs. International Journal of Computer Vision (IJCV), 2011 (sub-
mitted).

[38] Andrew Delong, Anton Osokin, Hossam N. Isack, and Yuri Boykov. Fast Approximate
Energy Minimization with Label Costs. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010.

[39] Andrew Delong, Anton Osokin, Hossam N. Isack, and Yuri Boykov. Fast Approxi-
mate Energy Minimization with Label Costs. International Journal of Computer Vision
(IJCV), 2011. (in press).

112 BIBLIOGRAPHY

[40] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum Likelihood from In-
complete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(1):1–
38, 1977.

[41] E. A. Dinic. Algorithm for solution of a problem of maximum ow in networks with
power estimation. Soviet Math. Dokl, 11:1266–1280, 1970.

[42] Olivier Duchenne, Jean-Yves Audibert, Renaud Keriven, Jean Ponce, and Florent
Segonne. Segmentation by transduction. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2008.

[43] Uriel Feige. A Threshold of lnn for Approximating Set Cover. Journal of the ACM,
45(4):634–652, 1998.

[44] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial Structures for Object
Recognition. International Journal of Computer Vision (IJCV), 61(1):55–79, 2005.

[45] Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
24(3):381–396, 2002.

[46] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[47] L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[48] James R. Foulds, Nicholas Navaroli, Padhraic Smyth, and Alexander T. Ihler. Revisiting
MAP Estimation, Message Passing and Perfect Graphs. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2011.

[49] Daniel Freedman and Petros Drineas. Energy minimization via graph cuts: settling what
is possible. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2005.

[50] Daniel Freedman and Tao Zhang. Interactive Graph Cut Based Segmentation With
Shape Priors. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2005.

[51] Alan M. Frieze. A cost function property for plant location problems. Mathematical
Programming, 7(1):245–248, December 1974.

[52] Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.

[53] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos. Dynamic-programming for detecting,
tracking, and matching deformable contours. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 17(3):294–302, March 1995.

BIBLIOGRAPHY 113

[54] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721–741, 1984.

[55] Inmar E. Givoni, Clement Chung, and Brendan J. Frey. Hierarchical Affinity Propaga-
tion. In Uncertainty in Artificial Intelligence (UAI), July 2011.

[56] Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message pass-
ing algorithms for MAP LP-relaxations. In Advances in Neural Information Processing
Systems (NIPS), 2007.

[57] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Robert E. Tarjan, and Renato F. Werneck.
Maximum Flows by Incremental Breadth-First Search. In Algorithms ESA, 2011.

[58] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-ow prob-
lem. Journal of the Association for Computing Machinery (JACM), 35(4):921–940,
1988.

[59] Lena Gorelick, Andrew Delong, Olga Veksler, and Yuri Boykov. Recursive MDL via
Graph Cuts: Application to Segmentation. In International Conference on Computer
Vision (ICCV), November 2011.

[60] Stephen Gould, Fernando Amat, and Daphne Koller. Alphabet SOUP: A Framework
for Approximate Energy Minimization. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2009.

[61] Leo Grady. Multilabel Random Walker Image Segmentation Using Prior Models. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2005.

[62] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary
images. Journal of the Royal Statistical Society B, 51(2):271–279, 1989.

[63] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2003.

[64] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Pro-
gramming, 22(1):148–162, 1982.

[65] Dorit S. Hochbaum. An efficient algorithm for image segmentation, Markov random
fields and related problems. Journal of the ACM (JACM), 48:686–701, 2001.

[66] Derek Hoiem, Alexei A. Efros, and Martal Hebert. Recovering Surface Layout from an
Image. International Journal of Computer Vision (IJCV), 75(1), October 2007.

[67] Derek Hoiem, Carsten Rother, and John Winn. 3D LayoutCRF for Multi-View Object
Class Recognition and Segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2007.

114 BIBLIOGRAPHY

[68] Hossam N. Isack. Spatially Coherent Multi-Model Fitting. Master’s thesis, University
of Western Ontario, London, Canada, April 2009.

[69] Hossam N. Isack and Yuri Boykov. Energy-based Geometric Multi-Model Fitting. Tech-
nical Report 735, University of Western Ontario, March 2010. (Submitted to IJCV).

[70] Hossam N. Isack and Yuri Boykov. Energy-based Geometric Multi-Model Fitting. In-
ternational Journal of Computer Vision (IJCV), 2011. (in press).

[71] Hiroshi Ishikawa. Exact Optimization for Markov Random Fields with Convex Pri-
ors. IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI),
25(10):1333–1336, 2003.

[72] Tony Jebara. Map estimation, message passing, and perfect graphs. In Uncertainty in
Artificial Intelligence (UAI), 2009.

[73] Stefanie Jegelka and Jeff Bilmes. Approximation Bounds for Inference using Coopera-
tive Cut. In International Conference on Machine Learning (ICML), 2011.

[74] Michael I. Jordan. Learning in Graphical Models. MIT Press, 1999.

[75] Kyomin Jung, Pushmeet Kohli, and Devavrat Shah. Local Rules for Global MAP: When
Do They Work? In Advances in Neural Information Processing Systems (NIPS), 2009.

[76] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3d mesh seg-
mentation and labeling. In ACM SIGGRAPH, 2010.

[77] Erez Kantor and David Peleg. Approximate hierarchical facility location and appli-
cations to the bounded depth Steiner tree and range assignment problems. Journal of
Discrete Algorithms, 7(3):341–362, 2009.

[78] Jon Kleinberg and Éva Tardos. Approximation Algorithms for Classification Problems
with Pairwise Relationships: Metric Labeling and Markov Random Fields. Journal of
the ACM, 49(5), 2002.

[79] Pushmeet Kohli, M. Pawan Kumar, and Philip H. S. Torr. P3 & Beyond: Solving
Energies with Higher Order Cliques. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2007.

[80] Pushmeet Kohli, L’ubor Ladický, and Philip H. S. Torr. Robust Higher Order Potentials
for Enforcing Label Consistency. International Journal on Computer Vision (IJCV),
82(3):302–324, 2009.

[81] Pushmeet Kohli, Jonathan Rihan, Matthieu Bray, and Philip H. S. Torr. Simultaneous
Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts. Interna-
tional Journal of Computer Vision (IJCV), 79(3):285–298, Sept 2008.

BIBLIOGRAPHY 115

[82] Pushmeet Kohli and Philip H. S. Torr. Dynamic Graph Cuts for Efficient Inference in
Markov Random Fields. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 29:2079–2088, 2007.

[83] Vladimir Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Min-
imization. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
28(10):1568–1583, October 2006.

[84] Vladimir Kolmogorov, Yuri Boykov, and Carsten Rother. Applications of Parametric
Maxflow in Computer Vision. In International Conference on Computer Vision (ICCV),
November 2007.

[85] Vladimir Kolmogorov and Carsten Rother. Minimizing non-submodular functions with
graph cuts—a review. IEEE Transactions on Pattern Recognition and Machine Intelli-
gence (TPAMI), 29(7), 2007.

[86] Vladimir Kolmogorov and Akiyoshi Shioura. New Algorithms for Convex Cost Tension
Problem with Application to Computer Vision. Discrete Optimization, 6(4):378–393,
November 2009.

[87] Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can Be Optimized
via Graph Cuts. IEEE Transactions on Pattern Recognition and Machine Intelligence
(TPAMI), 26(2):147–159, 2004.

[88] Vladimir Kolmogorov, Ramin Zabih, and Steven Gortler. Generalized Multi-camera
Scene Reconstruction Using Graph Cuts. In Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), 2003.

[89] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf energy minimization and
beyond via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 33:531–552, 2011.

[90] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory, 47:498–519,
2001.

[91] A. A. Kuehn and M. J. Hamburger. A Heuristic Program for Locating Warehouses.
Management Science, 9(4):643–666, 1963.

[92] M. Pawan Kumar and Daphne Koller. MAP estimation of semi-metric MRFs via hi-
erarchical graph cuts. In Conference on Uncertainty in Artificial Intelligence, pages
313–320, June 2009.

[93] M. Pawan Kumar and Philip H. S. Torr. Improved Moves for Truncated Convex Models.
In Advances in Neural Information Processing Systems (NIPS), volume 22, 2008.

116 BIBLIOGRAPHY

[94] L’ubor Ladický, Chris Russell, Pushmeet Kohli, and Philip H. S. Torr. Graph Cut based
Inference with Co-occurrence Statistics. In European Conference on Computer Vision
(ECCV), September 2010.

[95] L’ubor Ladický, Paul Sturgess, Chris Russell, Sunando Sengupta, Yalin Bastanlar,
William Clocksin, and Philip H. S. Torr. Joint Optimisation for Object Class Segmenta-
tion and Dense Stereo Reconstruction. In British Machine Vision Conference (BMVC),
2010.

[96] Nevena Lazic, Brendan J. Frey, and Parham Aarabi. Solving the Uncapacitated Facility
Location Problem Using Message Passing Algorithms. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2010.

[97] Nevena Lazic, Inmar Givoni, Brendan J. Frey, and Parham Aarabi. FLoSS: Facility
Location for Subspace Segmentation. In International Conference on Computer Vision
(ICCV), 2009.

[98] Yvan G. Leclerc. Constructing simple stable descriptions for image partitioning. Inter-
national Journal of Computer Vision (IJCV), 3(1):73–102, May 1989.

[99] Victor Lempitsky, Yuri Boykov, and Denis Ivanov. Oriented visibility for multiview
reconstruction. In European Conference on Computer Vision, May 2006.

[100] Victor Lempitsky, Carsten Rother, Stephan Roth, and Andrew Blake. Fusion moves for
markov random field optimization. IEEE Transactions on Pattern Analysis and Machine
Inference (TPAMI), 32:1392–1405, August 2010.

[101] Hongdong Li. Two-view Motion Segmentation from Linear Programming Relaxation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[102] Kang Li, Xiaodong Wu, Danny Z. Chen, and Milan Sonka. Optimal Surface Segmenta-
tion in Volumetric Images—A Graph-Theoretic Approach. IEEE Transactions on Pat-
tern Recognition and Machine Intelligence (TPAMI), 28(1), 2006.

[103] Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer, 1994.

[104] Jiangyu Liu and Jian Sun. Parallel graph-cuts by adaptive bottom-up merging. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2010.

[105] Xiaoqing Liu, Olga Veksler, and Jagath Samarabandu. Graph Cut with Ordering Con-
straints on Labels and its Applications. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2008.

[106] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal on Computer Vision (IJCV), 60:91–110, 2004.

[107] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

BIBLIOGRAPHY 117

[108] G. Miller and J. Naor. Flows in planar graphs with multiple sources and sinks. In IEEE
Symposium on Foundations of Computer Science (FOCS), 1991.

[109] T.J. Mitchell and J.J. Beauchamp. Bayesian variable selection in linear regression. Jour-
nal of the American Statistical Association, 83(404):1023–1032, 1988.

[110] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth func-
tions and associated variational problems. Communications on Pure and Applied Math-
ematics, 42(5):577–685, July 1989.

[111] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions – I. Mathematical Programming, 14(1):265–294,
1978.

[112] Carl Olsson, Martin Byröd, Niels Christian Overgaard, and Fredrik Kahl. Extending
Continuous Cuts: Anisotropic Metrics and Expansion Moves. In International Confer-
ence on Computer Vision (ICCV), October 2009.

[113] Anton Osokin, Dmitry Vetrov, and Vladimir Kolmogorov. Submodular Decomposition
Framework for Inference in Associative Markov Networks with Global Constraints. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011.

[114] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

[115] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, 1988.

[116] J. C. Picard and H. D. Ratliff. Minimum cuts and related problems. Networks, 5:357–
370, 1974.

[117] Thomas Pock, Antonin Chambolle, Horst Bischof, and Daniel Cremers. A Convex Re-
laxation Approach for Computing Minimal Partitions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2009.

[118] Thomas Pock, Thomas Schoenemann, Gottfried Graber, Horst Bischof, and Daniel Cre-
mers. A Convex Formulation of Continuous Multi-Label Problems. In European Con-
ference on Computer Vision (ECCV), October 2008.

[119] Renfrey B. Potts. Some generalized order-disorder transformations. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 48:106–109, 1952.

[120] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[121] Srikumar Ramalingam, Pushmeet Kohli, Karteek Alahari, and Philip H. S. Torr. Ex-
act Inference in Multi-label CRFs with Higher Order Cliques. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2008.

118 BIBLIOGRAPHY

[122] Sashank J. Reddi, Sunita Sarawagi, and Sundar Vishwanathan. MAP estimation in Bi-
nary MRFs via Bipartite Multi-cuts. In Advances in Neural Information Processing
Systems (NIPS), 2010.

[123] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. GrabCut: Interactive Fore-
ground Extraction using Iterated Graph Cuts. In ACM SIGGRAPH, 2004.

[124] Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer. Op-
timizing Binary MRFs via Extended Roof Duality. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2007.

[125] H. Rusinek, Y. Boykov, M. Kaur, S. Wang, L. Bokacheva, J. Sajous, A. Huang, S. Heller,
and V. Lee. Performance of an automated segmentation algorithm for 3D MR renogra-
phy. Magnetic Resonance in Medicine, 2006.

[126] Güvenç Sahin and Haldun Süral. A review of hierarchical facility location models.
Computers and Operations Research, 34(8):2310–2331, 2007.

[127] Dmitri Schlesinger. Exact Solution of Permuted Submodular MinSum Problems. In En-
ergy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR),
2007.

[128] Frank R. Schmidt, Eno Töppe, and Daniel Cremers. Efficient planar graph cuts with
applications in computer vision. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Miami, Florida, June 2009.

[129] Nicol N. Schraudolph and Dmitry Kamenetsky. Efficient exact inference in planar ising
models. In Advances in Neural Information Processing Systems (NIPS), 2008.

[130] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

[131] Emre Sefer and Carl Kingsford. Metric Labeling and Semi-metric Embedding for Pro-
tein Annotation Prediction. In Research in Computational Molecular Biology, 2011.

[132] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905, August
2000.

[133] Y. Shimony. Finding the MAPs for belief networks is NP-hard. Artificial Intelligence,
68(2):399–410, 1994.

[134] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In ACM Symposium on Theory of Computing
(STOC), pages 265–274, 1998.

BIBLIOGRAPHY 119

[135] Petter Strandmark and Fredrik Kahl. Parallel and distributed graph cuts by dual decom-
position. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2010.

[136] Minghe Sun. A Tabu Search Heuristic for the Uncapacitated Facility Location Problem.
In Metaheuristic Optimization via Memory and Evolution, volume 30, pages 191–211.
Springer US, 2005.

[137] Kah Kay Sung and Tomaso Poggio. Example based learning for view-based human face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
20:39–51, 1995.

[138] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[139] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov,
Aseem Agarwala, Marshall Tappen, and Carsten Rother. A comparative study of energy
minimization methods for Markov random fields with smoothness-based priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 30(6):1068–1080,
June 2008.

[140] Martin Szummer and Tommi Jaakkola. Partially labeled classication with markov ran-
dom walks. In Advances in Neural Information Processing Systems (NIPS), December
2001.

[141] Martin Szummer, Pushmeet Kohli, and Derek Hoiem. Learning CRFs using Graph Cuts.
In European Conference on Computer Vision (ECCV), 2008.

[142] Daniel Tarlow, Dhruv Batra, Pushmeet Kohli, and Vladimir Kolmogorov. Dynamic Tree
Block Coordinate Ascent. In International Conference on Machine Learning (ICML),
2011.

[143] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning Associative Markov
Networks. In International Conference on Machine Learning (ICML), 2004.

[144] Philip H. S. Torr. Geometric Motion Segmentation and Model Selection. Philosophical
Transactions of the Royal Society A, pages 1321–1340, 1998.

[145] Roberto Tron and Rene Vidal. A benchmark for the comparison of 3-d motion segmen-
tation algorithms. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007.

[146] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.
Large margin methods for structured and interdependent output variables. Journal of
Machine Learning Research (JMLR), 6(2):1453–1484, 2006.

120 BIBLIOGRAPHY

[147] Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, and Geoffrey E. Hinton. SMEM
Algorithm for Mixture Models. Neural Computation, 12(9):2109–2128, 2000.

[148] Johannes Ulén, Petter Strandmark, and Fredrik Kahl. Optimization for Multi-Region
Segmentation of Cardiac MRI. In MICCAI Workshop on Statistical Atlases and Com-
putational Models of the Heart: Imaging and Modelling Challenges, 2011.

[149] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function
prediction from protein-protein interaction networks. Nature Biotechnology, 6, 2003.

[150] Olga Veksler. Stereo Correspondence by Dynamic Programming on a Tree. In IEEE
Confeence on Computer Vision and Pattern Recognition (CVPR), June 2005.

[151] Olga Veksler. Graph Cut Based Optimization for MRFs with Truncated Convex Priors.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.

[152] Olga Veksler. Star Shape Prior for Graph-Cut Image Segmentation. In European Con-
ference on Computer Vision (ECCV), 2008.

[153] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Graph cut based image seg-
mentation with connectivity priors. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2008.

[154] George Vogiatzis, Philip H. S. Torr, and Roberto Cipolla. Multi-view stereo via volu-
metric graph-cuts. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2005.

[155] Nhat Vu and B.S. Manjunath. Shape Prior Segmentation of Multiple Objects with Graph
Cuts. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[156] Stanislav Živný, David A. Cohen, and Peter G. Jeavons. The Expressive Power of Binary
Submodular Functions. Discrete Applied Mathematics, 2009.

[157] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted belief
propagation and approximate ML estimation by pseudo-moment matching. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2003.

[158] Tomáš Werner. A Linear Programming Approach to Max-sum Problem: A Re-
view. IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI),
29(7):1165–1179, July 2007.

[159] Tomáš Werner. High-arity Interactions, Polyhedral Relaxations, and Cutting Plane Algo-
rithm for Soft Constraint Optimisation (MAP-MRF). In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2008.

[160] Oliver J. Woodford, Carsten Rother, and Vladimir Kolmogorov. A Global Perspective
on MAP Inference for Low-Level Vision. In International Conference on Computer
Vision (ICCV), October 2009.

BIBLIOGRAPHY 121

[161] Chen Yanover and Yair Weiss. Approximate inference and protein folding. In Advances
in Neural Information Processing Systems (NIPS), 2002.

[162] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propa-
gation and its generalizations, pages 239–269. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[163] Jing Yuan and Yuri Boykov. TV-Based Multi-Label Image Segmentation with Label
Cost Prior. In British Machine Vision Conference (BMVC), Sept 2010.

[164] Ramin Zabih and Vladimir Kolmogorov. Spatially Coherent Clustering with Graph
Cuts. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2004.

[165] Quan Zhou, Tianfu Wu, Wenyu Liu, and Song-Chun Zhu. Scene Parsing by Data-Driven
Cluster Sampling. International Journal of Computer Vision (IJCV), 2011. under review.

[166] Song-Chun Zhu and Alan L. Yuille. Region competition: unifying snakes, region grow-
ing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 18(9):884–900, 1996.

[167] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using
Gaussian fields and harmonic functions. In International Conference on Machine Learn-
ing (ICML), August 2003.

[168] M. Zuliani, C. S. Kenney, and B. S. Manjunath. The multiRANSAC algorithm and
its application to detect planar homographies. In International Conference on Image
Processing (ICIP), 2005.

Curriculum Vitae

ANDREW DELONG

EDUCATION

2011 PhD in Computer Science, University of Western Ontario.

Thesis: Advances in Graph-Cut Optimization: Multi-Surface Models,
Label Costs, and Hierarchical Costs

Advisor: Yuri Boykov

2006 MSc in Computer Science, University of Western Ontario.

Thesis: A Scalable Max-Flow/Min-Cut Algorithm for Sparse Graphs

Advisor: Yuri Boykov

2003 BMath in Honours Co-op Computer Science (with distinction), University of
Waterloo.

AWARDS and DISTINCTIONS

2010–2011 Ontario Graduate Scholarship in Science and Technology (OGSST).

2008 Faculty of Science Graduate Student Teaching Award, Univ. of Western Ontario.

2007–2010 National Sciences and Engineering Research Council Postgraduate Scholarship.

2006–2007 Ontario Graduate Scholarship (OGS).

1998–2003 Term Dean’s Honour List four times (10th percentile), University of Waterloo.

REFEREED PUBLICATIONS

8. A. Delong, L. Gorelick, O. Veksler, and Y. Boykov. Minimizing Energies with Hierar-
chical Costs. International Journal of Computer Vision (IJCV), submitted October 2011.

7. L. Gorelick, A. Delong, O. Veksler, and Y. Boykov. Recursive MDL via Graph Cuts:
Application to Segmentation. In International Conference on Computer Vision (ICCV),
November 2011.

122

BIBLIOGRAPHY 123

6. A. Delong, L. Gorelick, F. R. Schmidt, O. Veksler, and Y. Boykov. Interactive Seg-
mentation with Super-Labels. In Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR), July 2011. (oral)

5. A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast Approximate Energy Minimiza-
tion with Label Costs. International Journal of Computer Vision (IJCV), 2011 (in press).

4. A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast Approximate Energy Mini-
mization with Label Costs. In Computer Vision and Pattern Recognition (CVPR), June
2010.

3. A. Delong and Y. Boykov. Globally Optimal Segmentation of Multi-Region Objects. In
International Conference on Computer Vision (ICCV), October 2009. (oral)

2. A. Delong and Y. Boykov. A Scalable Graph-Cut Algorithm for N-D Grids. In Computer
Vision and Pattern Recognition (CVPR), June 2008.

1. Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong. An Integral Solution to Surface
Evolution PDEs via Geo-Cuts. In European Conf. on Computer Vision (ECCV), LNCS
3953, May 2006.

TEACHING EXPERIENCE (as full-time instructor)

• Introduction to Computer Graphics (Fall 2011)

• Fundamentals of Computer Science II (Fall 2010)

RELEVANT ACTIVITIES

• Invited talks: (2009) Lund University, (2010) University of Toronto, (2011) École Nor-
mal Superiéure, University of Oxford, ESIEE-Paris, University of Heidelberg, Technical
University of Munich, University of Toronto.

• Journal referee: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
SIAM Journal on Imaging Sciences (SIIMS), Image and Vision Computing (IMAVIS),
SPIE Journal of Electronic Imaging (JEI), Pattern Recognition.

• Conference referee: IEEE International Conference on Computer Vision (ICCV), Eu-
ropean Conference on Computer Vision (ECCV), IEEE Computer Vision and Pattern
Recognition (CVPR), Energy Minimization Methods in Computer Vision and Pattern
Recognition (EMMCVPR), Eurographics.

PATENTS

1. A. Delong, Y. Boykov, D. Yu. “Region Based Push-Relabel Algorithm for Efficient
Computation of Maximum Flow”. United States Patent App. #11/685,815 (to be issued,
confirmation #5292).

	Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs
	Recommended Citation

	Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs

