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Abstract

Generalized autoregressive conditional heteroscedasticity (GARCH)

models are widely used in financial markets. Parameters of GARCH

models are usually estimated by the quasi-maximum likelihood esti-

mator (QMLE). In recent years, economic theory often implies equi-

librium between the levels of time series, which makes the application

of multivariate models a necessity. Unfortunately the asymptotic the-

ory of the multivariate GARCH models is far from coherent since

many algorithms on the univariate case do not extend to multivariate

models naturally. This thesis studies the asymptotic theory of the

QMLE under mild conditions. We give some counterexamples for the

parameter identifiability result in Jeantheau [1998] and provide a bet-

ter necessary and sufficient condition. We prove the ergodicity of the

conditional variance process on an application of theorems by Meyn

and Tweedie [2009]. Under those conditions, the consistency and

asymptotic normality of the QMLE can be proved by the standard

compactness argument and Taylor expansion of the score function.

iii



We also give numeric examples on verifying the assumptions and the

scaling issue when estimating GARCH parameters in S+ FinMetrics.

Keywords: General multivariate GARCH, asymptotic theory, ergod-

icity, stationarity, consistency, asymptotic normality, VEC, BEKK.
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Notations

�(A) The spectral radius of the square matrix A, i.e., �(A) = max{∣�i∣ : �i is an

eigenvalue of A}.

⊙ Hadamard or elementwise product of matrices.

⊗ Kronecker product.

∥v∥ The Euclidean norm of vector v.

∥A∥ The spectral norm of matrix A, i.e., ∥A∥ =
√
�(ATA).

∥A∥2 The Euclidean/Frobenius norm of matrix A.

AT The transpose of matrix A (or a vector).

tr(A) Trace of matrix A.

a.s.−→ Almost surely convergence.

D→ Converge in distribution.
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C1, C2, ⋅ ⋅ ⋅ Generic constants taking different values from time to time.

vec(⋅) The operator that stacks a d × d matrix column by column as a d2 × 1

vector.

mat(⋅) The inverse operator of vec(⋅).

vech(⋅) The operator that stacks the lower triangular portion of a d× d matrix

as a d(d+ 1)/2× 1 vector column by column.

math(⋅) The inverse operator of vech(⋅).

Im m×m identity matrix.

Dm m2×m(m+1)
2

duplication matrix such that for a symmetric matrix A, vec(A) =

Dmvech(A).

D+
m The generalized inverse of Dm. D+

m is such that for a symmetric matrix A,

vech(A) = D+
mvec(A) and D+

mDm = Im(m+1)/2.

Kmn or Km,n mn×mn commutation matrix such that for A(m×n), vec(AT ) =

Kmnvec(A).

ℱt The information filter generated by the observable data at times less than or

equal t.
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P (x,A) The one-step transition probability for a Markov chain (denoted by Φ),

i.e., P (Φ1 ∈ A∣Φ0 = x).

P n(x,A) The n-step transition probability for a Markov chain (denoted by Φ),

i.e., P (Φn ∈ A∣Φ0 = x).

xvi



Chapter 1

Introduction

1.1 The Univariate GARCH Model

In financial markets, estimating volatilities is essential in derivative pricing and

risk management. For example, in order to evaluate stock option prices in the

future, forecast of volatilities are usually required. Let yt be the continuously

compounded return or the proportional change of a market variable during day

t, i.e.,

yt = log
St
St−1

or yt =
St − St−1

St−1

.

The difference between these two expressions are tiny when the time increment

is small, since the proportional change is the first order Taylor expansion of the

continuously compounded return. In contrast to the original asset prices, the
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continuously compounded return or the proportional change do not depend on

monetary units. The MLE of the variance (square of the volatility) using the

most recent q observations is

�2
t =

1

q

q∑
i=1

(yt−i − ȳ)2,

where ȳ =
∑q

i=1 yt−i. Since in this thesis we are only interested in the volatility

part, ȳ is assumed to be zero and the formula for variance becomes

�2
t =

1

q

q∑
i=1

y2
t−i. (1.1)

In (1.1), every observation has equal effect on the volatility. It is more appropriate

to assign more weight on recent data. The model becomes

�2
t =

q∑
i=1

�iy
2
t−i,

where
∑q

i=1 �i = 1. A further extension of the model is to add a long-run average

volatility term, which leads to that

�2
t = 
V +

q∑
i=1

�iy
2
t−i = c+

q∑
i=1

�iy
2
t−i,

where 
 +
∑q

i=1 �i = 1. This is known as an autoregressive conditional het-

eroscedasticity (ARCH) model if we assign c = 
V . The univariate ARCH(q)
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model, which was first introduced by Engle [1982], is defined as

yt = �t�t,

�2
t = c+

q∑
i=1

�iy
2
t−i, (1.2)

where {yt} is the observed process, �t
i.i.d.∼ (0, 1)1 and is independent of ℱt−1,

c ≥ 0, �i ≥ 0 for 1 ≤ i ≤ q − 1, �q > 0. However, in practice, people usually

find that a large number of lags q is needed, which results in a large amount of

model parameters to be estimated. It is also well known that in financial mar-

kets, large changes tend to be followed by large changes, and small changes tend

to be followed by small changes. This volatile behavior in financial markets is

usually referred to as “volatility clustering”. In the past several decades, the gen-

eralized autoregressive conditional heteroscedasticity (GARCH) models are com-

monly used to describe volatilities. Bollerslev [1986] presented the GARCH(p, q)

model, where (1.2) was generalized as

�2
t = c+

q∑
i=1

�iy
2
t−i +

p∑
j=1

�j�
2
t−j, (1.3)

where �j ≥ 0 for 1 ≤ j ≤ p− 1, �p > 0.

1Note that we do not assume any distributional property on �t except the mean and variance.
It may or may not be normally distributed.
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An Example: Modeling Stock Price Proportional Change Using GARCH

Model Suppose a stock price St follows the model

dSt = �tStdt+ �tStdWt,

where Wt is a standard Brownian motion. Note that for a given Δt, Wt−Wt−Δt ∼

N(0,Δt). Discretizing the stock price model gives

St − St−Δt√
ΔtSt−Δt

= �t
√

Δt+ �tzt,

where zt is a standard normal random number. The left hand side can be treated

as the observed sequence. Using the GARCH setting, the conditional volatility

can be modeled by

�2
t = c+

q∑
i=1

�i

(
St−iΔt − St−(i+1)Δt√

ΔtSt−(i+1)Δt

)2

+

p∑
j=1

�j�
2
t−jΔt.

To obtain the one-step prediction for St, the procedure is as follows:

1. Estimate the model parameters c, �i’s and �j’s using the observed data.

2. Compute the estimated conditional variance sequence �̂2
t , �̂

2
t−Δt, �̂

2
t−2Δt, ⋅ ⋅ ⋅ .

3. Predict the future conditional variance as

�̂2
t+Δt = ĉ+

q∑
i=1

�̂i

(
St−(i−1)Δt − St−iΔt√

ΔtSt−iΔt

)2

+

p∑
j=1

�̂j�̂
2
t−(j−1)Δt.



1.1 The Univariate GARCH Model 5

4. Simulate a standard normal random number zt+Δt.

5. �t+Δt can be predicted using its own model, e.g., the ARMA model.

6. The future stock price can be calculated as

St+Δt = St(1 + �̂t+ΔtΔt+ �̂t+Δt

√
Δtzt+Δt).

The asymptotic theory of GARCH models involves strong consistency and

asymptotic normality of the quasi-maximum likelihood estimator (QMLE). The

asymptotic theory of the univariate model was first established by Weiss [1986]

for ARCH models. The GARCH results were first demonstrated in Lee and

Hansen [1994] and Lumsdaine [1996], both for the GARCH(1, 1) model. Berkes

and Horvàth [2004], Berkes and Horvàth [2003] and Berkes et al. [2003] extended

the theory into the GARCH(p, q) case. By far the weakest assumptions were given

by Francq and Zaköıan [2004], in which they assume the finite fourth moment of

the innovations.

Strong stationarity and ergodicity are required to achieve the asymptotic re-

sult. Nelson [1990] gave necessary and sufficient conditions for stationarity and

ergodicity for the GARCH(1, 1) model. Bougerol and Picard [1992] proved that

the GARCH(p, q) process is strictly stationary and ergodic if and only if its top

Lyapunov exponent is strictly negative.
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1.2 Multivariate GARCH Models

Economic theory often implies equilibrium between the levels of time series. For

each model we developed to capture variances, there is a corresponding model

which can be used to track covariances. For example, a similar estimate for the

covariance between two time series {xt} and {yt} using the GARCH setting is

Cov(xt, yt) = c+

q∑
i=1

�ixt−iyt−i +

p∑
j=1

�jCov(xt−j, yt−j).

This fact makes the application of multivariate models a necessity. In this the-

sis, we are interested in general multivariate GARCH models. A general d-

dimensional GARCH(p, q) model, usually called the VEC model (see Bollerslev

et al. [1998]), is given by

yt = H
1/2
t �t,

ℎt = c+

q∑
i=1

Ai�t−i +

p∑
j=1

Bjℎt−j, (1.4)

where

ℎt = vech(Ht),

�t = vech(yty
T
t ),

�t
i.i.d.∼ (0, Id),
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Ai’s and Bj’s are square parameter matrices of order N = d(d+ 1)/2 and c is an

N × 1 parameter vector. The vech(⋅) operator and its inverse operator math(⋅)

are defined in the notation list.

There are two issues about the general model specification in (1.4):

1. There are a large amount of parameters to be estimated. The number of

parameters in (1.4) is (p + q)N2 + N . For example, for bivariate process

{yt}, N = 3 and there are 21 parameters for GARCH(1, 1). For trivariate

{yt}, N = 6 and there will be 78 parameters for GARCH(1, 1).

2. It is difficult to guarantee that Ht is positive definite without imposing

strong restrictions1.

To overcome these issues, Engle and Kroner [1995] developed two new param-

eterizations for (1.4). One is called the diagonal VEC (DVEC) model. In this

model, all the parameter matrices are assumed to be diagonal. Then (1.4) can

be rewritten as

Ht = C∗ +

q∑
i=1

A∗i ⊙ (yt−iy
T
t−i) +

p∑
j=1

B∗j ⊙Ht−j, (1.5)

where, C∗, A∗i ’s and B∗j ’s are d× d symmetric matrices. It is straightforward to

verify that Ht is positive definite if C∗, A∗i ’s and B∗j ’s are positive definite. The

number of parameters in (1.5) is (p+q+1)N . Thus the number of parameters are

1Francq and Zaköıan [2010] imposes some conditions under which Ht in the VEC model is
positive definite. In this thesis, we assume Ht is positive definite without verifications.
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reduced to 9 and 18 respectively for bivariate and trivariate {yt}’s if p = q = 1.

The other model specification in Engle and Kroner [1995] is called the BEKK

model (in the name of Baba, Engle, Kraft and Kroner). The BEKK(p, q, k) model

is given by

Ht = C +

q∑
i=1

(
k∑
j=1

ATijyt−iy
T
t−iAij

)
+

p∑
i=1

(
k∑
j=1

BT
ijHt−iBij

)
, (1.6)

where C, Aij’s and Bij’s are d×d coefficient matrices and C is symmetric positive

definite. In (1.6), the positivity of Ht is guaranteed naturally. The number of

parameters is (p + q)kd2 + N . Scherrer and Ribarits [2007] defines that (1.4)

is admissible if math(c) is positive definite and ∀� ∈ ℝd, math(Aivech(��T )) is

positive semidefinite for i = 1, ⋅ ⋅ ⋅ , q. Then they show that for the bivariate

case, admissible VEC models and BEKK models are equivalent. For d > 2,

there is a “thick” class of admissible VEC models that have no equivalent BEKK

representations.

Bollerslev [1990] proposes a multivariate GARCH model in which the con-

ditional correlation does not change over time. The constant correlation model

(CCC(p, q)) is defined as

yt = Δt�t,
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where Δt is diagonal whose elements satisfy

⎛⎜⎜⎜⎜⎜⎜⎝
Δ2
t,11

...

Δ2
t,dd

⎞⎟⎟⎟⎟⎟⎟⎠ = W +

q∑
i=1

Ai

⎛⎜⎜⎜⎜⎜⎜⎝
y2
t−i,1

...

y2
t−i,1

⎞⎟⎟⎟⎟⎟⎟⎠+

p∑
j=1

Bj

⎛⎜⎜⎜⎜⎜⎜⎝
Δ2
t−j,11

...

Δ2
t−j,dd

⎞⎟⎟⎟⎟⎟⎟⎠ ,

W is a constant vector and {�t} is an i.i.d. sequence with mean 0 and covariance

matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 �12 ⋅ ⋅ ⋅ �1d

�12
. . . . . .

...

...
. . . . . . �(d−1)d

�1d ⋅ ⋅ ⋅ �(d−1)d 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One can easily check that the conditional covariance matrix Ht is such that

Ht,ij = �ijΔt,iiΔt,jj,

and hence the conditional correlations are �ij’s. The CCC model is also a subset

of the VEC model.

Other special cases of the general multivariate GARCH model are summarized

in Bauwens et al. [2006]. For a most recent summary on both univariate and

multivariate GARCH models, see Francq and Zaköıan [2010].

Unfortunately the asymptotic theory of the multivariate GARCH model is

far from coherent since many algorithms on the univariate case does not extend
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to multivariate models naturally. For example, Bougerol and Picard [1992]’s

condition does not hold for multivariate GARCH models in general. Boussama

[1998] gave a counter-example for this extension.

Jeantheau [1998] proved strong consistency for multivariate GARCH models

and verify those conditions for the CCC model. Comte and Lieberman [2003]

proved the asymptotic theory for the BEKK model under the assumption of fi-

nite eighth moment of yt. They used the condition given by Boussama [1998]

to prove stationarity and ergodicity but they did not impose any conditions to

verify identifiability. Ling and McAleer [2003] shows the asymptotic theory for a

class of multivariate ARMA-GARCH models with the GARCH process following

the CCC specification. Hafner and Preminger [2009] proved the asymptotic the-

ory for general multivariate GARCH(1, 1) under the assumption of finite sixth

moment of yt. However, their proof for the asymptotic normality was not actu-

ally complete. They used Markov chain technique in Meyn and Tweedie [2009]

to prove stationarity and ergodicity since the GARCH(1, 1) model is a Markov

chain. We will generalize this approach in this thesis to the GARCH(p, q) case.

Kristensen [2007] also gave his condition for stationarity and ergodicity using the

same technique. But his condition is difficult to verify in practice.

This thesis tries to fill the gap on the asymptotic theory between univari-

ate GARCH(p, q) and general multivariate GARCH(p, q) models. We study the

asymptotic theory of the QMLE under mild conditions. We give some counterex-

amples for the parameter identifiability result in Jeantheau [1998] and provide a
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better necessary and sufficient condition. We prove the ergodicity of the condi-

tional variance process on an application of theorems in Meyn and Tweedie [2009].

Under those conditions, the consistency and asymptotic normality of the QMLE

can be proved by the standard compactness argument and Taylor expansion of

the score function.

1.3 The QMLE

Parameter estimation for multivariate GARCH models is usually done by MLE,

or quasi-MLE (usually Gaussian QMLE). Let � be the parameter vector, that is,

� = (cT , vec(A1)T , ⋅ ⋅ ⋅ , vec(Aq)
T , vec(B1)T , ⋅ ⋅ ⋅ , vec(Bp)

T )T ,

If the driving noise is i.i.d. normal, the log likelihood function is given by

Ln(�) = − 1

2n

n∑
t=1

{
log ∣Ht(�)∣+ yTt H

−1
t (�)yt

}
= − 1

2n

n∑
t=1

lt(�). (1.7)

However when the i.i.d. driving noise has some other distribution distribution

then (1.7) is not the log likelihood. One may still use it as an estimating method,

in the sense that one may construct an estimator as arg max�∈Θ{Ln(�)}. In many

settings this estimator is still consistent and asymptotically normal. This esti-

mator is called the quasi-maximum likelihood estimator, or the QMLE. In the

rest of this thesis we will often refer to this estimating function (1.7) as the log
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likelihood even though this is not technically correct.

The log likelihood (1.7) depends possibly on the infinite past. However in

time series observations this is not reasonable so one really needs to condition

on a finite set of initial observations. We thus define L̃n(�) as the log likelihood

function or estimating function which is conditional on some initial values of

y0, y−1, ⋅ ⋅ ⋅ , y1−q, H0, H1, ⋅ ⋅ ⋅ , H1−p. For example, these initial values can be either

constants or drawn from a stationary distribution. In this thesis, we choose the

initial values as

y0 = y−1 = ⋅ ⋅ ⋅ = y1−q = y1 and ℎ0 = ℎ−1 = ⋅ ⋅ ⋅ = ℎ1−p = c. (1.8)

Other terms such as l̃t, H̃t and ℎ̃t can be defined analogously. We will show

later in this thesis that the choice of initial values does not affect our asymptotic

results. The Gaussian QMLE is defined as

�̂n = arg max
�∈Θ

L̃n(�) = arg min
�∈Θ

n∑
t=1

l̃t(�), (1.9)

where Θ is the parameter space. Note that in model (1.4), we did not assume any

specific distribution on the innovation process {�t} except its mean and covariance

matrix. In fact, many financial data processes heavy tails. The noise term may

not actually be Gaussian so we may use the quasi-likelihood (1.9) as the estimating

function L̃. It is used since the maximization problem is relatively easy to solve
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numerically. In this thesis we will show this estimator has the properties

∙ Strong consistency

�̂n
a.s.−→ �0.

∙ Asymptotic normality

√
n(�̂n − �0)

D→ N(0,Σ).

The difference between the quasi-likelihood (1.7) and the observable quasi-

likelihood L̃n(�) is that for the former we are dealing with a sum of objects that

are stationary while this is not so for the later. This is helpful in deriving some

properties of the QMLE.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the

theorem to prove ergodicity and stationarity. Chapter 3 is the major chapter of

this thesis. In this chapter, Section 3.2 provides the assumptions under which

the GARCH model is identifiable. We also give a counter example in this chapter

to show that the identifiability conditions given in Jeantheau [1998] are actually

invalid. Section 3.3 is devoted to the strong consistency of the QMLE. Section 3.4

proves the asymptotic normality under the finite sixth moment of {yt}. Chapter
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4 lists various lemmas which are the intermediate results to prove the theorems

in this thesis. The first section of Chapter 5 gives an example of the multivariate

GARCH model which satisfies our ergodicity and identifiability assumptions. The

last section of Chapter 5 addresses the scaling issue when estimating GARCH

parameters in S+ FinMetrics and provides a correction in R. This is also an

example of parallel computing in R using the Rmpi package. The computational

codes are available from the author upon request. Some useful results in matrix

algebra are collected in the appendices.



Chapter 2

Ergodicity and Stationarity

2.1 Introduction

To prove the asymptotic theory of the QMLE, we need the model to be ergodic

and stationary. In this chapter, we will give conditions under which the GARCH

process is ergodic and stationary. For the univariate GARCH model, Bougerol

and Picard [1992] proved that the process is ergodic and strictly stationary if and

only if its top Lyapunov exponent is strictly negative. The components of the

matrices used to parameterize multivariate GARCH models are not necessarily

positive, so this methodology cannot be extended to the multivariate case gen-

erally. Boussama [1998] gave a counter-example for this extension. Hafner and

Preminger [2009] studied a GARCH(1,1) general model. We follow their method-

ology. However to extend this one needs a different state space and Markov

representation. After finding a suitable representation, two different ones actu-
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ally for different aspects, we then use the Markov chain stability theory discussed

in Meyn and Tweedie [2009] to prove ergodicity and stationarity. The ergodic

theorem will be given in Section 2.2 and will be prove in Section 2.3. Proposition

2.4 states some useful results on the spectral radius of the parameter matrices

and this proposition is proved in Section 2.4.

The concept of ergodicity describes the way in which the chain returns to

the “center” of the space, and whether it might happen in a finite mean time.

Intuitively, if a Markov chain is ergodic, its n-step transition probability converges

to some “fixed” measure. There are several forms of ergodicity in literature. In

this thesis, we use the V -uniform ergodicity.

Definition 2.1 (V -Uniform Ergodicity, Definition (16.2) in Meyn and Tweedie

[2009]). A Markov chain Φ is called V -uniformly ergodic if

sup
x∈X

sup
v:∣v∣≤V

∣∣∣∣∫
X

v(w)P n(x, dw))−
∫
X

v(w)�(dw)

∣∣∣∣
V (x)

→ 0, n→∞,

where X is the state space, V : X → [1,∞) is real Borel measurable, P n is the

n-step transition probability and � is a probability measure on Borel sets of X.

Such � is called an invariant measure.

We choose to use V -uniform ergodicity because the conditions to guarantee V -

uniform ergodicity is easier to verify than other forms of ergodicity. In particular

one needs to handle an appropriate drift in the Markov representation; see (2.4)
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and (2.10). We also note that if V (x) ≡ 1 for all x ∈ X, then V -uniform ergodicity

implies the Markov chain is uniformly ergodic, that is ergodic in the usual sense

and uniform for all initial conditions.

Definition 2.2 (Strict Stationarity). A time series zt is called strictly stationary

if for any k, the marginal distribution of {zn, zn+1, ⋅ ⋅ ⋅ , zn+k} does not change as

n varies.

Given the existence of �, if the chain is V -uniformly ergodic, the transition

probability will eventually converge to the invariant measure �. If the chain is

initiated from the invariant measure, it is stationary. To show this, we only need

to consider the first step stationarity due to the Markov property. The invariant

probability measure � is such that for any A ∈ ℬ(X),

�(A) =

∫
X

�(dw)P (w,A),

we can iterate to give

�(A) =

∫
X

(∫
X

�(dx)P (x, dw)

)
P (w,A)

=

∫
X

�(dx)

∫
X

P (x, dw)P (w,A)

=

∫
X

�(dw)P 2(w,A)

...

=

∫
X

�(dw)P n(w,A)
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= P�(Φn ∈ A).

We can see that a Markov chain Φ is strictly stationary if and only if the marginal

distribution of Φn does not vary with time. To prove the ergodicity and strict

stationarity of the GARCH process, our task is to give conditions under which

the invariant measure � exists and the chain is V -uniformly ergodic.

2.2 The Ergodicity Theorem for General Mul-

tivariate GARCH Processes

If p = q = 1 as in Hafner and Preminger [2009], the model (1.4) is a Markov chain.

Otherwise, we need to rewrite the model into a Markov chain representation in

order to make use of Markov chain technique. We define

Yt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎt

...

ℎt−p+1

�t

...

�t−q+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, wt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c

0

...

0

�t

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 ⋅ ⋅ ⋅ Bp−1 Bp A1 A2 ⋅ ⋅ ⋅ Aq−1 Aq

I

. . . 0

I

0

0 I

I

. . .

I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.1)

where all items in Yt and wt are N -dimensional vectors and all items in J are

N × N matrices. Thus, Yt and wt are N(p + q)-dimensional vectors and J is a

N(p+ q)×N(p+ q) matrix. Then (1.4) can be rewritten as

Yt = wt + JYt−1 = F (Yt−1, �t), (2.2)

which is the Markov chain representation of (1.4). It is possible to give the

transition probability explicitly for this Markov chain, but this is not needed for

our purpose.

The ergodicity of {ℎt} is implied by the ergodicity of {Yt} since ℎt = TYt is

a measurable (linear) transformation, where T is an N × N(p + q) matrix and

T = (IN , 0, ⋅ ⋅ ⋅ , 0). Similarly we have that {yt} is ergodic given that {Yt} is



2.2 The Ergodicity Theorem for General Multivariate GARCH
Processes 20

ergodic.

Consider the derivative

Δt = Δ(Yt−1, �t) =
∂Yt
∂Y T

t−1

= J +
∂wt
∂Y T

t−1

= J +

⎛⎜⎜⎜⎜⎜⎜⎝
0

∂�t
∂Y T

t−1

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.3)

where the first 0 is an N(p − 1) × N(p + q) null matrix and the last 0 is an

Nq × N(p + q) null matrix. Applying the chain rule and based on the result in

Hafner and Preminger [2009], we have that

∂�t
∂Y T

t−1

=
∂�t
∂ℎTt

⋅ ∂ℎt
∂Y T

t−1

= D+
d

∂vec(H
1/2
t �t�

T
t H

1/2
t )

∂vecT (Ht)
Dd ⋅

∂(c+ [B1∣B2∣ ⋅ ⋅ ⋅ ∣Bp∣A1∣A2∣ ⋅ ⋅ ⋅ ∣Aq]Yt−1)

∂Y T
t−1

= D+
d (Δ̃t ⊗ Id)Dd[B1∣B2∣ ⋅ ⋅ ⋅ ∣Bp∣A1∣A2∣ ⋅ ⋅ ⋅ ∣Aq],

where

Δ̃t = H
1/2
t �t�

T
t H

−1/2
t .

For some integer m ≥ 1 and t ≥ m, let


m(Δ) =
1

m
E log

(
sup
Ȳm

∥∥∥∥∥
m∏
k=1

Δ(Ym−k+1, �m−k+2)

∥∥∥∥∥
)
,

where Ȳ m = {(Y T
1 , ⋅ ⋅ ⋅ , Y T

m )T ∈ ℝ(p+q)Nm}.
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We are now in the position to state the theorem for ergodicity and stationarity.

Theorem 2.3 (V -uniform ergodicity). Consider the general multivariate GARCH

model (1.4). Assume that:

A1: The marginal distribution of {�t} is given by a lower semicontinuous density

f� w.r.t. the Lebesgue measure which has support 0� = {x ∈ ℝd∣f�(x) > 0}.

The initial condition Y0 is independent of {�t}.

A2: E∥�t∥2r <∞ for some r > 0 (r is usually small).

A3: �(J) < 1.

A4: 
m(Δ) < 0 for some integer m ≥ 1.

A5: Θ is compact.

Then under Assumptions A1-A5, {Yt} is V -uniformly ergodic and the invariant

measure exists. Thus, the GARCH process is asymptotically strictly stationary.

Proof. See Section 2.3.

Remarks. 1. Theorem 2.3 is similar in spirit to Hafner and Preminger [2009,

Theorem 1]. Our proof relies on finer details and structures from Meyn and

Tweedie [2009]. In particular one needs to use the matrix J (2.1).

2. Since �t is i.i.d., a sufficient condition for Assumption A4 is

E log(supY1 ∥Δ(Y1, �1)∥) < 0.
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3. It is difficult to calculate 
m(Δ) directly even for a small m. The computa-

tion of 
m(Δ) usually involves Monte Carlo simulation. See Section 5.2 for

an example.

4. For VEC models which have equivalent BEKK representations, a sufficient

condition for Assumption A3 is �(
∑q

i=1Ai +
∑p

j=1 Bj) < 1. More generally,

we have the following Proposition. This condition, in the p = q = 1 is

stronger than the corresponding condition in Hafner and Preminger [2009]

who only requires �(B1) < 1.

Proposition 2.4. For VEC models which have equivalent BEKK representations,

we have that

1. �(
∑p

j=1 Bj) < 1 implies �(B) < 1, where B is defined in (3.8).

2. �(
∑q

i=1Ai +
∑p

j=1Bj) < 1 implies �(J) < 1.

3. �(
∑q

i=1 Ai +
∑p

j=1Bj) < 1 implies �(
∑p

j=1Bj) < 1.

Proof. See Section 2.4.

These results in Proposition 2.4 were first mentioned in Thesis of Boussama

[1998], specifically in the Appendix. In Section 2.4 we write his proof but with

additional details needed for our result.
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2.3 Proof of Theorem 2.3

To prove Theorem 2.3, we introduce the following drift condition (Condition (V4)

(15.28) in Meyn and Tweedie [2009]).

There exists an extended-real-valued function V : X→ [1,∞], a mea-

surable set C and constants � > 0, b <∞,

ΔV (x) ≤ −�V (x) + bIC(x), x ∈ X, (2.4)

where Δ is the drift operator which is defined as

ΔV (x) :=

∫
P (x, dy)V (y)−V (x) = E(V (Φ1)∣Φ0 = x)−V (x), x ∈ X.

We inductively define a sequence of functions Ft by

F1(x, u1) = F (x, u1)

Ft+1(x, u1, ⋅ ⋅ ⋅ , ut+1) = F (Ft(x, u1, ⋅ ⋅ ⋅ , ut), ut+1), t ≥ 1, (2.5)

where the function F is defined in (2.2). This deterministic system is called the

associated control model for (2.2).

By Theorem 16.0.1 in Meyn and Tweedie [2009], given {Yt} is  -irreducible

and aperiodic, {Yt} is V -uniformly ergodic if and only if the drift condition (2.4)
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holds for some petite set1 C and some V0, where V0 is equivalent to V in the sense

that for some constant c ≥ 1,

c−1V ≤ V0 ≤ cV. (2.6)

By the structure of Δt = Δ(Yt−1, �t), which is defined in (2.3), and the com-

pactness of Θ, we can choose �t = �∗ sufficiently small such that

�0 = sup
Ȳ 1

�(Δ(⋅, �∗)) < 1. (2.7)

The globally attracting state of {Yt} exists if there exists a fixed point Y ∗ such

that Yt converges to Y ∗ as t → ∞ for the control sequence {�t = �∗} and any

starting value Y0. Here Y ∗ depends on the choice of �∗. By Proposition 7.2.5 in

Meyn and Tweedie [2009], the existence of Y ∗ is equivalent to that the nonlinear

control system (2.5) is M -irreducible, which is also equivalent to that {Yt} is

 -irreducible, given that (2.5) is forward accessible (Theorem 7.2.6 in Meyn and

Tweedie [2009]). Furthermore, aperiodicity follows from the fact that any cycle

must contain the state Y ∗.

Therefore, to show {Yt} is V -uniformly ergodic, it suffices to verify that

1(Meyn and Tweedie [2009]) We call a set C ∈ ℬ(X) �a-petite if the sampled chain satisfies
the bound

∞∑
n=0

Pn(x,B)a(n) ≥ �a(B),

for all x ∈ C, B ∈ ℬ(X), where �a is a non-trivial measure on ℬ(X) and a = {a(n)} is a
distribution or probability measure on ℤ+.
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1. The globally attracting state Y ∗ exits.

2. The associated control model (2.5) is forward accessible.

3. The drift condition (2.4) is satisfied for some function V ≥ 1.

Furthermore, if the function V we use in (2.4) is unbounded, the above three

conditions make the assumptions of Theorem 8.0.2(ii) in Meyn and Tweedie [2009]

satisfied and thus the chain is recurrent. By Theorem 10.4.4 in Meyn and Tweedie

[2009], the chain has a unique (up to constant multiples) subinvariant measure

which is invariant.

The above three topics will be discussed in the following three subsections,

respectively.

2.3.1 The Existence of the Globally Attracting State

By the mean-value theorem, we have

∥Yt+1 − Yt∥ = ∥Δ(Y ∗t , �
∗)(Yt − Yt−1)∥

=

∥∥∥∥∥
t∏
i=1

Δ(Y ∗t , �
∗)(Y1 − Y0)

∥∥∥∥∥
≤

∥∥∥∥∥
t∏
i=1

Δ(Y ∗i , �
∗)

∥∥∥∥∥ ∥Y1 − Y0∥

≤ sup
Ȳ 1

∥Δt(⋅, �∗)∥ ∥Y1 − Y0∥

≤ K�t0∥Y1 − Y0∥

→ 0, as t→∞,
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where Y ∗i is on the chord between Yi+1 and Yi. The last inequality holds due to

(2.7) and Lemma 4.1. This proves the existence of the globally attracting state

Y ∗, i.e.,

Yt → Y ∗, as t→∞.

2.3.2 Forward Accessibility

Let {Ξk,Λk : k ∈ ℤ+} denote the matrices

Ξk+1 = Ξk+1(x0, u1, ⋅ ⋅ ⋅ , uk+1) :=

[
∂F

∂x

]
(xk,uk+1)

,

Λk+1 = Λk+1(x0, u1, ⋅ ⋅ ⋅ , uk+1) :=

[
∂F

∂u

]
(xk,uk+1)

,

where xk = Fk(x0, u1, ⋅ ⋅ ⋅ , uk). Let Ck
x0

= Ck
x0

(u1, ⋅ ⋅ ⋅ , uk) denote the generalized

controllability matrix (along with sequence u1, ⋅ ⋅ ⋅ , uk)

Ck
x0

:= [Ξk ⋅ ⋅ ⋅Ξ2Λ1∣Ξk ⋅ ⋅ ⋅Ξ3Λ2∣ ⋅ ⋅ ⋅ ∣ΞkΛk−1∣Λk].

Rank condition for multivariate control models (Condition (CM3) (7.13)

in Meyn and Tweedie [2009])

For each initial condition x0 ∈ ℝN , there exists k ∈ ℤ+ and a sequence

u⃗0 = (u0
1, ⋅ ⋅ ⋅ , u0

k) ∈ Ok
� such that

rankCk
x0

(u⃗0) = N. (2.8)
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Proposition 7.1.4 in Meyn and Tweedie [2009] states that the control model

(2.5) is forward accessible if and only if the rank condition (2.8) holds. In partic-

ular, if Λ1 = ∂F (x, e)/∂e has full rank (i.e., k = 1), condition (2.8) is satisfied.

Λ1 =
∂F (Yt−1, �t)

�t
=
∂wt
�t

=

⎛⎜⎜⎜⎜⎜⎜⎝
0

∂�t
∂�Tt

0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It suffices to verify that ∂�t
∂�Tt

has full rank for our chosen �∗. By (1), (2) and (3)

in Appendix B,

∂�t
∂�Tt

∣∣∣∣
�t=�∗

=
∂

∂�Tt
vech(H

1/2
t �t�

T
t H

−1/2
t )

∣∣∣∣
�t=�∗

= D+
d

∂

∂�Tt
vec(H

1/2
t �t�

T
t H

1/2
t )

∣∣∣∣
�t=�∗

= D+
d (H

1/2
t ⊗H1/2

t )
∂vec(�t�

T
t )

∂�Tt

∣∣∣∣
�t=�∗

= D+
d (H

1/2
t ⊗H1/2

t )(Id2 +Kdd)(�
∗ ⊗ Id)

= D+
d (H

1/2
t ⊗H1/2

t )Dd ⋅ 2D+
d (�∗ ⊗ Id).

By (4) in Appendix B,

∣D+
d (H

1/2
t ⊗H1/2

t )Dd∣ = ∣Ht∣(d+1)/2 ∕= 0.



2.3 Proof of Theorem 2.3 28

It now remains to show that D+
d (�∗⊗ Id) has rank d. Note that D+

d only contains

1 and 0. We denote the itℎ column of �∗ ⊗ Id by Πi. Then

D+
d Πi = D+

d vec[(0, ⋅ ⋅ ⋅ , 0, �∗, 0, ⋅ ⋅ ⋅ , 0)T ]

= vech[(0, ⋅ ⋅ ⋅ , 0, �∗, 0, ⋅ ⋅ ⋅ , 0)T ]

= vech

⎛⎜⎜⎜⎜⎜⎜⎝
0(i−1)×d

�∗T

0(d−i)×d

⎞⎟⎟⎟⎟⎟⎟⎠

We can see that the itℎ column of D+
d (�∗ ⊗ Id) has i non-zero elements, which

are the first i entries of the vector �∗. Furthermore, there is no more than one

non-zero element on each row of D+
d (�∗ ⊗ Id). Then we have

D+
d (�∗ ⊗ Id) = M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

0 ⋅ ⋅ ⋅ 0

0 �
2

. . .
...

...
. . . . . . 0

0 ⋅ ⋅ ⋅ 0 �
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where M is an elementary matrix (see Appendix A for details) and �
i

is an i-

dimensional vector with all elements being the itℎ element of �∗. Since M has full

rank, we can have a properly chosen �∗ such that D+
d (�∗ ⊗ Id) has rank d.
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2.3.3 Drift Condition

By the mean-value theorem, there exists Ȳ ∗t−1 on the chord between Y ∗ and Yt−1

such that

F (Yt−1, �t)− F (Y ∗, �t) = Δ(Ȳ ∗t−1, �t)(Yt−1 − Y ∗).

Then we have

Yt = F (Yt−1, �t)

= F (Yt−1, �t)− F (Y ∗, �t) + F (Y ∗, �t)

= F (Y ∗, �t) + Δ(Ȳ ∗t−1, �t)(Yt−1 − Y ∗)

= !(Ȳ ∗t−1, �t) + Δ(Ȳ ∗t−1, �t)Yt−1, (2.9)

where !(Ȳ ∗t−1, �t) = F (Y ∗, �t)−Δ(Ȳ ∗t−1, �t)Y
∗. Applying (2.9) recursively, we get

Yt = !(Ȳ ∗t−1, �t) +
m−1∑
j=1

(
j∏

k=1

Δ(Ȳ ∗t−k, �t−k+1)

)
!(Ȳ ∗t−j−1, �t−j)

+
m∏
k=1

Δ(Ȳ ∗t−k, �t−k+1)Yt−m,

where Ȳ ∗t−k on the chord between Y ∗ and Yt−k, k = 1, ⋅ ⋅ ⋅ ,m.

Define

Ω = sup
Ȳm

∥∥∥∥∥
m∏
k=1

Δ(Ym−k+1, �m−k+2)

∥∥∥∥∥ and � = E(Ωs) for some s.



2.3 Proof of Theorem 2.3 30

Consider the function g(x) = E(Ωx). We have g(0) = 1 and

lim
ℎ↓0

g(ℎ)− g(0)

ℎ
= E(Ωx log Ω)∣x=0 = E(log(Ω)) < 0.

The last inequality results from Assumption A4. Thus we can choose 0 < s < r

such that � < 1, where r is given is Assumption A2.

Next, consider the drift function

V (x) = 1 + ∥x∥s . (2.10)

We observe that

E(V (Yt)∣Yt−m = Y0)

≤ 1 + E sup
Ȳ 1

∥!(⋅, �1)∥s

+
m−1∑
j=1

E

(
sup
Ȳ j

∥∥∥∥∥
j∏

k=1

Δ(⋅, �k)

∥∥∥∥∥
s)

E sup
Ȳ 1

∥!(⋅, �1)∥s + �∥Y0∥s

= �V (Y0) + b,

where

b = (1− �) + E sup
Ȳ 1

∥!(⋅, �1)∥s +
m−1∑
j=1

E

(
sup
Ȳ j

∥∥∥∥∥
j∏

k=1

Δ(⋅, �k)

∥∥∥∥∥
s)

E sup
Ȳ 1

∥!(⋅, �1)∥s.
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Thus,

ΔV (Y0) = E(V (Yt)∣Yt−m = Y0)− V (Y0) ≤ (�− 1)V (Y0) + b.

We choose the measurable set C as

C =

{
Y : V (Y ) = 1 + ∥Y ∥s < 2

1− �
b

}
.

For Y0 ∈ C,

ΔV (Y0) ≤ �− 1

2
V (Y0) + b.

For Y0 ∈ Cc,

ΔV (Y0) ≤ (�− 1)V (Y0) +
1− �

2
V (Y0) =

�− 1

2
V (Y0)

Then (2.4) is satisfied if we assign � = 1−�
2

. It remains to show that b is finite,

which suffices to show that both E(supȲ 1 ∥Δ(⋅, �1)∥r) and E(supȲ 1 ∥!(⋅, �1)∥r)

are finite. By Theorem 5.6.9 in Horn and Johnson [1985], the spectral radius is a

lower bound for any matrix norm. By (5) and (6) in Appendix B, we have that

∥Δt∥ ≤ ∥J∥+

∥∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎜⎝
0

∂�t
∂Y T

t−1

0

⎞⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
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≤ ∥J∥+

∥∥∥∥ ∂�t
∂Y T

t−1

∥∥∥∥
= ∥J∥+ ∥D+

d (Δ̃t ⊗ Id)Dd[B1∣B2∣ ⋅ ⋅ ⋅ ∣Bp∣A1∣A2∣ ⋅ ⋅ ⋅ ∣Aq]∥

≤ C1 + C2∥Δ̃t ⊗ Id∥

= C1 + C2∥Δ̃t∥∥Id∥

≤ C1 + C2∥Δ̃t∥2

= C1 + C2

√
tr(Δ̃T

t Δ̃t)

≤ C1 + C2

√
1

4
[tr(Δ̃t) + tr(Δ̃T

t )]2

= C1 + C2tr(Δ̃t)

≤ C1 + C2�
T
t �t,

where C1 = ∥J∥ and C2 = ∥D+
d ∥ ⋅ ∥Dd∥ ⋅ ∥[B1∣B2∣ ⋅ ⋅ ⋅ ∣Bp∣A1∣A2∣ ⋅ ⋅ ⋅ ∣Aq]∥. We

then obtain by Assumption A2 that

E(sup
Ȳ 1

∥Δ(⋅, �1)∥r) ≤ Cr
1 + Cr

2E(�Tt �t)
r = Cr

1 + Cr
3E∥�t∥2r <∞.

The finiteness of E(supȲ 1 ∥!(⋅, �1)∥r) will follow.
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2.4 Proof of Proposition 2.4

1. We apply the “vec” operator on both sides of (1.6). By Equation (1) in

Appendix B, we have that

vec(Ht) = vec(C) +

q∑
i=1

Ãivec(yt−iy
T
t−i) +

p∑
i=1

B̃ivec(Ht−i), (2.11)

where

Ãi =
k∑
j=1

Aij ⊗ Aij and B̃i =
k∑
j=1

Bij ⊗Bij.

Since Ht and yty
T
t are symmetric, we left multiply the matrix D+

d on both

sides of (2.11) and we can obtain that

vech(Ht)

= vech(C) +

q∑
i=1

D+
d Ãivec(yt−iy

T
t−i) +

p∑
i=1

D+
d B̃ivec(Ht−i)

= vech(C) +

q∑
i=1

D+
d ÃiDdvech(yt−iy

T
t−i) +

p∑
i=1

D+
d B̃iDdvech(Ht−i),

which is the same as (1.4) if we assign

Ai = D+
d ÃiDd and Bi = D+

d B̃iDd.

Suppose � and u is one of the nonzero eigenpairs of B, where

u = (u∗1, ⋅ ⋅ ⋅ , u∗p)∗ ∈ ℂpN and ∗ denotes the conjugate transpose. We have
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by definition that

Bu = �u,

that is,

�u1 =

p∑
i=1

Biui and �uj = uj−1 for 1 < j ≤ p,

It is therefore the case that up ∕= 0 (otherwise u = 0) and

�pup =

(
p∑
i=1

�p−iBi

)
up. (2.12)

Let U be the symmetric matrix such that vech(U) = up. Thus, from (2.12),

we have that

vech(�pU) = �pup =

(
p∑
i=1

�p−iBi

)
vech(U)

=

p∑
i=1

�p−iD+
d B̃iDdvech(U)

=

p∑
i=1

�p−iD+
d B̃ivec(U)

=

p∑
i=1

�p−iD+
d

(
k∑
j=1

Bij ⊗Bij

)
vec(U)

=

p∑
i=1

k∑
j=1

�p−iD+
d vec(BijUB

T
ij)

=

p∑
i=1

k∑
j=1

�p−ivech(BijUB
T
ij).
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Equivalently,

�pU =

p∑
i=1

k∑
j=1

�p−iBijUB
T
ij. (2.13)

We obtain (2.13) due to the fact that vech(A) = vech(B) implies A = B

if both A and B are symmetric matrices. Note that the vech(⋅) operator

obeys the linear property, i.e., vech(cA) = cvech(A) for a constant c.

We define a function '(⋅) by

'(X) =

p∑
i=1

k∑
j=1

BijXB
T
ij,

whose argument is from the class from symmetric positive definite matrices.

We denote the n-th order iterative function of '(⋅) by 'n(⋅), that is,

'n(⋅) = '('n−1(⋅)).

We define the matrix norm ∥ ⋅ ∥V on any arbitrary matrix P ∈ ℂd×d by

∥P∥V = sup{∣x∗Px∣ : x ∈ ℂd and x∗V x = 1},

where V is defined as

V =
∞∑
n=0

'n(C),

where C is the constant matrix in (1.6). It remains to show that V is
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well defined. V is trivially symmetric positive definite. Applying the “vec”

operator on '(C) gives

vec('(C)) =

p∑
i=1

k∑
j=1

(Bij ⊗Bij)vec(C)

=

p∑
i=1

B̃ivec(C)

= D+
d

(
p∑
i=1

Bi

)
Ddvec(C),

Suppose that

vec('n(C)) = D+
d

(
p∑
i=1

Bi

)n

Ddvec(C). (2.14)

Then

vec('n+1(C))

= vec('('n(C)))

= vec

(
'

(
mat

(
D+
d

[
p∑
i=1

Bi

]n
Ddvec(C)

)))

= vec

(
p∑
i=1

k∑
j=1

Bij

[
mat

(
D+
d

[
p∑
l=1

Bl

]n
Ddvec(C)

)]
BT
ij

)

=

p∑
i=1

k∑
j=1

(Bij ⊗Bij)

(
D+
d

[
p∑
l=1

Bl

]n
Ddvec(C)

)

=

p∑
i=1

B̃iD
+
d

(
p∑
l=1

Bl

)n

Ddvec(C)
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= D+
d

(
p∑
i=1

DdB̃iD
+
d

)
DdD

+
d

(
p∑
l=l

Bl

)n

Ddvec(C)

= D+
d

(
p∑
i=1

Bi

)(
p∑
l=l

Bl

)n

Ddvec(C)

= D+
d

(
p∑
i=1

Bi

)n+1

Ddvec(C).

Therefore, (2.14) holds due to the induction. Since

∞∑
n=0

∥'n(C)∥ ≤
∞∑
n=0

∥vec('n(C))∥

≤
∞∑
n=0

∥D+
d ∥

∥∥∥∥∥
(

p∑
i=1

Bi

)n∥∥∥∥∥ ∥Ddvec(C)∥

≤ K
∞∑
n=0

[
�

(
p∑
i=1

Bi

)]n
<∞,

V is well defined. The last inequality holds due to Lemma 4.1. We also

have that

V =
∞∑
n=0

'n(C)

= '0(C) +
∞∑
n=1

'n(C)

= C +
∞∑
n=1

'('n−1(C))

= C + '

(
∞∑
n=1

'n−1(C)

)
= C + '(V ) (2.15)
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It comes that for any matrix P ∈ ℂd×d,

∣x∗Px∣ =
∣∣∣∣( x√

x∗V x

)∗
P

x√
x∗V x

∣∣∣∣ (x∗V x) ≤ ∥P∥V (x∗V x). (2.16)

This inequality holds since

(
x√
x∗V x

)∗
V

x√
x∗V x

= 1 (notice that x∗V x ∕=

0 if x ∕= 0).

For any x,

∣�∣p∣x∗Ux∣ (2.13)
= ∣

p∑
i=1

k∑
j=1

�p−ix∗BijUB
T
ijx∣

≤
p∑
i=1

k∑
j=1

∣�∣p−i∣x∗BijUB
T
ijx∣

(by (2.16)) ≤
p∑
i=1

k∑
j=1

∣�∣p−i∥U∥V (x∗BijV B
T
ijx) (2.17)

Suppose there exists one of the eigenvalues of B which is greater than or

equal to 1 in modulus, denoted by �0. Also assume that x0 is such that

∣x∗0Ux0∣ = ∥U∥V and x∗0V x0 = 1. Substituting �0 and x0 into (2.17) we

obtain

∣�0∣p ≤
p∑
i=1

k∑
j=1

∣�0∣p−i(x∗0BijV B
T
ijx0)

≤ ∣�0∣p−1

p∑
i=1

k∑
j=1

x∗0BijV B
T
ijx0

= ∣�0∣p−1x∗0

(
p∑
i=1

k∑
j=1

BijV B
T
ij

)
x0
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= ∣�0∣p−1x∗0(V − C)x0

(by (2.15)) = ∣�0∣p−1(1− x∗0Cx0)

x∗0Cx0 > 0 since C is symmetric positive definite. Therefore, ∣�0∣ < 1. This

contradiction finalizes our proof.

2. We define a function '̃(⋅) by

'̃(X) =

q∑
i=1

k∑
j=1

AijXA
T
ij +

p∑
i=1

k∑
j=1

BijXB
T
ij,

whose argument is from the class from symmetric positive definite matrices.

The matrix Ṽ is defined as

Ṽ =
∞∑
n=0

'n(C).

Similarly, we have

Ṽ = C + '̃(Ṽ ). (2.18)

We also need to show that Ṽ is well defined. Similar to the previous part,

we have that

vec('̃n(C)) = D+
d

(
q∑
i=1

Ai +

p∑
i=1

Bi

)n

Ddvec(C).
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Therefore,

∞∑
n=0

∥'̃n(C)∥ ≤
∞∑
n=0

∥vec('̃n(C))∥

≤
∞∑
n=0

∥D+
d ∥

∥∥∥∥∥
(

q∑
i=1

Ai +

p∑
i=1

Bi

)n∥∥∥∥∥ ∥Ddvec(C)∥

≤ K
∞∑
n=0

[
�

(
q∑
i=1

Ai +

p∑
i=1

Bi

)]n
<∞.

and Ṽ is well defined.

Suppose � and u is one of the nonzero eigenpairs of J , where

u = (uT1 , ⋅ ⋅ ⋅ , uTp , uTp+1, ⋅ ⋅ ⋅ , uTp+q)T ∈ ℂ(p+q)N , then we have by definition

that

Ju = �u,

that is

�u1 =

p∑
i=1

Biui +

q∑
i=1

Aiup+i (2.19)

and

�uj = uj−1 for 1 < j ≤ p, uj = 0 for p+ 1 ≤ j ≤ p+ q.

Then (2.19) can be rewritten as

�u1 =

p∑
i=1

Biui.
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It is therefore the case that up ∕= 0 (otherwise u = 0) and

�pup =

(
p∑
i=1

�p−iBi

)
up. (2.20)

Note that (2.20) and (2.12) are the same and therefore we can finish our

proof by repeating the steps in the previous part.

3. By (2.18), we have

Ṽ = C +

q∑
i=1

k∑
j=1

AijṼ A
T
ij +

p∑
i=1

k∑
j=1

BijṼ B
T
ij = C̃ + '(Ṽ ), (2.21)

where C̃ = C +
∑q

i=1

∑k
j=1AijṼ A

T
ij. Notice that C̃ is also symmetric posi-

tive definite.

Suppose � and u is one of the nonzero eigenpairs of
∑p

i=1Bi and U is such

that vech(U) = u. We have

vech(�U) = �u =

(
p∑
i=1

Bi

)
vech(U)

=

p∑
i=1

D+
d B̃iDdvech(U)

=

p∑
i=1

D+
d B̃ivec(U)

=

p∑
i=1

D+
d

(
k∑
j=1

Bij ⊗Bij

)
vec(U)

=

p∑
i=1

k∑
j=1

D+
d vec(BijUB

T
ij)
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=

p∑
i=1

k∑
j=1

vech(BijUB
T
ij).

Equivalently,

�U =

p∑
i=1

k∑
j=1

BijUB
T
ij. (2.22)

We define the matrix norm ∥ ⋅ ∥Ṽ on any arbitrary matrix P ∈ ℂd×d by

∥P∥Ṽ = sup{∣x∗Px∣ : x ∈ ℂd and x∗Ṽ x = 1},

It comes that

∣x∗Px∣ =

∣∣∣∣∣
(

x√
x∗Ṽ x

)∗
P

x√
x∗Ṽ x

∣∣∣∣∣ (x∗Ṽ x) ≤ ∥P∥Ṽ (x∗Ṽ x). (2.23)

For any x,

∣�∣∣x∗Ux∣ (2.22)
= ∣

p∑
i=1

k∑
j=1

x∗BijUB
T
ijx∣

≤
p∑
i=1

k∑
j=1

∣x∗BijUB
T
ijx∣

(by (2.23)) ≤
p∑
i=1

k∑
j=1

∥U∥Ṽ (x∗BijṼ B
T
ijx) (2.24)

Suppose there exists one of the eigenvalues of
∑p

i=1 Bi which is greater than

or equal to 1 in modulus, denoted by �0. Also assume that x0 is such that

∣x∗0Ux0∣ = ∥U∥Ṽ and x∗0Ṽ x0 = 1. Substituting �0 and x0 into (2.24) we
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obtain

∣�0∣ ≤
p∑
i=1

k∑
j=1

(x∗0BijṼ B
T
ijx0)

≤
p∑
i=1

k∑
j=1

x∗0BijṼ B
T
ijx0

= x∗0

(
p∑
i=1

k∑
j=1

BijṼ B
T
ij

)
x0

= ∣�0∣p−1x∗0(Ṽ − C̃)x0

= ∣�0∣p−1(1− x∗0C̃x0)

x∗0C̃x0 > 0 since C̃ is symmetric positive definite. Therefore, ∣�0∣ < 1. This

contradiction finalizes our proof.

2.5 Conclusion and Commentary

This chapter serves as preliminary results for the next chapter. In this

chapter, we give conditions under which the GARCH process is ergodic and

stationary. The proof is based on the Markov chain technique in Meyn and

Tweedie [2009]. This approach was first used by Hafner and Preminger

[2009] on the general multivariate GARCH(1, 1) model. We extend it to

the general multivariate GARCH(p, q) case. Assumption A3 guarantees

that if we iterate (2.2) to the infinite past, the infinite sum is well defined.

Assumption A4 makes it possible to find the exact value of � and b for our
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chosen function V in the drift condition (2.4). Although we assume the

innovation process has unit variance, we do not need this for the ergodicity

purpose. We only require the innovation process to have a finite small

moment (Assumption A2). Assumption A5 is also assumed in the next

chapter to prove consistency. Here, we need this assumption to obtain

(2.7). Proposition (2.4) provides sufficient conditions for Assumption A3

for the VEC models with BEKK representations. This result is also useful

for the next chapter when we prove the consistency.

Ergodicity is useful for the next chapter when we prove the asymptotic

theory for the QMLE. For example, when we consider the limit

lim
n→∞

1

n

n∑
t=1

lt(�0),

the usual law of large numbers does not apply since lt’s are not independent.

We are able to apply the ergodic theorem instead of law of large numbers

due to the ergodicity of the model. The stationarity makes the expectation

not depend on time. For example, Elt(�) = El1(�) for any t.



Chapter 3

Asymptotic Theory

3.1 Introduction

In Section 1.3, we defined the QMLE for the model parameters. The QMLE

is such that it maximizes L̃(�), i.e., the likelihood function conditional on some

initial values. This is different from the theoretical likelihood function L(�) which

depends on infinite past. Moreover, the normal density function we are using in

L(�) may or may not be consistent with the true distribution of �t. In this

situation, we still want the estimator to be consistent asymptotically normal.

Consistency means that the estimator converges to the true parameter value, i.e.,

Definition 3.1 (Consistency). An estimator �̂n is called consistent if

�̂n
a.s.−→ �0.
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Asymptotic normality means that the difference between the estimate and the

true parameter converges to a normal distribution, i.e.,

√
n(�̂n − �0)

D−→ N(0,Γ),

where Γ is a positive definite matrix. We will specify Γ later in this chapter.

Sections 3.3 and 3.4 gives conditions under which the QMLE is consistent

and asymptotically normal. To achieve the asymptotic theory, another important

intermediate result besides the ergodicty and stationarity is the model identifia-

bility.

Definition 3.2 (Identifiability). The GARCH model (1.4) is identifiable if ∀�, �0 ∈

Θ,

Ht(�) = Ht(�0) P�0 a.s.⇒ � = �0.

The rest of this chapter is organized as follows. In Section 3.2.1, we give

necessary and sufficient conditions under which our GARCH model is identifi-

able. We also give a counter example in Section 3.2.2 to show that the sufficient

conditions for identifiability in Jeantheau [1998] are invalid. Section 3.3 provides

assumptions under which the QMLE is consistent. To prove this, we use a dif-

ferent AR(1) type representation other than the one in Chapter 2. We prove the

consistency theorem using the standard compactness argument and thus the com-

pactness assumption for the parameter space is essential. Section 3.4 proves the
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asymptotic normality with two additional assumptions. We only require the finite

sixth moment on the observed process, which is by far the weakest assumption

in literature for general multivariate GARCH models.

3.2 Identifiability

3.2.1 The Identifiability Theorem

We start this section with an important concept “matrix polynomial”.

Definition 3.3 (Matrix Polynomial). A univariate matrix polynomial P of degree

p is defined as

P (x) =

p∑
i=0

Cix
i,

where Ci denotes a matrix of constant coefficients, and Cp is non-zero.

We define two matrix polynomials A(w) =
∑q

i=1 Aiw
i and ℬ(w) = IN −∑p

j=1 Bjw
j. Using the lag operator L, (1.4) can be rewritten as

ℬ(L)ℎt = c+ A(L)�t. (3.1)

Hereafter, we denote the model formulation at the true parameter value by A�0(w)

and ℬ�0(w), and use A�(w) and ℬ�(w) to denote the model formulation at any

arbitrary parameter value.

In the univariate case, we usually assume that the two polynomials are coprime
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to get the identifiability. It is natural to generalize this in the multivariate case.

Definition 3.4 (Greatest Common Left Divisor). Let A and B be two matrix

polynomials such that their determinants are not zero. If there exist a matrix

polynomial D such that

every left divisor of D is also a left divisor of A and B, and

every left divisor of A and B is also a left divisor of D,

then D is called the greatest common left divisor (g.c.l.d.) of A and B.

Recall that a square matrix polynomial is unimodular if its determinant is

a non-zero constant. Therefore, we say that two matrix polynomials are (left)

coprime if any of their greatest common left divisor is unimodular. In this sense,

the greatest common left divisor is not unique since a unimodular g.c.l.d. mul-

tiplied by a unimodular matrix is still a unimodular g.c.l.d.. The condition that

A and ℬ are coprime is not sufficient for the model identifiability. We need a

further condition to guarantee the identifiability.

Theorem 3.5 (Identifiability). Assume that

B1: The model (1.4) has a strictly stationary and ergodic solution.

B2: The law of �t is such that there is no quadratic form q for which q(�t) = �

a.s., with some constant � ∈ ℝ.

B3: ∀� ∈ Θ,ℬ� is invertible; A�0 is also invertible.
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B4: ∀� ∈ Θ, A� and ℬ� are (left) coprime.

Then under Assumptions B1-B4, the model is identifiable if and only if there

exists no non-zero row vector � such that

�Aq = �Bp = 0.

Proof. Section 2.2 gives conditions under which Assumption B1 holds. For de-

tailed proof, see Section 3.2.3.

This necessary and sufficient condition for the identifiability of multivariate

time series was first introduced by Hannan [1969] to verify the identifiability

of the vector ARMA model. This condition was also mentioned in Boussama

[1998]. Note that identifiability is not to be confused with the model identification

concept in statistics.

3.2.2 The Counter Example

Jeantheau [1998] provides assumptions for the CCC model (defined in (1.2)) to

be identifiable. Let P (w) = (pij(w)) be a matrix polynomial and dij be the degree

of pij(w). We define

dj(P ) = sup
i
dij and P rc

ij = pij,dj ,

which leads to the definition of column-reduced matrix.
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Definition 3.6 (Column Reduced). A polynomial matrix P is column reduced if

the determinant of P rc is not equal to zero.

Identifiability is claimed in Jeantheau [1998] by replacing our necessary and

sufficient condition with the follow additional assumption:

B5: Either A�0 or ℬ�0 is column reduced.

Note that Jeantheau [1998] gives only sufficient conditions for identifiability.

However, we find that Jeantheau [1998]’s assumptions may not lead to the

identifiability. Here is a counter-example. Let us consider a trivariate GARCH(1, 2)

model and let

A1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.05 0 0

0 0.02 0

0 0 0.09

⎞⎟⎟⎟⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0 0

0 0 0

0 0 0.03

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎝
0.6 1.2 0

0 0 0

0 0 0.4

⎞⎟⎟⎟⎟⎟⎟⎠ .

We can easily verify that A1x+ A2x
2 and I −Bx are coprime.

Arc
�0

=

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0 0

0 0.02 0

0 0 0.09

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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which is of full rank and thus this parameterization satisfies Jeantheau [1998]’s

conditions.

However, if we redefine A2 and B as

A2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0.02 0

0 0 0

0 0 0.03

⎞⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎝
0.6 0.2 0

0 0 0

0 0 0.4

⎞⎟⎟⎟⎟⎟⎟⎠
and let A1 remain as the same, these two parameterizations produce exactly the

same covariance series. And thus, Jeantheau [1998]’s conditions are invalid. The

Mathematica codes for this counter example and the verification are available

from the author upon request. This counter example exists because we have a

non-zero row vector � = (0, 1, 0) such that

�A2 = �B = 0.

We follow the procedure of proving the necessity part in Section 3.2.3 to construct

this counter example.

3.2.3 Proof of Theorem 3.5

By Assumption B3, (3.1) yields

ℎt = ℬ−1(L)(c+ A(L)�t). (3.2)
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Suppose that ℎt(�) = ℎt(�0) P�0 a.s. for some t ∈ ℤ. If A�(1) ∕= 0, it follows

from (3.2) that

[ℬ−1
� (L)A�(L)−ℬ−1

�0
(L)A�0(L)]�t = ℬ−1

�0
(1)c0 −ℬ−1

� (1)c.

If ℬ−1
� (L)A�(L) − ℬ−1

�0
(L)A�0(L) ∕= 0, there exists a set of constant matrices

Di, i = 0, 1, ⋅ ⋅ ⋅ ,∞ and a constant vector d0 such that
∑∞

i=0Di�t−i = d0. Thus,

D0�t = d0 −
∞∑
i=1

Di�t−i.

By taking the conditional expectation given Ft−1, the left hand side becomes

D0ℎt while the right hand side remains as the same. Hence,

0 = D0(�t − ℎt) = D0vech(H
1/2
t (�t�

′
t − I)H

1/2
t ). (3.3)

However, by Assumption B2, �t�
′
t ∕= I with a positive probability. Since H

1/2
t is

positive definite, we conclude that it is impossible that (3.3) holds. Therefore,

ℬ−1
� (L)A�(L) = ℬ−1

�0
(L)A�0(L) and ℬ−1

�0
(1)c0 = ℬ−1

� (1)c. (3.4)

Let M = ℬ�ℬ
−1
�0

, then we have

A� = MA�0 (3.5)
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ℬ� = Mℬ�0 (3.6)

We want to show that M = I.

Please see Appendix A for some definitions and results about the decomposi-

tion of rational matrix polynomials. A rational matrix has every element as the

ratio of two finite degree polynomials. Hereafter, a matrix polynomial means a

matrix whose elements are all polynomials up to a finite degree. Otherwise we

can rewrite it as a rational matrix polynomial. By Lemma A.5, since M is a

rational matrix polynomial, we can factorize M as M = SDR, where S and R

are unimodular whose elements are polynomials up to a certain finite order and

D is diagonal. M is of full rank since both ℬ� and ℬ�0 are non-singular. Let

D = P−1Q, where

P = diag{p1, ⋅ ⋅ ⋅ , pN}, Q = diag{q1, ⋅ ⋅ ⋅ , qN}.

and pi does not divide qi for all i. Then (3.5) and (3.6) yield

S−1ℬ� = P−1QRℬ�0

S−1A� = P−1QRA�0

Notice that the elements of S−1 and R−1 are also polynomials. Hence P divides

Rℬ�0 , which means that for all i, pi divides all elements in the itℎ row of Rℬ�0
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and also P divides RA�0 . Similarly we have Q divides S−1ℬ� and S−1A�. That

means P divides A�0 and A�0 , and Q divides ℬ� and A�. Thus both P and Q are

unimodular (Assumption B4). Note that they are also diagonal, which implies

that the diagonal elements of P and Q are all non-zero constants and therefore

M is unimodular. If U is the coefficient matrix of M ’s highest degree, we must

have UAq(�0) = UBp(�0) = 0 in order to make the degree of MA�0 not greater

than the degree of A�. By the sufficient condition, U=0. Doing this procedure

iteratively reduces M to a constant matrix. But ℬ�0(0) = ℬ�(0) = I. M must

be the identity matrix. Thus from (3.4) we can obtain c = c0.

For the necessity part, we assume that there exists a non-zero row vector �

such that

�Aq = �Bp = 0. (3.7)

Let P be an orthogonal matrix such that P�T has zero as the first entry. Such

matrix P exists; for example a simple rotation matrix is one candidate. Then we

can choose a vector � such that P� has the form (1, 0, ⋅ ⋅ ⋅ , 0)T . For any w, the

matrix polynomial

P (IN + ��w)P T = PP T + (P�)(�P T )w = IN ,

which has unit determinant. Thus, the matrix polynomial IN + ��w has deter-

minant one since P is orthogonal. We left-multiply IN + ��L on both sides of
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(3.1). Note that (IN + ��L)A(L) and (IN + ��L)ℬ(L) still have orders q and p

respectively due to (3.7) and they are still coprime since IN + ��w is unimodu-

lar. This different parameterization generates the same process, which makes the

identifiability invalid.

3.3 Consistency

Conditional on initial values, Ht(�) can be calculated recursively, denoted by

H̃t(�). We also define ℎ̃t(�), l̃t(�), L̃t(�) analogously. It will be shown in Lemma

4.4 that the choice of initial values does not matter asymptotically.

We rewrite (1.4) in the form as

Xt = ct +BXt−1, (3.8)

where

Xt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎt

ℎt−1

...

ℎt−p+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ct =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c+
∑q

i=1Ai�t−i

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 B2 ⋅ ⋅ ⋅ Bp−1 Bp

I 0 ⋅ ⋅ ⋅ 0 0

0
. . . . . .

...
...

...
. . . . . . 0

...

0 ⋅ ⋅ ⋅ 0 I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that (3.8) is a different iteration than (2.2). Different iterations are used to

study different aspects of the process.

Theorem 3.7 (Consistency). Assume that

C1: Θ is compact.

C2: The model satisfies the stationarity and ergodicity assumptions given by The-

orem 2.3 and the identifiability assumptions given by Theorem 3.5.

C3: E(∥yt∥s) <∞ for some s > 0.

C4: �(B) < 1

Then under Assumptions C1-C4, we have

�̂n
a.s.−→ �0.

Proof. For any � ∈ Θ and any integer k, let Vk(�) be the open ball with center �
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and radius 1/k. For any k, the parameter space Θ has an open cover

Vk(�0)
∪⎧⎨⎩ ∪

�∈Θ∖Vk(�0)

Vk(�)

⎫⎬⎭ .

By the compactness of Θ, there exists �1, ⋅ ⋅ ⋅ , �j ∈ Θ ∖ Vk(�0) such that

Θ ⊂ Vk(�0)
∪{

j∪
i=1

Vk(�i)

}
.

Here, the choice of j depends on k. Suppose �̂n ∕∈ Vk(�0) ∩Θ, which implies that

�̂n ∈
{
{∪ji=1Vk(�i)} ∩Θ

}
∖ Vk(�0). Without loss of generality, we assume that

�̂n ∈ {Vk(�1) ∩Θ} ∖ Vk(�0). Then we have

El1(�0)

= lim inf
n→∞

1

n

n∑
t=1

lt(�0) (3.9)

≥ lim inf
n→∞

1

n

n∑
t=1

l̃t(�0)− lim sup
n→∞

sup
�∈Θ

∣∣∣∣∣ 1n
n∑
t=1

lt(�)−
1

n

n∑
t=1

l̃t(�)

∣∣∣∣∣
≥ lim inf

n→∞
inf
�∈Θ

1

n

n∑
t=1

l̃t(�) (3.10)

= lim inf
n→∞

1

n

n∑
t=1

l̃t(�̂n) (3.11)

= lim inf
n→∞

inf
�∈{Vk(�1)∩Θ}∖Vk(�0)

1

n

n∑
t=1

l̃t(�) (3.12)

≥ lim inf
n→∞

inf
�∈{Vk(�1)∩Θ}∖Vk(�0)

1

n

n∑
t=1

lt(�)− lim sup
n→∞

sup
�∈Θ

∣∣∣∣∣ 1n
n∑
t=1

lt(�)−
1

n

n∑
t=1

l̃t(�)

∣∣∣∣∣
≥ lim inf

n→∞

1

n

n∑
t=1

inf
�∈{Vk(�1)∩Θ}∖Vk(�0)

lt(�) (3.13)
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= E inf
�∈{Vk(�1)∩Θ}∖Vk(�0)

l1(�) (3.14)

→ El1(�1) as k →∞ (3.15)

> El1(�0). (3.16)

Equations (3.9) and (3.14) hold due to the ergodic theorem1 (Billingsley

[1995]). The ergodic theorem applies here due to Lemma 4.2 and the fact that

lt(�) and l̃t(�) are measurable transformations of the stationary and ergodic pro-

cess {yt}. Inequalities (3.10) and (3.13) result from Lemma 4.4. (3.11) and (3.12)

are based on the definition of the QMLE. Inequality (3.15) is true by the Beppo-

Levi theorem and (3.16) results from Lemma 4.3. This contradiction indicates

that �̂n ∈ Vk(�0) ∩Θ. The desired result follows by letting k →∞.

3.4 Asymptotic Normality

3.4.1 The Normality Thoerem

To establish the asymptotic normality of the QMLE, the following two additional

assumptions are made:

D1: �0 is an interior point of Θ.

D2: E∥yt∥6 <∞.

1If {Xt} is a stationary and ergodic process such that EXt ∈ ℝ ∪ {+∞}, then
n−1

∑
t = 1nXt converges almost surely to EX1 when n→∞.
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Theorem 3.8 (Asymptotic Normality). Under Assumptions C1-C4 and D1-D2,

we have

√
n(�̂n − �0)

D−→ N(0, J−1V J−1),

where

J = −E
(
∂2lt(�0)

∂�∂�T

)
and V = E

(
∂lt(�0)

∂�

∂lt(�0)

∂�T

)
.

Proof. See Section 3.4.2.

Remarks. 1. Comte and Lieberman [2003] studies the asymptotic normality

for the BEKK model, which is a special case of the results here, with the

requirement of finite eighth moment of {yt}. This theorem reduces the

moment requirement of {yt} from 8 in Comte and Lieberman [2003] to 6.

2. If the innovation process {�t} is indeed Gaussian, QMLE becomes regular

MLE and provides the most efficiency. In this case, we have

√
n(�̂n − �0)

D−→ N(0, J−1).

3. In the univariate case, the moment condition can be imposed on the in-

novation process {�t} (i.e., Francq and Zaköıan [2004]). However, in our

multivariate case, we have to impose the moment condition on the ob-

served process {yt} due to the complexity of the multivariate structure. In
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the multivariate case, E∥yt∥k <∞ implies E∥�t∥k <∞ since

E∥�t∥k ≤ E∥Ht∥−k/2∥yt∥k ≤ 
−dk/2E∥yt∥k <∞,

where 
 is defined in Lemma 4.2. However, generally E∥�t∥k <∞ does not

imply E∥yt∥k <∞ since ∥Ht∥ usually has no upper bound.

4. Note that Assumption C3 is implied by D2. But we do not need Assumption

D2 to prove consistency.

5. Francq and Zaköıan [2010] discussed the distribution of the QMLE when �0

is on the boundary of Θ.

3.4.2 Proof of Theorem 3.8

Lemma 4.6 guarantees that the matrices V and J are well defined. Consider the

Taylor expansion on the score function around �0.

0 =
1√
n

n∑
t=1

∂l̃t(�̂n)

∂�
=

1√
n

n∑
i=1

∂l̃t(�0)

∂�
+

(
1

n

n∑
t=1

∂2l̃t(�
∗)

∂�∂�T

)
√
n(�̂n − �0) (3.17)

where �∗ is between �̂n and �0. By (4.15),

E
[
∂lt(�0)

∂�i

∣∣∣∣ℱt−1

]
= tr[(Id −H1/2

t (�0)E(�t�
T
t )H

−1/2
t (�0))Ḣt,i(�0)H−1

t (�0)]

= tr[(Id − Id)Ḣt,i(�0)H−1
t (�0)]

= 0.
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We can easily extend the proof of the martingale central limit theorem in Billings-

ley [1961] to the multivariate case using characteristic functions. In the sense of

Lemma 4.6 and the fact that ∂lt(�0)
∂�

is stationary and ergodic, the conditions of the

martingale central limit theorem in Billingsley [1961] are satisfied and we have

that

1√
n

n∑
t=1

∂lt(�0)

∂�

D→ N(0, V ) .

By Lemma 4.7,

1√
n

n∑
t=1

∂l̃t(�0)

∂�
=

1√
n

n∑
t=1

∂lt(�0)

∂�
+

(
1√
n

n∑
t=1

∂l̃t(�0)

∂�
− ∂lt(�0)

∂�

)
D→ N(0, V ),

since the term in the bracket converges to zero in probability.

We now consider the Taylor expansion of 1
n

∑n
t=1

∂2lt(�∗)
∂�∂�T

around �0. For the

(i, j)tℎ element,

(
1

n

n∑
t=1

∂2lt(�
∗)

∂�∂�T

)
ij

=

(
1

n

n∑
t=1

∂2lt(�0)

∂�∂�T

)
ij

+
1

n

n∑
t=1

∂

∂�T

(
∂2lt(�̃)

∂�∂�T

)
ij

(�∗ − �0),

(3.18)

where �̃ is between �∗ and �0. By the consistency, �̃ is within the neighborhood

of �0 when n is sufficiently large. Then by Lemma 4.6 and the ergodic theorem,

lim sup
n→∞

∥∥∥∥∥∥ 1

n

n∑
t=1

∂

∂�

(
∂2lt(�̃)

∂�∂�T

)
ij

∥∥∥∥∥∥ ≤ lim sup
n→∞

1

n

n∑
t=1

sup
�∈�(�0)

∥∥∥∥∥ ∂∂�
(
∂2lt(�)

∂�∂�T

)
ij

∥∥∥∥∥
= E sup

�∈�(�0)

∥∥∥∥∥ ∂∂�
(
∂2lt(�)

∂�∂�T

)
ij

∥∥∥∥∥ <∞.
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Thus, the second term of the right hand side of (3.18) converges to zero since

∥�∗ − �0∥ → 0. Applying the ergodic theorem on the first term of the right hand

side of (3.18) gives

1

n

n∑
t=1

∂2lt(�
∗)

∂�∂�T
P→ J.

By Lemma 4.7,

1

n

n∑
t=1

∂2l̃t(�
∗)

∂�∂�T
=

1

n

n∑
t=1

∂2lt(�
∗)

∂�∂�T
+

(
1

n

n∑
t=1

∂2l̃t(�
∗)

∂�∂�T
− ∂2lt(�

∗)

∂�∂�T

)
P→ J.

Therefore, in view of (3.17) and the Slutsky’s theorem, we finish the proof.

3.5 Conclusion and Commentary

In this chapter, we prove consistency and asymptotic normality of the QMLE

under mild conditions. We prove the consistency using standard compactness

argument (Theorem 3.7) and the asymptotic normality by the Taylor expansion

of the score function (Theorem 3.8). We only assume finite sixth moment of the

observed sequence {yt}, which is by far the weakest in literature for general mul-

tivariate GARCH models. Asymptotic normality is useful for statistical inference

purpose. To calculate the standard error of the estimator, one only needs to

substitute the �0 in the matrices J and V with the estimated value. The condi-

tions we give for model identifiability are necessary and sufficient (Theorem 3.5).

Identifiability is useful to prove Lemma 4.3, which plays an essential rule in the
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proof of the consistency theorem.



Chapter 4

Lemmas

This chapter collects the lemmas needed in Chapter 3 in order to prove the

consistency and asymptotic normality of the QMLE. In particular, we prove that

the difference between the theoretical likelihood function L(�) and the observed

likelihood function L̃(�) converges to zero, and this is also true for their first and

second order derivatives.

4.1 Lemma 4.1

Lemma 4.1. For any matrix A, we have

∥Ak∥ ≤ K�k(A)

for all k and some constant K.
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Proof. ∀� > 0, the matrix
A

�(A) + �
has spectral radius strictly less than 1, which

implies that elementwise,

Ak

(�(A) + �)k
→ 0, as k →∞.

Thus, applying any matrix norm on both side of the above formula gives

∥Ak∥
(�(A) + �)k

→ 0, as k →∞.

Then there exists N such that

∥Ak∥
(�(A) + �)k

< 1, for k ≥ N.

For k < N , we have

∥Ak∥ ≤ Kk(�(A) + �)k,

for some constants Kk, k = 1, ⋅ ⋅ ⋅ , N − 1. The desired result holds by taking

K = max{K1, ⋅ ⋅ ⋅ , KN−1, 1} and noticing that � is arbitrary.

4.2 Lemma 4.2

Lemma 4.2. 1. Elt(�) belongs to ℝ ∪ {+∞}.

2. Elt(�0) <∞.
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Proof. 1. Assumption C1 and the Wielandt-Hoffman theorem1 imply that

eigenvalues are continuous functions of the matrix entries and thus there

exist 
 > 0 such that �it(�) ≥ 
 for all i, t and �, where �it(�), i = 1, ⋅ ⋅ ⋅ , d

are eigenvalues of Ht(�). Hence,

El−t (�) ≤ E log− ∣Ht(�)∣ ≤ max{0,−d log 
} <∞,

where for a random variable X, X− is defined as max{−X, 0}.

2. Note that all the eigenvalues �it(�), i = 1, ⋅ ⋅ ⋅ , d are positive. We have

Elt(�0) = E log ∣Ht(�0)∣+ E(yTt H
−1
t (�0)yt)

= E log ∣Ht(�0)∣+ E(�Tt �t)

= d+ E
2d

s
log ∣Ht(�0)∣s/2d

≤ d+
2d

s
logE∣Ht(�0)∣s/2d (4.1)

= d+
2d

s
logE

(
d∏
i=1

�it(�0)

)s/2d

≤ d+
2d

s
logE(max

i
{�it(�0)})s/2

= d+
2d

s
logE∥Ht(�0)∥s/2 (4.2)

≤ d+ C1 logE∥ℎt(�0)∥s/2

≤ d+ C1 logE∥Xt(�0)∥s/2.
1For a reference, see http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.

html

http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.html
http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.html
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Inequality (4.1) holds due to the Jensen’s inequality and (4.2) is from the

definition of the spectral norm. Iterating (3.8), we obtain

Xt =
∞∑
k=0

Bkct−k. (4.3)

By the compactness of the parameter space, there exist �̄ ∈ (0, 1) such that

�̄ = sup
�∈Θ

�(B(�)).

Hence, by Lemma 4.1 and the stationarity assumption,

E∥Xt(�0)∥s/2 = E

∥∥∥∥∥
∞∑
k=0

Bkct−k

∥∥∥∥∥
s/2

≤
∞∑
k=0

∥∥Bk
∥∥s/2 E∥ct∥s/2

≤
∞∑
k=0

K�̄ks/2E

∥∥∥∥∥c+

q∑
i=1

Ai�t−i

∥∥∥∥∥
s/2

≤ C2 + C3E∥�t∥s/2.

It now only remains to show that E∥�t∥s/2 <∞. By Assumption C3,

E∥�t∥s/2 ≤ E∥vec(yty
T
t )∥s/22

= E(yTt yt)
s/2

= E∥yt∥s <∞.



4.3 Lemma 4.3 68

The desired result will follow.

4.3 Lemma 4.3

Lemma 4.3. E(lt(�0)) < E(lt(�)) for all � ∕= �0.

Proof.

E(lt(�))− E(lt(�0))

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ E(yTt H
−1
t (�)yt)− E(yTt H

−1
t (�0)yt)

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ E[tr(yTt H
−1
t (�)yt)]− E(�Tt �t)

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ E[tr(�Tt H
1/2
t (�0)H−1

t (�)H
1/2
t (�0)�t)]− d

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ tr[E(�t�
T
t H

1/2
t (�0)H−1

t (�)H
1/2
t (�0))]− d

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ tr[E(�t�
T
t )E(H

1/2
t (�0)H−1

t (�)H
1/2
t (�0))]− d

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ E[tr(H
1/2
t (�0)H−1

t (�)H
1/2
t (�0))]− d

= E log
∣Ht(�)∣
∣Ht(�0)∣

+ E[tr(Ht(�0)H−1
t (�))]− d

> E log
∣Ht(�)∣
∣Ht(�0)∣

+ E[log ∣Ht(�0)H−1
t (�))∣+ d]− d = 0. (4.4)

Inequality (4.4) holds due to Inequality (7) in Appendix B.
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4.4 Lemma 4.4

Lemma 4.4. limn→∞ sup�∈Θ ∣ 1n
∑n

t=1 lt(�)−
1
n

∑n
t=1 l̃t(�)∣ = 0, a.s..

Proof. Iterating (3.8), we obtain

Xt = BtX0 +

q∑
i=1

Bt−ici +
t∑

i=q+1

Bt−ici. (4.5)

Analogously,

X̃t = BtX̃0 +

q∑
i=1

Bt−ic̃i +
t∑

i=q+1

Bt−ici. (4.6)

Hence for t ≥ 1, we have almost surely that,

sup
�∈Θ
∥ℎt − ℎ̃t∥ ≤ sup

�∈Θ
∥Xt − X̃t∥

= sup
�∈Θ

∥∥∥∥∥Bt(X0 − X̃0) +

q∑
k=1

Bt−k(ck − c̃k)

∥∥∥∥∥
≤ K�̄t sup

�∈Θ

(∥∥∥∥∥
∞∑
k=0

Bkc−k − X̃0

∥∥∥∥∥+K

q∑
k=1

�̄−k∥ck − c̃k∥

)
≤ O(�̄t). (4.7)

Inequality (4.7) holds since each norm inside of the supremum has finite expec-

tation. Consider the function lt(ℎt) = log ∥Ht∥ + yTt H
−1
t yt, by (1), (9), (10) and

(11) in Appendix B, we have

∂lt(ℎt)

∂ℎTt
=

∂ log ∣Ht∣
∂ℎTt

+
∂

∂ℎTt
vec(yTt H

−1
t yt)
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= vechT
(
∂ log ∣Ht∣
∂Ht

)
+ (yTt ⊗ yTt )

∂

∂ℎTt
vec(H−1

t )

= vechT (H−1
t ) + (yTt ⊗ yTt )Dd

∂vech(H−1
t )

∂vechT (Ht)

= vechT (H−1
t )− (yTt ⊗ yTt )(H−1

t ⊗H−1
t )Dd

= vechT (H−1
t )− (H−1

t yt ⊗H−1
t yt)

TDd.

By the mean value theorem, for some positive number s,

E sup
�∈Θ
∣lt − l̃t∣s/2 = E sup

�∈Θ
∣lt(ℎt)− lt(ℎ̃t)∣s/2 = E sup

�∈Θ

∣∣∣∣∂lt(ℎ̄t)∂ℎTt
(ℎt − ℎ̃t)

∣∣∣∣s/2
≤ E sup

�∈Θ

∥∥∥∥∂lt(ℎ̄t)∂ℎTt

∥∥∥∥s/2 ∥ℎt − ℎ̃t∥s/2
≤ (C1 + C2E∥yt∥s)�̄st/2 = O(�̄st/2),

where ℎ̄t is between the chord of ℎt and ℎ̃t. By the Markov inequality, for any

� > 0,

∞∑
t=1

ℙ
(

sup
�∈Θ
∣lt − l̃t∣ > �

)
=

∞∑
t=1

ℙ
(

sup
�∈Θ
∣lt − l̃t∣s/2 > �s/2

)
≤

∞∑
t=1

E sup�∈Θ ∣lt − l̃t∣s/2

�s/2

≤
∞∑
t=1

O(�̄st/2)

�s/2
<∞.

By the Borel-Cantelli lemma, we have sup�∈Θ ∣lt − l̃t∣ → 0, a.s.. And the desired
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result follows by the Césaro’s mean theorem since

lim
n→∞

sup
�∈Θ

∣∣∣∣∣ 1n
n∑
t=1

lt(�)−
1

n

n∑
t=1

l̃t(�)

∣∣∣∣∣ ≤ lim
n→∞

1

n

n∑
t=1

sup
�∈Θ
∣lt(�)− l̃t(�)∣.

4.5 Lemma 4.5

Lemma 4.5. 1. E
∥∥∥Ḣt,i(�)

∥∥∥3

<∞, where Ḣt,i(�) =
∂Ht(�)

∂�i
.

2. E
∥∥∥Ḧt,ij(�)

∥∥∥2

<∞, where Ḧt,ij(�) =
∂2Ht(�)

∂�i∂�j
.

3. E
∥∥...
H t,ijk(�)

∥∥ <∞, where
...
H t,ijk(�) =

∂3Ht(�)

∂�i∂�j∂�k
.

Proof. It suffices to show that E
∥∥∥∥∂Xt

∂�T

∥∥∥∥3

< ∞, E
∥∥∥∥ ∂

∂�T
vec

(
∂Xt

∂�T

)∥∥∥∥2

< ∞ and

E
∥∥∥∥ ∂

∂�i

[
∂

∂�T
vec

(
∂Xt

∂�T

)]∥∥∥∥ <∞. We consult the formulas in Appendix B various

times when calculating the derivatives.

1. By (4.3), we have that

∂Xt

∂cT
=
∞∑
k=0

Bk1, (4.8)

where 1 = (IN , 0N×N , ⋅ ⋅ ⋅ , 0N×N)T ,

∂Xt

∂vecT (Ai)
=
∞∑
k=0

Bk�t−k−i, (4.9)
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where

�t−k−i = (�Tt−k−i, 0N2×N , ⋅ ⋅ ⋅ , 0N2×N)T

and

�t−k−i =
∂Ai�t−k−i
∂vecT (Ai)

=
∂vec(Ai�t−k−i)

∂vecT (Ai)
=
∂vec(INAi�t−k−i)

∂vecT (Ai)

= (�Tt−k−i ⊗ IN)
∂vec(Ai)

∂vecT (Ai)
= �Tt−k−i ⊗ IN ,

∂Xt

∂vecT (Bi)

=
∞∑
k=1

∂vec(INpB
kct−k)

∂vecT (Bi)

=
∞∑
k=1

(cTt−k ⊗ INp)
∂vec(Bk)

∂vecT (Bi)

=
∞∑
k=1

(cTt−k ⊗ INp)
∂vec(Bk)

∂vecT (B)
⋅ ∂vec(B)

∂vecT (Bi)

=
∞∑
k=1

(cTt−k ⊗ INp)

(
k−1∑
l=0

(BT )k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)
. (4.10)

It is worth pointing out that ∂vec(B)/∂vecT (Bi) is a matrix with elements

1’s and 0’s and does not depend on any model parameters. This is useful

when we calculate the higher order derivatives. By Lemma 4.1 and the

stationarity conditions,

E
∥∥∥∥∂Xt

∂cT

∥∥∥∥3

≤ E

(
∞∑
k=0

∥Bk∥ ⋅ ∥1∥

)3

≤

(
∞∑
k=0

K�̄k

)3

<∞,
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E
∥∥∥∥ ∂Xt

∂vecT (Ai)

∥∥∥∥3

≤ E

(
∞∑
k=0

∥Bk∥ ⋅ ∥�t−k−i∥

)3

≤ E

(
∞∑
k=0

∥Bk∥ ⋅ ∥yt−k−i∥2

)3

≤ C1

(
∞∑
k=0

K�̄k

)
<∞,

where C1 = max{E∥yt∥6,E∥yt1∥4∥yt2∥2,E∥yt1∥2∥yt2∥2∥yt3∥2}. All the ex-

pectations are finite by Assumption D2 and the Hölder’s inequality since

E∥yt1∥4∥yt2∥2 ≤ (E∥yt1∥6)2/3(E∥yt2∥6)1/3 <∞,

and

E∥yt1∥2∥yt2∥2∥yt3∥2 ≤ (E(∥yt1∥6))1/3(E(∥yt2∥6))1/3(E(∥yt3∥6))1/3 <∞.

Furthermore,

E
∥∥∥∥ ∂Xt

∂vecT (Bi)

∥∥∥∥3

≤ E

(
∞∑
k=1

∥ct−k∥

∥∥∥∥∥
k−1∑
l=0

(BT )k−1−l ⊗Bl

∥∥∥∥∥
∥∥∥∥ ∂vec(B)

∂vecT (Bi)

∥∥∥∥
)3

≤ E

(
∞∑
k=1

∥ct−k∥

(
k−1∑
l=0

∥∥Bk−1−l∥∥ ⋅ ∥Bl∥

)∥∥∥∥ ∂vec(B)

∂vecT (Bi)

∥∥∥∥
)3

≤ C1E

(
∞∑
k=1

∥ct−k∥

(
k−1∑
l=0

K2�̄k−1

))3
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= C2E

(
∞∑
k=1

k�̄k−1∥ct−k∥

)3

= C3

(
∞∑
k=1

k�̄k−1

)3

<∞,

where C3/C2 = max {E∥ct∥3,E∥ct1∥2∥ct2∥,E(∥ct1∥ ⋅ ∥ct2∥ ⋅ ∥ct3∥)}. It re-

mains to show that all these expectations are finite.

E∥ct∥3 ≤ E

(
∥c∥+

q∑
i=1

∥Ai∥ ⋅ ∥yt−i∥2

)3

= C1 + C2E∥yt∥2 + C3E∥yt1∥2∥yt2∥2 + C4E∥yt∥4

+C5E∥yt1∥2∥yt2∥2∥yt3∥2 + C6E∥yt1∥4∥yt2∥2 + C7E∥yt∥6

< ∞.

By the Hölder’s inequality,

E∥ct1∥2∥ct2∥ ≤ (E∥ct1∥3)2/3(E∥ct2∥3)1/3 <∞,

and

E∥ct1∥∥ct2∥∥ct3∥ ≤ (E(∥ct1∥3))1/3(E(∥ct2∥3))1/3(E(∥ct3∥3))1/3 <∞.
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2. It follows from the previous part that

∂

∂cT
vec

(
∂Xt

∂cT

)
= 0,

∂

∂vecT (Ai)
vec

(
∂Xt

∂cT

)
= 0,

∂

∂vecT (Aj)
vec

(
∂Xt

∂vecT (Ai)

)
= 0,

∂

∂vecT (Bj)
vec

(
∂Xt

∂cT

)
=

∞∑
k=0

∂vec(Bk1)

∂vecT (Bj)

=
∞∑
k=1

(1T ⊗ INp)
∂vec(Bk)

∂vecT (Bj)

=
∞∑
k=1

(1T ⊗ INp)
∂vec(Bk)

∂vecT (B)

∂vec(B)

∂vecT (Bj)

=
∞∑
k=1

(1T ⊗ INp)

(
k−1∑
l=0

(BT )k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bj)
, (4.11)

∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Ai)

)
=

∞∑
k=0

∂vec(Bk�t−k−i)

∂vecT (Bj)

=
∞∑
k=1

(�Tt−k−i ⊗ INp)
∂vec(Bk)

∂vecT (Bj)

=
∞∑
k=1

(�Tt−k−i ⊗ INp)
∂vec(Bk)

∂vecT (B)

∂vec(B)

∂vecT (Bj)
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=
∞∑
k=1

(�Tt−k−i ⊗ INp)

(
k−1∑
l=0

(BT )k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bj)
, (4.12)

∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)
=

∞∑
k=2

(cTt−k ⊗ INp)
∂

∂vecT (Bj)
vec

[(
k−1∑
l=0

(BT )k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

]

=
∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

) k−1∑
l=0

∂vec((BT )k−1−l ⊗Bl)

∂vecT (Bj)

=
∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)×(
∂vec((BT )k−1−l)

∂vecT (Bj)
⊗ vec(Bl) + vec((BT )k−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

)
=

∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)KNp,Np

×
(
∂vec(Bk−1−l)

∂vecT (Bj)
⊗ vec(Bl) + vec(Bk−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

)
=

∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)KNp,Np

×
[(

∂vec(Bk−1−l)

∂vecT (B)

∂vec(B)

∂vecT (Bj)

)
⊗ vec(Bl)

+vec(Bk−1−l)⊗
(
∂vec(Bl)

∂vecT (B)

∂vec(B)

∂vecT (Bj)

)]
=

∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)KNp,Np

×

{[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+ vec(Bk−1−l)⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]}

=
∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

)
Γ(B, k, j). (4.13)
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Therefore,

E
∥∥∥∥ ∂

∂vecT (Bj)
vec

(
∂Xt

∂cT

)∥∥∥∥2

≤

(
C1

∞∑
k=1

k−1∑
l=0

K�̄k−1−lK�̄l

)2

≤

(
C2

∞∑
k=1

k�̄k−1

)2

<∞,

E
∥∥∥∥ ∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Ai)

)∥∥∥∥2

≤ C1E

(
∞∑
k=1

∥�t−k−i∥
k−1∑
l=0

∥Bk−1−l∥ ⋅ ∥Bl∥

)2

≤ C1E

(
∞∑
k=1

∥yt−k−i∥2

k−1∑
l=0

K�̄k−1−lK�̄l

)2

≤ C2E

(
∞∑
k=1

∥yt−k−i∥2k�̄k−1

)2

= C3

(
∞∑
k=1

k�̄k−1

)2

<∞,

where C3/C2 = max{E∥yt∥4,E∥yt1∥2∥yt2∥2}.

∥Γ(B, k, j)∥

≤ C1

k−1∑
l=0

(
k−2−l∑
m=0

∥Bk−2−l−m∥ ⋅ ∥Bm∥ ⋅ ∥Bl∥

+∥Bk−1−l∥ ⋅
l−1∑
m=0

∥Bl−1−m∥ ⋅ ∥Bm∥

)

≤ C1

(
k−1∑
l=0

(
k−2−l∑
m=0

K�̄k−2−l−mK�̄mK�̄l
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+K�̄k−1−l
l−1∑
m=0

K�̄l−1−mK�̄m

))

≤ C2

(
k−1∑
l=0

(k − 1− l)�̄k−2 + l�̄k−2

)
= O(k(k − 1)�̄k−2).

Thus,

E
∥∥∥∥ ∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)∥∥∥∥2

≤ C3E

(
∞∑
k=2

∥ct−k∥ ⋅ ∥Γ(B, k, j)∥

)2

= C4

(
∞∑
k=2

∥Γ(B, k, j)∥

)2

= C4

(
∞∑
k=2

O(k(k − 1)�̄k−2)

)2

<∞,

where C4/C3 = max{E∥ct∥2,E∥ct1∥∥ct2∥}.

3. Only the following third order derivatives are non-zero.

∂

∂vecT (Bj)
vec

[
∂

∂vecT (Bi)
vec

(
∂Xt

∂cT

)]
=

∞∑
k=2

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

) k−1∑
l=0

∂

∂vecT (Bj)
vec((BT )k−1−l ⊗Bl)

=
∞∑
k=2

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)KNp,Np ×{[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)
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+ vec(Bk−1−l)⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]}

=
∞∑
k=2

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

)
Γ(B, k, j),

∂

∂vecT (Br)
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Ai)

)]
=

∞∑
k=2

(
∂vecT (B)

∂vec(Bj)
⊗ �Tt−k−i ⊗ INp

) k−1∑
l=0

∂

∂vecT (Br)
vec((BT )k−1−l ⊗Bl)

=
∞∑
k=2

(
∂vecT (B)

∂vec(Bj)
⊗ �Tt−k−i ⊗ INp

) k−1∑
l=0

(INp ⊗KNp,Np ⊗ INp)KNp,Np ×{[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Br)

]
⊗ vec(Bl)

+ vec(Bk−1−l)⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Br)

]}

=
∞∑
k=2

(
∂vecT (B)

∂vec(Bj)
⊗ �Tt−k−i ⊗ INp

)
Γ(B, k, r),

∂

∂cT
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]
=

∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
∂

∂cT
vec(cTt−k ⊗ INp)

=
∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
×(INp ⊗K1,Np ⊗ INp)

[
∂ct−k
∂cT

⊗ vec(INp)

]
=

∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
(INp ⊗K1,Np ⊗ INp) [1⊗ vec(INp)] ,
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∂

∂vecT (Ar)
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]
=

∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
∂

∂vecT (Ar)
vec(cTt−k ⊗ INp)

=
∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
×(INp ⊗K1,Np ⊗ INp)

[
∂ct−k

∂vecT (Ar)
⊗ vec(INp)

]
=

∞∑
k=2

ΓT (B, k, j)

(
∂vec(B)

∂vecT (Bi)
⊗ INp

)
×(INp ⊗K1,Np ⊗ INp)

[
�t−k ⊗ vec(INp)

]
.

Let Buv,r denote the (u, v)tℎ element of Br and CNp = (INp ⊗ KNp,Np ⊗

INp)KNp,Np.

∂

∂Buv,r

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]
=

∞∑
k=2

(cTt−k ⊗ INp)
(
∂vecT (B)

∂vec(Bi)
⊗ INp

)
∂Γ(B, k, j)

∂Buv,r

=
∞∑
k=3

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

) k−1∑
l=0

CNp ×{[
∂

∂Buv,r

(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+

[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]
⊗ ∂vec(Bl)

∂Buv,r

+
∂vec(Bk−1−l)

∂Buv,r

⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

+ vec(Bk−1−l)⊗

[
∂

∂Buv,r

(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]}

=
∞∑
k=3

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

) k−1∑
l=0

CNp ×
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{[(
k−2−l∑
m=0

∂(BT )k−2−l−m

∂Buv,r

⊗Bm

)
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+

[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗ ∂Bm

∂Buv,r

)
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+

[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

⊗

(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂Buv,r

+

(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂Buv,r

⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

+vec(Bk−1−l)⊗

[(
l−1∑
m=0

∂(BT )l−1−m

∂Buv,r

⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

+ vec(Bk−1−l)⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗ ∂Bm

∂Buv,r

)
∂vec(B)

∂vecT (Bj)

]}

=
∞∑
k=3

(
∂vecT (B)

∂vec(Bi)
⊗ 1T ⊗ INp

) k−1∑
l=0

CNp ×⎧⎨⎩
⎡⎣⎛⎝k−2−l∑

m=0

((
k−3−l−m∑

s=0

(BT )k−3−l−m−s ⊗Bs

)
∂B

∂Buv,r

)T

⊗Bm

⎞⎠
× ∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+

[(
k−2−l∑
m=0

(BT )k−2−l−m

⊗

[(
m−1∑
s=0

(BT )m−1−s ⊗Bs

)
∂B

∂Buv,r

])
∂vec(B)

∂vecT (Bj)

]
⊗ vec(Bl)

+

[(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

⊗

(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂Buv,r
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+

(
k−2−l∑
m=0

(BT )k−2−l−m ⊗Bm

)
∂vec(B)

∂Buv,r

⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗Bm

)
∂vec(B)

∂vecT (Bj)

]

+vec(Bk−1−l)⊗

⎡⎣⎛⎝ l−1∑
m=0

((
l−2−m∑
s=0

(BT )l−2−m−s ⊗Bs

)
∂B

∂Buv,r

)T

⊗Bm)
∂vec(B)

∂vecT (Bj)

]
+vec(Bk−1−l)⊗

[(
l−1∑
m=0

(BT )l−1−m ⊗

[(
m−1∑
s=0

(BT )m−1−s

⊗Bs)
∂B

∂Buv,r

])
∂vec(B)

∂vecT (Bj)

]}
.

Therefore,

E
∥∥∥∥ ∂

∂vecT (Bj)
vec

[
∂

∂vecT (Bi)
vec

(
∂Xt

∂cT

)]∥∥∥∥
≤ C1

∞∑
k=2

∥Γ(B, k, j)∥ ≤ C2

∞∑
k=2

k(k − 1)�̄k−2 <∞,

E
∥∥∥∥ ∂

∂vecT (Br)
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Ai)

)]∥∥∥∥
≤ C1

∞∑
k=2

E∥�t−k−i∥ ⋅ ∥Γ(B, k, j)∥ ≤ C2E∥yt∥2

∞∑
k=2

k(k − 1)�̄k−2 <∞,

E
∥∥∥∥ ∂

∂cT
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]∥∥∥∥
≤ C1

∞∑
k=2

∥Γ(B, k, j)∥ ≤ C2

∞∑
k=2

k(k − 1)�̄k−2 <∞,
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E
∥∥∥∥ ∂

∂vecT (Ar)
vec

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]∥∥∥∥
≤ C1

∞∑
k=2

E∥�t−k∥ ⋅ ∥Γ(B, k, j)∥ ≤ C2E∥yt∥2

∞∑
k=2

k(k − 1)�̄k−2 <∞,

E
∥∥∥∥ ∂

∂Buv,r

[
∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)]∥∥∥∥
≤ C1

∞∑
k=3

k−1∑
l=0

{
k−2−l∑
m=0

[(
k−3−l−m∑

s=0

�̄k−3−l−m−s�̄s

)
�̄m

]
�̄l

+
k−2−l∑
m=0

[
�̄k−2−l−m

(
m−1∑
s=0

�̄m−1−s�̄s

)]
�̄l

+

(
k−2−l∑
m=0

�̄k−2−l−m�̄m

)(
l−1∑
m=0

�̄l−1−m�̄m

)

+

(
k−2−l∑
m=0

�̄k−2−l−m�̄m

)(
l−1∑
m=0

�̄l−1−m�̄m

)

+�̄k−1−l

[
l−1∑
m=0

(
l−2−m∑
s=0

�̄l−2−m−s�̄s

)
�̄m

]

+ �̄k−1−l

[
l−1∑
m=0

�̄l−1−m

(
m−1∑
s=0

�̄m−1−s�̄s

)]}

= C2

∞∑
k=3

k(k − 1)(k − 2)�̄k−3 <∞.

4.6 Lemma 4.6

Lemma 4.6. 1. E
∥∥∥∥∂lt(�0)

∂�

∂lt(�0)

∂�T

∥∥∥∥ <∞.

2. E
∥∥∥∥∂2lt(�0)

∂�∂�T

∥∥∥∥ <∞.
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3. There exists a neighborhood �(�0) such that for all i, j and k,

E sup
�∈�(�0)

∣∣∣∣ ∂3lt(�)

∂�i∂�j∂�k

∣∣∣∣ <∞.
Proof. 1. By (8) and (14) in Appendix B,

∂lt(�)

∂�i

=
∂

∂�i
log ∣Ht(�)∣+

∂

∂�i
tr(yty

T
t H

−1
t (�))

= ∣H−1
t (�)∣ ∂

∂�i
∣Ht(�)∣+ tr

(
yty

T
t

∂

∂�i
H−1
t (�)

)
= ∣H−1

t (�)∣ ∂∣Ht(�)∣
∂vecT (Ht(�))

∂vec(Ht(�))

∂�i
− tr(yty

T
t H

−1
t (�)Ḣt,i(�)H

−1
t (�))

= ∣H−1
t (�)∣vecT

(
∂∣Ht(�)∣
∂Ht(�)

)
vec

(
∂Ht(�)

∂�i

)
−tr(yty

T
t H

−1
t (�)Ḣt,i(�)H

−1
t (�))

= ∣H−1
t (�)∣vecT (∣Ht(�)∣H−1

t (�))vec(Ḣt,i(�))

−tr(yty
T
t H

−1
t (�)Ḣt,i(�)H

−1
t (�))

= tr(H−1
t (�)Ḣt,i(�))− tr(yty

T
t H

−1
t (�)Ḣt,i(�)H

−1
t (�))

= tr[(Id − ytyTt H−1
t (�))Ḣt,i(�)H

−1
t (�)]. (4.14)

When � = �0, we have

∂lt(�0)

∂�i
= tr[(Id −H1/2

t (�0)�t�
T
t H

−1/2
t (�0))Ḣt,i(�0)H−1

t (�0)] = tr(Υt,i).

(4.15)
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The following three results are useful in our proof:

(a)

∥H1/2
t (�0)�t�

T
t H

−1/2
t (�0)∥

≤ ∥H1/2
t (�0)�t�

T
t H

−1/2
t (�0)∥2

=
{

tr[(H
1/2
t (�0)�t�

T
t H

−1/2
t (�0))TH

1/2
t (�0)�t�

T
t H

−1/2
t (�0)]

}1/2

≤ 1

2

{
tr[(H

1/2
t (�0)�t�

T
t H

−1/2
t (�0))T ] + tr(H

1/2
t (�0)�t�

T
t H

−1/2
t (�0))

}
= tr(H

1/2
t (�0)�t�

T
t H

−1/2
t (�0))

= tr(�Tt �t)

= ∥�t∥2

(b) E∥�t∥6 ≤ E∥H−1/2∥6∥yt∥6 ≤ 1


3
E∥yt∥6 < ∞, where 
 is defined in

Lemma 4.2

By Lemma 4.5, Formulas (5), (15) and (16) in Appendix B, the indepen-

dence between �t and Ht and the Cauchy-Schwarz inequality, we can obtain

that

E
∣∣∣∣∂lt(�0)

∂�i

∂lt(�0)

∂�j

∣∣∣∣
= E∣tr(Υt,i)tr(Υt,j)∣

= E∣tr(Υt,i ⊗Υt,j)∣

≤ C1E∥Υt,i ⊗Υt,j∥
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= C1E(∥Υt,i∥ ⋅ ∥Υt,j∥)

≤ C2E
[
(1 + ∥�t∥)2∥Ḣt,i(�0)∥ ⋅ ∥Ḣt,j(�0)∥

]
= C2E(1 + ∥�t∥)2E

(
∥Ḣt,i(�0)∥ ⋅ ∥Ḣt,j(�0)∥

)
≤ C2(1 + 2E∥�t∥2 + E∥�t∥4)

[
E∥Ḣt,i(�0)∥2

]1/2 [
E∥Ḣt,j(�0)∥2

]1/2

<∞.

And the desired result follows.

2. By Formula (14) in Appendix B and the product rule,

∂l2t (�)

∂�i∂�j

= tr

[
∂

∂�j
Ḣt,i(�)H

−1
t (�)− ytyTt

∂

∂�j
H−1
t (�)Ḣt,i(�)H

−1
t (�)

]
= tr

[
Ḧt,ij(�)H

−1
t (�) + Ḣt,i(�)

∂H−1
t (�)

∂�j
− ytyTt

(
∂H−1

t (�)

∂�j
Ḣt,i(�)H

−1
t (�)

+H−1
t (�)Ḧt,ij(�)H

−1
t (�) +H−1

t (�)Ḣt,i(�)
∂H−1

t (�)

∂�j

)]
= tr

[
Ḧt,ij(�)H

−1
t (�) + Ḣt,i(�)H

−1
t (�)Ḣt,j(�)H

−1
t (�) + yty

T
t H

−1
t (�)(

Ḣt,j(�)Ḣt,i(�)− Ḧt,ij(�) + Ḣt,i(�)H
−1
t (�)Ḣt,j(�)

)
H−1
t (�)

]
. (4.16)

When � = �0, we have

∂l2t (�0)

∂�i∂�j
= tr

[
Ḧt,ij(�0)H−1

t (�0) + Ḣt,i(�0)H−1
t (�0)Ḣt,j(�0)H−1

t (�0)

+H
1/2
t (�0)�t�

T
t H

−1/2
t (�0)

(
Ḣt,j(�0)Ḣt,i(�0)− Ḧt,ij(�0)

+Ḣt,i(�0)H−1
t (�0)Ḣt,j(�0)

)
H−1
t (�0)

]
.
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By Lemma 4.5, the independence between �t and Ht and the Cauchy-

Schwarz inequality, we can obtain that

E
∣∣∣∣∂l2t (�0)

∂�i∂�j

∣∣∣∣
= E

∣∣∣tr [Ḧt,ij(�0)H−1
t (�0) + Ḣt,i(�0)H−1

t (�0)Ḣt,j(�0)H−1
t (�0)

+H
1/2
t (�0)�t�

T
t H

−1/2
t (�0)

(
Ḣt,j(�0)Ḣt,i(�0)− Ḧt,ij(�0)

+Ḣt,i(�0)H−1
t (�0)Ḣt,j(�0)

)
H−1
t (�0)

]∣∣∣ .
≤ C1E

∥∥∥[Ḧt,ij(�0)H−1
t (�0) + Ḣt,i(�0)H−1

t (�0)Ḣt,j(�0)H−1
t (�0)

+H
1/2
t (�0)�t�

T
t H

−1/2
t (�0)

(
Ḣt,j(�0)Ḣt,i(�0)− Ḧt,ij(�0)

+Ḣt,i(�0)H−1
t (�0)Ḣt,j(�0)

)
H−1
t (�0)

]∥∥∥ .
≤ C2E∥Ḧt,ij(�0)∥+ C3E∥Ḣt,i(�0)∥ ⋅ ∥Ḣt,j(�0)∥

+C4E∥�t∥2
(
E∥Ḣt,j(�0)∥ ⋅ ∥Ḣt,i(�0)∥+ E∥Ḧt,ij(�0)∥(

+C5E∥Ḣt,j(�0)∥ ⋅ ∥Ḣt,i(�0)∥
)

≤ C6 + C7

(
E∥Ḣt,i(�0)∥2

)1/2 (
E∥Ḣt,j(�0)∥2

)1/2

<∞.

And the desired result follows.

3. By Formula (14) in Appendix B and the product rule,

∂3lt(�)

∂�i∂�j∂�k

= tr

{
∂

∂�k

[
Ḧt,ij(�)H

−1
t (�) + Ḣt,i(�)H

−1
t (�)Ḣt,j(�)H

−1
t (�) + yty

T
t H

−1
t (�)
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(
Ḣt,j(�)Ḣt,i(�)− Ḧt,ij(�) + Ḣt,i(�)H

−1
t (�)Ḣt,j(�)

)
H−1
t (�)

]}
= tr

{(...
H t,ijk(�)− Ḧt,ij(�)H

−1
t (�)Ḣt,k(�) + Ḧt,ik(�)H

−1
t (�)Ḣt,j(�)

−Ḣt,i(�)H
−1
t (�)Ḣt,k(�)H

−1
t (�)Ḣt,j(�) + Ḣt,iH

−1
t (�)Ḧt,jk

−Ḣt,i(�)H
−1
t (�)Ḣt,j(�)H

−1
t (�)Ḣt,k(�)

)
H−1
t (�)− ytyTt H−1

t (�)[
Ḣt,k(�)H

−1
t (�)

(
Ḣt,j(�)Ḣt,i(�)− Ḧt,ij(�) + Ḣt,i(�)H

−1
t (�)Ḣt,j(�)

)
−Ḧt,jk(�)Ḣt,i(�)− Ḣt,j(�)Ḧt,ik(�) +

...
H t,ijk(�)

−Ḧt,ik(�)H
−1
t (�)Ḣt,j(�) + Ḣt,i(�)H

−1
t (�)Ḣt,k(�)H

−1
t (�)Ḣt,j(�)

−Ḣt,i(�)H
−1
t (�)Ḧt,jk(�)

+
(
Ḣt,j(�)Ḣt,i(�)− Ḧt,ij(�) + Ḣt,i(�)H

−1
t (�)Ḣt,j(�)

)
H−1
t (�)Ḣt,k(�)

]
H−1
t (�)

}
= tr[Ψ1,t − ytyTt H−1

t (�)Ψ2,t]. (4.17)

We wish to use the same technique as in the previous parts in order to

reduce the moment requirement on ∥yt∥. We need to show that the dif-

ference between sup�∈�(�0) ∥ytyTt H−1
t (�)∥ and ∥ytyTt H−1

t (�0)∥ is arbitrarily

small. Suppose �(�0) = ∥�̂n − �0∥ < �.

sup
�∈�(�0)

∥ytyTt H−1
t (�)∥

≤ ∥ytyTt H−1
t (�0)∥+ sup

�∈�(�0)

∥ytyTt [H−1
t (�)−H−1

t (�0)]∥

≤ ∥�t∥2 + sup
�∈�(�0)

∥ytyTt H−1
t (�)[Ht(�0)−Ht(�)]H

−1
t (�0)∥
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≤ ∥�t∥2 +
1


2
sup

�∈�(�0)

∥ytyTt [Ht(�)−Ht(�0)]∥

≤ ∥�t∥2 + C1 sup
�∈�(�0)

∥yt∥2∥Xt(�)−Xt(�0)∥

≤ ∥�t∥2 + C1 sup
�∈�(�0)

∞∑
k=0

∥yt∥2∥Bk(�)ct−k(�)−Bk(�0)ct−k(�0)∥

= ∥�t∥2 + C1 sup
�∈�(�0)

∞∑
k=0

∥yt∥2∥(Bk(�)−Bk(�0))ct−k(�)

+Bk(�0)(ct−k(�)− ct−k(�0))∥

= ∥�t∥2 + C1 sup
�∈�(�0)

∞∑
k=0

∥yt∥2

∥∥∥∥∥
k−1∑
l=0

[Bk−1−l(�)(B(�)−B(�0))Bl(�0)]ct−k(�)

+Bk(�0)(ct−k(�)− ct−k(�0))∥

≤ ∥�t∥2 + C2�
∞∑
k=0

∥yt∥2

[
k�̄k−1 sup

�∈�(�0)

∥ct−k(�)∥+ �̄k

(
1 +

q∑
i=1

∥yt−k−i∥2

)]
.

The summation converges almost surely since it has finite expectation. For

example,

E∥yt∥2∥yt−k−i∥2 ≤
(
E∥yt∥4

)1/2 (E∥yt−k−i∥4
)1/2

.

By noticing � is arbitrarily small, we have almost surely that

sup
�∈�(�0)

∥ytyTt H−1
t (�)∥ ≤ ∥�t∥2 + o(1),

which is independent of Ψ2,t in (4.17). Both ∥Ψ1,t∥ and ∥Ψ2,t∥ have finite

expectations due to the Hölder’s inequality, Lemma 4.5 and the fact that
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∥H−1
t ∥ ≤ 1/
. For instance,

E∥Ḣt,iḢt,jḢt,k∥ ≤
(
E∥Ḣt,i∥3

)1/3 (
E∥Ḣt,j∥3

)1/3 (
E∥Ḣt,k∥3

)1/3

<∞,

E∥Ḧt,ijḢt,k∥ ≤
(
E∥Ḧt,ij∥2

)1/2 (
E∥Ḣt,k∥2

)1/2

<∞.

Thus,

E sup
�∈�(�0)

∣∣∣∣ ∂3lt(�)

∂�i∂�j∂�k

∣∣∣∣
≤ C3

[
E sup
�∈�(�0)

∥Ψ1,t∥+ E sup
�∈�(�0)

∥ytyTt H−1
t (�)∥∥Ψ2,t∥

]

≤ C3

[
E sup
�∈�(�0)

∥Ψ1,t∥+ E sup
�∈�(�0)

(∥�t∥2 + o(1)) ⋅ E sup
�∈�(�0)

∥Ψ2,t∥

]
< ∞.

4.7 Lemma 4.7

Lemma 4.7. 1.

∥∥∥∥∥ 1√
n

n∑
t=1

∂lt(�0)

∂�
− ∂l̃t(�0)

∂�

∥∥∥∥∥ P→ 0 as n→∞.

2. sup
�∈�(�0)

∥∥∥∥∥ 1

n

n∑
t=1

∂2lt(�)

∂�∂�T
− ∂2l̃t(�)

∂�∂�T

∥∥∥∥∥ P→ 0 as n→∞.

Proof. 1. Given the initial values we chose in (1.8),

X̃0 = (cT , ⋅ ⋅ ⋅ , cT )T and �̃0 = �̃1 = ⋅ ⋅ ⋅ = �̃1−q = vech(y1y
T
1 ).
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In view of (4.5), (4.6) (4.8) (4.9) and (4.10), we have almost surely that,

for t ≥M , where M is a sufficiently large integer,

∥∥∥∥∥∂Xt

∂cT
− ∂X̃t

∂cT

∥∥∥∥∥ =

∥∥∥∥∥
q∑

k=1

Bt−k
(
∂ck
∂cT
− ∂c̃k
∂cT

)
+Bt

(
∂X0

∂cT
− ∂X̃0

∂cT

)∥∥∥∥∥
=

∥∥∥∥∥Bt

(
∞∑
k=0

Bk1− I

)∥∥∥∥∥ ≤ O(�̄t),

where I = (IT , ⋅ ⋅ ⋅ , IT )T

∥∥∥∥∥ ∂Xt

∂vecT (Ai)
− ∂X̃t

∂vecT (Ai)

∥∥∥∥∥
=

∥∥∥∥∥
q∑

k=1

Bt−k
(

∂ck
∂vecT (Ai)

− ∂c̃k
∂vecT (Ai)

)

+Bt

(
∂X0

∂vecT (Ai)
− ∂X̃0

∂vecT (Ai)

)∥∥∥∥∥
=

∥∥∥∥∥Bt

(
∞∑
k=0

Bk�−k−i

)∥∥∥∥∥ ≤ O(�̄t),

∥∥∥∥∥ ∂Xt

∂vecT (Bi)
− ∂X̃t

∂vecT (Bi)

∥∥∥∥∥
=

∥∥∥∥∥
[

q∑
k=1

((ck − c̃k)T ⊗ INp)

(
t−k−1∑
l=0

(BT )t−k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

]

+
∂BtX0

∂vecT (Bi)

∥∥∥∥
=

∥∥∥∥∥
q∑

k=1

((ck − c̃k)T ⊗ INp)

(
t−k−1∑
l=0

(BT )t−k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

+
∞∑
k=1

cT−k ⊗ INp

(
t+k−1∑
l=0

(BT )t+k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

∥∥∥∥∥
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≤ O(t�̄t).

Thus,

∥Ḣt,i − ˙̃Ht,i∥ ≤ O(t�̄t).

By (4.7), almost surely,

∥H−1
t − H̃−1

t ∥ ≤ ∥H−1
t ∥∥Ht − H̃t∥∥H̃−1

t ∥ ≤
1



O(�̄t)

1



= O(�̄t).

In view of (4.14), almost surely, for t ≥M ,

∥Ḣt,iH
−1
t −

˙̃Ht,iH̃
−1
t ∥ ≤ ∥Ḣt,i∥∥H−1

t − H̃−1
t ∥+ ∥Ḣt,i − ˙̃Ht,i∥∥H̃−1

t ∥

≤ ∥Ḣt,i∥O(�̄t) +
1



O(t�̄t)

= ∥Ḣt,i∥O(�̄t) +O(t�̄t),

and

∥H−1
t Ḣt,iH

−1
t − H̃−1

t
˙̃Ht,iH̃

−1
t ∥

≤ ∥H−1
t − H̃−1

t ∥∥Ḣt,i∥∥H−1
t ∥+ ∥H̃−1

t ∥∥Ḣt,iH
−1
t −

˙̃Ht,iH̃
−1
t ∥

≤ O(�̄t)∥Ḣt,i∥
1



+

1



[∥Ḣt,i∥O(�̄t) +O(t�̄t)]

= ∥Ḣt,i∥O(�̄t) +O(t�̄t).
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Therefore, by (4.14),

∥∥∥∥∥∂lt(�0)

∂�
− ∂l̃t(�0)

∂�

∥∥∥∥∥
≤ C1(∥Ḣt,i(�0)H−1

t (�0)− ˙̃Ht,i(�0)H̃−1
t (�0)∥

+∥yt∥2∥H−1
t (�0)Ḣt,i(�0)H−1

t (�0)− H̃−1
t (�0) ˙̃Ht,i(�0)H̃−1

t (�0)∥)

= [∥Ḣt,i∥O(�̄t) +O(t�̄t)] + ∥yt∥2[∥Ḣt,i∥O(�̄t) +O(t�̄t)].

For any � > 0, by the Markov inequality,

ℙ

(∥∥∥∥∥ 1√
n

n∑
t=1

∂lt(�0)

∂�
− ∂l̃t(�0)

∂�

∥∥∥∥∥ > �

)

≤ ℙ

(
1√
n

n∑
t=1

∥∥∥∥∥∂lt(�0)

∂�
− ∂l̃t(�0)

∂�

∥∥∥∥∥ > �

)

≤
1√
n

∑n
t=M E

∥∥∥∂lt(�0)
∂�
− ∂l̃t(�0)

∂�

∥∥∥
�

+ o(1)

≤ 1

�
√
n

n∑
t=M

E[∥Ḣt,i∥O(�̄t) +O(t�̄t)] + E∥yt∥2[∥Ḣt,i∥O(�̄t) +O(t�̄t)]

≤ 1

�
√
n

n∑
t=M

O(t�̄t) +O(�̄t)[E∥yt∥4]1/2[E∥Ḣt,i∥2]1/2

≤ 1

�
√
n

n∑
t=M

O(t�̄t)→ 0.

This finalizes our proof of the first part.

2. In view of (4.5), (4.6) (4.11) (4.12), (4.13) and the results from the previous

part of this lemma, we have almost surely that, for t ≥ M , where M is a
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sufficiently large integer,

∥∥∥∥∥ ∂

∂vecT (Bi)
vec

(
∂Xt

∂cT

)
− ∂

∂vecT (Bi)
vec

(
∂X̃t

∂cT

)∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=0

∂vec(Bt+k1)

∂vecT (Bi)
− ∂vec(BtI)

∂vecT (Bi)

∥∥∥∥∥
=

∥∥∥∥∥
[
∞∑
k=0

(1T ⊗ INp)

(
t+k−1∑
l=0

(BT )t+k−1−l ⊗Bl

)

−(1T ⊗ INp)

(
t−1∑
l=0

(BT )t−1−l ⊗Bl

)]
∂vec(B)

∂vecT (Bi)

∥∥∥∥∥
≤ O(t�̄t),

∥∥∥∥∥ ∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Ai)

)
− ∂

∂vecT (Bj)
vec

(
∂X̃t

∂vecT (Ai)

)∥∥∥∥∥
=

∥∥∥∥∥∂vec
(
Bt
(∑∞

k=0B
k�−k−i

))
∂vecT (Bj)

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=0

(�T−k−i ⊗ INp)

(
t+k−1∑
l=0

(BT )t+k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

∥∥∥∥∥
≤ O(t�̄t),

∥∥∥∥∥ ∂

∂vecT (Bj)
vec

(
∂Xt

∂vecT (Bi)

)
− ∂

∂vecT (Bj)
vec

(
∂X̃t

∂vecT (Bi)

)∥∥∥∥∥
=

∥∥∥∥ ∂

∂vecT (Bj)
×

vec

[
q∑

k=1

(ck − c̃k)T ⊗ INp)

(
t−k−1∑
l=0

(BT )t−k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

]

+
∂

∂vecT (Bj)
×
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vec

[
∞∑
k=1

(cT−k)⊗ INp

(
t+k−1∑
l=0

(BT )t+k−1−l ⊗Bl

)
∂vec(B)

∂vecT (Bi)

]∥∥∥∥∥
=

∥∥∥∥∥
q∑

k=1

(
∂vecT (B)

∂vec(Bi)
⊗ (ck − c̃k)T ⊗ INp

)

×

[
t−k−1∑
l=0

∂

∂vecT (Bj)
vec((BT )t−k−1−l ⊗Bl)

]

+
∞∑
k=1

(
∂vecT (B)

∂vec(Bi)
⊗ cT−k ⊗ INp

)

×

[
t+k−1∑
l=0

∂

∂vecT (Bj)
vec((BT )t+k−1−l ⊗Bl)

]∥∥∥∥∥
=

∥∥∥∥∥
q∑

k=1

(
∂vecT (B)

∂vec(Bi)
⊗ (ck − c̃k)T ⊗ INp

)
(INp ⊗KNp,Np ⊗ INp) ×

t−k−1∑
l=0

[
∂vec((BT )t−k−1−l)

∂vecT (Bj)
⊗ vec(Bl)

+vec((BT )t−k−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

]
+
∞∑
k=1

(
∂vecT (B)

∂vec(Bi)
⊗ cT−k ⊗ INp

)
(INp ⊗KNp,Np ⊗ INp)×

t+k−1∑
l=0

[
∂vec((BT )t+k−1−l)

∂vecT (Bj)
⊗ vec(Bl)

+vec((BT )t+k−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

]∥∥∥∥
=

∥∥∥∥∥
q∑

k=1

(
∂vecT (B)

∂vec(Bi)
⊗ (ck − c̃k)T ⊗ INp

)
(INp ⊗KNp,Np ⊗ INp) ×

t−k−1∑
l=0

⎡⎣(t−k−2−l∑
m=0

[(BT )t−k−2−l−m ⊗Bm]
∂vec(B)

∂vecT (Bj)

)T

⊗ vec(Bl)

+vec((BT )t−k−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

]
+
∞∑
k=1

(
∂vecT (B)

∂vec(Bi)
⊗ cT−k ⊗ INp

)
(INp ⊗KNp,Np ⊗ INp)×
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t+k−1∑
l=0

⎡⎣(t+k−2−l∑
m=0

[(BT )t+k−2−l−m ⊗Bm]
∂vec(B)

∂vecT (Bj)

)T

⊗ vec(Bl)

+vec((BT )t+k−1−l)⊗ ∂vec(Bl)

∂vecT (Bj)

]∥∥∥∥
≤ O(t2�̄t).

Thus,

∥Ḧt,ij − ¨̃Ht,ij∥ ≤ O(t2�̄t).

In view of (4.14) and the results from the previous part of this lemma, we

have almost surely that, for t ≥M ,

∥Ḧt,ijH
−1
t −

¨̃Ht,jiH̃
−1
t ∥ ≤ ∥Ḧt,ij∥∥H−1

t − H̃−1
t ∥+ ∥Ḧt,ij − ¨̃Ht,ij∥∥H̃−1

t ∥

≤ ∥Ḧt,ij∥O(�̄t) +
1



O(t2�̄t)

= ∥Ḧt,ij∥O(�̄t) +O(t2�̄t),

∥Ḣt,iH
−1
t Ḣt,jH

−1
t −

˙̃Ht,iH̃
−1
t

˙̃Ht,jH̃
−1
t ∥

≤ ∥Ḣt,i − ˙̃Ht,i∥∥H−1
t ∥∥Ḣt,j∥∥H−1

t ∥

+∥ ˙̃Ht,i∥∥H−1
t Ḣt,jH

−1
t − H̃−1

t
˙̃Ht,jH̃

−1
t ∥

≤ O(�̄t)
1


2
∥Ḣt,j∥+ ∥ ˙̃Ht,i∥[∥Ḣt,j∥O(�̄t) +O(t�̄t)]

= [∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥]O(�̄t) + ∥ ˙̃Ht,i∥O(t�̄t),



4.7 Lemma 4.7 97

∥H−1
t Ḣt,iḢt,jH

−1
t − H̃−1

t
˙̃Ht,i

˙̃Ht,jH̃
−1
t ∥

≤ ∥H−1
t − H̃−1

t ∥∥Ḣt,i∥∥Ḣt,j∥∥H−1
t ∥

+∥H̃−1
t ∥(∥Ḣt,i − ˙̃Ht,i∥∥Ḣt,j∥∥H−1

t ∥+ ∥ ˙̃Ht,i∥∥Ḣt,jH
−1
t −

˙̃Ht,jH̃
−1
t ∥)

≤ O(�̄t)∥Ḣt,i∥∥Ḣt,j∥
1




+
1




(
O(t�̄t)∥Ḣt,j∥

1



+ ∥ ˙̃Ht,i∥[∥Ḣt,j∥O(�̄t) +O(t�̄t)]

)
= [∥Ḣt,i∥∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥]O(�̄t) + [∥ ˙̃Ht,i∥+ ∥Ḣt,j∥]O(t�̄t),

∥H−1
t Ḧt,ijH

−1
t − H̃−1

t
¨̃Ht,ijH̃

−1
t ∥

≤ ∥H−1
t − H̃−1

t ∥∥Ḧt,ij∥∥H−1
t ∥+ ∥H̃−1

t ∥∥Ḧt,ijH
−1
t −

¨̃Ht,ijH̃
−1
t ∥

≤ O(�̄t)∥Ḧt,ij∥
1



+

1



[∥Ḧt,ij∥O(�̄t) +O(t2�̄t)]

= ∥Ḧt,ij∥O(�̄t) +O(t2�̄t),

∥H−1
t Ḣt,iH

−1
t Ḣt,jH

−1
t − H̃−1

t
˙̃Ht,iH̃

−1
t

˙̃Ht,jH̃
−1
t ∥

≤ ∥H−1
t − H̃−1

t ∥∥Ḣt,i∥∥H−1
t ∥∥Ḣt,j∥∥H−1

t ∥

+∥H̃−1
t ∥∥Ḣt,iH

−1
t Ḣt,jH

−1
t −

˙̃Ht,iH̃
−1
t

˙̃Ht,jH̃
−1
t ∥

≤ O(�̄t)∥Ḣt,i∥∥Ḣt,j∥
1


2
+ [∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥]O(�̄t) + ∥ ˙̃Ht,i∥O(t�̄t)

= [∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥]O(�̄t) + ∥ ˙̃Ht,i∥O(t�̄t).
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Similar as Lemma 4.5, we can show that

E
∥∥∥ ˙̃Ht,i(�)

∥∥∥3

<∞ and E
∥∥∥ ¨̃Ht,ij(�)

∥∥∥2

<∞.

Therefore, by (4.16),

∥∥∥∥∥∂2lt(�)

∂�∂�T
− ∂2l̃t(�)

∂�∂�T

∥∥∥∥∥
≤ [∥Ḧt,ij∥+ ∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥]O(�̄t) + ∥ ˙̃Ht,i∥O(t�̄t) +O(t2�̄t)

+∥yt∥2
{

[∥Ḣt,i∥∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥+ ∥Ḧt,ij∥+ ∥Ḣt,j∥]O(�̄t)

+[∥ ˙̃Ht,i∥+ ∥Ḣt,j∥]O(t�̄t) +O(t2�̄t)
}
.

Applying the Hölder’s inequality yields

E∥Ḣt,i∥∥Ḣt,j∥ ≤ [E∥Ḣt,i∥2]1/2[E∥Ḣt,j∥2]1/2 <∞,

E∥yt∥2∥Ḣt,i∥∥Ḣt,j∥ ≤ [E∥yt∥6]1/3[E∥Ḣt,i∥3]1/3[E∥Ḣt,j∥3]1/3 <∞,

E∥yt∥2∥Ḣt,i∥ ≤ [E∥∥yt∥4]1/2[E∥Ḣt,i∥2]1/2 <∞,

E∥yt∥2∥Ḧt,ij∥ ≤ [E∥∥yt∥4]1/2[E∥Ḧt,ij∥2]1/2 <∞.

The terms with tilde have the similar results. For any � > 0, by the Markov
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inequality,

ℙ

(
sup

�∈�(�0)

∥∥∥∥∥ 1

n

n∑
t=1

∂2lt(�)

∂�∂�T
− ∂2l̃t(�)

∂�∂�T

∥∥∥∥∥ > �

)

≤ ℙ

(
sup

�∈�(�0)

1

n

n∑
t=1

∥∥∥∥∥∂2lt(�)

∂�∂�T
− ∂2l̃t(�)

∂�∂�T

∥∥∥∥∥ > �

)

≤ sup
�∈�(�0)

1
n

∑n
t=M E

∥∥∥∂2lt(�)∂�∂�T
− ∂2 l̃t(�)

∂�∂�T

∥∥∥
�

+ o(1)

≤ 1

�n

n∑
t=M

E
{[
∥Ḧt,ij∥+ ∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥

]
O(�̄t)

+∥ ˙̃Ht,i∥O(t�̄t) +O(t2�̄t)
}

+E
(
∥yt∥2

{[
∥Ḣt,i∥∥Ḣt,j∥+ ∥ ˙̃Ht,i∥∥Ḣt,j∥+ ∥Ḧt,ij∥+ ∥Ḣt,j∥

]
O(�̄t)

+[∥ ˙̃Ht,i∥+ ∥Ḣt,j∥]O(t�̄t) +O(t2�̄t)
})

≤ 1

�n

n∑
t=M

O(t2�̄t)→ 0.

This finalizes our proof of this lemma.



Chapter 5

Numeric Examples

5.1 Introduction

This chapter consists of two sections besides the introduction. Section 5.2 gives

a set of model parameters and verify that they satisfy the ergodicity and identifi-

ability assumptions in Chapters 2 and 3. In particular, we show how to calculate


m(Δ) using Monte Carlo simulation. It is difficult to verify whether all � ∈ Θ

satisfy our assumptions. Instead we only verify that the true parameter �0 sat-

isfies our assumption and thus we do not verify the compactness assumption.

When estimating GARCH parameters in S+ FinMetrics using the normal esti-

mating function, the estimates are consistent. But the standard errors are not

calculated properly. If we use non-Gaussian estimating functions, we have to

scale the estimates to make them consistent. Section 5.3 addresses this scaling

issue and provides corrections in R. Details about S+ FinMetrics can be found
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in Zivot and Wang [2006].

5.2 A Multivariate GARCH (1,1) Model Which

Satisfies the Ergodicity and Identifiability

Assumptions

Consider a bivariate GARCH(1, 1) model. Here, d = 2, N = 3, p = q = 1. We

assume the innovations are Gaussian. Let the true parameters be

c =

⎛⎜⎜⎜⎜⎜⎜⎝
0.03

0.01

0.04

⎞⎟⎟⎟⎟⎟⎟⎠ A =

⎛⎜⎜⎜⎜⎜⎜⎝
0.06 0 0

0 0.02 0

0 0 0.07

⎞⎟⎟⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎜⎝
0.009 0 0

0 0.005 0

0 0 0.01

⎞⎟⎟⎟⎟⎟⎟⎠ .

We will verify that this model satisfies our ergodicity and identifiability as-

sumptions, i.e., Theorem 2.3 and Theorem 3.5. We will also show that the esti-

mator is consistent and asymptotically normal by simulation. All computations

are done in S+ FinMetrics and the codes are available from the author upon

request.

5.2.1 Ergodicity

The eigenvalues of the matrix J (defined in (2.1)) are

> eigen(J)$values
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[1] 0.2696224 -0.2596224 0.2494903 -0.2404903 0.1439435 -0.1389435

Thus, �(J) = 0.2696 < 1 and Assumption A3 is fulfilled. Next, in order to verify

Assumption A4, we will show that 
2(Δ) < 0 by Monte Carlo simulation. Since

p = q = 1, we have Y1 = ℎ1 = (ℎ1,1, ℎ1,2, ℎ1,3) and Y2 = ℎ2 = (ℎ2,1, ℎ2,2, ℎ2,3).

Remarks. Our intuition says 
m(Δ) decreases as m increases. While 
1 may be

negative, we have decided to calculate 
2. Since below we see it is negative, it

is sufficient for our purposes. One may also have used for example 
4, but the

supremum in the integrand will be more complicated to approximate, hence we

have decided to calculate 
2(Δ).

The approximation of 
2(Δ) involves the following two major steps.

1. We use the sample mean to approximate the expectation. Particularly, dur-

ing each replication, we simulate a normal random vector �T = (�T1 , �
T
2 )T ,

i.e., four independent standard normal random numbers. Then for each sim-

ulated �, we compute the supremum using the procedures in the next step.

We replicate this for M = 500 times and use the average to approximate

the expectation.

2. For each simulated �, we discretize the domain of ℎ and consider all the

possible values of ℎ to obtain the supremum. By the definition of Δ in

Section 2.2, Δ is invariant on the scale of ℎ. That is, if we change Ht to

C⊙Ht, where C is a d×d constant matrix, the value of Δ remains the same.
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Let ℎ = (ℎ1, ℎ2, ℎ3)T . Without loss of generality, we can only consider the

values such that ℎ is on the unit ball.

(a) We put 100 equally spaced points on the interval [0, 1]. Hence, there

are 10, 000 possible combinations for (ℎ1, ℎ3).

(b) We need to eleminate those possibilities where ℎ2
1 + ℎ2

3 > 1. These

points are beyond the unit ball no matter what value ℎ2 takes.

(c) ℎ2 can be calculated by ℎ2 =
√

1− ℎ2
1 − ℎ2

3.

(d) We need to eleminate those possibilities where ℎ1ℎ3 ≤ ℎ2
2. These points

invalidate the positivity of Ht.

(e) The supremum can be approximated by inserting all the valid combi-

nations of (ℎ1, ℎ2, ℎ3) into the equation and compare the values of the

norm.

After (d), there are only 1761 possible combinations of (ℎ1, ℎ2, ℎ3) remaining for

consideration. After trying all the possible combinations of ℎ1 = (ℎ1,1, ℎ1,2, ℎ1,3)

and ℎ2 = (ℎ2,1, ℎ2,2, ℎ2,3), we can compute that 
2(Δ) = −0.148 < 0. Assumption

A4 is satisfied.
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5.2.2 Identifiability

It is difficult to verify Assumptions B3 and B4 for any arbitrary � within the

parameter space. But one can easily verify that

A�0 = A =

⎛⎜⎜⎜⎜⎜⎜⎝
0.06 0 0

0 0.02 0

0 0 0.07

⎞⎟⎟⎟⎟⎟⎟⎠ , ℬ�0 = I3 −B =

⎛⎜⎜⎜⎜⎜⎜⎝
0.991 0 0

0 0.995 0

0 0 0.99

⎞⎟⎟⎟⎟⎟⎟⎠
are invertible and A�0 and ℬ�0 are coprime. The matrix [Aq(�0)∣Bp(�0)] = [A∣B]

has rank 3. The identifiability assumptions are satisfied.

5.3 Scaling Problems When Fitting GARCH Mod-

els in S+ FinMetrics

In this section, we focus on the univariate GARCH model (1.3). In the model

definition, we assume that the innovations have unit variance. However, in prac-

tice, in order to improve the goodness-of-fit, we may wish to use heavy-tailed

innovations, which may invalidate the unit variance assumption. For example,

a t(�) distribution has variance �/(� − 2) for � > 2, where � is the degree of

freedom. Hence, we need to scale the innovations in order to fulfill the model

assumption, which will lead to the scaling of model parameters.

Suppose that �̃t = �t/d have unit variance, where d is the scaling parameter.
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The new conditional variance is �̃2
t = d2�2

t since yt = �t�t = �̃t�̃t. We multiply d2

on both sides of (1.3),

�̃2
t = d2�2

t = d2c+

p∑
i=1

(d2�i)y
2
t−i +

q∑
j=1

�j(d
2�2

t−j).

The new parameter vector

�̃ = (c̃, �̃1, ⋅ ⋅ ⋅ , �̃p, �̃1, ⋅ ⋅ ⋅ , �̃q)T

= (d2c, d2�1, ⋅ ⋅ ⋅ , d2�p, �1, ⋅ ⋅ ⋅ , �q)T ,

and the GARCH parameter �j’s do not need to be scaled. In model fitting, d can

be estimated by the standard deviation of the residuals, i.e.,

d̂n =

(
1

n− 1

n∑
t=1

�̂2
t

)1/2

.

To demonstrate the scaling issue and provide an algorithm to modify the

results given by S+FinMetrics, we simulate GARCH series with different innova-

tions and fit GARCH models using various kernels. We will discuss four cases:

∙ normal innovations, normal kernel;

∙ t innovations, normal kernel;

∙ normal innovations, t(5) kernel;
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∙ t(6) innovations, t(5) kernel.

5.3.1 GARCH Series Simulation

The FinMetric function simulate can be used to simulate GARCH series. This

function can only be used on “garch” or “mgarch” object. We can simulate

GARCH series in general using the following algorithm:

1. Choose parameter values c = c(0), �i = �
(0)
i and �j = �

(0)
j .

2. Choose initial values. For example, the initial values can be chosen as (1.8).

3. For t = 1, ⋅ ⋅ ⋅ , n, compute �2
t using (1.3).

4. Compute yt by yt = �t�t, where �t’s are i.i.d. standard normal or t random

numbers.

Multivariate GARCH models can be simulated analogously. We may wish to

remove the first few entries to allow the series to “warm up”. In this section, we

simulate GARCH(1, 1) with parameters c = 0, � = 0.3 and � = 0.6.

5.3.2 normal innovations, normal kernel

Table 5.1 shows the result for normal innovations and normal kernel based on

500 replications, where

mean of �̂ or �̂: the average of the 500 parameter estimations.
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mean of se�̂ or se�̂: the average of the 500 standard errors given by S+FinMetrics.

sd of �̂ or �̂: the standard deviation of the 500 parameter estimations, which

can be treated as the true standard errors of the estimators.

mean of �̂ 0.29796 mean of �̂ 0.59841
mean of se�̂ 0.020239 mean of se�̂ 0.023249

sd of �̂ 0.020419 sd of �̂ 0.023385

Table 5.1: Normal Innovation, Normal Kernel

We can see that if we use the normal kernel to estimate the parameters of

GARCH models whose innovation come from the normal distribution, both co-

efficient estimations and standard errors match the true values. No scaling is

needed. Figures 5.1-5.4 are the density plots and the normal QQ-plot of �̂ and

�̂, which indicate that they are consistent and asymptotically normal.

Figure 5.1: Density Plot of �̂
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Figure 5.2: QQ Plot of �̂

Figure 5.3: Density Plot of �̂

5.3.3 t innovations, normal kernel

We generate GARCH series using three different innovations: t(6), t(12), t(25)

and estimate the parameters using the normal kernel. Results are collected in

Table 5.2.
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Figure 5.4: QQ Plot of �̂

t(6) t(12) t(25)

mean of �̂ 0.29821 0.30016 0.29720
mean of se�̂ 0.014181 0.017637 0.018940

sd of �̂ 0.031806 0.024784 0.022450

mean of �̂ 0.59701 0.59756 0.59786
mean of se�̂ 0.015584 0.019632 0.021633

sd of �̂ 0.033746 0.026456 0.024833

Table 5.2: Results of t Innovation, Normal Kernel by S+ FinMetrics

The parameter estimates are still consistent since we are using the normal

kernel. However, the standard errors given by FinMetrics are different from the

true ones, especially when the kernel is more distinct from normal (e.g., t(6)). In

order to verify this, we implement the fitting procedures in R using the algorithm

in Francq and Zaköıan [2004] to calculate the Hessian matrix. The results from

the R program (Table 5.3) are close to the true ones, which means the standard

errors given in S+ FinMetrics for this case are inaccurate. The R codes are
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available from the author upon request. For parameter estimation in R, we use

the R function nlm to maximize the likelihood function. Replicating this function

in R is very computationally intensive. The Rmpi package, developed by Dr H.

Yu, allows one to create R programs which run cooperatively in parallel across

multiple machines, or multiple CPUs on one machine, to accomplish a goal more

quickly than running a single program on one machine.

t(6) t(12) t(25)

mean of �̂ 0.28972 0.29288 0.29186
mean of se�̂ 0.028847 0.023231 0.021311

sd of �̂ 0.035462 0.023107 0.018762

mean of �̂ 0.61057 0.60463 0.60267
mean of se�̂ 0.031317 0.026191 0.024642

sd of �̂ 0.034141 0.027624 0.026601

Table 5.3: Results of t Innovation, Normal Kernel by R

Figure 5.5 is the density plot of �̂ from different innovations, where the blue,

red and yellow lines denote the density of �̂1 from t(6), t(12) and t(25) innovations,

respectively.

5.3.4 normal innovations, t(5) kernel

From Table 5.4, the estimation of � is no longer consistent. We have to scale the

ARCH parameter since we are using a heavy tailed kernel. After each fitting, we

multiply the estimation of �1 by the inverse of the variance of �̂t. We can see

that the estimate is close to the true one after scaling.
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Figure 5.5: Density Plot of �̂ from Different Innovations

mean of �̂ 0.36652 mean of �̂ 0.59727
mean of se�̂ 0.035078 mean of se�̂ 0.032773

sd of �̂ 0.027357 sd of �̂ 0.025587
mean of scaled �̂1 0.29964

Table 5.4: Normal Innovations, t(5) Kernel

5.3.5 t(6) innovations, t(5) kernel

The results are shown in Table 5.5. The scaling parameter is close to one com-

pared with the normal-t(5) case since the two t distributions are close to each

other.

mean of �̂ 0.31429 mean of �̂ 0.59881
mean of se�̂ 0.027837 mean of se�̂ 0.028328

sd of �̂ 0.028835 sd of �̂ 0.027452
mean of scaled �̂1 0.29973

Table 5.5: t(6) Innovations, t(5) Kernel
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5.4 Conclusion and Commentary

In this chapter, we first give an example of a multivariate GARCH parameteriza-

tion such that it satisfies the ergodicity and identifiability assumptions we gave

in previous chapters. In particular, we showed that 
2(Δ) < 0 by Monte Carlo

simulation. We then addressed the scaling issue in S+ FinMetrics when estimat-

ing GARCH parameters. S+ FinMetrics provides reasonable results when we

use normal innovation and normal kernel. For heavy tail innovation and normal

kernel, parameter estimation in S+ FinMetrics are acceptable but the algorithm

of calculating the standard error is wrong. We have to scale both the parameter

estimation and the standard deviation if we use a heavy tail kernel. The variance

of the standardized residuals can be used as the scaling parameter.



Chapter 6

Concluding Remarks

In this thesis, we prove the asymptotic theory of the QMLE for general multi-

variate GARCH models under mild conditions. We give some counterexamples

for the parameter identifiability result in Jeantheau [1998] and provide a better

necessary and sufficient condition. We prove the ergodicity of the conditional

variance process on an application of theorems by Meyn and Tweedie [2009]. Un-

der those conditions, the consistency and asymptotic normality of the QMLE are

proved by the standard compactness argument and Taylor expansion of the score

function. We only require finite sixth moment on the observed sequence. We ex-

tend Francq and Zaköıan [2004]’s results and technique from univariate GARCH

models to the multivariate case. We generalize the multivariate GARCH(1, 1) re-

sults in Hafner and Preminger [2009] to multivariate GARCH(p, q). The results

in this thesis for the general case covers Comte and Lieberman [2003]’s results

for BEKK, and we reduce their moment requirement from eight to six. We also
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give numeric examples on verifying the assumptions and the scaling issue when

estimating GARCH parameters in S+ FinMetrics.

My future work on the multivariate GARCH models includes

1. fitting multivariate GARCH models using real data and studying the effi-

ciency of the estimator;

2. examining and comparing the performance of different types of multivariate

GARCH models;

3. developing a better parameter estimation algorithm and an R package; and

4. using multivariate GARCH models on risky assets and derivative pricing.
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I. Berkes, L. Horvàth, and P. Kokoszka. GARCH processes: structure and esti-

mation. Bernoulli, 9(2):201–227, 2003. 5
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C. Francq and J. Zaköıan. GARCH Models: Structure, Statistical Inference and

Financial Applications. John Wiley & Sons Ltd, 2010. ISBN 978-0-470-68391-0.

7, 9, 60

G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Pren-

tice Hall, 2001. ISBN 0139586539, 9780139586538. 119, 121

C. M. Hafner and A. Preminger. On asymptotic theory for multivariate GARCH

models. Journal of Multivariate Analysis, 100(9):2044–2054, 10 2009. 10, 15,

18, 20, 21, 22, 43, 113

E. J. Hannan. The identification of vector mixed atoregressive-moving average

systems. Biometrika, 56(1):223–225, Mar 1969. 49

R. A. Horn and C. A. Johnson. Matrix Analysis. Press Syndicate of the University

of Cambridge, 1985. ISBN 0521305861. 31

T. Jeantheau. Strong consistency of estimators for multivariate ARCH models.

Econometric Theory, 14:70–86, 1998. iii, 10, 13, 46, 49, 50, 51, 113

D. Kristensen. Uniform Ergodicity of a Class of Markov Chains with Applications

to Time Series Models. Columbia University, 2007. 10

S. Lee and B. E. Hansen. Asymptotic theory for the GARCH(1,1) quasi-maximum

likelihood estimator. Econometric Theory, 10(1):29–52, 1994. 5



BIBLIOGRAPHY 118

S. Ling and M. McAleer. Asymptotic theory for a new vector ARMA-GARCH

model. Econometric Theory, 19(2):280–310, 2003. 10

R. L. Lumsdaine. Consistency and asymptotic normality of the quasi-maximum

likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1)

models. Econometrica, 64(3):575–596, 1996. 5

H. Lütkepohl. Handbook of Matrices. John Wiley & Sons, 1996. ISBN

9780471970156. 122

S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge

University Press, 2nd edition, 2009. ISBN 9780521731829. iii, 10, 11, 16, 21,

23, 24, 25, 26, 27, 43, 113

D. B. Nelson. Stationarity and persistence in the GARCH(1,1) model. Econo-

metric Theory, 6(3):318–334, 1990. 5

W. Scherrer and E. Ribarits. On the parameterization of multivariate GARCH

models. Econometric Theory, 23(3):464–484, 2007. 8

A. A. Weiss. Asymptotic theory for ARCH models: estimation and testing.

Econometric Theory, 2(1):107–131, 1986. 5

E. Zivot and J. Wang. Modeling Financial Times Series with S-PLUS, vol-

ume 13. Springer Science+Business Media, Inc., 2nd edition, 2006. ISBN

9780387279657. 101



Appendix A

Decomposition of Rational

Matrix Polynomials

The following materials in this appendix are from Goodwin et al. [2001].

Let us introduce the a set of definitions related to the factorization of matrix

polynomials and then the important Smith-McMillan Lemma:

Definition A.1 (Rank). The rank of a polynomial matrix is the rank of the

matrix almost everywhere in its argument.

Definition A.2 (Elementary Operation). An elementary operation on a polyno-

mial matrix is one of the following three operations:

1. interchange of two rows or two columns;

2. multiplication of one row or one column by a constant;
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3. addition of one row (column) to another row (column) times a polynomial.

Definition A.3 (Elementary Matrix). A left (right) elementary matrix is a ma-

trix such that, when it multiplies from the left (right) a polynomial matrix, then

it performs a row (column) elementary operation on the polynomial matrix. All

elementary matrices are unimodular.

Definition A.4 (Equivalent Matrices). Two polynomial matrices U(w) and V (w)

are equivalent matrices, if there exist sets of left and right elementary matrices,

{L1(w), L2(w), ⋅ ⋅ ⋅ , Ls(w)} and {R1(w), R2(w), ⋅ ⋅ ⋅ , Rt(w)}, respectively, such that

U(w) = Ls(w) ⋅ ⋅ ⋅L1(w)V (w)R1(w) ⋅ ⋅ ⋅Rt(w).

Lemma A.5 (Smith-McMillan Lemma). Let X(w) = (Xij(w)) be a d×d matrix

polynomial, where Xij(w)’s are rational polynomials:

X(w) =
Y (w)

K(w)
,

where Y (w) is a d×d matrix polynomial of rank r and K(w) is the least common

multiple of the denominators of all elements Xij(w). Then X(w) is equivalent to

a matrix Π(w), with

Π(w) = diag

{
�1(w)

�1(w)
,
�2(w)

�2(w)
, ⋅ ⋅ ⋅ , �r(w)

�r(w)
, 0, ⋅ ⋅ ⋅ , 0

}
,
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where {�i(w), �i(w)} is a pair of monic and coprime polynomials for i = 1, ⋅ ⋅ ⋅ , r.

Furthermore, �i(w) is a factor of �i+1(w) and �i(w) is a factor of �i−1(w).

Proof. See Goodwin et al. [2001].



Appendix B

Some Useful Results in Matrix

Algebra

The following results are from Lütkepohl [1996].

1. vec(ABC) = (CT ⊗ A)vec(B).

2. X(m× n):
∂vec(XXT )

∂vec(X)T
= (Im2 +Kmm)(X ⊗ Im).

3. D+
mKmm = D+

m.

4. A(m×m): ∣D+
m(A⊗ A)Dm∣ = ∣A∣m+1.

5. ∥A⊗B∥ = ∥A∥∥B∥.

6. A,B(m×m) positive semidefinite: tr(AB) ≤ 1
4
(tr(A) + tr(B))2.

7. A(m×m) positive definite: log ∣A∣ ≤ tr(A)−m. The equality holds if and

only if A = Im.
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8.
∂∣X∣
∂X

= ∣X∣X−1.

9. ∣X∣ > 0:
∂ log ∣X∣
∂X

= (XT )−1.

10. X(m×m) nonsingular:
∂vech(X−1)

∂vechT (X)
= −D+

m(X−1 ⊗X−1)Dm.

11. (A⊗B)(C ⊗D) = AC ⊗BD.

12.
∂vec(X i)

∂vecT (X)
=

i−1∑
j=0

(XT )i−1−j ⊗Xj, i = 1, 2, ⋅ ⋅ ⋅ .

13. x(m× 1), Y (x)(n× p), Z(x)(q × r):

∂[vec(Y )⊗ vec(Z)]

∂xT

= (Ip ⊗Krn ⊗ Iq)
[
∂vec(Y )

∂xT
⊗ vec(Z) + vec(Y )⊗ ∂vec(Z)

∂xT

]
.

14. x ∈ ℝ, A(x) nonsingular:
dA(x)−1

dx
= −A(x)−1dA(x)

dx
A(x)−1.

15. A,B(m× n): ∣tr(AB)∣ ≤ ∥A∥2∥B∥2 ≤ min(m,n)∥A∥∥B∥.

16. tr(AB) = tr(A⊗B).
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