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Abstract

Generalized autoregressive conditional heteroscedasticity (GARCH)
models are widely used in financial markets. Parameters of GARCH
models are usually estimated by the quasi-maximum likelihood esti-
mator (QMLE). In recent years, economic theory often implies equi-
librium between the levels of time series, which makes the application
of multivariate models a necessity. Unfortunately the asymptotic the-
ory of the multivariate GARCH models is far from coherent since
many algorithms on the univariate case do not extend to multivariate
models naturally. This thesis studies the asymptotic theory of the
QMLE under mild conditions. We give some counterexamples for the
parameter identifiability result in Jeantheau| [1998] and provide a bet-
ter necessary and sufficient condition. We prove the ergodicity of the
conditional variance process on an application of theorems by Meyn
and Tweedie [2009]. Under those conditions, the consistency and
asymptotic normality of the QMLE can be proved by the standard

compactness argument and Taylor expansion of the score function.
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We also give numeric examples on verifying the assumptions and the

scaling issue when estimating GARCH parameters in S+ FinMetrics.

Keywords: General multivariate GARCH, asymptotic theory, ergod-

icity, stationarity, consistency, asymptotic normality, VEC, BEKK.
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Notations

p(A) The spectral radius of the square matrix A, i.e., p(A) = max{|\;| : \; is an

eigenvalue of A}.
®» Hadamard or elementwise product of matrices.
® Kronecker product.
|v|| The Euclidean norm of vector v.
|A|l The spectral norm of matrix A, i.e., |A] = v/p(ATA).
|All2 The Euclidean/Frobenius norm of matrix A.
AT The transpose of matrix A (or a vector).
tr(A) Trace of matrix A.
a-5¢ Almost surely convergence.

n e
— Converge in distribution.
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C1,Cs, - -+ Generic constants taking different values from time to time.

vec(-) The operator that stacks a d x d matrix column by column as a d? x 1

vector.
mat(-) The inverse operator of vec(-).

vech(-) The operator that stacks the lower triangular portion of a d x d matrix

as a d(d+1)/2 x 1 vector column by column.
math(-) The inverse operator of vech(-).

I,, m x m identity matrix.

m(m+1
2

D,, m?x ) duplication matrix such that for a symmetric matrix A, vec(A) =

D, vech(A).

D; The generalized inverse of D,,. D; is such that for a symmetric matrix A,

vech(A) = D} vec(A) and D;} Dy, = Lyt

Kon or K, mn X mn commutation matrix such that for A(m x n), vec(AT) =

Kpnvec(A).

F; The information filter generated by the observable data at times less than or

equal t.
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P(z,A) The one-step transition probability for a Markov chain (denoted by ®),

ie., P(®; € A|®y = z).

P"(x, A) The n-step transition probability for a Markov chain (denoted by ®),

ie., P(®, € A|®y = z).
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Chapter 1

Introduction

1.1 The Univariate GARCH Model

In financial markets, estimating volatilities is essential in derivative pricing and
risk management. For example, in order to evaluate stock option prices in the
future, forecast of volatilities are usually required. Let 1; be the continuously
compounded return or the proportional change of a market variable during day
t, i.e.,

St St — Se-1

or Y=
S ! S

y; = log

The difference between these two expressions are tiny when the time increment
is small, since the proportional change is the first order Taylor expansion of the

continuously compounded return. In contrast to the original asset prices, the



1.1 The Univariate GARCH Model 2

continuously compounded return or the proportional change do not depend on
monetary units. The MLE of the variance (square of the volatility) using the

most recent ¢ observations is

IR _
of = 62(%—@' —5)%
i=1

where § = >¢ | y;—;. Since in this thesis we are only interested in the volatility

part, ¢ is assumed to be zero and the formula for variance becomes

14
o} = 52%&2—1‘- (L.1)
i=1

In (1.1)), every observation has equal effect on the volatility. It is more appropriate

to assign more weight on recent data. The model becomes

q
2 2
Oy = E Yy
i=1

where 7 | a; = 1. A further extension of the model is to add a long-run average

volatility term, which leads to that
q q
of =V + Z Qiyp; =c+ Z iy,
i=1 i=1

where v 4+ >0 oy = 1. This is known as an autoregressive conditional het-

eroscedasticity (ARCH) model if we assign ¢ = vV. The univariate ARCH(q)
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model, which was first introduced by |[Engle| [1982], is defined as

Yy = Ut&,

q
ol = c—l—Zaiyt{i, (1.2)
=1

where {y;} is the observed process, & iid. (0, 1) and is independent of F;_q,
c>0,a >0for1 <i<gq—1, oy > 0. However, in practice, people usually
find that a large number of lags ¢ is needed, which results in a large amount of
model parameters to be estimated. It is also well known that in financial mar-
kets, large changes tend to be followed by large changes, and small changes tend
to be followed by small changes. This volatile behavior in financial markets is
usually referred to as “volatility clustering”. In the past several decades, the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) models are com-
monly used to describe volatilities. [Bollerslev| [1986] presented the GARCH(p, q)

model, where (|1.2]) was generalized as

q p
of = c+ Zaiytz—z‘ + Zﬁj@?—jv (1.3)
i=1 =1

where ; > 0for 1 <j<p-1, 3, >0.

INote that we do not assume any distributional property on &; except the mean and variance.
It may or may not be normally distributed.
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An Example: Modeling Stock Price Proportional Change Using GARCH

Model Suppose a stock price S; follows the model
dSt = [Ltstdt + UtStth7

where W, is a standard Brownian motion. Note that for a given At, W, —W;_a; ~

N(0, At). Discretizing the stock price model gives

St — Si—at \/—
_— = At + 042,
/_AtSt_At et t2t

where z; is a standard normal random number. The left hand side can be treated
as the observed sequence. Using the GARCH setting, the conditional volatility

can be modeled by

: St—int — St—(i+1)At C
2 t—1 —(i+ 2
o, = ¢C + ai + /80 _ 'A .
t ;:1 ( /_AtStf(iJrl)At ) ;:1: J7t—gAt

To obtain the one-step prediction for S}, the procedure is as follows:

1. Estimate the model parameters ¢, a;’s and 3;’s using the observed data.
2. Compute the estimated conditional variance sequence 67,62 ., 62 gnp, " -

3. Predict the future conditional variance as

q
S iz — S
~92 ~ ~ t—(i—1)At t—iAt
19 =cC+ E a; + E &2
A . ( VALS, i ) Bt
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4. Simulate a standard normal random number z;, a;.
5. pira¢ can be predicted using its own model, e.g., the ARMA model.

6. The future stock price can be calculated as

Stiar = Se(1 4 ey at A+ GrpneVALZip AL).

The asymptotic theory of GARCH models involves strong consistency and
asymptotic normality of the quasi-maximum likelihood estimator (QMLE). The
asymptotic theory of the univariate model was first established by 11986

for ARCH models. The GARCH results were first demonstrated in

Hansen| [1994] and Lumsdaine| [1996], both for the GARCH(1, 1) model.

and Horvath| [2004], Berkes and Horvath| [2003] and Berkes et al.| [2003] extended

the theory into the GARCH(p, q) case. By far the weakest assumptions were given

by [Francq and Zakoian [2004], in which they assume the finite fourth moment of

the innovations.

Strong stationarity and ergodicity are required to achieve the asymptotic re-

sult. 11990] gave necessary and sufficient conditions for stationarity and

ergodicity for the GARCH(1,1) model. Bougerol and Picard|[1992] proved that

the GARCH(p, ¢) process is strictly stationary and ergodic if and only if its top

Lyapunov exponent is strictly negative.
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1.2 Multivariate GARCH Models

Economic theory often implies equilibrium between the levels of time series. For
each model we developed to capture variances, there is a corresponding model
which can be used to track covariances. For example, a similar estimate for the

covariance between two time series {z;} and {y;} using the GARCH setting is

q p
COV(J)t, yt> =c+ Z ALY + Z 5jCOV(.Tt,j, ytfj)-
i=1 j=1

This fact makes the application of multivariate models a necessity. In this the-
sis, we are interested in general multivariate GARCH models. A general d-
dimensional GARCH(p, ¢) model, usually called the VEC model (see [Bollerslev,

et al. [1998]), is given by

Yy = Htl/tha
q p
ht = C+2Ai7]t7i+Ztht7ja (14)
i=1 j=1
where
ht = VeCh(Ht>,
= vech(ytytT),
1id

St ~ (Oajd)a
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A;’s and Bj’s are square parameter matrices of order N = d(d+1)/2 and c is an
N x 1 parameter vector. The vech(-) operator and its inverse operator math(-)
are defined in the notation list.

There are two issues about the general model specification in (|1.4)):

1. There are a large amount of parameters to be estimated. The number of
parameters in (1.4)) is (p + q)N? + N. For example, for bivariate process
{y:}, N = 3 and there are 21 parameters for GARCH(1, 1). For trivariate

{y:}, N = 6 and there will be 78 parameters for GARCH(1, 1).

2. It is difficult to guarantee that H,; is positive definite without imposing

strong restrictionsﬂ

To overcome these issues, Engle and Kroner| [1995] developed two new param-
eterizations for (1.4). One is called the diagonal VEC (DVEC) model. In this
model, all the parameter matrices are assumed to be diagonal. Then ((1.4)) can

be rewritten as

q p

i=1 j=1

where, C*, A}’s and Bj’s are d X d symmetric matrices. It is straightforward to
verify that H, is positive definite if C*, A}’s and Bj’s are positive definite. The

number of parameters in ([1.5)) is (p+¢—+1)N. Thus the number of parameters are

IFrancq and Zakoian [2010] imposes some conditions under which H; in the VEC model is
positive definite. In this thesis, we assume H; is positive definite without verifications.
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reduced to 9 and 18 respectively for bivariate and trivariate {y,}’s if p = ¢ = 1.
The other model specification in |Engle and Kroner| [1995] is called the BEKK

model (in the name of Baba, Engle, Kraft and Kroner). The BEKK(p, ¢, k) model

is given by

q k P k
H, =C+ Z (Z Ag;-yt—z‘y;fp_iAij> + Z (Z Bg;Ht—z‘Bij> ’ (1.6)
i=1 \j=1 i=1

=1

where C, A;;’s and B;;’s are d x d coefficient matrices and C' is symmetric positive
definite. In , the positivity of H; is guaranteed naturally. The number of
parameters is (p + q)kd*> + N. [Scherrer and Ribarits [2007] defines that
is admissible if math(c) is positive definite and V¢ € RY, math(A;vech(£€7)) is
positive semidefinite for ¢ = 1,--- /q. Then they show that for the bivariate
case, admissible VEC models and BEKK models are equivalent. For d > 2,
there is a “thick” class of admissible VEC models that have no equivalent BEKK
representations.

Bollerslev| [1990] proposes a multivariate GARCH model in which the con-
ditional correlation does not change over time. The constant correlation model

(CCC(p, q)) is defined as

(TEWAVIH
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where A; is diagonal whose elements satisfy

At2,11 yt{i,l At{j,n
q
i=1

2 2 2
At,dd Yiin At—j,dd

W is a constant vector and {{;} is an i.i.d. sequence with mean 0 and covariance

matrix
L pre P1d
P12
P(d—1)d
P1d *c Pd-1)d 1

One can easily check that the conditional covariance matrix H; is such that

Hyij = pijAciile s,

and hence the conditional correlations are p;;’s. The CCC model is also a subset
of the VEC model.

Other special cases of the general multivariate GARCH model are summarized
in Bauwens et al| [2006]. For a most recent summary on both univariate and
multivariate GARCH models, see Francq and Zakoian| [2010].

Unfortunately the asymptotic theory of the multivariate GARCH model is

far from coherent since many algorithms on the univariate case does not extend
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to multivariate models naturally. For example, Bougerol and Picard| [1992]’s
condition does not hold for multivariate GARCH models in general. Boussamal
[1998] gave a counter-example for this extension.

Jeantheau| [1998] proved strong consistency for multivariate GARCH models
and verify those conditions for the CCC model. |Comte and Lieberman [2003]
proved the asymptotic theory for the BEKK model under the assumption of fi-
nite eighth moment of y;. They used the condition given by Boussama [1998]
to prove stationarity and ergodicity but they did not impose any conditions to
verify identifiability. Ling and McAleer| [2003] shows the asymptotic theory for a
class of multivariate ARMA-GARCH models with the GARCH process following
the CCC specification. Hafner and Preminger| [2009] proved the asymptotic the-
ory for general multivariate GARCH(1,1) under the assumption of finite sixth
moment of y,. However, their proof for the asymptotic normality was not actu-
ally complete. They used Markov chain technique in Meyn and Tweedie| [2009]
to prove stationarity and ergodicity since the GARCH(1,1) model is a Markov
chain. We will generalize this approach in this thesis to the GARCH(p, q) case.
Kristensen| [2007] also gave his condition for stationarity and ergodicity using the
same technique. But his condition is difficult to verify in practice.

This thesis tries to fill the gap on the asymptotic theory between univari-
ate GARCH(p, ¢) and general multivariate GARCH(p, ¢) models. We study the
asymptotic theory of the QMLE under mild conditions. We give some counterex-

amples for the parameter identifiability result in |Jeantheau [1998| and provide a
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better necessary and sufficient condition. We prove the ergodicity of the condi-
tional variance process on an application of theorems in|Meyn and Tweedie [2009).
Under those conditions, the consistency and asymptotic normality of the QMLE
can be proved by the standard compactness argument and Taylor expansion of

the score function.

1.3 The QMLE

Parameter estimation for multivariate GARCH models is usually done by MLE,

or quasi-MLE (usually Gaussian QMLE). Let 6 be the parameter vector, that is,
0 = (c",vec(A))T, - ,vec(Ay)T, vec(By)T, -+, vec(B,)")T,

If the driving noise is i.i.d. normal, the log likelihood function is given by

n

La(®) =~ 3" {log | HLO) + ol B Oy = —5- S 00). (1)

However when the i.i.d. driving noise has some other distribution distribution
then is not the log likelihood. One may still use it as an estimating method,
in the sense that one may construct an estimator as arg maxy.o{L,(#)}. In many
settings this estimator is still consistent and asymptotically normal. This esti-
mator is called the quasi-maximum likelihood estimator, or the QMLE. In the

rest of this thesis we will often refer to this estimating function (1.7 as the log
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likelihood even though this is not technically correct.

The log likelihood depends possibly on the infinite past. However in
time series observations this is not reasonable so one really needs to condition
on a finite set of initial observations. We thus define L, () as the log likelihood
function or estimating function which is conditional on some initial values of
Yo, Y—1, " ,Yi—q, Ho, Hy, - -+, Hy_,. For example, these initial values can be either
constants or drawn from a stationary distribution. In this thesis, we choose the

initial values as

Y=Y-1="""=UY1—¢= U1 and h():hflz"':hlfp:& (18)

Other terms such as l;, ﬁt and ﬁt can be defined analogously. We will show

later in this thesis that the choice of initial values does not affect our asymptotic

results. The Gaussian QMLE is defined as

n

0, = argmax L, (0) = arg min Z 1,(6), (1.9)
9o 60

where O is the parameter space. Note that in model , we did not assume any
specific distribution on the innovation process {&; } except its mean and covariance
matrix. In fact, many financial data processes heavy tails. The noise term may
not actually be Gaussian so we may use the quasi-likelihood as the estimating

function L. It is used since the maximization problem is relatively easy to solve
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numerically. In this thesis we will show this estimator has the properties

e Strong consistency

0, 25 0,.
e Asymptotic normality

(0, — 6) > N(0,%).

The difference between the quasi-likelihood (1.7) and the observable quasi-
likelihood Zn(G) is that for the former we are dealing with a sum of objects that
are stationary while this is not so for the later. This is helpful in deriving some

properties of the QMLE.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter [2| presents the
theorem to prove ergodicity and stationarity. Chapter |3|is the major chapter of
this thesis. In this chapter, Section |3.2] provides the assumptions under which
the GARCH model is identifiable. We also give a counter example in this chapter
to show that the identifiability conditions given in |Jeantheau [1998] are actually
invalid. Section |3.3|is devoted to the strong consistency of the QMLE. Section 3.4

proves the asymptotic normality under the finite sixth moment of {y;}. Chapter
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lists various lemmas which are the intermediate results to prove the theorems
in this thesis. The first section of Chapter |5| gives an example of the multivariate
GARCH model which satisfies our ergodicity and identifiability assumptions. The
last section of Chapter [5| addresses the scaling issue when estimating GARCH
parameters in S+ FinMetrics and provides a correction in R. This is also an
example of parallel computing in R using the Rmpi package. The computational
codes are available from the author upon request. Some useful results in matrix

algebra are collected in the appendices.



Chapter 2

Ergodicity and Stationarity

2.1 Introduction

To prove the asymptotic theory of the QMLE, we need the model to be ergodic
and stationary. In this chapter, we will give conditions under which the GARCH
process is ergodic and stationary. For the univariate GARCH model, Bougerol
and Picard| [1992] proved that the process is ergodic and strictly stationary if and
only if its top Lyapunov exponent is strictly negative. The components of the
matrices used to parameterize multivariate GARCH models are not necessarily
positive, so this methodology cannot be extended to the multivariate case gen-
erally. |Boussama| [1998] gave a counter-example for this extension. |Hafner and
Preminger| [2009] studied a GARCH(1,1) general model. We follow their method-
ology. However to extend this one needs a different state space and Markov

representation. After finding a suitable representation, two different ones actu-
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ally for different aspects, we then use the Markov chain stability theory discussed
in [Meyn and Tweedie [2009] to prove ergodicity and stationarity. The ergodic
theorem will be given in Section and will be prove in Section [2.3] Proposition
states some useful results on the spectral radius of the parameter matrices
and this proposition is proved in Section [2.4]

The concept of ergodicity describes the way in which the chain returns to
the “center” of the space, and whether it might happen in a finite mean time.
Intuitively, if a Markov chain is ergodic, its n-step transition probability converges
to some “fixed” measure. There are several forms of ergodicity in literature. In

this thesis, we use the V-uniform ergodicity.

Definition 2.1 (V-Uniform Ergodicity, Definition (16.2) in Meyn and Tweedie

[2009]). A Markov chain ® is called V -uniformly ergodic if

sup

. v(w) Pz, dw)) — [ v(w)m(dw)
viju|<V /x /:x ‘

sup — 0, n— oo,
zeX V<I>

where X is the state space, V : X — [1,00) is real Borel measurable, P" is the
n-step transition probability and © is a probability measure on Borel sets of X.

Such w is called an invariant measure.

We choose to use V-uniform ergodicity because the conditions to guarantee V-
uniform ergodicity is easier to verify than other forms of ergodicity. In particular

one needs to handle an appropriate drift in the Markov representation; see ([2.4])
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and (2.10]). We also note that if V(z) = 1 for all z € X, then V-uniform ergodicity
implies the Markov chain is uniformly ergodic, that is ergodic in the usual sense

and uniform for all initial conditions.

Definition 2.2 (Strict Stationarity). A time series z; is called strictly stationary
if for any k, the marginal distribution of {z,, Zni1, "+ , Znak} does not change as

n varies.

Given the existence of 7, if the chain is V-uniformly ergodic, the transition
probability will eventually converge to the invariant measure 7. If the chain is
initiated from the invariant measure, it is stationary. To show this, we only need
to consider the first step stationarity due to the Markov property. The invariant

probability measure 7 is such that for any A € B(X),

(A) = /x (dw) P(w, A),

we can iterate to give

T(A) = /x < /x W(dI)P(JE,dU))) P(w, A)
_ /x (dz) /DC P(x, dw)P(w, A)

= /xw(dw)PZ(w,A)

- /xw(dw)P”(w,A)
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= P,(®, € A).

We can see that a Markov chain @ is strictly stationary if and only if the marginal
distribution of ®,, does not vary with time. To prove the ergodicity and strict
stationarity of the GARCH process, our task is to give conditions under which

the invariant measure 7 exists and the chain is V-uniformly ergodic.

2.2 The Ergodicity Theorem for General Mul-

tivariate GARCH Processes

If p = ¢ = 1 as inHafner and Preminger| [2009], the model ([1.4)) is a Markov chain.
Otherwise, we need to rewrite the model into a Markov chain representation in

order to make use of Markov chain technique. We define

c
hy 0
htprrl 0
}/;5 = ) Wy = )
yr Up
0
Mt—q+1
0
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Bl Bp—l Bp Al AQ A_l A

q

where all items in Y, and w; are N-dimensional vectors and all items in J are
N x N matrices. Thus, Y; and w; are N(p + ¢)-dimensional vectors and J is a

N(p+ q) x N(p+ ¢q) matrix. Then (1.4) can be rewritten as

Y, =we +JY o = F(Yio1,&), (2.2)

which is the Markov chain representation of . It is possible to give the
transition probability explicitly for this Markov chain, but this is not needed for
our purpose.

The ergodicity of {h;} is implied by the ergodicity of {Y;} since h; = TY, is
a measurable (linear) transformation, where 7" is an N x N(p + ¢) matrix and

T = (Iy,0,---,0). Similarly we have that {y;} is ergodic given that {Y;} is
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Processes

ergodic.

Counsider the derivative

0
Y, ow
A=AV &) = G =T+ o =T+ | e | (23)
0

where the first 0 is an N(p — 1) X N(p + ¢) null matrix and the last 0 is an

Ng x N(p+ ¢) null matrix. Applying the chain rule and based on the result in

Hafner and Preminger| [2009], we have that

ant _ % ) aht
) onl oYr,
D+0vec(Ht1/2§t tTHtl/Q)D .
d ovecT (H,) d

O(c+ [B1|By| - - |By| A1 Ag| - - - |A]Y; 1)
) Fn

DJ (A ® 1) Dg[B1|Bs| - - | Bp|Ar| As| - - |Ag],

where
At _ Ht1/2§t§tTHt_1/2-

For some integer m > 1 and ¢t > m, let

A(Ym—k—i-la 5m—k+2)
k=1

)

Ym

1
Ym(A) = —Elog (sup
m o

where Y™ = {(Y[,--- ,YT)T € R®toNm},
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We are now in the position to state the theorem for ergodicity and stationarity.

Theorem 2.3 (V-uniform ergodicity). Consider the general multivariate GARCH

model (1.4). Assume that:

A1: The marginal distribution of {&;} is given by a lower semicontinuous density
fe w.r.t. the Lebesque measure which has support ¢ = {x € RY| fe(x) > 0}.

The initial condition Yy is independent of {&;}.
A2: E||&]|* < oo for somer >0 (r is usually small).
A3: p(J) < 1.
A4: ~,,(A) <0 for some integer m > 1.
Ab5: © is compact.

Then under Assumptions A1-A5, {Y;} is V-uniformly ergodic and the invariant

measure exists. Thus, the GARCH process is asymptotically strictly stationary.
Proof. See Section [2.3] O

Remarks. 1. Theorem is similar in spirit to Hafner and Preminger| [2009,
Theorem 1]. Our proof relies on finer details and structures from Meyn and

Tweedie| [2009]. In particular one needs to use the matrix J (2.1]).

2. Since & is i.i.d., a sufficient condition for Assumption A4 is

Elog(supy, [|A(Y1,61)]]) <O0.
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3. It is difficult to calculate v,,(A) directly even for a small m. The computa-
tion of 7,,(A) usually involves Monte Carlo simulation. See Section for

an example.

4. For VEC models which have equivalent BEKK representations, a sufficient
condition for Assumption A3 is p(3 7, A;+> 7 | Bj) < 1. More generally,
we have the following Proposition. This condition, in the p = ¢ = 1 is
stronger than the corresponding condition in [Hafner and Preminger| [2009]

who only requires p(B;) < 1.

Proposition 2.4. For VEC models which have equivalent BEKK representations,

we have that

1. p(32F_, Bj) < 1 implies p(B) < 1, where B is defined in (3.8).
2. p(>71y Ai+ 275 By) < 1 implies p(J) < 1.
8. p(>oiy Ai+ 275 By) < 1amplies p(3°7_, By) < 1.

Proof. See Section [2.4] O]

These results in Proposition [2.4] were first mentioned in Thesis of Boussama
[1998], specifically in the Appendix. In Section we write his proof but with

additional details needed for our result.
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2.3 Proof of Theorem [2.3

To prove Theorem , we introduce the following drift condition (Condition (V4)

(15.28) in Meyn and Tweedie [2009]).

There exists an extended-real-valued function V' : X — [1, 00|, a mea-

surable set C' and constants 8 > 0, b < oo,
AV (z) < =pV(z) +blc(z), z€X, (2.4)
where A is the drift operator which is defined as

AV (z) = /P(z,dy)V(y)—V(:r) =EWV(®1)|Py=2)-V(x), ze€X.

We inductively define a sequence of functions F; by

Fi(z,uy) = F(z,u)

Ft-i-l(‘raula"' 7ut+1) = F(E(xvula"' 7ut)7ut+1>7 tZ ]-7 (25)

where the function F' is defined in (2.2). This deterministic system is called the
associated control model for (12.2)).
By Theorem 16.0.1 in Meyn and Tweedie| [2009], given {Y;} is ¢-irreducible

and aperiodic, {Y;} is V-uniformly ergodic if and only if the drift condition ({2.4))
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holds for some petite setﬂ C and some Vj, where Vj is equivalent to V' in the sense

that for some constant ¢ > 1,

V<V <V (2.6)

By the structure of A; = A(Y;_1,&;), which is defined in (2.3, and the com-

pactness of ©, we can choose & = £* sufficiently small such that

po = sup p(A(+€7)) < 1. (2.7)

The globally attracting state of {Y;} exists if there exists a fixed point Y* such
that Y; converges to Y* as ¢ — oo for the control sequence {§; = £*} and any
starting value Yy. Here Y* depends on the choice of £*. By Proposition 7.2.5 in
Meyn and Tweedie] [2009], the existence of Y* is equivalent to that the nonlinear
control system ([2.5)) is M-irreducible, which is also equivalent to that {Y;} is
y-irreducible, given that is forward accessible (Theorem 7.2.6 in Meyn and
Tweedie| [2009]). Furthermore, aperiodicity follows from the fact that any cycle
must contain the state Y.

Therefore, to show {Y;} is V-uniformly ergodic, it suffices to verify that

1(Meyn and Tweedie| [2009]) We call a set C € B(X) v,-petite if the sampled chain satisfies
the bound

> P*(x,B)a(n) > va(B),
n=0

for all z € C, B € B(X), where v, is a non-trivial measure on B(X) and a = {a(n)} is a
distribution or probability measure on Z .
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1. The globally attracting state Y* exits.
2. The associated control model ([2.5)) is forward accessible.
3. The drift condition ({2.4)) is satisfied for some function V' > 1.

Furthermore, if the function V' we use in (2.4]) is unbounded, the above three
conditions make the assumptions of Theorem 8.0.2(ii) in Meyn and Tweedie|[2009]
satisfied and thus the chain is recurrent. By Theorem 10.4.4 in Meyn and Tweedie
[2009], the chain has a unique (up to constant multiples) subinvariant measure
which is invariant.

The above three topics will be discussed in the following three subsections,

respectively.

2.3.1 The Existence of the Globally Attracting State

By the mean-value theorem, we have

Ve =Yl = A &)Y =Y

= HA(Yt*,f*xYl ~Yy)

Y1 = Yo

< ([Tawi¢)
=1

< sup [|AYGL ) Y1 - Yoll
Yyl
< KppllY1 = Yol

— 0, ast— oo,
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where Y;* is on the chord between Y;,; and Y;. The last inequality holds due to

7

(2.7) and Lemma . This proves the existence of the globally attracting state
Y™ ie.,

Y, - YY" ast — oo.

2.3.2 Forward Accessibility

Let {Zg, Ay : k € Z;} denote the matrices

— - oF
Epr1 = Spga(@o,un, - Upyr) = £ )
L1 (@psunsn)
oF
Ak-i-l - Ak’-l—l(x())ulv e 7uk+1) = 8_:| 5
u
(ke up+1)
where x;, = Fy(xg,uy, - ,uy). Let C’;“O = C;fo(ul, -+, uy) denote the generalized
controllability matriz (along with sequence uy, - -+, uy)
Cfo = [Zp DA |Zk - E3A] - [N 1| Akl

Rank condition for multivariate control models (Condition (CM3) (7.13)

in Meyn and Tweedie [2009])

For each initial condition zy € R¥, there exists k¥ € Z, and a sequence

@ = (u},--- ,up) € Of such that

rankCa’fO(fLO) = N. (2.8)
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Proposition 7.1.4 in Meyn and Tweedie| [2009] states that the control model

(2.5)) is forward accessible if and only if the rank condition (2.8)) holds. In partic-

ular, if Ay = OF(x,e)/0e has full rank (i.e., k = 1), condition ({2.8) is satisfied.

0

aF(Yt—la gt) ow,
A = = = | o
' &t & o¢f
0

It suffices to verify that 2% has full rank for our chosen &*. By (T)), ) and (3)
e

in Appendix [B]

ony 0 1/2 ¢ T 17—1/2
— = ——vech(H H.
aff o 85? ( t gtgt t )

0
= D; 8—53_,V€C(Ht1/2§t ;/THtl/Z)

§=E*

§t=¢*
8vec(§t§tT )
agtT =86

= DI(H @ H")Ip + Ku)(€ @ 1)

= Dchr(Htl/2 ® Htl/2)

= DI(H? @ H'*\Dy-2Di (¢ ® 1,).

By in Appendix ,

D} (H,"* @ H}"*)Dy| = |H|*D/? 0,
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It now remains to show that D} (£* ® I,;) has rank d. Note that D] only contains

1 and 0. We denote the " column of £* ® I; by II,. Then

DIT; = Djvec[(0,---,0,6%,0,---,0)7]

We can see that the i column of D] (£* ® I;) has i non-zero elements, which
are the first ¢ entries of the vector £*. Furthermore, there is no more than one

non-zero element on each row of D (* ® I,). Then we have

& O 0

0o & .o
Di(€ ®1s) =M ~ :

S 0

0 0 ¢,

where M is an elementary matrix (see Appendix [A| for details) and §Z is an -
dimensional vector with all elements being the i element of £*. Since M has full

rank, we can have a properly chosen £* such that D} (£* @ I,) has rank d.
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2.3.3 Drift Condition

By the mean-value theorem, there exists Y;* ; on the chord between Y* and Y;_;
such that

F(Y;f—lagt) - F(Y*agt) = A(Y;tpgt)(y;f—l - Y*)

Then we have

Vi = F(Yi,&)

= F(Y;t—bgt) - F(Y*>§t) + F(Y*aft)

= F(Y*a ft) + A(K*—bft)(yt—l - Y*)

= w1, &) + AV E) Y, (2.9)
where w(Y* 1, &) = F(Y*, &) — A(Y; &)Y, Applying (2.9) recursively, we get

m—1 7
Vi = w(Vii, &)+ Z (HA(Yt*_kaft—kﬂ)) W(Yt*—j—lv&—j)

Jj=1 \k=1

m

+ H A(Z*_ka gt—k-i-l)Y;—m?

k=1

where Y;*, on the chord between Y* and Y, j, k=1,---  m.

Define

m

H A<mek+1> €m7k+2)
k=1

Q) = sup and A =E(Q°) for some s.

Yym
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Consider the function g(z) = E(Q*). We have ¢g(0) =1 and

1}%1 L;g(()) = E(Q" log Q)[.—0 = E(log(£2)) < 0.

The last inequality results from Assumption A4. Thus we can choose 0 < s < r
such that A < 1, where r is given is Assumption A2.

Next, consider the drift function
Viz) =1+ ||z|° . (2.10)
We observe that

E(V(Y)[Yi—m = Y0)

< 14+ Esup |w(-,&)|°

vyl
] S
+ZE<sup [T )Esup||w< &)l + MYl
J =1
= AV (Yy)+0,

where

m—1 s
b= (1= X) + Esup (- &) +ZE(sup )Esupr|w< DI,

Jj=1 Y

[[c
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Thus,
AV(Yy) = E(V(Y)[Yiem = Yo) = V(Yo) < (A= 1)V (Yy) + 0.
We choose the measurable set C' as

2

For Yj € C,

-1
AV(Y) < 2RV () +b

For Yy € C°,

AV(Y0) < (A= DV(%) + T3V () = 2 Av(x)

Then (2.4) is satisfied if we assign = % It remains to show that b is finite,
which suffices to show that both E(supy: ||A(+,&1)]|") and E(supy: [|w(-, &)]7)
are finite. By Theorem 5.6.9 in Horn and Johnson| [1985], the spectral radius is a

lower bound for any matrix norm. By and @ in Appendix , we have that

< 9
Iad < 11+ |
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ony
v,

IN

1] + H

= ||| +1ID; (At @ 1a) Dg[Bi| Ba| - - - [ By| Ar| A - - - |A]]|
< O+ Gol|Ar @ 1|

= C1 + Gol| A ||| Ll

< Ci+ G| A

= Cl + CQ tr(A?At)

< G+ Oy (A0 + (AT

= Oy 4 Cytr(A)

IN

Cy + CthTfu

where Cy = ||J|| and Cy = [[Dg|| - | Dall - [B1]Ba| - - [ By| Ar| Ao - - - |Ag] ]| We

then obtain by Assumption A2 that
E(sup [AG,&)I") < €1 + C3E(&/ )" = O] + GRE[|& | < oo
v

The finiteness of E(supy: ||w(-,&1)||") will follow.
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2.4 Proof of Proposition 2.4

1. We apply the “vec” operator on both sides of (1.6). By Equation in

Appendix [B] we have that

q p
vec(Hy) = vec(C) + Z Agvec(y—iyl ) + Z Byvec(H,_;), (2.11)

=1 =1

where

k k

j=1 j=1
Since H,; and y,y] are symmetric, we left multiply the matrix D} on both

sides of (2.11) and we can obtain that

vech(Hy)

q p
= vech(C) + Z D Ayvec(y iyl ;) + Z D Bivec(H,_;)
i=1 i=1

q p
= vech(C) + Z D A;Dgvech(y; iyl ;) + Z D B;Dgvech(H,_;),
i=1 i=1
which is the same as ((1.4) if we assign

A;=DJA;D; and B; = DJB;D,.

Suppose A\ and u is one of the nonzero eigenpairs of B, where

u = (uj,--- ,u;)* € CPNV and x denotes the conjugate transpose. We have
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by definition that

Bu = \u,

that is,

p
AUy = ZBiui and )\Uj = Uj—1 for 1<j<p,
i=1

It is therefore the case that u, # 0 (otherwise v = 0) and

p
NPy, = (Z Apia-) Uy, (2.12)

i=1

Let U be the symmetric matrix such that vech(U) = w,. Thus, from (2.12)),

we have that

P
vech(\U) = Nu,, = (Z /\p_iBi> vech(U)
i=1
p . ~
= Z)\p_szBideech(U)

i=1
p . ~
= Z N~'DT Bivec(U)

i=1

p k
= Z )\p_iD;l" (Z Bij X BU) vec(U)
i=1 j=1

P k
= ) ) N"'Dfvec(B;;UBY)

i=1 j=1

k
= XP: > N ivech(By;UBY).

i=1 j=1
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Equivalently,

P k
XU => "3 NB,UB]. (2.13)

i=1 j=1
We obtain (2.13)) due to the fact that vech(A) = vech(B) implies A = B
if both A and B are symmetric matrices. Note that the vech(-) operator

obeys the linear property, i.e., vech(cA) = cvech(A) for a constant c.

We define a function ¢(-) by

P k

SO(X) = ZZBinBiE,

i=1 j=1

whose argument is from the class from symmetric positive definite matrices.

We denote the n-th order iterative function of ¢(-) by ¢™(-), that is,
P"() = (" ().
We define the matrix norm || - ||, on any arbitrary matrix P € C**? by
|P|ly = sup{|z*Pz| : 2 € C* and z*Va =1},

where V is defined as

V=>¢"(0),

where C' is the constant matrix in ((1.6). It remains to show that V is
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well defined. V' is trivially symmetric positive definite. Applying the “vec”

operator on ¢(C') gives

p

vec(p(C)) = ZZ B;; ® B;j)vec(C)

=1 j5=1

p
= E vec(C

=1

B
P
= D ( B,) Dgvec(C),
=1

Suppose that

p

vec(p™(C)) = D (Z Bz-) Dgvec(C). (2.14)

=1

Then

vec(p" ™ (0))
= vec(p(p"(C)))
el
= ( - zk: mat <D+

— ZZ(BM@)B@-) (D:{ zp:Bl

i=1 j=1

p
= Y BD; (ZBJ Dgvec(C)
=1

deec<c>>>>

Z B deec(C))

I=1
deec(C))

T
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P P n
= DF ZDdBiD;> DyD} (Z B,) Dgvec(C)
=1 =l

= D} zp:BZ) (iBJ Dgvec(C)
i=1 [

p n+1
= DI 231) Dgvec(C).
=1

Therefore, (2.14) holds due to the induction. Since

Sl < > [lvec(e™ ()]
< ZHD:{HH< Bi)
£hEs

=1

[ Davec(C)||

IN

< 00,

V is well defined. The last inequality holds due to Lemma [£.1 We also

have that

Vo= ) g0
= UC)+ ) " (C)
= 04y el ()

= C+o (i 90”‘1(0))

n=1

= C+o(V) (2.15)
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It comes that for any matrix P € C%*,

T * T
z*Px| = P 2 Vax) < ||P|ly(xz*Vz). 2.16
T * T
This inequality holds since %4 = 1 (notice that z*Vx
quality (m) N 7
0if x #0).
For any z,
213 poF
APlUz) &= 130T W e B UBLe|
i=1 j=1
p k
< > Y APTa*ByUBLa
i=1 j=1
p k
(by @16) < > > PPUlv(a"ByVBLz)  (2.17)
i=1 j=1

Suppose there exists one of the eigenvalues of B which is greater than or
equal to 1 in modulus, denoted by Ag. Also assume that xg is such that
lz§Uxo| = ||U|ly and z{Vxy = 1. Substituting Ay and z, into (2.17)) we

obtain

P k
ol? < D> [l (w5 By V Bljo)

i=1 j=1

D k
|>\()|p_1 Z Z [L'E;B”VBZ;ZL'Q

i=1 j=1

P k
= |)\0|p_1x8 (ZZBijVB5> Zo

i=1 j=1

IN
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= [l (V — O)ag

(by @18) = [Ao|"7'(1 = 25C0)

x;Czo > 0 since C' is symmetric positive definite. Therefore, |Ag| < 1. This

contradiction finalizes our proof.
2. We define a function ¢(-) by

q k

p k
PX) =" A;XAL+>"> ByXBI,

i=1 j=1 i=1 j=1

whose argument is from the class from symmetric positive definite matrices.

The matrix V is defined as
V=> ¢"(0).
n=0

Similarly, we have

V=C+aV). (2.18)

We also need to show that V is well defined. Similar to the previous part,

we have that

q p

vec(¢"(C)) = D <Z A+ Bi> Dgvec(C).

i=1 i=1
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Therefore,

SO < > [lvec(@™(C))
A ‘( AﬁZBz)

o5 [p(i,mg;

i=1 i=1

IN

|| Dgvec(C)|

IA

and V is well defined.

Suppose A\ and u is one of the nonzero eigenpairs of J, where

u = (uf, - ,ug,u;rl, e ,uz;rq)T € CP+aN  then we have by definition
that
Ju = \u,
that is
P q
i=1 i=1
and

Auj=ujqy forl<j<p — u;=0 forp+1<j<p+gq

Then (2.19) can be rewritten as

=1
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It is therefore the case that u, # 0 (otherwise u = 0) and

p
NPy, = (Z /\p‘iBz) Up. (2.20)

=1

Note that (2.20)) and (2.12)) are the same and therefore we can finish our

proof by repeating the steps in the previous part.

3. By (2.18)), we have

9 k p k
V=C+Y > AVAL+Y > BVBl=C+o(V),  (221)

i=1 j=1 i=1 j=1

where C' = C 4+ 3L, Z§:1 Aijf/Ag;. Notice that C' is also symmetric posi-

tive definite.

Suppose A and w is one of the nonzero eigenpairs of y 7 | B; and U is such

that vech(U) = u. We have

P
vech(A\U) = A = (Z BZ) vech(U)
i=1
p ~
= Y D;B;iDyvech(U)

i=1

p
= Z D Bivec(U)
=1
P k
= > Df (Z By ® BU> vec(U)
i=1 j=1

k
- zp: > Djvec(B;;UBY)

i=1 j=1
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k
Z vech(Bj;UBYY).

=1 j=1

M@

Equivalently,
AU = Z Z B;UBL. (2.22)
=1 j=1
We define the matrix norm || - || on any arbitrary matrix P € C™¢ by

|P||¢ = sup{|z*Pz| :x € C* and 2'Vz =1},

It comes that

|x* Px| = < - P * -
zVax zVax

For any z,

(2*Vz) < ||P|lg(x* V). (2.23)

P k

Ne* Uzl = 3 o*B,UBL
i=1 j=1
D k
< > ) |#"ByUBJal
=1 j=1
D k
(by @23)) < D > |Ullg(e* B,V B) (2.24)
i=1 j=1

Suppose there exists one of the eigenvalues of >7_| B; which is greater than
or equal to 1 in modulus, denoted by A\g. Also assume that xq is such that

lw5Uxo| = ||U||y and 25Vae = 1. Substituting Ay and z, into (2.24) we
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obtain

P k
=1 j=1
p

k

i=1 j=1

k

i=1 j=1

IN

= APt (V — C)ag

= [Ao["(1 = 25C0)

25Cro > 0 since C' is symmetric positive definite. Therefore, |Xo| < 1. This

contradiction finalizes our proof.

2.5 Conclusion and Commentary

This chapter serves as preliminary results for the next chapter. In this
chapter, we give conditions under which the GARCH process is ergodic and
stationary. The proof is based on the Markov chain technique in Meyn and
Tweedie| [2009]. This approach was first used by [Hafner and Preminger
[2009] on the general multivariate GARCH(1,1) model. We extend it to
the general multivariate GARCH(p,q) case. Assumption A3 guarantees
that if we iterate to the infinite past, the infinite sum is well defined.

Assumption A4 makes it possible to find the exact value of 8 and b for our
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chosen function V' in the drift condition . Although we assume the
innovation process has unit variance, we do not need this for the ergodicity
purpose. We only require the innovation process to have a finite small
moment (Assumption A2). Assumption A5 is also assumed in the next
chapter to prove consistency. Here, we need this assumption to obtain
(2.7). Proposition provides sufficient conditions for Assumption A3
for the VEC models with BEKK representations. This result is also useful

for the next chapter when we prove the consistency.

Ergodicity is useful for the next chapter when we prove the asymptotic
theory for the QMLE. For example, when we consider the limit

1 n
lim — " 1,(6),
=1

n—oo N,

the usual law of large numbers does not apply since [;’s are not independent.
We are able to apply the ergodic theorem instead of law of large numbers
due to the ergodicity of the model. The stationarity makes the expectation

not depend on time. For example, El;(0) = El;(0) for any t¢.



Chapter 3

Asymptotic Theory

3.1 Introduction

In Section [1.3], we defined the QMLE for the model parameters. The QMLE
is such that it maximizes Z~L(9), i.e., the likelihood function conditional on some
initial values. This is different from the theoretical likelihood function L(6) which
depends on infinite past. Moreover, the normal density function we are using in
L(f#) may or may not be consistent with the true distribution of &. In this
situation, we still want the estimator to be consistent asymptotically normal.

Consistency means that the estimator converges to the true parameter value, i.e.,

Definition 3.1 (Consistency). An estimator 0, is called consistent if

A a.S.
Hn — 00.
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Asymptotic normality means that the difference between the estimate and the

true parameter converges to a normal distribution, i.e.,

V(0 — 60) = N(0,T),

where I' is a positive definite matrix. We will specify I' later in this chapter.
Sections and gives conditions under which the QMLE is consistent

and asymptotically normal. To achieve the asymptotic theory, another important

intermediate result besides the ergodicty and stationarity is the model identifia-

bility.

Definition 3.2 (Identifiability). The GARCH model (1.4) is identifiable if V0, 6, €
O,

Ht<9) = Ht(eo) PQO a.s. = 0 = 90.

The rest of this chapter is organized as follows. In Section [3.2.1] we give
necessary and sufficient conditions under which our GARCH model is identifi-
able. We also give a counter example in Section to show that the sufficient
conditions for identifiability in |Jeantheau [1998] are invalid. Section [3.3| provides
assumptions under which the QMLE is consistent. To prove this, we use a dif-
ferent AR(1) type representation other than the one in Chapter . We prove the
consistency theorem using the standard compactness argument and thus the com-

pactness assumption for the parameter space is essential. Section proves the
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asymptotic normality with two additional assumptions. We only require the finite
sixth moment on the observed process, which is by far the weakest assumption

in literature for general multivariate GARCH models.

3.2 Identifiability

3.2.1 The Identifiability Theorem

We start this section with an important concept “matrix polynomial”.

Definition 3.3 (Matrix Polynomial). A univariate matriz polynomial P of degree

p s defined as

where C; denotes a matrixz of constant coefficients, and C,, is non-zero.

We define two matrix polynomials A(w) = Y7 | Aw’ and B(w) = Iy —

> ¥_, Bjw’. Using the lag operator L, (L.4) can be rewritten as

B(L)hy = ¢ + A(L)n;. (3.1)

Hereafter, we denote the model formulation at the true parameter value by Ag, (w)
and By, (w), and use Ag(w) and By(w) to denote the model formulation at any
arbitrary parameter value.

In the univariate case, we usually assume that the two polynomials are coprime
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to get the identifiability. It is natural to generalize this in the multivariate case.

Definition 3.4 (Greatest Common Left Divisor). Let A and B be two matriz
polynomials such that their determinants are not zero. If there exist a matrix

polynomial D such that
every left divisor of D is also a left divisor of A and B, and
every left divisor of A and B is also a left divisor of D,
then D s called the greatest common left divisor (g.c.l.d.) of A and B.

Recall that a square matrix polynomial is unimodular if its determinant is
a non-zero constant. Therefore, we say that two matrix polynomials are (left)
coprime if any of their greatest common left divisor is unimodular. In this sense,
the greatest common left divisor is not unique since a unimodular g.c.l.d. mul-
tiplied by a unimodular matrix is still a unimodular g.c.l.d.. The condition that
A and B are coprime is not sufficient for the model identifiability. We need a

further condition to guarantee the identifiability.
Theorem 3.5 (Identifiability). Assume that
B1: The model (1.4) has a strictly stationary and ergodic solution.

B2: The law of & is such that there is no quadratic form q for which q(&§) = ¢

a.s., with some constant 6 € R.

B3: VO € O, By is invertible; Ay, is also invertible.
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B4: V0 € ©, Ay and By are (left) coprime.

Then under Assumptions B1-B4, the model is identifiable if and only if there

exists no non-zero row vector o such that

Proof. Section [2.2| gives conditions under which Assumption B1 holds. For de-

tailed proof, see Section [3.2.3] n

This necessary and sufficient condition for the identifiability of multivariate
time series was first introduced by Hannan [1969] to verify the identifiability
of the vector ARMA model. This condition was also mentioned in [Boussamal
[1998]. Note that identifiability is not to be confused with the model identification

concept in statistics.

3.2.2 The Counter Example

Jeantheau| [1998] provides assumptions for the CCC model (defined in (1.2))) to
be identifiable. Let P(w) = (p;j(w)) be a matrix polynomial and d;; be the degree

of p;j(w). We define
dj(P) =supd;; and P/ =pija;,

which leads to the definition of column-reduced matrix.
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Definition 3.6 (Column Reduced). A polynomial matriz P is column reduced if

the determinant of P is not equal to zero.

Identifiability is claimed in |Jeantheau [1998] by replacing our necessary and

sufficient condition with the follow additional assumption:
B5: Either Ay, or By, is column reduced.

Note that |Jeantheaul [1998] gives only sufficient conditions for identifiability.
However, we find that |Jeantheau [1998]’s assumptions may not lead to the
identifiability. Here is a counter-example. Let us consider a trivariate GARCH(1, 2)

model and let

005 0 0 0.07 0 0
A= 0 002 0 |, 4= 0 0o o |-
0 0 0.09 0 0 003
06 1.2 0
B=1 0 0 o
0 0 04
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which is of full rank and thus this parameterization satisfies |Jeantheau| [1998]’s
conditions.

However, if we redefine A and B as

0.07 0.02 0 06 0.2 0
Ay = 0 0 0 ., B=1 0 o0 o
0 0 003 0 0 04

and let A; remain as the same, these two parameterizations produce exactly the
same covariance series. And thus, Jeantheau [1998]’s conditions are invalid. The
Mathematica codes for this counter example and the verification are available
from the author upon request. This counter example exists because we have a

non-zero row vector a = (0, 1,0) such that

aly = aB =0.

We follow the procedure of proving the necessity part in Section to construct

this counter example.

3.2.3 Proof of Theorem [3.5|

By Assumption B3, (3.1]) yields

he = B(L)(c + A(L)). (3.2)
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Suppose that hi(0) = hi(0y) Py, a.s. for some t € Z. If Ap(1l) # 0, it follows

from that
1By (L) Ag(L) — By, (L) Agy (L)]ne = By, (1)co — Byt (1)e.

If B, (L)Ag(L) — Bgol(L)Ago(L) # 0, there exists a set of constant matrices

D;,i=0,1,---,00 and a constant vector dy such that >~ D;n,—; = dy. Thus,

Dony = dy — Z Din—.
i=1

By taking the conditional expectation given .%#; i, the left hand side becomes

Dqoh; while the right hand side remains as the same. Hence,
0 = Do(n, — hy) = Dovech(H;*(&,&l — 1) H}™). (3.3)

However, by Assumption B2, & # I with a positive probability. Since Ht1 2 s

positive definite, we conclude that it is impossible that (3.3)) holds. Therefore,
By ' (L)Ag(L) = By (L)Ag,(L) and By'(1)co = B, (1)c. (3.4)
Let M = 23913501, then we have

Ay = MAq, (3.5)
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By = MBy, (3.6)

We want to show that M = I.

Please see Appendix [A] for some definitions and results about the decomposi-
tion of rational matrix polynomials. A rational matrix has every element as the
ratio of two finite degree polynomials. Hereafter, a matrix polynomial means a
matrix whose elements are all polynomials up to a finite degree. Otherwise we
can rewrite it as a rational matrix polynomial. By Lemma since M is a
rational matrix polynomial, we can factorize M as M = SDR, where S and R
are unimodular whose elements are polynomials up to a certain finite order and

D is diagonal. M is of full rank since both By and By, are non-singular. Let

D = P71(Q, where

P =diag{ps,--- ,pn}, @ =diag{q:, - ,qn}.

and p; does not divide ¢; for all i. Then (3.5)) and (3.6)) yield

S7'By, = PT'QRBy,

S7'Ay = PT'QRA,,

Notice that the elements of S~ and R™! are also polynomials. Hence P divides

RBy,, which means that for all i, p; divides all elements in the i row of RBy,
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and also P divides RAy,. Similarly we have () divides S “1B, and S~'Ay. That
means P divides Ay, and Ay,, and () divides By and Ay. Thus both P and () are
unimodular (Assumption B4). Note that they are also diagonal, which implies
that the diagonal elements of P and () are all non-zero constants and therefore
M is unimodular. If U is the coefficient matrix of M’s highest degree, we must
have UA,(6y) = UB,(6y) = 0 in order to make the degree of MAy, not greater
than the degree of Ay. By the sufficient condition, U=0. Doing this procedure
iteratively reduces M to a constant matrix. But By, (0) = By(0) = I. M must
be the identity matrix. Thus from (3.4]) we can obtain ¢ = ¢.

For the necessity part, we assume that there exists a non-zero row vector «
such that

aA, =aB, =0. (3.7)

q

Let P be an orthogonal matrix such that Pa® has zero as the first entry. Such
matrix P exists; for example a simple rotation matrix is one candidate. Then we
can choose a vector 3 such that P3 has the form (1,0,---,0)T. For any w, the

matrix polynomial

P(Iy + Baw)P" = PPT + (PB)(aP)w = Iy,

which has unit determinant. Thus, the matrix polynomial Iy + Saw has deter-

minant one since P is orthogonal. We left-multiply I + SaL on both sides of
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(3.1). Note that (Iy + paL)A(L) and (Iy + faL)B(L) still have orders ¢ and p
respectively due to (3.7) and they are still coprime since Iy + faw is unimodu-
lar. This different parameterization generates the same process, which makes the

identifiability invalid.

3.3 Consistency

Conditional on initial values, H;(f) can be calculated recursively, denoted by
H,(0). We also define h,(8), [(6), L(0) analogously. It will be shown in Lemma
[4.4] that the choice of initial values does not matter asymptotically.

We rewrite (1.4)) in the form as

Xt = C¢ + Bthl) (38)

where

ht c—+ Z;‘Zzl Aint—i

hi_1 0
Xt = 9 Ct = )

ht—p+1 0



3.3 Consistency 56

B, B, B,.1 B,
I 0 0 0
B=1 o
0
0 0o I 0

Note that (3.8]) is a different iteration than ({2.2)). Different iterations are used to

study different aspects of the process.
Theorem 3.7 (Consistency). Assume that
C1: O is compact.

C2: The model satisfies the stationarity and ergodicity assumptions given by The-

orem[2.3 and the identifiability assumptions given by Theorem [3.5
C3: E(||y:||*) < oo for some s > 0.
C4: p(B) <1

Then under Assumptions C1-CJ, we have

h a.S.
Hn — 60.

Proof. For any 6 € © and any integer k, let Vj(0) be the open ball with center 6
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and radius 1/k. For any k, the parameter space © has an open cover

i) Js U %)

00\ Vi (00)

By the compactness of ©, there exists 6,---,60; € © \ V() such that

© C Vi(bo) U{ka }

Here, the choice of j depends on k. Suppose 6, & Vi(6p) N ©, which implies that
0, € {{UleVk(Gi)} NO}\ Vi(f). Without loss of generality, we assume that

0, € {Vi(61) N O} \ Vi(6y). Then we have

El; (o)
R R

= hggolfﬁglt(@o) (3.9)

> liminflizw)—limsu su lil(&)—lif(e)

= mnt t(Vo 7Hoop eeg n - t n 2 t

> — .

> hgg.}f ;gg - th (3.10)

1 ~ A

= liminf =Y (6, 3.11

im in n; (0n) (3.11)
1 -

— liminf inf =NAC 3.12
17£r—l>g>l 9e{vk(91§2@}\vk(90) n ; t( ) ( )

> liminf inf 1i1(9) lim sup s 1i1(9) 1%[(9)
11m 1n 11 — — 111m su u — - —

T Tameo 0e(Vi(00NO\Vi(lo) n ! e et | T

> 0) (3.13)

liminf — inf
n—oo M ;QE{Vk(Ql)ﬂ@}\Vk(Qo) t(
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- E inf 11(6) (3.14)
0€{Vi(01)NO}\ Vi (0o)
— Eli(6)) ask — o0 (3.15)

Equations (3.9) and (3.14) hold due to the ergodic theoremﬂ (Billingsley’

[1995]). The ergodic theorem applies here due to Lemma and the fact that

1,(9) and [,() are measurable transformations of the stationary and ergodic pro-

cess {y;}. Inequalities ([3.10)) and (3.13) result from Lemma[4.4] (3.11)) and (3.12)

are based on the definition of the QMLE. Inequality (3.15)) is true by the Beppo-

Levi theorem and (3.16) results from Lemma . This contradiction indicates

that 6, € Vi(0p) NO. The desired result follows by letting k — co. O

3.4 Asymptotic Normality

3.4.1 The Normality Thoerem

To establish the asymptotic normality of the QMLE, the following two additional

assumptions are made:
D1: 6, is an interior point of ©.

D2: E|yl|® < oc.

f {X;} is a stationary and ergodic process such that EX; € R U {+oco}, then
n~13 ¢t =1"X, converges almost surely to EX; when n — oc.
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Theorem 3.8 (Asymptotic Normality). Under Assumptions C1-C4 and D1-D2,

we have
Vb, — 00) = N(0, J VI,
where
J=-E (a;ég?) and V =E (algg‘)) agg”) .
Proof. See Section [3.4.2 m
Remarks. 1. |[Comte and Lieberman [2003] studies the asymptotic normality

for the BEKK model, which is a special case of the results here, with the
requirement of finite eighth moment of {y;}. This theorem reduces the

moment requirement of {y;} from 8 in |Comte and Lieberman| [2003] to 6.

2. If the innovation process {{;} is indeed Gaussian, QMLE becomes regular

MLE and provides the most efficiency. In this case, we have

(0, — 0)) = N(0, 7).

3. In the univariate case, the moment condition can be imposed on the in-
novation process {&} (i.e., Francq and Zakoian| [2004]). However, in our
multivariate case, we have to impose the moment condition on the ob-

served process {y;} due to the complexity of the multivariate structure. In
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the multivariate case, E|jy;]|* < oo implies E||&]|* < oo since

Ell€)" < EIH ™2 yell® < 7~ "Ellyel|* < oo,

where 7 is defined in Lemma However, generally E||&|* < oo does not

imply E||y;||* < oo since || Hy| usually has no upper bound.

4. Note that Assumption C3 is implied by D2. But we do not need Assumption

D2 to prove consistency.

5. Francq and Zakoian| [2010] discussed the distribution of the QMLE when 6,

is on the boundary of ©.

3.4.2 Proof of Theorem 3.8

Lemma [£.6] guarantees that the matrices V' and J are well defined. Consider the

Taylor expansion on the score function around 6.

1 8lt 1 ol (0o) 0?1,(0 -
= 3 = T (5 G ) i~ 0

where 6* is between 6, and 6,. By (4.15)),

Ol(6p)
" { 56,

ff} = (L — H 00 EEETV M (00)) Ha(60) Hy (60)

= tr[(La — La)Heo(60)Hy ' (60)]
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We can easily extend the proof of the martingale central limit theorem in Billings-
ley| [1961] to the multivariate case using characteristic functions. In the sense of
Lemma and the fact that ( 0) ig stationary and ergodic, the conditions of the
martingale central limit theorem in Billingsley| [1961] are satisfied and we have

that

Z

N(0,V) .

%\

1 &Ol(6) 1 Al (6 0l(6y)  I(60) | o
— — N(0,V),
U S (S B 2 vy

since the term in the bracket converges to zero in probability.

921,(0%)

a9 around fy. For the

We now consider the Taylor expansion of %Z?:l

(i, 7)" element,

1= P07\ < 0%1y(6o) 0%1,(0) )
(E £ 0000" | \n< 90007 | ZaeT 90007 ,(9 o).
- 1] ij

(3.18)

where 6 is between 6* and 6. By the consistency, 0 is within the neighborhood

of 6y when n is sufficiently large. Then by Lemma and the ergodic theorem,

9 (L)
26 \ 99047 )

IN

n—00 n—oo N i—1 0€v(6o)

d*1,(6 , I
limsup ||— E 89 <69(’39T> lim sup — E sup
ij
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Thus, the second term of the right hand side of (3.18]) converges to zero since

|0* — 6y]| — 0. Applying the ergodic theorem on the first term of the right hand

side of (3.18) gives
82lt (P
8980T

By Lemma [4.7]

(1 L) a%(e*)) I
n
t

82115 l Z
8989T n — 8989T — 0006" 00007

Therefore, in view of (3.17)) and the Slutsky’s theorem, we finish the proof.

3.5 Conclusion and Commentary

In this chapter, we prove consistency and asymptotic normality of the QMLE
under mild conditions. We prove the consistency using standard compactness
argument (Theorem and the asymptotic normality by the Taylor expansion
of the score function (Theorem [3.8). We only assume finite sixth moment of the
observed sequence {y;}, which is by far the weakest in literature for general mul-
tivariate GARCH models. Asymptotic normality is useful for statistical inference
purpose. To calculate the standard error of the estimator, one only needs to
substitute the 8, in the matrices J and V with the estimated value. The condi-
tions we give for model identifiability are necessary and sufficient (Theorem |3.5]).

Identifiability is useful to prove Lemma [£.3] which plays an essential rule in the
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proof of the consistency theorem.



Chapter 4

Lemmas

This chapter collects the lemmas needed in Chapter 3| in order to prove the
consistency and asymptotic normality of the QMLE. In particular, we prove that
the difference between the theoretical likelihood function L(#) and the observed
likelihood function L(6) converges to zero, and this is also true for their first and

second order derivatives.

4.1 Lemma

Lemma 4.1. For any matriz A, we have
14| < Kp*(A)

for all k and some constant K.
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. A . : .
Proof. Ve > 0, the matrix ——— has spectral radius strictly less than 1, which
p(A) + €
implies that elementwise,
Ak

m-)(), as k — 00.

Thus, applying any matrix norm on both side of the above formula gives

ATy sk s
(p(A)+ o BT

Then there exists N such that

B i
((A)+of = =T

For k < N, we have

1A% < Ki(p(A) + €)F,

for some constants K, k = 1,--- , N — 1. The desired result holds by taking

K =max{Ky, -+ ,Kyn_1,1} and noticing that ¢ is arbitrary.

4.2 Lemma (4.2

Lemma 4.2. 1. El,(0) belongs to RU {+o0}.

2. Elt<60> < 0.

]
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Proof. 1. Assumption C1 and the Wielandt-Hoffman theoremﬂ imply that

eigenvalues are continuous functions of the matrix entries and thus there

exist v > 0 such that A\;(0) >~ for all ¢, ¢t and 0, where \y(0),i =1,--- ,d

are eigenvalues of H;(6). Hence,

El; (0) <Elog™ |H¢(0)| < max{0, —dlog~} < oo,

where for a random variable X, X~ is defined as max{—X,0}.

2. Note that all the eigenvalues \;;(0),7i = 1,--- ,d are positive. We have

El;(6y) =

IN

<

Elog |Hy(60)| + E(y/ H; ' (6o)ys)
Elog |H,(60)| + E(¢]'&)

2d
d +E=— log | Hy(fh)|"**

2d
d+ —logE\Ht(00)|5/2d (4.1)

s/2d
d+ —logE (H/\n (6o) )
2d s/2
d+ — log E(max{\;(6y)})
S 1
2d
d+ ?IOgEHHt<90)HS/2 (42)
d + Cy log E||hs(6o)]|*/?

d+ Cy log E|| X, (60)]|*/2.

'For a reference, see http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.

html


http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.html
http://planetmath.org/encyclopedia/WielandtHoffmanTheorem.html
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Inequality (4.1) holds due to the Jensen’s inequality and (4.2)) is from the

definition of the spectral norm. Iterating (3.8]), we obtain

X, =) Bfey. (4.3)
k=0

By the compactness of the parameter space, there exist p € (0, 1) such that

p = sup p(B(0)).
6€6

Hence, by Lemma [£.1] and the stationarity assumption,

s/2

E|X.(60)”* = E

o0

k
E B¢y
k=0

< S IBH " Elle
k=0
00 q s/2
< ZKﬁkS/2E C—FZAintfi
k=0 =1
< Co+ CsE|m|*.

It now only remains to show that E|j;||*? < co. By Assumption C3,

s s/2
Elln]*? < E|vec(yyD)lls

= E(y?yt)s/g

Eljge]|* < o0
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The desired result will follow.

]
4.3 Lemma 4.3
Lemma 4.3. E(I,(6p)) < E(1:(6)) for all 6 # 6.
Proof.
E(l,(0)) — E(1:(6b))

_ |H(6)| T T -1

= [Elog H,(60)] + E(y; H; (0)ye) — E(y; H; (00)ye)

_ |H(6)| T T

= Elog ZACH] + Eftr(y, H,  (0)y:)] — E(&; &)

_ o | Hy(0)] (€T Y2 -1 1/2 _

= Elog EACH] + Eltr (& Hy " (00)Hy(0)H, " (60)&)] — d

o O] e e

= Elog GACH] + tr[E(&& H, " (60)Hy (0)H, " (60))] — d

_ o | Hy(0)] r T 1/2 —1 1/2 _

= Elog ||]{t((00>)|| + tr[E (&g, JE(H, " (60)H, (0)H,""(00))] — d

_ Elo H (0 (Y2 1 1/2 _

= Elog ’|I_[t((90>)|| + Eltr(H,""(60)H, " (0)H,""(60))] — d

H, (0 1 B
= EIOgWJFE[U(Ht(@o)Ht (0)] —d
H, (0 1 B
> [Elog HL(60)] + Ellog |H:(00)H; *(0))| +d] —d = 0. (4.4)

Inequality (4.4]) holds due to Inequality in Appendix . ]
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4.4 Lemma (4.4
Lemma 4.4. lim, o Supgeg | = >y 1(0) — = 300, L,(0)] =0, a.s..

Proof. Iterating ({3.8]), we obtain

q t
Xt = BtXO + Z BtiiCi + Z Btiici. (45)
i=1 i=q+1
Analogously,
q t
X, =B'Xo+> B"7e+ > B (4.6)
=1 1=q+1

Hence for t > 1, we have almost surely that,

sup [|he — hel| < sup || X, — X¢|
0co 0co

q
B'(Xo— Xo) + > B"*(cr — &)

= sup
€0 P
00 R q
< Kp'sup ( ZBkC,k—XO —l—KZﬁkHck—ékH>
€0 \ || k=0 k=1
< O(p"). (4.7)

Inequality (4.7) holds since each norm inside of the supremum has finite expec-
tation. Consider the function l;(h:) = log ||H¢|| + v/ H; "y, by (1)), (9), and
in Appendix B we have

ANy(he) 8log\Ht\+ 9
ol Onr OhT

Vec(nyt_lyt)
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0H,

= vech? (810g | 1] )
T'®

= vech” (H/ ") + (y

0
! @ yl)——=vec(H; ")

ohl
Ovech(H; ™)
Dyt
i) 8vechT(Ht)

= vech”(H; ") — (v} @ v} )(H,* @ H; ") Dy

= vech” (H ') — (H 'y, ® H; 'y,)" Dy.

By the mean value theorem, for some positive number s,

- " Ol () NRE
Esup [l; — 1] = ESUP |l (e) — lt(ht)| = Esup OnT (bt — hy)
0O 0cO t
s/2
('%t( t) -
< Esu hy — h||*?
> Beg 6htT [| ot al

< (Cy + CoE|ly|*)p? =

where h; is between the chord of h; and iLt.

e >0,

p— =)

= 0(p™"?),

By the Markov inequality, for any

ZP(sup\lt—[t]>e> = ZP(sup]lt—lt|s/2>es/2>

0co

< Z Esupgee |l — lt| 5/2

t=1

IN

Z

€s/2
—st/2

E3/2

By the Borel-Cantelli lemma, we have supycg |l; — l{| = 0, a.s.. And the desired
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result follows by the Césaro’s mean theorem since

tim sup | -7 14(0) — - S 0(60)| < Tim S sup[1(6) — F(6)].

n—oo n
€0 t=1 t=1 t=1

]
4.5 Lemma (4.5
. 3 . H.
Lemma 4.5. 1. E HH“(H)H < 00, where Hy;(0) = 88;(9>'
o ) O2H,(0)
2. EHHmj(H)H < 00, where Hy;;(0) = 0,00,
O3 H,(0)
3. E||Hriw(0)|| < 0o, where Hyi(0) = m
Proof. Tt suffices to show that E — %2< d
T00 suflices to show tha 89T 8eTvec 90T oo an

X
8862- [%vec (%)] H < 00. We consult the formulas in Appendlxvarlous

times when calculating the derivatives.

1. By (4.3), we have that

0X: O ok
o = ZB 1, (4.8)
k=0
where 1 = (In, Onxn, - ;ONXN)Ta

8vecT ZBkEt k—i» (49)
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where

and

€ fi = (Eg_k_ia ON2><Na Tt 7ON2><N)T
o OAM_p—i _ Ovec(Aimy_r—;)  Ovec(InNAimy_i—;)
R OvecT(4y)  ovecT(4y)  dvecT(4A))
Ovec(4;)
= (4 ® IN)M = i_p—i ® In,
0X,
ovec” (B;)
B i(‘?vec([Nkact_k)
B — OvecT (B;)
= Ovec(B*)
_ T
k=1
B i( T oo )8vec(Bk) dvec(B)
B — Ct—k & INp OvecT(B) 0OvecT(B;)
oo k—1
1 Ovec(B)
= Ay B e B ———=. (41
;(Ct—k(@ NP) (;( ) ® ) 6V€CT(BZ'> ( O)

It is worth pointing out that dvec(B)/dvec! (B;) is a matrix with elements

1’s and 0’s and does not depend on any model parameters. This is useful

when we calculate the higher order derivatives. By Lemma and the

stationarity conditions,

0X,

E
‘ ocT

3 [e’e) 3 [e'e) 3
<E (Z | B¥]| - HlH) < (Z Kﬁ’“> < 00,
k=0 k=0
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0X,
Bl ——"t
OvecT'(A;)

00 3
< E (Z IB* - HEt—k—iH)
k=0
0o 3
E (Z 1B ||yt_k_i||2>
k=0
Cl (Z Kﬁk> < 0
k=0

where C1 = max{E|ly[|°, Ellye, I lgeo I Ellge, [I*[lye. #9212} ALl the ex-

IN

IN

pectations are finite by Assumption D2 and the Holder’s inequality since

Ellye, [ 19eal® < Ellyey 1°)*° (Ellyea ||°)* < o0,

and

Ellye, 1ol 1 < (Bl 1) EClyea 1)) BNl 1)) < 000

Furthermore,
0% ’
OvecT (B;)
[e%S) k— 3
Ovec(B)
< T E B E BT k—1-1 Bl
- p lec—sl — @ OvecT (B;)
k—1-1 ! vec
< B Xl (;03”3 |15 H) '—aveani)H)
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. 3
= O,E <Z kp’“lﬂctkH)

k=1

0o 3
= (4 (kak—1> < 00,
k=1

where C5/Cy = max {Ellc.|*, Ellcy, [*llce, Il (e, | - llew |l - llews )} 1t re-

mains to show that all these expectations are finite.

E|le[|”

IA

3
q
E (HCH +) Al - r\y“-rP)
=1

= C1 + CoE|lyell” + CEllye, I*[lyeaI* + CaElyell*

+CSElye, 11y 17119 1* + CoEllye [l ||* + CrEllye|1®

By the Hélder’s inequality,
Ellc, [P llcell < (Ellex, [I*)*? (Bller, [[*)? < oo,
and

Ellee lllecs lllee | < Ele 7)) Elewl*) (E(lle %) < co.
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2. It follows from the previous part that

(K
ot ot ) =
N (50,7 I
8vecT(Ai)V ocr ) 7

0 vec 0X; B
dOvecT(A;) ovecT(4A;))

0 y 0X,
Ovec? (B;) “\oct

= Jvec(B*1)
— Ovec” (B;))

T Ovec(B*)
Z(l ®[Np)m(8j>

k=1

N Ovec(B*) 0Ovec(B)
Z(l ®INp)6vecT( B) 0vec” (B;)

k=1

0 o 0X,
—V —_—
Ovec” (B;) ovecT (A;)

— Ovec(Be,_;._,)

k=0

OvecT' (Bj)

= Ovec(B*
= D (e ®1Np)M

B i(ET ® Iny) dvec(B*) Ovec(B)

k=1

- ovecl' (B;)

=t—k—1i

ovecl (B) Ovec? (B;)

00 k—1
Tyh-1-1 g pl
Z @ Iny) (Z (B7) > ovecT (B;)’

(4.11)
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< 9 k-1 — dvec(B)
= Z(Ct—k ®INp)aVT(BJ) [(Z (B%) ®B> aVTT(Bi)

k=2 1=0
= dvec” (B) — 8vec (BT)k=1=l & B
= I oI I
;(Ct—k ® Np) ( ( l) ® Np) 8V€CT(B )
> ovec! (B
= > (@ Iny) (W(;)) ® pr> (pr ® Knpnp @ Inp) X
k=2 v 1=0
dvec((BT)F171) l Tyk—1—1 dvec(B')
( e (B;) ® vec(B') 4 vec((B") ) ® Dvec (B,)

N
—_

= dvec (B
- Z(Ct K ® [Np) (# ® [Np) ([Np ® Knp,np ® INp)KNp,Np

-~ Ovec(B,)
dvec(B!) )

Ovec(BF171)
ovec!'(B;) OvecT' (B;)

N
Il
o

® vec(B') 4+ vec(B* 1) @

N
—_

= dvecT (B)
- Z(C;F—k ® INp) (W(B) ® [Np) ([Np ® Knp,np ® [NP)KNPJVP
k=2 ! !

(v sveeray) © e

tvec(B1) @ (Sjjjéflﬁ 0322;(12)))}

J

i
o

® vec(B')

> ovec!' (B ]
= Z(CtT—k ® [Np) (W(;; ® INp) (INp ® Knp,np ® INp)KNp,Np
k=2 ¢ 1=0
ey Ovec(B)
T\k—2—1l—m m
% { [( mZ:o (B7) B ) OvecT (B;)

I—
L L Ovec(B)

k—1-1 T\l—1—m m
+ vee(B )@ (mz::o(B ) ©B > dvecT (B;) }

> ovecT (B ,
= Y (L ®1Iny) (W(B; ® [Np) I'(B,k, j). (4.13)

k=2 ¢
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Therefore,

g

ovec? (B;) Y\ oer

2 oo k-1
< ((leZKﬁ’“‘l—lKﬁl

k=1 1=0

00 2
< (@Zkﬁ’“) < oo,
k=1

2

0

Ell—2  vec ﬂ
dvec” (B;) Y\ BvecT (A;)

00 k—1 2
< E (S e SIB HBZH>

k=1 (=0

00 k—1 2
< om zuymuzzmk”m)

k=1 (=0

00 2
< GE znyt_k_iu%pk-l)

k=1

00 2
= O (ka’f—l) < 00,
k=1

where C3/Cy = max{El|y,[|*, Ellys, [I*[lye. *}-

IT(B, k, )l
k—1 k—2—1
<oy (z 1B ) 8]
=0 m=0
-1
+[|BF ) - Z | B HBmH>
m=0
<

k-1 [k—2-1
Cl (Z ( Z kafolmeﬁmKﬁl

= m=0
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)

-1
+Kﬁk—1—l Z Kﬁl—l—mKﬁm

m=0

< Oy <§<k — 107"+ lﬁ“)

=0

= O(k(k—1)p"?).

Thus,

X

2 00 2
< GE (Z lce—kll - ||T(B,k,j)||>

k=2

_ ¢, (znrw,mn)

S (i O(k(k — 1)5’“‘2)) < 00,

0 . 0X,
Ovec! (By) ve ovecT' (B;)

where Cy/C3 = max{El|c||*, El|cy, [[|cs, [}

3. Only the following third order derivatives are non-zero.

0 ec 0 vec %
vecT(B;) | OvecT (By)  \Oct
B - ovec! (B) T < 0 TNE—1—1 l
- Z (8veC(Bi) ®l ®INP) — 8vecT(Bj)VeC((B ) “ )
=, [Ovec! (B —
- Z (W((Bz)) ®1"® ]NP) Z(INP ® KnpNp © Inp) Knpnp %

=0

k2l k9l m | Ovec(B
(Sorrmom) sty

® vec(B')
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}

+ vece(BF 1" ®

— TN m | Ovec(B)
(Z(B ) wB > ovec!'(B;)

m=

0
=\ (Ovec'(B) . :
N k=2 (a\fT(BZ)@l ®INp) F(B,k,j),

0

= [(Ovec"(B) _ . — 0 T\ k—1-1 I

— E — =/ ®1 E —— BY)""T"®B
( Ovec(B; Dk @ Np) ovecT(B,) vee((B7) ®5)

> (Inp @ Knpnp @ Inp) Knp np X

® vec(B')

oy T\k—2—1—m m ) Ovec(B)
(Z (B") wB > vec? (B,)

< i\ Ovee(B)
( (B) © b ) Ovec” (B,)

}

®§? k—i X INp) F(-Bv ka 7”),

0 ec 0 ec _9%
9T | BvecT (B;) Y OvecT (By)

> , Ovec(B 0
= Z I'(B,k, 5) <8vecT((B)) ® INp) ——vec(cl;, @ Iny)

Ovec(B)
_ T
o ZF <B k, )<8VGCT(BZ) ®[Np>
0
X (Inp @ K1 np @ Inp) [ Ch ® vec ]Np)}
)

> _ Ovec(B
— ZFT(B, k,j) <8 Zi;((B ) ® INp> (Inp @ Ky np @ Inp) [1 @ vec(Iny)],
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0 9, 0X,
8vecT(A )Vec dvec! (B; ovecT (B;)

)
B . Ovec(B) 9
— ZF (B, k,j) (8vecT(Bz)®I )&/T(AT)

_ ZFT(B k,j) ( a(iz;((?) ® INP)

oc
X(INp®K17Np®INp [ ik ®V6C(INP>}
) ¢

vec(c]_;, @ Iny)

OvecT (A
- Srwan(gEen)

X ([Np ® K np ® [Np) [gt_k X VeC([Np)} .

Let By, denote the (u,v)™ element of B, and Cy, = (Inp @ Knpnp ®

INP>KNP,NP~
0 0X;
OBy r 8vecT 8vecT(
= 8vecT(B) Jl'(B,k, j)
T ) vy
= ;(Ct—k ® INP) (8 (Bz) & INP) 8Buv,r
= [ovec"(B) . =
Z <8vec(Bi) *l'® INP) Z Cno
k=3 1=0
9 ki:l BT)k=2-l=m o pm dvec(B) (B
OBy r — ovec” (B;) vee
k—2—1
Ovec(B) Ovec(B)
T\k—2—l—m m
’ <T;J(B ) @B > Ovec!' (B;) OBuy.r
Ovec(BF171) i o\ Ovec(B)
OBy (B e B ) e (B))
m=0
0 - Ovec(B)
k—1-1 T\l—1—m m
BT S 5 (mZO(B Jorel ) dvec (B))
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k—2—1
O(BT)k=2-l=m .\ Ovec(B) .
{[(Z Buns ® ) vec (B,) vec(B')
k—2—1
OB™ \ Ovec(B)
BT k—2—l—m Bl
! (r;) aBuv,r) ovecT'(B;) ® vec(B)
k—2-1
Ovec(B)
T\k—2—1l—m m
* (Z:o (B) @B >8vecT(Bj)
-1
L Ovec(B)
BTl 1-m Bm
® <m=0( ) ® ) aBuv,r
k—2-1
I Ovec(B)
BT k—2—1l—m Bm
+ (m—O ( ) © > 8Buv,r
-1
L Ovec(B)
® (BT>l 1-m ® Bm
<m0 Ovec” (B;)
-1
o(BT)l=1=m dvec(B)
k—1-1 m
tvec(B )@ ( O0Buy.r 3B ovec!'(B;)

}

1—
OB™ '\ Ovec(B)
T\l—1—m
(Z (B%) ®© 8Bm,,«> ovecT' (Bj)

3 =0
k—2—1 / [k—3—I—m T
0B
T\k—3—l—m—s s m
{KZ« > en ) gt ®B)
Ovec(B)
8vecT(Bj)] ® vee(B')
k—2—1
+ ( Z (BT)k—2—l—m
m=0
ml vec
T\m—1—s s l
® ;(B ) )aBW >3vecT @ vee(B)
g Ovec(B)
T\k—2—l—m m
+ (Z(B) @b >0vecT(B)

l
L Ovec(B)
BTl 1-m B™
: <m0( ) N ) aBuv’r




4.5 Lemma lm %

am,.|) owrimy)

Therefore,

gl 9 ] 9 0X,
aV@CT(B ) ! aveCT( ocT

< ClZ||FBkJ|<CQZk 0 <0,

E 0 oc 9 o 0X,
OvecT (B, ) ' dvec” (B;) v dvecT (A

< Ci Y Elle il ID(B, k)| < CE |l Zk (k=152 < o,

k=2

?

0 el 0 (0%
A (B)) Y dvecT (B;)

< O INBE) € G Y Kk 172 < s,
k=2 k=2
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0vec?(A ) e [avec?(B ) e (8veii(t )} H

< G ZEHQ el - IT (B, k. 5) | < CoElly.” Zk —1)pt? < o0,

k=2 k=2

7

g2 D ¢
aBuU,r 8vecT(BJ) v 8vecT(BZ-)
k

oo k—1 (k—2-1
<oy y{y

4.6 Lemma (4.6

0l(6p) Ol(6p)
06 00T

Lemma 4.6. 1. E H < 0.

9%1;(o)
00007
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3. There exists a neighborhood v(0y) such that for all i, j and k,

Proof.

1.

9%1,()

E [ S
o | 96:00,00,

961/(9())

By and in Appendix ,

o1,(6)
00,

O \og |H(0)] + 2 te(yT B (6))
00; 00; vt

_ 0 o ..
H O 1HO) + o (s 5 70))

8veac|£l(t;2)(|9)) avecéglitw» — tr(yyl H7H(0)H,;(9)H L))

|H; ' (0)]vec” (%’%ﬁg;’) vec (agte(f))

—tr(yeyi Hy ' (O)Heo(0)H, ' (0))

|[H,7H(0)]

|1, (0) [vec” (|Ho(0)|H, ' (0))vee(H.i(6))
—tr(yeyy Hy '(0) Hia(0)H, ' (6))
tr(Hy (0)Hea(0)) — tr(yey! Hy ' (0)Hea(0) H, ' (6))

tr((La — yey Hy ' (0)) Hoa(0) H,(9)]. (4.14)

When 6 = 6y, we have

Ol (6o)
00;

= te(1y — H"*(00)&E] Hy *(00)) Hya(00) H ' (60)] = tr(T ).

(4.15)
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The following three results are useful in our proof:

(a)

1, (00)66! Hy 2 (80) |
< [1H(00)6€! Hy 2 (80)l2
= Lul P 00)eel 1 00) 1 ol 100}
< o ol 06T B 00)T] + tr(HH60)6ET H M 00) )
= tr(H*(00)6<T He ' (60)

= tr(&&)

= HftHQ

1
(b) Ell&]l® < E[IH2[%y® < gﬂ‘illytll6 < 00, where v is defined in

Lemma [4.2]

By Lemma Formulas , and in Appendix , the indepen-

dence between & and H; and the Cauchy-Schwarz inequality, we can obtain

that

Ol,(8) 01, (6)
26, 00

= Etr(Tp)tr(Te,)]

d

= E|tr(Tt72‘ & Tt,])l

< CiE||Te; @ Yoyl
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= ORIyl 1)
< GO |(L+ |61 Hea (B0l - | o (B0)]
= GE(L+ |&E (I1H:4(60) | - 1 Eey(60)])

. 1/2 . 1/2
Co(1+ 2E &I + Ell&*) [ENA:(00)12]  [ElH;00)I7] < oo,

IN

And the desired result follows.

2. By Formula in Appendix Bl and the product rule,

ol; (9)
00,00,
=t | FO) . 0) = w5 H0) 0 ]
= tr {Hw(e)H (9)+Hm(9)a}g0j<9)— (aHae H,:(0)H;(0)

a0,
_ [HW(Q)H N0) + Hyi(0)H (0)Hyy (0)H ' (0) + vyt Hy'(0)

"‘Ht_l(Q)Ht’ij(e)Ht_l(Q) + H;l(g)HtJ(g) 8Ht_1(9)):|

(5 (0)04(0) = Hyi5(0) + Hoa0)H (0)Hos(0)) H'(6)] - (4.16)

When 6 = 6y, we have

0l; (0h)
6,00,

= tr [ Hug(00) HT (60) + Hra(6) HT (60) iy (60) H, ()
H00)66! Hy ' (00) (Hug(00) Hii(00) = Hisy(60)

o+ Foa00) Hy ™ (00) i (60) ) i (60)]
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By Lemma [4.5] the independence between & and H; and the Cauchy-

Schwarz inequality, we can obtain that

g | 9% (60)
00,00,

=k ‘tr [Ht,ij(e())Ht_l(go) + Hy5(60) H, ' (60) Hy 3 (60) H; ™ (60)

FHIH00)6ET T 00) (Hey (00) Hoi(00) — Hygy (00)

+H4(00) H; (00) H,5(00) ) H, ' (60)] |

< CAE||[Hoay(00) H ' (60) + Hoa(00) H ' (00) Foy(00) H ()
+H, " (00)&&7 Hy "V (60) (Ht,j(eo)Ht,iWO) — H,5(60)
iy (00) Hy ™ (00) Hug (00) ) H; ' (60)] ||
< o[ iy (00)| + CoEl| Hui (0| - 1 Hrs (00)]
+CAENG (BN Hrs B0l - 1 H1O0) | + EN Hii 00)]
(+CSEI He i (60) | - | Ha (00)1])
< Cot Or (BIH0)IP) " (B 0)7) " < oo

And the desired result follows.

3. By Formula ({14]) in Appendix |Bland the product rule,

931,(0)
06,00,00,

= tr {% [Ht,ij(e)Ht_l(e) + Ht,i(e)Ht_l(Q)Ht,j<0)Ht_1(9) + i H;'(0)



4.6 Lemma lm 88

(Hus(0)Hea(0) = Huis (0) + Foa0)HT (0)His0) ) H7'(6)] }
— { (ﬁtvijk(m — H,yi5(0)H; ' (0) Hy 1 (6) + Hy o (0) H ' (6) He 5 (6)
—H,i(0)H, " (0) Hyo (0)H ™ (0) Hy y(0) + Hy i H ' (0) Hy
— (0 H;(0) Hog (0)H, M (0)Hop(0) ) H; ™ (0) = el Hy(6)
1 (O)H;H(0) (g (0)1,4(0) = Hogs0) + Hoi(0) M (0) iy (9))
—Hy ji(0)Hyi(0) — Hyj(0)Hyin(0) + Hiiji(0)
—Huyiw(0)Hy () Hy g (0) + Hya(0) Hy ™ (0) Hego(0) H, ' (0) Hyy (6)

—H,(0)H; " (0)H, ;1 (6)

7 0)H(0)| B0}

= tr[‘I’l,t - ytytTH;l(H)lIIQ’t]_ (4.17)

We wish to use the same technique as in the previous parts in order to
reduce the moment requirement on |ly||. We need to show that the dif-
ference between supye, ) vyt Hi '(0)|| and ||lyey! H; ' (60)]] is arbitrarily

small. Suppose v(6y) = ||6, — 6o|| < €.

sup ||yey; Hy ' (0)]
961/(00)

< lyewt Hy ' (00) ]| + S lyey [H;7H(0) — H'(00)] ]
cv(bo

l&el* + sup lyey Hy ' (0)[Hi(00) — He(0)[H; " (60)

0ev(6o)

IN
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1
< &l*+ = sup vy [Hi(8) — Hi(60)]]]
V7 6ev(bo)
< &l?+Crosup lyl*[X:(8) — Xi(60)]
Oev(bo)
< |&l* + ¢y osup leytllzllB’“(e)Ct—k(f))—B’“(Go)ct—kwo)ll
HEZ/(QQ) k=0
= [l&I?+Cy sup > [lwllPI(B*(0) — B*(60))cr—r(9)
961/(90) k=0

+B*(00) (¢t (6) — coi(60))]]

= &l +C . ZHytH i[Bk’l’l(G)(B(@—B(Go))Bl(Go)]cH(Q)

B*(6o)(ce-x(0) — ce—i(6o))|

< ||£t||2+0262||yt||2 [kpk bosup ek (0)] +p <1+Z||yt | )]

k=0 dcv 90

The summation converges almost surely since it has finite expectation. For

example,

1/2 1/2
E”ytHQHyt—k—iHQS(E||yt||4) (]E||yt—k—i||4) .

By noticing € is arbitrarily small, we have almost surely that

sup ey, Hy ' (0)]] < I8 + o(1),
9611(90)

which is independent of Wy, in (4.17). Both ||W;,]| and ||¥s,|| have finite

expectations due to the Holder’s inequality, Lemma and the fact that
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|H; || < 1/~. For instance,
. ) 5 1/3 . 3 1/3 ) 3 1/3
B Hyiflo ol < (BNIP) T (BIA01P)  (BNEP) T < oo,

.. . .. 1/2 . 1/2
B iy Foell < (ENl?)  (BIA2) " < oo.

Thus,
31,00

E sup |20

bev(by) | 00:00,00,
< Cy|E sup [[Uy[+E sup [y Hy H(O)]][0a,]]

| 6€v(60) oev (o)
< C3 |E sup [[Uy][+E sup (&) +0(1)) - E sup [[Wa]
9611(90) 961/( 0) 9611(90)

< 0OQ.

4.7 Lemma

1 o 9l( eo ~ 9li(6y)
Vi & Z 99

1~ P(0)  9%1(0)
n < 06067 00007

Lemma 4.7. 2>0 as m — 00.

P
=0 asn — 0.

2. sup
9611(90)

Proof. 1. Given the initial values we chose in (|1.8]),

XO — (CT7 e 7CT)T and ﬁO — 771 = =1_g = Vech(yly{).
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In view of (4.5), (4.6) (4.8) (4.9) and (4.10), we have almost surely that,

for t > M, where M is a sufficiently large integer,

0X, 0X,

T dct

where [ = (17, [ IT)T

X, 00X,
OvecT(4;)  OvecT(A;)

_ i Bt_k 8ck 86k
p dvecT(A;)  dvecT(A

0Xo X,
Bt
* <6vecT(A ) OvecT'(A ) H

B (i Bkg_k_Z)
k=0

ox, 09X,
ovec(B;)  OvecT(B;)

- ~\T '« TNt—k—1—1 1\ Ovec(B)
- [Z((Ck—ck) ®]Np)<;(3) ®B>E)VTT(BZ»)

k=1
q

0B'X,
t—k—1
Ovec(B)
Tyt-k-1-1 g pl
Z((Ck_Ck ® Inp) (Z (BT)*~ B) Bvec? (B,)

< 0(p"),

Ovec” (B;)
k=1 1=0

S s (S0 (BT g YCB)
Ok @ INp ovecT (B;)

k=1 1=0
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< O(tph).

Thus,
| Hyi — Hyl| < O(t7").

By (4.7), almost surely,

1 e - T I 41 _
[H, = H < H I He = ol H < ;O(ﬁ); = 0(7).

In view of (4.14)), almost surely, for ¢t > M,

[HeiHy = HoH7 < ([ Helll 2y = B+ e — Heall1H
. ~ 1 ~
< [ HellOR) + ;O(tpt)

= | Hl|O(p") + O(tp"),
and

|H Hy H — H H,H

< = H Gl e = He

IN

11 ) _
O(pt)HHt,iH; + ;[HHt,iHO(pt) +O(tp")]
= [|Hl|O(p") + O(tp").
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Therefore, by (4.14)),

dli(60)  Oli(Go)
00 00

< Cu(|[Fa(00) Hy(60) — Hii(00) 7 (00) |

el H (Bo) o o(00) Hy (80) — H7 (60) Ho(00) H;” (60)])

= [ H.:l0(8") + Ota")] + w1 HeallO(2") + O(tp")].

For any € > 0, by the Markov inequality,

r(f s -2l -
O] L P
< Z )8: : % +o(1)
S 6\1/5 gE[HHt,z’HO(ﬁ) +0(t0")] + Elly [l s O(7") + O(tp")]
S 1”20( p') + O (") [Elly: | '] 2 [E ]| Heil )2
< Elnzn:O(tpt)%o

This finalizes our proof of the first part.

2. In view of (4.5)), (4.6) (4.11)) (4.12), (4.13)) and the results from the previous

part of this lemma, we have almost surely that, for t > M, where M is a
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sufficiently large integer,

0 (XN _ o [0X
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tik—1 [ /t+k—2-1 T
o Ovec(B)

BT t+k—2—l—m Bm Bl

> ( S (e ]—avecT(Bj)) & vee( '

dvec(B')
TNt+k—1-1
+vec((B") ) ® vec (B }H
< O*p").
Thus,

| H, o5 — Heyil < O(20).

In view of (4.14)) and the results from the previous part of this lemma, we

have almost surely that, for ¢t > M,

| Hy i H = HoH7Y| <0 Hegll | H ' — H7Y 4 | Heig — Hegs |I1HS)

IA

. 1 )
| Hyi510(p") + ;O(tQPt)

= ||H,4|0(7") + O(*p"),

|y H Hy H — Byl Hp H|

< |1 F = Hoal |lE W Ho I E
B B H — B H

< ow%uﬁt,ﬂ\ + | Hoall[| HegllO(8') + Ot

= (1] + [ Holl|Hos [10G) + | s O(t),
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VAN

IN

|H, "H,;H, ;H o — H H H H7Y|
VH = B E | oo |

Vs — Bl E g W 4 |l oy Y — By B2

o .1
O Ha 1 oy |1 -

Y
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Similar as Lemma 4.5 we can show that

3 3 . 2
EHHt,i(H)H < oo and EHHt,ij(e)H

< OQ.

Therefore, by (4.16)),

0*1,(0)  0*L,(9)
D000 9AOOT

< el + [ Heg| + 1Heal [ He 110 + [ He|O(t0") + O )

+lell® {[HHt,iIHIHt,jH | Heall | Heg |+ e | + 11 He g 110(2)

+lIHeill + | Hug O + O }
Applying the Holder’s inequality yields
B B Hogl < [N Bl )2 [EN g2 < o0,

EllyelPI1Hualll Bl < Ellye T2 BBl P12 BN o |71 < oo,
Elly |2l Eeall < (B[l ') /2 [B] ol )2 < oo,
Byl | o5l < BN lyel*) 2] o1 < 0.

The terms with tilde have the similar results. For any € > 0, by the Markov
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inequality,

IN

IN

IN

IN

ol o |15 u0) i)
sevin || &= D606T ~ D606
1 o ||0%1,(0)  0%1,(0)
P = _
(968;1(%)0) n ; 00007 00067
n 921:(0 821, (9
%Zt:ME‘ aeag)T) B aea((aT)
sup
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1 n .. . X . _
— S E{ [l + 1 Hegll + | Heill| o] OG)
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(el { {18l Ersll + 1+ 1 o+ 1111 ] O(6)

I Huall + 110 + O })

n

1
— E O(t*p") — 0.
€n

t=M

This finalizes our proof of this lemma.



Chapter 5

Numeric Examples

5.1 Introduction

This chapter consists of two sections besides the introduction. Section gives
a set of model parameters and verify that they satisfy the ergodicity and identifi-
ability assumptions in Chapters 2| and [3| In particular, we show how to calculate
Ym(A) using Monte Carlo simulation. It is difficult to verify whether all § € ©
satisfy our assumptions. Instead we only verify that the true parameter 6, sat-
isfies our assumption and thus we do not verify the compactness assumption.
When estimating GARCH parameters in S+ FinMetrics using the normal esti-
mating function, the estimates are consistent. But the standard errors are not
calculated properly. If we use non-Gaussian estimating functions, we have to
scale the estimates to make them consistent. Section addresses this scaling

issue and provides corrections in R. Details about S+ FinMetrics can be found
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in Zivot and Wang| [2006].

5.2 A Multivariate GARCH (1,1) Model Which
Satisfies the Ergodicity and Identifiability

Assumptions

Consider a bivariate GARCH(1, 1) model. Here, d =2, N =3, p=¢q¢=1. We

assume the innovations are Gaussian. Let the true parameters be

0.03 006 0 0 0.009 0 0
c=1 0.01 A= 0 0.02 0 B = 0 0005 0
0.04 0 0 007 0 0 0.01

We will verify that this model satisfies our ergodicity and identifiability as-
sumptions, i.e., Theorem and Theorem [3.5] We will also show that the esti-
mator is consistent and asymptotically normal by simulation. All computations
are done in S+ FinMetrics and the codes are available from the author upon

request.

5.2.1 Ergodicity
The eigenvalues of the matrix J (defined in (2.1))) are

> eigen(J)$values
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[1] 0.2696224 -0.2596224 0.2494903 -0.2404903 0.1439435 -0.1389435

Thus, p(J) = 0.2696 < 1 and Assumption A3 is fulfilled. Next, in order to verify
Assumption A4, we will show that 75(A) < 0 by Monte Carlo simulation. Since

p=¢q=1,wehave V) = h; = (hl,h h1,2, h1,3) and Yy = hy = <h2,17 h2,2, h2,3)-

Remarks. Our intuition says 7,,(A) decreases as m increases. While v, may be
negative, we have decided to calculate v,. Since below we see it is negative, it
is sufficient for our purposes. One may also have used for example 74, but the
supremum in the integrand will be more complicated to approximate, hence we

have decided to calculate v, (A).

The approximation of v,(A) involves the following two major steps.

1. We use the sample mean to approximate the expectation. Particularly, dur-
ing each replication, we simulate a normal random vector 7 = (&7, €07,
i.e., four independent standard normal random numbers. Then for each sim-
ulated &, we compute the supremum using the procedures in the next step.
We replicate this for M = 500 times and use the average to approximate

the expectation.

2. For each simulated &, we discretize the domain of A and consider all the
possible values of h to obtain the supremum. By the definition of A in
Section [2.2] A is invariant on the scale of h. That is, if we change H; to

C ® H;, where C'is a d X d constant matrix, the value of A remains the same.
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Let h = (hy, ha, h3)T. Without loss of generality, we can only consider the

values such that h is on the unit ball.

(a) We put 100 equally spaced points on the interval [0, 1]. Hence, there

are 10,000 possible combinations for (hy, hs).

(b) We need to eleminate those possibilities where h? + h2 > 1. These

points are beyond the unit ball no matter what value hy takes.

(¢) hg can be calculated by hy = /1 — hi — h3.

(d) We need to eleminate those possibilities where hihs < h3. These points

invalidate the positivity of H,.

(e) The supremum can be approximated by inserting all the valid combi-
nations of (hq, hs, h3) into the equation and compare the values of the

norm.

After (d), there are only 1761 possible combinations of (hy, hy, hg) remaining for
consideration. After trying all the possible combinations of hy = (hy 1, hi2, h13)
and hy = (ha1, hoga, ho3), we can compute that 7 (A) = —0.148 < 0. Assumption

A4 is satisfied.
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5.2.2 Identifiability

It is difficult to verify Assumptions B3 and B4 for any arbitrary 6 within the

parameter space. But one can easily verify that

006 0 0 0.991 0 0
Agy = A= 0 002 0 , Byy,=I3—B= 0 099 0
0 0 007 0 0 0.99

are invertible and Ay, and By, are coprime. The matrix [A4,(6o)|B,y(60)] = [A|B]

has rank 3. The identifiability assumptions are satisfied.

5.3 Scaling Problems When Fitting GARCH Mod-

els in S+ FinMetrics

In this section, we focus on the univariate GARCH model . In the model
definition, we assume that the innovations have unit variance. However, in prac-
tice, in order to improve the goodness-of-fit, we may wish to use heavy-tailed
innovations, which may invalidate the unit variance assumption. For example,
a t(v) distribution has variance v/(v — 2) for v > 2, where v is the degree of
freedom. Hence, we need to scale the innovations in order to fulfill the model
assumption, which will lead to the scaling of model parameters.

Suppose that ét = {;/d have unit variance, where d is the scaling parameter.
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The new conditional variance is 62 = d20? since y, = 0,6, = 6,&,. We multiply d2

on both sides of ([1.3)),
p q
o = d*o} = d’c + Z(dz@éi)yf—i + Z ﬁj(dQUf—j)-
i=1 j=1

The new parameter vector

(éadlv"' 755107317"' 7Bq)T

S
|

= (d*c,d%a, - ,d2ap, B, 75q)T7

and the GARCH parameter 3;’s do not need to be scaled. In model fitting, d can

be estimated by the standard deviation of the residuals, i.e.,

] n 1/2
7 F2
d, = (n—1;£t> .

To demonstrate the scaling issue and provide an algorithm to modify the
results given by S+FinMetrics, we simulate GARCH series with different innova-

tions and fit GARCH models using various kernels. We will discuss four cases:

e normal innovations, normal kernel;

e t innovations, normal kernel;

e normal innovations, t(5) kernel;
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e {(6) innovations, t(5) kernel.

5.3.1 GARCH Series Simulation

The FinMetric function simulate can be used to simulate GARCH series. This
function can only be used on “garch” or “mgarch” object. We can simulate

GARCH series in general using the following algorithm:
1. Choose parameter values ¢ = ¢, o; = Ozl@) and §; = BJ(O).
2. Choose initial values. For example, the initial values can be chosen as .
3. Fort=1,---,n, compute ¢ using .

4. Compute y; by y; = 0:&;, where &’s are i.i.d. standard normal or ¢ random

numbers.

Multivariate GARCH models can be simulated analogously. We may wish to
remove the first few entries to allow the series to “warm up”. In this section, we

simulate GARCH(1, 1) with parameters ¢ = 0, « = 0.3 and 5 = 0.6.

5.3.2 normal innovations, normal kernel

Table 5.1l shows the result for normal innovations and normal kernel based on

500 replications, where

mean of & or B: the average of the 500 parameter estimations.
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mean of se; or se;: the average of the 500 standard errors given by S+FinMetrics.

sd of & or B : the standard deviation of the 500 parameter estimations, which

can be treated as the true standard errors of the estimators.

mean of @ | 0.29796 | mean of § | 0.59841
mean of sey | 0.020239 | mean of s€; 0.023249

sd of & 0.020419 sd of 3 0.023385

Table 5.1: Normal Innovation, Normal Kernel

We can see that if we use the normal kernel to estimate the parameters of
GARCH models whose innovation come from the normal distribution, both co-
efficient estimations and standard errors match the true values. No scaling is
needed. Figures are the density plots and the normal QQ-plot of & and

B , which indicate that they are consistent and asymptotically normal.

20

15

10

0.20 025 0.30 035 040

Figure 5.1: Density Plot of &
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Figure 5.2: QQ Plot of &
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Figure 5.3: Density Plot of 3
5.3.3 t innovations, normal kernel

We generate GARCH series using three different innovations: #(6), ¢(12), ¢(25)
and estimate the parameters using the normal kernel. Results are collected in

Table (.21
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Figure 5.4: QQ Plot of B

| | i6) | t(12) | t(25) |
mean of & | 0.29821 | 0.30016 | 0.29720
mean of seg | 0.014181 | 0.017637 | 0.018940
sd of & 0.031806 | 0.024784 | 0.022450
mean of S | 0.59701 | 0.59756 | 0.59786
mean of ses | 0.015584 | 0.019632 | 0.021633
sd of 0.033746 | 0.026456 | 0.024833

Table 5.2: Results of ¢ Innovation, Normal Kernel by S+ FinMetrics

The parameter estimates are still consistent since we are using the normal

kernel. However, the standard errors given by FinMetrics are different from the

true ones, especially when the kernel is more distinct from normal (e.g., ¢(6)). In

order to verify this, we implement the fitting procedures in R using the algorithm

in Francq and Zakolan| [2004] to calculate the Hessian matrix. The results from

the R program (Table are close to the true ones, which means the standard

errors given in S+ FinMetrics for this case are inaccurate.

The R codes are
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available from the author upon request. For parameter estimation in R, we use
the R function nlm to maximize the likelihood function. Replicating this function
in R is very computationally intensive. The Rmpi package, developed by Dr H.
Yu, allows one to create R programs which run cooperatively in parallel across
multiple machines, or multiple CPUs on one machine, to accomplish a goal more

quickly than running a single program on one machine.

| | t6) | t(12) | ¢(25) |
mean of & | 0.28972 | 0.29288 | 0.29186
mean of ses | 0.028847 | 0.023231 | 0.021311

sd of & 0.035462 | 0.023107 | 0.018762

mean of 5 | 0.61057 | 0.60463 | 0.60267
mean of se; | 0.031317 | 0.026191 | 0.024642

sd of 0.034141 | 0.027624 | 0.026601

Table 5.3: Results of ¢ Innovation, Normal Kernel by R

Figure is the density plot of & from different innovations, where the blue,
red and yellow lines denote the density of &; from (6), ¢(12) and #(25) innovations,

respectively.

5.3.4 normal innovations, ¢(5) kernel

From Table the estimation of « is no longer consistent. We have to scale the
ARCH parameter since we are using a heavy tailed kernel. After each fitting, we
multiply the estimation of a; by the inverse of the variance of 7;. We can see

that the estimate is close to the true one after scaling.
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Normal Innovation
t(6) Innovation
t(12) Innovation
(25) Innovation

0.20 025 0.30 035 040

Figure 5.5: Density Plot of & from Different Innovations

mean of & 0.36652 | mean of 5 | 0.59727

mean of sey 0.035078 | mean of se; | 0.032773

sd of & 0.027357 sd of 0.025587
mean of scaled &; | 0.29964

Table 5.4: Normal Innovations, ¢(5) Kernel
5.3.5 t(6) innovations, #(5) kernel

The results are shown in Table [5.5] The scaling parameter is close to one com-

pared with the normal-t(5) case since the two t distributions are close to each

other.
mean of & 0.31429 | mean of 5 | 0.59881
mean of sey 0.027837 | mean of sez | 0.028328
sd of & 0.028835 | sdof 3 | 0.027452
mean of scaled &; | 0.29973

Table 5.5: ¢(6) Innovations, t(5) Kernel



5.4 Conclusion and Commentary 112

5.4 Conclusion and Commentary

In this chapter, we first give an example of a multivariate GARCH parameteriza-
tion such that it satisfies the ergodicity and identifiability assumptions we gave
in previous chapters. In particular, we showed that v,(A) < 0 by Monte Carlo
simulation. We then addressed the scaling issue in S+ FinMetrics when estimat-
ing GARCH parameters. S+ FinMetrics provides reasonable results when we
use normal innovation and normal kernel. For heavy tail innovation and normal
kernel, parameter estimation in S+ FinMetrics are acceptable but the algorithm
of calculating the standard error is wrong. We have to scale both the parameter
estimation and the standard deviation if we use a heavy tail kernel. The variance

of the standardized residuals can be used as the scaling parameter.



Chapter 6

Concluding Remarks

In this thesis, we prove the asymptotic theory of the QMLE for general multi-
variate GARCH models under mild conditions. We give some counterexamples
for the parameter identifiability result in [Jeantheau/ [1998] and provide a better
necessary and sufficient condition. We prove the ergodicity of the conditional
variance process on an application of theorems by [Meyn and Tweedie| [2009]. Un-
der those conditions, the consistency and asymptotic normality of the QMLE are
proved by the standard compactness argument and Taylor expansion of the score
function. We only require finite sixth moment on the observed sequence. We ex-
tend [Francq and Zakoian| [2004]’s results and technique from univariate GARCH
models to the multivariate case. We generalize the multivariate GARCH(1, 1) re-
sults in Hafner and Preminger [2009] to multivariate GARCH(p, ¢). The results
in this thesis for the general case covers |Comte and Lieberman| [2003]’s results

for BEKK, and we reduce their moment requirement from eight to six. We also
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give numeric examples on verifying the assumptions and the scaling issue when
estimating GARCH parameters in S+ FinMetrics.

My future work on the multivariate GARCH models includes

1. fitting multivariate GARCH models using real data and studying the effi-

ciency of the estimator;

2. examining and comparing the performance of different types of multivariate

GARCH models;

3. developing a better parameter estimation algorithm and an R package; and

4. using multivariate GARCH models on risky assets and derivative pricing.
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Appendix A

Decomposition of Rational

Matrix Polynomials

The following materials in this appendix are from Goodwin et al.| [2001].
Let us introduce the a set of definitions related to the factorization of matrix

polynomials and then the important Smith-McMillan Lemma:

Definition A.1 (Rank). The rank of a polynomial matrixz is the rank of the

matrix almost everywhere in its argument.

Definition A.2 (Elementary Operation). An elementary operation on a polyno-

mial matriz is one of the following three operations:
1. interchange of two rows or two columns;

2. multiplication of one row or one column by a constant;
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3. addition of one row (column) to another row (column) times a polynomial.

Definition A.3 (Elementary Matrix). A left (right) elementary matriz is a ma-
triz such that, when it multiplies from the left (right) a polynomial matriz, then
it performs a row (column) elementary operation on the polynomial matriz. All

elementary matrices are unimodular.

Definition A.4 (Equivalent Matrices). Two polynomial matrices U(w) and V (w)
are equivalent matrices, if there exist sets of left and right elementary matrices,

{L1(w), La(w), -+, Ls(w)} and { Ry (w), Ra(w), - -+ , Ry(w)}, respectively, such that

Lemma A.5 (Smith-McMillan Lemma). Let X (w) = (X;;(w)) be a d x d matriz

polynomial, where X;;(w)’s are rational polynomials:

X(w) =

where Y (w) is a d x d matriz polynomial of rank r and K(w) is the least common
multiple of the denominators of all elements X;j(w). Then X (w) is equivalent to

a matriz I(w), with
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where {e;(w), d;(w)} is a pair of monic and coprime polynomials for i =1,--- r.

Furthermore, €;(w) is a factor of €;11(w) and 6;(w) is a factor of 6;—1(w).

Proof. See|Goodwin et al.| [2001]. O




Appendix B

Some Useful Results in Matrix

Algebra

The following results are from |Liitkepohl| [1996].

1.

vec(ABC) = (CT @ A)vec(B).

Ovec(X XT)
. X e = U2 + Kon) (X ® ).
o x: ZEBED) (1 KX 1)
D Ky = Dt

. A(m xm): |D}(A® A)D,,| = |A|™*.

[A® Bl = [[AllllB].
A, B(m x m) positive semidefinite: tr(AB) < X(tr(A) + tr(B))2.

A(m x m) positive definite: log |A| < tr(A) —m. The equality holds if and

only if A =1,,.
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INX| -1
8. S = IXIxX
o Ologlx|
9. |X|> 8—X = (X!
dvech(X 1)

10. X (m x m) nonsingular: =-D (X '@ X )D,,.

dvech” (X)

11. (A® B)(C ® D) = AC @ BD.

1—1
ZXT“JQQXJ i=1,2,-

j=0

ovec( X i

12.
8V€CT

DO

13. z(m x 1), Y(z)(n x p), Z(z)(q X r):

Jlvec(Y) ® vec(Z)]
oxT

Ovec(Y) Ovec(Z)
= ([p ® Ky ® Iq) T &® VGC(Z) + VeC(Y) & W
-1
14. z € R, A(z) nonsingular: dAflxx) = —A(x)_l%f)A(x)_l.

15. A, B(m x n): [tr(AB)] < || Alll| Bll> < min(m, n) | A]| B]|.

16. tr(AB) = tr(A ® B).
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