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Abstract

We study active learning with generalized queries in the thesis.

In contrast to supervised learning, active learning can usually achieve the same predic-

tive accuracy with much fewer labeled training examples, thus significantly reducing

the labeling cost. However, previous studies of active learning mostly assume that

the learner can only ask specific queries (i.e., require labels for specific examples by

providing all feature values). For instance, if the task is to predict osteoarthritis based

on a patient data set with 30 features, the previous active learners could only ask the

specific queries as: does this patient have osteoarthritis, if ID is 32765, name is Jane,

age is 35, gender is female, weight is 85 kg, blood pressure is 160/90, temperature is

98F, no pain in knees, no history of diabetes, and so on (for all 30 features). How-

ever, amongst all these 30 features, many of them may be irrelevant to osteoarthritis

diagnosis (such as, ID, name, history of diabetes, etc.). More importantly, for such

specific queries, the answers provided by the oracle are also specific. That is, each

responded label is only applicable to one specific query (i.e., one specific example).

In real-world situations, the oracles (usually human experts) are often more ready

to answer generalized queries, such as “are people over age 50 with knee pain likely

to have osteoarthritis?” Here only two relevant features (age and type of pain) are

mentioned, and the other 28 are considered as don’t-care. Real-world human ora-

cles usually regard such queries as more intuitive and easy to comprehend. More

importantly, as one such generalized query can represent a set of specific ones, the

corresponding answer provided by the oracle is also applicable to this whole set of

specific queries. For instance, in our previous example, the answer for the proposed

query is applicable for all people over age 50 with knee pain. Therefore, the active

learner can obtain more information from each generalized query (together with the

corresponding answer), and furthermore improve the learning more effectively and

efficiently.
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In this thesis, we assume that the oracle is capable of answering such generalized

queries, and develop different algorithms to implement such active learning with gen-

eralized queries, according to different real-world scenarios (i.e., under different as-

sumptions). As far as we know, no previous work on active learning can deal with

such generalized queries.

More specifically, we study active learning with generalized queries from the following

four perspectives:

∙ We theoretically study why and when such generalized queries can help in active

learning, and demonstrate the superiority of generalized queries over specific

ones through toy examples and learning theories. (See Chapter 2 for details.)

∙ We assume that the oracle can answer generalized queries as easily as specific

ones (i.e., with the same effort or cost). Thus we develop two novel active

learning algorithms to ask as general as possible queries, and simultaneously

keep the answers from the oracle as certain as possible. (See Chapter 3 for

details.)

∙ We make a more realistic assumption that, the more general a query is, the

higher cost (effort) it causes to request the label. We therefore study the gener-

alized queries in a cost-sensitive framework, and discuss two scenarios to, either

balance the trade-off of the predictive accuracy and the query cost, or minimize

the total cost of misclassification and query. (See Chapter 4 for details.)

∙ We consider a more relaxed scenario that the oracle could only provide ambigu-

ous answers to generalized queries. That is, the oracle would only respond with

either “positive” (“yes”) or “negative” (“no”), where “positive” indicates that

at least one of the examples represented by the generalized query can be labeled

positive, and “negative” indicates that all such examples would be labeled neg-

ative. We then develop another new algorithm to implement active learning

with generalized queries under this condition. (See Chapter 5 for details.)

Our study in this thesis has thoroughly addressed the advantages and difficulties

of active learning with generalized queries. The theoretical study has proved that

the query complexity of active learning with generalized queries is significantly lower

than active learning with specific ones. The empirical study for a variety scenarios
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has also demonstrated that, to achieve certain predictive accuracy, active learning

with generalized queries requires us to ask significantly fewer queries (or requires us

to spend significantly lower labeling cost), compared with active learning with specific

ones.

Keywords: active learning, generalized queries, oracle, query complexity, cost-

sensitive learning, labeling cost, ambiguous answers
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1

Chapter 1

Introduction to Active Learning

1.1 What is Active Learning

Supervised learning is one of the most important tasks in the machine learning re-

search area. In supervised learning, the learner is given a (usually large) set of training

data with the corresponding labels (nominal or numeric), and is required to construct

a learning model that achieves minimum generalization error (or equivalently, achieves

minimum error on an unseen test data set drawn independently from the identical

distribution). Figure 1.1 demonstrates the general framework of supervised learning.

Training
Data Model Unseen

Data

Learning Predicting

Figure 1.1: The framework of supervised learning.

In order to construct a highly accurate learning model in supervised learning, a con-

siderable amount of labeled training data is usually required. Previous studies in

Probably Approximately Correct learning (PAC learning) also have proved the lower

bound of the number of training examples needed to achieve a certain generaliza-

tion error (see [38] for details). However, in practice, such labeled training data are

usually difficult (or highly costly) to acquire. For instance, in text categorization,
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each document is expected to be tagged with some given class labels (such as, sci-

ence, politics, sport, entertainment, etc.). This labeling process usually could only be

done manually, thus it would cost a considerable amount of time, money or human

resource. Under this circumstance, a new learning scheme, active learning, might be

able to help.

Briefly speaking, instead of obtaining a whole batch of labeled training data as in

the traditional supervised learning, active learning only selectively obtains the most

useful labeled training data, such that the same generalization error could be achieved

with much fewer training examples. The labeling cost, therefore, can be significantly

reduced.

More specifically, in active learning, the learner is initially given a (usually small

or even empty) set of training data (with the corresponding labels), and an initial

learning model is constructed accordingly. Based on this model, the learner then

selectively generates or chooses (from a given pool) the most useful unlabeled exam-

ples, and requests their labels from a given oracle. The process repeats iteratively,

such that the training set gradually expands, and the generalization error of the up-

dated learning model decreases consequently. Figure 1.2 demonstrates the general

framework of active learning.

Training
Data Model Unseen

Data

Learning Predicting

Oracle

Acquiring New Data

Figure 1.2: The framework of active learning.

The advantage of active learning is obvious: It usually requires much fewer labeled

examples (thus significantly reducing the labeling cost) to construct a highly accurate

learning model. Therefore, active learning has been widely applied to many real-world

applications, such as text classification [37, 53, 27], information extraction [51], image
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classification and retrieval [52, 59], video classification [58], speech recognition [54],

cancer diagnosis [34], drug design [56], etc.

1.2 Active Learning Scenarios

Different scenarios can be encountered when applying active learning to real-world

applications. The most typical ones include membership query and pool-based active

learning. We will introduce these two scenarios in the following subsections.

1.2.1 Membership Query

Membership query is the first active learning scenario, proposed in [2]. Briefly speak-

ing, in this setting, the learner is only given a set of labeled training data, but is

allowed to generate any synthetic new examples and request the corresponding labels

from the oracle.

The advantage of this type of active learning is that, as such generated examples

can be arbitrary, they could always perfectly fit the query criteria (see Section 1.3

for details) and efficiently boost the predictive performance (in the ideal situation).

Therefore, membership querying is commonly used in theoretical studies of active

learning (see [21, 14, 12, 13]).

However, membership query also has a major flaw, especially when human experts

act as oracles in many real-world situations. As there is usually no restriction in

generating new synthetic examples in membership query, such examples could be

semantically meaningless. For instance, it is likely for the learner to generate a new

example as [Name = Joℎn,Gender = male, Pregnant = yes, ⋅ ⋅ ⋅ ]. When such

meaningless examples are generated, the human oracles are not able to provide the

corresponding labels, and the learning process therefore might be halted.

1.2.2 Pool-based Active Learning

Pool-based active learning is proposed in [30], and has been widely used in both

academic studies and real-world applications. In this pool-based setting, in addition

to the (usually small) set of labeled training data, a (usually large) set of unlabeled
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data (called “pool”) is also given. The learner, therefore, is expected to select the

most valuable examples only from the pool, and request the corresponding labels from

the oracle.

Compared with the previous membership query, pool-based active learning imposes a

restriction on the new examples (i.e., the new examples could only be selected from the

given pool). As a result, the selected examples, on one hand, might not be the optimal

ones to improve the predictive performance (due to the limitation of the pool). On the

other hand, however, it can be guaranteed that, these selected examples would always

be semantically meaningful. For instance, as all examples existing in the pool should

be meaningful, no example as [Name = Joℎn,Gender = male, Pregnant = yes, ⋅ ⋅ ⋅ ]
would ever be selected.

It is worth noting that, another analogous setting, called stream-based active learning,

also catches attention in active learning studies. In this setting, the learner is also

given two sets of data (labeled and unlabeled). However, instead of being able to

access any unlabeled example at any time (as in the pool-based setting), the learner

has access to only one example at a time in this case. More specifically, all the

unlabeled examples are sequentially presented to the learner (i.e., one at a time), and

the learner has to decide whether to request the label for the example or discard it.

Such stream-based active learning is sometimes considered as an online version of the

pool-based active learning [4].

1.3 Active Learning Query Strategies

When implementing active learning, the most important issue is how to measure the

informativeness of the unlabeled examples. The most informative examples usually

indicate the ones that can maximally improve the predictive performance. In previous

active learning studies, a variety of criteria have been proposed to measure the infor-

mativeness, such that the optimal unlabeled examples could be generated or selected.

In the following subsections, we will introduce in detail three simple and widely used

query strategies (uncertainty sampling, density-based sampling, and estimated error

reduction), and briefly review several others.
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1.3.1 Uncertainty Sampling

Uncertainty sampling was first proposed in [30]. Since then, it has been most com-

monly used in both academic research and industry applications, due to simplicity

and effectiveness. The basic idea of uncertainty sampling is quite intuitive: Given

any unlabeled example, if the current learning model is already highly certain in pre-

dicting its label, this example might not provide much new information to improve

the model; on the other hand, if the current model is quite uncertain in prediction,

the example (with the corresponding label) is highly likely to help improve the model.

Therefore, uncertainty sampling always tends to generate or select (from the pool)

the most uncertain unlabeled examples, and request their labels from the oracle.

More specifically, different criteria have been proposed to measure the uncertainty of

the unlabeled examples. Settles [46] summarizes and compares three popular uncer-

tainty measurements: least confident, margin sampling and entropy.

Least confident considers the most uncertain example to be the one where the current

learning model is least confident in prediction. It consequently can be interpreted as

the example with the lowest posterior probability for the most probable class. We

denote by U all the given unlabeled examples, and by Y all the possible label values,

the most uncertain example, x∗ in this case, can be formalized as:

x∗ = arg min
x∈U

{P (y1∣x)} where y1 = arg max
y∈Y

P (y∣x) (1.1)

Margin sampling defines the certainty as the difference between the posterior prob-

abilities for the first and second probable classes. Therefore, the most uncertain

example can be formalized as:

x∗ = arg min
x∈U

{P (y1∣x) − P (y2∣x)} (1.2)

where y1 = arg max
y∈Y

P (y∣x), y2 = arg max
y∈Y ∖y1

P (y∣x) (1.3)

Entropy is usually regarded as the most common criterion to measure uncertainty.

On the basis of information theory, entropy considers the example with the maximum

entropy in posterior probability distribution as the most uncertain one. More formally,
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x∗ = arg max
x∈U

{−
∑
y∈Y

P (y∣x) logP (y∣x)} (1.4)

Based on different intuition and rationality, these three criteria behave differently on

multi-class problems. However, when binary-class problems are encountered, they are

essentially the same. More specifically, for a binary-class problem, all of them always

select the example with posterior probability closest to 0.5.

1.3.2 Density-based Sampling

Another simple strategy in active learning is Density-based Sampling. The rationale

behind density-based sampling is also straightforward: To improve the predictive

performance in the entire sample space, it is usually preferred that the learning model

could make more accurate prediction in the highly dense sample space. Thus, the

unlabeled examples with high density would, in general, help make more improvement

for the current learning model. Density-based sampling, therefore, always tends to

generate or select (from the pool) such examples with high density, and request their

labels from the oracle.

However, density-based sampling usually cannot be applied alone in active learning;

additional criteria are often required. More specifically, if the learner always selects

the example with the highest sample density in each iteration, it is likely that most

(or even all) selected examples are from the same (highly dense) area in the sample

space. Consequently, the constructed learning model might behave well only in this

area, but totally fail in all the others. To avoid this situation, one solution is to

conduct clustering on the unlabeled data set beforehand, and then select the most

representative examples in each cluster during the learning [39]. Another more typ-

ical strategy is to combine density-based sampling with other query strategies, such

as uncertainty sampling. In this case, a trade-off has to be appropriately balanced

between the two criteria, such that the selected examples would maximally improve

the learning model [16].
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1.3.3 Estimated Error Reduction

Both of the previous query strategies tend to improve the learning model by selecting

the example base on indirect criteria (i.e., uncertainty or density). It is worth noting

that, the ultimate goal of active learning is to improve the predictive accuracy of the

learning model. Thus a more straightforward way is to select examples that directly

maximally increase the predictive accuracy (or equivalently, maximally reduce the

predictive error) in each learning iteration. This strategy is call estimated error

reduction, and was proposed in [43].

Estimated error reduction roughly works as follows: For each example in the pool, a

learning model is constructed based on the given training data plus this example (with

the estimated label). Thus each example in the pool would correspond to one learning

model. All these learning models are evaluated, and the one with the maximum

predictive accuracy is chosen. The corresponding example in the pool, therefore, is

considered as the optimal one that would maximally increase the predictive accuracy,

and is selected for active learning.

This query strategy is simple, direct and rational, but with one crucial flaw. As the

labels of all the examples in the pool are unknown, it would be difficult to construct

a learning model for each of them. The solution is to estimate these labels based on

the current learning model (i.e., the learning model constructed only on the training

data). More specifically, we denote D the current training set, U the current unlabeled

set, and Y the label set. Thus the selected example x∗ would be:

x∗ = arg max
x∈U

∑
y∈Y

P (y∣x)Acc(D
∪

{x, y}) (1.5)

where P (y∣x) denotes the estimated probability for x being labeled as y (estimated by

the learning model constructed on the current training data alone), andAcc(D
∪
{x, y})

denotes the predictive accuracy of the learning model constructed on D plus {x, y}.

1.3.4 Other Query Strategies

In additional to the previous query strategies, many more sophisticated algorithms (or

criteria) are also developed. Query-by-committee (QBC) [48] is a more theory-based

approach, and considers the example that minimizes the version space as optimal.
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When the ensemble method is applied as the base learner in QBC, it could also

be considered as a variant of uncertainty sampling [30]. Variance reduction [10] is

developed based on the decomposition of the expected generalization error (i.e., the

expected generalization error is decomposed into noise, variance and bias, see [5] for

details). As the current learner cannot change anything about the noise and bias, the

variance is expected to be maximally decreased to achieve low generalization error.

Therefore, the example that maximally decreases the variance term would be selected

in each learning iteration. In addition, Fisher information ratio [61], expected model

change [47] are also proposed in previous active learning research, and have been

applied to various scenarios. All of these strategies are elaborately designed and well

accepted.

1.4 Overview of the Rest of the Thesis

The rest of the thesis is concerned with a new paradigm of active learning — active

learning with generalized queries. Instead of asking specific queries in traditional

active learning, we propose to ask generalized queries in each active learning iteration.

As each generalized query can usually represent a set of specific ones, if it can be

properly (and accurately) answered by the oracle, the performance of active learning

can be significantly improved. More specifically,

∙ In Chapter 2, we first demonstrate the motivation of studying generalized

queries in active learning, and discuss the consequent advantages and difficul-

ties. Then, we theoretically study why and when such generalized queries can

help, through learning theories and toy examples.

∙ In Chapter 3, we deal with the scenario that the oracle is capable of answer-

ing generalized queries as easily as specific ones (i.e., with the same effort or

cost). Thus we develop two algorithms to ask as general as possible queries,

and simultaneously attempt to keep the answers from the oracle as certain as

possible.

∙ In Chapter 4, we consider a more realistic scenario that higher cost (effort) is

required for the oracle to answer generalized queries. We accordingly study

generalized queries in a cost-sensitive framework, and develop two methods to,



9

either balance the trade-off of the predictive accuracy and the query cost, or

minimize the total cost of misclassification and query.

∙ In Chapter 5, we consider another realistic scenario that, instead of providing

(accurate) probabilistic answers to the generalized queries, the oracle can only

provide ambiguous “Yes-No” answers. More specifically, the oracle would only

respond with either “positive” (“yes”) or “negative” (“no”), where “positive”

indicates that at least one of the examples represented by the generalized query

can be labeled positive, and “negative” indicates that all such examples would

be labeled negative. We then develop another new algorithm to implement

active learning with generalized queries under this condition.

∙ Finally, in Chapter 6, we summarize our conclusions for active learning with

generalized queries, and propose future works.
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Chapter 2

Active Learning with Generalized

Queries

2.1 What are Generalized Queries?

In all previous works on active learning, it is always assumed that the learner could

only ask specific queries (i.e., require labels for specific examples with all feature

values provided), and it is also assumed that the oracle could only answer such specific

queries. For instance, if the task is to predict osteoarthritis based on a patient data

set with 30 features, the previous active learners could only ask the specific queries as:

does this patient have osteoarthritis, if ID is 32765, name is Jane, age is 35, gender

is female, weight is 85 kg, blood pressure is 160/90, temperature is 98F, no pain in

knees, no history of diabetes, and so on (for all 30 features). However, the fact is

that, many of these 30 features may not be relevant to osteoarthritis in this case. Not

only could specific queries like this confuse the oracles, but the answers returned are

also specific: Each responded label is only applicable to one specific query (i.e., one

specific example).

In real-world situations, the oracles (usually human experts) are often more ready

to answer generalized queries, such as “are people over age 50 with knee pain likely

to have osteoarthritis?” Here only two relevant features (age and type of pain) are

mentioned, and the other 28 are considered as don’t-care. We have discussed with

some experts in heart-disease diagnosis and used-car sale, and they regard this type

of generalized queries intuitive and easy to comprehend. Thus, we assume that the
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oracle is more powerful: It can answer generalized queries by returning probabilistic

labels.

The advantage of generalized queries is not only that they are more natural and

relevant. More importantly, answers for such generalized queries can usually provide

much more information, as one generalized query is often equivalent to many specific

ones. In our previous example, the answer for the generalized query is applicable for

all people over age 50 with knee pain. This allows active learner to improve learning

more effectively and efficiently.

The difficulty of generalized queries is that answers from the oracle can often be

uncertain.1 For instance, the answer could be “Yes with a 85% probability” that

people over age 50 with knee pain would have osteoarthritis. An overly general

query, such as “are people over age 50 likely to have osteoarthritis?” (age only),

might receive yes with only a 60% probability. Indeed, the experts in the heart-

disease diagnosis and used-car sale also sometimes have to reply with low certainties

in their answers. Highly uncertain answers can make learning difficult as they may

introduce noise into the training data; or, they waste the effort of the oracle if these

answers are directly discarded.

2.2 Why Do Generalized Queries Help?

In this section, we analyse in detail why (and when) generalized queries could help in

active learning. Specifically, considering two scenarios (data with irrelevant features

and data without irrelevant features), we analyse the effect of the generalized queries,

intuitively through toy examples, and theoretically based on learning theory.

2.2.1 Data with Irrelevant Features

In this subsection, we study the effect of the generalized queries on data with irrelevant

features. Specifically, we take a simple synthetic classification problem (with two

features (x1 and x2) and binary class (y = 0 and y = 1)) as a toy example, to

illustrate the advantage of generalized queries.

1This is true even if we assume that answers for specific queries are always 100% certain. However,
in some real-world applications, answers for specific queries may also be uncertain. We will study
this issue in our future work.
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0 1 Target

x1

x2

(a) True target.

0 1 Hypotheses

x1

x2

(b) After asking two specific
queries.

0 1 Hypotheses

x1

x2

(c) After asking two generalized
queries.

0 1 Hypotheses

x1

x2

(d) After asking two specific
queries with feature selection.

Figure 2.1: Illustration of data with irrelevant features.

We assume that x2 is an irrelevant feature, and show the data distribution and the

true boundary (x1 = 1) in Figure 2.1(a). We can notice from Figure 2.1(a) that, the

true boundary is perpendicular to the x1 axis (i.e., only affected by x1).

In traditional active learning with specific queries, the learning algorithm usually

requests the label for one specific example in each iteration. For our toy example, we

can show the training data after two learning iterations (i.e., after requesting the labels

for two data points — one labeled “0” and the other labeled “1”).2 More specifically,

2We assume that the active learning initializes with an empty training set.
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we obtain the labels (y = 0 and y = 1) for two data points (x1 = 0.5, x2 = −0.5)

and (x1 = 1.5, x2 = 0.5) respectively, then we can see these two data points in Figure

2.1(b).

On the other hand, in active learning with generalized queries, the learner asks one

generalized query in each iteration. As one generalized query often represents a set

of specific examples, this whole set of examples (with their labels) can be included in

the training set in each iteration. For our toy example, we can also show the training

data after two learning iterations (i.e., after requesting the labels for two generalized

queries). More specifically, we suppose the learner can successfully discover the irrel-

evant feature x2, and construct two generalized queries [x1 = 0.5, x2 = ∗ −→ y =?]

and [x1 = 1.5, x2 = ∗ −→ y =?] (with same x1 values as in Figure 2.1(b)), where “∗”

represents the don’t-care features in the queries. When these two generalized queries

are answered by the oracle3, two sets of the corresponding data points are included

in the training set, as shown in Figure 2.1(c).

Theoretical studies consider active learning as a version space shrinking process [48].

Roughly speaking, after requesting the label(s) for new example(s) in each iteration,

the version space will shrink to be consistent with all the given labeled examples.

In the noise-free setting, when the version space shrinks to only one hypothesis, this

remaining one is thus regarded as the true hypothesis. Armed with this active learning

theory, we can clearly demonstrate the difference between active learning with specific

and generalized queries.

In our toy example, the version space initially contains all the linear boundaries in the

two-dimensional space (x1-x2 space) with an empty training set.4 After two iterations,

the active learning with specific queries obtains two data points in the training set

(as in Figure 2.1(b)). Thus, the version space shrinks, and only the linear boundaries

that separate these two data points remain. The dotted lines in Figure 2.1(b) show

samples of all these hypotheses in the version space, and the solid line represents the

current optimal hypothesis with the maximum margin [6]. On the other hand, the

active learning with generalized queries obtains two sets of data points in the training

set after two iterations (as in Figure 2.1(c)). The version space thus also shrinks, and

only the linear boundaries that separate these two sets of data points remain. The

3We assume that these generalized queries can be responded with certain answers here, for better
illustration.

4We only consider linear functions as our hypotheses for illustration.
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dotted and solid lines in Figure 2.1(c) also show samples of all these hypotheses and

the optimal one, respectively.

We can clearly see that, compared with the specific queries (Figure 2.1(b)), the gen-

eralized queries (Figure 2.1(c)) rule out significantly more hypotheses (such as, the

linear boundaries that are not perpendicular to the x1 axis) after two iterations.

Based on active learning theory, this clearly indicates that generalized queries can

significantly outperform specific ones, in terms of efficiently finding the true hypothe-

sis (as well as speeding up the learning process). In addition, we can also notice that,

after two iterations, the optimal hypothesis produced by the generalized queries (i.e.,

the solid line in Figure 2.1(c)) is already quite close to the true boundary (i.e., the

solid line in Figure 2.1(a)); whereas, the optimal hypothesis produced by the specific

queries (i.e., the solid line in Figure 2.1(b)) is still far away from the true one. This

again demonstrates the advantage of generalized queries in this case.

One may notice that, the power of generalized queries comes from the ability of

discovering irrelevant features. Thus, a question arises: Can active learning with

specific queries have the same power when it is combined with feature selection [25]?

Figure 2.1(d) illustrates this situation on our toy example.

Specifically, we suppose that the feature selection could also successfully discover

and remove the irrelevant feature x2, thus the entire active learning process is imple-

mented only on a one-dimensional space (i.e., the x1 axis). This indicates that feature

selection changes the initial version space to be all the thresholds on the x1 axis. As

before, we suppose the labels of the same two data points (x1 = 0.5 and x1 = 1.5)

are requested after two iterations, as shown in Figure 2.1(d). Then, the version space

further shrinks to be all the thresholds on the x1 axis that lie between these two data

points. These thresholds can be recovered to the original x1-x2 space, and become

all the linear boundaries perpendicular to the x1 axis and between x1 = 0.5 and

x2 = 1.5, as the dotted lines show in Figure 2.1(d). (Again, the solid line in Figure

2.1(d) represents the current optimal hypothesis.) We can easily tell from the com-

parison between Figures 2.1(c) and 2.1(d) that, combined with feature selection, the

specific queries can yield almost the same version space and the optimal hypothesis as

the generalized queries (after two learning iterations). This indicates that, the specific

query indeed can have the same power as the generalized ones, when feature selection

is applied. Note that, in the next subsection, we analyse the effect of generalized

queries on data without irrelevant features, and we will show that feature selection
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no longer helps in that situation, whereas generalized queries might still work (see

Section 2.2.2 for details).

So far, we have demonstrated the superiority of generalized queries over specific ones,

through a simple toy example. We now further theoretically analyse the sample

complexity of active learning with generalized queries, under some certain conditions.

Strictly speaking, the number of examples needed by generalized queries will always

be more than that needed by specific ones, simply because one generalized query

often represents a set of examples, and this whole set of examples is usually included

in the training set in each iteration. However, in the current active learning setting,

we care more about the number of queries, rather than the number of examples, as

that is the true cause of the labeling cost.

Previous theoretical research [21, 14, 12, 13] has shown the sample (query) complex-

ity of active learning under different assumptions. In particular, the analysis of the

Query-by-Committee algorithm [21] shows that, the sample (query) complexity of the

labeled examples is roughly O(d log 1/�) under some certain conditions, where � is the

desired generalization error and d is the Vapnik-Chervonenkis dimension (VC dimen-

sion) of the hypothesis space. This indicates an exponential improvement compared

with the usual sample (query) complexity Ω(d/�) in a traditional supervised setting.

Here we further analyse the query complexity of active learning with generalized

queries.

Specifically, we consider linear separators in n-dimensional space (as well as other

certain conditions, as in [14, 13]). The VC dimension of the hypothesis space thus is

d = n + 1. We suppose there are r (r < n) irrelevant features; and in the ideal case,

all of them can be successfully discovered in generalized queries. However, directly

analysing generalized queries is quite difficult, as each query (representing a set of

examples) often has complex impact on the version space. Instead, the previous

illustration has shown that, in the best case, generalized queries have (roughly) the

same effect in shrinking the version space as specific queries with feature selection. We

thus can simplify the analysis of generalized queries by equivalently considering active

learning with specific queries in a lower dimensional space (i.e., after the irrelevant

features are eliminated). Therefore, after discovering all the r irrelevant features,

generalized queries can reduce the dimension of the feature space from n to n − r,

and the VC dimension from d to d − r consequently. The query complexity thus

would simply be O((d− r) log 1/�).
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Some interesting conclusions can be further observed by comparing these query com-

plexities. The query complexity for the specific queries (O(d log 1/�)) grows linearly

with the feature dimension n (as (n = d−1) in this case); thus it suffers severely from

large feature dimensions. In contrast, the query complexity for generalized queries

(O((d − r) log 1/�)) grows linearly only with the number of relevant features n − r

(as (n− r = d− r − 1) in this case). This indicates a significant improvement when

data contains a large number of redundant features. In particular, when the number

of relevant features (n − r) is fixed (which commonly occurs in real-world applica-

tions), generalized queries only have constant query complexity (O(log1/�)) in terms

of the feature dimension, thus achieving a linear improvement compared with specific

ones (with complexity O(d log 1/�)). This therefore theoretically demonstrates the

superiority of generalized queries over specific ones.

2.2.2 Data without Irrelevant Features

In the previous subsection, we have shown clearly that generalized queries can shrink

the version space significantly faster than specific ones, thus outperforming the latter

in speeding up the learning process. However, so far, this conclusion is only valid

for the data that contains irrelevant features. What if data contains no irrelevant

features? Can generalized queries still help? We study this issue in this subsection,

still through some toy examples.

We first consider the situation that the target is a decision tree (or a set of deci-

sion rules), as this type of target commonly occurs in real-world applications. For

illustration, we suppose that the data contains five features x1 − x5 (all of which are

relevant), and we also suppose that the target is a simple decision tree with six leaves

L1 − L6, as shown in Figure 2.2.

Such a target as a decision tree (or decision rules) has an interesting property: even in

the case that all the features are relevant, given specific values for some features, the

others might still be “conditionally irrelevant”. For instance, we can see in Figure 2.2

that, given x1 = 0, x3 = 0 and x5 = 0, the label will always be 0 (Leaf L6), regardless

of the values for x2 and x4. Thus, in this case, we can still consider x2 and x4 as

“conditionally irrelevant”. We can observe many other similar cases in Figure 2.2.

Indeed, given any target as a decision tree (or decision rules), we can always discover

such “conditionally irrelevant” features. Thus, the generalized queries can always be
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Figure 2.2: Synthetic decision tree.

constructed from the specific examples, with those “conditionally irrelevant” features

being don’t-care. Again, as each generalized query represents a set of specific exam-

ples, the whole set of examples could be included in training set in each iteration,

and the learning process could be speeded up consequently. Here we provide further

theoretical analysis on active learning with generalized queries in this case.

Specifically, we consider decision trees with k leaves. Given n data features, Guestrin

[23] has shown the hypothesis space for such a k-leaf decision tree is roughly ∣H∣ =

nk−1(k + 1)2k−1. Thus the sample complexity of such a decision tree in traditional

supervised learning would be O(k ln k). (As the sample complexity for any consistent

learner is 1
2�

(ln ∣H∣+ln 1
�
) given � and � in PAC learning, the sample complexity for the

k-leaf decision tree can be easily derived given the corresponding hypothesis space.)

In active learning with generalized queries, we again suppose that the learner can

always discover all the “conditional irrelevant” features; thus in such an ideal case,

each generalized query can directly correspond to a leaf node in the decision tree (i.e.,

a decision rule in the tree). With the answers from the oracle, only k such generalized

queries require to be asked, in order to discover all the k rules in the decision tree.

Therefore, the query complexity of such active learning with generalized queries in

this case would be O(k). Compared with O(k ln k) we have derived previously, this

clearly indicates a logarithmic improvement, and again demonstrates the superiority

of generalized queries for decision trees.

In addition to decision trees (or decision rules), targets as linear (or non-linear) bound-

aries in n-dimensional space also commonly occur in real-world applications. Appar-

ently, if all of these n features directly affect the labels of the examples in any case,
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no irrelevant (or even “conditionally irrelevant”) features could be discovered. Thus,

it seems that, generalized queries cannot be constructed, and furthermore, cannot

contribute to speeding up the learning process.

However, another type of more flexible generalized queries, where the features could

be described as partially irrelevant, can be applied. Specifically, we suppose the

target is a linear boundary (x1 − x2 − 1 = 0) in a 2-dimensional space (x1-x2 space),

as shown in figure 2.3(a). Although both of these two features (x1 and x2) can always

affect the label (y) for any data point, a generalized query with partially irrelevant

features, such as [x1 < 1, x2 > 0 −→ y =?], can still be constructed. Instead of

regarding some features as entirely irrelevant, this type of generalized query imposes

some certain constraints on the features; thus each query can still represent a set of

specific examples. If such a generalized query can obtain a certain answer from the

oracle, the whole set of corresponding examples could be included in the training set

and the learning process could be speeded up accordingly. Figure 2.3(b) illustrates the

situation after two learning iterations in this toy example. More specifically, with two

generalized queries and the corresponding certain answers, [x1 < 1, x2 > 0 −→ y = 0]

and [x1 > 1, x2 < 0 −→ y = 1], two sets of examples are included in the training

data, and the version space shrinks efficiently. Such generalized queries consequently

can significantly speed up the learning process.

0 1 Target

x1

x2

(a) True target.

0 1 Hypotheses

x1

x2

(b) After asking two generalized
queries.

Figure 2.3: Illustration of data without irrelevant features.

Note that, for both of the above two types of targets, feature selection is no longer
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able to help, as no irrelevant features could be discovered and removed. In contrast,

the generalized queries can still work to efficiently shrink the version space and speed

up the learning process. This thus again demonstrates the advantages of generalized

queries.

To summarize, in this section, we analyse two scenarios of data with or without

irrelevant features. Through toy examples and learning theory, we conclude that,

active learning with generalized queries can indeed significantly improve the learning

process, compared with the traditional supervised learning and active learning with

specific queries.

2.3 Assumptions for Generalized Queries

We need to make some assumptions to implement active learning with generalized

queries. The first fundamental assumption we make is that, the oracle is capable

of answering such generalized queries. This assumption can usually be satisfied,

especially when human experts act as oracles in most real-world applications. All the

studies in the rest of the thesis are based on this assumption.

In addition, other assumptions are also made in the following chapters, to simulate

various real-world scenarios. More specifically, we assume that the oracle can answer

generalized queries as easily as specific ones (i.e., with the same effort or cost) in

Chapter 3, and propose two algorithms to ask as general as possible queries in each

learning iteration. We then make a more realistic assumption in Chapter 4 that, the

more general the query is, the higher cost (effort) it causes to request the label, and

accordingly study generalized queries in a cost-sensitive framework. However, in both

of these two parts of research, we still implicitly assume that the oracle is capable

of providing probabilistic answers for the generalized queries. Such an assumption

might be difficult to satisfy in some real-world situations. Therefore, in Chapter 5,

we make a more relaxed assumption that the oracle could only provide ambiguous

“Yes-No” answers to the generalized queries, and develop another new algorithm to

ask generalized queries with such ambiguous answers.
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Chapter 3

Asking Generalized Queries to

Improve Learning

3.1 Introduction

In this chapter, we assume that the oracle can answer the generalized queries as easily

as the specific ones. The theoretical study in the previous chapter has demonstrated

that, the more general a query is, the more it would contribute to improve the learning

model. The learner thus is expected to ask as general as possible queries during the

learning process. However, on the other hand, if the queries are too general, the

answers from the oracle might be uncertain (as we have discussed in Chapter 2).

Consequently, these uncertain answers might even degrade the learning by introducing

noise.

Therefore, in this chapter, our task is to design an active learner that attempts to

ask generalized queries and simultaneously obtain highly certain answers from the

oracle. More specifically, we design a new algorithm called AGQ, for Active learner

with Generalized Queries. AGQ can construct generalized queries with don’t-care

features, for either the pool-based or the membership-query active learner. AGQ is

in essence different from some previous similar studies in active learning, such as,

batch mode active learning, active learning with feature labeling, and active learning

with feature selection; see Section 3.2 for details. In each active learning iteration, we

propose a four-step procedure for AGQ to construct a generalized query and update

the learning model; see Section 3.3 for details. However, AGQ can only generalize
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specific feature values to don’t-care. We then extend AGQ to AGQ+, which can

generalize specific feature values to meaningful new features for both nominal and

numeric features. For example, AGQ+ can ask such queries as “are people aged

between 50 and 65, with moderate or severe knee pain, likely to have osteoarthritis?”

Here, age (a numeric feature) is generalized to a range, and knee pain (a nominal

feature) is generalized to a subset of values. These newly constructed features can

form hierarchical structures, and are often meaningful in real-world applications. See

Section 3.4 for the detailed description of AGQ+. Experiments on synthetic and real-

world data sets show that AGQ and AGQ+ ask significantly fewer queries compared

with the traditional active leaner. See Sections 3.5 for details. In addition, AGQ+

can also automatically produce subsets for nominal features and ranges for numeric

features, which can be used in further learning. To the best of our knowledge, this is

the first work proposing active learning with generalized queries, and showing that it

is highly effective.

One might argue that it may be difficult for the oracle or human expert to provide

accurate probabilities of the labels for the generalized queries. As we will show in

Section 3.6.1, when the probabilities of labels are contaminated with low noise, AGQ

still learns quite well. That is, AGQ is robust with estimated probabilities of the

labels. In addition, Section 3.6.2 studies the difference between AGQ (AGQ+) and

active learning with feature selection. We will show that active learning with feature

selection performs significantly worse than the proposed AGQ methods, due to the

overly general queries it produces. In Section 3.6.3, we will discuss the behaviour

of AGQ (AGQ+) with only few initial labeled examples, and propose an additional

heuristic to handle this issue.

3.2 Related Work

All previous works on active learning assume that the oracle could only answer specific

queries, with all attribute values provided. To the best of our knowledge, our AGQ

algorithm in this chapter is the first work proposing active learning with generalized

queries. Again, the main advantage of AGQ is that one generalized query is usually

equivalent to many specific ones. Thus, the answer from the oracle is also for all of

the specific queries.

Even though one generalized query is equivalent to multiple specific queries, our AGQ
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method is still quite different from batch-mode active learning [28, 24]. In batch-

mode active learning, the learning model requests labels for a batch of examples

(i.e., multiple specific queries) in each iteration, thus the oracle is required to provide

multiple answers for all these queries (i.e., with multiple costs). On the other hand, in

AGQ, the oracle answers only one generalized query in each iteration (i.e., with one

cost). Thus, AGQ costs much less than the batch-mode active learning, for answering

queries in the learning process.

Druck et al. [17] proposed active learning with feature labeling, which queries the

label for one specific feature (for example, “puck” −→ “ℎockey”), and is mainly used

in natural language precessing. Although feature labeling is considered similar to the

generalized query, our AGQ algorithm is significantly different in the following three

aspects. First, instead of querying label for one specific feature, our AGQ could query

the labels for multi-feature combinations (for example, “puck”+“ice”+“player” −→
“ℎockey”). Thus, feature labeling is essentially a special case of our AGQ. In other

words, our generalized query is a generic paradigm for both instance-based queries

and feature-based queries. Second, AGQ always finds the most uncertain example

(when integrated with uncertainty sampling) and generalizes it to a query. Labeling

such uncertain examples has been proved to be very effective in improving predictive

accuracy (see Section 3.5 for details). On the other hand, feature labeling generally

finds the most predictive (or most frequent) feature for querying, thus the answer

from the oracle may not provide much new information to improve the model. Third,

and most importantly, as feature labeling always queries a label for only one feature,

the answer from the oracle could be very uncertain. To deal with this problem, it is

assumed in [17] that the oracle could “skip” the uncertain queries. But in fact, the

oracle has “worked” on those queries, and the oracle’s effort is wasted. On the other

hand, AGQ makes a minimal generalization of a specific query, thus the answers from

the oracle tend to be certain. Our experiments show that the average certainty of

the replies is 90% (see Section 3.5 for details). In any case, every query of AGQ is

counted, regardless of the certainty of the reply.

One major step of AGQ is to find irrelevant features and substitute them with the

don’t-care (i.e. “∗”) (see Section 3.3.2). However, our algorithm is very different

from, and much better than, combining feature selection and the traditional active

learning. We will discuss this in detail in Section 3.6.2.
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3.3 AGQ Algorithm

In this section, we will describe a novel active learning algorithm called AGQ (Active

learning with Generalized Queries). AGQ can generalize features (nominal or nu-

meric) with specific values to don’t-care features. In Section 3.4, we extend AGQ to

AGQ+, which generalizes from specific feature values to subsets of values for nominal

features, or to ranges for numeric features. These newly constructed features can

form meaningful hierarchies for further learning.

As most previous works on active learning are pool-based, and use uncertainty sam-

pling to choose the most valuable unlabeled examples, in this section, we will also

describe AGQ using uncertainty sampling in a pool-based setting. However, as our

AGQ is a meta-learning method, it can be equally applied to the membership query

active learning, or integrated with any other query strategy.

We assume that examples are described by n nominal or numeric featuresX1, X2, ..., Xn

and the label Y of examples is binary, with values positive (1) and negative (0). The

active learner is given an initial labeled training set R, and an unlabeled set U , from

which the learner may choose examples to query for their labels from an oracle. A

test set T is given but set aside to evaluate the accuracy of the learner during label

acquisition.

The AGQ algorithm can be broken down into the following four major steps:

1. The first step is the same as in the previous pool-based active learning algo-

rithms [53, 13, 35]. An initial learner L is built using the current labeled training

data set R. Then, L is used to predict each example in the pool U . The most

uncertain example from the pool is chosen. (If the membership active learning

is used, then the most uncertain example would be constructed in this step.)

As an example, the specific example from the pool could be [1, 0, 1, 1, 0, 1], with

the predicted probability of 52% for the class 1 (and 48% for the class 0),

according to the current model L. This is the most uncertain (the probability

of the majority class is closest to 50%) among all examples in the pool.

2. AGQ then finds irrelevant features in the most uncertain example above, and

substitutes them with “∗” (representing don’t-care features).1

1Although feature selection [25, 32] can also discover irrelevant features, as we will show in Section
3.6.2, the AGQ method is significantly better than feature selection.
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For example, the generalized query based on the example [1, 0, 1, 1, 0, 1] could

be [1, ∗, 1, ∗, 0, 1].

3. AGQ submits this generalized query to the oracle, which will return a label

with a probability distribution.

For example, the oracle may return a probability of 0.9 for positive (and 0.1 for

negative) for the generalized query [1, ∗, 1, ∗, 0, 1].

4. AGQ will utilize the label and the probability distribution to update the training

data, and iterate to Step 1 (to continue the learning actively).

For example, from the generalized query [1, ∗, 1, ∗, 0, 1] and the probability dis-

tribution for the class (0.9 for class 1 and 0.1 for class 0), four specific exam-

ples, [1, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 1], [1, 1, 1, 0, 0, 1], and [1, 1, 1, 1, 0, 1], each with

a probability label (0.9 for 1 and 0.1 for 0), could be added into the training set.

This represents the power of generalized queries: each generalized query can ef-

fectively represent a set of specific ones. This would be useful if the probability

of the majority class is high (close to 1). Otherwise, noise is introduced into

the training set, and as we will show later, accuracy can even worsen. (We will

study other strategies of utilizing the probabilistic labels in our future work.)

We will discuss each step in detail in the following subsections.

3.3.1 Finding the Most Uncertain Example

Similar to the previous works on the pool-based active learning, AGQ first builds a

predictive model based on the current set of labeled examples, and uses it to make

prediction on each example in the pool. The most uncertain example from the pool,

the one with the probability of the majority class closest to 50%, is chosen as the

result of this first step.2

As the probability of the prediction is crucial in choosing the most uncertain example,

we use an ensemble of decision trees in AGQ. Specifically, the bagging [7] of 100 j48

2For highly imbalanced and cost-sensitive data, an optimal threshold for classification can be
calculated [20], or found via cross-validation [49], and the example with the probability closest to
the threshold is chosen as the most uncertain one. Thus, our algorithm can also deal with imbalanced
and cost-sensitive data.
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decision trees (implemented in Weka [57]) is used. The probability distribution of the

prediction is estimated by the prediction of the 100 trees in the ensemble. Such an

ensemble of many trees improves the probability estimation, compared with a single

tree [40]. The standard decision tree algorithm is chosen because it tends to build

small trees; this facilitates us finding irrelevant features in the next step.

3.3.2 Constructing the Generalized Query

After finding the most uncertain (specific) example from the pool in the first step,

AGQ needs to discover the irrelevant features (don’t-care features).

If a set of m features are irrelevant, then the examples with any combination of

their values would have the same prediction with similar probability estimation. The

reverse may not be true, but it can be used as a heuristic to find the set of irrelevant

features. However, there are
(
n
m

)
subsets of m features (given a total of n features),

and for each subset, 2m value combinations (for binary features) must be tested. The

task is clearly computationally expensive.

A heuristic, similar to the process of finding the largest itemsets in mining association

rules [8, 31], is designed. More specifically, let D be the current don’t-care feature

list, and let xu be the current most uncertain example. We gradually expand D by

adding more irrelevant features via greedy search, as follows. For each feature Xi

not currently in D, we generate a fixed number (100 in our experiments) of examples

with randomly assigned values for features in D and Xi, all based on xu. The number

of examples is fixed to prevent combinatorial explosion of feature values when D

grows. The feature value is randomly chosen according to the distribution of that

feature value in the original data set. This most accurately reflects the distribution of

examples in the domain.3 The feature Xi with the smallest change in the probability

distribution of all 100 examples is then regarded as irrelevant, and added into D if

the smallest change is less than a pre-defined threshold. The process continues until

D cannot be grown further. The generalized query is the one with don’t-care (i.e.,

“∗”) for all features in D. This process is depicted with the pseudo code in Algorithm

1.

Clearly, this can generate the most general queries (i.e., queries with the most don’t-

care features) based on the current learning model. However, queries with too many

3The same random sampling method is used in Sections 3.3.3 and 3.3.4.
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Algorithm 1: find don’t-care features
Input: M , the current learning model; xu, the most uncertain example; �, the

predefined threshold.
Output: D, the don’t-care feature list.

pu = probability of majority class for xu (estimated by M);
D = ∅;
noCℎange = true;
repeat

foreach Xi ∕∈ D do
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xi;

end
pn = probability of majority class for xn (estimated by M);

end

Si =
∑100

n=1(pn − pu)2/100;

end
Choose Xi with the smallest Si;
if Si < � then

Add Xi to D;
else

noCℎange = false;
end

until noCℎange is false ;

don’t-care features can be overly general, and labels from the oracle can be highly

uncertain. Thus, we demand the threshold � in Algorithm 1 to be a very small

number (0.0001 in our case). This would allow AGQ to find the most general queries

that, hopefully, also include all relevant features. Still, as the initial labeled training

set can be very small, the current learning model can be inaccurate. Thus, AGQ

may produce generalized queries with don’t-care for relevant features (see Table 3.1

in Section 3.5.1). This will be especially true when the initial labeled training set is

very small. In Section 3.6.3 we study AGQ when there are only two initial labeled

examples.
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3.3.3 Asking Generalized Queries to the Oracle

In our work, we assume that the oracle can answer generalized queries with don’t-care

features just as easily as specific queries (without don’t-care features). We believe

that in most real-world situations, human experts can easily answer such generalized

queries with an estimated probability. As we will also show in Section 3.6.1, our AGQ

performs well with a small error in probability estimation. Thus it is quite robust.

In Section 3.5.2 we will test AGQ on the UCI data sets [3], comparing it with the

traditional pool-based active learner. An interesting question arises: as we do not

know the target functions of the UCI data sets, nor do we have human oracles for

them, how can such generalized queries be answered?

We design the following method to simulate human oracles to answer the generalized

queries. We first train a model based on the original data set to represent the target

function. This is the best model we can get as it is built from the whole data set.

Specifically, we use the bagging of 100 j48 decision trees on the whole data set to rep-

resent the target model. But still, this target model, as a black-box, cannot answer

generalized queries directly. Since each generalized query effectively represents a set

of specific queries, a set of such specific queries (in which the don’t-care features are

replaced with specific values sampled randomly) are generated. To avoid combinato-

rial explosion when the generalized query has too many don’t-care features, the size

of the set is fixed at 100. The target model then returns the predicted probability

distribution of these 100 examples in the set.

One may argue that the generalized queries could be unrealistic thus hard to be

answered by an oracle (as in membership query). In the pool-based paradigm, AGQ

chooses a specific example from the pool and generalizes it to a query. If the example

is realistic, the generalized query is always realistic as well, so the oracle should be

able to answer. For example, if the specific example is [name = Jane, gender =

female, pregnant = yes, age = 30, . . .], then the generalized query could be [name =

∗, gender = ∗, pregnant = yes, age = ∗, . . .]. Unrealistic generalized queries (such as

[name = ∗, gender = male, pregnant = yes, age = ∗, . . .]) will never be constructed.

The next key step of AGQ is to utilize the generalized queries and their labels from

the oracle to further improve learning.
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3.3.4 Updating the Training Data Set

Given the probability distribution to the generalized query from the oracle, we need

to utilize it to expand the training data set and to build a better classifier. Again,

because each generalized query effectively represents a set of specific ones, more than

one specific example can be added into the original labeled training set. There are

two issues to be resolved, however. One is how large the set of specific queries should

be; the second is how to label those examples in the set.

The first question is relatively easy to answer. Again to avoid combinatorial explo-

sion, a set with a fixed size (100 in our experiments) of specific examples is generated

first, in which each don’t-care feature is replaced randomly by a specific value of that

feature. However, experiments (Section 3.5.2) indicate that the number of new exam-

ples added may influence adversely the distribution of the initial training set. If the

initial training set is too small, then the new examples added may be overwhelming,

thus changing the distribution of examples in the training set. Thus, the number of

examples added into the training set is the minimum of 100, half of the size of the

initial training set, and the number of value combinations of all don’t-care features.4

How should each specific query be labeled? As the oracle returns probability distri-

bution of labels (such as 0.9 for positive, 0.1 for negative) for the generalized queries,

specific examples can simply carry weighted labels if the learning model (bagging of

100 j48 trees here) can take weighted examples directly. Most learning algorithms

(such as decision trees, naive Bayes, instance-based learning) can indeed take weighted

examples naturally. Thus, in the above situation, every specific example carries a pos-

itive label with weight 0.9, and a negative label with weight 0.1.

Thus in AGQ, the labeled training set is usually increased by adding multiple labeled

examples (with probability labels), rather than by adding just one labeled example

in the traditional pool-based active learning. If examples added are mostly valid, and

the probability of the majority class is near 1 (a highly certain label), the learning

can be improved dramatically, as we will show in the experiments.

4Note that, as the generalized queries are constructed from the most uncertain examples, when
updating the training set, these most uncertain examples are always added into the training set.
Thus, AGQ always outperforms the traditional uncertainty sampling method.
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3.4 AGQ+ Algorithm

In the previous section, we proposed a novel algorithm AGQ that is composed of

four steps to implement active learning with generalized queries. However, the AGQ

algorithm in Section 3.3.2 can produce generalized queries with features that are

either entirely irrelevant (i.e., generalized as “∗”), or entirely specific (i.e., keeping

the original specific value). That is, as long as the feature is relevant, it could be

represented by only one specific value in the generalized queries. This is clearly

very restrictive. In most real-world applications, however, nominal features can form

subsets (of values), and numeric features can form ranges. What we hope is that

the active learner can automatically form such new, high-level features when it asks

generalized queries.

For example, to predict osteoarthritis, “knee pain” could be a relevant nominal feature

with values “none”, “moderate” and “severe”, and “age” could be another relevant

feature with numeric values. Then, in addition to generalizing the irrelevant features

as “∗”, we may also generalize the relevant features to several nominal values (such

as, “knee pain” being “moderate” or “severe”) or a numeric interval (such as, “age”

being [50, 65] ). We can then construct generalized queries, such as “are people aged

between 50 and 65, with moderate or severe knee pain, likely to have osteoarthritis?”.

Not only are these generalized queries more natural and flexible to represent queries

with different degrees of generalization, the new features constructed can also form

hierarchical structures, and can be meaningful for further learning. For example,

if a subset of nominal feature values or a range of a numeric feature is repeatedly

generated by the active learner, then they can be meaningful high-level concepts, to

be used in future learning, or transfer learning [11, 41]. See Section 3.5.3 for more

discussions. We call this extension “AGQ+”, due to its powerful generalization ability.

AGQ+ has different strategies in the second step of AGQ in constructing the gener-

alized queries; the other three steps (i.e., finding the most uncertain example, asking

generalized queries to the oracle, and updating the training data set) are the same

as AGQ (see Section 3.3). An additional fifth step is added. In this step, subsets

of nominal features and ranges of numeric features generated by AGQ+ are consoli-

dated, and hierarchies may be formed. In this section, we will mainly describe how

AGQ+ generates subsets of nominal features and ranges of numeric features.
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3.4.1 Nominal Features

For nominal features, we first still find all the strong-irrelevant features (i.e., the

don’t-care features) as in Section 3.3.2. Then, we check all the remaining features

by greedy search to identify the weak-irrelevant features (i.e., the features that can

be generalized with several, but not all, nominal values). The main idea is that, the

class probability of the examples with combinations of weak-irrelevant feature values

should be the very similar. Our heuristic strategy is to use this property to discover

which features are weak-irrelevant with corresponding values. More specifically, we

still denote by xu and D the current most uncertain example and the strong-irrelevant

feature list (don’t-care feature list) respectively. We also denote by W the weak-

irrelevant feature list (with the corresponding feature values). Given xu found by the

current learning model, D constructed by Algorithm 1, and an initially empty W , we

gradually expand W with the weak-irrelevant features (and the corresponding feature

values), as follows. For each feature Xi not currently in D and W , and for each of

its feature value Xi = aij, we generate a fixed number (100 in our experiments) of

examples with randomly assigned values for the features in D and W , all based on

xu.
5 The current learning model then makes predictions on the class probabilities

of these examples. If the model produces exactly the same class probabilities for all

these examples and xu, we add the current feature Xi (and the corresponding feature

value aij) into W . Therefore, after checking all the rest features (together with

the corresponding feature values), we can identify all the weak-irrelevant features

and include them into W . Furthermore, we can construct the generalized query, by

substitute all features in D with ∗ and all features in W with their corresponding

values in W . This process is depicted with the pseudo code in Algorithm 2.

3.4.2 Numeric Features

For numeric features, we apply a similar strategy to identify weak-irrelevant features

after obtaining all the strong-irrelevant ones. Roughly speaking, given a strong-

irrelevant feature list D, an initially empty weak-irrelevant feature list W , and the

current most uncertain example xu, we gradually expand W with weak-irrelevant

features (and their corresponding values). However, unlike nominal features, there

5For the features in D, we randomly assign any feature values; whereas for the features in W , we
only randomly assign the corresponding feature values previously identified.
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Algorithm 2: find weak-irrelevant features (nominal)

Input: M , the current learning model; xu, the most uncertain example; D, the
strong-irrelevant feature list (don’t-care feature list).

Output: W , the weak-irrelevant feature list (nominal).

pu = probability of majority class for xu (estimated by M);
W = ∅;
foreach Xi ∕∈ (D ∪W ) do

foreach Xi = aij do
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xk (with available nominal values) for all Xk ∈W ;

end
pn = probability of majority class for xn (estimated by M);

end

Sij =
∑100

n=1(pn − pu);

end
if Sij = 0 then

Add Xi (with aij) to W ;
end

end

are infinite valid values for numeric features, and we need find a numeric range (instead

of several nominal values) for each weak-irrelevant feature (such as, [50, 65] for age).

Thus, Algorithm 2 cannot be applied here. Instead, for each feature Xi not currently

in D and W , we construct a numeric range [ai−�, ai+�] based on the current feature

value ai and a pre-defined small number �.6 Then, we generate a fixed number (100

in our experiments) of examples with randomly assigned values for the features in D,

W and the current feature, all based on xu.
7 Again, the current learning model makes

predictions on the class probabilities of these examples. If the model produces exactly

the same class probabilities for all of these examples and xu, the numeric range will

be again expanded by �. Otherwise, it stops. Then, the current feature (and its

final numeric range) is included in W as a weak-irrelevant feature. Therefore, after

checking all the remaining features, we can identify all the weak-irrelevant features,

6In our experiments, we set � as 1/20 of entire valid feature range.
7For the features in D, we randomly assign any feature values; for the features in W , we randomly

assign the values within the previously identified numeric range; whereas for the current feature, we
randomly assign value within [ai − �, ai + �].
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Algorithm 3: find weak-irrelevant features (numeric)

Input: M , the current learning model; xu, the most uncertain example; D, the
strong-irrelevant feature list (don’t-care feature list); �, the pre-defined small
number.

Output: W , the weak-irrelevant feature list (numeric).

pu = probability of majority class for xu (estimated by M);
W = ∅;
foreach Xi ∕∈ (D ∪W ) do

UB = LB = ai (current feature value);
repeat

UB = ai + �;
LB = ai − �;
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xk for all Xk ∈W (within available numeric range);
Randomly assign Xi within [LB,UB];

end
pn = probability of majority class for xn (estimated by M);

end

Sij =
∑100

n=1(pn − pu);

until Sij > 0 ;
Add Xi (with numeric range [LB,UB]) to W ;

end

and construct the generalized query by substituting all features in D with ∗ and all

features in W with their corresponding numeric ranges. This process is depicted with

the pseudo code in Algorithm 3.

In the next section, we will perform extensive experiments with AGQ and AGQ+.

3.5 Empirical Study

In this section, we conduct experiments on a synthetic data set and 14 UCI [3] data

sets to compare AGQ with the previous active learning algorithm that asks specific

queries. We then apply AGQ+ on the same UCI data sets to see its advantages over

AGQ.
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3.5.1 AGQ on Synthetic Data Set

In this subsection, we use synthetic data to empirically study the performance of

AGQ, compared with the traditional pool-based active learning with uncertainty sam-

pling.8

In addition, we also present the performance of the optimal AGQ, which represents the

best performance that AGQ could possibly achieve. Specifically, for each generalized

query, the optimal AGQ gradually specifies the original feature values for the don’t-

care features, till the oracle provides a certain answer (P (Y = 1∣X) ≥ 0.95 or P (Y =

0∣X) ≥ 0.95 in our experiments). The training set is thereafter expanded according

to this query and the answer. That is, the training set is only updated when the

oracle returns highly certain labels (≥ 0.95). However, some extra queries may still

be asked to the oracle when the answer is not highly certain, which makes optimal

AGQ not realistic. Here, we simply do not count those extra queries, and only count

the “effective” ones — those with certainty greater than (or equal to) 0.95. Thus,

it could reflect the fewest number of queries that AGQ can ask, which indicates the

best performance AGQ can ever achieve.

We choose the target function as a decision tree with five relevant features, X1 - X5,

and six leaves, L1 - L6, as in Figure 3.1. To simulate the real-world data set, we

add another five irrelevant features, X6 - X10, to generate the synthetic data. We

assume that all these features are binary, so is the class label. Therefore, with 10

binary features, we can generate 210 = 1024 different examples, and label them with

the target function. With this synthetic data, we know what the target function is

and what the irrelevant features are. We can also directly use the target function as

the oracle to answer the generalized queries.

The experiment is repeated on the synthetic data set 20 times. Each time, the whole

data set is randomly split into three disjoint subsets: the training set, the unlabeled

set, and the test set. The training set and the test set are always 2% and 25% of the

whole data set respectively, and the rest is the unlabeled set.

Figure 3.2 plots the average error rates of the optimal AGQ (shown as “AGQ-Opt”),

AGQ and the traditional pool-based active learning (shown as “Pool”). We can see

8Note that, as we also use a bagging of 100 decision trees for the traditional pool-based active
learning (as same as for AGQ), the most uncertain example can also be considered as the example
with the maximum disagreement for the current committee (constructed by the current 100 decision
trees). Thus, uncertainty sampling in this case can also be regarded as an implementation of QBC.
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Figure 3.1: Target tree used to generate synthetic data.

clearly, from Figure 3.2, that AGQ’s performance is quite close to the (unrealistic)

optimal AGQ, and is much better than “Pool”. This indicates that the strategies

we designed for AGQ (Section 3.3) is quite effective — AGQ asks generalized queries

with certain labels; that is, they are not overly general. Overly general queries would

receive uncertain labels, and would negatively affect learning. This can happen espe-

cially when the initial training set is very small. See Section 3.6.3.
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Figure 3.2: Comparison of the average error rate among “AGQ-Opt”, AGQ and
“Pool” on the synthetic data.

To further compare AGQ and “Pool”, we extract a typical series of queries from them

during the active learning process. Table 3.1 tabulates these queries (Query in the

table), as well as leaf(ves) in the target tree that these queries fall into (Classified by

Leaf(ves)), ideal query according to the target tree (Ideal Query), answer from the

oracle (Answer), number of specific examples generated to update the training set (No.

of Examples), and error rate of the updated classifier (Error Rate). We can see from
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Table 3.1 that AGQ always constructs generalized queries with don’t-care features

while “Pool” can only choose the most specific queries. These generalized queries

from AGQ may not be as general as the ideal queries (constructed directly from the

target tree; see Figure 3.1), but they still contain the most irrelevant features. Only

one query (Query 2) is overly general (falling into two leaves), thus the answer to this

query is highly uncertain (54%). However, such overly general queries rarely occur in

AGQ learning. (Thus, the performance of AGQ is quite similar to the optimal AGQ,

as we showed earlier.) In this case, answers for the other four queries from the oracle

are highly certain (100%). Thus, AGQ can often include more examples with correct

labels into the training set in each iteration, and obtain significantly lower error rates

(compared with “Pool”).

AGQ Pool
Query 1 [1, 1, 1, 0, *, *, *, *, *, *] [1, 1, 1, 0, 1, 1, 1, 1, 0, 0]
Classified by Leaf(ves) L2 L2
Ideal Query [*, 1, 1, 0, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 10 1
Error Rate 0.18 0.27
Query 2 [0, *, 0, 1, *, *, *, *, *, *] [1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Classified by Leaf(ves) L5, L6 L3
Ideal Query - [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 54% 0
No. of Examples 10 1
Error Rate 0.21 0.22
Query 3 [0, 1, 0, 1, 1, 0, 0, *, 1, *] [1, 1, 1, 1, 0, 1, 1, 1, 0, 1]
Classified by Leaf(ves) L5 L1
Ideal Query [0, *, 0, *, 1, *, *, *, *, *] [*, 1, 1, 1, *, *, *, *, *, *]
Answer 1, 100% 1
No. of Examples 8 1
Error Rate 0.16 0.26
Query 4 [0, 1, 0, 1, 0, 1, *, *, 0, *] [1, 0, 1, 1, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L6 L3
Ideal Query [0, *, 0, *, 0, *, *, *, *, *] [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 8 1
Error Rate 0.17 0.26
Query 5 [1, *, 0, *, 0, *, 1, *, *, *] [1, 1, 1, 0, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L4 L2
Ideal Query [1, *, 0, *, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 1, 100% 0
No. of Examples 10 1
Error Rate 0.13 0.2

Table 3.1: Comparison of five consecutive queries between AGQ and “Pool” on syn-
thetic data.

To summarize from the experiment on the synthetic data, AGQ can often identify

correctly the irrelevant features and construct correctly the generalized queries with

highly certain answers from the oracle. Thus the performance of the classifier is signif-

icantly improved when the corresponding multiple specific examples (with the correct
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labels) are included in the training set. This yields the outstanding performance of

AGQ (similar to the optimal AGQ) on the synthetic data set, compared with the

traditional pool-based active learning.

3.5.2 AGQ on UCI Data Sets

In this subsection, we use 14 real-world data sets from the UCI Machine Learning

Repository [3] to compare AGQ with the optimal AGQ and the pool-based active

learning algorithm. All of these data sets have binary class and no missing values.

Information on these data sets is tabulated in Table 3.2.

Each whole data set (D) is first split randomly into three disjoint subsets: the training

set (R), the unlabeled set (U), and the test set (T ). The test set T is always 25%

of D. To make sure that active learning can possibly show improvement when the

unlabeled data are labeled and included in the training set, we choose a small training

set for each data set such that the “maximum reduction” of the error rate9 is large

enough (greater than 10%). The training sizes of the 14 UCI data sets range from

1/200 to 1/5 of the whole data sets, also listed in Table 3.2. The unlabeled set (U)

is the whole data set (D) taking away the test set (T ) and the training set (R).

Data Set Type of Features No. of Features No. of Examples Class Distribution Training Size
breast-cancer nominal 9 277 196/81 1/5
breast-w numeric 9 699 458/241 1/10
colic nominal/numeric 22 368 232/136 1/5
credit-a nominal/numeric 15 690 307/383 1/20
credit-g nominal/numeric 20 1000 700/300 1/100
diabetes numeric 8 768 500/268 1/10
heart-statlog numeric 13 270 150/120 1/10
hepatitis nominal/numeric 19 155 32/123 1/5
ionosphere numeric 33 351 126/225 1/20
kr-vs-kp nominal 36 3196 1669/1527 1/100
mushroom nominal 22 8124 4208/3916 1/200
sonar numeric 60 208 97/111 1/5
tic-tac-toe nominal 9 958 332/626 1/10
vote nominal 16 435 267/168 1/20

Table 3.2: The 14 UCI data sets used in the experiments.

The experiment is repeated on each data set 20 times (i.e., each data set is randomly

split 20 times), when comparing “AGQ-Opt”, AGQ and “Pool”. We stop training

9The “maximum reduction” of the error rate is the error rate on the initial training set R alone
(without any benefit of the unlabeled examples) minus the error rate on R plus all the unlabeled
data in U with correct labels. Thus, the “maximum reduction” reflects the upper bound on error
reduction that active learning can achieve.
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when the error rate of “Pool” is reduced by 3/4 of the “maximum reduction”.

Figure 3.3 plots the average error rates of “AGQ-Opt”, AGQ and “Pool” on a typical

UCI data sets (“Hepatitis”), and the comparison on all the 14 data sets will be

presented later. We can see from Figure 3.3 that, AGQ performs only slightly worse

than “AGQ-Opt” but significantly better than “Pool”, similar to the result on the

synthetic data set. This again clearly demonstrates the advantage of AGQ: AGQ

performs almost as well as “AGQ-Opt”, and significantly outperforms “Pool”.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Hepatitis

AGQ-Opt
AGQ
Pool

Iteration

Av
er

ag
e 

Er
ro

r R
at

e

Figure 3.3: Comparison of average error rate among “AGQ-Opt”, AGQ, and “Pool”
on “Hepatitis”.

In addition, the t-test (the paired two-tailed t-test with a 95% confidence level) on

the average error rates based on the 14 UCI data sets shows that, AGQ wins on 9,

ties on 4, and loses on 1 data set, compared with “Pool”. This clearly indicates that,

with the same number of queries (same number of iterations), the error rate of AGQ

decreases much faster than “Pool”.

To further analyse the performance of AGQ and “Pool”, we extract some important

statistics during the active learning process. They include the average number of

don’t-care features (and its percentage of the total features) in each query (Don’t-

care Features in the table), the average certainty of the oracle (Certainty of Oracle)10,

average number of specific examples generated to update the training set in each

iteration (Number of Examples), the average number of iterations of AGQ and “Pool”

when their error rates are reduced by 3/4 of the “maximum reduction” (Iteration of

AGQ and Iteration of “Pool”), percentage of iteration reduction between AGQ and

10The certainty of oracle, calculated from the oracle described in Section 3.3, is always about the
majority class (which can be either 1 or 0). Thus, the certainty value is between 0.5 and 1.
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“Pool” (% of Iteration Reduction), and AGQ wins/ties/loses compared with “Pool”

(AGQ w/t/l). Table 3.3 presents these statistics based on the 14 UCI data sets.

Data Set Don’t-care Features Number of Certainty of Iteration Iteration % of Iteration AGQ
(% of Total Features) Examples Oracle of “Pool” of AGQ Reduction (w/t/l)

breast-cancer 2.7 (30%) 14.54 95% 35 18 49% W
breast-w 5.35 (59%) 32.31 87% 18 18 0% T
colic 13.15 (60%) 35.68 91% 15 8 47% W
credit-a 6.38 (43%) 16.43 88% 12 5 58% W
credit-g 8.54 (43%) 4.97 87% 50 12 76% W
diabetes 3.02 (38%) 27.31 89% 50 16 68% W
heart-statlog 5.92 (46%) 12.52 89% 50 25 50% W
hepatitis 13.47 (71%) 14.96 96% 24 5 79% W
ionosphere 27.15 (82%) 8 86% 29 29 0% T
kr-vs-kp 14.89 (39%) 14.48 94% 38 50 -32% L
mushroom 17.81 (81%) 20 94% 10 6 40% W
sonar 48.27 (80%) 20 73% 41 34 17% T
tic-tac-toe 0.07 (1%) 1.28 100% 108 108 0% T
vote 7.28 (46%) 8.31 94% 12 5 58% W
Average 12.53 (51.36%) 16.49 90.21% 35.14 24.21 36% 9/4/1

Table 3.3: Important statistics of AGQ and comparison with “Pool” on the 14 UCI
data sets.

From Table 3.3 we can see that, on average, AGQ discovers 12.5 don’t-care features,

and includes 16.5 examples into the training sets in each iteration. Moreover, the

certainty of the oracle for the constructed generalized queries is as high as 90.21% on

average. This explains the good performance of AGQ: it can ask generalized queries,

most with certain answers from the oracle. In the three data sets (“breast-w”, “iono-

sphere” and “sonar”) where AGQ ties with “Pool”, we can notice that the certainties

of the oracle are relatively low (87%, 86% and 73% respectively); this probably intro-

duces more noise in the training sets, thus degrading the performance. In the data

set “tic-tac-toe” where AGQ also ties with “Pool”, though the certainty of the oracle

is high (100%), AGQ could only discover 0.07 don’t-care feature (on average), and

include only 1.3 examples (on average) in each iteration. This is probably why AGQ

is not much different from the traditional pool-based active learner. For the data set

“kr-vs-kp” where AGQ loses, the certainty of the oracle is relatively high (94%), and

39% of the features are discovered as don’t-care in each query. So why does AGQ

still lose to “Pool”? A detailed study shows that, “kr-vs-kp” is the Chess end-game

board-positions, thus the features are highly constrained. As there are a total of

36 features, the data set (containing about 3,000 examples) is very sparse; that is,

only a small fraction of the feature value combinations is valid. Thus, the examples

generated by AGQ from the generalized queries and included in training set (Section

3.3.4) are mostly invalid examples (i.e., meaningless board positions). These invalid
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examples may severely change the distribution of the original data set thus degrading

the performance of AGQ. We will study this issue further in our future work.

From Table 3.3 we can compare the number of iterations (queries) that AGQ and

“Pool” have required to achieve 3/4 of the “maximum reduction” on the error rate.

We notice that, on the four data sets where AGQ ties with “Pool”, the two methods

require almost the same number of iterations (queries). However, on the nine data sets

where AGQ wins over “Pool”, AGQ asks 61% fewer queries compared with “Pool”.

Over all 14 data sets, AGQ asks, on average, 36% fewer queries compared with “Pool”.

This clearly shows the advantage of AGQ: it requires much fewer queries than “Pool”

on the tested UCI data sets.

To summarize, AGQ performs significantly better than “Pool” on most UCI data sets

(9 out of 14). Moreover, on those data sets where AGQ wins, it requires 61% fewer

queries than needed for “Pool” to achieve the same error rate reduction. This clearly

demonstrates the power of the generalized queries and the advantage of AGQ.

3.5.3 AGQ+ on UCI Data Sets

In this subsection, we conduct the experiments on the same 14 UCI data sets, to

compare the performance of AGQ+ and AGQ. All the experimental configurations

are the same as in the previous subsection. We perform the same t-test on the average

error rates between AGQ+ and AGQ. The results show that for the 14 UCI data sets,

AGQ+ wins on 3, ties on the other 11 data sets, compared with AGQ. This indicates

that AGQ+ can predict as well as AGQ in most data sets, and better than AGQ in

some cases.

The advantage of AGQ+ lies in not only its (slightly) better performance, but more

importantly, its capability of producing natural and powerful generalized queries with

meaningful new features during the active learning process. Consider the data set

“Diabetes” as an example. This data set was originally used in [50] for predicting

diabetes from eight numeric features of the patients. The meanings and valid range

of these features can be found in Table 3.4. However, in [50], those numeric fea-

tures were manually discretized into meaningful categories, in order to train a neural

network model. With our AGQ+ algorithm, in the learning process, the ranges of nu-

meric feature are automatically produced, and the generalized queries are accordingly

constructed, all based directly on the raw numeric features.
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Fea. Name Fea. Range Fea. Meaning
1 preg {0− 17} Number of times pregnant
2 plas {0− 199} Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3 pres {0− 122} Diastolic blood pressure (mm Hg)
4 skin {0− 99} Triceps skin fold thickness (mm)
5 insu {0− 846} 2-Hour serum insulin (mu U/ml)
6 mass {0− 67.1} Body mass index (weight in kg/(height in m)2)
7 pedi {0.078− 2.42} Diabetes pedigree function
8 age {21− 81} Age (years)

Table 3.4: Feature ranges and meanings for “Diabetes”.

To illustrate AGQ+’s capability of producing such numeric ranges and generalized

queries on “Diabetes”, we list several typical feature ranges and queries constructed

in the active learning process. Table 3.5 lists all the eight features (and class) of the

“Diabetes”. The upper part of Table 3.5 shows the manually discretized range for

every feature used in [50]; the middle part shows several typical feature ranges formed

by AGQ+; and the lower part shows eight typical generalized queries and the cor-

responding probability answers from the oracle (each row represents one generalized

query).

Form the middle part of Table 3.5, we can see that AGQ+ automatically produces

necessary ranges of the numeric features, some of which are roughly the same as

the manual ones, while others are completely different. For example, feature “skin”

is generalized with range {0 − 29}, which is very close to the manually discretized

category {0−25}; feature “insu” is generalized with range {142−227}, also close to the

manually discretized category {151 − 240}. In addition, some numeric ranges of the

same feature can clearly form hierarchical structures. For example, for feature “insu”,

the second range {48 − 132} is roughly a subset of the first range {0 − 133}; and the

fourth range {143− 227} is also roughly a subset of the fifth range {145− 399}. The

similar phenomena can also be discovered from other features. Such (hierarchical)

ranges can form new meaningful features without any human interference, and can

be used in further learning.

From the lower part of Table 3.5, we can see that, AGQ+ can generalize the features

to numeric ranges in most queries, and also obtain relatively certain answers from the

oracle. For example, in Query 1, feature “preg” is generalized with range {0−2}, fea-

ture “plas” is generalized with range {> 171}, and this query obtains a 100% certain

answer from the oracle (see Column “class”). This clearly illustrates the behaviour

of AGQ+: it produces meaningful generalized queries (with automatically discretized

feature categories), and obtains certain answers from the oracle. We can also notice
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from Table 3.5 that Query 8 obtains an uncertain answer from the oracle (with 60%

probability estimation). However, this type of low certainty query rarely occurs in the

whole learning process, thus would not significantly affect the performance of AGQ+.

To summarize, AGQ+ performs slightly better than AGQ. Most importantly, AGQ+

is capable of producing meaningful intermediate features during the active learning

process.

3.6 Discussion

In the previous section, we demonstrated the outstanding performance of AGQ and

AGQ+, compared with the traditional pool-based active learning that only asks spe-

cific queries. However, one may be still concerned about some other issues of the

proposed methods, such as: What if the oracle cannot provide accurate probabil-

ity estimation for the generalized queries? What is the difference between AGQ (or

AGQ+) and active learning with feature selection? How does AGQ (or AGQ+) per-

form with very few initial labeled examples? We will answer these questions in this

section. Note that, as the behavior of AGQ and AGQ+ is mostly similar, we only

consider AGQ in this section. All the conclusions are also applicable to AGQ+.

3.6.1 Probability Estimation of the Oracle

In the previous sections, we assumed that for generalized queries, the oracle (or hu-

man expert) is capable of providing accurate probability distributions. However, in

real-world applications, it is common that the oracle or human experts can only pro-

vide “approximate answers” (i.e., estimated probability distributions). We speculate

that small perturbations in probability distribution will not dramatically affect the

performance of AGQ. This is because small perturbations in label probabilities only

represent light noise of examples added in the training set. These light noises could

be cancelled out in the successive updates of the training set. With a robust base

learning algorithm (such as the bagged decision trees), such small noises would be

insensitive. In this subsection, we study this issue experimentally.

We conduct experiments to compare the original AGQ and AGQ with inaccurate

probability answers on the 14 UCI data sets (used in Section 3.5.2). To simulate
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inaccurate probability answers, we first calculate the exact probability answer as

described in Section 3.3.3, and then randomly alter it with up to 10%, 20% and 50%

noise (increase or decrease by up to 10%, 20% and 50% uniformly distributed random

noise). All the other experimental configurations are the same as in Section 3.5.2.

Figure 3.4 plots the average error rates of AGQ, AGQ with 10% noise, AGQ with 20%

noise, and AGQ with 50% noise, on a typical UCI data set (“Hepatitis”). We can see

that the error rates of AGQ with a low level of noise (10% and 20%) are similar to

AGQ without noise, but AGQ with a high level of noise (50%) is significantly worse.
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Figure 3.4: Comparison of the average error rate between AGQ and AGQ with inaccu-
rate probability answers (with 10%, 20%, and 50% noise respectively) on “Hepatitis”.

Table 3.6 presents a summary of the t-test on the average error rates based on the

14 UCI data sets. Each entry in Table 3.6, w/t/l, means that the algorithm in the

corresponding row wins on w, ties on t, and loses on l data sets, compared with the

algorithm in the corresponding column. We can clearly see from Table 3.6 that AGQ

with 10% noise is almost indistinguishable from the original AGQ (it ties with AGQ

on 13 out of 14 data sets). AGQ with 20% noise is only slightly worse than AGQ

without noise (it ties on 9 and loses on 5 data sets). However, AGQ with 50% noise

is significantly worse (it loses on 12, and ties on 2 data sets). Clearly, high noise

in the oracle answers will degrade the performance of AGQ, but low noise will not.

Thus, AGQ is quite robust, and can tolerate a low level of noise in the probability

distribution of oracle answers.



44

AGQ (10%) AGQ (20%) AGQ (50%)
AGQ 1/13/0 5/9/0 12/2/0

Table 3.6: Summary of the t-test on the average error rates for comparing AGQ with
AGQ (10% noise), AGQ (20% noise) and AGQ(50% noise).

3.6.2 AGQ vs. Feature Selection

One may notice that the essence of AGQ is to find irrelevant features, thus, it is closely

related to feature selection. Feature selection (e.g., [25, 32, 33]) attempts to discover

and discard irrelevant features to improve the predictive accuracy. Thus, would it

work if we simply apply the pool-based active learning (which only asks specific

queries) after irrelevant features are discovered and discarded by feature selection?

How does it compare with our AGQ? We study this issue in this subsection.

Indeed, a straightforward way to make the traditional pool-based active learning to

ask generalized queries is to simply apply feature selection as a pre-processing step in

active learning. That is, feature selection is conducted on the initial labeled training

examples, to identify and eliminate all irrelevant features. Then the traditional pool-

based active learning is used to find the most uncertain specific query. Putting back

the irrelevant features as the don’t care, a generalized query is produced. However,

as we are usually given only a small number of initial labeled examples in active

learning, feature selection is most likely to be unreliable, thus eliminating too many

relevant features in the pre-processing step.

A more sophisticated and improved method is to conduct feature selection in each

active learning iteration. More specifically, in each iteration, active learning selects

the most uncertain example based on the current learning model, and at the same

time, feature selection identifies the irrelevant features based on the current labeled

examples. Then, a generalized query can be constructed by substituting all irrelevant

features as ∗ in the most uncertain example. Such generalized queries are asked to

the oracle, and the labeled training set is updated, as in AGQ. In essence, irrelevant

features are identified by feature selection, instead of using the method described in

AGQ (Section 3.3.2).

We implement this feature selection active learning method, and compare its perfor-

mance with the proposed AGQ on the same 14 UCI data sets. More specifically, we

use the backward selection method to select irrelevant features, and use a bagging of

100 decision trees (the same base learning algorithm used in AGQ) as the classifier to
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evaluate them. All the other experimental configurations are the same as in Section

3.5.

Figure 3.5 plots the average error rates of AGQ and the pool-based active learning

with feature selection (called “Feature Selection”) on a typical UCI data set (“Hep-

atitis”). We can see clearly that AGQ performs significantly better than “Feature

Selection”. We also perform the t-test on the average error rates on the 14 UCI data

sets. AGQ wins on 12, and loses only on 2 data sets, compared with “Feature Se-

lection”. This clearly indicates that “Feature Selection” performs significantly worse

than the proposed AGQ in most cases.
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Figure 3.5: Comparison of the average error rate between AGQ and Feature Selection
on “Hepatitis”.

After looking into the queries produced by “Feature Selection” and the corresponding

oracle answers, we find the reason. The generalized queries constructed by “Feature

Selection” are often overly general. More specifically, even though “Feature Selection”

identifies the irrelevant features (and generalizes them as ∗) in each iteration, the

available labeled training examples in each iteration are still limited (especially in

the first few iterations). Thus “Feature Selection” tends to identify more features as

irrelevant, and constructs overly generalized queries. Consequently, the oracle could

only provide uncertain answers to these overly general queries, thus degrading the

active learning performance.

On the other hand, AGQ has a more strict criterion to identify irrelevant features,

compared with “Feature Selection”. More specifically, only when all generated exam-

ples with different feature values have very close class probability estimation (instead

of the same class prediction in “Feature Selection”), the current feature could be re-
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garded as irrelevant. (See Section 3.3.2 for details.) Thus, the overly general queries

would not frequently occur in AGQ (see Table 3.1 in Section 3.5.1).

In addition, AGQ+ can ask generalized queries with subsets of nominal feature values,

or ranges of numeric features. “Feature Selection” will not be able to produce this

type of queries. Thus, AGQ+ is inherently more powerful than “Feature Selection”.

3.6.3 AGQ with Very Few Initial Labeled Examples

In the previous sections, we mentioned that when the initial training set is very

small, the constructed learning model could be unreliable, thus the discovered don’t

features could be unreliable as well. Indeed, with the limited information from few

labeled examples, it is difficult (or even impossible) to correctly identify the don’t-

care features. Thus, in this subsection, we study the performance of AGQ with very

few initial labeled examples.

Given very few initial labeled examples, the original AGQ is more likely to consider

many features as don’t-care, and construct overly general queries. With the uncer-

tain answers from the oracle, these overly general queries can severely degrade the

performance of AGQ. Here, we design an additional heuristic to deal with this issue.

Roughly speaking, for each query, we bond the number of don’t-care features to the

size of the current training set. When the training set is small, only a small number

of features could be considered as don’t-care, due to the limited information provided

by the labeled examples. On the other hand, when the training set is relatively large,

more don’t-care features are allowed to be discovered, as more reliable information is

provided.

Specifically, when constructing the generalized query (as in Section 3.3.2), we add

the current feature into the don’t-care feature list (when all the other conditions are

satisfied), only if the number of all don’t-care feature value combinations is smaller

than (or equal to) the current training set size. For example, given only two labeled

training examples, at most one binary feature could be considered as don’t-care; given

four labeled training examples, at most two binary features (or one four-value feature)

could be considered as don’t-care; and so on.

We implement this heuristic on the base of the original AGQ algorithm, and compare

its performance with “Pool” on the same 14 UCI data sets. All the experimental
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configurations are the same as in Section 3.5, except we only include two labeled

examples (one positive and one negative) in the initial training sets.

Figure 3.6 plots the average error rates of AGQ and “Pool” on a typical UCI data set

(“Hepatitis”). We can see that AGQ still performs significantly better than “Pool”

even with only two initial labeled examples.
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Figure 3.6: Comparison of the average error rate between AGQ and “Pool” on “Hep-
atitis”, with two initial labeled examples.

In addition, the t-test of the average error rates on all the 14 UCI data sets shows

that, AGQ wins on 8, ties on 6, and loses on 0 data set, compared with “Pool”. This

also clearly indicates the similar conclusion as in the previous subsection: the error

rate of AGQ still decreases much faster than “Pool”, even with only a few initial

labeled examples.

3.7 Summary

We have made two assumptions in the chapter: (1) the oracle is capable of answering

the generalized queries; (2) the cost (effort) of answering such generalized queries is

the same as answering the specific ones. Under these assumptions, we have proposed

a four-step strategy (AGQ) for the active learner to ask the generalized queries and

efficiently improve the learning model. The AGQ algorithm is then extended to

AGQ+, which can produce subsets of nominal feature values or ranges of numeric

features. (Therefore, AGQ could be considered as a special case of AGQ+.)

Our experiments show that, compared with the traditional pool-based active learning,

AGQ can achieve the same predictive accuracy with significantly fewer queries (36%
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fewer on average). We also show that AGQ’s performance is similar to the (unrealistic)

optimal AGQ, and the performance of AGQ+ is even more superior to AGQ in some

cases. AGQ works well even with only two labeled examples in the initial training

set. In addition, our experiments verify the robustness of the proposed algorithm:

AGQ with inaccurate answers from the oracle (up to 20% perturbation) still performs

comparably to the original AGQ on most tested UCI data sets.
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Chapter 4

Asking Generalized Queries with

Minimum Cost

4.1 Introduction

In Chapter 3, we have assumed that the oracle is capable of answering the generalized

queries as easily as the specific ones, and proposed two algorithms to improve learning

by asking such generalized queries. However, in many real-world situations, although

the oracle is indeed capable of answering such generalized queries, the cost (effort) is

often higher. For instance, it is relatively easy (i.e., with low cost) to diagnose whether

one specific patient has diabetes or not, with all necessary information provided.

However, it is often more difficult (i.e., with higher cost) to provide accurate diabetes

diagnoses (accurate probability) for all men over age 60 and weighted between 220 and

240 pounds. In a real-world situation, more domain expertise is usually required for

the oracles to answer such generalized queries well, thus the cost for asking generalized

queries is often more expensive. Consequently, it yields a trade-off in active learning:

on one hand, asking generalized queries can speed up the learning, but usually with

high cost; on the other hand, asking specific queries is much cheaper (with low cost),

but the learning process might be slowed down.

In this chapter, we study generalized queries in active learning, by developing delicate

algorithms to handle uncertain answers and applying cost-sensitive framework to

tackling querying cost. More specifically, we assume that the querying cost is known

to be non-uniform, and ask generalized queries in the following two scenarios:
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∙ Scenario 1 (Balancing Acc./Cost Trade-off): We consider only querying

cost in this scenario. Thus, instead of tending to achieve high predictive accu-

racy by asking as few as possible queries (as in traditional active learning), the

learning algorithm is required to achieve high predictive accuracy by paying as

low as possible querying cost.

∙ Scenario 2 (Minimizing Total Cost): In addition to querying cost, we

also consider misclassification cost produced by the learning model in this sce-

nario.1 Thus, the learning algorithm is required to achieve minimum total cost

of querying and misclassification in the learning process.

In particular, we propose a novel method to, first construct generalized queries ac-

cording to two objective functions in the above two scenarios, and then update the

training data and the learning model accordingly. Empirical study in a variety of

settings shows that, the proposed methods can indeed outperform the existing active

learning algorithms in simultaneously maximizing the predictive performance and

minimizing the querying cost.

Asking generalized queries in active learning is more natural and general; and assum-

ing the non-uniform querying cost is more applicable in real-world situations. Our

research of asking generalized queries with non-uniform cost can therefore be directly

deployed in active learning applications.

The rest of the chapter is organized as follows. Section 4.2 reviews previous works

on active learning, especially the assumptions made in the previous active learning

studies. Section 4.3 describes our strategies to ask generalized queries with cost in

two scenarios. In Section 4.4, empirical study is conducted on real-world data sets to

verify the superiority of the proposed methods. Section 4.5 presents conclusions and

future work.

4.2 Related Work

All of the active learning studies make assumptions. Specifically, most of the previous

works assume that the oracles can only answer specific queries, and the costs for

1Here we only consider that both the querying cost and the misclassification cost are on the same
scale. Extra normalization might be required otherwise.
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asking these queries are uniform. Thus, most active learning algorithms (such as

[30, 48, 53, 44, 4, 10, 61, 43]) are designed to achieve as high as possible predictive

accuracy by asking a certain number of queries (or equivalently, asking as few as

possible queries to achieve certain predictive accuracy).

In the previous chapter and [18], we relaxed the assumption of asking specific queries,

and proposes active learning with generalized queries. However, it assumes that the

oracles can answer these generalized queries as easily as the specific ones. That is, the

costs for asking all the queries are still the same, regardless of the queries being specific

or generalized. Druck et al. [17] also assumes that the oracle is capable of providing

labels for features, and proposes active learning with feature labeling. However, the

(non-uniform) cost of asking such queries is also not considered.

Margineantu [35], Kapoor et al. [29], Settles et al. [45] relax the assumption of uniform

cost, and study active learning in a cost-sensitive framework. However, they limit

their research to specific queries, and only consider that the costs for asking those

specific ones are different.

In this chapter, we study generalized queries with cost in active learning. Specifically,

we assume that the oracles can answer both specific and generalized queries, but with

different cost. The more general a query is, the higher cost it causes. This assumption

is more flexible, more general, and more applicable to the real-world applications.

Under this assumption, considering uniform cost for generalized queries (such as [18])

and considering non-uniform costs for specific queries (such as [35, 29, 45]) can both

be regarded as special cases. Table 4.1 illustrates the different assumptions in active

learning studies. As far as we know, this is the first time to propose this more general

assumption and design corresponding learning algorithms for active learning.

Specific Queries Generalized Queries
Uniform Cost [30, 48, 53, 44, 4, 10, 61, 43] [18, 17]
Non-uniform Cost [35, 29, 45] This Chapter

Table 4.1: Assumptions in active learning studies.

4.3 Algorithm

In this section, we design an active learning algorithm to ask generalized queries.

Roughly speaking, the active learning process can be broken into the following two
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steps in each learning iteration:

∙ Step 1: Based on the current training and unlabeled data sets, the learner

constructs a generalized query according to a certain objective function.

∙ Step 2: After obtaining the answer of the generalized query, the learner updates

the training data set, and updates the learning model accordingly.

We will discuss each step in detail in the following subsections.

4.3.1 Constructing Generalized Queries

In each learning iteration, constructing the generalized queries can be regarded as

searching for the optimal query in the query space, according to the given objective

function. We propose two objective functions according to the previous two scenarios

(in Sections 4.3.1.1 and 4.3.1.2), and design an efficient searching strategy to reduce

the computational complexity (in Section 4.3.1.3).

4.3.1.1 Balancing Acc./Cost Trade-off

In scenario 1, we only consider querying cost, and still use accuracy to measure the

predictive performance of the learning model, thus the learning algorithm is required

to balance the trade-off between the predictive accuracy and the querying cost. We

therefore design an objective function to choose query that yields maximum ratio of

accuracy improvement to querying cost in each iteration.

More formally, Equation 4.1 shows the objective function for searching for a query

in iteration t, where qt denotes the optimal query, Qt denotes the entire query space,

CQ(q) denotes the querying cost for the current candidate query q, ΔAcct(q) denotes

the accuracy improvement produced by q, which can also be presented by subtracting

the accuracy in iteration t − 1 (denoted by Acct−1) from the accuracy in iteration t

(denoted by Acct(q)).2

2The accuracy improvement (ΔAcct(q)) can be negative, when the accuracy after asking the
query (Acct(q)) is even lower than the one before asking (Acct−1).
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qt = arg max
q∈Qt

ΔAcct(q)

CQ(q)
= arg max

q∈Qt

Acct(q) − Acct−1

CQ(q)
(4.1)

We can see from Equation 4.1 that, estimating ΔAcct(q)/CQ(q) is required to evaluate

the candidate query q. As we assume that the querying cost CQ(q) is known, we only

need separately estimate the accuracies before and after asking q (i.e., Acct−1 and

Acct(q)).

Estimating Acct−1 is rather easy. We simply apply cross-validation or leave-one-

out to the current training data, and obtain the desired average accuracy. However,

estimating Acct(q) is a bit difficult. Note that, if we know the answer of q, the training

data could be updated by using exactly the same strategy we will describe in Section

4.3.2 (Updataing Learning Model), and Acct(q) thus could be easily estimated on the

updated training data. However, the answer of q is still unknown in the current stage,

thus here, we apply a simple strategy to optimistically estimate this answer, and then

evaluate q accordingly.

Specifically, we first assume that the label of q is certainly 1.3 Thus, we update

the training data (using the same method as in Section 4.3.2), and estimate Acct(q)

accordingly. Then, we assume that the label of q is certainly 0, and again update the

training data and estimate Acct(q) in the same way. We compare these two estimates

of Acct(q), and optimistically choose the better (higher) one as the final estimate.

One might argue that it is inappropriate to assume the answer of q to be certainly

0 or 1, as the true answer is also likely to be uncertain. We clarify this doubt

here. Specifically, in the case that the true answer of q is uncertain (for instance,

“1 with 60% probability”), our strategy will introduce 40% noise when regarding

it as certainly 1, and 60% noise when regarding it as certainly 0. In both cases,

Acct(q) will be underestimated due to the introduced noise, and q thus will be under-

evaluated according to Equation 4.1. Consequently, q will be less likely to be chosen

as the optimal query in the current iteration. On the other hand, in the case that

the true answer of q is indeed certain (for instance, “1 with 100% probability”), our

strategy will introduce zero noise when regarding it as certainly 1, and 100% noise

when regarding it as certainly 0. The estimate of Acct(q) with label 1 is thus likely to

be relatively high due to the noise-free situation, whereas the estimate with label 0 is

3We only consider binary classification with labels 0 and 1 here, for better illustration.
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likely to be low due to the severe noise. The higher estimate, i.e., the estimate with

the true label 1, is then optimistically chosen in our strategy, thus q can be evaluated

according to Equation 4.1 with the true label. Consequently, q will be more likely to

be chosen as the optimal query in the current iteration. This way, we use a simple

strategy to bias the chosen generalized queries towards the ones with certain answers,

thus avoid introducing noise in the learning process.

4.3.1.2 Minimizing Total Cost

In Scenario 2, we consider both querying and misclassification costs, and require

the learning algorithm to achieve minimum total cost in the learning process. We

therefore design an objective function to choose the query that yields minimum total

cost in each learning iteration.

However, calculating this total cost of querying and misclassification is a bit tricky.

In real-world applications, the learning model constructed on the current training

data is often used for the future prediction, thus the “true” misclassification cost

should also be calculated according to the future predicted examples. We assume

that the rough size of such “to-be-predicted” data is known in this chapter, due to

the following reason. In reality, the quantity of such “to-be-predicted” data directly

affects the quantity of resource (effort, cost) that should be invested to construct the

learning model. For instance, if the model would be used for only few times and

on only limited unimportant data, it might not be worth to invest much resource on

model construction; on the other hand, if the model is expected to be extensively used

on a large amount of important data, it would be even more beneficial to improve the

model performance by investing more resource. In many such real-world situations,

in order to determine how much resource should be invested to construct the model,

it is indeed known (or could be estimated) that how extensively the model would be

used in the future (i.e., the rough quantity of the to-be-predicted data).

It is exactly the same case in our current scenario of generalized queries. More

specifically, if the current learning model will only “play a small role” (i.e., make

predictions on only few examples) in the future, it may not worth paying high querying

cost to construct a high-performance model. On the other hand, if a large number

of examples need to be predicted, it would be indeed worthwhile to acquire more

generalized queries (at the expense of high querying cost), such that an accurate

model with low misclassification cost could be constructed.
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This indicates that, the number of “to-be-predicted” examples is crucial in minimizing

total cost. Therefore, we formalized the total cost after t iterations (denoted by Ct
T )

in Equation 4.2, where Ci
Q denotes the querying cost in the ith iteration, Ct

M denotes

the misclassification cost after t iterations, which further can be calculated as the

product of the average misclassification cost4 after t iterations (denoted by AvgCt
M)

and the number of future predicted examples (denoted by n).

Ct
T =

t∑
i=1

Ci
Q + Ct

M =
t∑
i=1

Ci
Q + AvgCt

M × n (4.2)

To obtain the minimum total cost for the learning model, we greedily choose the query

that maximally reduces the total cost in each learning iteration. More formally,

Equation 4.3 shows the objective function for searching for a query in iteration t,

where all notations keep the same meaning as above.

qt = arg max
q∈Qt

(Ct−1
T − Ct

T (q))

= arg max
q∈Qt

((AvgCt−1
M − AvgCt

M(q)) × n− CQ(q)) (4.3)

In the current setting, we assume that CQ(q) and n are both known, thus we need

estimate AvgCt−1
M and AvgCt

M(q) separately, according to Equation 4.3. We again

adopt the similar strategy as in the previous subsection. Specifically, AvgCt−1
M could

be directly estimated by cross-validation or leave-one-out on the original training set,

and AvgCt
M(q) can be optimistically estimated by assuming the label of q is certainly

0 and 1 respectively (see Section 4.3.1.2 for details).

4.3.1.3 Searching Strategy

Given the above two objective functions for two scenarios, the learner is required to

search the query space and find the optimal one in each iteration.

In most traditional active learning studies, each unlabeled example is directly re-

garded as a candidate query. Thus, in each iteration, the query space simply contains

4Average misclassification cost represents the misclassification cost averaged on each tested
examples.
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all the current unlabeled examples, and exhaustive search is usually applied directly.

However, when asking generalized queries, each unlabeled example can generate a set

of candidate generalized queries, due to the existence of the don’t-care features. For

instance, given a specific example with d features, there exist
(
d
1

)
generalized queries

with one don’t-care feature,
(
d
2

)
generalized queries with two don’t-care features, and

so on. Thus, altogether 2d corresponding generalized queries could be constructed

from each specific example. Therefore, given an unlabeled data set with l examples,

the entire query space would be 2dl. This query space is thus quite large (grows

exponentially to the feature dimension), and it is unrealistic to exhaustively evaluate

every candidate. Instead, we apply greedy search to find the optimal query in each

iteration.

Specifically, for each unlabeled example (with d features), we first construct all the

generalized queries with only one don’t-care feature (i.e.,
(
d
1

)
= d queries), and choose

the best as the current candidate. Then, based only on this candidate, we continue to

construct all the generalized queries with two don’t-care features (i.e.,
(
d−1

1

)
= d− 1

queries), and again only keep the best. The process repeats to greedily increase the

number of don’t-care features in the query, until no better query can be generated.

The last generalized query thus is regarded as the best for the current unlabeled

example. We conduct the same procedure on all the unlabeled examples, thus we can

find the optimal generalized query based on the whole unlabeled set.

With such a greedy search strategy, the computational complexity of searching is

thus O(d2) with respect to the feature dimension d. This indicates an exponential

improvement over the complexity of the original exhaustive search Θ(2d). Note that,

it is true that such a local greedy search cannot guarantee finding the true optimal

generalized query in the entire query space, but the empirical study (see Section 4.4)

will show it still works effectively in most cases.

4.3.2 Updating Learning Model

After finding the optimal query in each iteration, the learner will request the corre-

sponding label from the oracle, and update the learning model accordingly. However,

the generalized queries often contain don’t-care features, and the labels for such gen-

eralized queries are also likely to be uncertain. In this subsection, we study how to

update the learning model by appropriately handling such don’t-care features and
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uncertain answers in the queries.

Roughly speaking, we consider the don’t-care features as missing values, and han-

dle the uncertain labels by taking partial examples in the learning process. More

specifically, we simply treat the generalized queries with don’t-care features as spe-

cific ones with missing values. As many learning algorithms (such as decision tree

based algorithms, most generative models, and so on) have their own mechanisms to

naturally handle missing values, this simple strategy can be widely applied. In terms

of the uncertain labels of the queries, we handle them by taking partial examples in

the learning process. For instance, given a query with an uncertain label (such as,

90% probability as 1 and 10% probability as 0), the learning algorithm simply takes

0.9 part of the example as certainly 1 and 0.1 part as certainly 0. Taking partial

examples into learning is often implemented by re-weighting examples, which is also

applicable to many popular learning algorithms.

This simple strategy can elegantly update the learning model. However, a pitfall of the

strategy also occurs. When updating the learning model, the current strategy always

regards one generalized query as only one specific example (with missing values).

This might significantly degrade the power of the generalized queries. On the other

hand, if one generalized query is regarded as too many specific examples, it might

also overwhelm the original training data. Therefore, here we regard each generalized

query as n (same) examples (with missing values), where n is suggested to be half of

the initial training set size by the empirical study.

So far, we have proposed a novel method to construct the generalized query and

update the learning model in each active learning iteration. In particular, we have

designed two objective functions to balance the accuracy/cost trade-off and minimize

the total cost of misclassification and querying. Figure 4.1 summarizes the framework

of asking generalized queries in the current setting, and demonstrates the entire active

learning learning procedure. In the following section, we will conduct experiments on

real-world data sets, to empirically study the performance of the proposed algorithms.

4.4 Empirical Study

In this section, we empirically study the performance of the proposed algorithms on

15 real-world data sets from the UCI Machine Learning Repository [3], and compare

them with the existing active learning algorithms.
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Figure 4.1: The framework of asking generalized queries in active learning.

4.4.1 Experimental Configurations

We compare the proposed algorithms with the traditional pool-based active learn-

ing (with uncertainty sampling5) [30] (denoted by “Pool”) and the active learning

with generalized queries [18] (denoted by “AGQ”). “Pool” and “AGQ” represent two

special cases for querying cost: “Pool” only asks specific queries (with low querying

cost), but cannot take advantage of the generalized queries to improve the predictive

performance; on the other hand, “AGQ” tends to ask as general as possible queries to

promptly improve the predictive performance, but with the expense of high querying

cost. We expect that the proposed algorithms (for the two scenarios) can simulta-

neously maximize the predictive performance and minimize the querying cost, thus

outperforming “Pool” and “AGQ”.

All of the 15 UCI data sets have binary class and no missing values. Information on

these data sets is tabulated in Table 4.2. Each whole data set is first split randomly

into three disjoint subsets: the training set, the unlabeled set, and the test set. The

test set is always 25% of the whole data set. To make sure that active learning can

possibly show improvement when the unlabeled data are labeled and included in the

training set, we choose a small training set for each data set such that the “maximum

reduction” of the error rate6 is large enough (greater than 10%). The training sizes

of the 15 UCI data sets range from 1/200 to 1/5 of the whole data sets, also listed in

5As we use an ensemble of bagged decision trees as the base learner in the experiments (see
Sections 4.3.1.1 and 4.3.1.2), the most uncertain example can also be considered as the example
with the maximum disagreement for the current committee (constructed by all the decision trees).
Thus, uncertainty sampling in this case can also be regarded as an implementation of QBC [48, 21].

6The “maximum reduction” of the error rate is the error rate on the initial training set R alone
(without any benefit of the unlabeled examples) subtracting the error rate on R plus all the unlabeled
data in U with correct labels. The “maximum reduction” roughly reflects the upper bound on error
reduction that active learning can achieve.
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Table 4.2. The unlabeled set is the whole data set taking away the test set and the

training set.

Data Set Type of Features No. of Features No. of Examples Class Distribution Training Size
breast-cancer nominal 9 277 196/81 1/5
breast-w numeric 9 699 458/241 1/10
colic nominal/numeric 22 368 232/136 1/5
credit-a nominal/numeric 15 690 307/383 1/20
credit-g nominal/numeric 20 1000 700/300 1/100
diabetes numeric 8 768 500/268 1/10
heart-statlog numeric 13 270 150/120 1/10
hepatitis nominal/numeric 19 155 32/123 1/5
ionosphere numeric 33 351 126/225 1/20
kr-vs-kp nominal 36 3196 1669/1527 1/100
mushroom nominal 22 8124 4208/3916 1/200
sick nominal 27 3772 3541/231 1/200
sonar numeric 60 208 97/111 1/5
tic-tac-toe nominal 9 958 332/626 1/10
vote nominal 16 435 267/168 1/20

Table 4.2: The 15 UCI data sets used in the experiments.

In our experiments, we set the querying cost (CQ) for any specific query as 1, and

study the following three cost settings for generalized queries with r don’t-care fea-

tures, as follows:

∙ CQ = 1 + 0.5 × r: This setting represents a linear growth of CQ with respect

to r. For instance, the cost of asking a generalized query with two don’t-care

features is (CQ = 1+0.5×2 = 2), which equals to the cost of asking two specific

ones.

∙ CQ = 1 + 0.05 × r: This setting also represents a linear growth of CQ with

respect to r. However, the cost of asking generalized queries is rather low in

this case. For instance, the cost of asking a generalized query with 20 don’t-care

features equals to the cost of asking two specific ones.

∙ CQ = 1+0.5×r2: This setting represents a non-linear growth of CQ with respect

to r. The cost of asking generalized queries is extraordinary high in this case.

For instance, the cost of asking a generalized query with only two don’t-care

features equals to the cost of asking three specific ones.

Note that, these settings of querying cost are only used here for empirically study, any

other types of querying cost could be easily applied without changing the algorithms.
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As for all the 15 UCI data sets, we have neither true target functions nor human

oracles to answer the generalized queries. We simulate the target functions by con-

structing learning models on the entire data sets in the experiments. The simulated

target function regards each generalized query as a specific example with missing

values, and provides the posterior class probability as the answer to the learner. The

experiment is repeated 10 times on each data set (i.e., each data set is randomly split

10 times), and the experimental results are recorded for comparison.

4.4.2 Results for Balancing Acc./Cost Trade-off

In Scenario 1, we still use accuracy to measure the performance of the learning model.

Thus, we use an ensemble of bagged decision trees [7] (implemented in Weka [26]) as

the learning algorithm in the experiment, due to its generally good performance on

classification [9]. Any other learning algorithms can also be implemented in real-world

applications.

Figure 4.2 demonstrates the performance of the proposed algorithm considering only

querying cost (denoted by “AGQ-QC”; see Section 4.3.1.1), compared with “Pool”

and “AGQ” on a typical UCI data set “breast-cancer”. We can see from the subfigures

of Figure 4.2 that, with all the three querying cost settings, “AGQ-QC” can always

effectively increase the predictive accuracy of the learning model with low querying

cost, and outperform “Pool” and “AGQ”. More specifically, in the case that (CQ =

1 + 0.5 × r), “AGQ-QC” significantly outperforms both “Pool” and “AGQ” during

the entire learning process. In the case that (CQ = 1 + 0.05 × r), although “AGQ-

QC” still outperforms the other two algorithm, it performs similarly to “AGQ”. As

the cost of asking generalized queries is rather low in this case, “AGQ-QC” tends to

discover as more as possible don’t-care features in the queries, thus producing similar

predictive performance as “AGQ”. In the case that (CQ = 1 + 0.5 × r2), “AGQ-

QC” still significantly outperforms the other algorithms. Note that, In this case,

the cost of asking generalized queries is relatively high (i.e., grows quadratically with

the number of don’t-care feature), thus “AGQ” tends to discover as few as possible

don’t-care features, and consequently behaves similarly to “Pool”.

To quantitatively compare the learning curves, we measure the actual values of the

accuracies in 10 equal-distance points on the x-axis. The 10 accuracies of one curve

are compared with the 10 accuracies of another using the two-tailed, paired t-test with
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Figure 4.2: Comparison between “AGQ-QC”, “AGQ” and “Pool” on a typical UCI
data “breast-cancer”, for balancing acc./cost trade-off.

95% confidence level. The t-test results on all the 15 UCI data sets with all the three

querying cost settings are summarized in Table 4.3. Each entry in the table, w/t/l,

means that the algorithm in the corresponding column wins on w, ties on t, and loses

on l data sets, compared with the algorithm in the corresponding row. We can observe

the similar phenomena from Table 4.3 that, “AGQ-QC” significantly outperforms

“AGQ” when the querying cost is relatively high (such as, CQ = 1 + 0.5 × r2 and

CQ = 1 + 0.5 × r), and significantly outperforms “Pool” when the querying cost is

relatively low (such as, CQ = 1 + 0.05 × r).

AGQ-QC
C = 1 + 0.5 × r C = 1 + 0.05 × r C = 1 + 0.5 × r2

Pool 6/7/2 10/4/1 5/6/4
AGQ 14/0/1 6/7/2 15/0/0

Table 4.3: Summary of the t-test on the 15 UCI data sets and with three querying
cost settings, for balancing acc./cost trade-off.
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4.4.3 Results for Minimizing Total Cost

In Scenario 2, we use total cost (i.e., the sum of querying and misclassification costs)

to measure the performance of the learning model. Thus, we use a cost-sensitive

algorithm CostSensitiveClassifier based on an ensemble of bagged decision trees (also

implemented in Weka [26]) as the learning algorithm in the experiments. Any other

cost-sensitive learning algorithms can also be implemented in real-world applications.

In addition, we set the false negative (FN) and false positive (FP) costs as 2 and 10

respectively7, and we set the number of the future predicted examples as 1000. Still,

any other settings can be easily applied without changing the algorithm.

Figure 4.3 demonstrates the performance of the proposed algorithm considering to-

tal cost (denoted by “AGQ-TC”; see Section 4.3.1.2), compared with “Pool” and

“AGQ” on the same UCI data set “breast-cancer”. We can see from Figure 4.3 that

“AGQ-TC” effectively decreases the total cost of the learning model, and significantly

outperforms “Pool” and “AGQ”, with most querying cost settings. More specifically,

we can discover the similar pattern between “AGQ-TC” and “AGQ” as in the previ-

ous subsection. When the querying cost is relatively low (such as CQ = 1 + 0.05× r),

“AGQ-TC” and “AGQ” tend to perform similarly; on the other hand, when the query-

ing cost is relatively high (such as CQ = 1 + 0.5 × r2), “AGQ-TC” often significantly

outperforms “AGQ”.

In addition, we can also notice from Figure 4.3 that, instead of keeping decreasing the

total cost, the learning algorithm might also increase the total cost when obtaining

more examples. This is reasonable, especially when the querying cost is relatively

high. When the new examples are obtained in active learning, the querying cost is

increased constantly; if these examples fail to reduce even more misclassification cost,

the total cost is consequently increased.

The t-test results (similar to Table 4.3) on the 15 UCI data sets are summarized

in Table 4.4. It clearly shows that, “AGQ-TC” performs significantly better than

“AGQ” on most (or even all) tested data sets, when the querying cost is relatively

high (such as, CQ = 1 + 0.5 × r2 and CQ = 1 + 0.5 × r). When compared with

“Pool”, “AGQ-TC” still wins (or at least ties) on a majority of tested data sets,

7In general cost-sensitive problem, the absolute FN and FP costs would not affect the predictive
results, as long as the cost ratio is fixed. However, here we also take querying cost into consideration,
thus setting the absolute values for FN and FP cost is necessary.
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Figure 4.3: Comparison between “AGQ-TC”, “AGQ” and “Pool” on a typical UCI
data “breast-cancer”, for minimizing total cost.

especially when the querying cost is relatively low (such as, CQ = 1 + 0.05 × r).

These experimental results clearly indicate that “AGQ-TC” can indeed significantly

decrease the total cost, and outperforms “AGQ” and “Pool” in the learning process.

AGQ-TC
C = 1 + 0.5 × r C = 1 + 0.05 × r C = 1 + 0.5 × r2

Pool 6/7/2 10/4/1 6/6/3
AGQ 15/0/0 6/6/3 15/0/0

Table 4.4: Summary of the t-test on the 15 UCI data sets and with three querying
cost settings, for minimizing total cost.

4.4.4 Approximate Probabilistic Answers

In the previous experiments, we have assumed that the oracle is always capable of

providing accurate probabilistic answers for the generalized queries. However, in real-

world situations, it is more common that only “approximate probabilistic answers” are

provided (especially when the oracles are human experts). We speculate that small

perturbations in the probabilistic answers will not dramatically affect the performance
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of the proposed algorithms. This is because small perturbations in label probabilities

only represent light noises of examples included in the training set. These light noises

could be cancelled out in the successive updates of the training set. With a robust

base learning algorithm (such as the bagged decision trees), such small noises would

be insensitive. In this subsection, we study this issue experimentally.

To simulate the approximate probabilistic answer, we first calculate the exact ac-

curate probabilistic answer from the target model, and then randomly alter it with

up to 20% noise (increase or decrease by up to 20% uniformly distributed random

noise). Figures 4.4 and 4.5 demonstrate the performance the proposed algorithms with

such approximate probabilistic labels (denoted by “AGQ-QC (appr)” and “AGQ-TC

(appr)” receptively), compared with the original “AGQ-QC” and “AGQ-TC”, with

the setting (CQ = 1 + 0.5 × r) and on the typical data (“breast-cancer”).
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Figure 4.4: Comparison of the performance between “AGQ-QC” and “AGQ-QC
(appr)” (with up to 20% noise) on “breast-cancer”.

We can clearly see from these figures that, when only the approximate probabilistic

answers are provided by the oracle, the performance of the proposed algorithms are

not significantly affected. The similar experimental results can be shown with other

settings and on other data sets. This indicates that, the proposed algorithms are

rather robust with such more realistic approximate probabilistic answers, thus can be

directly deployed in real-world applications.

To conclude, we summarize observations from the experimental results, as follows:

∙ In general, according to the two scenarios, the proposed algorithms (“AGQ-QC”
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Figure 4.5: Comparison of the performance between “AGQ-TC” and “AGQ-TC
(appr)” (with up to 20% noise) on “breast-cancer”.

and “AGQ-TC”) are indeed superior to the previous active learning algorithms,

with all the querying cost settings, and on most tested UCI data sets.

∙ In terms of balancing accuracy/cost trade-off (in scenario 1), the proposed algo-

rithm (“AGQ-QC”) can comprehensively beat “AGQ” when the querying cost

is relatively high, and beat “Pool” when the querying cost is relatively low.

∙ In terms of minimizing total cost (in scenario 2), the proposed algorithm (“AGQ-

TC”) can outperform “Pool” in most cases (especially with low querying cost),

and significantly outperform “AGQ” with high querying cost.

∙ Both of the proposed algorithms can perform robustly, when only approxi-

mate (instead of accurate) probabilistic answers are provided for the generalized

queries.

4.5 Summary

In this chapter, we assume that the oracles are capable of answering generalized

queries with non-uniform costs, and study active learning with generalized queries in

cost-sensitive framework. We propose a novel method to construct the generalized

query and update the learning model in each active learning iteration. In particular,

we design two objective functions to choose generalized queries in the learning pro-

cess, so as to either balance the accuracy/cost trade-off or minimize the total cost of
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misclassification and querying. The empirical study in a variety of settings verifies

the superiority of the proposed methods over the existing active learning algorithms,

in terms of simultaneously maximizing the predictive performance and minimizing

the querying cost.

In our future work, we will design global search strategies (instead of the local search

in this chapter) to find the optimal generalized queries in each learning iteration, thus

further improving the performance of the proposed algorithms.
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Chapter 5

Asking Generalized Queries to

Ambiguous Oracle

5.1 Introduction

In both of the previous two chapters, we implicitly assume that the oracle is capable

of providing probabilistic answers for the generalized queries. For instance, given

a prostatitis patient data set, we suppose a specific query (i.e., a specific patient

example) is {ID = 7354288, Name = John, Age = 50, Gender = male, Weight = 230,

Blood-Type = AB, Fever = yes, Urination-Pain = yes, ⋅ ⋅ ⋅ } (with all the features),

and the oracle is required to diagnose whether this patient has prostatitis or not. A

generalized query, therefore, might be “are men between age 45 and 55 with fever and

painful urination likely to have prostatitis?”, where only four features (gender, age,

fever and urination-painful) are provided. It is assumed in previous chapters that the

oracle is able to provide (accurate) probabilistic answers for such generalized queries,

as “Yes, with 80% probability”. This requirement, however, is usually too stringent

in reality.

Instead, generalized queries are often answered with ambiguous answers in real-world

situations. For instance, if the query is “are women (or boys under age 10) likely to

have prostatitis”, the specialist (oracle) would always respond “No”, indicating none

of such people would have this disease. However, if the query is “are men between age

45 and 55 likely to have prostatitis”, the answer would often be “Yes”, indicating some

of such people indeed have this disease, but the accurate proportion (probability) is
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unknown. Clearly, such generalized queries and ambiguous answers commonly occur

in our daily life; thus it is reasonable and desired to study them together.

In this chapter, therefore, we make a more realistic assumption that the oracle can

only provide ambiguous (non-probabilistic) answers to the generalized queries. That

is, the oracle labels the query as negative if (and only if) all the examples represented

by this query are negative; otherwise the query is always labeled as positive. The

similar setting of such ambiguous answers has been extensively studied in multiple-

instance learning [15], and applied to many real-world applications, such as drug

activity prediction [15], content-based image retrieval [60] and text categorization [1];

see Section 5.2 for more details.

In an active learning scenario, such a setting of ambiguous answers is reasonable yet

flexible. On one hand, even though the oracle is still required to answer generalized

queries, the answer only needs to be “Yes (positive)” or “No (negative)”, which is

more natural and applicable in real-world situations. On the other hand, such am-

biguous answers can also be regarded as a more general form of the specific (accurate)

answers. Specifically, when some features are discovered as don’t-care and the query

is generalized, the answer is indeed ambiguous (“Yes” indicates at least one specific

example is positive, whereas “No” indicates all corresponding examples are negative).

However, when no don’t-care feature is discovered and the query turns out to be a

specific one, such a “Yes-No” response naturally becomes the accurate answer to the

specific query. Therefore, such a setting of ambiguous answers is more flexible than

the regular setting in active learning, yet still applicable in many real-world situations.

In this chapter, by assuming that the oracle is capable of providing such ambiguous

answers to the generalized queries, we propose a novel method to, first construct the

generalized queries, and then update the learning model according to the ambiguous

answers. Empirical study on UCI ([3]) data sets shows that, the proposed method

can significantly speed up the learning process, and outperform active learning with

either specific queries or inaccurately answered generalized queries.

The rest of the chapter is organized as follows. Section 5.2 reviews previous works on

active learning and multiple-instance learning. Section 5.3 describes our algorithm to

ask generalized queries and improve the learning model with ambiguous answers. In

Section 5.4, empirical study is conducted on real-world UCI data sets to verify the

superiority of the proposed method. Section 5.5 presents conclusions.
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5.2 Related Work

Most previous works on active learning assume that the oracle could only answer

specific queries, with all features provided. We previously consider a more natural

situation that the oracle is capable of answering generalized queries, and propose a

novel algorithm to ask such queries and improve the learning model [18, 19]. However,

as the answers for such generalized queries are often uncertain, it is also assumed in

[18, 19] that the oracle could provide (accurate) probabilistic answers to those queries.

This assumption, however, is too stringent in many real-world situations.

On the other hand, a more relaxed assumption has been studied in multiple-instance

learning ([15]), where examples are given in bags and the oracle is only required to

provide one ambiguous answer for each bag. More specifically, given a bag of unla-

beled examples, the oracle will respond negatively if (and only if) these examples are

all negative, and respond positively otherwise. In this setting, it is more likely for the

learner to be responded to with a positive answer; and more importantly, such a pos-

itive answer only indicates that at least one example in the given bag is positive, but

the true label of each specific example is still unknown. Many algorithms, such as di-

verse density [36], citation kNN [55], multiple-decision tree [62] and multiple-instance

logistic regression [42], have been developed to tackle such ambiguous answers, so as

to predict labels of the future unseen bags. Despite of the ambiguity of the answers,

multiple-instance learning has been applied to many real-world applications, such as

drug activity prediction [15], content-based image retrieval [60], and text categoriza-

tion [1].

In this chapter, we apply such an ambiguous oracle to active learning with generalized

queries. More specifically, in active learning, the learner always tends to construct

generalized queries and request the corresponding labels from the oracle. However,

the oracle is only capable of responding with ambiguous answers. That is, given a

generalized query, the oracle will respond negatively if (and only if) the examples

represented by the query are all negative, and respond positively otherwise. Such a

setting of ambiguous oracle relaxes the stringent assumptions in the previous stud-

ies of active learning with generalized queries, and is applicable to more real-world

situations.

It is also worth noting that, our study in this chapter is not a simple combination
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of active learning and multiple instances learning.1 Instead of aiming to improve the

predictive performance on the unseen bags of examples in multiple-instance learning,

in this chapter, we still attempt to improve the predictive performance on the unseen

specific examples (as in a traditional supervised setting). In addition, we also consider

generalized queries in an active learning scenario, thus the problem we are attempting

to solve is more complex and difficult.

5.3 Algorithm

In this section, we design an active learning algorithm to ask generalized queries

and further improve the predictive performance based on the responded ambiguous

answers. Specifically, we use logistic regression as the base active learner, due to

its good performance in probability estimation and the convenience of designing an

objective function (see Section 5.3.1 for details).

The learning process can be roughly broken into the following two steps in each

iteration:

∙ Step 1: Based on the current training and unlabeled data sets, the learner

constructs a generalized query (according to a certain objective function).

∙ Step 2: After obtaining the ambiguous answer of the generalized query, the

learner updates the learning model (according to a certain objective function).

In the above two steps, objective functions are required for both constructing the

generalized queries and updating the learning model. Therefore, in the rest of this

section, we first design a universal objective function for both of the above two steps;

and then present the implementation details for each of them.

5.3.1 Objective Function

In each learning iteration, when constructing the generalized query, the optimal query

is expected to be the one that yields the best performance of the learning model;

1Settles et al. [47] categorizes multiple-instance active learning into four scenarios, and develops
a novel algorithm to deal with one of those formulations.
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likewise, when updating the learning model, the optimal model parameters are also

the ones that yield the best predictive performance. Therefore, we can design one

universal objective function to evaluate and optimize both the generalized queries

and the model parameters.

In the current setting, the desired objective function needs to suit all of the following

requirements: 1) logistic regression; 2) active learning; 3) generalized queries; and 4)

ambiguous answers.

In the traditional supervised learning, maximum likelihood is commonly used to train

a logistic regression classifier. Thus, it could also be considered as the most primitive

objective function to find the optimal queries and model parameters, as follows:

< q,w >opt= arg max
q,w

∑
(xi,yi)∈D

log p(yi∣xi; q,w) (5.1)

where, < q,w >opt denotes the tuple of optimal query q and model parameter w,

xi and yi denote the ith example in the given training data set D. This primitive

objective function satisfies the requirement of logistic regression.

In active learning, however, the labeled training data set is usually small, thus the

classifier trained via maximum likelihood alone (Equation 5.1) might be unreliable.

In addition to the training data, we are often given a large amount of unlabeled data

in active learning (for the pool-based setting), and this set of data can also help to

evaluate the generalized queries and the model parameters. Intuitively, if the query

(q) can indeed improve the performance of the learning model, the updated model

would also be more confident in predicting all the unlabeled data; likewise, if the pa-

rameter (w) can indeed yield a high-performance model, the model would also predict

unlabeled data more confidently. Therefore, in addition to the maximum likelihood

on the labeled training data, the predictive certainty (calculated by entropy) on the

unlabeled data can also be considered as an additional measurement. This yields a

more sophisticated objective function, as follows:

< q,w >opt = arg max
q,w

∑
(xi,yi)∈D

log p(yi∣xi; q,w) − �
∑

xj∈U,y∈{0,1}

H(p(y∣xj ; q,w))

= arg max
q,w

∑
(xi,yi)∈D

log p(yi∣xi; q,w)

+�
∑
xj∈U

∑
y∈{0,1}

p(y∣xj ; q,w) log p(y∣xj ; q,w) (5.2)
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where xj denotes the jth unlabeled example in the given unlabeled data set U , and �

represents a trade-off parameter to balance the influence of the labeled and unlabeled

data. This objective function satisfies the requirement of active learning.2

In our current setting, however, instead of requesting the labels for specific examples,

the active learner always attempts to ask generalized queries. Moreover, these gener-

alized queries are often responded to with ambiguous answers by the oracle. Equation

5.2 therefore cannot suit this requirement. Instead, under current conditions, in each

learning iteration, there always exist three data (query) sets: the initial training data

set D, the query set Q which contains all the previous queries asked by the learner

(one in each iteration), and the current unlabeled data set U . Therefore, in the tth

learning iteration, the query qt and the model parameter wt can be optimized by:

maximizing the likelihood with respect to both the initial training data D and the

query set Q, and minimizing the predictive uncertainty with respect to the unlabeled

data U , as follows:

< qt,wt >opt= arg max
q,w

�1

∑
(xi,yi)∈D

log p(yi∣xi; qt,wt)

+ �2

∑
(qk,yk)∈Q

log p(yk∣qk; qt,wt) (5.3)

+ �3

∑
xj∈U

∑
y∈{0,1}

p(y∣xj ; qt,wt) log p(y∣xj ; qt,wt)

where all the notations are the same as in the previous objective functions, and �1,

�2 and �3 represent the trade-off parameters to balance the influence of the three

data (query) sets.

This objective function suits all the requirements in our current setting, and is applied

to both query searching and model updating in each learning iteration, as follows.

∙ In the query searching step, the objective function is applied to find the optimal

query (qopt). Specifically, given one candidate query (and the estimated label,

see Section 5.3.2 for details), Equation 5.3 can be regarded as a univariate

function of the model parameter w (denoted by f(w)). Thus, gradient decent

can be directly applied to find the optimized f(w). Thereafter, among all the

candidate queries, the one that yields the maximum f(w) is chosen and regarded

as the optimal query (qopt).

2The similar objective function has been applied in semi-supervised learning [22] and batch mode
active learning [24]; and these previous studies have shown its applicability in real-world applications.
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∙ In the model updating step, the objective function is applied to find the optimal

model parameter (wopt). Specifically, given the optimal query (qopt) and the true

label provided by the oracle, Equation 5.3 is optimized in a similar way, and

the optimal model parameter (wopt) can be determined.

Unlabeled Data
(U)

Labeled Data
(D)

Previous Queries
(Q)

Candidate
Queries

Objective
Function

Optimal Query
(qopt)

Objective
Function

Updated Model
(Wopt)
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Estimator Oracle

Ambiguous
answer

Query 
Constructing

Model 
Updating

Figure 5.1: The framework of the proposed algorithm.

This entire process is also illustrated in Figure 5.1. However, there are still some issues

to be solved during this learning process, such as, how to search for the candidate

queries, how to estimate the posterior probability for each specific example (p(y∣x))

and each generalized query (p(y∣q)), how to set the trade-off parameters (�1, �2 and

�3) and so on. We will describe the details and answer these questions in the following

sections.

5.3.2 Constructing Generalized Queries

In each active learning iteration, constructing the optimal generalized query can be

implemented by searching for the best one in the query space (according to Equation

5.3). However, two issues need to be solved at this stage: how to search in the query

space, and how to estimate the labels for the candidate queries. We will provide

solutions for these two problems in this subsection.

In most traditional active learning studies, each unlabeled example is directly re-

garded as a candidate query. Thus, in each iteration, the query space simply contains

all the current unlabeled examples, and exhaustive search is usually applied directly.

However, when asking generalized queries, each unlabeled example can generate a set
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of candidate generalized queries, due to the existence of the don’t-care features. For

instance, given a specific example with d features, there exist
(
d
1

)
generalized queries

with one don’t-care feature,
(
d
2

)
generalized queries with two don’t-care features, and

so on. Thus, altogether 2d corresponding generalized queries could be constructed

from each specific example. Therefore, given an unlabeled data set with l examples,

the entire query space would be 2dl. This query space is quite large (grows exponen-

tially to the feature dimension), thus exhaustively evaluating every candidate is no

longer realistic. Instead, we apply greedy search to find the optimal query in each

iteration.

Specifically, for each unlabeled example (with d features), we first construct all the

generalized queries with only one don’t-care feature (i.e.,
(
d
1

)
= d queries), and choose

the best as the current candidate. Then, based only on this candidate, we continue to

construct all the generalized queries with two don’t-care features (i.e.,
(
d−1

1

)
= d− 1

queries), and again only keep the best. The process repeats to greedily increase the

number of don’t-care features in the query, until no better query can be generated.

The last generalized query thus is regarded as the best for the current unlabeled

example. We conduct the same procedure on all the unlabeled examples, thus we can

find the optimal generalized query based on the whole unlabeled set.

With such a greedy search strategy, the computational complexity of searching is

thus O(d2) with respect to the feature dimension d. This indicates an exponential

improvement over the complexity of the original exhaustive search (Θ(2d)). Note that,

it is true that such a local greedy search cannot guarantee finding the true optimal

generalized query in the entire query space, but the empirical study (see Section 5.4)

will show it still works effectively in most cases.

With greedy search, all these candidate queries are expected to be evaluated by

Equation 5.3, such that the optimal one could be determined. Note that, if the

true labels for these candidate queries are known, the evaluation process can be

implemented in exactly the same way as we will describe in Section 5.3.3. However,

all the candidate queries are not yet labeled at the current stage, thus the objective

function cannot be directly applied. Here, we use a simple strategy to estimate the

label probabilities of these queries, and then evaluate them accordingly.

Specifically, given a specific query (with no don’t-care feature), we simply assume

that it is equally likely to be labeled positive or negative; thus we evaluate the query

by regarding its label as 0.5 positive and 0.5 negative. However, in terms of the
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generalized queries with don’t-care features, as they are expected to be responded to

with ambiguous answers (negative if all the examples represented are negative, and

positive otherwise), we also attempt to estimate the probability of such an ambiguous

answer. More specifically, we suppose that each generalized query with n don’t-

care features can be represented by 2n specific examples,3 and each of these specific

examples is still equally likely to be positive or negative. Thus the probability of such a

generalize query being negative would be calculated as 0.52n (i.e., the probability of all

the examples represented being negative), and the probability of being positive would

consequently be (1−0.52n). Therefore, for each candidate query, we apply this simple

strategy to estimate its label probability and make the evaluation accordingly.

To summarize, in each learning iteration, we use greedy search to select candidate

queries from the entire query space, and evaluate these candidates (with the estimated

labels) according to Equation 5.3. The optimal query thus could be discovered.

5.3.3 Updating Learning Model

After discovering the optimal generalized query in each iteration, the active learner

requests the corresponding label from the oracle, and then updates the learning model

(i.e., optimize the model parameter w according to Equation 5.3). However, as the

active learner always tends to ask generalized queries, and is always responded to

with ambiguous answers, the objective function is difficult to be directly specified.

Specifically, with logistic regression, the posterior probability for each example x can

be specified as

p(y = 1∣x) = �(wTx) =
1

1 + e−wTx
(5.4)

Therefore, in Equation 5.3, the part to maximize the log likelihood on the original

training data D (i.e., the first term in Equation 5.3) is easy to calculate, so is the part

to minimize the predictive uncertainty (entropy) on the unlabeled data U (i.e., the

last term in Equation 5.3). However, it is difficult to specify the posterior probability

for all the previous queries (i.e., p(y∣q), as in the middle term of Equation 5.3), due

to the generalization of these queries and the ambiguity of the answers. We will solve

this issue in this subsection.

3See Section 5.3.3 for details why and how each generalized query can be represented by this
many examples.
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The basic idea to estimate the posterior probability for each query (p(y∣q)) works as

follows:

∙ We first specify each generalized query with a set of representative examples;

the posterior probability for each of these examples thus can be presented as in

Equation 5.4.

∙ Then, we combine the probabilities of all these representative examples together,

to form the probability for the corresponding generalized query.

More specifically, as generalized queries contain don’t-care features, each generalized

query can often represent a set of specific examples. For instance, if “temperature” is

the don’t-care feature in a generalized query, this query represents infinite examples

with any temperature values (while keeping other features unchanged). Therefore, it

seems difficult to find appropriate representative examples to specify the generalized

queries.

However, in our current setting, the classifier is always a linear seperator (due to

logistic regression) and the labels of the generalized queries are negative if (and only

if) all the corresponding examples are negative (due to ambiguous oracle). Under

these conditions, we can have an intuition that, given any generalized query with one

don’t-care feature, if (and only if) the corresponding example with the maximum value

(for the don’t-care feature) and the one with the minimum value are both negative, the

generalized query will be labeled negative. For instance, we suppose “temperature”

is the only don’t-care feature, and its valid range is [94F, 108F ]. Thus, a generalized

query {Age = 65, Gender = male, Temperature = ∗, ⋅ ⋅ ⋅ } will definitely be labeled

as negative, if (and only if) the two specific examples, {Age = 65, Gender = male,

Temperature = 94F, ⋅ ⋅ ⋅ } and {Age = 65, Gender = male, Temperature = 108F,

⋅ ⋅ ⋅ }, are both negative. This intuition is illustrated in Figure 5.2.

This illustration indicates that, given a generalized query with one don’t-care fea-

ture, as long as the labels of the two specific examples (with maximum and minimum

values for the don’t-care feature) are known, the label for the query can be easily

determined.4 Therefore, we can simply represent such a generalized query by these

4Note that, in active learning, the minimum and maximum values of any feature can be reliably
estimated from both the labeled and unlabeled data.
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f1(x1,x2)=0
f2(x1,x2)=0
f3(x1,x2)=0
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x2
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+ ++

_
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This figure illustrates the label of a generalized
query {x1 = 2, x2 = ∗} (where the valid range
of x2 is [−1, 2]) with respect to three linear sep-
arators. Line “Query” denotes all the examples
represented by the generalized query, where “A”
{x1 = 2, x2 = 2} and “B” {x1 = 2, x2 = −1}
represent two specific examples with the maxi-
mum and minimum values for the don’t-care fea-
ture x2. Lines “f1(x1, y1) = 0”, “f2(x1, x2) = 0”
and “f3(x1, x2) = 0” represent three linear sepa-
rators in the given 2-D space, and all of them can
only provide ambiguous answers for the queries.
We can clearly see that, “f3(x1, x2)” can simulta-
neously label both “A” and “B” as negativea, it
consequently labels the query as negative; whereas
both “f1(x1, x2)” and “f2(x1, x2)” always label at
least one of “A” and “B” as positive, they label
the query as positive consequently.

aWe suppose all the examples above the linear separa-
tors are positive, and the ones below are negative.

Figure 5.2: An illustration for representing generalized queries with specific examples.

two specific examples in the learning process. Furthermore, we can extend the con-

clusion that, given a generalized query with two don’t-care features, four examples

with the combinations of the min and max values for the two features could be used

to represent the query; and further, a generalized query with n don’t-care features

would be specified by 2n examples.

Now, we are able to specify any generalized query with a set of representative exam-

ples, and the posterior probability for these specific examples can also be presented

through Equation 5.4. Next, we will combine all these probabilities together, to form

the posterior probability for the corresponding generalized query.

As we have introduced in Section 5.1, in the current setting, the ambiguous oracle

provides a negative answer only when all the corresponding specific examples are

negative, and provides a positive answer otherwise. This mechanism is similar to the

labeling process in multi-instance learning (MIL). Therefore, we can simply apply

the existing combining functions in MIL, to form the probabilities of the generalized
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queries. More specifically, we will apply the noise-or function [36]

p(y = 1∣q) = 1 −
n∏
k=1

(1 − p(y = 1∣xk)) (5.5)

to form the probability of the generalized query, where q denotes the generalized

query and (x1, ⋅ ⋅ ⋅ ,xn) denotes the corresponding n representative examples. The

probability for any generalized query therefore can be specified.5

To formalize, given the optimal generalized query (and the true ambiguous label) in

each iteration, by combining Equations 5.3, 5.4 and 5.5, the optimal model parameter

w can be determined by minimizing the following error function:

E(w) = −�1

∑
(x,y)∈D

{yi log �(wTxi) + (1 − yi) log(1 − �(wTxi))}

−�2

∑
(qk,yk)∈Q

{yk log(1 −
∏

xki∈qk

(1 − �(wTxki)) + (1 − yk)
∑

xki∈qk

log(1 − �(wTxki))}

−�3

∑
xj∈U

{�(wTxj) log �(wTxj) + (1 − �(wTxj)) log(1 − �(wTxj))} (5.6)

where �(wTxi) can be further specified by Equation 5.4, and xik denotes the repre-

sentative example for query qk. In addition, gradient decent is applied to implement

optimization, and the gradient of the error function with respect to w can be calcu-

lated:

∇E(w) = −�1

∑
(xi,yi)∈D

{(yi − �(wTxi))xi}

−�2

∑
(qk,yk)∈Q

{
(1 −

∏
xki∈qk(1 − �(wTxki)) − yk)

∑
xki∈qk �(wTxki)xki

1 −
∏

xki∈qk(1 − �(wTxik))
}

−�3

∑
xj∈U

{(log
�(wTxj)

1 − �(wTxj)
)�(wTxj)(1 − �(wTxj))xj} (5.7)

Consequently, in each learning iteration, given the optimal generalized query and the

ambiguous answer, the optimal model parameter can be obtained, and the learning

model can be updated.

In the next section, we will conduct empirical study to discuss the setting for the

5Note that, other combining functions, such as the softmax function [42] p(y = 1∣q) =∑n
k=1 p(y=1∣xk)e

p(y=1∣xk)∑n
k=1 ep(y=1∣xk) , can also be applied to form the probability of the generalized queries.
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trade-off parameters �1, �2 and �3, and compare the proposed algorithm with the

traditional ones.

5.4 Empirical Study

In this section, we empirically study the performance of the proposed algorithm with

generalized queries and ambiguous answers, and compare it with the existing ac-

tive learning algorithms on seven real-world data sets from UCI Machine Learning

Repository [3].

5.4.1 Experimental Configurations

We conduct experiments with two settings of the trade-off parameters (�1, �2 and

�3) for Equation 5.3. Specifically, we first consider a uniform parameter setting, that

is, �1 = �2 = �3 (the corresponding algorithm is denoted by “AL-GQA(u)”). We

can notice from Equation 5.3 that, all the three terms (i.e., log likelihood on D, log

likelihood on Q, and predictive entropy on U) are specified by the summation of

the examples (queries) in each corresponding set. It therefore indicates that, with

uniform trade-off parameters, those three terms are implicitly weighed by the number

of examples (queries) in the corresponding set. For instance, in the initial learning

iterations, D and Q usually contain fewer examples (queries), which consequently

yields lower implicit weights on the first and second terms (i.e., log likelihood onD and

Q); on the other hand, U usually contains a large example of examples, thus the third

term (i.e., predictive entropy on U) will be weighted higher. To compensate for this

effect, we consider another non-uniform parameter setting: �1 = 1/∣D∣, �2 = 1/∣Q∣6,

and �3 = 1/∣U ∣, where ∣D∣, ∣Q∣ and ∣U ∣ denote the size of the corresponding data

(query) sets (the corresponding algorithm is denoted by “AL-GQA(n)”).

We also conduct experiments on active learning with specific queries (uncertainty

sampling [30]; denoted by “AL-US”) and active learning with inaccurately answered

generalized queries [18] (denoted by “AL-GQN”) for comparison. More specifically,

“AL-US” always asks one specific example in each learning iteration, and the an-

swer to the example is always accurate; whereas “AL-GQN” tends to ask generalized

6When the query set Q is empty (i.e., ∣Q∣ = 0), we directly set �2 = 0, indicating that the empty
query set plays no role in this situation.
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queries, and always responds with inaccurate probabilistic answers (with up to 30%

noise). In contrast, the proposed algorithms “AL-GQA(u)” and “AL-GQA(n)” also

tend to ask generalized queries in each iteration, but always respond with ambiguous

(non-probabilistic) answers.

All of the seven UCI data sets have numeric features, binary class and no missing

values. Information on these data sets is tabulated in Table 5.1. Each whole data set

is first split randomly into three disjoint subsets: the training set, the unlabeled set,

and the test set. The test set is always 25% of the whole data set. To make sure that

active learning can possibly show improvement when the unlabeled data are labeled

and included in the training set, we choose a small training set for each data set such

that the “maximum reduction” of the error rate7 is large enough (greater than 10%).

The training sizes of the seven UCI data sets range from 1/100 to 1/5 of the whole

sets, also listed in Table 5.1. The unlabeled set is the whole set taking away the test

set and the training set.

Data Set No. of Features No. of Examples Class Distribution Training Size
breast-w 9 699 458/241 1/20
diabetes 8 768 500/268 1/10
heart-statlog 13 270 150/120 1/10
hepatitis 19 155 32/123 1/5
ionosphere 33 351 126/225 1/20
sonar 60 208 97/111 1/5
spambase 57 4601 1813/2788 1/100

Table 5.1: The seven UCI data sets used in the experiments.

As for all the UCI data sets, we have neither true target functions nor human oracles

to answer the generalized queries, we simulate the target functions by constructing

learning models on the entire data sets in the experiments. The simulated target

function provides ambiguous answer to each generalized query. The experiment is

repeated 10 times on each data set (i.e., each data set is randomly split 10 times),

and the experimental results are recorded for comparison.

7The “maximum reduction” of the error rate is the error rate on the initial training set D alone
(without any benefit of the unlabeled examples) subtracting the error rate on D plus all the unlabeled
data in U with correct labels. The “maximum reduction” roughly reflects the upper bound on error
reduction that active learning can achieve.
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5.4.2 Experimental Results

Based on the seven tested UCI data sets, Figure 5.3 plots the learning curves of

the four algorithms, and presents the summary of t-test (the paired two-tailed t-test

with a 95% confidence level) for comparison (where each entry, w/t/l, means that

the algorithm in the corresponding row wins on w data sets, ties on t data sets, and

loses on l data sets, compared with the algorithm in the corresponding column). We

therefore can make some clear observations from these experimental results:

∙ On most tested data sets, both “AL-GQA(u)” and “AL-GQA(n)” perform sig-

nificantly better than “AL-US”. This demonstrates the superiority of active

learning with generalized queries and ambiguous answers to the traditional

specific-query based learning.

∙ On most tested data sets, both “AL-GQA(u)” and “AL-GQA(n)” perform sig-

nificantly better than “AL-GQN”. This indicates that, compared with inaccu-

rate probabilistic answers, ambiguous answers are often more effective in speed-

ing up active learning with generalized queries.

∙ “AL-GQA(u)” and “AL-GQA(n)” work comparably well on most tested data

sets. Note that, “AL-GQA(u)” usually starts from lower error rates in the initial

iteration (without asking any queries), and then keeps improving the predictive

performance; whereas, “AL-GQA(n)” often has rather high error rates in the

initial iteration, but the predictive performance can be promptly improved once

it starts asking queries.

To conclude, the experimental results clearly demonstrate the advantage of gener-

alized queries and ambiguous answers: such type of active learning is superior in

speeding up the learning process, compared with active learning with either specific

queries or inaccurately answered generalized queries.

5.5 Summary

In this chapter, we assume that the active learner can ask generalized queries, and the

oracle is capable of respond with ambiguous answers (i.e., positive if at least one cor-

responding specific example is positive, and negative otherwise). After demonstrating
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the wide applicability of this setting, we develop a novel algorithm to ask general-

ized queries and update learning model with ambiguous answers in active learning.

Empirical study on UCI data sets demonstrates the superiority of this type of active

learning, and shows that the proposed algorithms can significantly speed up the learn-

ing process, compared with active learning with either specific queries or inaccurately

answered generalized queries.
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Figure 5.3: Learning curves and summary of t-test of the four algorithms on seven
UCI data sets.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we propose a new active learning scheme — active learning with gener-

alized queries. In contrast to the traditional active learning with specific queries, in

this new learning scheme, the learner can ask generalized queries in each iteration, and

the oracle is capable of answering such queries. As one generalized query can usually

represent a set of specific ones, the corresponding answer provided by the oracle is

also applicable to this whole set of specific queries. Therefore, the active learner can

obtain more information from each generalized query (and the corresponding answer),

and furthermore improve the learning more effectively and efficiently.

We thoroughly study active learning with generalized queries from four aspects and

draw the corresponding conclusions, as follows.

In Chapter 2, we demonstrate the superiority of generalized queries over specific one

in active learning, through toy examples and learning theory. More specifically,

∙ When data contain irrelevant features, it can be proved that the query com-

plexity for active learning with generalized queries is significantly lower than

active learning with specific ones.

∙ When data contain no irrelevant features, we consider two types of target mod-

els: decision trees (decision rules) and linear functions. It can be shown that,

with both of these two target models, generalized queries can still significantly

speed up the learning process, compared with specific ones.
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In Chapter 3, we assume that the oracle can answer generalized queries as easily as

specific ones (i.e., with the same effort or cost), and develop two novel active learning

algorithms to improve learning by asking generalized queries. More specifically,

∙ We propose a four-step strategy (AGQ) for the active learner to ask the gener-

alized queries and efficiently improve the learning model.

∙ We extend AGQ to a more powerful algorithm AGQ+, such that more flexible

generalized queries can be constructed and the learning performance can be

further improved.

∙ Empirical study shows AGQ can achieve same accuracy with significant fewer

queries (36% fewer on average) compared with traditional active learning with

specific queries, and AGQ+ can perform even better on some cases.

∙ The AGQ algorithm is quite robust, and can tolerate a low level of noise in the

probability estimation of oracle answers.

∙ Despite the similarity of AGQ and active learning with feature selection, the

former can perform significantly better than the latter on most cases.

∙ Combined with an extra heuristic, AGQ can perform equivalently well even

when the initial training set contains only few labeled examples.

In Chapter 4, we assume that, the more general the query is, the higher cost (effort)

it causes for the learner to request the label. We study the generalized queries in a

cost-sensitive framework to balance the trade-off of the predictive accuracy and the

query cost or minimize the total cost of misclassification and query. More specifically,

∙ We consider querying cost only, and accordingly propose an algorithm to achieve

high predictive accuracy by paying as low as possible querying cost.

∙ We consider both querying and misclassification cost, and accordingly propose

an algorithm to achieve minimum total cost of querying and misclassification.

∙ Empirical study shows that, the propose algorithms can significantly outperform

the traditional active learning with specific or generalized queries.
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∙ Both of the proposed algorithms can perform robustly when only approximate

probabilistic answers are provided for the generalized queries.

In Chapter 5, we assume that the oracle can only provide ambiguous answers to gener-

alized queries (i.e., positive if at least one corresponding specific example is positive,

and negative otherwise), and aim to improve active learning with such ambiguous

answers. More specifically,

∙ We develop a novel algorithm to ask generalized queries and update the learning

model with the corresponding ambiguous answers in active learning.

∙ Empirical study shows that, the proposed algorithms can significantly speed up

the learning process, compared with active learning with either specific queries

or inaccurately answered generalized queries.

6.2 Future Work

In out future work, we plan to further study active learning with generalized queries

from the following two aspects.

First, we would further theoretically study the effect of generalized queries in active

learning. More specifically, we plan to derive more detailed query complexity of active

learning with generalized queries (given different hypothesis spaces), and compare it

with traditional active learning with specific queries. The advantage (and possible

disadvantage) of generalized queries are expected to be thoroughly analysed.

Second, we plan to collaborate with a human specialist and apply active learning

with generalized queries to a real-world medical diagnosis and symptoms analysis

application. The learning algorithm is required to propose reasonable generalized

queries during the learning process, and the specialist is required to answer these

queries as an oracle. Such active learning with generalized queries is expected to

significantly speed up the entire learning process, and eventually build up a automatic

diagnosis system.
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