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ABSTRACT 
 
 

Nowadays point cloud (a set of dense discrete points) has become an emerging 

data format to represent 3D surface geometry due to the increasing application of 3D 

laser scanning systems.  Converting such a discrete point representation into a continuous 

surface representation is known as surface reconstruction.  Many computer-aided design 

and inspection applications demand an accurately reconstructed surface corresponding to 

a watertight triangle mesh passing through the scanned point cloud data.  Automatic 

reconstruction of a watertight triangle mesh with correctly represented sharp features 

remains an open issue in surface reconstruction research. 

This thesis presents an integrated triangle mesh processing framework for surface 

reconstruction based on Delaunay triangulation.  It features an innovative multi-level 

inheritance priority queuing mechanism for seeking and updating the optimum local 

manifold mesh at each data point.  The proposed algorithms aim at generating a 

watertight triangle mesh interpolating all the input points data when all the fully matched 

local manifold meshes (umbrellas) are found.  Compared to existing reconstruction 

algorithms, the proposed algorithms can automatically reconstruct watertight 

interpolation triangle mesh without additional hole-filling or manifold post-processing.  

The resulting surface can effectively recover the sharp features in the scanned physical 

object and capture their correct topology and geometric shapes reliably.  The main 

Umbrella Facet Matching (UFM) algorithm and its two extended algorithms are 

documented in detail in the thesis.  The UFM algorithm accomplishes and implements the 

core surface reconstruction framework based on a multi-level inheritance priority queuing 



 

iv 

mechanism according to the progressive matching results of local meshes.  The first 

extended algorithm presents a new normal vector combinatorial estimation method for 

point cloud data depending on local mesh matching results, which is benefit to sharp 

features reconstruction.  The second extended algorithm addresses the sharp-feature 

preservation issue in surface reconstruction by the proposed normal vector cone (NVC) 

filtering.  The effectiveness of these algorithms has been demonstrated using both 

simulated and real-world point cloud data sets.  For each algorithm, multiple case studies 

are performed and analyzed to validate its performance. 

 
 
 
Keywords: Surface reconstruction, Point cloud, Triangle mesh, Delaunay triangulation, 
Local mesh matching, Priority queue, Sharp feature 
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NOMENCLATURE 
 
 

P   = given a point cloud or point set 
 
p  or v  = a point in P  

 
S   = original surface of a physical object 
 
S   = reconstructed (triangle mesh) surface 
 

( )V P   = Voronoi diagram of a point set P  
 

pV   = Voronoi cell corresponding to a point p  

 
( )D P   = Delaunay triangulation of a point set P  

 

vDT   = Delaunay triangle set incident to a point v  

 
( )GT P  = all Gabriel triangles in ( )D P  

 
( )GG P  = Gabriel graph of a point set P  

 

vGT   = Gabriel triangle set incident to point v  

 
( )vDT U  = umbrella Delaunay-triangle set incident to point v  

 

vU   = an umbrella at point v  

 
( )vU f   = triangular facet set in the umbrella at point v  

 
( )vU f   = all fully matched triangular facets in the umbrella 

at point v  
 

( )vU p   = circumjacent neighboring point set in the umbrella 

at point v  
 
f   = a triangular facet of the umbrella 

 
f   = a fully matched triangular facet of the umbrella 
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fM   = absolute matching index of f  

 

( )f vM   = relative matching index of f  with respect to v  

 


vU   = void matched umbrella at point v  
 

vU    = partially matched umbrella at point v  

 

vU   = fully matched umbrella at point v  

 

vG   = grade of point v  with an umbrella 

 
F   = topology deviation of a reconstructed triangle-mesh surface 

 
V   = number of vertices in a triangle mesh 
 
F   = number of triangles in a triangle mesh 
 
G   = genus of a physical object 
 

( )kN p   = k-nearest neighbors of point p  

 
N   = nominal normal of a Normal Vector Cone 
 
   = cone angle of a Normal Vector Cone 
 
R   = limitation range of a Normal Vector Cone 
 

dihedral   = dihedral angle of two adjacent triangles 

 
 
 

 



1 

 

 
1 INTRODUCTION 
 
 
1.1. Background and Motivation 
 
 

The past few decades have seen more and more applications of 3D data 

acquisition technologies in many disciplines.  For example, in manufacturing industries, 

both traditional Coordinate Measuring Machine (CMM) contact measurement and 

emerging 3D laser scanner non-contact measurement have become the most significant 

3D data acquisition applications in reverse engineering.  In computer graphics 

community, it is often required to capture complex 3D shapes on site by portable laser 

scanner for computer simulation and animation.  In addition, X-rays, Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) scanning are all typical data 

acquisition applications in medical field.  In all these applications, data sources from 

various data acquisition devices consist of discrete sampling data, which could be further 

divided into different categories: unorganized data, contour data, volumetric data, range 

data, and so on.  Converting the discrete sampling data representation of a physical object 

into a continuous surface of digital representation in computer is known as surface 

reconstruction. 

If the discrete sampling data has enough resolution to represent the scanned model 

surface, the surface reconstruction would recover the topology and geometry of the 

model surface.  The general pipeline of the 3D data acquisition and processing from the 

initial physical object in real-world to the final digital model in computer-world is shown 

in Figure 1.1.  The first stage involves the acquisition of the discrete sample from a 
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physical object through 3D data acquisition system.  The second stage includes 

reconstructing basic geometric surface model from the acquired discrete sampling data.  

Once the geometric model is in place, various application-specific modeling and digital 

processing can be launched in the third stage.  In all the stages of the data acquisition and 

processing, surface reconstruction undoubtedly stands out as the most significant and 

challenging task in obtaining the digital model from the physical object. 

 

 
 
 

Figure 1.1  The general pipeline of 3D data acquisition and processing 
 
 
 

In manufacturing industries, 3D data acquisition based on laser scanning system 

has become a standard in capturing the complicated surface geometry of physical objects 

for applications such as CAD/CAM/CAI.  Point cloud (unorganized point set data) from 

3D laser scanner is emerging as a new data format for representing surface geometry of a 

scanned model, which includes no more information than the coordinates of measured 

points in the most general sense.  Meanwhile, triangle meshes have become increasingly 

popular in representing piecewise linear 0C  continuous surface, and are employed 

intensively in computer graphics and geometric processing: the sheer simplicity in 

concept allows for maximal flexibility and efficiency in computer processing.  Triangle 
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meshes have thus developed into a favourable alternative to traditional spline surfaces 

and are widely adopted in CAD/CAM/CAI applications, mesh-based numerical 

simulation and analysis, computer game and movie/animation production.  In this context, 

the surface reconstruction proposed in this thesis will focus on converting the 

unorganized point cloud data from laser scanner into the triangle mesh surface. 

 
1.2. Scope and Objectives 
 
 

1.2.1. Problem Definition 

 
The definition of surface reconstruction can be stated as: given an unorganized 

point cloud P  in Euclidean space 3R , scanned from an original surface S  in Euclidean 

space 3R , to reconstruct a triangle mesh surface S  ( 0C  continuity) so that the points of 

P  lie on or close to S  and the surface S  is topologically equivalent and geometrically 

close to S .  Depending on the specific application, one can choose the reconstructed 

triangle mesh to either interpolate (pass through) all measurement points in the point 

cloud or approximate them within a given tolerance [1].  Main characters are listed here:  

Input: the unorganized data point cloud 3P R  from an original surface 3S R . 

Output: reconstructed triangle mesh surface S  ( 0C  continuity) topologically 

equivalent and geometrically close to S  

Choice: interpolation or approximation of the point cloud P  

 
Figure 1.2 shows one example of surface reconstruction.  Regarding surface 

reconstruction, the original surface S  of physical object is unknown except the point 

cloud P  scanned from original surface S : which is the ensemble of the coordinates of 
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scanned points.  The desired product of surface reconstruction is a reconstructed triangle 

mesh surface S  which is able to represent the correct topology with reliable 

approximation of the geometry of S .  The reconstructed triangle mesh surface S  can be 

configured either as interpolation of all measurement points in point cloud P  or 

approximation thereof with prescribed degree of tolerance. 

 

 
 
 

Figure 1.2  An example of surface reconstruction 
 
 

1.2.2. Geometry Processing Based on Triangle Mesh 
 

As the sole input, obtaining and optimizing point cloud data scanned from 

physical object is crucial for successful surface reconstruction.  Point cloud data scanned 

from general 3D laser scanner is often the dense and noisy data, especially in some small 

sharp features region.  Consequently, a specific pre-processing of point cloud, such as 

denoising and simplification of raw point cloud data, is often required as an essential step 

prior to surface reconstruction.  Figure 1.3 depicts a general geometry processing 

procedure based on triangle-mesh surface from the raw input point cloud data to the final 
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desired triangle mesh digital model.  Most surface reconstruction algorithms fall into 

three categories: implicit surface, region growing and Delaunay-based approaches.  

Depending on different reconstruction approach, the reconstructed triangle meshes often 

require specific post-processing, such as hole-filling post-processing, for more accurate 

recovery of geometric surface information of scanned physical object.  Mesh 

optimization further improves the quality of the reconstructed triangle-mesh surface for 

next-level geometric processing by smoothing, subdivision, remeshing, and so forth.  

Finally, all kinds of modeling technology based on meshes can be applied for different 

computer applications. 

 

 
 
 

Figure 1.3  Geometry processing based on triangle mesh 
 
 

1.2.3. Research Objectives 
 
 

Although many surface reconstruction schemes have been proposed in the past 

few decades, accurate surface reconstruction remains a challenge in practice due to the 

sparsity, redundancy, noisiness of the acquired point cloud data and/or the non-

smoothness and sharp boundaries of the original surface of physical object.  Instead of 

one single dominant method, there are many different approaches that are currently in use 
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depending on input properties, the output requirement, software availability, user 

preference, etc. 

Recently in manufacturing industry, 3D data acquisition technologies based on 

ultra-precise 3D laser scanning system have gained popularity in computer-aided design 

and inspection, and become a powerful tool in capturing accurate geometry of 

complicated physical objects.  For example, the Surveyor Laser Probes of Laser Design, 

Inc. can capture up to 225,000 points per second and their accuracy can achieve up to 10 

μm , which provide a high-accuracy, high-speed, non-contact 3D scanning for industry.  

Many computer-aided design and inspection applications demand high-quality surface 

reconstruction corresponding to a watertight manifold triangle-mesh surface for advanced 

subsequent process.  Furthermore, since all measurement points in a point cloud data 

come from a physical object in real-world, the scanned raw measurement information 

should be preserved for subsequent process or analysis.  This requires the reconstructed 

triangle mesh surface passing through (interpolating) all raw measurement points in 

scanned unorganized point cloud data, which can still be pre-processed through the 

specific denoising or simplification process for point cloud data as mentioned previously.  

Automatic reconstruction of such triangle mesh surfaces with correctly represented sharp 

features remains an open research topic in surface reconstruction research. 

This thesis is dedicated to watertight triangle mesh surface reconstruction with 

emphasis on the recovery of the sharp features.  The reconstructed triangle mesh surface 

is manifold mesh and passes through all measurement points.  In the context of this thesis, 

we assume the input point cloud P  in Euclidean space 3R  is a low-noise, unorganized 
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coordinate data set containing no other geometric information (such as surface normals).  

Unlike other organized data, such as contour data and volumetric data, unorganized point 

cloud data input also means that the proposed reconstruction algorithms in this thesis 

focus on the general surface reconstruction problems.  They do not assume any additional 

structure information or relationship information among input point cloud data except 

pure 3D coordinate value of each point.  The genus of the original surface S  of scanned 

physical object is also not limited in our treatment.  The objective of proposed surface 

reconstruction approach is to create a triangle mesh surface S  ( 0C  continuity) so that all 

measurement points of P  lie on S  and the reconstructed surface S  is a watertight 

manifold surface expected to capture correct topology with reliable geometric 

approximation.  Main characters are listed here:  

Objective: triangle mesh surface 3S R   ( 0C  continuity) with high quality 

(watertight manifold triangle mesh; passing through all measurement points in P ; 

topologically equivalent and geometrically close to S ; preserving the sharp 

features of S  well).  

Assumption: an unorganized, low-noise point cloud 3P R  from the original 

surface 3S R  of a physical object. 

 
Watertight surface is a close surface that bounds a solid.  It could be formally defined [2] 

as a 2-complex embedded in Euclidean space 3R  whose underlying space is same as the 

boundary of the closure of a 3-manifold in Euclidean space 3R . 
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1.3. Thesis Structure 
 
 

Relevant mathematical concepts and literature review are presented in Chapter 2.  

Chapter 3 introduces the core Umbrella Facet Matching (UFM) algorithm, which 

provides a surface reconstruction framework based on a multi-level priority queuing 

mechanism according to the progressive matching results of local meshes.  The first 

extended algorithm introduced in Chapter 4 proposes a new normal vector estimation 

method for point cloud data from local mesh matching results.  The second extended 

algorithm introduced in Chapter 5 addresses the sharp-feature preservation issue in 

surface reconstruction by an innovative normal vector cone (NVC) filter, which is an 

extended UFM algorithm in fact.  Chapter 6 discusses main contributions and directions 

for future research.  The structure of this thesis is shown as flow chart in Figure 1.4. 
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Figure 1.4  Structure of the thesis. 
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2 PREREQUISITES AND LITERATURE REVIEW 
 
 
2.1. Mathematical Prerequisites 
 
 

Surface reconstruction algorithms described in this thesis construct a piecewise 

linear approximation (triangle mesh) of the original physical object surface by 

approximating or interpolating the scanned point cloud data.  This mathematical 

approximation is intended to capture the correct topology and geometric shapes of the 

original physical object surface.  A necessary preparation is given here on some basic 

concepts and terminology from related mathematic disciplines, such as computational 

geometry and point set topology. 

2.1.1. Voronoi Diagram and Delaunay Triangulation 
 

Voronoi diagram and Delaunay triangulation are essential geometric data 

structures that are built upon the notion of “neighbor”.  Delaunay triangulation is the dual 

graph of Voronoi diagram.  For curves and surfaces in Euclidean space, their many 

differential properties are defined with a local neighborhood.  Voronoi diagram and 

Delaunay triangulation can provide a powerful way to approximate the neighborhood in 

the discrete domain, such as the discrete points set.  Some basic related concepts on them 

are introduced in this section. 

Voronoi diagram 
 

The Voronoi diagram ( )V P  of a point set P  is defined as a neighbourhood region 

decomposition of Euclidean space 3R .  Every neighbourhood region is a cell, which is 

called Voronoi cell.  Each Voronoi cell corresponds to exactly one point and contains all 
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points of 3R  that do not have a smaller distance to any other point in point set P .  The 

Voronoi cell corresponding to each point p P  is given as follows [3] 

 3 :pV x R q P x p x q            (2.1) 

 
 
Closed faces shared by two Voronoi cells are called Voronoi faces.  In this cell 

decomposition, the rest geometric elements includes: Voronoi edges and Voronoi vertices.  

Voronoi objects represent all these geometric elements.  The collection of all Voronoi 

objects creates the Voronoi diagram.  A 2-dimensional example of a Voronoi diagram is 

shown in Figure 2.1a. 

 

           
 

(a)                                                                    (b) 
 
 

Figure 2.1  (a) Voronoi diagram and (b) Delaunay triangulation in the plane 
 
 
 
Delaunay triangulation 
 

The Delaunay triangulation ( )D P  of P  is a dual graph of the Voronoi diagram. 

Figure 2.1b shows a 2-dimensional example of a Delaunay triangulation, which is the 

dual of the Voronoi diagram in Figure 2.1a.  In this 2-dimensional example, the Voronoi 

diagram is built by all perpendicular bisectors of a pair of “adjacent” points in points set 
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P .  By connecting all point pair, the Delaunay triangulation of P  is built.  

Corresponding to different Voronoi objects, there exist different Delaunay simplexes: 

Delaunay cell, Delaunay face, Delaunay edge and Delaunay vertex.  Every point in P  is 

just a Delaunay vertex and Delaunay cell is a tetrahedron in Euclidean space 3R .  More 

details on their dual relationships are shown in the following Table 2.1. 

 
 
 

Figure 2.2  The Voronoi diagram and its dual graph Delaunay triangulation 
 
 
 

Another two-dimensional example of the dual relationship between Voronoi 

diagram and Delaunay triangulation is illustrated in Figure 2.2.  u  and v  are two 

Voronoi vertices and uv  is a Voronoi edge.  Some of the Voronoi cells (polygonal cells 

by gray lines in Figure 2.2) may be unbounded with unbounded edges.  It is inherent that 

a Voronoi cell pV  is unbounded if and only if p  is on the boundary of the convex hull of 

P .  In Figure 2.2, 
1pV  and 

3pV  are unbounded and 1p  and 3p  are on the convex hull 

boundary.  The Delaunay triangle 1 2 3p p p  is dual to the Voronoi vertex v  and the 

Delaunay edge 1 2p p  is dual to the Voronoi edge uv .  For Euclidean space 2R and 3R  (2-

dimensional and 3-dimensional space), Table 2.1 demonstrates all corresponding 
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geometry elements in dual relationship between Voronoi diagram and Delaunay 

triangulation.  Additionally, for the Delaunay triangle, 1 2 3p p p , consider a circumcircle, 

which is the unique circle passing through 1p , 2p  and 3p .  Its center is the corresponding 

Voronoi vertex v  and it encloses no other point in P .  It turns out that empty circles 

characterize Delaunay triangles in Euclidean space 2R .  Analogously, Delaunay 

tetrahedrons in Euclidean space 3R  are said to have the empty ball property. 

Table 2.1 Corresponding geometry elements in dual relationship between Voronoi 
diagram and Delaunay triangulation 

 
 

Voronoi Cell  
(Voronoi Face) Voronoi Edge Voronoi Vertex 

Convex polygon Line Point 

Point Line Triangle 

 
 
 
               Euclidean 
               Space 
              2R  

Delaunay Vertex Delaunay Edge 
Delaunay Cell 

(Delaunay Face) 

Voronoi Cell Voronoi Face Voronoi Edge Voronoi Vertex 

Convex polyhedron Convex polygon Line Point 

Point Line Triangle Tetrahedron 

 
 
Euclidean 
Space 

3R  

Delaunay Vertex Delaunay Edge Delaunay Face Delaunay Cell 

 
 
 
 
Gabriel simplex 
 

A simplex is called Gabriel if its smallest circumscribing ball is empty [3].  All 

Gabriel simplices are subset of the Delaunay triangulation.  As a 2-dimensional example, 

Figure 2.3 shows a point set 1 2 3 4{ , , , }P p p p p , all simplices of its Delaunay 

triangulation ( )D P  possess four vertices (0-simplices) 1p , 2p , 3p  and 4p ; five edges (1-
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simplices) 1 2p p , 2 3p p , 3 4p p , 4 1p p  and 2 4p p ; two triangles (2-simplices) 1 2 4p p p  and 

2 3 4p p p .  Only the smallest circumscribing ball (dashed circle) of edge 2 4p p  is not 

empty (enclosing another vertex 1p  in P ).  Hence all edges are Gabriel edges except 

edge 2 4p p .  Gabriel graph is well-known and extensively used geometric graph that only 

contains all these Gabriel edges (1-simplices), denoted as ( )GG P .  All Gabriel triangles 

(2-simplices) of point set P  are denoted as ( )GT P , where ( ) ( )GT P DT P .  Gabriel 

simplex is often used in the initial step of surface reconstruction to help determine the 

final desired output. 

 
 
 

Figure 2.3  An example of Gabriel graph in the plane 
 
 
 
 

2.1.2. Related Concepts 
 
K-ball and K-sphere 
 

In fact, Euclidean space kR  is a topological space, whose topology is the system 

of open sets.  In this system, each open set is a union of open balls set, which is defined 

as the set of all points closer than certain distance from a given point.  As described the 

book by Dey [4], let x  denote a point in kR , that is, 1 2{ , ,..., }kx x x x  and 
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2 2 2 1 2
1 2( ... )kx x x x     denote its distance from the origin.  Example of its subspace 

topology are the k-ball kB , k-sphere kS , and the open k-ball k
oB  where [4] 

{ | 1}k kB x R x    

1{ | 1}k kS x R x    

\k k k
oB B S  

Some examples of k-ball and k-sphere are shown in Figure 2.4.   

     
0-ball (point)   1-ball (closed interval) 2-ball (closed disk) 

(a)    (b)    (c) 
 

     
0-sphere (pair of points) 1-sphere (circle) 2-sphere (usual sphere) 

(d)    (e)    (f) 
 
 
 

Figure 2.4  Some examples of k-ball and k-sphere in [5] 
 
 
 
Homeomorphism 
 

Two topological spaces are the same when one has a correspondence to the other 

which keeps the connectivity unchanged.  For instance, the surface of a sphere can be 

deformed into a cube without any incision or attachment during the deformation process.  
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They have the same topology.  A precise definition for this topological equality is given 

by a map called homeomorphism.  A homeomorphism between two topological spaces is 

a map 1 2:f T T  which is bijective, continuous and has a continuous inverse [4].  If a 

homeomorphism exists, 1T  and 2T  are homeomorphic.  In practice, two homeomorphic 

topological spaces are often called topologically equivalent. 

Two homeomorphic surfaces in Euclidean 3R  have the same properties and 

neighborhoods, which can be completely identified by their genus G , i.e., the number of 

through-holes.  Figure 2.5 shows some topological spaces some of which are 

homeomorphic.  Figure 2.5a is the 1-ball and is homeomorphic to both Figure 2.5b and 

Figure 2.5c spaces.  Figure 2.5d is the 2-ball and homeomorphic to Figure 2.5e space.  

An open 2-ball in Figure 2.5f is not homeomorphic to the 2-ball in Figure 2.5d. 

       
(a)     (b)    (c) 

 

       
(d)     (e)    (f) 

 
 

 
Figure 2.5  Examples of homeomorphism in [4] 
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Manifolds 
 

Manifolds are particularly nice topological spaces defined locally [5].  A 

topological space is a k -manifold if each of its points has a neighborhood homeomorphic 

to the open k -ball which in turn is homeomorphic to kR  [4].  Here only k -manifolds 

that are subspaces of the Euclidean space are considered.  For example, the plane, the 

sphere and torus with one through-hole all are 2-manifolds.  The number of through-holes 

in a 2-manifold is called its genus G . 

As discussed previously, an important topological quality of a surface is whether 

or not it is 2-manifold, which is the case if for each point the surface is locally 

homeomorphic to a disk (or a half-disk at boundaries) [1].  For triangle mesh surface, 2-

manifold means that a triangle mesh does neither contain non-manifold edges or non-

manifold vertices, nor self-intersections.  Some non-manifold examples of triangle mesh 

are shown in Figure 2.6.  A non-manifold edge (Figure 2.6b) has more than two 

connected triangles and a non-manifold vertex (Figure 2.6a) is generated by pinching two 

surface patches together at that vertex.  The plot in Figure 2.6c is a non-manifold case.  

Non-manifolds in triangle meshes are often fixed by post-processing in mesh processing. 

                                       
 

(a)    (b)    (c) 
 
 

Figure 2.6  Non-manifold cases of triangle mesh in [1] 
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Both computational geometry and point set topology are well-established 

branches in mathematics.  Some basic concepts and terminology briefly introduced here 

can help understand the setup of surface reconstruction algorithms in the following 

chapter.  More details on point set topology and computational geometry can be found in 

these books [5-8].  A number of useful mathematical definition or concepts in surface 

reconstruction are collected in the book by Dey [4]. 

 
2.2. Existing Surface Reconstruction Approaches 
 
 

As mentioned before, surface reconstruction refers to the conversion of a discrete 

point cloud representation into a continuous surface representation.  If the discrete point 

cloud data has enough resolution to represent the scanned model surface geometry, the 

reconstructed surface would recover both the topology and geometric shapes successfully.  

In the past few decades, many surface reconstruction algorithms have been proposed for 

various applications, depending on properties of the input point cloud data, requirement 

of the output surface, user preference, and so on.  These surface reconstruction algorithms 

are often classified into three main categories: implicit surface, region growing, and 

Delaunay-based approaches [9]. 

2.2.1. Implicit Surface 
 

In the implicit surface approaches, the basic idea is to use the input point cloud to 

build a function in the Euclidean space 3R .  The function is formulated to be negative 

inside and positive outside of the modeled object.  The desired surface can then be 

extracted as the zero level set of the formulated function.  In general, the implicit surface 
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approach can output a watertight manifold mesh, which is required to approximate all 

points in point cloud data.  Implicit surface approach is robust for noisy input point cloud 

data due to its approximation.  Figure 2.7a and Figure 2.7b show a point cloud 2P R  

interpolated and approximated by a curve in the plane.  The approximation can smooth 

the noise and result in a well-behaved surface.  However, the goodness of fit can not be 

easily controlled by approximation and implicit surface approach maybe output some 

spurious components in reconstructed surface. 

 
 

   
 

(a)      (b) 
 
 

Figure 2.7  Interpolation and approximation of a 2D point set in [10] 
 
 
 

In 1992, Hoppe et al. [11] firstly proposed a implicit surface method for surface 

reconstruction, which estimates the normal vector for point cloud data by plane fitting 

technology in the initial stage.  Then a distance function ( )f x  is defined to negative 

inside of the object and positive outside of it.  Finally, the zero-set of ( )f x  is extracted as 

the desired surface and a piecewise linear triangle mesh is yielded through Marching 

Cubes algorithm.  Based on the similar method, Curless and Levoy [12] focused on the 

problem of surface reconstruction from laser scanning data.  They also built a signed 

distance function and get their desired output by an iso-surface extraction step.  In 

addition, they consider some special issues on laser scanning range images integration.  
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Their algorithm can output a reconstructed surface with good quality and is 

computationally efficient. 

The weighted sum of basis functions is often used in implicit surfaces, especially 

the radial basis functions.  Implicit surfaces based on the radial basis functions have been 

applied in algorithms of Turk and O’Brien [13] and Dinh et al. [14] to reconstruct surface.  

Their methods address some issues in real data sets, such as noise, non-uniform 

distribution and sparsity.  Carr et al. [15] used polyharmonic radius basis functions to 

reconstruct surface, whose output is a smooth and manifold mesh.  Another method on 

implicit surface representation try to build many implicit functions locally adjacent to the 

point cloud, and then a function ( )f x  is formulated by blending them together.  The 

multilevel partition of unity (MPU) surface representation [16] is proposed based on this 

method.  The space around the point cloud is decomposed by octree data structure.  Each 

octree leaf contains a fixed number of points, which also includes an associated normal.  

The MPU algorithm is computationally efficient and can handle hundreds of thousands of 

input point cloud data.  Except the concept of partitions of unity, another application 

based on this method is formulated in Moving Least Squares (MLS) function 

approximation.  An approximating quadric polynomials if  is computed to cover 

homogenous patches of the desired surface in the proposed algorithm of Xie et al. [17].  

Those patches are extended from seeds and incrementally grown as long as a quadric can 

approximate the points included well.  Other examples of algorithms in this category are 

listed in [18-23]. 
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2.2.2. Region Growing 
 

The region growing approach begins with a seed triangle and incrementally grows 

or expands from this seed triangle until the complete point cloud data set is covered.  

Unlike the implicit surface method, the region growing approach takes every point in the 

point cloud as the reconstructed triangle mesh vertex (interpolating all points in point 

cloud).  Therefore, they will keep the details of the original surface of physical object and 

the reconstructed surface is expected to be more accurate. 

                             
 

(a)    (b)    (c) 
 

Figure 2.8  A 2-dimensional example of BPA algorithm [24] 
 
 
 

The reputable ball-pivoting algorithm (BPA) of Bernardini et al. [24] falls into 

this category.  The basic procedure behind BPA algorithm is simple: starting with a seed 

triangle, a ball of user-specified radius r  lying on this triangle (touching its three 

vertices).  This ball is pivoted around an arbitrary edge of the current boundary, which is 

just the edges of the seed triangle, until it touches another sample point.  If the ball 

touches another point in point cloud on its rotation movement around the edge, a new 

triangle can be built between the boundary edge and this point.  New boundary is thus 

created and the rotation movement continues.  As the ball rotates on the sample points the 
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triangle meshes incrementally grow until all point cloud data are covered.  If there exist 

separately connected mesh patches, another new seed triangle is chosen and this rotation 

process is repeated.  BPA algorithm generates an interpolating triangle mesh from a given 

unorganized point cloud data.  An oriented normal vector at each point is assumed to be 

available and that a global minimum threshold can be estimated for the density of point 

cloud.  The outstanding issues with this approach are the identification of appropriate 

seed triangles and the determination of user-specified parameter.  A 2-dimensional BPA 

example is shown in Figure 2.8.  Figure 2.8a is a successful reconstructed curve in the 

plane by BPA algorithm.  Figure 2.8b demonstrates the user-specified radius r  is too 

small that some edges cannot be created with low point cloud density.  Figure 2.8c 

demonstrates another failure case that the user-specified radius r  is too large to 

reconstruct some high curvature regions. 

Much effort has been invested in this approach recently.  Huang and Menq [25] 

proposed a combinatorial growing process to build the 2-dimensional manifold triangle 

mesh directly without the need of an intermediate 3D representation.  The output mesh 

was able to achieve second-order approximation to surface geometry of the original 

object.  Their method is computationally efficient but with the same common drawback 

that the reconstruction quality heavily depends on the user-specified parameters, which 

are difficult to assign due to their close relationship with the point cloud density.  Lin et 

al. [26] presented an improvement based on an intrinsic property of the point set, namely, 

the sampling uniformity degree. They tried to mitigate the limitation of the user-specified 

parameters.  Li et al. [27] proposed a priority-driven region growing method which seeks 

to progressively construct the surface mesh from smooth to sharp regions.  The shape 
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deviation of at the boundary of the mesh growing area is considered in their method and a 

priority queue to the advancing front of the mesh area is built based on these shape 

deviations.  The mesh growing process is then driven by the priority queue and the 

complex geometry or topology of the original surface of physical object can be 

successfully reconstructed. 

Additionally, some researchers [9, 28, 29] modified the region growing method 

by picking triangles from Delaunay triangles to reconstruct the desired triangle mesh 

surface.  Comparing with the traditional region growing approaches, their reconstructed 

surface appeared more systematic and robust because it inherits the structural 

characteristics of the Delaunay triangulation, which nicely complements the absence of 

geometric information in a set of unorganized point cloud data. 

2.2.3. Delaunay-based 
 

Both Delaunay triangulation and its dual Voronoi diagram are essential geometric 

data structures in computational geometry and provide a powerful way to approximate 

the neighborhoods in the discrete domain.  They are able to explore the neighborhood of 

every point in a point set 3P R  in all relevant directions.  The Delaunay-based 

approach aims to extract a collection of triangles from the complete set of Delaunay 

triangles to construct the desired triangle mesh surface.  A 2-dimensional curve 

reconstruction example based on Delaunay triangulation is illustrated in Figure 2.9.  A 

point set 2P R  is shown in Figure 2.9a and its Delaunay triangulation is shown in 

Figure 2.9b.  Notice the Delaunay triangulation can capture neighbors in all directions, no 

matter how non-uniform the point set 2P R  behaves.  Figure 2.9c demonstrates 
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Delaunay-based algorithms attempt to identify or extract a correct subset from Delaunay 

triangulation for the desired curve through various filtering methods or geometric 

heuristics.  The successfully reconstructed curve is drawn in Figure 2.9d. 

 

                         
 

  (a)                                 (b)                                 (c)                                 (d) 
 
 

Figure 2.9  A 2-dimensional example of Delaunay-based surface reconstruction 
 
 
 

Boissonnat [30] appeared to be the first researcher to introduce such a Delaunay-

based triangle mesh reconstruction algorithm.  He tried to sculpt the shape from the 3-

dimensional Delaunay triangulation.  Those tetrahedrons likely to be outside the object 

are identified by their geometry shape and removed one by one, thus the remaining solid 

is always a sphere.  Edelsbrunner and Mücke [31] used a filter of the Delaunay 

triangulation, the well-known alpha shape, which in face is a generalization of the convex 

hull and sub-graph of the Delaunay triangulation.  Triangles with small circumspheres are 

retained as possible surface triangles.  To date, more and more algorithms along this line 

have been proposed such as an improved alpha shape algorithm by Xu and Harada [32], 
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the gamma-neighborhood graph by Veltkamp [33] and the umbrella filter algorithm by 

Adamy et al. [34]. 

                             
 
 

       (a)                                              (b)                                             (c) 
 
 

Figure 2.10  A 2-dimensional example of the crust algorithm [35] 
 
 
 

Amenta and her co-workers [36, 37] presented the crust algorithm, the first 

algorithm with a theoretical guarantee for topological correctness of the generated mesh 

for points sampled from a smooth surface.  The resulting mesh is homeomorphic and 

geometrically close to the original smooth and non-sharp object surface when the 

prescribed sampling condition is satisfied.  Also they were the first to propose the 

definition of poles, which are a subset of the Voronoi vertices of the point set P  and can 

represent the approximated medial axis when P  is a sufficiently dense point cloud.  

Figure 2.10 illustrates the basic idea of a 2-dimensional crust reconstruction algorithm for 

a curve in the plane: Let 2P R  be a finite point cloud in the plane (Figure 2.10a) and let 

V be the vertices of ( )V P , the Voronoi diagram of P .  Let P  be the union of P  and V  

(all red points and intersection points between two green lines in Figure 2.10b).  Let 
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( )D P  be the Delaunay triangulation of P .  An edge of ( )D P  belongs to the crust of P  

if both its endpoints belong to P  (red lines in Figure 2.10c).  

Additionally, Amenta et al. [38, 39] proposed an extended Delaunay-based 

algorithm based on the crust algorithm: the well-known power crust algorithm.  They 

used a weighted Voronoi diagram of the poles, known as a power diagram, rather than 

the Delaunay triangulation of the point set P .  The power crust algorithm can generate a 

watertight mesh surface.  Unfortunately, it also introduces many extra reference points in 

its output and does not produce a pure triangle mesh surface.  The cocone algorithm by 

Amenta et al. [40] improved their previous method.  They observed that the vector from 

each point p  in point set P  to either of its poles could be regarded as the approximation 

of the surface normal.  Hence Delaunay triangles lying on the desired surface can be 

identified by comparing their normal vectors with the vectors to the poles.  This 

algorithm was extended in different ways by Dey and others, to treat surfaces issues on 

sharp features and boundaries [41].  Additionally, it is also used to yield watertight 

triangle mesh surface [2].  A generalized definition of poles is proposed in the algorithm 

of Dey and Goswami [42] to include all Voronoi vertices far from the surface, which can 

be determined from noisy or smooth data. This work made their algorithm working well 

on the noisy inputs. 

 
2.3. Outstanding Issues 
 
 

As stated previously, many computer-aided design and inspection applications 

demand an accurately reconstructed surface corresponding to a watertight manifold 
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triangle mesh passing through the unorganized data points (scanned from the ultra-

precise 3D laser scanning system).  Although many surface reconstruction approaches 

have been proposed in the past few decades, automatic reconstruction of watertight 

manifold interpolation triangle-mesh surfaces with correctly represented sharp features 

remains an open research issue in surface reconstruction research. 

In the survey of surface reconstruction, we known that, instead of one single 

dominant method, multiple approaches are available with their own advantages and 

disadvantages and are chosen depending on specific applications.  Implicit surface 

approaches have the advantage that the output surface always remains watertight and they 

work well on the noisy point cloud.  Nevertheless, these approaches can lead to poorly 

shaped triangle meshes in some cases and the goodness of fit can not be easily controlled.  

More importantly, the generated mesh only approximates the input point cloud and does 

not in general interpolate (pass through) all the given points.  This limits its use for 

applications such as computer-aided inspection and geometric modeling where it is 

mandatory to constrain the measured points on the reconstructed surface.  For all the 

existing region growing methods, they are computationally efficient but there is one 

common drawback that the reconstruction quality heavily depends on the choice of the 

seed triangle and the user-specified parameters, which cannot be easily assigned due to 

their close relationship with the point density.  Since the quality of reconstructed surface 

is not good enough and certain post-processing, such as hole-filling, are often needed in 

order to obtain a watertight manifold surface. 

Delaunay triangulation and its dual Voronoi diagram are essential geometric data 

structures in computational geometry that provide a powerful way to approximate the 
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neighborhoods in the discrete point cloud data.  A main drawback of Delaunay-based 

approach is that it is computational expensive to build the initial global Delaunay 

triangulation.  In Euclidean space 3R , the computational complexity of Delaunay 

triangulation is 2( )nO , where n P  is the size of the point cloud data.  Fortunately, the 

worst case hardly ever occurs in practice.  In most cases, the computational complexity of 

3D Delaunay triangulation is expected to be ( )nO  or ( log )n nO  [43].  Additionally, 

most of Delaunay-based approaches cannot work well on very noisy point cloud data due 

to the requirement of interpolating all point cloud. 

However, local neighbourhood information from Delaunay triangulation and its 

dual Voronoi diagram supplements the absence of geometric information in discrete point 

cloud data and it makes Delaunay-based approach more systematic and robust.  Voronoi 

diagram and Delaunay triangulation explores the neighbourhood of each point in point 

cloud P  in relevant directions in a way that even handle any non-uniform data.  The 

time-consuming computation is no longer a major concern with the advancement in 

computer hardware and development of improved Delaunay triangulation algorithms by 

the computational geometry community.  Robust and efficient methods to compute the 

Delaunay triangulation in Euclidean space 3R  have existed in CGAL algorithm library 

[43].  As previous discussed, a separate denoising pre-processing of point cloud is often 

enforced as one step prior to surface reconstruction, this makes Delaunay-based approach 

a better choice to reconstruct a watertight manifold triangle mesh surface that interpolates 

all measurement points in scanned unorganized point cloud P  with low-noise. 
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3 WATERTIGHT SURFACE RECONSTRUCTION VIA 

PROGRESSIVE UMBRELLA FACET MATCHING 
 
 
3.1. Introduction 
 
 

Along with the increased applications of modern 3D scanning technologies, point 

cloud is emerging as a new data format for representing the surface geometry of a 

scanned object.  As shown in Figure 1.1 in chapter 1, surface reconstruction has become 

the dominant and challenging task in the geometric processing of converting this discrete 

point representation to a final digital model in computer.  If the point cloud has enough 

resolution to represent the original object surface geometry, the reconstructed triangle 

mesh surface would recover the correct topology and reliably approximate the geometry 

of the original object surface.  Although many surface reconstruction algorithms have 

been proposed in the past, high-quality surface reconstruction remains a practical 

challenge.  Especially for computer-aided design and inspection applications, automatic 

reconstruction of watertight manifold triangle mesh surface that interpolates (passes 

through) all measurement points in scanned point cloud data remains an open research 

issue. 

As previous discussed in chapter 2.1.1, Delaunay triangulation and its dual 

Voronoi diagram are essential geometric data structures in computational geometry and 

they are capable of laying out the neighborhood of every point in a point set in all 

relevant directions.  Local neighbourhood information from Delaunay triangulation and 

its dual Voronoi diagram supplements the absence of geometric information in discrete 

point cloud data.  Therefore, Delaunay-based approach is robust and more systematic in 
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nature.  It becomes a better choice to reconstruct a watertight manifold triangle mesh 

surface interpolating all measurement points in scanned unorganized point cloud P  with 

low-noise. 

As stated in chapter 2.2.3, there are many Delaunay-based algorithms for surface 

reconstruction proposed in the past few decades.  However, generation of a watertight 

manifold surface with correct topology has remained a challenge for most existing 

Delaunay-based algorithms.  Additional post-processing procedure is often required to 

produce a watertight manifold triangle mesh surface, such as the hole-processing or 

manifoldness processing.  Adamy et al. [34] introduced an umbrella filter algorithm 

coupled with a linear-programming based topological post-processing module designed 

for topologically correct watertight triangle mesh reconstruction.  In their method, 

numerical difficulty could still arise from the non-smooth or under-sampled surface 

region.  Dey and Goswami [2] also attempted to reconstruct a watertight manifold 

triangle mesh interpolating all point cloud and proposed an extended algorithm based on 

the cocone algorithm of Amenta et al. [40], namely, the tight cocone algorithm.  However, 

their approach remains in effect a post-processing algorithm to the cocone algorithm and 

encounters difficulty in computing a watertight manifold surface when the condition of 

locality of undersampling is not satisfied. 

In this chapter, a new Delaunay-based algorithm is presented, which is driven by 

umbrella facet matching (UFM).  This algorithm seeks to generate, in parallel, a fully 

matched, local 2-dimensional manifold triangle mesh at each point (resembling the shape 

of an open umbrella) from its Delaunay triangle set.  An umbrella is regarded as a fully 

matched umbrella when it fully overlaps with its neighboring umbrellas.  Different from 
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the method of Adamy et al. [34], this fully matched umbrella at each point guarantees the 

generation of a watertight manifold triangle mesh without the need for additional hole-

filling post-processing.  The reminder of this chapter is organized as follows: in the 

following section, relevant concepts and terminology to the proposed UFM algorithm are 

introduced; details of the UFM algorithm is outlined in Section 3.3; Section 3.4 provides 

the implementation results; and concluding remarks are given in Section 3.5. 

 
3.2. Relevant Concepts 
 

3.2.1. Definition of the Umbrella 
 

In the computational geometry community, the common definition of a surface is 

that of an orientable continuous 2-dimensional manifold embedded in the Euclidean 

space 3R .  Intuitively, it can be described as the closed (watertight) boundary surface of a 

non-degenerative 3-dimensional solid.  The non-degeneration means that the solid does 

not have any feature of zero thickness and the closed boundary surface is able to 

unambiguously separate the interior and exterior of the solid.  An open surface with finite 

size is one that can be extended into a closed boundary surface by filling its hole(s).  As 

stated previously, a triangle mesh surface reconstructed from a point set in 3R  is in effect 

a piecewise linear surface representation.  Hence, the discussion on surface 

reconstruction in the following sections refers to the subject of closed (watertight) 

manifold triangle mesh surface reconstruction. 
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Figure 3.1  Umbrella vU  at a point v  

 
 

As depicted in Figure 3.1, a local 2-dimensional manifold triangle mesh vU  at a 

point v  is homeomorphic to a full disc.  vU  is referred to as an (open) umbrella, which 

contains neither non-manifold edges/vertices nor self-intersections.  Each point of a 

reconstructed watertight manifold triangle mesh should hold such an umbrella.  Outgoing 

edges of the umbrella at v  are all manifold edges linked back with point v  and constitute 

the frame of the umbrella.  The remaining edges of the umbrella are named as 

circumjacent edges, which connect the outgoing edges and form the profile of the 

umbrella.  It is evident that, for each triangular facet of the umbrella vU  at v , it always 

consists of two outgoing edges and one circumjacent edge. 

3.2.2. Delaunay Triangle Clusters 
 

In constructing an umbrella at v  from its Delaunay triangles in the present work, 

there exist four basic topological types of Delaunay triangle cluster incident to v , as 

shown in Figure 3.2.  A fin is a triangular facet for which at least one of its two outgoing 

edges does not connect with any other facet (fins often appear in the redundant facet 

removal process when constructing an umbrella in this work).  A pocket refers to the 

closed non-manifold triangular facet, where an outgoing edge is connected with more 
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than two triangular facets.  In fact, the complete set of Delaunay triangles incident to v  

corresponds to the type of umbrella with pockets (Figure 3.2c).  Figure 3.2b and Figure 

3.2d depict another two basic topological types: umbrella with fins and umbrella with fins 

and pockets.  It should be noted, however, that an arbitrary subset of the complete 

Delaunay triangle set at v  is likely not to correspond to any of these four basic 

topological types.  Detailed description on the umbrella building process is to be 

presented in Section 3.3.1. 

    
 

(a)       (b) 
 
 

    
 

(c)       (d) 
 
 
 
 

Figure 3.2 Topological types of Delaunay triangle clusters: (a) umbrella; (b) 
umbrella with fins; (c) umbrella with pockets; and (d) umbrella with 
fins and pockets. 
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3.3. Umbrella Facet Matching 
 
 

In this work, the original object surface is a closed (watertight) surface.  The input 

point cloud is a low-noise, unorganized coordinate data set containing no other geometric 

information (such as surface normals).  There is no limitation on the genus of the original 

object.  The basic objective of the UFM algorithm is to seek a fully matched umbrella at 

each point from its Delaunay triangles.  The primary steps of this algorithm are as follows 

(more details will be presented in the subsequent subsections): 

Notations: Point set 3P R  with each point v P  

( )D P : Delaunay triangle set of the complete point set P  

vDT : Delaunay triangle set incident to v  

vU : an umbrella at v  

fM : absolute matching index (evaluated from the matching results) 

( )f vM : relative matching index (evaluated from the matching results) 

 

Step 1: Compute the Delaunay triangulation ( )D P  

Step 2: Establish an initial vU  for (each) v  in parallel 

Step 3: Update vU  in parallel according to the umbrella facet matching results 

3.1: Evaluate fM  and ( )f vM  for every facet of vU ; 

3.2: v vU DT  ( vU  starts/resets as the complete Delaunay triangle set at v ); 

3.3: Generate a priority queue for all of the v vU DT  facets according to the 

proposed priority queuing mechanism; 

3.4: Remove redundant facets (non-manifold facets in a pocket and fins) in vU  

following the priority queue until vU  becomes a single umbrella for v ; 

3.5: Repeat Steps 3.1 to 3.4 until vU  becomes a fully matched umbrella (the 

evaluated fM  value for every facet of vU  equals 3). 
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It should be pointed out that only one Delaunay triangulation computation for the 

complete point cloud data set is required.  Once an initial umbrella at each point is 

constructed, overlap among these umbrellas can be evaluated and values of the parameter 

fM  and ( )f vM  for every umbrella facet can be determined based on the matching results.  

The algorithm then repeats Steps 3.1 to 3.4 to establish an updated umbrella from the 

complete Delaunay triangle set at each point.  The umbrella at each point is constructed 

by removing redundant triangular facets in sequence according to the priority queue 

derived from the current matching results.  This iterative process continues until all the 

fully matched umbrellas are found, which leads to a watertight manifold triangle mesh. 

3.3.1. Building an Umbrella 
 

Building an umbrella in this work is essentially a process that sequentially 

removes all redundant (non-manifold) triangular facets according to a priority queue.  As 

described in Section 3.2.2, there are four basic topological types of Delaunay triangle 

cluster incident to a point v  during the umbrella building process.  A redundant facet is 

either a non-manifold facet in a pocket or a fin.  The facet removal process starts with 

removing the non-manifold facet in a pocket, followed by an overall fin cleaning 

procedure.  This means that whenever a fin exists, it is removed right away.  This 

redundant facet removal process ends when there are no more non-manifold edges, 

vertices, or self-intersections in the updated facet cluster.  The remaining triangular facets 

then correctly constitute an umbrella. 

It is evident that different priority queues would lead to different umbrellas.  It 

implies that a specific priority queue of the Delaunay triangles for v  has to be found for 
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building a desired umbrella at v .  Since the desired umbrellas are fully matched ones in 

this work, the corresponding priority queue could be obtained by updating the priority 

queue based on the evaluation of the matching results of all the umbrella facets.  For an 

existing umbrella, the matching results of its triangular facets can be evaluated and then 

used to establish an updated priority queue via a priority queuing mechanism.  An 

updated priority queue then leads to an updated umbrella.  This process repeats itself until 

the matching results show that a fully matched umbrella has been found.  Therefore, the 

modules of the priority queuing mechanism, which generates the initial queue and 

evaluates the umbrella facet matching results, are clearly the core of the UFM algorithm. 

 
 
 

Figure 3.3  Priority queuing mechanism 
 
 

3.3.2. Priority Queuing Mechanism and the Initial Queue 
 

In order to construct the desired fully matched umbrella at every point, a priority 

queuing mechanism with three-level inheritance is introduced, where a sub-level always 

inherits the queuing from a super-level.  This means that primary queuing rules should be 

placed in an ordered sequence from the most superior level downwards.  For the priority 

queuing mechanism of this work (Figure 3.3), the queuing rule at the first (top) level is 
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the absolute matching index fM , representing the basic matching result; at the second 

(middle) level there is the relative matching index ( )f vM , representing the refined 

matching result; and the third (bottom) level is the size of the Delaunay triangle.  Details 

of the matching indices fM  and ( )f vM  will be presented in the next section.  In the 

initialization stage of building the initial/first umbrella, only the triangle size information 

is available (as no matching results exist yet).  The diameter of the minimum 

circumsphere of the triangle is taken to quantify the triangle size.  Therefore, the initial 

priority queue of v vU DT  is established according to the minimum circumsphere 

diameters of the associated Delaunay triangles. 

In this work, in order to build the initial umbrella more effectively, the subset of 

Gabriel facets of vDT  has been employed.  A triangular facet in vDT  is a Gabriel facet if 

its minimum circumscribed sphere is empty of any point in the point set P .  Evidently, 

all of the Gabriel facets are contained in vDT  and the Gabriel set vGT  incident to v  is a 

subset of the Delaunay triangle set vDT .  The Gabriel set vGT  in general represents the 

geometry of the original object surface well [34, 44-46] and is thus taken as the first set 

of triangles to construct the initial umbrella.  Nonetheless, as a subset of vDT , the Gabriel 

set vGT  could in fact be a facet cluster that does not contain an umbrella at all.  To ensure 

that an umbrella is established at every point in the initialization stage, the algorithm will 

seek an umbrella from the complete Delaunay triangle set vDT  once it is deemed 

necessary.  The following is the detailed breakdown of Step 2 to establish an initial 

umbrella vU  for (each) point v  in our algorithm: 
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2.1: v vU GT  ( vU  starts as the Gabriel set at v ); 

2.2: Generate a priority queue for all the facets in vU  according to their 

minimum circumsphere diameter (large to small); 

2.3: Remove all the redundant non-manifold facets (fin or pocket triangles) in 

vU  following the priority queue; 

2.4: Assert vU An Umbrella ; otherwise, let v vU DT  and go to Step 2.2. 

 

It can be seen from the above that the UFM algorithm first attempts to establish 

an initial umbrella for each point from its Gabriel set by removing redundant non-

manifold triangles according to their minimum circumsphere size.  If an umbrella cannot 

be found, the UFM algorithm then resort to the complete Delaunay triangle set to ensure 

that an initial umbrella is established at each point. 

 

1v

( 1) (0)f vM 

2v 3v

1v

( 1) (1, 0)f vM 

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

( 1) (1,1)f vM  ( 1) (2, 0)f vM  ( 1) (2,1)f vM  ( 1) (3)f vM 

3fM 2fM 1fM 0fM  1fM  2fM 

fff f ff

 
 

Figure 3.4  Absolute and relative matching indices of f  at v  
 
 

3.3.3. Evaluation of the Matching Results 
 

After the initial umbrella at each point is established, two matching indices are 

devised to indicate the degree of overlap among the established umbrellas (Step 3.1).  In 

other words, these matching indices are introduced to evaluate how much an umbrella 

overlaps with its neighboring umbrellas.  In this work, the facet matching results are 
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considered at two levels: basic and refined.  The basic matching result is quantified by the 

absolute matching index fM  and the refined matching result is quantified by the relative 

matching index ( )f vM .  The absolute matching index fM  is devised to indicate the 

degree of matching for a facet f .  The relative matching index ( )f vM  is devised to 

indicate the degree of matching for f  relative to the vertex v . 

There are a total of six possible cases of fM  and ( )f vM  as shown in Figure 3.4.  

In essence, ( )f vM  is an extension of fM .  In the figure, the facet f  has three vertices: 1v , 

2v , and 3v .  When fM  equals 3, this means that all three umbrellas incident to 1v , 2v , 

and 3v  include the facet f .  The last (right most) figure in Figure 3.4 depicts this case.  A 

solid dot for a vertex indicates that the umbrella of this vertex includes the facet f  and 

an empty dot for a vertex indicates that its umbrella does not include the facet f .  When 

fM  equals 2, only two of the three umbrellas that are incident to 1v , 2v , and 3v  include 

the facet f .  In this case, there exist two possible situations.  With respect to the vertex 

1v , one situation is that the umbrella at 1v  does not include the facet f  (the fourth figure 

in Figure 3.4) and the other situation is that the umbrella includes the facet f  (the fifth 

figure in Figure 3.4).  Their relative matching indices are then expressed as: 

( 1) (2,0)f vM   and ( 1) (2,1)f vM   respectively.  The first figure in Figure 3.4 illustrates 

the situation that all three umbrellas incident to 1v , 2v , and 3v  do not include the facet f .  

As a result, 0fM   and ( 1) (0)f vM  .  All possible matching index values for the facet 
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f  are summarized in Table 3.1, where a check mark for an umbrella indicates that the 

umbrella includes the facet f . 

Table 3.1   List of possible matching index values for facet 1 2 3( , , )f v v v  

 
 

fM  ( 1)f vM  ( 2)f vM  ( 3)f vM  1vU  2vU  3vU  

3 (3) (3) (3) √ √ √ 

2 (2, 1) (2, 1) (2, 0) √ √  

2 (2, 0) (2, 1) (2, 1)  √ √ 

2 (2, 1) (2, 0) (2, 1) √  √ 

1 (1, 1) (1, 0) (1, 0) √   

1 (1, 0) (1, 1) (1, 0)  √  

1 (1, 0) (1, 0) (1, 1)   √ 

0 (0) (0) (0)    

 
 
 

Figure 3.5 illustrates typical matching results for an umbrella facet f  with its 

vertex points 1v , 2v , and 3v .  1vU , 2vU , and 3vU  represent the established umbrellas at 1v , 

2v , and 3v  respectively.  Both 1vU  and 2vU  include the facet ( 1, 2, 3)f v v v  and 3vU  does 

not.  In this situation, the absolute matching index for f  is 2 ( 2fM  ).  For 1v  and 2v , 

the relative matching indices ( 1) (2,1)f vM   and ( 2) (2,1)f vM  .  For 3v , the relative 

matching index ( 3) (2,0)f vM  .  If the umbrella 3vU  incident to 3v  is updated to 3vU   (still 

incident to 3v ) which now includes the facet f , 3fM   and 

( 1) ( 2) ( 3) (3)f v f v f vM M M    can be achieved.  The facet ( 1, 2, 3)f v v v  is then called a 

matched facet.  An umbrella for which all of its triangular facets are matched facets is a 

fully matched umbrella.  When the fully matched umbrella at every point of the point 
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cloud data set is found, all the matched umbrellas constitute a watertight manifold 

triangle mesh. 

1vU

1v

3vU

2vU

2v

3v
2fM 

( 1) (2,1)f vM 

( 2) (2,1)f vM 

( 3) (2,0)f vM 

 
 
 

Figure 3.5  Typical matching results for an umbrella facet 
 
 
 

As stated before, the proposed UFM algorithm centers on the sequential removal 

of redundant triangular facets from the candidate facet cluster.  This is achieved via the 

priority queuing mechanism with three-level inheritance based on the umbrella facet 

matching results.  The priority queue is formed according to the evaluated value of the 

relative matching index ( )f vM , which is devised to inherit the evaluated value of the 

absolute matching index fM .  For all the triangular facets from the candidate facet 

cluster at v , the sequence is formed from ( ) (0)f vM  , ( ) (1,0)f vM  , ( ) (1,1)f vM  , 

( ) (2,0)f vM  , ( ) (2,1)f vM  , to ( ) (3)f vM  .  Those facets with the same ( )f vM  value 

are then ordered by their minimum circumsphere radii, as the bottom-level rule in the 

priority queuing mechanism.  Evidently, the priority queue will be continually updated at 

each point until all the fully matched umbrellas are successfully found. 
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In the implementation of the proposed UFM algorithm, a special scheme has been 

introduced for which a temporary constraint regarding facet removal can be inserted.  For 

example, in order to speed up the convergence of the involved numerical iterations, 

triangular facets with ( ) (3)f vM   can be set as non-removable as they are in general 

good facets.  In fact, facets with any matching index values can be set as non-removable 

through this temporary constraint scheme to achieve a desired property in the 

reconstructed mesh. 

3.3.4. Computational Complexity 
 

The flowchart of proposed Umbrella Facet Matching algorithm is shown in Figure 

3.6.  In the worst case, the computational complexity of 3D Delaunay triangulation in 

Step 1 of the UFM algorithm is 2( )nO , where n  is the number of points in the point 

cloud data set.  Fortunately, the worst case hardly ever occurs in practice.  In most cases, 

the computational complexity of 3D Delaunay triangulation is expected to be ( )nO  or 

( log )n nO  [43].  Let m  be the number of Delaunay triangles from the 3D Delaunay 

triangulation of the point cloud.  The computational complexity to establish an initial 

umbrella at every point (the umbrella initialization process of Step 2) is ( log )m mO  

because the Delaunay triangles incident to every point have to be sorted into a priority 

queue according to their circumsphere radii.  For updating the umbrellas according to the 

umbrella facet matching results (Step 3), the computational complexity is still 

( log )m mO  due to the queuing of the involved triangular facets. 
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Figure 3.6  Umbrella Facet Matching algorithm flowchart 
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Figure 3.7  Detail UFM convergence process for the Mechpart data set 
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3.4. Implementation Results and Discussion 
 
 

The proposed UFM algorithm has been implemented and evaluated using many 

known point cloud data sets.  To perform the 3D Delaunay triangulation (DT) of a point 

set, existing codes in the Computational Geometry Algorithms Library CGAL [43] were 

employed.  Also, because of the need to maintain topological information, another open-

source template library, the VCG Library [47], was referenced for manipulating and 

processing the triangle meshes.  The associated case studies were carried out on a 

Windows-based PC with a 2.66GHz processor and 4GB memory. 

Table 3.2 lists the computed results for the test point cloud data sets downloaded 

from the Internet.  It can be seen that with the exception of the Casting Die data set, 

100% matching has been attained for all the test cases of different genus.  The matching 

percentage represents the ratio of the number of the resulting points with fully matched 

umbrellas to the number of points in the input point cloud.  A matching ratio of 100% 

means that fully matched umbrellas at all the points have been found and a watertight 

manifold triangle mesh is successfully reconstructed.  As a typical case, Figure 3.7 shows 

the detailed convergence process for the Mechpart data set.  The umbrella matching was 

at 74.35% when the initial umbrellas for the point set were established.  After 11 

iterations, the fully matched umbrellas for all the points were found and the total 

computational time was only 7.83 seconds for our moderate PC computing platform.  It 

should be emphasized here again that no hole-filling post-processing was needed in our 

algorithm.  Once the algorithm converges, the reconstructed mesh will be guaranteed to 

be a watertight manifold triangle mesh.  Also, it has been observed that the reconstructed 
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meshes are consistently being homeomorphic and geometrically close to their respective 

original object surfaces.  The reconstructed meshes do not need to include any extra 

points and they interpolate all the input points. 

Table 3.2   Implementation results for some public point cloud data sets 
 
 

Data Set Implementation Results 

Computing Time (sec.) 
Name Genus Input 

(points)
Output 

(triangles) Matching F  
DT UFM Total 

Bunny 0 35,947 71,890 100% 0 8.39 14.48 22.87 

Golf Club 0 16,585 33,166 100% 0 4.20 8.10 12.30 

Mechpart 3 4,102 8,212 100% 0 1.48 6.35 7.83 

3Holes 3 4,000 8,008 100% 0 1.48 1.86 3.34 

Knot 1 10,000 20,000 100% 0 3.54 7.20 10.74 

Mannequin 0 12,772 25,540 100% 0 3.33 8.53 11.86 

Casting Die 0 63,613 127,003 99.7% 219 14.95 108.63 123.58

Oilpmp* 0 30,937 61,862 100% 0 7.42 34.36 41.78 

Rocker Arm 1 10,044 20,088 100% 0 2.25 7.48 9.73 

Screwdriver 0 27,152 54,300 100% 0 6.84 14.27 21.11 

Hand 0 25,001 49,998 100% 0 6.50 15.61 22.11 

Teapot 1 25,667 51,334 100% 0 5.92 93.99 99.91 

 
* Oilpmp included 4 repeated points and they were removed. 
 
 
 

It is well-known in practice that the non-uniform point distribution in a point 

cloud often has strong impact on the quality of the associated reconstructed triangle 

surface mesh.  As shown in Figure 3.8, the point distribution in the Mannequin data set is 

highly non-uniform with much higher point density in and around the ears, the mouth, 
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and the eyes.  This data set in fact represents an open surface with a relatively large hole 

at the bottom.  It was, however, still treated as a watertight closed surface for the 

algorithm to try to fill this hole.  The UFM algorithm successfully addressed these 

challenges and reconstructed a topologically correct watertight manifold triangle mesh 

for the Mannequin data set. 

 
 
 

Figure 3.8  Reconstructed mesh for the Mannequin data set 
 
 
 

As stated previously, the reconstructed topologically correct surface mesh will be 

a watertight manifold triangle mesh which is homeomorphic to the original object surface.  

This requires that the number of vertices (input points) and the resulting number of 

triangles in the reconstructed mesh must satisfy the following Equation 3.1 derived from 

the Euler’s formula [34]: 

2 4 ( 1)F V G             (3.1) 
 
 
where F  denotes the number of the reconstructed triangles, V  the number of vertices, 

and G  the genus of the original object.  It is known that the quality of a reconstructed 
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triangle mesh depends on the point density and distribution as well as the geometric 

feature complexity in the original object surface.  It is very challenging for any Delaunay-

based algorithm to guarantee topologically-correct surface reconstruction because of 

noise, inadequate input point density, and non-smoothness of the underlying surface 

feature.  Like most existing algorithms, the UFM algorithm cannot theoretically 

guarantee that the reconstructed triangle mesh will always be homeomorphic to the 

original object surface.  Nonetheless, the converged implementation results shown in 

Table 3.2 do indicate that all the reconstructed watertight manifold triangle meshes by the 

UFM algorithm are homeomorphic to the original object surface.  The quality of a 

reconstructed triangle mesh was evaluated and quantified via Equation 3.2 as: 

2 4 ( 1)F V G F              (3.2) 

 
 
 

 
 
 

Figure 3.9  Reconstructed mesh for the Knot data set 
 
 
 

Figure 3.9 depicts another representative case in Table 3.2.  As shown in the left 

figure, the Knot data set is a non-uniformly sampled data set with a genus value of 1.  

The two figures on the right illustrate the well-reconstructed watertight manifold triangle 

mesh by the UFM algorithm.  The reconstructed surface is homeomorphic to the original 
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Knot surface as F  equals 0.  With the exception of the Casting Die data set, all the 

other computed results confirm that the reconstructed watertight manifold triangle 

meshes (with the matching values being 100%) are homeomorphic to the original object 

surfaces ( 'F s  being 0).  The resulting rendered images of the reconstructed triangle 

meshes for these data sets are shown in Figure 3.10. 

 
 
 

Figure 3.10  Other reconstructed meshes for the data sets in Table 3.2 
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Table 3.3 Comparison of the reconstructed meshes-algorithms not employing hole-

filling post-processing 
 
 

Data Set Results 

Name Genus 
Input 

(points) Algorithm 
Output 

(triangles) F  

UFM 71,890 0 
Bunny 0 35,947 

[27] 71,669 221 

UFM 33,166 0 
Golf Club 0 16,585 

[34]* 33,308 142 

UFM 8,008 0 
3Holes 3 4,000 

[34]* 8,108 100 

UFM 20,000 0 

[27] 19,317 683 

[32] 20,726 726 
Knot 1 10,000 

[34]* 20,396 396 

UFM 25,540 0 

[27] 24,405 1135 

[32] 29,537 3 
Mannequin 0 12,772 

[34]* 25,646 106 

UFM 61,862 0 

[27] 61,617 253 Oilpmp 0 30,937 

[34]* 62,873 1003 

UFM 20,088 0 
Rocker Arm 1 10,044 

[26] 20,092 4 

UFM 54,300 0 
Screwdriver 0 27,152 

[26] 54,321 21 

 
* Only the outputs without hole-filling post-processing in Ref. [34] are listed here. 
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Table 3.4 Comparison of the reconstructed meshes-algorithms employing hole-

filling post-processing 
 
 

Data Set UFM 
Tight Cocone 

[2] 
Umbrella Filter 

[34] 

Name Genus Input 
(points)

Output 
(triangles)

F
Output 

(triangles) 
F  

Output 
(triangles) 

F

Bunny 0 35,947 71,890 0 71,886 4 - - 

Golf Club 0 16,585 33,166 0 33,158 8 33,166 0 

Mechpart 3 4,102 8,212 0 8,212 0 - - 

3Holes 3 4,000 8,008 0 8,008 0 8,008 0 

Knot 1 10,000 20,000 0 20,000 0 20,000 0 

Mannequin 0 12,772 25,540 0 25,526 14 25,540 0 

Casting Die 0 63,613 127,003 219 120,102 6901 - - 

Oilpmp 0 30,937 61,862 0 61,856 6 61,870 8 

Rocker Arm 1 10,044 20,088 0 20,088 0 - - 

Screwdriver 0 27,152 54,300 0 54,280 20 - - 

Hand 0 25,001 49,998 0 49,998 0 - - 

Teapot 1 25,667 51,334 0 51,350 16 - - 

 
 
 
 

Table 3.3 lists the comparison of the reconstructed triangle meshes by different 

algorithms, without resorting to the post-processing step of filling possible holes, for the 

same publicly available data sets.  According to Equation 3.2, lower F  values would 

indicate smaller topological difference and zero F  represents homeomorphism between 

the reconstructed mesh and the original object surface.  In the computational tests, the 

reconstructed watertight triangle meshes by the proposed UFM algorithm have shown to 
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have the best topological quality than other comparable algorithms (without hole-filling 

post-processing).  The output triangle meshes of other algorithms all contain relatively 

large topological difference with the original object surface.  The power crust algorithm 

[38] can output a watertight surface mesh but it may need the incorporation of some extra 

points.  Furthermore, it does not produce a triangle mesh interpolating all the given input 

points.  With an additional post-processing step of hole-filling, some algorithms can 

output a watertight manifold triangle mesh with noticeably lower topological difference, 

such as tight cocone [2] and umbrella filter [34].  As seen in Table 3.4, however, the 

proposed UFM algorithm still stands out to have the best topological quality in the 

reconstructed triangle meshes than these algorithms.  This performance can be solely 

attributed to the fact that once the UFM algorithm converges, all the fully matched 

umbrellas will guarantee a watertight manifold triangle mesh without the need of hole-

filling post-processing.  Furthermore, the output of all fully matched umbrellas’ facets 

still guarantees the manifoldness of the final reconstructed triangle mesh with some holes 

when the UFM algorithm cannot converge.  Figure 3.11 shows the different quality of the 

reconstructed triangle mesh of Casting Die data set from the current algorithm and tight 

cocone algorithm.  Figure 3.11a is a manifold reconstructed triangle mesh from the UFM 

algorithm and Figure 3.11b is a non-manifold result from the tight cocone algorithm.  

Evidently, the reconstructed triangle mesh surface in Figure 3.11b includes a large 

topological error (with F  being 6901) and can hardly be regarded as an input of the 

subsequent mesh geometry processing. 
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(a) from UFM algorithm  (b) from tight cocone algorithm 
 
 

Figure 3.11  Comparison of reconstructed mesh of the Casting Die data set 
 
 
 

It should be noted, however, that for some data sets like the Casting Die, the UFM 

algorithm cannot converge well (fully matched umbrellas for some points in the data set 

cannot be established).  This happens when the distribution of the data points is highly 

non-uniform and/or the original object surface is highly irregular.  As shown in Figure 

3.12, the point density appears to be inadequate in the failure areas that the associated 

data points cannot unambiguously represent the surface geometry in those areas of the 

Casting Die.  Consequently, the reconstructed triangle mesh for the Casting Die is not 

topologically correct (with F  being 219) and the umbrella matching percentage only 

reaches 99.7%.  The holes shown in Figure 3.12 indicate the areas where fully matched 

umbrella facets cannot be found.  Additionally, some shape deviations can be seen 

between the reconstructed watertight manifold surface and the original object surface.  As 

the reconstructed watertight manifold triangle-mesh surface of the Oilpmp data set 

demonstrated in Figure 3.13, main shape deviations come from the failure of its sharp 

features reconstruction. 
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Figure 3.12  Convergence problem in highly non-uniform and under-sampled data 

 
 
 
 
 
 
 
 

 
 
 

Figure 3.13  Shape deviations in the sharp features 
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(a)    (b)    (c) 
 
 

Figure 3.14  Performance of the UFM algorithm with increasing noise 
 
 
 

All Delaunay-based mesh reconstruction methods are sensitive to noise in the 

point cloud data.  How the UFM algorithm handles noise is shown in Figure 3.14.  The 

distribution of the Hand data set is non-uniform.  The increasing noise is created by 

perturbing the points randomly within a small sphere around each point.  Figure 3.14a is 

the reconstructed surface from Hand data set without noise, which is a watertight 

manifold interpolation surface.  Figure 3.14b demonstrates a reconstructed surface from 

Hand data set with little noise and it remains a watertight manifold interpolation surface.  

Figure 3.14c shows the reconstructed surface of Hand data set with more noise and the 

result is not a watertight surface (with few small holes) again.  However, for this very 

noisy point cloud, the reconstructed surface remains a manifold interpolation surface.  
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Consequently, the proposed UFM algorithm can work well in the low-noise point cloud 

data and always output a manifold interpolation surface in any case. 

 
3.5. Concluding Remarks 
 
 

A new and effective algorithm, named as the Umbrella Facet Matching (UFM) 

algorithm, has been presented in this chapter to generate a watertight manifold triangle 

mesh from a point cloud.  The generated mesh will interpolate all the given data points 

without either the need of hole-filling post-processing or the need to add extra points.  

The triangles in the generated mesh are selected from the set of Delaunay triangles at 

every point.  Although the involved Delaunay triangulation computation was generally 

considered time-consuming in the past, it is not a practical concern anymore thanks to 

recent advances in the computing power and further improvement in the Delaunay 

triangulation algorithm.  In particular, the UFM algorithm only requires a one-time 

Delaunay triangulation computation to establish the set of Delaunay triangles at every 

point. 

Although the UFM algorithm cannot guarantee convergence in theory, 

implementation results have shown that the algorithm in general converges well and all 

successfully reconstructed meshes are homeomorphic to the original object surfaces.  As 

discussed in Section 3.4, the UFM algorithm still has trouble to converge highly non-

uniform and/or under-sampled point cloud data.  For future improvement, geometric 

heuristics may be introduced to control the shape of the umbrella at every point for better 

convergence.  Also, a good reconstructed triangle mesh should match the original object 

surface with respect to topological equivalence (homeomorphism) as well as 



57 

 

shape/feature approximation.  In this aspect, many shape deviations can be seen between 

the reconstructed mesh and the original object surface.  Specifically, some sharp corner 

features cannot be correctly reconstructed.  Active research in minimizing the shape 

deviations will be reported later and an improved solution is introduced in chapter 5.   
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4 NORMAL VECTOR ESTIMATION FOR POINT CLOUD DATA 
 
 
4.1. Introduction 
 
 

Accurate and reliable estimation of normal vector of the point cloud data is of 

practical importance in computer-aided design and inspection applications, as theoretical 

or digital model of a given physical object in real-world may not be always available.  

For example, surface reconstruction from a point cloud data with reliable normal vectors 

is a much easier problem than surface reconstruction from points set alone.  In some 

surface reconstruction algorithms, the approximation quality of the reconstructed surface 

heavily relies on how well the estimated normal vectors of point cloud data reflect the 

true normal vectors of scanned physical object.  In fact, normal vectors estimation is 

often the every first step in surface reconstruction algorithms.  This is not only true for 

Delaunay-based and region growing approaches [24, 37, 42, 48], but also for implicit 

surface approaches [11, 18, 22, 49-51].  Many other applications often require accurate 

estimated normal vectors of the point cloud data as well, such as segmentation of the 

point cloud [52-56] and point-based surface rendering [10, 49, 57]. 

There have been many proposals for normal vectors estimation algorithms for 

point cloud data.  These algorithms mainly fall into two dominating categories [58]: 

numerical optimization approach based on the plane or parametric surface fitting 

technique [11, 59, 60] and combinatorial estimation approach based on geometric 

analysis of Voronoi diagram/Delaunay triangulation [37, 42, 48, 51].  In any case, general 

estimation procedure of normal vector in these approaches usually includes two main 
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steps.  The first step is to identify a reliable local neighborhood for each point in the point 

cloud data.  The second step is the calculation and orientation of desired normal vector at 

each point against points in its local neighborhood.  More details on normal vector 

estimation and main features of the proposed method are outlined in the following 

sections 

 
4.2. Reliable Neighborhood Identification 
 
 

Essentially, normal vector is a local geometric property of a 2-dimensional 

surface and specific to each given point.  Therefore, reliable estimation of the normal 

vector at each point in a point cloud data heavily depends on the positive identification of 

its valid neighboring points in the neighborhood.  Choosing too many neighboring points 

for normal vector estimation can lead large deviations of the estimated normal vectors, 

especially in the region adjacent to sharp features.  Too few neighboring points chosen 

may result in insufficiency in representing local geometry.  A well estimated normal 

vector is a significant step towards correct reconstruction of sharp features in the original 

model surface. 

4.2.1. Existing Approaches 
 

The approach first used by Hoppe et al. [11] in the context of surface 

reconstruction is to find the k-nearest neighbors of given point p , the set denoted as 

( )kN p , and take the normal of the least squares best-fitting plane to ( )kN p  as the surface 

normal at p .  This normal vector algorithm could be called Plane Fitting (PF) method 

[58].  These k-nearest neighbors ( )kN p  can also be used to fit the local quadric surface 
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[54] for normal vector estimation as well.  Pauly et al. [60] improved the PF method by 

adding different weights depends on the distance between neighboring points and the 

estimated point.  If the distance of a neighboring point from estimated point p  is smaller, 

the larger weight is assigned to the neighboring point.  They computed a local reference 

plane TN x D  at point p  by minimizing the weighted sum of squared distance 

2

1
( ) ( )

k T
i ii

N p D p p


  .  In their computation, the weighting function ()  is used to 

control the characteristics of the surface.  Typically, a Gaussian function 

2 2( ) exp( / )i ip p p p      is chosen, where   is a global scale parameter that 

determines the characteristic size of the resulting surface and chosen to be one third the 

square distance between p  and kp  (farthest point in ( )kN p ).  This improved PF method 

could be called Weighted Plane Fitting (WPF) method [58].  Additionally, all points 

within a fixed or adaptive distance r  of point p  are often used to choose the neighboring 

points of point p .  Mitra et al. [59] proposed a plane fitting method based on an adaptive 

distance r  to estimate the normal vector for point cloud data.  The main problem of k-

nearest neighbors is bias problem.  When the distribution of ( )kN p  is non-uniform, the 

chosen ( )kN p  at each point can not provide good enough local geometric information for 

its normal vector estimation. 

An alternative way is to construct a polygonal mesh surface for a point cloud data 

and identify neighboring points at each point from its local mesh neighbors.  The typical 

application is the combinatorial estimation approach based on geometric analysis of 

Voronoi diagram/Delaunay triangulation.  As discussed previously, Voronoi diagram and 

Delaunay triangulation can provide a powerful way to approximate the neighbourhood at 
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each point in a point cloud data.  Hence the local mesh neighbors at each point always 

can be extracted from Delaunay triangles set incident to each point.  Voronoi diagram 

and Delaunay triangulation are a global geometric data structure from computational 

geometry and can be built from any point cloud data with arbitrary distribution and 

density.  If the reliable local meshes at each point can be extracted as the local mesh 

neighbors,  estimated normal vectors depending on these mesh neighbors can be more 

accurate. 

Nowadays, different methods have been proposed by researchers to extract 

desired Delaunay triangles incident to a point p  to identify the local Delaunay-triangle 

mesh neighbors of p  from the global Delaunay triangulation of P .  Adamy et al. [34] 

proposed a method to build an umbrella at each point from their Gabriel subset of 

Delaunay triangles set.  The building of an umbrella is an incrementally adding triangle 

processing based on the proposed concept of  -interval, which often requires a manifold 

post-processing.  The resulting umbrella in fact is a kind of local mesh neighbors.  

Ouyang et al. [61] proposed a method based on region growing to build the local Voronoi 

mesh neighbors at each point, which is similar to the BPA algorithm.  Depending on the 

identified “good” neighboring points from the built local Voronoi mesh, a novel quadric 

curve fitting algorithm was provided to calculate the desired normal vector.  A benefit of 

their algorithms is that the required number of neighboring points could be only three.  

Their normal vector estimation algorithm is called local Voronoi mesh method or LVM 

in short.  However, the estimated normal vectors based on local mesh neighbors heavily 

depend on the quality of built local meshes.  All methods mentioned above did not 

provide how reliable these built local (Voronoi/Delaunay) meshes are. 
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4.2.2. Local Mesh Neighborhood 
 

In fact, the neighborhood of each point in a point cloud data P  has been widely 

studied in the computational geometry community and many efficient algorithms exist 

that solve a number of geometric problems [62], such as closest points, all nearest 

neighbors, Euclidean minimum spanning tree (EMST), etc.  These problems can be 

efficiently solved by graphs representation in which pairs of points that are linked by an 

edge.  Many geometric properties of these graphs are benefit to surface reconstruction.  In 

fact, they have been used by some researchers as an initial step in surface reconstruction, 

such as the Euclidean minimum spanning tree ( ( )EMST P ), Gabriel graph ( ( )GG P ) and 

Delaunay triangulation ( ( )D P ).  If the edges set in Delaunay triangulation is denoted by 

( )ED P , the relationship of these graphs of a point cloud P  can be expressed as 

following Equation 4.1: 

( ) ( ) ( )EMST P GG P ED P        (4.1) 
 
 
In some curve or surface reconstruction algorithms, as an initial graph, EMST can 

guarantee that the resulting edges are the shortest possible.  Therefore, close points in the 

point cloud data are likely to be linked in the graph, which is helpful to reconstruct the 

desired curve or surface.  The Gabriel graph has also been used for curve or surface 

reconstruction.  It gives clue about best interconnection among points when used for the 

reconstructing the boundary of a 2D point cloud data [45, 63]. 

In Delaunay-based surface reconstruction approaches, for a point cloud P  in 

Euclidean space 3R , the desired reconstructed triangle-mesh surface is extracted from the 

Delaunay triangles set ( )D P  of a point cloud P .  The Gabriel triangles set ( )GT P , a 
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subset of ( )D P , is often applied at the initial step to help seek the candidate Delaunay 

triangles for reconstructing the desired triangle-mesh surface [34, 46, 64].  For a point v  

in P , the relationship ( ) ( )GT P D P  could also be locally described in Equation 4.2: 

v vGT DT          (4.2) 

 
 

However, the desired correct triangle mesh can not be extracted from Gabriel 

triangles set alone, although these Gabriel triangles have a high probability of being close 

to the original surface.  Sometimes, all Gabriel triangles ( vGT ) at a point v  is not a 

pocket triangles set (Figure 3.2c or Figure 3.2d), which means a full umbrella can not be 

extracted from vGT .  Adamy et al. [34] noticed the problem and try to employ a post-

processing to fix these missing triangles.  In the algorithm presented in chapter 3, a full 

umbrella can be guaranteed to be generated at each point.  Based on a full umbrella at 

each point, a novel evaluation methodology of these umbrellas matching is proposed, 

which provides a refined way of identifying reliable local Delaunay triangulation mesh 

neighbors at each point.  This is a kind of subset of Delaunay triangles set which is based 

on the full umbrella, a local manifold mesh incident to a point.  The refined relationships 

can be locally described the following Equation 4.3: 

( ) ( ) ( )v v v vU f U f DT U DT         (4.3) 

 
 
where vDT  denotes all Delaunay triangles incident to point v , ( )vDT U  all umbrella 

Delaunay-triangles incident to point v , ( )vU f  triangular facet set in the umbrella at 

point v , ( )vU f  all fully matched triangular facets in the umbrella at point v . 
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A simple example is illustrated in Figure 4.1.  Three input points 1v , 2v  and 3v  

and their umbrellas 
1vU , 

2vU  and 
3vU  are drawn in Figure 4.1, where 

1 1 2 3 4 5 6{ , , , , , }vU f f f f f f , 
2 6 7 8 9{ , , , }vU f f f f  and 

3 5 6 9 10 11{ , , , , }vU f f f f f .  According 

to the evaluation methods proposed in chapter 3, in these Delaunay-triangles set incident 

to 1v , 2v  and 3v  , there exist one fully matched triangle 6f  (
6

3fM  ).  The matching 

index of triangle 5f  and 9f  is two (
5

2fM   and 
9

2fM  ).  The matching index of other 

triangles is one.  In Equation 4.3, for point 1v , we get a refined way to identify the local 

mesh neighbors: 
1 6( ) { }vU f f , 

1 1 2 3 4 5 6( ) { , , , , , }vU f f f f f f f  and 

1 1 2 3 4 5 6 7( ) { , , , , , , }vDT U f f f f f f f .  All neighboring points in 
1

( )vDT U  of point 1v  are 

drawn in red color dot in Figure 4.1. 

 
 
 

Figure 4.1  An example of local mesh neighbors based on umbrella matching 
 
 
 

Figure 4.2 demonstrates the comparison of global mesh composed by these 

different local mesh neighbors.  Figure 4.2a is the original triangle mesh surface for point 

cloud P ,  Figure 4.2b is the global Delaunay triangulation of P  ( ( )D P ) and Figure 4.2c 
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is the Gabriel triangles subset ( ( )GT P ).  Figure 4.2d and Figure 4.2e shows the 

( )( )U f P  and ( )( )U f P  subsets respectively based on the local umbrellas, which are 

derived from the evaluation methods proposed in chapter 3.  Evidently, the triangle mesh 

in Figure 4.2d is the best approximation for the original triangle mesh surface and Figure 

4.2e perhaps can provide more accurate local mesh neighborhood for some points but 

missing too many regions.  That also implies that the identified local mesh neighbors in 

Figure 4.2d can supply the optimum local neighborhood geometric information for the 

normal vector estimation at each point.  Details of normal vector computation based on 

the refined local mesh neighbors are described in the following section. 

           
 

           
 

      (a)            (b)  (c)    (d)     (e) 
 
 

Figure 4.2  Global meshes comparison based on different local mesh neighbors 
 
 
 
4.3. Computational Procedure 
 
 

The well-known Euler Equation 4.4 [65] describes the relationship between the 

numbers of vertices V , edges E  and faces F  in a closed 2-manifold polygonal mesh: 
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2(1 )V E F G            (4.4) 
 
 
where G  is the genus of an object and intuitively represents the number of through-holes 

of the object.  Because the genus of typical meshes is small compared to the numbers of 

mesh elements, the right-hand side of Equation 4.4 can be assumed to be close to zero.  

For a closed 2-manifold triangle mesh, each triangle is bounded by three edges and each 

edge is incident to two triangles, the following triangle mesh statistics can be driven [1]: 

 The number of edges is three times the number of vertices: 3E V  
 

 The number of triangles is twice the number of vertices: 2F V  
 

 The average number of edges or triangles incident a vertex is 6 
 
 

The average number of incident edges for point v  is also called vertex average 

degree or valence.  As discussed previously, the triangles in ( )vU f  could provide the 

more accurate and reliable local neighborhood geometric information.  If the number of 

triangles in ( )vU f  at point v  is more than half of average valence of point v , a normal 

vector estimation based on the normals of these incident triangles can become a better 

calculation method for point v .  Therefore, a combinatorial normal vector calculation is 

proposed in this chapter, which relies on the refined local mesh neighbors identification 

described in the previous section.  When the number of the fully matched umbrella facets 

( ( )vU f ) at point v  is no less than three, the normal vector vN  calculation adopts a 

weighted average of the normal vectors of triangles in the ( )vU f , as described in the 

Equation 4.5: 
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i ii
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ii

w n
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w




 


        (4.5) 

 
 
where in  and iw  are the normal vector and weight of the ith triangle if  in ( )vU f , 

respectively.  The weight is the combination of angle-based weight and matching index 

weight, and is defined in the following Equation 4.6. 

1 1
1

1

cos
i i

i i
i f i i f

i i

vp vp
w M p vp M

vp vp
 




 
   
 
 

 
         (4.6) 

 
 
where 1i ip vp   is the ith triangle if  in ( )vU f , 

if
M  denotes the matching index of if  

and {1, 2, 3}
if

M  . 

When the number of the fully matched umbrella facets ( ( )vU f ) at point v  is less 

than three, the normal vector vN  calculation adopts the same weighted plane fitting 

technique (Equation 4.7) for the all neighboring points in ( )vDT U  local meshes set, as 

set out in the WPF method [60]. 

2

1

2 2

( ) ( )

( ) exp( / )

k T
i ii

i i

N p D p p

p p p p



 


  


   


     (4.7) 

 
 
 

Whatever method is adopted to compute normal vectors, the estimated normal 

vector should always be expected to be oriented consistently with each other on the 

correct side of the surface (inside or outside).  Finding a globally consistent orientation 

for estimated normal vectors is not easy especially for the point cloud data with low 
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density, noise or sharp features.  In the normal vector estimation algorithm presented in 

this chapter, a popular method proposed by Hoppe et al. [11] is employed to orientate all 

estimated normal vectors.  Considering that normal vector at a point on a surface is also 

the normal vector of its fitted tangent plane, which can serve as the local linear 

approximation to the surface, the algorithm propagates the tangent plane’s normal 

direction based on a constructed Riemannian Graph.  When the point cloud data is 

sufficiently dense, the propagation method can successfully orientate all estimated 

normal vectors.  The flowchart of the proposed normal vector estimation algorithm is 

shown in Figure 4.3. 

 
 
 

Figure 4.3  Normal vector estimation flowchart 
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4.4. Implementation Results and Discussion 
 
 

Multiple case studies have been performed and analyzed to validate the 

performance of the proposed normal vector estimation method in this chapter.  The plane 

fitting (PF) algorithm by Hoppe et al. [11], weighted plane fitting (WPF) algorithm by 

Pauly et al. [60] and the local Voronoi mesh (LVM) algorithm by Ouyang et al. [61] are 

chosen for comparison with our proposed method in the following section. 

4.4.1. Case Study Setup 
 

In order to compare the resulting normal vector estimated from different methods, 

ideally we need to measure the deviation of the estimated normal vectors from the “true" 

surface normal vectors N  .  However for the real point cloud data, the original surface of 

a model is generally not available.  Therefore, three different types of point cloud testing 

data are designed for the following case studies. 

The first type is a simulated point cloud data generated by parametric mathematic 

functions and its exact normal vector N   can thus be numerical calculated at each point.  

Two simulated point clouds data from Torus (Figure 4.4a) and Ellipsoid (Figure 4.4b) 

parametric algebraic surface are generated uniformly for our case studies.  As we known, 

the local surface shape at a point can be approximated by a quadric surface.  According to 

the curvature tensor of each point, the point can be considered as a parabolic, an elliptical 

or a hyperbolic point [66].  All these three types of points can be found on a Torus 

surface.  The point cloud data from Ellipsoid surface is regarded as a points set with the 

high curvature region.  They are shown in Figure 4.4. 
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   (a)  Torus                                                      (b)  Ellipsoid 

 
 

Figure 4.4  The first type data for normal vector estimation comparison 
 
 
 

The second type is a simulated point cloud data generate from a known uniform-

mesh model, which could be a meshed CAD model or ideal model with known correct 

meshes.  The normal vector N   at each point (mesh point) can be estimated from an area-

weighted average of the normal vectors of its local incident meshes.  Although N   in the 

second type data is not “true” original surface normal vector like the first type, it is still 

accurate enough to become a referential normal vector for algorithm comparison as long 

as the mesh of the designed model is uniform and not too sparse.  In our case studies, 

Cubic (Figure 4.5a), SimulationSolid (Figure 4.5b) and Fandisk (Figure 4.5c) point cloud 

data belong to the second type data, as shown in Figure 4.5. 

                 
 

(a)  Cubic                      (b)  SimulationSolid                        (c)  Fandisk 
 
 

Figure 4.5  The second type data for normal vector estimation comparison 
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The third type of testing data is designed for real scanned point cloud data.  We 

reconstruct a desired triangle-mesh surface from the real point cloud data by a known 

surface reconstruction algorithm called tight cocone [2].  Then, the area-weighted 

average of the normal vectors of the triangles incident to a point p  in this surface is 

taken as the referential normal vector N   at p .  The estimated referential normal vector 

N   in this third category is not accurate but close enough to analyze the results from 

different algorithms in real point cloud data. 

We define the error e  of an estimated normal vector at each point as the angle (in 

radians) between the referential normal vector N   and the estimated normal vector N , as 

described in the following Equation 4.8: 

1cos
N N

e
N N

  
   


       (4.8) 

 
 
Evidently the smaller the error e , the better the estimated normal vector is. 
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Table 4.1   Normal vector estimation errors (in radians) 
 
 

Model name Torus Ellipsoid Cubic Simulation-
Solid Fandisk 

No. of Points 3600 9950 866 6988 6475 

 Current 0.00105 0.00126 0.03122 0.02245 0.01791 

Mean LVM 0.00593 0.00202 0.07526 0.02374 0.02546 

error PF 0.01584 0.00412 0.15641 0.07302 0.13652 

 WPF 0.00818 0.00337 0.16784 0.07021 0.13719 

 Current 0.00120 0.00176 0.10691 0.12560 0.07970 

RMS LVM 0.00688 0.00242 0.18131 0.12322 0.08659 

error PF 0.01806 0.00573 0.21884 0.18267 0.21557 

 WPF 0.01296 0.00654 0.22828 0.17456 0.21145 

 Current 0.00058 0.00174 0.10231 0.12359 0.07766 

Standard LVM 0.00350 0.00133 0.16505 0.12092 0.08277 

Deviation PF 0.00868 0.00399 0.15315 0.16745 0.16685 

 WPF 0.01006 0.00560 0.15482 0.15983 0.16092 

 Current 2.94 5.67 1.44 5.10 4.51 

Timing LVM 3.07 7.12 0.65 5.15 5.08 

 PF 0.36 1.34 0.17 0.50 0.55 

 WPF 0.51 2.64 0.23 0.58 0.82 
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4.4.2. Analysis and Comparison 
 

The value of k  in ( )kN p  for PF and WPF algorithms is assigned 30 and 40 

(recommended in PointShop3D [67]) respectively in our case studies.  The estimated 

normal vector errors from different algorithms based on the first and second type 

simulated point cloud data are shown in Table 4.1.  The mean errors, root mean square 

(RMS) errors, standard deviations and timings are listed for comparison.   

Since the testing point cloud data is noise-free, all four methods make good 

estimations of normal vector as indicated by small mean errors, RMS errors and standard 

deviations.  However, the current algorithm and the LVM algorithm work better than the 

other two numerical optimization approaches based on the (weighted) plane fitting of 

( )kN p , which both belong to combinatorial estimation approach based on local mesh 

neighbors.  The algorithm proposed in this chapter demonstrates the minimum normal 

vector estimation errors.  For the further comparison and analysis, their colour maps of 

normal vector deviation are plotted in Figure 4.6 and Figure 4.7.  The blue means the 

smaller deviation and the red means the larger deviation. 

In Figure 4.6, both PF and WPF algorithms generate larger deviation on the top of 

Torus.  The reason behind this is that the center of fitting plane based on ( )kN p  at each 

point in the region generates a large bias with itself.  This renders the fitting plane 

incapable of approximating the desired tangent plane for each point well and leads to 

larger errors in the final estimated normal vectors in this region than those in other 

regions.  Likewise, for a point at the high curvature region in Ellipsoid, the neighboring 

points from the point cloud does not lie close to a plane and hence the fitting plane 
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computed by PF or WPF method could not approximate the tangent plane properly at 

those points. 

           

           
 

  (a)  point cloud        (b)  current             (c)  LVM               (d)  PF              (e)  WPF 
                                         algorithm               algorithm               algorithm          algorithm 

 
Figure 4.6  Comparison of estimated normals for simulated data 

 
 
 
 
 
 

                  

           

           
 
 

  (a)  point cloud        (b)  current             (c)  LVM               (d)  PF              (e)  WPF 
                                         algorithm               algorithm               algorithm          algorithm 

 
 

Figure 4.7  Comparison of estimated normals for simulated data with sharp features 
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For point cloud data with sharp features, such as Cubic, SimulationSolid and 

Fandisk data set, the current algorithm and the LVM algorithm have the clear advantage 

in estimating the accurate normal vectors, especially for the regions adjacent to the sharp 

features.  The advantage is attributed to their accurate estimation of local mesh neighbors.  

Compared to these combinatorial estimation approach based on the local mesh neighbors, 

the PF and WPF numerical optimization approaches often fail to estimate a proper 

normal vector for points in the region adjacent to sharp features or with high curvature, as 

shown in Figure 4.7. 

Figure 4.8 gives a more accurate analysis for estimated normal vectors deviation 

in the region adjacent to sharp features, where a cubic data set is selected for case study.  

The normal vectors of simulated point cloud data from a cube model are estimated from 

both the weighted plane fitting algorithm [59] (Figure 4.8a) and the proposed algorithm 

in this chapter (Figure 4.8b).  The top row plots in Figure 4.8a and Figure 4.8b compare 

3D color maps of corresponding deviation of estimated normal vector at each point along 

X  axis.  At each point its normal vector is marked in red ( 1nx  ), if it orients to X  axis; 

and in blue ( 1nx   ) if it orients to X  direction.  For normal vector perpendicular to 

X  axis it is marked in green ( 0nx  ).  Evidently, the estimated normal vectors from the 

proposed algorithm in this chapter demonstrate better results in regions adjacent to sharp 

features due to its more accurate local Delaunay triangulation mesh neighbors.  The 

current algorithm is pivotal in solving the sharp-feature preservation issue in surface 

reconstruction. 
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    (a) WPF algorithm     (b) current algorithm 

 
 

Figure 4.8  Comparison of estimated normals for Cubic data 
 
 
 

Figure 4.9 demonstrate many case studies on real scanned point cloud data based 

on their colour maps of the estimated normal vector deviation, as the third type of testing 

data.  The referential normal vector N   at each point is computed through the area-

weighted average of the normal vector of incident triangle mesh.  The referential original 

triangle mesh surface is reconstructed by the tight cocone algorithm.  Although N   is not 

the “true” surface normal vector, the results shown in Figure 4.9 provide enough 
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demonstration on the larger errors of normal vectors estimated from PF and WPF 

algorithms in the region with high curvature or adjacent to the sharp features compared to 

the combinatorial approach based on local mesh neighbors. 
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       (a)  current                    (b)  LVM                     (c)  PF                         (d)  WPF 
             algorithm                      algorithm                     algorithm                     algorithm 
 
 

Figure 4.9  Comparison of estimated normals for real point cloud data 
 
 
 

4.4.3. Limitation 
 

In our case study for noisy data, we obtain testing subject by adding noise to the 

original point cloud data.  The x , y  and z  components of the noise are independent and 

uniformly distributed.  The noise level is controlled by a local scale factor.  The average 

distance of a point p  to its ten nearest neighbors is chosen as the factor.  The point p  is 

thus perturbed by this factor.  Six factors 0, 0.04, 0.08, 0.12, 0.16 and 0.2 are considered 

for this case study.  The testing data is from a uniform point cloud data (the second type 

testing data) from Torus surface with 10000 pts and made noisy by artificial perturbation 

with six different noise levels, as shown in Figure 4.10. 
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0%    4%    8% 

         
12%    16%    20% 

 
 

Figure 4.10  Torus with increasing noise 
 
 
 

As discussed above, for a point cloud data with no noise, the proposed algorithm 

and LVM algorithm both demonstrate better performance for normal vector estimation, 

especially around high curvature and regions with the sharp feature.  However, for a 

noisy point cloud data, the numerical optimization algorithms based on plane fitting 

techniques demonstrate their advantages in Figure 4.11.  When the noise is low, all four 

algorithms estimate normal vector well.  As the noise level increases, the proposed 

algorithm and LVM algorithms normal vector estimation become worse. 
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Figure 4.11  Estimated normal errors in different noise level 
 
 
 

Therefore, the proposed normal vector estimation algorithm in this chapter is 

noise sensitive.  As we know, increasing neighboring points can decrease the normal 

vector estimation error in the noisy point cloud data not only for numerical optimization 

approaches but also for combinatorial estimation approaches.  For the local umbrella 

mesh neighbors incident to point v , there exist a ring of an umbrella.  All circumjacent 

neighborhood vertices 1( ) { , ... , }v nU p p p  in the umbrella vU  at point v  are regarded as 

the one-ring neighboring points set at point v .  If one-ring neighboring points set of all 

points in the one-ring neighboring points set ( ( )vU p ) are also counted in the neighboring 

points set for point v  (except itself), we term it two-ring neighboring points set at point v .  

Using two-ring neighboring points set into current algorithm can dramatically reduce 

estimation error in the noisy point cloud data as demonstrated in Figure 4.12.  This makes 

it possible for users to choose the number of rings according to the noise level of the 

point cloud data. 
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Figure 4.12  Proposed algorithm with two-ring neighbors 
 
 
 
4.5. Concluding Remarks 
 
 

A new combinatorial normal vector estimation method for point cloud data from 

the local mesh matching results at each point has been proposed in this chapter.  Built 

upon the novel evaluation methodology of local mesh matching proposed in the last 

chapter, a refined local Delaunay triangulation mesh neighbors at each point can be 

identified.  These well estimated local Delaunay triangulation mesh neighbors make it 

possible to compute a reliable normal vector at each point, especially for points adjacent 

to the sharp features.  The computation of normal vector at point v  is divided into two 

different matching-index weighted calculations depending on the number of fully 

matched umbrella facets incident to v  ( ( )vU f ).  When the number of ( )vU f  is no less 

than 3, a weighted calculation based on the normal vectors of all triangles in ( )vU f  is 
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adopted.  Otherwise, a weighted calculation based on the plane fitting for all neighboring 

points in ( )vDT U  is adopted. 

Different from other combinatorial algorithms based on local meshes neighbors 

(such as LVM algorithm), the proposed algorithm can identify reliable local mesh 

neighbors depending on matching results estimation in chapter 3, which can help improve 

the accuracy of estimated normal vector.  Comparing with the general numerical 

optimization approaches, such as plane fitting (PF) and weighted plane fitting (WPF) 

algorithms, the proposed combinatorial normal vector estimation algorithm yields more 

accurate result for low-noise or no-noise point cloud data, especially in the region 

adjacent to the sharp features, though it might be more time-consuming.  The proposed 

normal vector estimation algorithm will be applied in the next chapter to help solve 

sharp-feature preservation issue.  The effectiveness of the proposed algorithm has been 

demonstrated with both simulated and real-world point cloud data sets.  Multiple case 

studies have been performed and analyzed to validate its performance. 
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5 NORMAL VECTOR CONE FILTERING FOR SHARP FEATURE 

RECONSTRUCTION 
 
 
5.1. Introduction 
 
 

With recent advancements in optical technologies, 3D laser scanners have 

dramatically improved both in precision and in affordability.  As 3D laser scanning finds 

its application in many fields such as design, manufacturing, and art, the issue of reliable 

conversion of the scanned point cloud data into a mathematical surface representation has 

long been recognized and actively investigated in the surface reconstruction research 

community.  Especially in computer-aided inspection based on ultra-precise 3D laser 

scanning system, it is considered mission critical that exact sharp features of the original 

physical object can be reconstructed from the measured point clouds. 

The term “feature” has been used and well-defined in many disciplines and 

applications.  For example, in computer-aided design and manufacturing, feature design 

means directly introducing functional features or manufacturing features into the product 

model in order to streamline design stage.  Feature recognition focuses on extraction of 

manufacturing or form features from a solid model [68].  For geometric modeling, a free-

form feature is defined as a visually prominent characteristic of the shape [69], including 

but not limited to, sharp edges, ridge lines, valley lines, corners, etc.  Evidently, sharp 

features are of vital importance and typically represent critical sections of the model; thus, 

exact identification or reconstruction of them is essential not only for quality control in 

measured point cloud data but also for reverse engineering with surface reconstruction. 
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Most existing surface reconstruction algorithms discussed in chapter 2.2 yield a 

smooth triangle-mesh surface from input point clouds data.  In general, an extra post-

processing algorithm or remeshing process is required to preserve sharp features of the 

original physical object, such as the combined Sharpen&Bend post-processing [70].  

Automatic identification or direct reconstruction of sharp features still remains an open 

research question in triangle mesh surface reconstruction.  As illustrated in Figure 5.1, a 

typical mechanical part with sharp features can be reconstructed differently from 

different the reconstruction algorithm.  Figure 5.1a shows the point cloud of the well-

known Fandisk model and Figure 5.1b shows the output mesh using a typical smooth 

surface reconstruction algorithm.  Figure 5.1c is the reconstructed triangle mesh from the 

proposed algorithm in this chapter, which preserves sharp features of the Fandisk model 

well, in comparison with the general method used for Figure 5.1b. 

 

 
 
 
Figure 5.1 An example with sharp features: (a) original point cloud; (b) 

reconstructed mesh by a general algorithm; and (c) reconstructed mesh 
by the proposed feature sensitive algorithm 

 
 
 

As stated in chapter 2.2, majority of surface reconstruction algorithms developed 

in the past decades can be classified into three main categories: implicit surface, region 
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growing, and Delaunay-based approaches.  The basic idea behind the implicit surface 

approach is the building of a function in the Euclidean space 3R , from input point cloud, 

which is formulated to be negative inside the modeled object and positive outside.  The 

output surface can be extracted simply as the zero level-set of the formulated function.  

This approach has been employed and implemented by many researchers [11-13, 18, 71].  

Additionally, Carr et al. [15] and Dinh et al. [14] applied implicit surfaces based on radial 

basis functions to a number of problems in computer graphics, including surface 

reconstruction.  All these approaches require a post-processing step to compensate the 

loss of sharp features because of the limitation of the standard marching cubes algorithm 

[72].  The problem has been addressed in Refs. [73, 74], where the standard marching 

cubes algorithm is extended or improved in order to preserve sharp features of the 

original object.  Casciola et al. [75] also proposed an anisotropic extension of radial basis 

functions to reconstruct surface with sharp features.  Nevertheless, implicit surface 

approaches can only produce reconstructed surfaces that approximate the input points 

rather than interpolate them and this limits their applications.  For applications such as 

computer-aided inspection or reverse engineering, constraining the measured points to be 

exactly on the reconstructed surface is often mandatory. 

The region growing approach first selects a triangle as an initial region and then 

incrementally grows or expands the boundary of the initial region by adding new 

triangles until the whole point data set is covered.  This approach is very computationally 

efficient but often requires additional user-specified parameters.  For example, both the 

ball-pivoting algorithm (BPA) by Bernardini et al. [24] and the combinatorial advancing-

front algorithm by Huang and Meng [25], are typical region growing approaches.  Lin et 
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al. [26] proposed an improved region growing method based on an intrinsic property of 

the point set.  The method attempts to overcome the limitation of user-specified 

parameters.  Other researchers [9, 28] also aimed to apply the region growing method by 

picking triangles from Delaunay triangles to reconstruct the desired surface.  In any rate, 

it is factual for all existing region growing approaches that a post-processing algorithm is 

required not only to fill holes but also to rectify the mesh quality and sharp features. 

Delaunay triangulation comes from the computational geometry community and 

can represent the neighborhood of every point in a point set in all relevant directions.  

Delaunay-based approaches for desired surface mesh reconstruction always start with 

extraction of a subset of triangles from the complete set of Delaunay triangles.  

Boissonnat [30] first proposed a Delaunay-based surface reconstruction algorithm that 

removed tetrahedral and triangles from the set of Delaunay triangles according to certain 

geometric rules.  By now more and more algorithms based on Delaunay triangulation 

have been proposed, such as the well known alpha shape algorithm by Edelsbrunner et al. 

[31], the crust and power crust algorithm by Amenta et al. [36, 38], the cocone and tight 

cocone algorithm by Dey et al. [2, 40], and the umbrella filter algorithm by Adamy et al. 

[34].  In the author’s previous work [64] described in chapter 3, an umbrella facet 

matching (UFM) algorithm based on Delaunay triangulation has been proposed to 

reconstruct a watertight manifold triangle-mesh surface by interpolating all the input 

points.  Among these algorithms, the power crust algorithm [38] based on the weighted 

Voronoi diagram of the poles (Voronoi vertices) is capable of reconstructing sharp 

features but resulting reconstructed mesh is not guaranteed to pass through all input 

points and generate a triangle-mesh surface.  To preserve sharp features, most of the 
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existing Delaunay-based algorithms still require an additional post-processing step.  The 

tight cocone algorithm [2] is effectively a post-processing algorithm based on the cocone 

algorithm [40], which can reconstruct a watertight interpolation triangle-mesh surface 

with sharp features.  Some researchers, such as Kuo et al. [29], proposed a combinatorial 

approach combining region growing and Delaunay-based methods to reconstruct surface 

with sharp features.  In their work, a region growing algorithm is used for the smooth 

region and a Delaunay-based algorithm using the poles is applied for the sharp region.  

The output triangle meshes of this method, however, cannot guarantee to pass through all 

input points either.  Furthermore, a user-specified parameter is required for reliably 

identifying sharp regions in the reported algorithm. 

 
5.2. Relevant Techniques 
 
 

In the past, feature identification techniques are applied both to reconstruct 

surface with sharp features, and to extract sharp features directly from point clouds.  For 

these applications, specific geometric criteria are always employed for the sharp feature 

identification, such as the curvature extremum, normal vector deviation, and fitted error 

of a local least-squares plane. 

5.2.1. Feature Extraction from Point Clouds 
 

In the absence of connectivity and normal information, feature extraction from 

input point clouds is not always straightforward.  Neighbor graph is often computed as an 

initial tool to estimate neighborhood geometric information of each input point.  

Gumhold et al. [76] employed both the Delaunay filtering and the Riemannian graph to 

deal with noise-free and noisy data set.  Furthermore, they conducted numerical analysis 
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based on curvature extremum to compute weights that mark points as potential creases, 

boundaries, or corners.  Finally, the marked points were connected by a minimum 

spanning tree and fitted into curves to approximate sharp edges.  Demarsin et al. [77] 

computed the normal of each point using principal component analysis and segmented 

the points into groups based on the normal variation in local neighborhoods.  Song et al. 

[78] proposed a new criterion based on the extrapolated normal vector at each point, 

named as incompatibility, and attempted to autonomously detect the sharp features in a 

point cloud data set based on statistical principles.  Fleishman et al. [79] and Öztireli et al. 

[80] applied robust statistics in moving least-squares (MLS) fitting for surface 

reconstruction and representation separately.  All these techniques can extract the sharp 

features directly from input point clouds by the neighborhood of each point; nevertheless, 

their accuracy depends on the sampling condition and the neighborhood selection. 

5.2.2. Feature Identification from Meshes 
 

Many researchers have investigated the sharp feature identification issue in mesh 

models.  Mencl and Müller [81] proposed a graph-based surface reconstruction algorithm 

which can deal with varying point density and high surface curvature.  They employed a 

criterion of normal vector deviation based on the dihedral angles of the incident facets.  

Hubeli et al. [82] also defined some classification operator by using normal vector 

deviation analysis in their work.  Watanabe et al. [83] used discrete differential geometry 

methods to estimate the mean and Gaussian curvatures.  Attene et al. [70] first identified 

chamfer triangles from a reconstructed triangle mesh based on dihedral angles.  New 

vertices to subdivide the chamfer triangles were inserted in order to recover the sharp 

feature.  Other researchers employing the Delaunay-based approach [2, 29, 38] used the 
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poles (specific Voronoi vertices) as a tool to approximate the surface normal and to 

subsequently identify sharp features for the reconstructed surface.  However, most of the 

feature identification techniques based on mesh require a reconstructed mesh as the input.  

The subsequent sharp feature identification depends not only on the quality of the 

previous reconstructed surface, but also on user-specified parameters. 

 

 
 

Figure 5.2  Umbrella vU  at point v  

 
 
 
5.3. Overview of the Proposed Method 
 
 

This chapter presents a new feature sensitive triangle mesh reconstruction method 

by analyzing dependable geometric information in the neighborhood of each input point.  

The neighborhood of each input point is derived from the matching results of the local 

umbrella mesh constructed at each point.  The umbrella is a local 2-dimensional manifold 

triangular mesh set extracted from a Delaunay triangles set.  As shown in Figure 5.2, an 

umbrella vU  incident to a point v  includes a center vertex v , a triangular facet set 

1( ) { , ... , }v nU f f f  and a circumjacent neighborhood vertex set 1( ) { , ... , }v nU p p p .  

The evaluation of these matching results is based on the authors’ previous work [64], 

named as the umbrella facet matching (UFM) algorithm.  Reliable geometric information 
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in the neighborhood of each point can be well represented by these umbrellas with the 

current matching results, which is in effect a form of the refined neighborhood graph. 

The sharp feature sometimes is considered to be shaped through the intersection 

of some relatively flat local neighborhood patches.  The central idea of the proposed 

algorithm is to seek reliable local umbrella meshes with “good” flatness in the adjacent 

region of sharp features, which can be pushed to build the possible relevant sharp features.  

A novel flatness sensitive filter, referred to as the normal vector cone (NVC) filter in the 

present work, is introduced and used to seek reliable adjacent umbrellas with “good” 

flatness by analyzing the neighborhood geometric information of the relevant sharp 

features.  A global flatness parameter based on the dihedral angles is introduced to 

evaluate the quality of the flatness of an umbrella.  The successful configuration of an 

umbrella with “good” flatness close to the desired sharp feature can help preserve the 

sharp features in the reconstructed triangle mesh.  By resorting to the same unified multi-

level priority queuing mechanism in UFM algorithm, our aim is to automatically and 

reliably reconstruct a watertight manifold triangle mesh with sharp features with a 

progressive reconstruction process.  The reconstructed triangle mesh will be able to 

preserve all sharp features well and pass through all the original input points without 

adding or removing any points. 

The reminder of this chapter is organized as follows:  in the next section, details 

of the proposed feature sensitive algorithm based on multi-level priority queuing 

mechanism are described.  The elaboration includes a brief report on the basic idea of 

priority queuing in the UFM algorithm and a detailed description of the normal vector 

cone filter.  Then, further discussion on the presented algorithm is provided with some 
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typical experimental results and analysis.  The conclusions and future work are addressed 

in the last section. 

 
5.4. Feature Sensitive Umbrella Update 
 
 

As described in the UFM algorithm [64], an umbrella is a local 2-dimensional 

manifold triangle mesh set at an input point and extracted from a well-known geometric 

data structure: the Delaunay triangles set or its Gabriel subset.  Building an umbrella at a 

point is essentially a process that successively removes all redundant (non-manifold) 

Delaunay triangles incident to the point according to a priority queue from its Delaunay 

triangles set.  The remaining triangular facets then correctly constitute a manifold 

umbrella.  It is evident that different priority queues will lead to different umbrellas.  In 

order to get a fully matched umbrella at each point, the corresponding priority queue may 

be attained by progressively updating the priority queue based on an evaluation of the 

matching results of all the umbrella facets incident to the point.  For an existing umbrella, 

the matching results of its triangular facets can be evaluated and then used to establish an 

updated priority queue.  An updated priority queue then produces an updated umbrella.  

This process repeats itself until a fully matched umbrella is found.  More details of the 

progressive meshing process are explored in the following section. 

5.4.1. Priority Queuing Based on Matching Results 
 

There are two separate parameters indicating the matching result of the local 

umbrella constructed at each input point.  The baseline matching result is quantified by a 

absolute matching index fM , and the refined matching result is quantified by a relative 
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matching index ( )f vM .  Both are designed to evaluate how much an umbrella overlaps 

with its neighboring umbrellas.  If an umbrella triangular facet f  is included in all of the 

three umbrellas of its three vertices, that facet is considered a matched facet ( 3fM  ), 

indicated by the shadowed triangles in Figure 5.3.  Otherwise, the facet   is not a matched 

facet ( 3fM  ), shown by the dashed triangles in Figure 5.3. 

 

 
 
 

Figure 5.3  Three stages of building a matched umbrella at point v  
 
 
 

In the remainder of this chapter, if all the triangular facets of an umbrella at point 

v  are matched facets, the umbrella is called the fully matched umbrella vU , as shown in 

Figure 5.3c.  The partially matched umbrella vU  , shown in Figure 5.3b, represents an 

umbrella at point v  where only a portion of the umbrella triangular facets are matched 

facets.  If there does not exist any matched facet, the umbrella is named a void matched 

umbrella  vU  as shown in Figure 5.3a.  In fact, Figure 5.3 demonstrates three sequential 

stages in the process of seeking a matched umbrella at point v . 
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Figure 5.4  Multi-level inheritance priority queuing 
 
 
 

In order to construct the desired fully matched umbrella at every point, the 

priority queuing mechanism with three-level inheritance is introduced in the UFM 

algorithm.  A sub-level always inherits queuing in the super-level.  This implies that 

primary queuing rules should always be placed at the superior levels.  As shown in Figure 

5.4, the third (bottom) level queuing rule is based on the Delaunay triangle size 

information which relates to distance information among input points.  Other priority 

queuing level may be unavailable, but the bottom level queuing rule is always available 

for an input point.  This is particularly true for the first umbrella built in the initial stage.  

The second (middle) level queuing rule is then based on the refined matching result 

( )f vM .  The first (top) level queuing rule is based on the basic matching result fM .  In a 

nutshell, the three-level inheritance priority queuing can extract the required matching 

results and relevant distance geometric information around the neighborhood at each 

point and obtain all matched umbrellas incident to a input point in the UFM algorithm. 

However, the three-level priority queuing mechanism is unable to identify 

relevant sharp features.  It fails to reconstruct sharp features in output triangle mesh 

because the method only involves distance information among input points and geometric 
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information based on the matching results in the neighborhood for each point.  In order to 

reconstruct triangle mesh with the sharp features in a unified meshing process, it is 

necessary to introduce a new priority queuing level based on the dependable feature 

sensitive information in the neighborhood at each input point. 

5.4.2. Improved Priority Queuing for Sharp-feature Preservation  
 

Since sharp features could be positively identified through intersections of relative 

flat local patches around its neighborhood, the proposed algorithm attempts to shape 

relevant sharp features in the reconstructed triangle mesh by building reliable local 

umbrella meshes out of “good” flatness in the adjacent region.  Therefore, a novel 

flatness sensitive filter, referred to as the normal vector cone (NVC) filter, is introduced 

and designed to seek the reliable umbrella with “good” flatness in the neighborhood of 

relevant sharp features.  The successful building of an umbrella with “good” flatness in 

and around the desired sharp features will help preserve them well in the reconstructed 

triangle mesh. 

Since the estimated matched umbrellas based on fM  or ( )f vM  are in fact a kind 

of refined local mesh neighbors, useful geometric information in the neighborhood of 

each point can be extracted.  Additionally, experience from umbrella matching exercise 

indicates that umbrellas located in the non-smooth or the sharp regions seldom match 

each other fully by the size information of their Delaunay triangles only.  This implies 

that the NVC filter can be effectively employed into most points located in the sharp 

feature regions or its adjacent region.  With the help from a global estimation based on 

the dihedral angle of any two matched umbrella facets, the introduced NVC filter make it 
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possible to successfully build an umbrella with “good” flatness close to the desired sharp 

features. 

 

 
 
 

Figure 5.5  Feature sensitive priority queuing 
 
 
 

In Figure 5.5, the NVC filter level is added as the new top level of priority 

queuing.  This improved four-level inheritance priority queuing addresses the flatness 

sensitive geometric information in the neighborhood of each point and is critical for 

reliable reconstruction of sharp features.  The introduced NVC filter will gradually nudge 

any partially matched umbrella and shape them into fully matched umbrella with “good” 

flatness in relevant region, through the geometric criteria of normal vector deviation 

based on the dihedral angle of the matched umbrella facets.  It is a unified and 

progressive triangle mesh reconstruction process.  Once the fully matched umbrella for 

every input point is found, the algorithm finally converges and a watertight manifold 

triangle mesh is constructed with well-preserved sharp features. 
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Figure 5.6  Normal vector cone at point v  
 
 

5.4.3. Normal Vector Cone Filtering 
 

As a novel geometric heuristics filter, the normal vector cone (NVC) filter is 

designed to reliably reconstruct the sharp features of the output triangle mesh in current 

work.  As shown in Figure 5.6, the NVC filter at point v  is defined by three parameters: 

the cone angle  , the nominal normal N  and the limitation range R .  The nominal 

normal N  and the cone angle   could define a normal vector cone at point v , as 

illustrated by the dashed cone in Figure 5.6.  Once the acute angle between the normal of 

any unmatched Delaunay triangle and the nominal normal N  at point v  is less than the 

cone angle  , the unmatched Delaunay triangle at v  is chosen as a likely candidate for 

unmatched NVC Delaunay-triangles set.  If the size of the preliminary candidate triangle 

can be further constrained into the limitation range R , it is then qualified to become a 

member of the final unmatched NVC Delaunay-triangles set.  We can also say that if the 

unmatched Delaunay triangle at point v  locates inside its normal vector cone then it is an 

unmatched NVC Delaunay-triangle.  The cone angle   and the nominal normal N  

constrain the orientation of a triangle candidate (an unmatched Delaunay triangle) at 
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point v  and the limitation range R  limits its size.  More details on these three parameters 

of the NVC filter are described later. 

In current work, there exist two types of NVC filters depending on different 

choice of the cone angle   and the calculation of the nominal normal N .  The first is a 

generic filter with a larger cone angle ( / 4  ) and the second is the flatness sensitive 

filter with a smaller cone angle depending on the global flatness estimation of 

reconstructed triangle mesh.  The calculation of the nominal normal N   for these two 

NVC filters are all based on the normal vector estimation algorithm proposed in chapter 4, 

with an additional weight value being assigned to calculate the N  for the flatness 

sensitive filter.  Those specific points are identified to apply the flatness sensitive NVC 

filtering by analyzing their local neighborhood meshes, whose umbrellas likely keep the 

“good” flatness.  The flatness sensitive NVC filtering mainly devotes to reconstructing 

the sharp features, while the generic NVC filter can help the algorithm converge on 

finding all fully matched umbrellas. 

Cone angle 
 

The value of the cone angle   for the flatness sensitive NVC filter is derived 

from the global flatness estimation of all matched umbrella facets.  For triangle meshes, 

the dihedral angle defined by the normal of two adjacent triangles is often regarded as the 

flatness estimation or sharp features indicator.  The application of the dihedral angle is 

based on the idea of normal vector deviation and conceptually straightforward.  The 

dihedral angle can be formulated by the following Equation 5.1: 
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          (5.1) 

 
 
The variable iN  and jN  correspond to the normal of the two adjacent triangles. 

Generally, a threshold is assigned to the dihedral angle to identify the flat or sharp 

features.  However, the determination of the threshold is always a non-trivial and often 

challenging task.  Although in theory a locally self-adaptive threshold should be preferred 

over a fixed global threshold, a fixed global threshold is used in current algorithm for the 

sake of simplicity and efficiency.  Doubling the average of the dihedral angles for all 

matched umbrella facets is found to be a good overall threshold angle between the 

physical objects and the ideal simulated models.  The overall threshold derived from the 

global estimation of dihedral angles in matched umbrella facets is assigned to the cone 

angle  .  For the generic NVC filter at each point, the value of the cone angle   is often 

assigned to / 4 .  This kind of coarse angle constrain help drive the umbrellas matching 

each other due to the consistence of the normal vector estimated by algorithm proposed in 

chapter 4. 

Nominal normal 
 

The calculation of the nominal normal N  at each input point is based on normal 

vector estimation algorithm proposed in chapter 4, which depends on the estimated 

matching results of its umbrella.  For certain specific points with the flatness sensitive 

NVC filter, additional weight values are assigned to calculate their nominal normal N .  

These points with the flatness sensitive NVC filter are identified first by analyzing their 
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local neighborhood meshes.  The identification process is detailed in the following 

section. 

Identification of point with a potential flat umbrella 
 

As shown in Figure 5.2, an umbrella at v  includes a center vertex v , a triangular 

facets set 1( ) { , ... , }v nU f f f  and a circumjacent neighborhood vertex set 

1( ) { , ... , }v nU p p p .  There are three different matching stages for an umbrella in the 

umbrella matching results, as illustrated in Figure 5.3.  If there exists a fully matched 

umbrella at point v , it is marked by 1vG  .  Otherwise, the point v  is marked by 0vG  .  

Consequently, four different types of point in current algorithm can be defined in Table 

5.1. 

Table 5.1   Classification of point with an umbrella 
 

 

Name Grade of 
Vertex 

Shape Definition 

Void Matched Umbrella Point 

(  vU  Point) 
0vG   

Small Empty 

Dot 
If ( ) : 3v ff U f M    

Partially Matched Umbrella Point 

( vU   Point) 
0vG   

Large Empty 

Dot 

If ( ) : 3v ff U f M   , 

and ( ) : 3v ff U f M    

Fully Matched Umbrella Point 

( vU  Point) 
1vG   

Large Solid 

Dot 

If ( ) : 3v ff U f M   , 

and ( ) : 0v pp U p G    

Finished Fully Matched Umbrella Point 

(Finished vU  Point) 
1vG   

Small Solid 

 Dot 

If ( ) : 3v ff U f M   , 

and ( ) : 1v pp U p G    
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If neither facet of an umbrella at point v  is the matched umbrella facet (if 

( ) : 3v ff U f M   ), the point v  is named the void matched umbrella point (  vU  point), 

shown by small empty dots in Figure 5.7.  The partially matched umbrella points ( vU   

point) are the ones with an umbrella where triangular facets are only partially matched (if 

( ) : 3v ff U f M    and ( ) : 3v ff U f M   ).  They are shown by large empty dots 

in Figure 5.7.  Once there exists a fully matched umbrella vU  at point v  with all its 

circumjacent neighborhood points being non-empty dots (if ( ) : 3v ff U f M    and 

( ) : 1v pp U p G   ), the point v  is named the finished fully matched umbrella point 

(finished vU  point), as illustrated by small solid dots in Figure 5.7.  Large solid dots in 

Figure 5.7 denote points with a fully matched umbrella vU  where there exist empty dots 

in its circumjacent neighborhood vertex set (if ( ) : 3v ff U f M    and 

( ) : 0v pp U p G   ), which are named as fully matched umbrella point ( vU  point). 

 
 
 

Figure 5.7  Four different point types 
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In Figure 5.7, only fully matched umbrella facets ( 3fM  ) are drawn, which are 

triangles extracted from Delaunay triangles set.  The umbrellas of the finished vU  points 

(small solid dots) represent the finished fully matched triangle-mesh region.  The 

umbrellas at the vU  points (large solid dots) represent the finished fully matched triangle-

mesh region adjacent to the unfinished triangle-mesh region.  The partially matched 

umbrella vU   points (large empty dots) constitute the boundary of the unfinished triangle-

mesh region.  Those points with a potential flat umbrella will be identified from the 

partially matched umbrella vU   points. 

The partially umbrella vU   points A and B in Figure 5.7 are selected to exemplify 

how to identify the point with a potential flat umbrella and calculate its nominal normal 

N  with additional weight values.  For point A and B, all their matched umbrella facets 

connected with a fully matched umbrella vU  point (large solid dot) are picked, referred to 

the shadow triangles as show in Figure 5.7.  These shadow umbrella facets cluster shape 

together a dependable near-neighborhood region for points A and B respectively.  Their 

interconnection with full umbrella vU  points (large solid dot) often means the back of 

these picked shadow umbrella facets is against a finished fully matched triangle-mesh 

region (shaped by the umbrellas at vU  points or finished vU  points).  The current 

algorithm employed the same global flatness based on the dihedral angle in cone angle   

estimation to identify whose shadow umbrella facets cluster can be regarded as the flat 

one.  In the case of Figure 5.7, while the vU   point A is identified as a point with a 
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potential flat umbrella but the vU   point B is not because one of its dihedral angles among 

its shadow umbrella facets cluster is larger than the threshold of the estimated global 

flatness.  The shadow triangles cluster at point A will receive the additional weight value 

for the calculation for nominal normal N  at point.  In the normal vector estimation 

algorithm of chapter 4, the original weight value in these shadow triangles cluster is 

simply the matching index ( 3fM  ) of them.  Once point A is identified, the weight 

value for its shadow triangles will get an increment ( 1fM  ) and the nominal normal N  

at point A is calculated according to the normal vector estimation algorithm proposed in 

chapter 4.  A flatness sensitive NVC filtering is employed into the identified points to 

build an updated priority queue for a potential flat umbrella, such as point A.  Otherwise, 

a generic NVC filtering would be applied, such as the case for point B. 

All other all identified points in this case study with additional weight estimated 

nominal normal N  have been shown in Figure 5.7.  The flatness sensitive NVC filtering 

employed into them makes it possible to build the desired umbrellas with “good” flatness.  

As mentioned before, from our experience in umbrella matching, umbrellas located in the 

non-smooth or the sharp regions often neither fully nor quickly match each other (shape 

the boundary of the unfinished triangle-mesh region around the sharp features) due to the 

perturbation of the scanned point cloud data that often plagues these regions.  In 

summary, by resorting to the flatness sensitive NVC filtering and through the successful 

building of an umbrella with “good” flatness adjacent to the sharp features, the proposed 

algorithm can effectively preserve the desired sharp features in the reconstructed surface.  

The flowchart of Normal Vector Cone filtering is shown in Figure 5.8. 
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Figure 5.8  NVC filtering flowchart 
 
 
 
Limitation range 
 

The limitation range R  is designed to further screen selected candidates for 

unmatched NVC Delaunay-triangles set at each point.  For the candidate triangles 

preliminarily chosen in NVC Delaunay-triangles set, they are further filtered by checking 

the Limitation Range R .  The limitation range R  is defined and measured by the concept 

of the ring of an umbrella.  All circumjacent neighborhood vertices 1( ) { , ... , }v nU p p p  

in the umbrella vU  at point v  are regarded as an one-ring neighboring points set at point 
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v .  If one-ring neighboring points set of all points in the one-ring neighboring points set 

( ( )vU p ) are also included in the neighboring points set for point v  (excluding itself), we 

term it two-ring neighboring points set at point v .  If unmatched NVC Delaunay-

triangles set is limited to one-ring neighborhood points set, all candidate triangles in 

unmatched NVC Delaunay-triangles set, i.e. one of whose vertices is not in the one-ring 

neighboring points set, must be removed from the unmatched NVC Delaunay-triangles 

set.  In current algorithm, two-ring neighboring points set are selected as the value for the 

limitation range R  to further limit the unmatched NVC Delaunay-triangles set, denoted 

by 2R  .  It provides a compromised selection for different sampling density in point 

cloud data.  It should be noted that filtering in the unmatched NVC Delaunay-triangles 

set only means these candidate triangles become that part of final reconstructed umbrellas 

with higher priority than those unmatched non-NVC Delaunay-triangles set. 

The Delaunay triangles set incident to a point is filtered by the NVC filter based 

on three parameters: the cone angle  , the nominal normal N  and the limitation range 

R .  The flatness sensitive NVC filtering makes it possible to construct a fully matched 

local umbrella with “good” flatness, likely adjacent to the desired sharp features.  The 

output of these flat umbrellas located in the neighborhood of the sharp features plays a 

significant role in shaping the sharp features in the final reconstructed triangle mesh.  The 

advanced four-level inheritance priority queuing mechanism makes the proposed 

algorithm a feature sensitive triangle mesh reconstruction algorithm via the unified 

progressive local mesh matching process.  The reconstructed triangle mesh promises to 

preserve sharp features well and pass through all the original input points without adding 
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or removing any points.  Multiple case studies have been carried out and analyzed to 

validate the performance of the proposed algorithm. 

 
5.5. Implementation and Results 
 
 

The quality of a reconstructed surface varies widely and is often determined by 

sampling condition of input points, noise content of measured points, as well as specific 

shape of the original object.  For the proposed algorithm based on Delaunay triangulation, 

it is assumed that the points are noise-free and other geometric information, such as the 

normal direction at each point, is unavailable.  The measured point cloud is also 

unorganized and the original object surface needs not be smooth.  Finally, there is no 

limitation on the genus of the original object surface. 

Algorithm implementation 
 

The proposed algorithm is programmed in C++ language.  Codes in the 

Computational Geometry Algorithms Library CGAL [43] are applied to complete the 3D 

Delaunay triangulation (DT) of targeted data set.  Also, for topological information, 

another open source C++ template library, VCG Library [47], is employed for storing and 

processing of the triangular and tetrahedral meshes.  The experimental case studies are 

performed on a Windows-based PC with a 2.66GHz processor and 4GB memory. 
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Table 5.2   Implementation results for some public point cloud data sets 

 

Data Set Implementation Results 

Name Genus Input 
(points) 

Output 
(triangles) Matching F  Time (sec.) 

Bunny 0 35,947 71,890 100% 0 72.44 

Golf Club 0 16,585 33,166 100% 0 29.18 

Mechpart 3 4,102 8,212 100% 0 9.47 

3Holes 3 4,000 8,008 100% 0 6.15 

Knot 1 10,000 20,000 100% 0 17.83 

Mannequin 0 12,772 25,540 100% 0 35.76 

Casting Die 0 63,613 127,230 100% 8 141.71 

Oilpmp* 0 30,937 61,862 100% 0 77.55 

Rocker Arm 1 10,044 20,088 100% 0 23.47 

Screwdriver 0 27,152 54,300 100% 0 61.06 

Hand 0 25,001 49,998 100% 0 49.93 

Teapot 1 25,667 51,334 100% 0 86.70 

Golf Head 0 52,524 105,044 100% 0 126.90 

Foot 0 20,021 40,038 100% 0 36.60 

Fandisk01 0 6,475 12,946 100% 0 9.17 

Fandisk02 0 16,475 32,946 100% 0 47.16 

SimulationSolid 0 6,988 13,972 100% 0 7.71 

CubewithHole 1 2,224 4,448 100% 0 3.88 

 
* Oilpmp included 4 repeated points and they were removed. 
 
 
 

Table 5.2 shows the computational efficiency and effectiveness for a number of 

publicly available point cloud data sets.  It can be seen that 100% matching has been 
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attained for all the test cases with different genus.  The matching percentage represents 

the ratio of the number of the resulting points with fully matched umbrellas to the number 

of points in the complete input point cloud.  A matching ratio of 100% indicates that fully 

matched umbrellas at all points are found and a watertight manifold triangle mesh is 

reconstructed successfully.  F  is a parameter designed for estimating the topological 

quality of the reconstructed surface compared to the original model, as described in 

Equation 3.2 of chapter 3.  According to Equation 3.2, lower F  values indicate smaller 

topological difference and zero F  represents homeomorphism between the 

reconstructed triangle-mesh surface and the original model surface.  Our results from 

current extended UFM algorithm in Table 5.2 have shown the best topological quality so 

far compared to Table 3.3 and Table 3.4 in chapter 3, although keep in mind that there is 

no theoretical guarantee for topological quality. 

As shown in Figure 5.9b, the reconstructed surface for Casting Die model in 

current algorithm is a watertight manifold triangle mesh and interpolating all points in a 

point cloud, though it contains a minor topological deviation ( 8F  ).  Compared to the 

result from the UFM algorithm proposed in chapter 3 shown in Figure 5.9a, there is an 

apparent improvement on the output topological quality and algorithm convergency for 

the current extended UFM algorithm.  All resulting 3D rendering images of the 

reconstructed triangle-mesh surface for these testing points cloud data sets are shown in 

Figure 5.10. 
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(a)  UFM algorithm in chapter 3 
 
 

 
 

(b)  current extended UFM algorithm 
 
 

 
Figure 5.9  Comparison of reconstructed surface for Casting Die data set 
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Figure 5.10  Reconstructed surface for the data set in Table 5.2 
 
 
 
Results analysis 
 

For comparison study, three existing algorithms are selected: the UFM algorithm 

(presented in chapter 3) based on the authors’ previous work [64], two other well-known 

algorithms, namely, the cocone algorithm and the tight cocone algorithm, developed by 

Amenta et al. [40] and Dey et al. [2] respectively.  All three algorithms are selected as 

general smooth triangle mesh reconstruction algorithms.  The cocone algorithm is not 

designed for watertight surface reconstruction.  The UFM and tight cocone algorithm are 

both targeting for watertight surface reconstruction.  The binary codes of the cocone and 

tight cocone algorithms are readily available on the Internet [84]. 
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          (a)             (b)            (c)           (d)          (e) 
 
 

Figure 5.11  Comparison of resulting meshes of Fandisk01 and Fandisk02 data set 
 
 
 

Figure 5.11 demonstrates comparison results for two well-known Fandisk models 

with sharp features.  The point cloud data of Fandisk01 model is a typical point set with 

uniform distribution and shown in the first row.  The point cloud data of Fandisk02 

model is a typical point set with non-uniform distribution and shown in the second row.  

Figure 5.11a is the raw point clouds data for these two models.  Chosen region for 

algorithm comparison is marked out with a rectangle.  Figure 5.11b and Figure 5.11c are 

results from the cocone and tight cocone algorithm, respectively.  Figure 5.11d is the 

result from the UFM algorithm of chapter 3.  The last column, Figure 5.11e, is the output 

of the proposed extended UFM algorithm in this chapter.  Cross comparison among the 
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output of these algorithms clearly shows that the proposed extended UFM algorithm 

stands out and reconstruct perfectly the original model with its sharp features.  The point 

clouds data of both Fandisk models are typical examples of feature sensitive sampling. 

         
(a)      (b) 

 

          
 
 

    (c)       (d)       (e)       (f) 
 
 

Figure 5.12  Comparison of resulting meshes of Oilpmp data set 
 
 
 

Another comparison comes from the Oilpmp model, as shown in Figure 5.12.  It 

includes lots of features typical of mechanical parts and possesses non-uniform sampling.  

Figure 5.12a is the raw point cloud of Oilpmp model loaded with sharp features and 

Figure 5.12b indicates highlighted region in Oilpmp model for detailed comparison.  

Figure 5.12c and Figure 5.12d are output triangle meshes from the cocone and tight 
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cocone algorithms.  Figure 5.12e is the result from the UFM algorithm presented in 

chapter 3.  The output of the proposed algorithm in this chapter is shown in Figure 5.12f.  

Evidently, the output of the current algorithm out performs others by preserving all the 

sharp features and generating a watertight manifold triangle-mesh surface.  More 

comparison examples from realistic scanned point cloud data are show in Figure 5.13.  

The reconstructed surfaces in Figure 5.13b, Figure 5.13c, Figure 5.13d and Figure 5.13e 

comes from the cocone algorithm, tightcocone algorithm, UFM algorithm in chapter 3 

and the current extended UFM algorithm respectively.  The extended UFM algorithm 

proposed in current chapter shows the best overall performance for the recovery of the 

sharp features.   

 
 

                 
 

                 
 



114 

 

                 
 
 

(a)          (b)  (c)          (d)  (e) 
 
 

Figure 5.13  Comparison of resulting meshes with sharp features of some examples 
 
 
 

Additional comparisons for the feature sensitive sampling in ideal simulation data 

set are performed.  Two simulated models, SimulationSolid and CubewithHole, are 

selected for this testing.  The presented feature sensitive algorithm demonstrates a more 

consistent reconstructed triangle mesh with sharp features, compared with the other three 

algorithms.  The comparison results for the two simulated models are shown in Figure 

5.14.  The cocone, tight cocone and UFM (proposed in chapter 3) algorithms are shown 

in Figure 5.14a, Figure 5.14b and Figure 5.14c respectively.  The last panel shown in 

Figure 5.14d is the output of the current extended UFM algorithm presented in this 

chapter.  As true with all simulation data set, the original triangle-mesh surfaces of these 

two models are known and their geometric properties can also be estimated.  For better 

comparison of the shape deviation of reconstructed surface from different algorithms, the 

normal deviations between the reconstructed surfaces and the original model are 

calculated.  Their colour maps are shown in Figure 5.15 with the same ordering sequence 

of Figure 5.14.  The region with green colour represents a larger shape deviation than the 
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region with blue colour.  Evidently the best surface reconstruction with sharp features 

goes to the last column in Figure 5.15d, which is the output of extended UFM algorithm 

proposed in this chapter.  Almost all sharp features can be correctly reconstructed 

including the sharp feature with the acute angle in SimulatinSolid model. 

          
 

          
 

     (a)       (b)        (c)       (d) 
 
 

Figure 5.14  Shape comparison of resulting meshes of simulated data set 
 
 
 
 

       
 

       
 

     (a)       (b)        (c)       (d) 
 
 

Figure 5.15  Colour map comparison of resulting meshes of simulated data set 



116 

 

 
Limitations 
 

Although the presented feature sensitive algorithm improves the quality of the 

reconstructed surface with sharp features, it may still miss some sharp features, as shown 

in Figure 5.16.  The distribution of the input point cloud of the Mechpart model is highly 

non-uniform and many features can not be reconstructed in the absence of sampling 

density. 

Furthermore, we cannot guarantee that the proposed algorithm does not miss any 

feature under arbitrary sampling density condition.  How to define a sufficient sampling 

condition for non-smooth geometry is still an open question in surface reconstruction.  

The presented algorithm uses the flatness threshold based on the global dihedral angle 

estimation in reconstructed triangle mesh to determine whether an umbrella is a local 

patch with “good” flatness.  A self-adaptive local threshold can possibly perform better in 

identifying relevant sharp features.  The geometric error evaluation in different models is 

also beyond the scope of this chapter.  All these outstanding issues will be considered and 

addressed in our future work. 

 
 
 

Figure 5.16  Loss of sharp features 
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5.6. Concluding Remarks 
 
 

A novel feature sensitive mesh reconstruction method is presented in this chapter.  

It is based on dependable geometric information in the neighborhood of each input point.  

The dependable geometric information is derived from the matching results of the local 

umbrella mesh constructed at each input point.  The core idea of the proposed algorithm 

is to seek reliable local umbrella meshes with good flatness in the adjacent region to help 

shape the relevant sharp features in reconstructed triangle mesh.  A new flatness sensitive 

filter, referred to as the normal vector cone (NVC) filter, is introduced to seek for the 

reliable adjacent umbrella with good flatness in the neighborhood of relevant sharp 

features.  Depending on a unified multi-level priority queuing mechanism, the presented 

algorithm can automatically and reliably reconstruct the watertight manifold triangle 

mesh with sharp features in an integrated reconstruction process without any post-

processing need.  It should be noted that there exist two types of NVC filters with 

different cone angles.  The first is a generic filter with a larger cone angle ( / 4 ) and the 

second is the flatness sensitive filter with a smaller cone angle depending on the global 

flatness estimation of reconstructed triangle mesh.  The flatness sensitive NVC filter 

mainly focuses on reconstructing the sharp features and the generic NVC filter can help 

the algorithm converge on finding all fully matched umbrellas.  The experimental results 

have shown that the proposed algorithm can improve the reconstructed triangle mesh 

quality and reduce the shape deviation compared to the original model geometry. 

As discussed in previous section, the presented algorithm may still miss some 

sharp features in the reconstructed triangle mesh for highly non-uniform or under-
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sampled region of the input point cloud data.  In the future, replacing the current fixed 

global flatness threshold estimation with the local self-adaptive estimation is expected to 

further improve the shape deviation of the reconstructed surface and better preserve sharp 

features.  Additionally, a post-processing algorithm for the complete recovery of the 

sharp features is an interesting research direction in the future, such as the remeshing 

processing based on moving or adding some reference points. 

 
 
 



119 

 

 
6 CONCLUSIONS AND FUTURE WORK 
 
 

This thesis is devoted to watertight manifold triangle mesh surface reconstruction 

with emphasis on the recovery of the sharp features.  The reconstructed triangle mesh 

surface interpolates (passes through) all measurement points in an unorganized point 

cloud data with low-noise.  An integrated triangle mesh processing framework for surface 

reconstruction based on Delaunay triangulation is presented in the thesis.  The proposed 

main algorithm, Umbrella Facet Matching (UFM) algorithm, features a unified multi-

level inheritance priority queuing mechanism for seeking and updating the optimum local 

manifold mesh at each data point.  Its two extended algorithms are then presented to 

further improve the quality of reconstructed triangle mesh surface.  Both algorithms 

resort to the same multi-level inheritance priority queuing mechanism to analyze local 

neighbourhood mesh at each data point.  Through the integrated surface reconstruction 

framework and the extended geometric heuristics proposed in the thesis, the resulting 

reconstructed surface can effectively recover the sharp features in the original physical 

object and capture their topology and geometric shapes reliably.  The effectiveness of 

these algorithms has been demonstrated using both simulated and real-world point cloud 

data sets.  For each algorithm, multiple case studies are performed and analyzed to 

validate its performance. 

 
6.1. Main Contributions 
 
 

The main contributions of the proposed algorithms in this thesis can be 

summarized as following: 



120 

 

 
 

 
 
 
Figure 6.1 Automatic watertight manifold surface reconstruction via progressive 

local mesh matching 
 
 
 
Automatic watertight manifold surface reconstruction 
 

This doctoral research proposes an effective approach to automatically reconstruct 

a watertight manifold triangle-mesh surface interpolating all points in an unorganized 

point cloud data with low-noise, which is named Umbrella Facet Matching (UFM) 

algorithm.  As illustrated in Figure 6.1, the algorithm starts by forming an initial open 

umbrella at each point from its Delaunay triangles.  If a triangular umbrella facet is 

included in all of the three umbrellas of its three vertices, the facet is considered a 

matched facet (the darkest triangles in Figure 6.1).  When all the triangular facets of an 

umbrella are matched facets, the umbrella is defined as a fully matched umbrella.  Once 
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the fully matched umbrella for every point is found, a watertight manifold triangle mesh 

is guaranteed to be constructed (the top right mesh in Figure 6.1). 

The multi-level inheritance priority queuing mechanism introduced here (Figure 

3.3 in chapter 3) aims to seek the fully matched umbrella at each point by iteration 

depending on the umbrella facet matching results.  A novel evaluation methodology of 

local mesh matching (Table 3.1 in chapter 3) has been proposed to represent the umbrella 

facet matching results for the priority queuing.  Since the proposed building process of an 

umbrella is equivalent to a redundant Delaunay triangles removal process depending on a 

priority queue, an updated priority queue will lead to an updated umbrella.  Therefore, the 

desired fully matched umbrella at each point can be found through a progressively 

updated priority queue according to the umbrella matching result.  The basic idea of the 

progressive local mesh matching is illustrated in Figure 6.2. 

 
 

 
 
 

Figure 6.2  Progressive local mesh matching mechanism 
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Normal estimation based on local mesh matching results 
 

Normal vector is a local geometric property of a 2-dimensional surface and 

specific to each given point.  Therefore, reliable estimation of the normal vector at each 

point in a point cloud data heavily depends on the positive identification of its valid 

neighboring points in the neighborhood.  A well estimated normal vector is a significant 

step towards correct reconstruction of sharp features in the original model surface.   

The novel evaluation methodology of local mesh matching in this thesis provides 

a refined way of finding reliable local Delaunay triangulation mesh neighbors at each 

point in the point cloud data.  The well estimated local Delaunay triangulation mesh 

neighbors at each point become the key towards computing a reliable normal vector at 

each point, especially for those points adjacent to the sharp features.  Comparing with the 

general numerical optimization approaches, such as least square approach, the proposed 

combinatorial normal vector estimation algorithm yields more accurate result for low-

noise or no-noise point cloud data, though it might be more time-consuming.  As shown 

in Figure 6.3, the normal vectors of simulated point cloud data from a cube model are 

estimated from both the weighted plane fitting algorithm [59] (Figure 6.3a) and the 

proposed algorithm in chapter 4 (Figure 6.3b).  Figure 6.3a and Figure 6.3b compare 

color maps of corresponding deviation of estimated normal vector at each point along X  

axis.  At each point its normal vector is marked in red ( 1nx  ) if it points to X  axis and 

in blue ( 1nx   ) if it points to X  direction.  For normal vector perpendicular to X  

axis it is marked in green ( 0nx  ).  Evidently, the estimated normal vectors from the 

proposed algorithm in this thesis demonstrate better results in the region adjacent to the 

sharp features due to its more accurate local Delaunay triangulation mesh neighbors. 
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(a)       (b) 
 
 
Figure 6.3 Comparison of estimated normal vector from: (a) weighted plane fitting 

algorithm; (b) the proposed algorithm in chapter 4 
 
 
 
Sharp features reconstruction via normal vector cone (NVC) filtering 
 

Automatic and reliable reconstruction of sharp features remains an open research 

question in surface reconstruction.  The extended UFM algorithm presented in chapter 5 

addresses the sharp feature preservation issue in surface reconstruction by analyzing 

dependable neighborhood geometric information for each input point.  Such information 

is derived from the matching result of the local umbrella mesh constructed at each point.  

Resorting to the unified multi-level inheritance priority queuing mechanism proposed in 

chapter 3, a novel flatness sensitive filter, referred to as the normal vector cone (NVC) 

filter, is introduced and demonstrated to be able to reliably reconstruct sharp features.  

Figure 6.4 illustrates the basic function of the NVC filter in a curve reconstruction 

example in Euclidean space 2R .  The NVC filters at point 1p  and 2p  can be estimated 

by analyzing their local mesh matching results respectively (shown in Figure 6.4a).  For 
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each point, the candidate segments (Delaunay triangles in Euclidean space 3R ) included 

in NVC filter will be identified and become a part of final reconstructed umbrellas with 

high priority (blue segments in Figure 6.4b).  The NVC filtering is designed to extract 

neighborhood geometric information reliably and drive the priority queue of umbrella-

building at each point.  It should be noted that there exist two types of NVC filters with 

different cone angles.  The NVC filter at 1p  is a generic filter with a larger cone angle 

( / 4 ) and the one at 2p  is a flatness sensitive filter with a smaller cone angle depending 

on the global flatness estimation of reconstructed triangle mesh.  The sharp feature 

recovery depends more on the flatness sensitive NVC filters, though the generic NVC 

filters can help the algorithm converge on finding all fully matched umbrellas.  Refer to 

chapter 5 for more details on the NVC filters. 

      
 

(a)      (b) 
 
 

Figure 6.4  Normal vector cone filtering 
 
 
 

With the proposed algorithms, a watertight manifold triangle-mesh surface can be 

successfully reconstructed, which interpolates (passes through) the complete original 

point cloud data without point addition or removal.  The output surfaces preserve the 
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sharp features well and in most cases contain only minor shape deviations, comparing to 

the original surface of physical object. 

 
6.2. Future Work 
 
 

As stated previously, the surface reconstruction research presented in this thesis 

assumes a low-noise, unorganized input point cloud P  in Euclidean space 3R .  As a 

Delaunay-based approach, the proposed algorithms are still sensitive to noise in the input 

point could data, yet they are demonstrated to work well not only in the low-noise point 

cloud data, but also guarantee to output a manifold interpolation surface (with few small 

holes) in very noisy data (shown in Figure 3.14 of chapter 3).  Reducing measurement 

noise in a scanned point cloud data in a separate pre-processing step has become a very 

active research subject lately, and is being investigated in our research group with ultra-

precise 3D laser scanning system.  The UFM algorithm and its extended algorithms set 

presented in the thesis will certainly benefit from these advanced research studies. 

Additionally, regions rich with small features, such as high curvatures, usually are 

not scanned well by laser scanner and often generate either non-uniform or under-

sampled point cloud data, especially when these small features are sharp.  These sharp 

features pose great challenging for all approaches on surface reconstruction.  Figure 6.5 

shows an example of the reconstructed interpolation triangle-mesh surface with sharp 

features from the proposed algorithms, with some sharp features missing due to the 

highly non-uniform and under-sampled measurement points around sharp features region.  

However, our algorithms still demonstrate a great robustness and improved accuracy over 

other watertight interpolation surface reconstruction algorithms, regardless of the fact that 
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not all sharp features are guaranteed in reconstruction, as illustrated in Figure 5.10 to 

Figure 5.15 in chapter 5 and Table 5.2 in chapter 5.  Building upon the current set of 

algorithms proposed in this thesis, a complete recovery of the sharp features for 

computer-aided design and inspection may become possible in the future.  One promised 

research direction is to extend the surface adjacent to the sharp features and calculate the 

proper intersection position under the specific geometric error.  Then the desired 

complete recovery of sharp features could be accomplished through moving relevant 

measurement points. 

     
 
 

Figure 6.5  An example of the sharp features missed 
 
 
 

Most Delaunay-based algorithms begin with computing the entire Delaunay 

triangulation of the input points cloud data and end with generating an interpolation 

triangle mesh surface.  Although robust and efficient algorithms exist in computing the 

Delaunay triangulation in Euclidean space 3R  [43], the computation remains time-

consuming for massive point cloud data of which it is not uncommon to see tens of 

millions of points currently in practice.  Most of the triangulation result is discarded in 

the end in these Delaunay-based algorithms.  In the future, a profitable research direction 

is to sort out and compute only the necessary part of the Delaunay triangulation, which 
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would be much desirable and drastically improve the efficiency of Delaunay-based 

surface reconstruction approaches. 
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